The physics, biophysics and technology of photodynam

Physics in Medicine and Biology 53, R61-R109 DOI: 10.1088/0031-9155/53/9/r01

Citation Report

#	Article	IF	CITATIONS
1	Selfâ€expandable metal stents and transâ€stent light delivery: Are metal stents and photodynamic therapy compatible?. Lasers in Surgery and Medicine, 2008, 40, 651-659.	1.1	28
2	Photodynamic therapy for Barrett's esophagus: does light still have a role?. Endoscopy, 2008, 40, 1021-1025.	1.0	28
3	The use of magnetic field effects on photosensitizer luminescence as a novel probe for optical monitoring of oxygen in photodynamic therapy. Physics in Medicine and Biology, 2009, 54, 1-16.	1.6	215
4	Plant Polyphenols and Tumors: From Mechanisms to Therapies, Prevention, and Protection Against Toxicity of Anti-Cancer Treatments. Current Medicinal Chemistry, 2009, 16, 3943-3965.	1.2	67
5	A Monte Carlo model of detected singlet oxygen luminescence and photosensitizer fluorescence during ALA-PDT of skin. , 2009, , .		2
6	Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers. Journal of Biomedical Optics, 2009, 14, 021010.	1.4	79
7	Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. Journal of Controlled Release, 2009, 135, 136-143.	4.8	62
8	Distribution and binding of novel photosensitizer 2-devinyl-2-(1-methoxyl-ethyl) chlorin f in human breast cancer cells MCF-7. Laser Physics Letters, 2009, 6, 465-471.	0.6	25
9	Ultrasoundâ€guided photodynamic therapy for deep seated pathologies: prospective study. Lasers in Surgery and Medicine, 2009, 41, 612-621.	1.1	49
10	Evaluation of the antimicrobial effect of photodynamic antimicrobial therapy in an <i>in situ</i> model of dentine caries. European Journal of Oral Sciences, 2009, 117, 568-574.	0.7	130
11	Lightâ€sensitive Intelligent Drug Delivery Systems ^{â€} . Photochemistry and Photobiology, 2009, 85, 848-860.	1.3	457
12	Hypocrellin B, a perylenequinonoid pigment, and its complexes with lanthanide ions: Optical characterization and enhancements in its photodynamic properties. Physics Procedia, 2009, 2, 617-635.	1.2	2
13	Phosphorescence of singlet oxygen and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine: Time and spectral-resolved study. Journal of Molecular Structure, 2009, 924-926, 153-156.	1.8	11
14	Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 101-108.	1.7	35
15	Photochemical internalization (PCI) in cancer therapy: From bench towards bedside medicine. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 83-92.	1.7	96
16	Singlet oxygen generation in PUVA therapy studied using electronic structure calculations. Chemical Physics, 2009, 360, 85-96.	0.9	24
17	Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions. International Journal of Radiation Oncology Biology Physics, 2009, 75, 244-252.	0.4	29
18	Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy. Australian Journal of Chemistry, 2009, 62, 425.	0.5	36

#	Article	IF	CITATIONS
19	Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Pluronic influence on photocatalytic activity of porphyrins. Laser Physics, 2009, 19, 817-824.	0.6	32
20	P450 CYP1B1 mediated fluorescent tumor markers: A potentially useful approach for photodynamic therapy, diagnosis and establishing surgical margins. Medical Hypotheses, 2009, 72, 67-70.	0.8	7
21	χ^2 analysis for estimating the accuracy of optical properties derived from time resolved diffuse-reflectance. Optics Express, 2009, 17, 20521.	1.7	4
22	Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Physics in Medicine and Biology, 2009, 54, 2293-2313.	1.6	102
23	Synthesis and in vitro photodynamic activities of di-α-substituted zinc(ii) phthalocyanine derivatives. Dalton Transactions, 2009, , 4129.	1.6	61
24	Multifunctional Coreâ^'Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents. Langmuir, 2009, 25, 10153-10158.	1.6	88
25	An ethylene-glycol decorated ruthenium(ii) complex for two-photon photodynamic therapy. Chemical Communications, 2009, , 4590.	2.2	106
26	Photophysical and photochemical properties of $\hat{I}\pm$ -(8-quinolinoxy) zinc phthalocyanine for photodynamic therapy. Proceedings of SPIE, 2009, , .	0.8	0
27	PHOTODYNAMIC THERAPY — AN UPDATE ON CLINICAL APPLICATIONS. Journal of Innovative Optical Health Sciences, 2009, 02, 73-92.	0.5	15
28	Meta-analysis of five photodisinfection clinical trials for periodontitis. , 2009, , .		0
29	Photodynamic inactivation of the models Mycobacterium phlei and Mycobacterium smegmatis in vitro. Proceedings of SPIE, 2009, , .	0.8	0
30	Photodynamic dosimetry in the treatment of periodontitis. Proceedings of SPIE, 2009, , .	0.8	1
31	Characterization of a miniature integrating cylinder for absolute calibration of fluence rate probes for interstitial photodynamic therapy (IPDT). , 2009, , .		1
32	Activatable Photosensitizers for Imaging and Therapy. Chemical Reviews, 2010, 110, 2839-2857.	23.0	1,483
33	Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chemical Reviews, 2010, 110, 2795-2838.	23.0	2,005
34	Microlamp for in-situ tissue spectroscopy for the dosimetry of photodynamic therapy. Procedia Engineering, 2010, 5, 323-326.	1.2	2
35	Optical Spectroscopy to Guide Photodynamic Therapy of Head and Neck Tumors. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 854-862.	1.9	13
36	Peptide nanocarriers for intracellular delivery of photosensitizers. Journal of Controlled Release,	4.8	43

#	Article	IF	CITATIONS
38	Phthalocyanine–Polyamine Conjugates as pH ontrolled Photosensitizers for Photodynamic Therapy. Chemistry - A European Journal, 2010, 16, 4777-4783.	1.7	83
39	Combined surgery and photodynamic therapy of cancer. Physics Procedia, 2010, 5, 641-645.	1.2	1
40	Titanyl phthalocyanine and its soluble derivatives: Highly efficient photosensitizers for singlet oxygen production. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 232-237.	2.0	39
41	Preparation and in vitro photodynamic activity of amphiphilic zinc(II) phthalocyanines substituted with 2-(dimethylamino)ethylthio moieties and their N-alkylated derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 2672-2677.	1.4	35
42	Distribution of Chlorophyll―and Bacteriochlorophyllâ€derived Photosensitizers in Human Blood Plasma. Photochemistry and Photobiology, 2010, 86, 182-193.	1.3	11
43	Fractionated Illumination at Low Fluence Rate Photodynamic Therapy in Mice. Photochemistry and Photobiology, 2010, 86, 1140-1146.	1.3	28
44	Determination of the anisotropy complex refractive indices of chicken tissues in vitro at 650 nm. Journal of the European Optical Society-Rapid Publications, 0, 5, .	0.9	2
45	Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials. , 2010, , .		0
46	Enrichment of hepatocytes in a HepaRG culture using spatially selective photodynamic treatment. Journal of Biomedical Optics, 2010, 15, 028002.	1.4	1
47	<italic>In vivo</italic> study of photosensitizer pharmacokinetics by fluorescence transillumination imaging. Journal of Biomedical Optics, 2010, 15, 048004.	1.4	17
48	Integrating spheres for improved skin photodynamic therapy. Journal of Biomedical Optics, 2010, 15, 058001.	1.4	4
49	Rationale of Combined PDT and SDT Modalities for Treating Cancer Patients in Terminal Stage: The Proper Use of Photosensitizer. Integrative Cancer Therapies, 2010, 9, 317-319.	0.8	12
50	A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Physics in Medicine and Biology, 2010, 55, 5913-5932.	1.6	64
51	Light-induced TPP photoproduct formation in chloroform and protective role of lipids. Journal of Porphyrins and Phthalocyanines, 2010, 14, 962-967.	0.4	3
52	Cancer Therapy By Targeting Hypoxia-Inducible Factor-1. Current Cancer Drug Targets, 2010, 10, 782-796.	0.8	40
53	A method for determining optical properties of human tissues by measuring diffuse reflectance with CCD. , 2010, , .		1
54	Modulation of Photosensitization Processes for an Improved Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2010, 17, 3925-3943.	1.2	54
55	Modified porphyrin–brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Organic and Biomolecular Chemistry, 2010, 8, 3202.	1.5	49

#	Article	IF	CITATIONS
56	Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy. Nanotechnology, 2010, 21, 475103.	1.3	24
57	Oxygen-independent photonuclease activity of a new iron(ii) complex. Chemical Communications, 2010, 46, 3375.	2.2	22
58	Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy, 2010, 7, 61-75.	1.3	652
59	Differences in sensitivity to HMME-mediated photodynamic therapy between EBV+ C666-1 and EBVâ^' CNE2 cells. Photodiagnosis and Photodynamic Therapy, 2010, 7, 204-209.	1.3	15
60	Determination of Time-Dependent Protoporphyrin IX Concentration for Photodynamic Therapy Dosimetry in a Mice Colon Tumor Model Using Fluorescence Spectroscopy. Applied Spectroscopy, 2010, 64, 1350-1354.	1.2	2
61	Near-Infrared Luminescent Labels and Probes Based on Lanthanide Ions and Their Potential for Applications in Bioanalytical Detection and Imaging. Springer Series on Fluorescence, 2010, , 133-159.	0.8	3
62	Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials. Optics Express, 2010, 18, 17412.	1.7	75
63	System for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer. Journal of Biomedical Optics, 2010, 15, 058003.	1.4	79
64	A pH-responsive fluorescence probe and photosensitiser based on a tetraamino silicon(iv) phthalocyanine. Chemical Communications, 2010, 46, 3188.	2.2	110
65	DNA photonuclease activity of four new copper(ii) complexes under UV and red light: theoretical/experimental correlations with active species generation. Dalton Transactions, 2010, 39, 2027-2035.	1.6	28
66	Development of an irradiation system for photodynamic therapy with dosimetric control. , 2011, , .		0
67	Application of ultrasound for sonodynamic photocatalysis. , 2011, , .		0
68	Influence of Carbohydrate Biological Vectors on the Two-Photon Resonance of Porphyrin Oligomers. Journal of Physical Chemistry A, 2011, 115, 6503-6508.	1.1	27
69	Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochemical and Photobiological Sciences, 2011, 10, 832-841.	1.6	81
70	Analyse théorique et expérimentale de la diffusion de la lumière générée par une diode électroluminescente dans des répliques tissulaires. Irbm, 2011, 32, 332-341.	3.7	1
71	Design and Conception of Photosensitisers. , 2011, , 1-46.		1
72	Phthalocyanineâ^'Polyamine Conjugates as Highly Efficient Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2011, 54, 320-330.	2.9	114
73	Efficient synthesis and <i>in vitro</i> photodynamic anticancer study of new purpurinimide-hydrazone conjugates. Journal of Porphyrins and Phthalocyanines, 2011, 15, 264-270.	0.4	9

~		_	
CITATI	ON	REP	ORT

#	Article	IF	CITATIONS
74	Imaging of Specific Activation of Photodynamic Molecular Beacons in Breast Cancer Vertebral Metastases. Bioconjugate Chemistry, 2011, 22, 1021-1030.	1.8	35
75	The effect of laser wavelength in photodynamic therapy and phototherapy for superficial skin diseases. , 2011, , .		4
76	Tumour cell death induced by the bulk photovoltaic effect of LiNbO3:Fe under visible light irradiation. Photochemical and Photobiological Sciences, 2011, 10, 956-963.	1.6	26
77	Polymeric Nanoparticles for Photodynamic Therapy. Methods in Molecular Biology, 2011, 726, 151-178.	0.4	43
78	Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity?. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1063-1071.	1.4	49
79	Evaluation of the effect of photoactivated disinfection with Radachlorin® against Streptococcus mutans (an in vitro study). Photodiagnosis and Photodynamic Therapy, 2011, 8, 249-253.	1.3	29
80	Photodynamic therapy (PDT) for lung cancer. Photodiagnosis and Photodynamic Therapy, 2011, 8, 231-239.	1.3	109
81	Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Materials, 2011, 10, 324-332.	13.3	1,219
82	The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews, 2011, 40, 340-362.	18.7	1,707
83	Photodynamic antimicrobial chemotherapy in dental practice. Dental Nursing, 2011, 7, 380-385.	0.0	2
84	Multimodal Bacteriochlorophyll Theranostic Agent. Theranostics, 2011, 1, 354-362.	4.6	45
85	Control Light Delivery in PDT by Taking Account the Optical Properties of Hair Density on the Skin Surface. Modern Applied Science, 2011, 5, .	0.4	2
86	Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy. Proceedings of SPIE, 2011, , .	0.8	1
86 87	Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy. Proceedings of SPIE, 2011, , . NIR area array CCD-based singlet oxygen luminescence imaging for photodynamic therapy. Journal of Physics: Conference Series, 2011, 277, 012011.	0.8 0.3	1
86 87 88	Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy. Proceedings of SPIE, 2011, , . NIR area array CCD-based singlet oxygen luminescence imaging for photodynamic therapy. Journal of Physics: Conference Series, 2011, 277, 012011. Peach maturity/quality assessment using hyperspectral imaging-based spatially resolved technique. Proceedings of SPIE, 2011, , .	0.8 0.3 0.8	1 4 9
86 87 88 89	Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy. Proceedings of SPIE, 2011, , . NIR area array CCD-based singlet oxygen luminescence imaging for photodynamic therapy. Journal of Physics: Conference Series, 2011, 277, 012011. Peach maturity/quality assessment using hyperspectral imaging-based spatially resolved technique. Proceedings of SPIE, 2011, , . A model-based comparison of implicit and direct dosimetry for ALA-PDT of skin. , 2011, , .	0.8 0.3 0.8	1 4 9
86 87 88 89 91	Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy. Proceedings of SPIE, 2011, , . NIR area array CCD-based singlet oxygen luminescence imaging for photodynamic therapy. Journal of Physics: Conference Series, 2011, 277, 012011. Peach maturity/quality assessment using hyperspectral imaging-based spatially resolved technique. Proceedings of SPIE, 2011, , . A model-based comparison of implicit and direct dosimetry for ALA-PDT of skin. , 2011, , . PDT is better than alternative therapies such as brachytherapy, electron beams, or lowâ€energy x rays for the treatment of skin cancers. Medical Physics, 2011, 38, 1133-1135.	0.8 0.3 0.8 1.6	1 4 9 1 5

#	Article	IF	CITATIONS
93	The Influence of Oxygen Depletion and Photosensitizer Tripletâ€state Dynamics During Photodynamic Therapy on Accurate Singlet Oxygen Luminescence Monitoring and Analysis of Treatment Dose Response. Photochemistry and Photobiology, 2011, 87, 223-234.	1.3	55
94	Control of Singlet Oxygen Generation Photosensitized by meso â€Anthry porphyrin through Interaction with DNA. Photochemistry and Photobiology, 2011, 87, 833-839.	1.3	10
95	Calculation of Singlet Oxygen Dose Using Explicit and Implicit Dose Metrics During Benzoporphyrin Derivative Monoacid Ring A (BPDâ€MA)â€PDT <i>In Vitro</i> and Correlation with MLL Cell Survival. Photochemistry and Photobiology, 2011, 87, 1129-1137.	1.3	17
96	Photodynamic therapy of cancer: An update. Ca-A Cancer Journal for Clinicians, 2011, 61, 250-281.	157.7	3,902
97	Dynamics of photosensitized singlet oxygen generation and photophysical characteristics of chlorin e 6 in photolon ointment. Journal of Applied Spectroscopy, 2011, 78, 278-285.	0.3	9
98	Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids, 2011, 41, 1123-1134.	1.2	46
99	Conjugation of chlorin p 6 to histamine enhances its cellular uptake and phototoxicity in oral cancer cells. Cancer Chemotherapy and Pharmacology, 2011, 68, 359-369.	1.1	22
100	Simulation of fractionated and continuous irradiation in photodynamic therapy: study the differences between photobleaching and singlet oxygen dose deposition. Australasian Physical and Engineering Sciences in Medicine, 2011, 34, 203-211.	1.4	7
101	Photodynamic therapy: The minimally invasive surgical intervention for advanced and/or recurrent tongue base carcinoma. Lasers in Surgery and Medicine, 2011, 43, 283-292.	1.1	43
102	Fluorescence localization and kinetics of mTHPC and liposomal formulations of mTHPC in the windowâ€chamber tumor model. Lasers in Surgery and Medicine, 2011, 43, 528-536.	1.1	33
103	Liposomal nanostructures for photosensitizer delivery. Lasers in Surgery and Medicine, 2011, 43, 734-748.	1.1	93
104	A review of <i>inâ€vivo</i> optical properties of human tissues and its impact on PDT. Journal of Biophotonics, 2011, 4, 773-787.	1.1	261
106	Conjugation of Porphyrin to Nanohybrid Cerasomes for Photodynamic Diagnosis and Therapy of Cancer. Angewandte Chemie - International Edition, 2011, 50, 11622-11627.	7.2	142
107	Preparation and Photodynamic Activities of Silicon(IV) Phthalocyanines Substituted with Permethylated β yclodextrins. Chemistry - A European Journal, 2011, 17, 7569-7577.	1.7	61
108	Singlet oxygen lifetime dependence on photosensitizer concentration in lipid films. Journal of Luminescence, 2011, 131, 442-444.	1.5	6
109	Microwave-mediated â€ [~] click-chemistry' synthesis of glycoporphyrin derivatives and inÂvitro photocytotoxicity for application in photodynamic therapy. Tetrahedron, 2011, 67, 4924-4932.	1.0	57
110	A model-based comparison of implicit and direct dosimetry for ALA-PDT of skin. , 2011, , .		1
111	Optical fiber-based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors. Journal of Biomedical Optics, 2011, 16, 037005.	1.4	26

#	Article	IF	CITATIONS
112	Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization. Journal of Biomedical Optics, 2011, 16, 016003.	1.4	12
113	Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	16
114	Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin. Physics in Medicine and Biology, 2012, 57, 825-841.	1.6	19
115	Pharmacokinetics of Photogem Using Fluorescence Spectroscopy in Dimethylhydrazine-Induced Murine Colorectal Carcinoma. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	5
116	Reflectance imaging of the human retina at 810Ânm does not suffice to optimize the parameters of hydrodynamic rebalancing laser treatment. Journal of Biomedical Optics, 2012, 17, 116027.	1.4	0
117	Imaging a photodynamic therapy photosensitizerin vivowith a time-gated fluorescence tomography system. Journal of Biomedical Optics, 2012, 17, 071306.	1.4	18
118	Nanoparticles in Cancer Imaging and Therapy. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	51
119	Photodynamic Therapy: Establishing Its Role in Palliation of Advanced Esophageal Cancer. Korean Journal of Internal Medicine, 2012, 27, 271.	0.7	5
120	Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies. Biomedical Optics Express, 2012, 3, 2142.	1.5	20
121	Evaluation of verteporfin pharmakokinetics – redefining the need of photosensitizers in ophthalmology. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 1023-1041.	1.5	34
122	Light-Emitting Diode-Based Illumination System for <i>In Vitro</i> Photodynamic Therapy. International Journal of Photoenergy, 2012, 2012, 1-6.	1.4	20
123	Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2508-13.	3.3	38
124	Real-time, <i>in vivo</i> measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. Journal of Biomedical Optics, 2012, 17, 115007.	1.4	41
125	Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation. Journal of Biomedical Optics, 2012, 17, 067004.	1.4	1
126	Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules. International Journal of Oncology, 2012, 41, 105-16.	1.4	13
127	Application of Optical Imaging and Spectroscopy to Radiation Biology. Radiation Research, 2012, 177, 365-375.	0.7	8
128	Selenium enhances the efficacy of Radachlorin mediated-photodynamic therapy in TC-1 tumor development. Oncology Reports, 2012, 28, 576-584.	1.2	13
129	Systems biology approach for in vivo photodynamic therapy optimization of ruthenium-porphyrin compounds. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 80- <u>89.</u>	1.7	51

#	Article	IF	CITATIONS
130	Design and Synthesis of a Luminescent Cyclometalated Iridium(III) Complex Having <i>N</i> , <i>N</i> -Diethylamino Group that Stains Acidic Intracellular Organelles and Induces Cell Death by Photoirradiation. Inorganic Chemistry, 2012, 51, 12697-12706.	1.9	100
131	Insights into Photodynamic Therapy Dosimetry: Simultaneous Singlet Oxygen Luminescence and Photosensitizer Photobleaching Measurements. Biophysical Journal, 2012, 102, 661-671.	0.2	124
132	Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells. International Journal of Pharmaceutics, 2012, 436, 463-471.	2.6	51
133	Ultraviolet light and photodynamic therapy induce apoptosis in nasal polyps. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 179-184.	1.7	6
134	Experimental tests in tissue phantoms of a photoirradiation system with optical dosimetry for photodynamic therapy. , 2012, , .		0
135	Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radical Biology and Medicine, 2012, 53, 464-472.	1.3	69
136	Synthesis and Biological Evaluation of a Library of Glycoporphyrin Compounds. Chemistry - A European Journal, 2012, 18, 14671-14679.	1.7	64
137	Effect of Photodynamic Antimicrobial Chemotherapy on in vitro and in situ Biofilms. Caries Research, 2012, 46, 549-554.	0.9	46
138	Controlled generation of singlet oxygen by a water-soluble meso-pyrenylporphyrin photosensitizer through interaction with DNA. Chemical Communications, 2012, 48, 4770.	2.2	28
139	Dynamics of Singlet Oxygen Generation by DNA-Binding Photosensitizers. Journal of Physical Chemistry B, 2012, 116, 3037-3044.	1.2	57
140	New Insights into the Mechanisms for Photodynamic Therapy-Induced Cancer Cell Death. International Review of Cell and Molecular Biology, 2012, 295, 139-174.	1.6	122
141	Combination of Fospeg-IPDT and a natural antioxidant compound prevents photosensitivity in a murine prostate cancer tumour model. Photodiagnosis and Photodynamic Therapy, 2012, 9, 100-108.	1.3	8
142	Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagnosis and Photodynamic Therapy, 2012, 9, 122-131.	1.3	162
143	PDT induced bystander effect on human xenografted colorectal tumors as evidenced by sodium MRI. Photodiagnosis and Photodynamic Therapy, 2012, 9, 303-309.	1.3	19
144	Chlorophyll derivative mediated PDT versus methotrexate: An in vitro study using MCF-7 cells. Photodiagnosis and Photodynamic Therapy, 2012, 9, 362-368.	1.3	39
145	Assessing Multiple Quality Attributes of Peaches Using Optical Absorption and Scattering Properties. Transactions of the ASABE, 2012, 55, 647-657.	1.1	65
146	Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics, 2012, 2, 905-915.	4.6	126
147	Monitoring Photosensitizer Uptake Using Two Photon Fluorescence Lifetime Imaging Microscopy. Theranostics, 2012, 2, 817-826.	4.6	20

#	Article	IF	CITATIONS
148	A Phthalocyanine–Peptide Conjugate with High In Vitro Photodynamic Activity and Enhanced In Vivo Tumorâ€Retention Property. Chemistry - A European Journal, 2012, 18, 4225-4233.	1.7	61
149	<italic>In vivo</italic> quantification of photosensitizer concentration using fluorescence differential path-length spectroscopy: influence of photosensitizer formulation and tissue location. Journal of Biomedical Optics, 2012, 17, 067001.	1.4	8
150	Methylene blue photodynamic therapy in malignant melanoma decreases expression of proliferating cell nuclear antigen and heparanases. Clinical and Experimental Dermatology, 2012, 37, 527-533.	0.6	44
151	Wheat Germ Agglutinin Modified Liposomes for the Photodynamic Inactivation of Bacteria ^{â€} . Photochemistry and Photobiology, 2012, 88, 548-556.	1.3	36
152	Biodistribution and Pharmacokinetic Studies of a Porphyrin Dimer Photosensitizer (Oxdime) by Fluorescence Imaging and Spectroscopy in Mice Bearing Xenograft Tumors. Photochemistry and Photobiology, 2012, 88, 1531-1538.	1.3	8
153	The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 2012, 106, 40-46.	1.7	178
154	Porphyrin effect on the surface morphology of amphiphilic polymers as observed by atomic force microscopy. Micron, 2012, 43, 445-449.	1.1	12
155	Photodynamic therapy based on 5â€aminolevulinic acid and its use as an antimicrobial Agent. Medicinal Research Reviews, 2012, 32, 1292-1327.	5.0	114
156	Necrosis response to photodynamic therapy using light pulses in the femtosecond regime. Lasers in Medical Science, 2013, 28, 1177-1182.	1.0	14
157	Adjuvant Intraoperative Photodynamic Therapy in Head and Neck Cancer. JAMA Otolaryngology - Head and Neck Surgery, 2013, 139, 706.	1.2	62
158	Photodynamic treatment of oral squamous cell carcinoma in hamster cheek pouch model using chlorin p6-histamine conjugate Photodiagnosis and Photodynamic Therapy, 2013, 10, 79-86.	1.3	19
159	Theoretical investigation of porphyrin-based photosensitizers with enhanced NIR absorption. Physical Chemistry Chemical Physics, 2013, 15, 19651.	1.3	11
160	Oxygen effects on tetrapropylporphycene near-infrared luminescence kinetics. Journal of Molecular Structure, 2013, 1044, 303-307.	1.8	8
161	Singlet Oxygen Generating Activity of an Electron Donor Connecting Porphyrin Photosensitizer Can Be Controlled by DNA. Journal of Physical Chemistry B, 2013, 117, 13490-13496.	1.2	40
162	Monitoring oxygen concentration during photodynamic therapy using prompt photosensitizer fluorescence. Physics in Medicine and Biology, 2013, 58, 7039-7059.	1.6	18
163	Parameter-finding studies of photodynamic therapy for approval in Japan and the USA. Photodiagnosis and Photodynamic Therapy, 2013, 10, 434-445.	1.3	12
164	Antimicrobial Photodynamic Therapy of Resistant Bacterial Strains by Indocyanine Green and 809-nm Diode Laser. Photomedicine and Laser Surgery, 2013, 31, 155-162.	2.1	108
165	Intracranial Photodynamic Therapy. , 2013, , 207-233.		0

#	Article	IF	CITATIONS
166	A Multifunctional Theranostic Platform Based on Phthalocyanine-Loaded Dendrimer for Image-Guided Drug Delivery and Photodynamic Therapy. Molecular Pharmaceutics, 2013, 10, 3946-3958.	2.3	131
167	On the effects of permanent molecular dipoles in the simultaneous absorption of two photons: Full generalized rotating wave approximation versus analytical results. Journal of Chemical Physics, 2013, 139, 144104.	1.2	6
169	Upconverting nanoparticles for preâ€clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser and Photonics Reviews, 2013, 7, 663-697.	4.4	141
170	Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers in Medical Science, 2013, 28, 859-864.	1.0	61
171	Photosensitized protein damage by dimethoxyphosphorus(V) tetraphenylporphyrin. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2704-2707.	1.0	30
172	The tea protection against the reactive oxygen species produced via the photodynamic effect induced by daylight. Food Research International, 2013, 53, 786-792.	2.9	1
173	Phthalocyanine–Peptide Conjugates: Receptor-Targeting Bifunctional Agents for Imaging and Photodynamic Therapy. Journal of Medicinal Chemistry, 2013, 56, 1520-1534.	2.9	103
174	Modelling fluorescence in clinical photodynamic therapy. Photochemical and Photobiological Sciences, 2012, 12, 203-213.	1.6	39
175	Photodynamic therapy for pythiosis. Veterinary Dermatology, 2013, 24, 130.	0.4	10
176	Enhanced Singlet Oxygen Generation from a Porphyrin–Rhodamine B Dyad by Twoâ€Photon Excitation through Resonance Energy Transfer. Photochemistry and Photobiology, 2013, 89, 841-848.	1.3	10
177	Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy. Indian Journal of Physics, 2013, 87, 203-209.	0.9	61
178	Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly. ACS Nano, 2013, 7, 2541-2550.	7.3	367
179	<scp>PDT</scp> Dose Parameters Impact Tumoricidal Durability and Cell Death Pathways in a 3D Ovarian Cancer Model. Photochemistry and Photobiology, 2013, 89, 942-952.	1.3	63
180	Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. Journal of Controlled Release, 2013, 168, 88-102.	4.8	328
181	Photosensitized damage of protein by fluorinated diethoxyphosphorus(V)porphyrin. Journal of Porphyrins and Phthalocyanines, 2013, 17, 56-62.	0.4	7
182	Nanomaterials for Photo-Based Diagnostic and Therapeutic Applications. Theranostics, 2013, 3, 152-166.	4.6	234
183	DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 315-327.	2.0	16
184	Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer. European Journal of Medicinal Chemistry, 2013, 63, 401-414.	2.6	23

#	Article	IF	CITATIONS
185	Photomedicine. , 2013, , 331-347.		2
186	Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Transactions, 2013, 42, 10769.	1.6	24
187	The use of diffuse laser photonic energy and indocyanine green photosensitiser as an adjunct to periodontal therapy. British Dental Journal, 2013, 215, 167-171.	0.3	44
188	Photodynamic therapy induced vascular damage: an overview of experimental PDT. Laser Physics Letters, 2013, 10, 023001.	0.6	64
189	Investigation of photodynamic therapy optimization for port wine stain using modulation of photosensitizer administration methods. Experimental Biology and Medicine, 2013, 238, 1344-1349.	1.1	7
190	The response of tissue to laser light. , 2013, , 47-109.		28
191	An irradiation system for photodynamic therapy with a fiber-optic sensor for measuring tissue oxygen. , 2013, , .		0
192	Fungicidal response of a novel natural photosensitizer (<i>Beta vulgaris</i>) on <i>Candida albicans</i> with low-power laser radiation. Laser Physics, 2013, 23, 055606.	0.6	4
193	Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy. Photonics & Lasers in Medicine, 2013, 2, 287-303.	0.3	57
194	Antibody-Directed Phototherapy (ADP). Antibodies, 2013, 2, 270-305.	1.2	35
195	Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting. Journal of Drug Delivery, 2013, 2013, 1-32.	2.5	183
196	Increased nanoparticleâ€loaded exogenous macrophage migration into the brain following PDTâ€induced blood–brain barrier disruption. Lasers in Surgery and Medicine, 2013, 45, 524-532.	1.1	40
197	Development of a phototherapy system with a pulse oximetry module as an element for tissue oxygen measurement. , 2013, , .		0
200	In vivo flow cytometry: A powerful optical technology to detect circulating tumor cells and diagnose cancer metastasis in vivo/In-vivo-Durchflusszytometrie: Ein leistungsstarkes optisches Verfahren zur Detektion zirkulierender Tumorzellen und zur In-vivo-Diagnose von Metastasen. Photonics & Lasers in Medicine, 2013, 2	0.3	3
201	Regulatory Science for Photodynamic Therapy: Analysis of Efficacy and Safety Evaluation for Regulatory Approval in Japan and the USA. Nippon Laser Igakkaishi, 2013, 34, 149-157.	0.0	0
202	Optimal Time Delay between Epinephrine Injection and Incision to Minimize Bleeding. Plastic and Reconstructive Surgery, 2013, 131, 811-814.	0.7	129
203	Genetically Encoded Immunophotosensitizer 4D5scFv-miniSOG is a Highly Selective Agent for Targeted Photokilling of Tumor Cells in <i> Vitro</i> . Theranostics, 2013, 3, 831-840.	4.6	79
205	Photodynamic Antimicrobial Polymers for Infection Control. PLoS ONE, 2014, 9, e108500.	1.1	29

ARTICLE IF CITATIONS # Microgel-Encapsulated Methylene Blue for the Treatment of Breast Cancer Cells by Photodynamic 206 0.8 42 Therapy. Journal of Breast Cancer, 2014, 17, 18. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chinese Journal of Cancer, 2014, 33, 8-15. 208 Photodynamic Techniques in Medicine., 2014, , 205-230. 0 Comparative evaluation of photodynamic therapy using LASER or light emitting diode on cariogenic 209 bacteria: An in vitro study. Europeán Journal of Dentistry, 2014, 08, 509-514. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat 211 1.1 9 transfer simulation. International Journal of Hyperthermia, 2014, 30, 47-55. Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation. Photochemical and Photobiological Sciences, 2014, 13, 1.6 1781-1787. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental 213 1.4 40 implementation. Journal of Biomedical Optics, 2014, 19, 076011. Time-Resolved Fluorescence in Photodynamic Therapy. Photonics, 2014, 1, 530-564. 214 Three-dimensional cell culturing by magnetic levitation for evaluating efficacy/toxicity of 215 0.8 0 photodynamic therapy. Proceedings of SPIE, 2014, , . Comparison of singlet oxygen threshold dose for PDT. Proceedings of SPIE, 2014, 8931, . 0.8 Extracting optical properties of turbid media using radially and spectrally resolved diffuse 217 3 0.8 reflectance. Proceedings of SPIE, 2014, , . Superficial radially resolved fluorescence and 3D photochemical time-dependent model for photodynamic therapy. Optics Letters, 2014, 39, 1845. Complexes of Chlorin e6 with Pluronics and Polyvinylpyrrolidone: Structure and Photodynamic 219 1.3 31 Activity in Cell Culture. Photochemistry and Phótobiológy, 2014, 90, 171-182. Rhenium Complexes with Redâ€Lightâ€Induced Anticancer Activity. European Journal of Inorganic 1.0 63 Chemistry, 2014, 2014, 807-811. Synergistic Anticancer Activity of Photo- and Chemoresponsive Nanoformulation Based on 221 4.0 67 Polylysine-Functionalized Graphene. ACS Applied Materials & amp; Interfaces, 2014, 6, 21615-21623. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy nduced clinical erythema. Journal of Biomedical Optics, 1.4 46 2014, 19, 028001. 223 Photodynamic inactivation of pathogens causing infectious keratitis., 2014,,. 1 224 In vitro studies of chlorin e6-assisted photodynamic inactivation of Helicobacter pylori. , 2014, , .

#	Article	IF	CITATIONS
225	Inexpensive diffuse reflectance spectroscopy system for measuring changes in tissue optical properties. Journal of Biomedical Optics, 2014, 19, 105005.	1.4	11
226	Photoinduced partial unfolding of tubulin bound to mesoâ€ŧetrakis(sulfonatophenyl) porphyrin leads to inhibition of microtubule formation <i>in vitro</i> . Journal of Biophotonics, 2014, 7, 874-888.	1.1	7
227	Zinc phthalocyanine-based water-soluble thiolated photosensitizer and its conjugates with gold nanoparticles: Synthesis and spectral properties. Colloid Journal, 2014, 76, 539-545.	0.5	6
228	Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells. Journal of Biomedical Optics, 2014, 19, 075007.	1.4	20
229	Low density lipoprotein bionanoparticles: From cholesterol transport to delivery of anti-cancer drugs. Saudi Pharmaceutical Journal, 2014, 22, 504-515.	1.2	77
230	Preoperative Mapping of Nonmelanoma Skin Cancer Using Spatial Frequency Domain and Ultrasound Imaging. Academic Radiology, 2014, 21, 263-270.	1.3	63
231	Application of diode lasers in light-oxygen cancer therapy. Semiconductors, 2014, 48, 123-128.	0.2	7
232	A high-throughput photodynamic therapy screening platform with on-chip control of multiple microenvironmental factors. Lab on A Chip, 2014, 14, 892.	3.1	23
233	Mesoporous silica particles as nanocontainers for phthalocyanine photosensitizers: estimation of efficiency in in vivo experiments. Nanotechnologies in Russia, 2014, 9, 126-135.	0.7	4
234	Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules. Physical Chemistry Chemical Physics, 2014, 16, 12441-12453.	1.3	38
235	Effect of 1O2 quencher depletion on the efficiency of photodynamic therapy. Photochemical and Photobiological Sciences, 2013, 13, 112-121.	1.6	6
236	Laser Diode System For Interstitial Photodynamic Therapy. IEEE Latin America Transactions, 2014, 12, 574-579.	1.2	3
237	Targetingâ€Triggered Porphysome Nanostructure Disruption for Activatable Photodynamic Therapy. Advanced Healthcare Materials, 2014, 3, 1240-1249.	3.9	128
238	Synthesis, DNA binding, docking and photocleavage studies of quinolinyl chalcones. MedChemComm, 2014, 5, 1708-1717.	3.5	13
239	Novel Broad-Spectrum Antimicrobial Photoinactivation of <i>In Situ</i> Oral Biofilms by Visible Light plus Water-Filtered Infrared A. Applied and Environmental Microbiology, 2014, 80, 7324-7336.	1.4	52
240	Synthesis and cell phototoxicity of a triply bridged fused diporphyrin appended with six thioglucose units. Tetrahedron Letters, 2014, 55, 6311-6314.	0.7	7
241	Fast, Power-Efficient Biophotonic Simulations for Cancer Treatment Using FPGAs. , 2014, , .		4
242	A Density-Functional Study on the Change of Q/B-Band Intensity Ratio of Zinc Tetraphenylporphyrin in Solvents. Journal of the Physical Society of Japan, 2014, 83, 084802.	0.7	3

~	_	
$(\mathbf{i} \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{C})$	ואר P	FDODT
CHAIR		

#	Article	IF	CITATIONS
243	Star-shaped poly(<scp>l</scp> -lactide)-b-poly(ethylene glycol) with porphyrin core: synthesis, self-assembly, drug-release behavior and singlet oxygen research. New Journal of Chemistry, 2014, 38, 3569-3578.	1.4	24
244	Focal therapy for prostate cancer. Alternative treatment. Actas Urológicas Españolas (English) Tj ETQq1 1 0.784	1314 rgBT 0.2	/gverlock
245	Nile Blue Can Photosensitize DNA Damage through Electron Transfer. Chemical Research in Toxicology, 2014, 27, 649-655.	1.7	34
246	Nanophotosensitizers Engineered to Generate a Tunable Mix of Reactive Oxygen Species, for Optimizing Photodynamic Therapy, Using a Microfluidic Device. Chemistry of Materials, 2014, 26, 1592-1600.	3.2	59
247	Aptamer-Functionalized Gold Nanoparticles As Photoresponsive Nanoplatform for Co-Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 21832-21841.	4.0	102
248	Porphyrins for Imaging, Photodynamic Therapy, and Photothermal Therapy. , 2014, , 229-254.		12
249	Terapia focal en cáncer de próstata. Alternativas de tratamiento. Actas Urológicas Españolas, 2014, 38, 465-475.	0.3	8
250	Rational design of an arene ruthenium chlorin conjugate for in vivo anticancer activity. Inorganica Chimica Acta, 2014, 414, 134-140.	1.2	15
251	Evaluation of one- and two-photon activated photodynamic therapy with pyropheophorbide-a methyl ester in human cervical, lung and ovarian cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2014, 132, 102-110.	1.7	23
252	Evaluation of vascular effect of Photodynamic Therapy in chorioallantoic membrane using different photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 2014, 138, 1-7.	1.7	24
253	ZnO nanoparticles as drug delivery agent for photodynamic therapy. Laser Physics Letters, 2014, 11, 025601.	0.6	29
254	Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamicÂtherapy. Biomaterials, 2014, 35, 7058-7067.	5.7	52
255	Photodynamic therapy: oncologic horizons. Future Oncology, 2014, 10, 123-124.	1.1	131
256	Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers in Medical Science, 2014, 29, 629-635.	1.0	114
258	Fluorescent Probes in Biomedical Applications. , 2014, , 435-456.		0
259	Temperature monitored low dose ICC-PDT treatment of neuroblastoma cell lines. , 2014, , .		1
260	Evaluation of the Photodynamic Therapy effect using a tumor model in Chorioallantoic Membrane with Melanoma cells. Proceedings of SPIE, 2014, , .	0.8	1
261	Essential Basics of Light–Matter Interaction in Biophotonics. , 2015, , 57-198.		0

#	Article	IF	CITATIONS
263	A Family of Potent Ru(<scp>II</scp>) Photosensitizers with Enhanced <scp>DNA</scp> Intercalation: Bimodal Photokillers. Photochemistry and Photobiology, 2015, 91, 1191-1202.	1.3	7
264	Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy. Photochemistry and Photobiology, 2015, 91, 1210-1218.	1.3	18
267	Measurement Methods for Optical Absorption and Scattering Properties of Fruits and Vegetables. Transactions of the ASABE, 2015, , 1387-1401.	1.1	6
268	Fundamentals of Medicinal Application of Titanium Dioxide Nanoparticles. , 2015, , .		4
269	Graphene-based nanovehicles for photodynamic medical therapy. International Journal of Nanomedicine, 2015, 10, 2451.	3.3	45
270	Blood flow dynamics during local photoreaction in a head and neck tumor model. Frontiers in Physics, 2015, 3, .	1.0	8
271	Ternary graphene quantum dot–polydopamine–Mn ₃ O ₄ nanoparticles for optical imaging guided photodynamic therapy and T ₁ -weighted magnetic resonance imaging. Journal of Materials Chemistry B, 2015, 3, 5815-5823.	2.9	62
272	Parallel fluorescence and phosphorescence monitoring of singlet oxygen photosensitization in rats. Journal of Innovative Optical Health Sciences, 2015, 08, 1550037.	0.5	9
273	A new finite element approach for near realâ€time simulation of light propagation in locally advanced head and neck tumors. Lasers in Surgery and Medicine, 2015, 47, 60-67.	1.1	38
274	Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700–antibody conjugates. Free Radical Biology and Medicine, 2015, 85, 24-32.	1.3	45
275	In-vivo singlet oxygen threshold doses for PDT. Photonics & Lasers in Medicine, 2015, 4, 59-71.	0.3	44
276	Photodynamic Therapy: Current Status and Future Directions. Medical Principles and Practice, 2015, 24, 14-28.	1.1	312
277	Cylindrical diffuser axial detection profile is dependent on fiber design. Journal of Biomedical Optics, 2015, 20, 040502.	1.4	3
278	Assessment of the effective attenuation coefficient of scattering media illuminated by an LED array: effect of the beam size. , 2015, , .		1
279	Photodynamic Therapy of Non–Small Cell Lung Cancer. Narrative Review and Future Directions. Annals of the American Thoracic Society, 2016, 13, 265-275.	1.5	103
280	Active-targeted pH-responsive albumin–photosensitizer conjugate nanoparticles as theranostic agents. Journal of Materials Chemistry B, 2015, 3, 9349-9359.	2.9	40
281	Monte Carlo fluence simulation for prospective evaluation of interstitial photodynamic therapy treatment plans. Proceedings of SPIE, 2015, , .	0.8	1
282	Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation. Journal of Biomedical Optics, 2015, 20, 078003.	1.4	12

#	Article	IF	CITATIONS
283	In-vitro efficacy of indocyanine green-mediated photodynamic therapy in combination with cisplatin or etoposide. Photonics & Lasers in Medicine, 2015, 4, .	0.3	1
284	Analysis of gold nanoparticles as carriers for different molecular dye type photosensitizers in Photodynamic Therapy applied to carcinomas. , 2015, 2015, 5533-6.		Ο
286	Activation Kinetics of Zipper Molecular Beacons. Journal of Physical Chemistry B, 2015, 119, 44-53.	1.2	7
287	Determination of Singlet Oxygen and Electron Transfer Mediated Mechanisms of Photosensitized Protein Damage by Phosphorus(V)porphyrins. Chemical Research in Toxicology, 2015, 28, 262-267.	1.7	38
288	Dual use of porphyrazines as sensitizers and viscosity markers in photodynamic therapy. Journal of Materials Chemistry B, 2015, 3, 1089-1096.	2.9	39
290	Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochemical and Photobiological Sciences, 2015, 14, 1765-1780.	1.6	384
291	Anticancer Drugs Acting via Radical Species. , 2015, , 133-195.		6
292	Copper phthalocyanine-based CMPs with various internal structures and functionalities. Chemical Communications, 2015, 51, 12783-12786.	2.2	32
293	Nanosized ZSM-5 will improve photodynamic therapy using Methylene blue. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 107-112.	1.7	20
294	Metallophthalocyanineâ€Based Conjugated Microporous Polymers as Highly Efficient Photosensitizers for Singlet Oxygen Generation. Angewandte Chemie - International Edition, 2015, 54, 6536-6539.	7.2	213
295	Characterizing low fluence thresholds for in vitro photodynamic therapy. Biomedical Optics Express, 2015, 6, 770.	1.5	32
296	Photodynamic and Tissue Tolerable Plasma Therapies as Alternatives to Antimicrobials to Control Pathogenic Biofilms. Current Oral Health Reports, 2015, 2, 57-62.	0.5	6
297	<i>In vivo</i> evaluation of battery-operated light-emitting diode-based photodynamic therapy efficacy using tumor volume and biomarker expression as endpoints. Journal of Biomedical Optics, 2015, 20, 048003.	1.4	21
298	Monte Carlo modelling of daylight activated photodynamic therapy. Physics in Medicine and Biology, 2015, 60, 4059-4073.	1.6	17
299	Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2015, 3, 4707-4714.	2.9	52
300	Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams. Proceedings of SPIE, 2015, , .	0.8	8
301	Photodynamic therapy application of PAMAM-porphyrin molecule on stomach cancer cells. , 2015, , .		0
302	Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models. Journal of Biomedical Optics, 2015, 20, 028003.	1.4	37

#	Article	IF	CITATIONS
303	<i>In Vitro</i> Evaluation of Antimicrobial Photodynamic Therapy Associated with Hydroalcoholic Extracts of <i>Schinopsis brasiliensis</i> Engl.: New Therapeutic Perspectives. Photomedicine and Laser Surgery, 2015, 33, 240-245.	2.1	7
304	Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 249-254.	2.0	36
305	Porphyrin-based photosensitizers and the corresponding multifunctional nanoplatforms for cancer-imaging and phototherapy. Journal of Porphyrins and Phthalocyanines, 2015, 19, 109-134.	0.4	63
306	Measurement of Food Optical Properties. Food Engineering Series, 2015, , 203-226.	0.3	1
307	Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biology, 2015, 6, 311-317.	3.9	65
308	Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer. Optics Express, 2015, 23, 22991.	1.7	31
309	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	23.0	6,279
310	Curcumin intercalated layered double hydroxide nanohybrid as a potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Advances, 2015, 5, 93987-93994.	1.7	38
311	Hyperspectral Imaging Technology in Food and Agriculture. Food Engineering Series, 2015, , .	0.3	62
312	Relaxation Process of Photoexcited <i>meso</i> -Naphthylporphyrins while Interacting with DNA and Singlet Oxygen Generation. Journal of Physical Chemistry B, 2015, 119, 13071-13078.	1.2	16
313	Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chemical Reviews, 2015, 115, 10261-10306.	23.0	445
314	3D Monte Carlo radiation transfer modelling of photodynamic therapy. , 2015, , .		3
315	Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 82-89.	1.7	8
316	Monte Carlo methods for light propagation in biological tissues. Mathematical Biosciences, 2015, 269, 48-60.	0.9	4
318	Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence. Angewandte Chemie - International Edition, 2015, 54, 1770-1774.	7.2	420
319	Photochromic Metal–Organic Frameworks: Reversible Control of Singlet Oxygen Generation. Angewandte Chemie - International Edition, 2015, 54, 430-435.	7.2	307
320	Photodynamic Therapy and Its Role in Combined Modality Anticancer Treatment. Technology in Cancer Research and Treatment, 2015, 14, 355-368.	0.8	60
321	Synthesis and in vitro Anticancer Activity of Zinc(II) Phthalocyanines Conjugated with Coumarin Derivatives for Dual Photodynamic and Chemotherapy. ChemMedChem, 2015, 10, 304-311.	1.6	30

#	ARTICLE	IF	Citations
322	Diketopyrrolopyrroleâ€Porphyrin Conjugates with High Twoâ€Photon Absorption and Singlet Oxygen Generation for Twoâ€Photon Photodynamic Therapy. Angewandte Chemie - International Edition, 2015, 54, 169-173.	7.2	207
323	Shifting the Light Activation of Metallodrugs to the Red and Near-Infrared Region in Anticancer Phototherapy. Comments on Inorganic Chemistry, 2015, 35, 179-213.	3.0	56
325	DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell. , 2016, 57, 6011.		4
326	A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy. Cancers, 2016, 8, 109.	1.7	23
327	Photoactive chemicals for antimicrobial textiles. , 2016, , 197-223.		13
328	Ultrasound-Mediated Cancer Therapy as a Noninvasive and Repeatable Treatment Strategy. Journal of Applied Pharmacy, 2016, 08, .	0.1	1
329	Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. International Journal of Molecular Sciences, 2016, 17, 101.	1.8	12
330	Photodynamic Therapy-Induced Microvascular Changes in a Nonmelanoma Skin Cancer Model Assessed by Photoacoustic Microscopy and Diffuse Correlation Spectroscopy. Photonics, 2016, 3, 48.	0.9	9
331	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2016, 55, 5493-5496.	7.2	62
332	The classical photoactivated drug 8-methoxypsoralen and related compounds are effective without UV light irradiation against glioma cells. Neurochemistry International, 2016, 99, 33-41.	1.9	11
333	Eine Phytochrom‣ensordomäe ermöglicht eine Rezeptoraktivierung durch rotes Licht. Angewandte Chemie, 2016, 128, 6447-6450.	1.6	7
334	A Phytochrome Sensory Domain Permits Receptor Activation by Red Light. Angewandte Chemie - International Edition, 2016, 55, 6339-6342.	7.2	72
335	Lightâ€īunable Generation of Singlet Oxygen and Nitric Oxide with a Bichromophoric Molecular Hybrid: a Bimodal Approach to Killing Cancer Cells. ChemMedChem, 2016, 11, 1371-1379.	1.6	30
336	The role of reactive oxygen species in the antibacterial photodynamic treatment: photoinactivation <i>vs</i> proliferation. Letters in Applied Microbiology, 2016, 62, 230-236.	1.0	24
337	Modelling topical photodynamic therapy treatment including the continuous production of Protoporphyrin IX. Physics in Medicine and Biology, 2016, 61, 7507-7521.	1.6	9
338	Photophysical property of the pyridyl and pyrimidinyloxy silicon (IV) phthalocyanines and their morphology of polymeric nanoparticles. , 2016, , .		0
339	Photodynamic Therapy in Veterinary Medicine: From Basics to Clinical Practice. , 2016, , .		4
340	Multimodality Dosimetry, , 2016, , 93-109.		0 -

IF

ARTICLE

CITATIONS

0

How to Enter PDT in Clinical Practice?. , 2016, , 111-123.

342	Enhanced singlet oxygen generation from PLGA loaded with verteporfin and gold nanoparticles. , 2016, , .		0
343	Correction of bifurcated river flow measurements from historical data: Paving the way for the Teesta water sharing treaty. Annals of Applied Statistics, 2016, 10, .	0.5	1
344	PLGA nanocomposites loaded with verteporfin and gold nanoparticles for enhanced photodynamic therapy of cancer cells. RSC Advances, 2016, 6, 112393-112402.	1.7	14
345	Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Physics in Medicine and Biology, 2016, 61, R57-R89.	1.6	95
346	Tumor reactive ringlet oxygen approach for Monte Carlo modeling of photodynamic therapy dosimetry. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 383-391.	1.7	13
347	Photodynamic therapy of HeLa cell cultures by using LED or laser sources. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 271-277.	1.7	20
348	Serratia marcescens resistance profile and its susceptibility to photodynamic antimicrobial chemotherapy. Photodiagnosis and Photodynamic Therapy, 2016, 14, 185-190.	1.3	11
349	Photodynamic activity of thiophene-derived lysosome-specific dyes. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 16-22.	1.7	7
350	Four Gadolinium(III) Complexes Appended to a Porphyrin: A Water-Soluble Molecular Theranostic Agent with Remarkable Relaxivity Suited for MRI Tracking of the Photosensitizer. Inorganic Chemistry, 2016, 55, 4545-4554.	1.9	49
351	Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin. Journal of Physical Chemistry B, 2016, 120, 3653-3665.	1.2	1
352	Intracellular uptake and fluorescence imaging potential in tumor cell of zinc phthalocyanine. International Journal of Pharmaceutics, 2016, 505, 369-375.	2.6	24
353	Effect of PpIX photoproducts formation on pO2 measurement by time-resolved delayed fluorescence spectroscopy of PpIX in solution and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 49-56.	1.7	11
354	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	18.7	1,483
355	Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Physics in Medicine and Biology, 2016, 61, 4840-4854.	1.6	10
356	Applied Photochemistry. Lecture Notes in Quantum Chemistry II, 2016, , .	0.3	9
357	Photobiology and Photochemistry Hand-in-Hand in Targeted Antitumoral Therapies. , 2016, , 171-356.		4

Photodynamic Therapy Dosimetry: A TO Z. , 2016, , 295-315.

#	Article	IF	Citations
359	Polymer Nanoparticles for Cancer Photodynamic Therapy Combined with Nitric Oxide Photorelease and Chemotherapy. Lecture Notes in Quantum Chemistry II, 2016, , 397-426.	0.3	3
360	Physics of Photodynamic Therapy. , 2016, , 287-309.		1
361	Light Sources, Drugs, and Dosimetry. , 2016, , 311-336.		5
362	X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Scientific Reports, 2016, 6, 19954.	1.6	121
363	TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Scientific Reports, 2016, 6, 26592.	1.6	42
364	Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans. Photodiagnosis and Photodynamic Therapy, 2016, 15, 127-132.	1.3	20
365	Blood vessel damage correlated with irradiance for <i>in vivo</i> vascular targeted photodynamic therapy. Proceedings of SPIE, 2016, , .	0.8	0
366	A macromolecular cyclometalated gold(<scp>iii</scp>) amphiphile displays long-lived emissive excited state in water: self-assembly and in vitro photo-toxicity. Chemical Communications, 2016, 52, 13273-13276.	2.2	22
367	Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers. RSC Advances, 2016, 6, 104819-104826.	1.7	12
368	Highly Effective Dual-Function Near-Infrared (NIR) Photosensitizer for Fluorescence Imaging and Photodynamic Therapy (PDT) of Cancer. Journal of Medicinal Chemistry, 2016, 59, 9774-9787.	2.9	77
369	Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Scientific Reports, 2016, 6, 32944.	1.6	39
371	Direct Photocontrol of Peptidomimetics: An Alternative to Oxygenâ€Dependent Photodynamic Cancer Therapy. Angewandte Chemie, 2016, 128, 5583-5586.	1.6	30
372	Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy. Journal of Materials Chemistry B, 2016, 4, 4482-4489.	2.9	27
373	Establishing the subcellular localization of photodynamically-induced ROS using 3,3′-diaminobenzidine: A methodological proposal, with a proof-of-concept demonstration. Methods, 2016, 109, 175-179.	1.9	6
374	The influence of excitation radiation parameters on photosensitized generation of singlet oxygen in water. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 120, 876-880.	0.2	6
375	Photodynamic therapy as an antifungal treatment. Experimental and Therapeutic Medicine, 2016, 12, 23-27.	0.8	38
376	Intraoperative optical assessment of photodynamic therapy response of superficial oral squamous cell carcinoma. Journal of Biomedical Optics, 2016, 21, 018002.	1.4	6
377	ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway. Photodiagnosis and Photodynamic Therapy, 2016, 14, 66-73.	1.3	21

#	Article	IF	CITATIONS
378	Photodynamic Therapy with Hexa(sulfo- <i>n</i> -butyl)[60]Fullerene Against Sarcoma <i>In Vitro</i> and <i>In Vivo</i> . Journal of Nanoscience and Nanotechnology, 2016, 16, 171-181.	0.9	16
379	Pulse mode of laser photodynamic treatment induced cell apoptosis. Photodiagnosis and Photodynamic Therapy, 2016, 13, 101-107.	1.3	24
380	Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. Journal of Medicinal Chemistry, 2016, 59, 4428-4442.	2.9	50
381	Electron transfer mediated decomposition of folic acid by photoexcited dimethoxophosphorus(V)porphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 1-6.	2.0	12
382	Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo. Tumor Biology, 2016, 37, 6923-6933.	0.8	8
383	Induced structural defects in Ti-doped ZnO and its two-photon-excitation. Proceedings of SPIE, 2016, , .	0.8	1
384	ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Advances, 2016, 6, 30285-30292.	1.7	55
385	Matrix metalloproteinase-based photodynamic molecular beacons for targeted destruction of bone metastases in vivo. Photochemical and Photobiological Sciences, 2016, 15, 375-381.	1.6	15
386	In Vitro Photoirradiation System for Simultaneous Irradiation with Different Light Doses at a Fixed Temperature. Photomedicine and Laser Surgery, 2016, 34, 108-115.	2.1	4
387	A new ER-specific photosensitizer unravels 1O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT. Oncogene, 2016, 35, 3976-3985.	2.6	31
388	Photoswitchable anticancer activity via trans–cis isomerization of a combretastatin A-4 analog. Organic and Biomolecular Chemistry, 2016, 14, 40-49.	1.5	85
389	Multimodal Image-Guided Surgical and Photodynamic Interventions in Head and Neck Cancer: From Primary Tumor to Metastatic Drainage. Clinical Cancer Research, 2016, 22, 961-970.	3.2	53
390	Photodynamic Inactivation of Cariogenic Pathogens Using Curcumin as Photosensitizer. Photomedicine and Laser Surgery, 2017, 35, 259-263.	2.1	27
391	Characteristics of the excited states of Nitrofurantoin, an anti-inflammatory and photoactive nitrofuran derivative. Journal of Luminescence, 2017, 185, 10-16.	1.5	10
392	Photodynamic therapy monitoring with optical coherence angiography. Scientific Reports, 2017, 7, 41506.	1.6	44
393	Synthesis and properties of octa-distyryl-BODIPY substituted zinc(II) phthalocyanines. Dyes and Pigments, 2017, 140, 157-165.	2.0	8
394	A Singlet Oxygen Generating Agent by Chiralityâ€dependent Plasmonic Shellâ€Satellite Nanoassembly. Advanced Materials, 2017, 29, 1606864.	11.1	101
395	Surface markers for guiding cylindrical diffuser fiber insertion in interstitial photodynamic therapy of head and neck cancer. Lasers in Surgery and Medicine, 2017, 49, 599-608.	1.1	18

#	Article	IF	CITATIONS
396	Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis and Photodynamic Therapy, 2017, 18, 284-294.	1.3	33
397	Effects of Two Diode Lasers With and Without Photosensitization on Contaminated Implant Surfaces: An <i>Ex Vivo</i> Study. Photomedicine and Laser Surgery, 2017, 35, 347-356.	2.1	18
398	On the <i>in vivo</i> photochemical rate parameters for PDT reactive oxygen species modeling. Physics in Medicine and Biology, 2017, 62, R1-R48.	1.6	68
399	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	7.8	483
400	A quantitative study of in vivo protoporphyrin IX fluorescence build up during occlusive treatment phases. Photodiagnosis and Photodynamic Therapy, 2017, 18, 204-207.	1.3	6
401	The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers. Proceedings of SPIE, 2017, , .	0.8	0
402	Validation of a SPE HPLC–UV method for the quantification of a new ER-specific photosensitizer OR-141 in blood serum using total error concept. Journal of Pharmaceutical and Biomedical Analysis, 2017, 141, 87-94.	1.4	5
403	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	1.3	20
404	Lightâ€driven photosensitizer uptake increases <i>Candida albicans</i> photodynamic inactivation. Journal of Biophotonics, 2017, 10, 1538-1546.	1.1	21
405	Fluorescence analysis of a tumor model in the chorioallantoic membrane used for the evaluation of different photosensitizers for photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2017, 19, 78-83.	1.3	8
406	Visual light effects on mitochondria: The potential implications in relation to glaucoma. Mitochondrion, 2017, 36, 29-35.	1.6	37
407	Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Molecular Cancer Research, 2017, 15, 1153-1162.	1.5	69
408	Direct 1O2 optical excitation: A tool for redox biology. Redox Biology, 2017, 13, 39-59.	3.9	64
409	Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophysical Reviews, 2017, 9, 149-168.	1.5	88
410	Photobleaching mechanisms of Radachlorin photosensitizer in aqueous solution. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 229-234.	0.2	12
411	Synthesis, singlet oxygen generation, photocytotoxicity and subcellular localization of azobisporphyrins as potentially photodynamic therapeutic agents <i>in vitro</i> cell study. Journal of Porphyrins and Phthalocyanines, 2017, 21, 122-127.	0.4	19
412	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
413	Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics, Acta Biomaterialia, 2017, 49, 45-65.	4.1	79

#	Article	IF	CITATIONS
414	Activatable Photosensitizers: Agents for Selective Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1604053.	7.8	395
415	A PSMA-targeted theranostic agent for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2017, 167, 111-116.	1.7	39
416	The impact of antimicrobial photodynamic therapy on peri-implant disease: What mechanisms are involved in this novel treatment?. Photodiagnosis and Photodynamic Therapy, 2017, 17, 236-244.	1.3	28
417	Molecular photosensitisers for two-photon photodynamic therapy. Chemical Communications, 2017, 53, 12857-12877.	2.2	198
418	Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews, 2017, 117, 13566-13638.	23.0	1,392
419	Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Biomacromolecules, 2017, 18, 3073-3081.	2.6	47
420	Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Molecular Cancer Research, 2017, 15, 1667-1677.	1.5	64
421	Note: Measuring instrument of singlet oxygen quantum yield in photodynamic effects. Review of Scientific Instruments, 2017, 88, 066102.	0.6	1
422	Physiological considerations acting on triplet oxygen for explicit dosimetry in photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2017, 19, 298-303.	1.3	5
423	Multimodal OCT for complex assessment of tumors response to therapy. , 2017, , .		1
424	Fluorescence emission analysis of photodynamic therapy photosensitizer as a monitoring biomarker. Proceedings of SPIE, 2017, , .	0.8	0
425	Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. Dyes and Pigments, 2017, 147, 270-282.	2.0	30
426	A tissue factor-cascade-targeted nanoparticle forsite-directed inducing thrombosis. Journal of Biomaterials Applications, 2017, 32, 342-348.	1.2	0
428	Treatment of peritoneal carcinomatosis with photodynamic therapy: Systematic review of current evidence. Photodiagnosis and Photodynamic Therapy, 2017, 20, 276-286.	1.3	20
429	Compositional analysis of endogenous porphyrins from Helicobacter pylori. Biophysical Chemistry, 2017, 229, 25-30.	1.5	20
430	Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). Journal of Porphyrins and Phthalocyanines, 2017, 21, 239-256.	0.4	68
431	Feasibility of photodynamic therapy for secondary hyperparathyroidism in chronic renal failure rats. Clinical and Experimental Nephrology, 2017, 21, 563-572.	0.7	4
432	PDT and emerging therapies for Actinic Keratosis—A resource letter. Photodiagnosis and Photodynamic Therapy, 2017, 17, 205-207.	1.3	4

ARTICLE IF CITATIONS # Photophysicochemical behaviour of metallophthalocyanines when doped onto silica nanoparticles. 433 2.0 14 Dyes and Pigments, 2017, 136, 262-272. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharmaceutica Sinica B, 2017, 7, 434 281-291. The development of ruthenium(<scp>ii</scp>) polypyridyl complexes and conjugates for<i>in 435 18.7 326 vitro</i>cellular and<i>in vivo</i>applications. Chemical Society Reviews, 2017, 46, 7706-7756. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity. International Journal of Nanomedicine, 2017, Volume 12, 969-977. 436 Optimized Photodynamic Therapy with Multifunctional Cobalt Magnetic Nanoparticles. 437 1.9 16 Nanomaterials, 2017, 7, 144. Effect of Ultraviolet Light Irradiation Combined with Riboflavin on Different Bacterial Pathogens 0.8 from Ocular Surface Infection. Journal of Biophysics, 2017, 2017, 1-7. 439 Interstitial Photodynamic Therapyâ€"A Focused Review. Cancers, 2017, 9, 12. 1.7 140 Control of Fluorescence and Photosensitized Singlet Oxygen- Generating Activities of Porphyrins by 440 DNA: Fundamentals for "Theranosticsâ€, , 2017, , . Application Potential of Engineered Liposomes in Tumor Targeting., 2017, , 171-191. 12 441 Learning from clinical phenotypes: Lowâ€dose biophotonics therapies in oral diseases. Oral Diseases, 442 1.5 2018, 24, 261-276. Synthesis and photophysical properties of BODIPY-decorated graphene quantum dot–phthalocyanine 443 1.4 30 cónjugates. New Journal of Chemistry, 2018, 42, 6051-6061. New peripherally and non-peripherally tetra-substituted metal-free, magnesium(II) and zinc(II) phthalocyanine derivatives fused chalcone units: Design, synthesis, spectroscopic characterization, photochemistry and photophysics. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361 1-11 Surface Decorated Porphyrinic Nanoscale Metal–Organic Framework for Photodynamic Therapy. 445 1.9 73 Inorganic Chemistry, 2018, 57, 5420-5428. In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 131-144. 446 In vivo wireless photonic photodynamic therapy. Proceedings of the National Academy of Sciences of 447 3.3 152 the United States of America, 2018, 115, 1469-1474. Visualization of Porphyrin-Based Photosensitizer Distribution from Fluorescence Images In Vivo Using 448 an Optimized RGB Camera. Journal of Applied Spectroscopy, 2018, 84, 1124-1130. Photodynamic therapy using pheophorbide and 670 nm LEDs exhibits anti-cancer effects in-vitro in 449 1.320 androgen dependent prostate cancer. Photodiagnosis and Photodynamic Therapy, 2018, 21, 130-137. Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by 1.3 29 photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2018, 21, 219-223.

CITATION REPORT	

#	Article	IF	CITATIONS
451	Assessment of singlet oxygen dosimetry concepts in photodynamic therapy through computational modeling. Photodiagnosis and Photodynamic Therapy, 2018, 21, 224-233.	1.3	20
452	Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers in Medical Science, 2018, 33, 983-990.	1.0	12
453	σ-Pt-BODIPY Complexes with Platinum Attachment to Carbon Atoms C2 or C3: Spectroscopic, Structural, and (Spectro)Electrochemical Studies and Photocatalysis. Organometallics, 2018, 37, 235-253.	1.1	18
454	Two-photon absorption properties of 1,10-phenanthroline-based Ru(II) complexes and related functionalized nanoparticles for potential application in two-photon excitation photodynamic therapy and optical power limiting. Coordination Chemistry Reviews, 2018, 368, 1-12.	9.5	36
455	Optical property inversion of biological materials using Fourier series expansion and LS-SVM for hyperspectral imaging. Inverse Problems in Science and Engineering, 2018, 26, 1019-1036.	1.2	2
456	The good, the bad, and the ugly–controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochemical and Photobiological Sciences, 2018, 17, 1490-1514.	1.6	116
457	Antimicrobial Photodynamic therapy enhanced by the peptide aurein 1.2. Scientific Reports, 2018, 8, 4212.	1.6	74
458	Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials, 2018, 156, 217-237.	5.7	290
459	Achieving efficient photodynamic therapy under both normoxia and hypoxia using cyclometalated Ru(<scp>ii</scp>) photosensitizer through type I photochemical process. Chemical Science, 2018, 9, 502-512.	3.7	216
460	Effect of antimicrobial photodynamic therapy (aPDT) on the sterilization of infected dentin in vitro. Odontology / the Society of the Nippon Dental University, 2018, 106, 154-161.	0.9	20
461	Near-Infrared Light-Triggered Polymeric Nanomicelles for Cancer Therapy and Imaging. ACS Biomaterials Science and Engineering, 2018, 4, 1928-1941.	2.6	34
462	Photodynamic therapy in fibrosarcoma BALB/c animal model: Observation of the rebound effect. Photodiagnosis and Photodynamic Therapy, 2018, 21, 98-107.	1.3	2
463	PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT). Physics in Medicine and Biology, 2018, 63, 015031.	1.6	31
464	Effects of LED-Based photodynamic therapy using red and blue lights, with natural hydrophobic photosensitizers on human glioma cell line. Photodiagnosis and Photodynamic Therapy, 2018, 21, 50-54.	1.3	24
465	Inhibition of Taq polymerase activity by singlet oxygen generation at photodynamic therapy. Journal of Physics: Conference Series, 2018, 1038, 012031.	0.3	0
466	Pressure determination of the water baffle shift in the capillary. IOP Conference Series: Materials Science and Engineering, 2018, 457, 012006.	0.3	1
467	Evaluation of the effect of two types of laser on the growth of <i>streptococcus mutans</i> . Laser Therapy, 2018, 27, 119-123.	0.8	5
468	Hyaluronic acid grafted nanoparticles of a platinum(<scp>ii</scp>)–silicon(<scp>iv</scp>) phthalocyanine conjugate for tumor and mitochondria-targeted photodynamic therapy in red light. Journal of Materials Chemistry B, 2018, 6, 7373-7377.	2.9	26

#	Article	IF	CITATIONS
469	A High-Level Synthesis Case Study on Light Propagation Simulation in Turbid Media. , 2018, , .		1
470	Photodynamic Therapy, a Potential Therapy for Improve Cancer Management. , 0, , .		6
471	Parameters of air flow over the upper sieve in the cleaning chamber. IOP Conference Series: Materials Science and Engineering, 2018, 457, 012005.	0.3	1
472	Targeted Photodynamic Therapy for Improved Lung Cancer Treatment. , 0, , .		1
473	Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy. Polymers, 2018, 10, 1357.	2.0	40
474	Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals, 2018, 11, 133.	1.7	34
475	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
476	A Porphyrin Dimer–GdDOTA Conjugate as a Theranostic Agent for One- and Two-Photon Photodynamic Therapy and MRI. Bioconjugate Chemistry, 2018, 29, 3726-3738.	1.8	35
477	HLS-based FPGA Acceleration of Light Propagation Simulation in Turbid Media. , 2018, , .		2
478	Reconstruction of a Deformed Tumor Based on Fiducial Marker Registration: A Computational Feasibility Study. Technology in Cancer Research and Treatment, 2018, 17, 153303461876679.	0.8	2
479	Tuning Pharmacokinetics to Improve Tumor Accumulation of a Prostate-Specific Membrane Antigen-Targeted Phototheranostic Agent. Bioconjugate Chemistry, 2018, 29, 3746-3756.	1.8	26
480	Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Molecules, 2018, 23, 2749.	1.7	34
481	Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules, 2018, 23, 2210.	1.7	58
482	The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine, 2018, 13, 2099-2118.	1.7	55
483	Phosphorescent Starburst Pt(II) Porphyrins as Bifunctional Therapeutic Agents for Tumor Hypoxia Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 19523-19533.	4.0	57
484	Why develop photoactivated chemotherapy?. Dalton Transactions, 2018, 47, 10330-10343.	1.6	203
485	Verteporfin-Loaded Poly(ethylene glycol)-Poly(beta-amino ester)-Poly(ethylene glycol) Triblock Micelles for Cancer Therapy. Biomacromolecules, 2018, 19, 3361-3370.	2.6	32
486	Effect of antimicrobial photodynamic therapy on microleakage of class cavities restored with composite resin. Photodiagnosis and Photodynamic Therapy, 2018, 23, 78-82.	1.3	21

ARTICLE IF CITATIONS The Involvement of Autophagy in the Response of Neurons and Glial Cells to Photodynamic Treatment. 487 0.3 0 Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 199-204. Automatic interstitial photodynamic therapy planning via convex optimization. Biomedical Optics 488 1.5 Express, 2018, 9, 898. Photothermoplastic recording media and its application in the holographic method of determination 489 0.9 12 of the refractive index of liquid objects. Applied Optics, 2018, 57, 1832. Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological 490 1.0 disease: an update. Lasers in Medical Science, 2018, 33, 1431-1439. Side effects of intra-gastric photodynamic therapy: an in vitro study. Journal of Photochemistry and 491 1.7 11 Photobiology B: Biology, 2018, 186, 107-115. Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 2018, 24, 95-101. 492 1.3 Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. 493 5.8 158 Nature Communications, 2018, 9, 2713. Stabilized tetraether lipids based particles guided prophyrins photodynamic therapy. Drug Delivery, 404 2.5 14 2018, 25, 1526-1536. Antimicrobial photodynamic therapy – what we know and what we don't. Critical Reviews in 495 2.7 533 Microbiology, 2018, 44, 571-589. Sonodynamic therapyâ€assisted immunotherapy: A novel modality for cancer treatment. Cancer Science, 1.7 2018, 109, 1330-1345. Synthesis, structural characterization, and investigation on photophysical and photochemical 497 1.5 20 féatures of new metallophthalocyanines. Journal of Luminescence, 2018, 204, 464-471. Photodynamic therapy and nuclear imaging activities of SubPhthalocyanine integrated TiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 45-55. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. 499 1.6 50 Angewandte Chemie, 2019, 131, 2580-2591. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16823-16828. 3.3 Design of Phthalocyanineâ€Nanoparticle Hybrids for Photodynamic Therapy Applications in 501 0.7 4 Oxygenâ€Deficient Tumour Environment. ChemistrySelect, 2019, 4, 9084-9095. Design, synthesis and photocytotoxicity of upconversion nanoparticles: Potential applications for 1.1 nearã€infrared photodynamic and photothermal therapy. Journal of Biophotonics, 2019, 12, e201900129. Successful pregnancy and delivery following selective use of photodynamic therapy in treatment of 503 1.322 cervix and vulvar diseases. Photodiagnosis and Photodynamic Therapy, 2019, 28, 65-68. Fabrication of H₂O₂-driven nanoreactors for innovative cancer treatments. 504 2.8 Nanoscale, 2019, 11, 16164-16186.

#	Article	IF	CITATIONS
505	Light transport with the equation of radiative transfer: The Fourier Continuation – Discrete Ordinates (FC–DOM) Method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106589.	1.1	9
506	Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules, 2019, 24, 2456.	1.7	172
507	Exploring the Phototoxicity of Hypoxic Active Iridium(III)-Based Sensitizers in 3D Tumor Spheroids. Journal of the American Chemical Society, 2019, 141, 18486-18491.	6.6	80
508	Effects of Photosensitization of Curcumin in Human Glioblastoma Multiforme Cells. In Vivo, 2019, 33, 1857-1864.	0.6	16
509	Verteporfin-Loaded Lipid Nanoparticles Improve Ovarian Cancer Photodynamic Therapy In Vitro and In Vivo. Cancers, 2019, 11, 1760.	1.7	64
510	Stereotactic Photodynamic Therapy Using a Twoâ€Photon AIE Photosensitizer. Small, 2019, 15, e1905080.	5.2	35
511	Synergistic effect of photodynamic therapy at 400Ânm and doxycycline against Helicobacter pylori. Future Microbiology, 2019, 14, 1199-1205.	1.0	8
512	Cucurbit[7]uril-Anchored Porphyrin-Based Multifunctional Molecular Platform for Photodynamic Antimicrobial and Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 4693-4697.	2.3	24
513	Exploration of photophysical and photochemical properties of Zinc phthalocyanine-loaded SDC/TPGS mixed micelles. Chemical Physics Letters, 2019, 735, 136737.	1.2	13
514	Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. Npj Flexible Electronics, 2019, 3, .	5.1	54
515	Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale, 2019, 11, 19551-19560.	2.8	47
516	Photodynamic Therapy Versus Glucose for the Treatment of Telangiectasia: A Randomised Controlled Study in a Rabbit Ear Model. European Journal of Vascular and Endovascular Surgery, 2019, 58, 583-591.	0.8	1
517	Photodynamic inactivation of planktonic cultures and Streptococcus mutans biofilms for prevention of white spot lesions during orthodontic treatment: An inÂvitro investigation. American Journal of Orthodontics and Dentofacial Orthopedics, 2019, 155, 243-253.	0.8	19
518	Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber. Journal of Lightwave Technology, 2019, 37, 1916-1923.	2.7	36
519	Photothermally powered conductive films for absorber-free solar thermoelectric harvesting. Journal of Materials Chemistry A, 2019, 7, 2066-2074.	5.2	27
520	Non-ionizing, laser radiation in Theranostics: The need for dosimetry and the role of Medical Physics. Physica Medica, 2019, 63, 7-18.	0.4	11
521	NIR-excited superoxide radical procreators to eradicate tumors by targeting the lyso-membrane. Journal of Materials Chemistry B, 2019, 7, 4440-4450.	2.9	18
522	New Class of Homoleptic and Heteroleptic Bis(terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Applied Bio Materials, 2019, 2, 2964-2977.	2.3	45

		CITATION REPORT	
#	Article	IF	CITATIONS
523	Luminescent, Oxygen‣upplying, Hemoglobinâ€Linked Conjugated Polymer Nanoparticles fo Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 10660-10665.	r 7.2	188
524	Sequential Protein-Responsive Nanophotosensitizer Complex for Enhancing Tumor-Specific The ACS Nano, 2019, 13, 6702-6710.	erapy. 7.3	52
525	Nanostructured ZnO-based materials for biomedical and environmental applications. , 2019, , 2 $$	285-305.	1
526	Luminescent, Oxygenâ€Supplying, Hemoglobinâ€Linked Conjugated Polymer Nanoparticles fo Photodynamic Therapy. Angewandte Chemie, 2019, 131, 10770-10775.	1.6	42
527	Benzo[a]phenoselenazine-based NIR photosensitizer for tumor-targeting photodynamic therap lysosomal-disruption pathway. Dyes and Pigments, 2019, 170, 107617.	iy via 2.0	15
528	Molecular pathways in cancer response to photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 410-418.	0.4	15
529	Accurate early prediction of tumour response to PDT using optical coherence angiography. Sci Reports, 2019, 9, 6492.	entific 1.6	27
530	Trafficking of a Single Photosensitizing Molecule to Different Intracellular Organelles Demonstrates Effective Hydroxyl Radical-Mediated Photodynamic Therapy in the Endoplasmic Reticulum. Bioconjugate Chemistry, 2019, 30, 1451-1458.	1.8	6
531	Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosim Combination Therapies. Frontiers in Physics, 2019, 7, .	ietry and 1.0	3
532	Natural Product-Based Fabrication of Zinc-Oxide Nanoparticles and Their Applications. , 2019, ,	193-219.	28
533	Topical and intradermal delivery of PpIX precursors for photodynamic therapy with intense puls light on porcine skin model. Lasers in Medical Science, 2019, 34, 1781-1790.	ed 1.0	5
534	Gold Nanoparticles for Photothermal Cancer Therapy. Frontiers in Chemistry, 2019, 7, 167.	1.8	547
535	Near-infrared photochemistry assisted by upconverting nanoparticles. , 2019, , 43-71.		3
536	Effects of photodynamic therapy with indocyanine green on Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy, 2019, 26, 229-234.	1.3	26
537	Traceable cancer cell photoablation with a new mitochondria-responsive and -activatable red-er photosensitizer. Chemical Communications, 2019, 55, 3801-3804.	nissive 2.2	11
538	Recent advances and biomedical applications of zinc oxide nanoparticles. , 2019, , 445-457.		16
539	Water-dispersible glycosylated poly (2,5'-thienylene)porphyrin-based nanoparticles for anti photodynamic therapy. Photochemical and Photobiological Sciences, 2019, 18, 1147-1155.	bacterial 1.6	19
540	Glycosylated porphyrin-cucurbituril conjugate for photodynamic inactivation of bacteria and doxorubicin carriage for anticancer drug delivery. Journal of Porphyrins and Phthalocyanines, 20 23, 1406-1413.	019, 0.4	13

#	Article	IF	CITATIONS
541	Effect of Tm3+ Concentration on the Generation of Reactive Oxygen Species in NaYb1–ÂxF4:\$\${ext{Tm}}_{x}^{{3 + }}\$ for the Multifunctional Photosensitizer. Russian Journal of Physical Chemistry A, 2019, 93, 2744-2748.	0.1	0
542	Organic Fluorescent Probes for Diagnostics and Bio-Imaging. Topics in Medicinal Chemistry, 2019, , 33-53.	0.4	8
543	Optical coherence angiography for pre-treatment assessment and treatment monitoring following photodynamic therapy: a basal cell carcinoma patient study. Scientific Reports, 2019, 9, 18670.	1.6	24
544	Optoelectronic, femtosecond nonlinear optical properties and excited state dynamics of a triphenyl imidazole induced phthalocyanine derivative. RSC Advances, 2019, 9, 36726-36741.	1.7	29
545	Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination. Gastric Cancer, 2019, 22, 463-472.	2.7	25
546	Optimizing interstitial photodynamic therapy with custom cylindrical diffusers. Journal of Biophotonics, 2019, 12, e201800153.	1.1	17
547	Photophysical properties and in vitro photocytotoxicity of disodium salt 2.4-di(alpha-methoxyethyl)-deuteroporphyrin-IX (Dimegine). Photodiagnosis and Photodynamic Therapy, 2019, 25, 35-42.	1.3	4
548	Comparative Effect of Two Red Lights on <i>Streptococcus mutans</i> Biofilms and Assessment of Temperature Variances in Human Teeth During <i>In Vitro</i> Photodynamic Antimicrobial Chemotherapy. Photobiomodulation, Photomedicine, and Laser Surgery, 2019, 37, 31-37.	0.7	3
549	Quantitative subsurface spatial frequencyâ€domain fluorescence imaging for enhanced glioma resection. Journal of Biophotonics, 2019, 12, e201800271.	1.1	9
550	Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. Journal of Colloid and Interface Science, 2019, 536, 586-597.	5.0	23
551	Sensitive, Real-Time, and In-Vivo Oxygen Monitoring for Photodynamic Therapy by Multifunctional Mesoporous Nanosensors. ACS Applied Materials & Interfaces, 2019, 11, 187-194.	4.0	28
552	British Association of Dermatologists and British Photodermatology Group guidelines for topical photodynamic therapy 2018. British Journal of Dermatology, 2019, 180, 730-739.	1.4	51
553	Photodynamic therapy in endodontics. International Endodontic Journal, 2019, 52, 760-774.	2.3	117
554	Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews, 2019, 379, 147-160.	9.5	353
555	Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coordination Chemistry Reviews, 2019, 379, 2-29.	9.5	285
556	Disinfection of Cariogenic Pathogens in Planktonic Lifestyle, Biofilm and Carious Dentine with Antimicrobial Photodynamic Therapy. Photochemistry and Photobiology, 2020, 96, 170-177.	1.3	14
557	Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. Applied Nanoscience (Switzerland), 2020, 10, 3143-3148.	1.6	10
558	Upconversion nanoparticle incorporated oleogel as probable skin tissue imaging agent. Chemical Engineering Journal, 2020, 379, 122272.	6.6	16

#	Article	IF	CITATIONS
559	Drug efflux pumps in photodynamic therapy. , 2020, , 251-276.		1
560	Commercial Local Pharmacotherapeutics and Adjunctive Agents for Nonsurgical Treatment of Periodontitis: A Contemporary Review of Clinical Efficacies and Challenges. Antibiotics, 2020, 9, 11.	1.5	24
561	Use of dermograph for improvement of PpIX precursor's delivery in photodynamic therapy: Experimental and clinical pilot studies. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101599.	1.3	10
562	A New handheld singlet oxygen detection system (SODS) and NIR light source based phantom environment for photodynamic therapy applications. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101577.	1.3	2
563	Energy analysis of PDT using thermography during the treatment of basal cell carcinoma. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101586.	1.3	4
564	Photodynamic therapy in 2D and 3D human cervical carcinoma cell cultures employing LED light sources emitting at different wavelengths. Physics in Medicine and Biology, 2020, 65, 015017.	1.6	9
565	Irradiance, Photofrin [®] Dose and Initial Tumor Volume are Key Predictors of Response to Interstitial Photodynamic Therapy of Locally Advanced Cancers in Translational Models. Photochemistry and Photobiology, 2020, 96, 397-404.	1.3	6
566	Photodynamic Therapy for Photodamage, Actinic Keratosis, and Acne in the Cosmetic Practice. Facial Plastic Surgery Clinics of North America, 2020, 28, 135-148.	0.9	14
567	Longâ€Circulating Prostateâ€Specific Membrane Antigenâ€Targeted NIR Phototheranostic Agent. Photochemistry and Photobiology, 2020, 96, 718-724.	1.3	14
568	Fiber-optic pulseoximeter for local oxygen saturation determination using a Monte Carlo multi-layer model for calibration. Computer Methods and Programs in Biomedicine, 2020, 187, 105237.	2.6	6
569	A New Optical Method for Online Monitoring of the Light Dose and Dose Profile in Photodynamic Therapy. Lasers in Surgery and Medicine, 2020, 52, 659-670.	1.1	8
570	Synergistic effect of photodynamic treatment and doxorubicin on triple negative breast cancer cells. Photochemical and Photobiological Sciences, 2020, 19, 1580-1589.	1.6	13
571	Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 4858-4872.	2.3	12
572	Microfocusing sapphire capillary needle for laser surgery and therapy: Fabrication and characterization. Journal of Biophotonics, 2020, 13, e202000164.	1.1	7
573	Dual-Agent Photodynamic Therapy with Optical Clearing Eradicates Pigmented Melanoma in Preclinical Tumor Models. Cancers, 2020, 12, 1956.	1.7	21
574	Temperature effect on the PpIX production during the use of topical precursors. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101786.	1.3	3
575	Photodynamic antimicrobial chemotherapy in mice with Pseudomonas aeruginosa-infected wounds. PLoS ONE, 2020, 15, e0237851.	1.1	10
576	High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy. Biomacromolecules, 2020, 21, 4998-5007.	2.6	35

#	Article	IF	CITATIONS
577	A novel α-(8-quinolinyloxy) monosubstituted zinc phthalocyanine nanosuspension for potential enhanced photodynamic therapy. Drug Development and Industrial Pharmacy, 2020, 46, 1881-1888.	0.9	2
578	Microbial Composition of Oral Biofilms after Visible Light and Water-Filtered Infrared a Radiation (VIS+wIRA) in Combination with Indocyanine Green (ICG) as Photosensitizer. Antibiotics, 2020, 9, 532.	1.5	7
579	Thermosensitive nanocomposite gel loaded zinc phthalocyanine for photodynamic therapy. Journal of Polymer Research, 2020, 27, 1.	1.2	3
580	Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules, 2020, 25, 5666.	1.7	20
581	Stacking Effects on Anthraquinone/DNA Charge-Transfer Electronically Excited States. Molecules, 2020, 25, 5927.	1.7	5
582	Photoactive Catalytically Self-Threaded 2D Polyrotaxane Network for Visible Light Activated Antimicrobial Phototherapy. ACS Applied Polymer Materials, 2020, 2, 5726-5734.	2.0	7
583	MAL-associated methyl nicotinate for topical PDT improvement. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112071.	1.7	2
584	Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano, 2020, 14, 15688-15699.	7.3	62
585	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	5.6	49
586	Synergistic interactions of cadmium-free quantum dots embedded in a photosensitised polymer surface: efficient killing of multidrug-resistant strains at low ambient light levels. Nanoscale, 2020, 12, 10609-10622.	2.8	6
587	A boronic acid-functionalized phthalocyanine with an aggregation-enhanced photodynamic effect for combating antibiotic-resistant bacteria. Chemical Science, 2020, 11, 5735-5739.	3.7	75
588	Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy. Chemical Science, 2020, 11, 6701-6708.	3.7	67
589	Photodynamic inactivation mediated by 5-aminolevulinic acid of bacteria in planktonic and biofilm forms. Biochemical Pharmacology, 2020, 177, 114016.	2.0	17
590	Postsynthetic modification of MOFs for biomedical applications. , 2020, , 245-276.		1
592	Bismuthâ€Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Advanced Healthcare Materials, 2020, 9, e1901695.	3.9	39
593	Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Applied Polymer Materials, 2020, 2, 3840-3849.	2.0	9
594	Nearâ€Infrared BODIPYâ€Acridine Dyads Acting as Heavyâ€Atomâ€Free Dualâ€Functioning Photosensitizers. Chemistry - A European Journal, 2020, 26, 15212-15225.	1.7	14
595	Angular Scattering Pattern of Femtosecond Laserâ€Induced Refractive Index Modifications in Optical Fibers. Advanced Optical Materials, 2020, 8, 2000633.	3.6	12

#	Article	IF	CITATIONS
596	Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation. JPhys Materials, 2020, 3, 032002.	1.8	17
597	Aspects of Photodynamic Inactivation of Bacteria. , 0, , .		7
598	Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol?. Future Drug Discovery, 2020, 2, .	0.8	16
599	Size-Selected Graphene Oxide Loaded with Photosensitizer (TMPyP) for Targeting Photodynamic Therapy In Vitro. Processes, 2020, 8, 251.	1.3	6
600	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angewandte Chemie, 2020, 132, 8708-8712.	1.6	24
601	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2020, 59, 8630-8634.	7.2	91
602	Siteâ€specific Bioconjugation and Convergent Click Chemistry Enhances Antibody–Chromophore Conjugate Binding Efficiency. Photochemistry and Photobiology, 2020, 96, 596-603.	1.3	14
603	Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coordination Chemistry Reviews, 2020, 411, 213233.	9.5	160
604	Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 7380-7388.	1.9	48
605	The photophysical properties of three [M(phen)2dppz]2+ (M=Ru and Zn) derivatives for two-photon photodynamic therapy: Insights from theoretical investigations. Dyes and Pigments, 2020, 176, 108244.	2.0	9
606	Core–shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. Journal of Nanobiotechnology, 2020, 18, 19.	4.2	31
607	Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochemistry and Photobiology, 2020, 96, 280-294.	1.3	213
608	Nuclear imaging potential and in vitro photodynamic activity of Boron subphthalocyanine on colon carcinoma cells. Journal of Drug Delivery Science and Technology, 2020, 56, 101567.	1.4	8
609	Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101790.	1.3	9
610	Development of a new multi-mode NIR laser system for photodynamic therapy. Optics and Laser Technology, 2020, 128, 106229.	2.2	5
611	Pyridine-Embedded Phenothiazinium Dyes as Lysosome-Targeted Photosensitizers for Highly Efficient Photodynamic Antitumor Therapy. Journal of Medicinal Chemistry, 2020, 63, 4896-4907.	2.9	39
612	Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers in Medical Science, 2021, 36, 563-569.	1.0	6
613	The Impact of Photosensitizer Selection on Bactericidal Efficacy Of PDT against Cariogenic Biofilms: A Systematic Review and Meta-Analysis. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102046.	1.3	9

#	Article	IF	CITATIONS
614	Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102156.	1.3	20
615	An Alternating Irradiation Strategyâ€Driven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis. Advanced Healthcare Materials, 2021, 10, e2001850.	3.9	16
616	Effects of zinc porphyrin and zinc phthalocyanine derivatives in photodynamic anticancer therapy under different partial pressures of oxygen in vitro. Investigational New Drugs, 2021, 39, 89-97.	1.2	12
617	Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. Biomedical Optics Express, 2021, 12, 872.	1.5	17
618	Review of in vivo optical molecular imaging and sensing from x-ray excitation. Journal of Biomedical Optics, 2021, 26, .	1.4	11
619	Polymeric approach to combat drug-resistant methicillin-resistant Staphylococcus aureus. Journal of Materials Science, 2021, 56, 7265-7285.	1.7	14
620	Current Advances in Black Phosphorusâ€Based Drug Delivery Systems for Cancer Therapy. Advanced Science, 2021, 8, 2003033.	5.6	70
621	An update in clinical utilization of photodynamic therapy for lung cancer. Journal of Cancer, 2021, 12, 1154-1160.	1.2	64
622	Porphyrinoids for Photodynamic Therapy. RSC Smart Materials, 2021, , 252-291.	0.1	4
623	Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence, 2021, 12, 2247-2272.	1.8	29
624	Efficacy of 5-Aminolevulinic Acid (ALA)-Photodynamic Therapy (PDT) in Refractory Vulvar Lichen Sclerosus: Preliminary Results. Medical Science Monitor, 2021, 27, e927406.	0.5	3
625	Polypyrrole-Coated Mesoporous TiO ₂ Nanocomposites Simultaneously Loading DOX and Aspirin Prodrugs for a Synergistic Theranostic and Anti-Inflammatory Effect. ACS Applied Bio Materials, 2021, 4, 1483-1492.	2.3	13
626	Preparation of silver nanoparticles in a high voltage AC arc in water. SN Applied Sciences, 2021, 3, 1.	1.5	10
627	Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Frontiers in Microbiology, 2020, 11, 622534.	1.5	97
628	Alternative methods of photodynamic therapy and oxygen consumption measurements—A review. Biomedicine and Pharmacotherapy, 2021, 134, 111095.	2.5	12
629	Determination of the distribution of drug concentration and tissue optical properties for ALA-mediated photodynamic therapy. , 2021, 11628, .		0
630	Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials, 2021, 14, 1972.	1.3	13
631	Review: Production of nuclear medicine radioisotopes with ultra-intense lasers. AIP Advances, 2021, 11,	0.6	17

#	ARTICLE Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm	IF 2.6	Citations
633	shift. International Journal of Pharmaceutics, 2021, 600, 120499. Optimizing Interstitial Photodynamic Therapy Planning With Reinforcement Learning-Based Diffuser Placement. IEEE Transactions on Biomedical Engineering, 2021, 68, 1668-1679.	2.5	5
634	Computational modelling of light propagation in a turbid medium illuminated by a LED array–diaphragm system. Optics Communications, 2021, 486, 126758.	1.0	0
635	Photodynamic therapy reduces metastasis of breast cancer by minimizing circulating tumor cells. Biomedical Optics Express, 2021, 12, 3878.	1.5	7
636	Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102251.	1.3	11
637	Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102091.	1.3	112
638	Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics, 2021, 13, 948.	2.0	3
639	Influence of photodynamic therapy and different conventional methods on conditioning of lithium di silicate ceramics bonded to metallic brackets: An assessment of bond strength. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102210.	1.3	5
640	Perspectives on interstitial photodynamic therapy for malignant tumors. Journal of Biomedical Optics, 2021, 26, .	1.4	4
641	Organic Lightâ€Emitting Diodes as an Innovative Approach for Treating Cutaneous Leishmaniasis. Advanced Materials Technologies, 2021, 6, 2100395.	3.0	11
642	Estimation of Singlet Oxygen Quantum Yield Using Novel Greenâ€Absorbing Bairdâ€ŧype Aromatic Photosensitizers ^{â€} . Photochemistry and Photobiology, 2022, 98, 57-61.	1.3	8
643	Recent Research Trends of Twoâ€Photon Photosensitizer for Simultaneous Imaging and Photodynamic Therapy. Bulletin of the Korean Chemical Society, 2021, 42, 1184-1190.	1.0	7
644	Hierarchical Co(OH)2/FeOOH/WO3 ternary nanoflowers as a dual-function enzyme with pH-switchable peroxidase and catalase mimic activities for cancer cell detection and enhanced photodynamic therapy. Chemical Engineering Journal, 2021, 417, 129134.	6.6	37
645	Monte Carlo simulations of photodynamic therapy in human blood model. Lasers in Medical Science, 2021, , 1.	1.0	1
646	A Warp-Knitted Light-Emitting Fabric-Based Device for In Vitro Photodynamic Therapy: Description, Characterization, and Application on Human Cancer Cell Lines. Cancers, 2021, 13, 4109.	1.7	2
647	High opticalâ€ŧhroughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy. Journal of Biophotonics, 2021, 14, e202100088.	1.1	4
648	Investigation of the therapeutic effect of 5-aminolevulinic acid based photodynamic therapy on hepatocellular carcinoma. Lasers in Medical Science, 2022, 37, 1325-1332.	1.0	1
649	Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Frontiers in Chemistry, 2021, 9, 686303.	1.8	172

#	Article	IF	CITATIONS
650	Cyanoarylporphyrazines with High Viscosity Sensitivity: A Step towards Dosimetry-Assisted Photodynamic Cancer Treatment. Molecules, 2021, 26, 5816.	1.7	6
651	Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: A redox and pH-responsive antimicrobial agent with photocatalytic activity. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102418.	1.3	8
652	Functionalized Nanoparticles Activated by Photodynamic Therapy as an Antimicrobial Strategy in Endodontics: A Scoping Review. Antibiotics, 2021, 10, 1064.	1.5	6
653	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	1.7	134
654	Field cancerization treatment: Adjustments to an ALA red light photodynamic therapy protocol to improve pain tolerance. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102415.	1.3	5
655	Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100454.	5.6	23
656	Can sono-photodynamic therapy enhance the antibacterial effect of curcumin against Streptococcus mutans biofilm?. Laser Physics Letters, 2021, 18, 105601.	0.6	2
657	Photodynamic therapy outcome modelling for patients with spinal metastases: a simulation-based study. Scientific Reports, 2021, 11, 17871.	1.6	5
658	Determination of Optical Properties and Photodynamic Threshold of Lung Tissue for Treatment Planning of In Vivo Lung Perfusion Assisted Photodynamic Therapy. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102353.	1.3	5
659	Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials, 2021, 11, 2474.	1.9	35
660	Photosensitizer IR700DX-6T- and IR700DX-mbc94-mediated photodynamic therapy markedly elicits anticancer immune responses during treatment of pancreatic cancer. Pharmacological Research, 2021, 172, 105811.	3.1	5
661	The photodynamic activities of the gold nanoparticle conjugates of phosphorus(V) and gallium(III) A3 meso-triarylcorroles. Dyes and Pigments, 2021, 194, 109631.	2.0	12
662	Optical inactivation of a proprioceptor in an insect by non-genetic tools. Journal of Neuroscience Methods, 2021, 363, 109322.	1.3	1
663	Antimicrobial photodynamic treatment (aPDT) as an innovative technology to control spoilage and pathogenic microorganisms in agri-food products: An updated review. Food Control, 2022, 132, 108527.	2.8	32
664	Roles of Chitosan in Green Synthesis of Metal Nanoparticles for Biomedical Applications. Nanomaterials, 2021, 11, 273.	1.9	52
665	Photodynamic therapy-based tuberculosis treatment. , 2021, , 261-280.		1
666	Potent oxidation of DNA by Ru(<scp>ii</scp>) tri(polypyridyl) complexes under visible light irradiation <i>via</i> a singlet oxygen-mediated mechanism. Inorganic Chemistry Frontiers, 2021, 8, 3421-3432.	3.0	7
667	Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines, 2021, 9, 113.	1.4	26

~			_			
(CII	ΤΑΤ	10N	I R	FP	C	ЪL

#	Article	IF	CITATIONS
668	Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Theranostics, 2021, 11, 3502-3511.	4.6	12
669	Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angewandte Chemie - International Edition, 2019, 58, 2558-2569.	7.2	322
671	Photodynamic Reactions for the Treatment of Oral-Facial Lesions and Microbiological Control. , 2020, , 45-57.		2
672	Photodynamic Therapy and Nitric Oxide. , 2015, , 227-246.		1
673	The Effects of Photodynamic Therapy in Oral Biofilms. Springer Series on Biofilms, 2014, , 449-468.	0.0	1
675	Photo-responsive tetraether lipids based vesicles for prophyrin mediated vascular targeting and direct phototherapy. Colloids and Surfaces B: Biointerfaces, 2017, 159, 720-728.	2.5	18
676	CHAPTER 4. Photodynamic Therapy. RSC Drug Discovery Series, 2018, , 86-122.	0.2	3
677	High-performance, robustly verified Monte Carlo simulation with FullMonte. Journal of Biomedical Optics, 2018, 23, 1.	1.4	47
678	Measurement of tissue optical properties in the context of tissue optical clearing. Journal of Biomedical Optics, 2018, 23, 1.	1.4	90
679	Optimization of sapphire capillary needles for interstitial and percutaneous laser medicine. Journal of Biomedical Optics, 2019, 24, 1.	1.4	8
680	Validation of combined Monte Carlo and photokinetic simulations for the outcome correlation analysis of benzoporphyrin derivative-mediated photodynamic therapy on mice. Journal of Biomedical Optics, 2019, 24, 1.	1.4	11
681	High-power light-emitting diode array design and assembly for practical photodynamic therapy research. Journal of Biomedical Optics, 2020, 25, 1.	1.4	18
682	Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for <i>in vivo</i> monitoring of cerebral fluid dynamics. Journal of Innovative Optical Health Sciences, 2020, 13,	0.5	18
684	Photodynamic Therapy/Diagnostics. Series in Medical Physics and Biomedical Engineering, 2010, , 649-686.	0.1	12
685	Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies. World Journal of Clinical Cases, 2013, 1, 96.	0.3	13
686	FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media. Biomedical Optics Express, 2019, 10, 4711.	1.5	36
687	Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy. Biomedical Optics Express, 2019, 10, 4975.	1.5	25
688	Holographic Interferometry Monitoring of Hyperthermal and Photochemical Reactions with Human Hemoglobin. , 2017, , .		1

#	Article	IF	CITATIONS
689	Side-emission properties of femtosecond laser induced scattering centers in optical fibers. Optical Materials Express, 2019, 9, 2497.	1.6	15
690	Photodynamic Therapy in Pythium insidiosum – An In Vitro Study of the Correlation of Sensitizer Localization and Cell Death. PLoS ONE, 2014, 9, e85431.	1.1	29
691	A tissue factor-cascade-targeted strategy to tumor vasculature: a combination of EGFP-EGF1 conjugation nanoparticles with photodynamic therapy. Oncotarget, 2017, 8, 32212-32227.	0.8	19
692	Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget, 2018, 9, 19026-19038.	0.8	30
693	Selenium Nanoparticle Enhanced Photodynamic Therapy against Biofilm forming Streptococcus mutans. , 2017, 3, 1287-1294.		5
694	Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 2013, 13, 1633-1645.	0.6	495
695	New Approaches to Photodynamic Therapy from Types I, II and III to Type IV Using One or More Photons. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 171-189.	0.9	42
696	Near-infrared activated cyanine dyes as agents for photothermal therapy and diagnosis of tumors. Acta Naturae, 2020, 12, 102-113.	1.7	25
697	Advances in Photodynamic Therapy Dosimetry*. Progress in Biochemistry and Biophysics, 2009, 2009, 676-683.	0.3	9
698	Evaluation of the imaging efficiency of gold nanoparticles and iodine encapsulated in polymer nanocapsules as X-ray contrast agents. International Journal of Chemical and Applied Biological Sciences, 2014, 1, 18.	0.2	1
699	Functionalized Nanoparticles for Drug Delivery, One- and Two-photon Photodynamic Therapy as a Promising Treatment of Retinoblastoma. Journal of Clinical & Experimental Ophthalmology, 2013, 04, .	0.1	4
700	The Effects of Photodynamic Therapy in Upper-Gastrointestinal Malignant Diseases. Gut and Liver, 2010, 4, S39.	1.4	8
701	Vascular targeted photochemotherapy using padoporfin and padeliporfin as a method of the focal treatment of localised prostate cancer - clinician's insight. World Journal of Methodology, 2016, 6, 65.	1.1	17
702	Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment. Rapid Communication in Photoscience, 2014, 3, 81-84.	0.1	4
703	Photochemical Property and Photodynamic Activity of Tetrakis(2-naphthyl) Porphyrin Phosphorus(V) Complex. Rapid Communication in Photoscience, 2015, 4, 37-40.	0.1	1
704	Targeted Nanotheranostic Systems in Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 1-29.	0.4	0
705	Terapia fotodinâmica como adjuvante ao tratamento periodontal: revisão de literatura. Research, Society and Development, 2021, 10, e585101321534.	0.0	0
706	Porphyrin crossâ€linked conjugated polymer nanoparticlesâ€based photosensitizer for antimicrobial and anticancer photodynamic therapies. Journal of Applied Polymer Science, 2022, 139, 51777.	1.3	3

#	Article	IF	CITATIONS
707	A wireless optoelectronic skin patch for light delivery and thermal monitoring. IScience, 2021, 24, 103284.	1.9	5
708	Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem, 2021, 1, 434-450.	1.3	16
709	Research progress of azido-containing Pt(IV) antitumor compounds. European Journal of Medicinal Chemistry, 2022, 227, 113927.	2.6	17
710	Integrated spectroscopy and PDT delivery for various treatment geometries. , 2008, , .		Ο
711	ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 037805.	0.2	3
712	Porphysomes: Multifunctional Nanovesicles to Treat Hypoxic Tumour by Photothermal Therapy. , 2012, , .		0
713	A Redox-Responsive Silicon(IV) Phthalocyanine for Targeted Photodynamic Therapy. Springer Theses, 2013, , 67-82.	0.0	0
714	Opportunities for New Photodynamic Molecular Beacon Designs. , 2014, , 733-758.		0
715	Monitoring Cancer Therapy with Diffuse Optical Methods. , 2014, , 1-36.		0
716	Atoms and Light. , 2015, , 381-423.		0
717	Cell-Specific Aptamers for Targeted Therapy. , 2015, , 301-337.		0
718	Porphyrin–Polymer Complexes in Model Photosensitized Processes and in Photodynamic Therapy. , 2015, , 77-122.		0
719	Photodynamic therapy for recurrent basal cell carcinoma after radiotherapy. Onkologiya Zhurnal Imeni P A Gertsena, 2016, 5, 51.	0.0	0
720	Study of the photophysical properties of a water-soluble photosensitizer of porphyrin nature—dimegin. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2016, 83, 193.	0.2	0
721	Weighted optimization of irradiance for photodynamic therapy of port wine stains. , 2016, , .		0
722	Monitoring Cancer Therapy with Diffuse Optical Methods. , 2017, , 179-220.		0
723	PPIX-based Photodynamic Therapy Monitoring by Fluorescence Patterns. , 2017, , .		0
725	6 High-content imaging for photosensitizer screening. Series in Cellular and Clinical Imaging, 2017, , 103-116.	0.2	0

#	Article	IF	CITATIONS
726	12 Theranostic applications of photodynamic molecular beacons. Series in Cellular and Clinical Imaging, 2017, , 249-258.	0.2	0
727	21 Spectroscopic imaging in prostate PDT. Series in Cellular and Clinical Imaging, 2017, , 419-454.	0.2	0
728	2 Photochemistry and photophysics of PDT and photosensitizers. Series in Cellular and Clinical Imaging, 2017, , 29-48.	0.2	0
729	Curcumin uptake enhancement using low dose light illumination during incubation in <i>Candida albicans</i> . Proceedings of SPIE, 2017, , .	0.8	0
730	Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in <i> Candida albicans </i> cells. Proceedings of SPIE, 2017, , .	0.8	1
731	Efficiency of photodynamic therapy in the treatment of endometrial hyperplastic processes in older patients. Russian Bulletin of Obstetrician-Gynecologist, 2018, 18, 68.	0.0	1
732	The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells. , 2018, , .		0
733	Necrosis and apoptosis pathways of cell death at photodynamic treatment in vitro as revealed by digital holographic microscopy. , 2018, , .		1
734	Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity. , 2018, , .		1
735	Extracting broadband optical properties from uniform optical phantoms using an integrating sphere and inverse adding-doubling. , 2018, , .		0
736	Antimicrobial Effect on <italic>Streptococcus mutans</italic> in Photodynamic Therapy using Different Light Source. The Journal of the Korean Academy of Pedtatric Dentistry, 2018, 45, 82-89.	0.1	4
737	High energy photons excited photodynamic cancer therapy in vitro. , 2018, , .		0
738	Fast determination of the spatially distributed photon fluence for light dose evaluation of PDT. , 2018, , .		0
739	La toxicité rétinienne des diodes électroluminescentes (Light Emitting Diodes, plus connues par leur) Tj E1	Qg1_1 0.7	784314 rgBT
740	OVER KANSERİNE YÖNELİK FOTODİNAMİK TERAPİ TEMELLİ KOMBİNASYON TERAPİ UYGULAMASI Bulteni, 2018, 49, .	Zeynep k	amil Tip
741	Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy. , 2018, 10476, .		0
742	Measurements of the optical coefficients of the protoporphyrin IX endogenously producing yeast-based model in the visible and NIR. Journal of Biomedical Optics, 2018, 23, 1.	1.4	1
743	Compare the therapeutic effectiveness of photodynamic therapy with 980 nm laser on cervical intraepithelial neoplasia. , 2018, , .		0

#	Article	IF	CITATIONS
744	Discovering new 3D bioprinting applications: Analyzing the case of optical tissue phantoms. International Journal of Bioprinting, 2018, 5, 178.	1.7	11
745	Validation of Dosie combined Monte Carlo and photokinetic simulations for the analysis of HPPH-mediated photodynamic therapy on mice. , 2019, , .		1
746	FullMonte: fast Monte-Carlo light simulator. , 2019, , .		1
747	Response of patient-specific cell cultures to photodynamic treatment analyzed by digital holographic microscopy. , 2019, , .		0
748	Long-circulating prostate-specific membrane antigen-targeted NIR phototheranostic agent. , 2019, , .		0
749	Devices based on light emitting fabrics dedicated to PDT preclinical studies. , 2019, , .		2
750	LED-based portable light source for photodynamic therapy. , 2019, , .		1
751	Photodynamic therapy in patients with infertility in chronic endometritis. Russian Bulletin of Obstetrician-Gynecologist, 2020, 20, 56.	0.0	1
752	Sapphire-based medical instruments for diagnosis, surgery and therapy. , 2020, , .		1
753	Interstitial photodynamic therapy planning with 3D placement optimization. , 2020, , .		0
754	Phototherapy and optical waveguides for the treatment of infection. Advanced Drug Delivery Reviews, 2021, 179, 114036.	6.6	26
760	In light-sensitive drug delivery system nanoparticles mediate oxidative stress. American Journal of Translational Research (discontinued), 2020, 12, 1469-1480.	0.0	0
761	5-ALA-photodynamic therapy in refractory vulvar lichen sclerosus et atrophicus. International Journal of Clinical and Experimental Pathology, 2020, 13, 3100-3110.	0.5	2
762	Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. Journal of the Egyptian National Cancer Institute, 2021, 33, 34.	0.6	24
763	Photoinactivation of multispecies cariogenic biofilm mediated by aluminum phthalocyanine chloride encapsulated in chitosan nanoparticles. Lasers in Medical Science, 2022, 37, 2033-2043.	1.0	2
764	Effect of antimicrobial photodynamic therapy with different photosensitizers and adhesion protocol on the bond strength of resin composite to sound dentin. Clinical Oral Investigations, 2022, 26, 4011-4019.	1.4	9
765	Application of upconversion-luminescent materials in photodynamic therapy. , 2022, , 375-390.		1
766	Activated supramolecular nano-agents: From diagnosis to imaging-guided tumor treatment. Nano Today, 2022, 43, 101392.	6.2	17

	CITATION RE	PORT	
Article		IF	CITATIONS
The oxidative stress and metabolic response of Acinetobacter baumannii for aPDT mul photosensitization. Scientific Reports, 2022, 12, 1913.	tiple	1.6	3
Widely tunable near-infrared Raman fiber laser irradiating breast cancer cells leads to o reduction and increased granularity of intracellular components as a precursor to cell , .	tell size death. , 2022,		0
A simple flow-cytometry based image processing algorithm for analysing cell-death me radiotherapy. , 2022, , .	echanisms in		0
Photodynamic Therapy: Critical PDT Theory ^{â€} . Photochemistry and Photo 199-203.	bbiology, 2023, 99,	1.3	14
An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Res Advanced Materials, 2022, 34, e2200334.	istant Bacteria.	11.1	25
Scalable and accessible personalized photodynamic therapy optimization with FullMor PDT-SPACE. Journal of Biomedical Optics, 2022, 27, .	nte and	1.4	9
Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Tec Methods in Molecular Biology, 2022, 2451, 185-201.	hnologies.	0.4	0
Ring-Fused meso-Tetraarylchlorins as Auspicious PDT Sensitizers: Synthesis, Structural Characterization, Photophysics, and Biological Evaluation. Frontiers in Chemistry, 202	2, 10, 873245.	1.8	3
The Physics of Light and Sound in the Fight Against Skin Cancer. Brazilian Journal of Ph	nysics, 2022, 52, .	0.7	4
Which cell death modality wins the contest for photodynamic therapy of cancer?. Cell Disease, 2022, 13, 455.	Death and	2.7	86
The efficacy and mechanism of thoracic photodynamic therapy mediated by hematopo on disseminated pleural malignancies of Lewis lung carcinoma in mice American Journ Research, 2022, 12, 1502-1510.	orphyrin injection nal of Cancer	1.4	0
Ga ^{III} triarylcorroles with push–pull substitutions: synthesis, electronic s biomedical applications. Dalton Transactions, 2022, 51, 10543-10551.	tructure and	1.6	4

782	Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomedicine and Pharmacotherapy, 2022, 153, 113305.	2.5	50
783	Laser-induced singlet oxygen selectively triggers oscillatory mitochondrial permeability transition and apoptosis in melanoma cell lines. Life Sciences, 2022, 304, 120720.	2.0	12
784	First-in-Human Computer Optimized EBUS Guided Interstitial PDT for Patients with Extra/Endobronchial Obstructing Malignancies. JTO Clinical and Research Reports, 2022, , 100372.	0.6	0
785	Three-dimensional quantification of protoporphyrin IX in photodynamic therapy using SFDI/DFT: a pilot experimental validation. Journal of Innovative Optical Health Sciences, 0, , .	0.5	2
786	Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	9
787	Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation. Biosensors and Bioelectronics, 2022, 216, 114651.	5.3	4

#

767

769

772

776

778

780

#	Article	IF	CITATIONS
788	Optical Techniques for Treatment and Tissue Evaluation Using Skin Models for Preclinical Studies. , 2022, , 1-18.		0
789	Photodynamic Priming Overcomes Per―and Polyfluoroalkyl Substance (<scp>PFAS</scp>)â€Induced Platinum Resistance in Ovarian Cancer ^{â€} . Photochemistry and Photobiology, 2023, 99, 793-813.	1.3	4
790	Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer ^{â€} . Photochemistry and Photobiology, 2023, 99, 448-468.	1.3	4
791	Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples. Photonics, 2022, 9, 711.	0.9	2
792	Photodynamic therapy in a pleural cavity using monte carlo simulations with 2D/3D Graphical Visualization. Global Journal of Cancer Therapy, 2022, 8, 021-033.	0.4	0
793	A novel AlEgen photosensitizer with an elevated intersystem crossing rate for tumor precise imaging and therapy. Chemical Communications, 2022, 58, 13143-13146.	2.2	3
794	Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Frontiers in Oncology, 0, 12, .	1.3	9
795	In vivo spectroscopic evaluation of human tissue optical properties and hemodynamics during HPPH-mediated photodynamic therapy of pleural malignancies. Journal of Biomedical Optics, 2022, 27, .	1.4	4
796	Comparison of bacterial disinfection efficacy using blue and red lights on dental implants contaminated with Aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103178.	1.3	5
798	Porphyrin nanoemulsion for antimicrobial photodynamic therapy: effective delivery to inactivate biofilm-related infections. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
799	Ingestible light source for intragastric antibacterial phototherapy: a device safety study on a minipig model. Photochemical and Photobiological Sciences, 2023, 22, 535-547.	1.6	2
800	Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes. Dyes and Pigments, 2023, 210, 110986.	2.0	17
801	Photophysical Insights of Halogenated Dipyrrolonaphthyridineâ€Điones as Potential Photodynamic Therapy Agents ^{â€} . Photochemistry and Photobiology, 2023, 99, 761-768.	1.3	1
802	Recent Photosensitizer Developments, Delivery Strategies and Combinationâ€based Approaches for Photodynamic Therapy ^{â€} . Photochemistry and Photobiology, 2023, 99, 469-497.	1.3	6
803	In Vivo and In Silico Study of Photodynamic Necrosis Volume in Rat Liver. Photonics, 2022, 9, 993.	0.9	0
804	Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjugate Chemistry, 2023, 34, 283-301.	1.8	3
805	On the need for standardized reporting of photophysical parameters of in vitro photodynamic therapy studies. Photodiagnosis and Photodynamic Therapy, 2023, 41, 103263.	1.3	1
806	Optical Techniques for Treatment and Tissue Evaluation Using Skin Models for Preclinical Studies. , 2023, , 615-631.		0

#	Article	IF	CITATIONS
807	Cancer: A Complex Problem Requiring Interdisciplinary Research. , 2023, , 1-45.		0
808	Photodynamic Therapy of Cancer: Quality and Prospective of Therapy based on Photosensitizer. Current Cancer Therapy Reviews, 2023, 19, 223-236.	0.2	1
809	Mechanisms of photodynamic therapy. , 2023, , 41-54.		14
810	A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. , 2023, 4, 11-20.		16
811	RNA-Seq-based transcriptomics analysis during the photodynamic therapy of primary cells in secondary hyperparathyroidism. Photochemical and Photobiological Sciences, 0, , .	1.6	1
812	BODIPY-Based Photothermal Agents with Excellent Phototoxic Indices for Cancer Treatment. Journal of the American Chemical Society, 2023, 145, 4534-4544.	6.6	18
813	A Monte Carlo simulation for moving light source in intracavity PDT. , 2023, , .		1
814	Photodynamic and photothermal therapy using PLGA nanoparticles. , 2023, , 357-391.		1
815	Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Applied Biochemistry and Biotechnology, 2023, 195, 6979-6993.	1.4	7
816	Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. Theoretical and Experimental Chemistry, 2023, 58, 373-401.	0.2	10
817	Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals, 2023, 16, 613.	1.7	2
820	Anticancer strategies involving radical species. , 2023, , 165-235.		0
830	Application of exosomes as nanocarriers in cancer therapy. Journal of Materials Chemistry B, O, , .	2.9	1
838	Photodynamic Therapy and Applications in Cancer. Recent Advances in Biotechnology, 2023, , 81-116.	0.1	0
842	Silver nanoparticles to enhance photodynamic action of photosensitizers. , 2024, , 129-155.		0
843	Evaluation of semisynthetic chlorophyll-a derivatives as photosensitizers in fibroblast cells. , 2024, , .		0