Electrochemical Capacitors for Energy Management

Science 321, 651-652 DOI: 10.1126/science.1158736

Citation Report

#	Article	IF	CITATIONS
2	Materials for electrochemical capacitors. Nature Materials, 2008, 7, 845-854.	13.3	14,090
3	Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2009, 156, A7.	1.3	231
4	Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte. Journal of the Electrochemical Society, 2009, 156, A1.	1.3	106
5	Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochimica Acta, 2009, 54, 7025-7032.	2.6	181
6	Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2009, 630, 55-62.	1.9	72
7	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	1.5	2,295
8	Polyphosphate based electrochemical capacitors. Synthetic Metals, 2009, 159, 2309-2311.	2.1	1
9	Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38, 2520.	18.7	6,276
10	Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors. ACS Nano, 2009, 3, 2199-2206.	7.3	390
11	Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy and Environmental Science, 2009, 2, 932.	15.6	239
12	A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. Journal of Materials Chemistry, 2009, 19, 8755.	6.7	278
13	Capacitance of KOH activated carbide-derived carbons. Physical Chemistry Chemical Physics, 2009, 11, 4943.	1.3	89
14	Materials for electrochemical capacitors. , 2009, , 320-329.		205
15	Materials for electrochemical capacitors. , 2010, , 138-147.		25
16	Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010, 22, 1392-1401.	3.2	2,060
17	Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science, 2010, 329, 1637-1639.	6.0	1,239
18	Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 5983.	6.7	1,338
19	Qualitative Electrochemical Impedance Spectroscopy study of ion transport into sub-nanometer carbon pores in Electrochemical Double Layer Capacitor electrodes. Electrochimica Acta, 2010, 55, 7489-7494.	2.6	156

ARTICLE IF CITATIONS # Energy and power performance of electrochemical double-layer capacitors based on molybdenum 20 2.6 99 carbide derived carbon. Electrochimica Acta, 2010, 55, 3138-3143. High-capacitance supercapacitors using nitrogen-decorated porous carbon derived from novolac 2.6 19 resin containing peptide linkage. Electrochimica Acta, 2010, 55, 5624-5628. Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: effects of in situ dopant and film thickness. Journal of Solid State Electrochemistry, 2010, 22 1.2 17 14, 1565-1575. The effects of surface modification on the supercapacitive behaviors of carbon derived from calcium carbide. Journal of Materials Science, 2010, 45, 6030-6037. Electrical double-layer capacitor performance of nitrogen-doped ordered mesoporous carbon 24 1.3 9 prepared by nanotemplating method. Research on Chemical Intermediates, 2010, 36, 703-713. Detonation Nanodiamond and Onionâ€Likeâ€Carbonâ€Embedded Polyaniline for Supercapacitors. Advanced 7.8 245 Functional Materials, 2010, 20, 3979-3986. Extracting the Full Potential of Singleâ€Walled Carbon Nanotubes as Durable Supercapacitor 26 11.1 582 Electrodes Operable at 4 V with High Power and Energy Density. Advanced Materials, 2010, 22, E235-41. Designed Smart System of the Sandwiched and Concentric Architecture of RuO₂/C/RuO₂ for High Performance in Electrochemical Energy Storage. 1.7 Chemistry - A European Journal, 2010, 16, 3598-3603. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. Journal of Power 28 4.0 421 Sources, 2010, 195, 1266-1269. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. Journal of Power Sources, 2010, 195, 2414-2418. Polyfluorinated boron cluster – [B12F11H]2â[^] – based electrolytes for supercapacitors: Overcharge 30 17 2.3protection. Electrochemistry Communications, 2010, 12, 636-639. High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 2010, 5.4 483 48, 4351-4361. Novel doubly charged cation based electrolytes for non-aqueous supercapacitors. Electrochemistry 32 2.337 Communications, 2010, 12, 535-539. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. 13.3 2,801 Nature Materials, 2010, 9, 146-151. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature 34 15.6 1.026 Nanotechnology, 2010, 5, 531-537. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature 15.6 2,451 Nanotechnology, 2010, 5, 651-654. Carbon Nanotube Supercapacitors., 0, , . 36 15 Energy harvesting and the future of energy., 2010, , 822-858.

#	Article	IF	CITATIONS
38	Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review. , 2010, , .		3
39	Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V ₂ O ₅ . Chemistry of Materials, 2010, 22, 914-921.	3.2	161
40	Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. Journal of Materials Chemistry, 2010, 20, 7135.	6.7	119
41	High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology, 2010, 21, 345701.	1.3	85
42	High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon. ACS Nano, 2010, 4, 1337-1344.	7.3	447
43	Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature. Journal of Physical Chemistry Letters, 2010, 1, 1428-1431.	2.1	51
44	lon Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance. ACS Nano, 2010, 4, 2382-2390.	7.3	183
45	Electrochemical Energy Storage: The Benefits of Nanomaterials. , 0, , 155-176.		0
46	Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors. ACS Nano, 2010, 4, 3889-3896.	7.3	686
47	Integration of Carbon Nanotubes to C-MEMS for On-chip Supercapacitors. IEEE Nanotechnology Magazine, 2010, 9, 734-740.	1.1	65
48	Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance. Journal of Physical Chemistry C, 2010, 114, 19867-19874.	1.5	197
49	Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors. Journal of Physical Chemistry C, 2010, 114, 18012-18016.	1.5	53
50	Tailoring the Pore Alignment for Rapid Ion Transport in Microporous Carbons. Journal of the American Chemical Society, 2010, 132, 3252-3253.	6.6	175
51	Electrochemical Characteristics of Carbide-Derived Carbonâ^£1-Ethyl-3-methylimidazolium Tetrafluoroborate Supercapacitor Cells. Journal of the Electrochemical Society, 2010, 157, A272.	1.3	102
52	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	1.2	142
53	Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/CNT/papers. Synthetic Metals, 2010, 160, 2510-2514.	2.1	92
54	Characterization of graphene-based supercapacitors fabricated on Al foils using Au or Pd thin films as interlayers. Synthetic Metals, 2010, 160, 2613-2617.	2.1	32
55	Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors. Journal of the American Chemical Society, 2010, 132, 18402-18407.	6.6	227

#	Article	IF	CITATIONS
56	Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. Journal of the American Chemical Society, 2010, 132, 6982-6990.	6.6	320
57	Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3457-3467.	1.6	233
58	Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 2010, 110, 6474-6502.	23.0	2,676
59	Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Physical Chemistry Chemical Physics, 2010, 12, 170-182.	1.3	114
60	Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010, 46, 3905.	2.2	270
61	Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO ₂ Nanotube Arrays. Nano Letters, 2010, 10, 4099-4104.	4.5	417
62	Structure and dynamics of electrical double layers in organic electrolytes. Physical Chemistry Chemical Physics, 2010, 12, 5468.	1.3	107
63	Hybrid MnO ₂ –disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 390-398.	6.7	78
64	Mesoporous carbon nanospheres with an excellent electrocapacitive performance. Journal of Materials Chemistry, 2011, 21, 2274-2281.	6.7	169
65	Reversible phase transformation of MnO ₂ nanosheets in an electrochemical capacitor investigated by in situRaman spectroscopy. Chemical Communications, 2011, 47, 1252-1254.	2.2	196
66	Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. Journal of Materials Chemistry, 2011, 21, 17810.	6.7	57
67	Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chemical Communications, 2011, 47, 5786.	2.2	307
68	Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. Journal of Materials Chemistry, 2011, 21, 16581.	6.7	175
69	Peapod-like nickel@mesoporous carbon core-shell nanowires: a novel electrode material for supercapacitors. RSC Advances, 2011, 1, 954.	1.7	45
70	A divided potential driving self-discharge process for single-walled carbon nanotube based supercapacitors. RSC Advances, 2011, 1, 989.	1.7	37
71	Modified carbon nano structures for energy and display applications. , 2011, , .		1
72	Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale, 2011, 3, 683-692.	2.8	280
73	Capacitive Properties of Activated Carbon in K4Fe(CN)6. Journal of the Electrochemical Society, 2011, 158, A818.	1.3	26

#	Article	IF	CITATIONS
75	"Give Energy to Your Studyâ€: Students Worldwide Gather in Europe To Design Future Materials for Energy Storage and Conversion. Journal of Chemical Education, 2011, 88, 1203-1206.	1.1	0
76	Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors. Journal of Physical Chemistry C, 2011, 115, 20689-20695.	1.5	34
77	Supercapacitors Based on 3D Nanostructured Electrodes. , 2011, , 477-521.		0
78	Ultrafine manganese dioxidenanowire network for high-performance supercapacitors. Chemical Communications, 2011, 47, 1264-1266.	2.2	224
79	Aerogels for Energy Saving and Storage. Green Energy and Technology, 2011, , 873-911.	0.4	5
80	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy and Environmental Science, 2011, 4, 717-724.	15.6	852
81	High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy and Environmental Science, 2011, 4, 1813.	15.6	315
82	Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. Nanoscale, 2011, 3, 529-545.	2.8	281
83	Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy and Environmental Science, 2011, 4, 3985.	15.6	333
84	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496.	15.6	386
85	Flexible Zn ₂ SnO ₄ /MnO ₂ Core/Shell Nanocableâ^'Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters, 2011, 11, 1215-1220.	4.5	807
86	Supercapacitors based on self-assembled graphene organogel. Physical Chemistry Chemical Physics, 2011, 13, 17249.	1.3	123
87	High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes. ACS Nano, 2011, 5, 436-442.	7.3	672
88	An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. RSC Advances, 2011, 1, 1271.	1.7	137
89	Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy and Environmental Science, 2011, 4, 2915.	15.6	479
90	Ni–NiO core–shell inverse opal electrodes for supercapacitors. Chemical Communications, 2011, 47, 5214.	2.2	202
91	One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy and Environmental Science, 2011, 4, 3502.	15.6	221
92	Oscillation of Capacitance inside Nanopores. Nano Letters, 2011, 11, 5373-5377.	4.5	290

#	Article	IF	CITATIONS
93	Three-Dimentional Porous Nano-Ni/Co(OH) ₂ Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance. Journal of Physical Chemistry C, 2011, 115, 22662-22668.	1.5	223
94	Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 2011, 11, 2472-2477.	4.5	1,547
95	Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances, 2011, 1, 588.	1.7	289
96	Capacitive Energy Storage from â^'50 to 100 °C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.	2.1	361
97	Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. Chemical Communications, 2011, 47, 3436.	2.2	169
98	Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. Journal of Materials Chemistry, 2011, 21, 2374-2380.	6.7	398
99	How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors?. Energy and Environmental Science, 2011, 4, 4220.	15.6	119
100	Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21, 671-679.	6.7	282
102	The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011, 3, 839.	2.8	778
103	Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors. Journal of Physical Chemistry C, 2011, 115, 23584-23590.	1.5	232
104	Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices. Nano Letters, 2011, 11, 3785-3791.	4.5	239
105	Pyrolyzed graphene oxide/resorcinol-formaldehyde resin composites as high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 2663.	6.7	87
106	Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 7302.	6.7	262
107	The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Materials, 2011, 26, 180-186.	2.9	34
108	Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2011, 14, A174.	2.2	54
109	High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Physical Chemistry Chemical Physics, 2011, 13, 12554.	1.3	273
110	Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972.	15.6	346
111	Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2011, 3, 3058-3063.	4.0	183

	CITATION R	PORT	
# 112	ARTICLE Large-Scale Uniform α-Co(OH) ₂ Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes. ACS Applied Materials & Interfaces, 2011, 3, 99-103.	IF 4.0	CITATIONS
113	Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy and Environmental Science, 2011, 4, 1866.	15.6	420
114	Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Physical Chemistry Chemical Physics, 2011, 13, 17615.	1.3	624
115	Solution-Processed Graphene/MnO ₂ Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters, 2011, 11, 2905-2911.	4.5	1,195
116	Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nature Communications, 2011, 2, 381.	5.8	1,040
117	Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6, 232-236.	15.6	1,914
118	Three-dimensional nanoporous gold for electrochemical supercapacitors. Scripta Materialia, 2011, 64, 923-926.	2.6	109
119	Effects of polyelectrolyte hybridization on the crystal structure, physicochemical properties, and electrochemical activity of layered manganese oxide. Materials Chemistry and Physics, 2011, 127, 271-277.	2.0	10
120	Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Materials Chemistry and Physics, 2011, 131, 268-273.	2.0	77
121	TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin, 2011, 46, 835-839.	2.7	75
122	Supercapacitor studies on globular polypyrrole microstructures developed by a facile electrochemical route. Micro and Nano Letters, 2011, 6, 1002.	0.6	7
123	A Static Model for Electrolyte-Gated Organic Field-Effect Transistors. IEEE Transactions on Electron Devices, 2011, 58, 3574-3582.	1.6	29
124	Graphene electric double layer capacitor with ultra-high-power performance. Electrochimica Acta, 2011, 56, 10443-10449.	2.6	150
125	Capacitive matching of pore size and ion size in the negative and positive electrodes for supercapacitors. Electrochimica Acta, 2011, 56, 9248-9256.	2.6	29
126	Stable nanostructured polyaniline electrode for supercapacitor application. Electrochimica Acta, 2011, 56, 9482-9487.	2.6	130
127	Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance. Electrochimica Acta, 2011, 56, 10130-10136.	2.6	37
128	True Performance Metrics in Electrochemical Energy Storage. Science, 2011, 334, 917-918.	6.0	2,057
129	Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011, 332, 1537-1541.	6.0	5,528

#	Article	IF	Citations
130	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, , n/a-n/a.	10.2	0
131	Enhancing the Supercapacitor Performance of Graphene/MnO ₂ Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.	4.5	1,062
132	Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. Journal of Physical Chemistry C, 2011, 115, 17206-17212.	1.5	683
133	Next generation pseudocapacitor materials from sol–gel derived transition metal oxides. Journal of Sol-Gel Science and Technology, 2011, 57, 330-335.	1.1	55
134	The electrochemistry of activated carbonaceous materials: past, present, and future. Journal of Solid State Electrochemistry, 2011, 15, 1563-1578.	1.2	161
135	Highâ€Performance Supercapacitors Based on Intertwined CNT/V ₂ O ₅ Nanowire Nanocomposites. Advanced Materials, 2011, 23, 791-795.	11.1	788
136	Co ₃ O ₄ Nanowire@MnO ₂ Ultrathin Nanosheet Core/Shell Arrays: A New Class of Highâ€Performance Pseudocapacitive Materials. Advanced Materials, 2011, 23, 2076-2081.	11.1	1,250
137	Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011, 23, 4828-4850.	11.1	2,593
138	Subâ€Micrometerâ€Thick Allâ€Solidâ€State Supercapacitors with High Power and Energy Densities. Advanced Materials, 2011, 23, 4098-4102.	11.1	343
139	2D Sandwichâ€like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Advanced Materials, 2011, 23, 5574-5580.	11.1	526
140	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	10.2	538
141	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	0.9	154
142	Bis(2,2′â€biphenoxy)borates for Electrochemical Double‣ayer Capacitor Electrolytes. Chemistry - A European Journal, 2011, 17, 3082-3085.	1.7	17
143	Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chemistry - A European Journal, 2011, 17, 10898-10905.	1.7	266
144	Porous NiO/Ag composite film for electrochemical capacitor application. Electrochimica Acta, 2011, 56, 2116-2121.	2.6	49
145	Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochimica Acta, 2011, 56, 7163-7170.	2.6	128
146	Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochimica Acta, 2011, 56, 2627-2632.	2.6	200
147	Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochimica Acta, 2011, 56, 7124-7130.	2.6	224

#	Article	IF	CITATIONS
148	Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources, 2011, 196, 565-572.	4.0	156
149	Spark plasma sintered carbon electrodes for electrical double layer capacitor applications. Journal of Power Sources, 2011, 196, 1620-1625.	4.0	20
150	Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. Journal of Power Sources, 2011, 196, 4109-4116.	4.0	94
151	Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor. Journal of Power Sources, 2011, 196, 4095-4101.	4.0	72
152	Enhanced Li capacity at high lithiation potentials in graphene oxide. Journal of Power Sources, 2011, 196, 5697-5703.	4.0	58
153	KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources, 2011, 196, 6003-6006.	4.0	173
154	Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. Journal of Solid State Chemistry, 2011, 184, 578-583.	1.4	103
155	Enhancement of electric double layer capacitance of carbon nanotubes by gallium ion irradiation. Journal of Applied Physics, 2011, 109, 044308-044308-4.	1.1	3
157	Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Science and Technology of Advanced Materials, 2011, 12, 044602.	2.8	46
158	Charge Transfer Between Polyaniline and Carbon Nanotubes Supercapacitors: Improving Both Energy and Power Densities. Journal of the Electrochemical Society, 2011, 158, A1.	1.3	40
159	An Experimental Research on Electrochemical Impedance Spectra of New High-Specific Energy EDLC. Materials Science Forum, 0, 675-677, 65-68.	0.3	2
160	Electric double layer capacitance of restricted primitive model for an ionic fluid in slit-like nanopores: A density functional approach. Journal of Chemical Physics, 2012, 137, 234705.	1.2	38
161	Solid-State Supercapacitors Based on Pulse Polymerized Poly(3,4-ethylenedioxythiophene) Electrodes and Ionic Liquid Gel Polymer Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1664-A1671.	1.3	53
162	Electrochemical Behavior of α-Tungsten Carbide-Derived Carbon Based Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2012, 159, A208-A213.	1.3	23
163	Morphology Controlled Growth of Meso-Porous Co ₃ O ₄ Nanostructures and Study of Their Electrochemical Capacitive Behavior. Journal of the Electrochemical Society, 2012, 159, A1682-A1689.	1.3	13
164	Different Characterization Techniques to Evaluate Graphene and Its Properties. , 2012, , 118-161.		0
165	Non-faradic carbon nanotube-based supercapacitors: state of the art. EPJ Applied Physics, 2012, 60, 10401.	0.3	8
166	Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene, 2012, 01, 1-13.	0.3	102

#	Article	IF	CITATIONS
167	Surface Analysis of Supercapacitor Electrodes After Long-Lasting Constant Current Tests in Organic Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1141-A1147.	1.3	17
168	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	7.3	961
169	All-Solid-State Flexible Supercapacitors Fabricated with Bacterial Nanocellulose Papers, Carbon Nanotubes, and Triblock-Copolymer Ion Gels. ACS Nano, 2012, 6, 6400-6406.	7.3	440
170	Non-aqueous electrochemical capacitor utilizing electrolytic redox reactions of bromide species in ionic liquid. Electrochimica Acta, 2012, 86, 294-297.	2.6	72
171	Porous nanocubic Mn3O4 \hat{a} \in "Co3O4 composites and their application as electrochemical supercapacitors. Dalton Transactions, 2012, 41, 10175.	1.6	93
172	Solvent Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor. Journal of Physical Chemistry Letters, 2012, 3, 1727-1731.	2.1	182
173	Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. Journal of the American Chemical Society, 2012, 134, 19532-19535.	6.6	1,024
174	Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors. AIP Advances, 2012, 2, 022121.	0.6	5
175	Carbon Nanotube–Nanocup Hybrid Structures for High Power Supercapacitor Applications. Nano Letters, 2012, 12, 5616-5621.	4.5	164
177	Nanotechnologyâ€Enabled Energy Harvesting for Selfâ€Powered Microâ€/Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 11700-11721.	7.2	910
178	Porous Co(OH)2/Ni composite nanoflake array for high performance supercapacitors. Electrochimica Acta, 2012, 63, 335-340.	2.6	85
179	Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network. Physical Chemistry Chemical Physics, 2012, 14, 5966.	1.3	30
180	Hydrous RuO ₂ –carbon nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage. Nanoscale, 2012, 4, 890-896.	2.8	77
181	Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. Journal of Materials Chemistry, 2012, 22, 8634.	6.7	249
182	Graphene nanosheet–titanium nitride nanocomposite for high performance electrochemical capacitors without extra conductive agent addition. Journal of Materials Chemistry, 2012, 22, 24918.	6.7	34
183	Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Advances, 2012, 2, 8808.	1.7	37
184	Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Advances, 2012, 2, 1890.	1.7	44
185	Facile Synthesis of Large-Area Hierarchical Bismuth Molybdate Nanowires for Supercapacitor Applications. Journal of the Electrochemical Society, 2012, 159, D582-D586.	1.3	47

#	Article	IF	CITATIONS
186	High-performance aqueous supercapacitors based on hierarchically porous graphitized carbon. RSC Advances, 2012, 2, 1755.	1.7	15
187	Bio-inspired synthesis: understanding and exploitation of the crystallization process from amorphous precursors. Nanoscale, 2012, 4, 54-65.	2.8	33
188	MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry, 2012, 22, 14864.	6.7	101
189	Core–Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors. Chemistry of Materials, 2012, 24, 1192-1197.	3.2	358
190	Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chemical Communications, 2012, 48, 9150.	2.2	124
191	Stability of Solid-Solution Phase and the Nature of Phase Separation in Ru–Zr–O Ternary Oxide. Journal of Physical Chemistry C, 2012, 116, 25832-25839.	1.5	12
192	Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. Journal of Physical Chemistry Letters, 2012, 3, 1732-1737.	2.1	77
193	Wet-chemical polyaniline nanorice mass-production for electrochemical supercapacitors. Synthetic Metals, 2012, 162, 1303-1307.	2.1	16
194	Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chemical Society Reviews, 2012, 41, 7291.	18.7	234
195	Incorporation of MnO ₂ -Coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2012, 4, 1058-1064.	4.0	338
196	Temperature stable supercapacitors based on ionic liquid and mixed functionalized carbon nanomaterials. Journal of Solid State Electrochemistry, 2012, 16, 3573-3580.	1.2	39
197	High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites. ACS Nano, 2012, 6, 4319-4327.	7.3	688
198	High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. Journal of Power Sources, 2012, 214, 137-141.	4.0	21
199	Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. Journal of Power Sources, 2012, 216, 395-399.	4.0	104
200	Characterization of commercial supercapacitors for low temperature applications. Journal of Power Sources, 2012, 219, 235-239.	4.0	82
201	Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. Journal of Power Sources, 2012, 219, 140-146.	4.0	90
202	Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012, 78, 122-132.	2.6	44
203	High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric. Electrochimica Acta, 2012, 78, 515-523.	2.6	54

щ		IF	Citations
#	ARTICLE Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy	IF	CHATIONS
204	Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
205	Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage. Advanced Materials, 2012, 24, 5713-5718.	11.1	571
206	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	10.2	401
207	Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications. Nanoscale Research Letters, 2012, 7, 651.	3.1	45
208	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012, 12, 1690-1696.	4.5	1,226
209	High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology, 2012, 23, 155401.	1.3	140
210	Catechol-Modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor. ACS Applied Materials & Interfaces, 2012, 4, 3788-3796.	4.0	110
211	Graphene and Metal Oxide Composites for Supercapacitors. Advanced Materials Research, 0, 608-609, 1074-1077.	0.3	1
212	Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer. Journal of the American Chemical Society, 2012, 134, 14846-14857.	6.6	354
213	In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 12823.	1.3	72
214	Oxide Nanostructures for Energy Storage. Springer Series in Materials Science, 2012, , 269-302.	0.4	4
215	Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. CrystEngComm, 2012, 14, 6702.	1.3	99
216	Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application. Science Bulletin, 2012, 57, 4215-4219.	1.7	34
217	Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2012, 4, 3239-3246.	4.0	51
218	Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry, 2012, 22, 3044.	6.7	419
219	Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy and Environmental Science, 2012, 5, 9611.	15.6	297
220	Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline. International Journal of Hydrogen Energy, 2012, 37, 14365-14372.	3.8	36
221	NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochimica Acta, 2012, 82, 309-313.	2.6	45

#	Article	IF	CITATIONS
222	Enhancement of electrochemical capacitive properties based on complementation of morphologies. Electrochimica Acta, 2012, 81, 1-7.	2.6	16
223	Big as well as light weight portable, Mn3O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration. Electrochimica Acta, 2012, 80, 160-170.	2.6	69
224	Porous quasi three-dimensional nano-Mn3O4+PbO2 composite as supercapacitor electrode material. Electrochimica Acta, 2012, 83, 175-182.	2.6	30
225	Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance. Microporous and Mesoporous Materials, 2012, 163, 140-146.	2.2	37
226	High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. Journal of Materials Chemistry, 2012, 22, 11062.	6.7	284
227	Electrodeposited Ni(OH)2 nanoflakes on graphite nanosheets prepared by plasma-enhanced chemical vapor deposition for supercapacitor electrode. New Journal of Chemistry, 2012, 36, 1902.	1.4	58
228	All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology, 2012, 23, 065401.	1.3	253
229	Electrochemical properties comparison of the polypyrrole nanotube and polyaniline nanofiber applied in supercapacitor. EPJ Applied Physics, 2012, 57, 30702.	0.3	17
230	Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy and Environmental Science, 2012, 5, 9747.	15.6	171
231	Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Advances, 2012, 2, 1835.	1.7	414
232	An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy and Environmental Science, 2012, 5, 6909.	15.6	228
233	Preparation of Graphene-Like Carbon Materials as Electrodes of Electric Double Layer Capacitors. Key Engineering Materials, 0, 519, 206-210.	0.4	1
234	A Solid-State Reaction Route to Anchoring Ni(OH) ₂ Nanoparticles on Reduced Graphene Oxide Sheets for Supercapacitors. Industrial & Engineering Chemistry Research, 2012, 51, 9973-9979.	1.8	99
235	Three-dimensional tubular arrays of MnO ₂ –NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426.	6.7	408
236	Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Advances, 2012, 2, 8281.	1.7	62
237	A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes. RSC Advances, 2012, 2, 8359.	1.7	82
238	Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Physical Chemistry Chemical Physics, 2012, 14, 3329.	1.3	156
239	Structure and compositional control of MoO3 hybrids assembled by nanoribbons for improved pseudocapacitor rate and cycle performance. Nanoscale, 2012, 4, 7855.	2.8	31

ARTICLE IF CITATIONS Carbon Nanocoils as Unusual Electrode Materials for Supercapacitors. Journal of the 240 1.3 17 Electrochemical Society, 2012, 159, A464-A469. High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high 241 6.7 scan rates. Journal of Materials Chemistry, 2012, 22, 3160. 242 Functional Metal Oxide Nanostructures. Springer Series in Materials Science, 2012, , . 0.4 26 Facile synthesis of porous ZnOâ€"NiO composite micropolyhedrons and their application for high 243 130 power supercapacitor electrode materials. Dalton Transactions, 2012, 41, 13284. Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications. 244 2.3 75 Electrochemistry Communications, 2012, 25, 109-111. First Principles Calculations of 1-methoxymethyl-1-methylpyrrolidinium and 1-ethyl-3-methylimidazolium Adsorption on Graphene. Journal of the Vacuum Society of Japan, 2012, 55, 0.3 198-203. 246 The Role of Nanotechnology in Automotive Industries., 0,,. 17 Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance 15.6 780 electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 248 13.3 861 2012, 11, 306-310. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 249 6.0 3,627 2012, 335, 1326-1330. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal 250 672 6.7 of Materials Chemistry, 2012, 22, 767-784. Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for 1,572 Supercapacitors. ACS Nano, 2012, 6, 7092-7102. Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance 252 6.7 194 supercapacitors. Journal of Materials Chemistry, 2012, 22, 16844. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene 1.7 oxide with urea for superior capacitive energy storage. RSC Advances, 2012, 2, 4498. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free 254 15.6 754 electrodes for high-performance supercapacitors. Energy and Environmental Science, 2012, 5, 9453. Preparation of hierarchical polyaniline nanotubes based on selfâ€essembly and its electrochemical 34 capacitance. Polymers for Advanced Technologies, 2012, 23, 1297-1301. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac 256 1.6 559 line-filtering. Scientific Reports, 2012, 2, 247. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 2012, 112, 3356-3426.

#	Article	IF	CITATIONS
258	An Overview of the Applications of Grapheneâ€Based Materials in Supercapacitors. Small, 2012, 8, 1805-1834.	5.2	1,210
259	Redox Capacitor to Establish Bioâ€Đevice Redoxâ€Connectivity. Advanced Functional Materials, 2012, 22, 1409-1416.	7.8	65
260	In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. Advanced Functional Materials, 2012, 22, 1655-1662.	7.8	96
261	3D Hierarchical Co ₃ O ₄ Twinâ€Spheres with an Urchinâ€Like Structure: Largeâ€Scale Synthesis, Multistepâ€Splitting Growth, and Electrochemical Pseudocapacitors. Advanced Functional Materials, 2012, 22, 4052-4059.	7.8	289
262	Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance. Advanced Materials, 2012, 24, 4186-4190.	11.1	239
263	Hybrid Nanostructures for Energy Storage Applications. Advanced Materials, 2012, 24, 5045-5064.	11.1	473
264	Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials, 2012, 24, 4197-4202.	11.1	548
265	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	11.1	409
266	Core–Shell Structure of Polypyrrole Grown on V ₂ O ₅ Nanoribbon as High Performance Anode Material for Supercapacitors. Advanced Energy Materials, 2012, 2, 950-955.	10.2	469
270	Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 4934-4938.	7.2	364
271	Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie - International Edition, 2012, 51, 7459-7463.	7.2	155
272	Nanocomposites of Ni(OH) ₂ /Reduced Graphene Oxides with Controllable Composition, Size, and Morphology: Performance Variations as Pseudocapacitor Electrodes. ChemPlusChem, 2012, 77, 807-816.	1.3	39
273	On the Configuration of Supercapacitors for Maximizing Electrochemical Performance. ChemSusChem, 2012, 5, 818-841.	3.6	429
274	Electrochemistry Serving People and Nature: Highâ€Energy Ecocapacitors based on Redoxâ€Active Electrolytes. ChemSusChem, 2012, 5, 1181-1185.	3.6	148
275	Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012, 22, 17245.	6.7	350
276	Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode. Chemical Communications, 2012, 48, 5010.	2.2	183
277	A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor. Frontiers of Materials Science, 2012, 6, 149-159.	1.1	4
278	Significantly enhanced rate capability in supercapacitors using carbide-derived carbons electrode with superior microstructure. Journal of Solid State Electrochemistry, 2012, 16, 1263-1270.	1.2	9

#	Article	IF	CITATIONS
279	Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. Journal of Solid State Electrochemistry, 2012, 16, 2095-2102.	1.2	174
280	Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. Journal of Solid State Electrochemistry, 2012, 16, 2717-2722.	1.2	15
281	A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. Journal of Solid State Electrochemistry, 2012, 16, 2597-2603.	1.2	70
282	Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2012, 16, 2623-2629.	1.2	40
283	A study on high electrochemical capacitance of ion exchange resin-based activated carbons for supercapacitor. Current Applied Physics, 2012, 12, 1039-1044.	1.1	22
284	Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon, 2012, 50, 2331-2336.	5.4	306
285	Preparation of activated graphene and effect of activation parameters on electrochemical capacitance. Carbon, 2012, 50, 3482-3485.	5.4	87
286	Structural evolution of multi-walled carbon nanotube/MnO2 composites as supercapacitor electrodes. Electrochimica Acta, 2012, 59, 548-557.	2.6	52
287	Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochimica Acta, 2012, 63, 220-227.	2.6	96
288	Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochimica Acta, 2012, 64, 154-161.	2.6	118
289	Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochimica Acta, 2012, 69, 160-166.	2.6	90
290	Fine tuning of the supercapacitive performance of nanoporous carbon electrodes with different pore diameters. Electrochimica Acta, 2012, 77, 256-261.	2.6	30
291	MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Materials Letters, 2012, 66, 102-105.	1.3	80
292	Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. Journal of Power Sources, 2012, 197, 325-329.	4.0	100
293	Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping. Microporous and Mesoporous Materials, 2012, 147, 86-93.	2.2	49
294	Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57, 724-803.	16.0	892
295	Coating single walled carbon nanotube with SnO2 and its electrochemical properties. Powder Technology, 2012, 224, 306-310.	2.1	45
296	Facile Synthesis of Porous Mn ₃ O ₄ NanoÂcrystal–Graphene Nanocomposites for Electrochemical Supercapacitors. European Journal of Inorganic Chemistry, 2012, 2012, 628-635.	1.0	115

		CITATION REPORT		
#	Article		IF	CITATIONS
297	Carbon Nanocages as Supercapacitor Electrode Materials. Advanced Materials, 2012, 2	4, 347-352.	11.1	508
298	WO _{3–x} @Au@MnO ₂ Core–Shell Nanowires on Carbon F Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944.	abric for	11.1	641
299	Composite Carbon Nanotube/Carbon Electrodes for Electrical Double‣ayer Super Ca Angewandte Chemie - International Edition, 2012, 51, 1568-1571.	pacitors.	7.2	92
300	Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. Journal of Mat 2012, 47, 503-507.	erials Science,	1.7	62
301	Sponge-like β-Ni(OH)2 nanoparticles: synthesis, characterization and electrochemical p Journal of Materials Science, 2012, 47, 3817-3821.	properties.	1.7	24
302	Supercapacitor and nanoscale research towards electrochemical energy storage. Intern Journal of Smart and Nano Materials, 2013, 4, 2-26.	ational	2.0	57
303	High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode reduced graphene oxide anode. Nanoscale, 2013, 5, 7984.	and a 3D	2.8	253
304	Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitiv Journal of Materials Chemistry A, 2013, 1, 6393.	e behavior.	5.2	160
305	Improved performance of graphene doped with pyridinic N for Li-ion battery: a density f theory model. Physical Chemistry Chemical Physics, 2013, 15, 12982.	unctional	1.3	79
306	Morphology-Dependent Enhancement of the Pseudocapacitance of Template-Guided Tepplate-Guided Tepplate-Guided Te	unable	1.5	103
307	Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Physics, 2013, 15, 15781.	Chemical	1.3	148
308	Application of a novel binder for activated carbon-based electrical double layer capaciton nonaqueous electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 2035-2042	rs with	1.2	31
309	Simple Synthesis of Amorphous NiWO ₄ Nanostructure and Its Application Cathode Material for Asymmetric Supercapacitors. ACS Applied Materials & amp; Interfa 8044-8052.	as a Novel aces, 2013, 5,	4.0	293
310	Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacito Materials Chemistry A, 2013, 1, 9730.	ors. Journal of	5.2	40
311	Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Meso Nano, 2013, 7, 6899-6905.	opores. ACS	7.3	776
312	Platelet CMK-5 as an Excellent Mesoporous Carbon to Enhance the Pseudocapacitance ACS Applied Materials & amp; Interfaces, 2013, 5, 7501-7508.	of Polyaniline.	4.0	51
313	Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Ca Pseudocapacitors. ACS Applied Materials & Interfaces, 2013, 5, 6622-6627.	apacitive	4.0	171
314	High-Performance Pseudocapacitor Electrodes Based on α-Fe ₂ O ₃ /MnO ₂ Core–Shell Nanowire Hetero Journal of Physical Chemistry C, 2013, 117, 15523-15531.	structure Arrays.	1.5	200

#	Article	IF	CITATIONS
315	Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy, 2013, 2, 586-594.	8.2	278
316	Preparation and properties of coke powder activated carbon/α-Co(OH)2 composite electrode materials. Journal of Materials Science: Materials in Electronics, 2013, 24, 2473-2478.	1.1	5
317	Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2013, 24, 1913-1920.	1.1	26
318	Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. RSC Advances, 2013, 3, 14954.	1.7	16
319	On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy and Environmental Science, 2013, 6, 3218.	15.6	314
320	Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy and Environmental Science, 2013, 6, 2578.	15.6	32
321	Hydrothermal synthesis of porous Co(OH)2 nanoflake array film and its supercapacitor application. Bulletin of Materials Science, 2013, 36, 239-244.	0.8	15
322	A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 7906.	2.8	140
323	Excellent electrochemical performance of nitrogen-enriched hierarchical porous carbon electrodes prepared using nano-CaCO3 as template. Journal of Solid State Electrochemistry, 2013, 17, 2651-2660.	1.2	38
324	Dual template method to prepare hierarchical porous carbon nanofibers for high-power supercapacitors. Journal of Solid State Electrochemistry, 2013, 17, 2731-2739.	1.2	21
325	Ni(OH) ₂ /CoO/reduced graphene oxide composites with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 478-481.	5.2	68
326	Porous tubular carbon nanorods with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 12198.	5.2	50
327	Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides. Carbon, 2013, 64, 444-455.	5.4	24
328	Preparation of Carbonaceous Materials in Fused Carbonate Salts. , 2013, , 331-354.		1
329	Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale, 2013, 5, 8879.	2.8	848
330	High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale, 2013, 5, 9812.	2.8	242
331	High-performance flexible supercapacitor electrodes based on Te nanowire arrays. Journal of Materials Chemistry A, 2013, 1, 10024.	5.2	39
332	A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode. Journal of Materials Chemistry A, 2013, 1, 9809.	5.2	141

#	Article	IF	CITATIONS
333	High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 8467-8476.	4.0	243
334	Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres. Chemical Research in Chinese Universities, 2013, 29, 735-742.	1.3	14
335	Synthesis of nanosized MnO2 prepared by the polyol method and its application in high power supercapacitors. Materials for Renewable and Sustainable Energy, 2013, 2, 1.	1.5	10
336	NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9024.	5.2	185
337	Nanosized MnO2 spines on Au stems for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 13301.	5.2	36
338	High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon, 2013, 56, 146-154.	5.4	191
339	Cableâ€Type Supercapacitors of Threeâ€Dimensional Cotton Thread Based Multiâ€Grade Nanostructures for Wearable Energy Storage. Advanced Materials, 2013, 25, 4925-4931.	11.1	267
340	Composite organogels of graphene and activated carbon for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9196.	5.2	60
341	Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property. Nanoscale Research Letters, 2013, 8, 179.	3.1	63
342	Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Research Letters, 2013, 8, 38.	3.1	61
343	Preparation and electrochemical performance of heteroatom-enriched electrospun carbon nanofibers from melamine formaldehyde resin. Journal of Colloid and Interface Science, 2013, 395, 217-223.	5.0	38
344	3-D ordered bimodal porous carbon/nickel oxide hybrid electrodes for supercapacitors. Synthetic Metals, 2013, 177, 105-109.	2.1	2
345	High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes. RSC Advances, 2013, 3, 20613.	1.7	36
346	Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nature Communications, 2013, 4, 2923.	5.8	623
347	Ruthenium oxide - single walled carbon nanotube composite based high energy supercapacitor. , 2013, ,		2
348	The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. Journal of Materials Chemistry A, 2013, 1, 12818.	5.2	148
349	Surface functional groups of carbon nanotubes to manipulate capacitive behaviors. Nanoscale, 2013, 5, 12304.	2.8	38
350	Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon, 2013, 63, 434-445.	5.4	276

#	Article	IF	Citations
351	Morphology-controlled fabrication of hierarchical mesoporous NiCo2O4 micro-/nanostructures and	1.7	19
	their intriguing application in electrochemical capacitors. RSC Advances, 2013, 3, 23709.		
352	Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes. Nature Communications, 2013, 4, 2491.	5.8	65
353	Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors. Nanoscale, 2013, 5, 11577.	2.8	24
354	Electrochemical performance of lithium ion capacitors using aqueous electrolyte at high temperature. Journal of Renewable and Sustainable Energy, 2013, 5, 021404.	0.8	9
355	Preparation and capacitance performance of polyaniline/titanium nitride nanotube hybrid. Journal of Applied Electrochemistry, 2013, 43, 1225-1233.	1.5	38
356	Morphology Controlled Synthesis of Nanoporous Co ₃ O ₄ Nanostructures and Their Charge Storage Characteristics in Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 10665-10672.	4.0	229
357	Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical capacitive performance. Journal of Materials Chemistry A, 2013, 1, 15230.	5.2	63
358	Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. Science, 2013, 341, 534-537.	6.0	1,666
359	Nanostructured TiO2 for energy conversion and storage. RSC Advances, 2013, 3, 24758.	1.7	105
360	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	1.6	541
361	Hierarchical Layered Double Hydroxide Microspheres with Largely Enhanced Performance for Ethanol Electrooxidation. Advanced Functional Materials, 2013, 23, 3513-3518.	7.8	107
362	Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochimica Acta, 2013, 106, 226-234.	2.6	193
363	Flexible hierarchical nanocomposites based on MnO ₂ nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Advances, 2013, 3, 1045-1049.	1.7	75
364	Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Research Letters, 2013, 8, 363.	3.1	103
365	Detection of a Spinning Object Using Light's Orbital Angular Momentum. Science, 2013, 341, 537-540.	6.0	796
366	Highâ€Volumetric Performance Aligned Nanoâ€Porous Microwave Exfoliated Graphite Oxideâ€based Electrochemical Capacitors. Advanced Materials, 2013, 25, 4879-4885.	11.1	102
367	Structureâ€Controlled, Vertical Grapheneâ€Based, Binderâ€Free Electrodes from Plasmaâ€Reformed Butter Enhance Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1316-1323.	10.2	182
368	Template-mediated growth of microsphere, microbelt and nanorod α-MoO3 structures and their high pseudo-capacitances. Journal of Materials Chemistry A, 2013, 1, 12926.	5.2	47

#	Article	IF	CITATIONS
369	Porous nickel cobaltite nanorods: desired morphology inherited from coordination precursors and improved supercapacitive properties. RSC Advances, 2013, 3, 15382.	1.7	27
370	Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Advances, 2013, 3, 4628.	1.7	137
371	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	2.8	33
372	Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4, 2487.	5.8	1,104
373	Supercapacitor Operating At 200 Degrees Celsius. Scientific Reports, 2013, 3, 2572.	1.6	89
374	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	15.6	168
375	Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2013, 2, 1071-1078.	8.2	348
376	Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy and Environmental Science, 2013, 6, 3331.	15.6	495
377	Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 5091-5097.	11.1	420
378	Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. Journal of the American Chemical Society, 2013, 135, 12818-12826.	6.6	174
379	Hollow, Spherical Nitrogen-Rich Porous Carbon Shells Obtained from a Porous Organic Framework for the Supercapacitor. ACS Applied Materials & amp; Interfaces, 2013, 5, 10280-10287.	4.0	199
380	Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochimica Acta, 2013, 111, 707-712.	2.6	149
381	Synthesis and electrochemical performance of a single walled carbon nanohorn–Fe3O4nanocomposite supercapacitor electrode. RSC Advances, 2013, 3, 21390-21393.	1.7	35
382	High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Advances, 2013, 3, .	0.6	86
383	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	5.2	41
384	Template synthesis of hollow fusiform RuO ₂ ·xH ₂ O nanostructure and its supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 469-472.	5.2	131
385	Synthesis and capacitive performance of two-dimensional sandwich-like graphene/nitrogen-doped carbon nanoparticle composites with tunable textural parameters and nitrogen content. New Journal of Chemistry, 2013, 37, 4148.	1.4	12
386	Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14719.	5.2	75

#	Article	IF	CITATIONS
387	PH-driven dissolution–precipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity. CrystEngComm, 2013, 15, 8300.	1.3	49
388	Morphology and composition control of manganese oxide by the pulse reverse electrodeposition technique for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14606.	5.2	45
389	Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chemistry, 2013, 15, 3057.	4.6	118
390	Ultrahigh-performance nonaqueous electric double-layer capacitors using an activated carbon composite electrode with alginate. RSC Advances, 2013, 3, 1037-1040.	1.7	23
391	Facile synthesis of Ni-coated Ni2P for supercapacitor applications. CrystEngComm, 2013, 15, 7071.	1.3	106
392	Metallocene/carbon hybrids prepared by a solution process for supercapacitor applications. Journal of Materials Chemistry A, 2013, 1, 13120.	5.2	38
393	Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. Journal of Materials Chemistry A, 2013, 1, 14943.	5.2	119
394	Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 17626.	1.3	59
395	Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm, 2013, 15, 10222.	1.3	103
396	Facile preparation of transition metal oxide–metal composites with unique nanostructures and their electrochemical performance as energy storage material. Journal of Materials Chemistry A, 2013, 1, 14246.	5.2	16
397	Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization. Journal of Power Sources, 2013, 222, 410-416.	4.0	159
398	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. Journal of Power Sources, 2013, 225, 304-310.	4.0	52
399	Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon, 2013, 51, 290-300.	5.4	169
400	Nanostructured morphology control for efficient supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 2941-2954.	5.2	267
401	Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale, 2013, 5, 877-881.	2.8	166
402	Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. Journal of Power Sources, 2013, 228, 24-31.	4.0	20
403	3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance. Nano Letters, 2013, 13, 72-78.	4.5	672
404	Enhanced supercapacitive performances of hierarchical porous nanostructure assembled from ultrathin MnO2 nanoflakes. Journal of Materials Science, 2013, 48, 714-719.	1.7	28

#	Article	IF	CITATIONS
405	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 9409.	5.2	64
406	A study on dramatically enhanced capacitance of graphene-decorated hierarchically porous nickelian heterogenite for energy storage application. Electrochimica Acta, 2013, 114, 543-550.	2.6	7
407	Electrochemical supercapacitors of electrodeposited PANI/H-RuO2 hybrid nanostructure. Current Applied Physics, 2013, 13, 758-761.	1.1	22
408	Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride). Journal of Solid State Chemistry, 2013, 207, 158-162.	1.4	23
409	Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy, 2013, 2, 764-768.	8.2	211
410	Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors. Electrochimica Acta, 2013, 109, 859-865.	2.6	39
411	Enhanced capacitive behavior of carbon aerogels/reduced graphene oxide composite film for supercapacitors. Solid State Ionics, 2013, 247-248, 66-70.	1.3	9
412	Supercapacitance of chemically converted graphene with composite pores. Chemical Physics Letters, 2013, 581, 64-69.	1.2	15
413	3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013, 106, 219-225.	2.6	21
414	Using graphene nanosheets as a conductive additive to enhance the capacitive performance of α-MnO2. Electrochimica Acta, 2013, 104, 198-207.	2.6	33
415	High volumetric electrochemical performance of ultra-high density aligned carbon nanotube supercapacitors with controlled nanomorphology. Electrochimica Acta, 2013, 111, 608-613.	2.6	42
416	The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor. Materials Research Bulletin, 2013, 48, 4491-4498.	2.7	5
417	Synthesis and Characterization of Porous Flowerlike Â-Fe2O3 Nanostructures for Supercapacitor Application. ECS Electrochemistry Letters, 2013, 2, A60-A62.	1.9	120
418	Superior Performance Asymmetric Supercapacitors Based on a Directly Grown Commercial Mass 3D Co ₃ O ₄ @Ni(OH) ₂ Coreâ€"Shell Electrode. ACS Applied Materials & Interfaces, 2013, 5, 10574-10582.	4.0	203
419	In Situ Spectroscopic Measurements of Individual Cation and Anion Dynamics in a RuO ₂ Electrochemical Capacitor. Journal of the Electrochemical Society, 2013, 160, A862-A868.	1.3	6
420	Microstructural and Morphological Effects on Charge Storage Properties in MnO ₂ -Carbon Nanofibers Based Supercapacitors. Journal of the Electrochemical Society, 2013, 160, A2315-A2321.	1.3	32
421	Asymmetric Supercapacitors Based on Graphene/MnO ₂ Nanospheres and Graphene/MoO ₃ Nanosheets with High Energy Density. Advanced Functional Materials, 2013, 23, 5074-5083.	7.8	638
422	Pseudocapacitive characteristics of manganese oxide anodized from manganese coating electrodeposited from aqueous solution. Electrochimica Acta, 2013, 109, 678-683.	2.6	21

#	Article	IF	CITATIONS
423	Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 2013, 87, 801-808.	2.6	101
424	One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH) (M = FeO, Ni, Co) nanoparticles. Electrochimica Acta, 2013, 113, 117-126.	2.6	44
425	Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 2013, 51, 52-58.	5.4	242
426	Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining. Journal of Power Sources, 2013, 244, 783-791.	4.0	35
427	Freestanding Three-Dimensional Graphene/MnO ₂ Composite Networks As Ultralight and Flexible Supercapacitor Electrodes. ACS Nano, 2013, 7, 174-182.	7.3	1,336
428	Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 3372.	5.2	138
429	Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. Journal of Materials Chemistry A, 2013, 1, 3315.	5.2	182
430	Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49, 2308.	2.2	123
431	Microporous Carbon Nanoplates from Regenerated Silk Proteins for Supercapacitors. Advanced Materials, 2013, 25, 1993-1998.	11.1	480
432	Hierarchical heterostructures of MnO2 nanosheets or nanorods grown on Au-coated Co3O4 porous nanowalls for high-performance pseudocapacitance. Nanoscale, 2013, 5, 2901.	2.8	108
433	Blockâ€Copolymerâ€Assisted Oneâ€Pot Synthesis of Ordered Mesoporous WO _{3â`'<i>x</i>} /Carbon Nanocomposites as Highâ€Rateâ€Performance Electrodes for Pseudocapacitors. Advanced Functional Materials, 2013, 23, 3747-3754.	7.8	145
434	Supercapacitors based on nanostructured carbon. Nano Energy, 2013, 2, 159-173.	8.2	505
435	Colloidal Synthesis and Sizeâ€Related Capacitance of Small Cobalt Sulfide Nanocrystals. Particle and Particle Systems Characterization, 2013, 30, 501-505.	1.2	6
436	Functional mesoporous carbon-coated CNT network for high-performance supercapacitors. New Journal of Chemistry, 2013, 37, 1294.	1.4	12
437	Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer, 2013, 54, 1820-1831.	1.8	278
439	Graphene Oxideâ€Dispersed Pristine CNTs Support for MnO ₂ Nanorods as High Performance Supercapacitor Electrodes. ChemSusChem, 2013, 6, 474-480.	3.6	92
440	Graphene Films for Flexible Organic and Energy Storage Devices. Journal of Physical Chemistry Letters, 2013, 4, 831-841.	2.1	65
441	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976

#	Article	IF	CITATIONS
442	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	1.2	21
443	Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous and Mesoporous Materials, 2013, 172, 77-86.	2.2	44
444	Decoration of Spongelike Ni(OH) ₂ Nanoparticles onto MWCNTs Using an Easily Manipulated Chemical Protocol for Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 2446-2454.	4.0	197
445	Synthesis of Ultrathin Nitrogen-Doped Graphitic Carbon Nanocages as Advanced Electrode Materials for Supercapacitor. ACS Applied Materials & Interfaces, 2013, 5, 2241-2248.	4.0	320
446	Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials. Accounts of Chemical Research, 2013, 46, 1113-1124.	7.6	254
447	Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Advances, 2013, 3, 5851.	1.7	127
448	Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. Journal of Alloys and Compounds, 2013, 552, 240-247.	2.8	63
449	Scaleable ultra-thin and high power density graphene electrochemical capacitor electrodes manufactured by aqueous exfoliation and spray deposition. Carbon, 2013, 52, 337-346.	5.4	47
450	Graphene ultracapacitors: structural impacts. Physical Chemistry Chemical Physics, 2013, 15, 4799.	1.3	57
451	Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochimica Acta, 2013, 89, 191-198.	2.6	112
452	Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1260-1267.	2.1	113
453	Smallâ€Angle Neutron Scattering for Inâ€Situ Probing of Ion Adsorption Inside Micropores. Angewandte Chemie - International Edition, 2013, 52, 4618-4622.	7.2	61
454	Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 5053.	5.2	59
455	Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. Journal of Materials Chemistry A, 2013, 1, 9498.	5.2	64
456	Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale, 2013, 5, 4134.	2.8	151
457	Allâ€Graphene Coreâ€5heath Microfibers for Allâ€5olidâ€5tate, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Advanced Materials, 2013, 25, 2326-2331.	11.1	1,007
458	Solid-state, flexible, high strength paper-based supercapacitors. Journal of Materials Chemistry A, 2013, 1, 5835.	5.2	71
459	Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2904.	5.2	215

#	Article	IF	CITATIONS
460	Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. Journal of Materials Chemistry A, 2013, 1, 9449.	5.2	57
461	Highly Compressionâ€Tolerant Supercapacitor Based on Polypyrroleâ€mediated Graphene Foam Electrodes. Advanced Materials, 2013, 25, 591-595.	11.1	745
462	General Solution Growth of Mesoporous NiCo ₂ O ₄ Nanosheets on Various Conductive Substrates as Highâ€Performance Electrodes for Supercapacitors. Advanced Materials, 2013, 25, 976-979.	11.1	963
463	Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. Journal of Materials Chemistry A, 2013, 1, 5949.	5.2	66
464	Graphene quantum dots–carbon nanotube hybrid arrays for supercapacitors. Nanotechnology, 2013, 24, 195401.	1.3	84
465	Three dimensional N-doped graphene–CNT networks for supercapacitor. Chemical Communications, 2013, 49, 5016.	2.2	349
466	A facilely prepared polypyrrole–reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 6539.	5.2	93
467	Facile Fabrication of Nanoparticles Confined in Graphene Films and Their Electrochemical Properties. Chemistry - A European Journal, 2013, 19, 7631-7636.	1.7	21
468	Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors. Scientific Reports, 2013, 3, 1470.	1.6	417
469	Toward the Theoretical Capacitance of RuO ₂ Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013, 3, 851-856.	10.2	184
470	Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors. Electrochimica Acta, 2013, 88, 526-529.	2.6	55
471	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	5.2	203
472	Three-dimensional ordered nanostructures for supercapacitor electrode. Electrochimica Acta, 2013, 99, 278-284.	2.6	26
473	Highly Ordered MnO ₂ Nanopillars for Enhanced Supercapacitor Performance. Advanced Materials, 2013, 25, 3302-3306.	11.1	455
474	Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. Journal of Power Sources, 2013, 242, 78-85.	4.0	99
475	Facile Fabrication of Hierarchically Porous CuFe ₂ O ₄ Nanospheres with Enhanced Capacitance Property. ACS Applied Materials & Interfaces, 2013, 5, 6030-6037.	4.0	206
476	Graphite and graphene oxide electrodes for lithium ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 245-251.	2.3	42
477	Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes. Nano Energy, 2013, 2, 1242-1248.	8.2	107

#	Article	IF	Citations
478	Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7247.	5.2	246
479	High-Performance Supercapacitors Based on Hollow Polyaniline Nanofibers by Electrospinning. ACS Applied Materials & Interfaces, 2013, 5, 4423-4428.	4.0	234
480	Hybrid Hydrogels of Porous Graphene and Nickel Hydroxide as Advanced Supercapacitor Materials. Chemistry - A European Journal, 2013, 19, 7118-7124.	1.7	136
481	One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochimica Acta, 2013, 99, 253-261.	2.6	222
482	Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241, 231-238.	4.0	118
483	Threeâ€Dimensional Hierarchical GeSe ₂ Nanostructures for High Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 1479-1486.	11.1	236
484	Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from â^'50 to 80°C. Nano Energy, 2013, 2, 403-411.	8.2	314
485	Microtube Bundle Carbon Derived from Paulownia Sawdust for Hybrid Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 4667-4677.	4.0	68
486	Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 2013, 4, 1894.	5.8	1,041
487	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.	7.1	275
488	From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. Journal of Materials Chemistry A, 2013, 1, 6462.	5.2	794
489	Bacterialâ€Celluloseâ€Derived Carbon Nanofiber@MnO ₂ and Nitrogenâ€Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density. Advanced Materials, 2013, 25, 4746-4752.	11.1	590
490	Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Physical Chemistry Chemical Physics, 2013, 15, 7722.	1.3	77
491	Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. Journal of Materials Chemistry C, 2013, 1, 1413.	2.7	38
492	Electrochemical and electrical performances of cobalt chloride (CoCl2) doped polyaniline (PANI)/graphene nanoplate (GNP) composite. RSC Advances, 2013, 3, 12874.	1.7	33
493	RuO2/MnO2 core–shell nanorods for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8753.	5.2	46
495	A bis(terpyridine)iron network polymer on carbon for a potential energy storage material. Dalton Transactions, 2013, 42, 15877.	1.6	7
496	Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8560.	5.2	250

#	Article	IF	CITATIONS
497	3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 2013, 5, 6790.	2.8	258
498	Influence of surfactant on the capacitive performance of manganese dioxide prepared at different temperatures. Energy Conversion and Management, 2013, 74, 286-292.	4.4	15
499	Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors. Nanoscale, 2013, 5, 8367.	2.8	49
500	Self-standing electrochemical double layer capacitors for operation in severe temperature conditions. Materials for Renewable and Sustainable Energy, 2013, 2, 1.	1.5	7
501	Electrochemical Energy Storage: The Benefits of Nanomaterials. , 2013, , 277-298.		3
502	Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance. Journal of Materials Chemistry A, 2013, 1, 9107.	5.2	101
503	Sandwichâ€Type Microporous Carbon Nanosheets for Enhanced Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1421-1427.	10.2	151
504	Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6, 581-592.	5.8	204
505	Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochimica Acta, 2013, 91, 96-100.	2.6	55
506	Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. Journal of Power Sources, 2013, 241, 423-428.	4.0	171
507	Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 2013, 13, 2078-2085.	4.5	1,250
508	Room-temperature synthesis of 3-dimentional Ag-graphene hybrid hydrogel with promising electrochemical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 769-774.	1.7	23
509	Hierarchical NiCo ₂ O ₄ @MnO ₂ core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49, 137-139.	2.2	622
510	Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9395.	5.2	156
511	Splitting of a Vertical Multiwalled Carbon Nanotube Carpet to a Graphene Nanoribbon Carpet and Its Use in Supercapacitors. ACS Nano, 2013, 7, 5151-5159.	7.3	71
512	Carbon nanoparticle ionic liquid functionalized activated carbon hybrid electrode for efficiency enhancement in supercapacitors. New Journal of Chemistry, 2013, 37, 886.	1.4	21
513	Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors. Electrochemistry Communications, 2013, 34, 109-112.	2.3	75
514	An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7000.	5.2	104

#	Article	IF	CITATIONS
515	Preparation of CTAB-Assisted Hexagonal Platelet Co(OH) ₂ /Graphene Hybrid Composite as Efficient Supercapacitor Electrode Material. ACS Sustainable Chemistry and Engineering, 2013, 1, 1135-1142.	3.2	116
516	ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. Journal of Power Sources, 2013, 239, 393-398.	4.0	58
517	Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources, 2013, 235, 187-192.	4.0	66
518	Hollow spheres of nanocarbon and their manganese dioxide hybrids derived fromÂsoft template for supercapacitor application. Journal of Power Sources, 2013, 240, 713-720.	4.0	73
519	Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy, 2013, 2, 505-513.	8.2	187
520	One-step synthesis of Ni ₃ S ₂ nanorod@Ni(OH) ₂ nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2216-2221.	15.6	554
521	Nanoporous Ni(OH) ₂ Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 2013, 7, 6237-6243.	7.3	1,019
522	Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo ₂ O ₄ Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 2013, 13, 3135-3139.	4.5	992
523	Synergistic Effect of Hierarchical Nanostructured MoO ₂ /Co(OH) ₂ with Largely Enhanced Pseudocapacitor Cyclability. Nano Letters, 2013, 13, 5685-5691.	4.5	186
524	Effects of structure of heat-treated pitch precursors on electrochemical properties of pitch-based activated carbons. Powder Technology, 2013, 239, 94-97.	2.1	11
525	Silica Doped Nanopolyaniline with Endured Electrochemical Energy Storage and the Magnetic Field Effects. Journal of Physical Chemistry C, 2013, 117, 13000-13010.	1.5	70
526	Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors. APL Materials, 2013, 1, .	2.2	7
527	Multiwalled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. ECS Journal of Solid State Science and Technology, 2013, 2, M3008-M3014.	0.9	17
528	In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism. Journal of the American Chemical Society, 2013, 135, 18968-18980.	6.6	152
529	Ribbon-like activated carbon with a multi-structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14008.	5.2	12
530	Improved Energy Storage Solution Based on Hybrid Oxide Materials. ACS Sustainable Chemistry and Engineering, 2013, 1, 46-56.	3.2	61
531	Flexible high performance wet-spun graphene fiber supercapacitors. RSC Advances, 2013, 3, 23957.	1.7	152
532	Electrospun Porous NiCo ₂ O ₄ Nanotubes as Advanced Electrodes for	1.7	244

#	Article	IF	CITATIONS
533	Natural, cheap and environmentally friendly binder for supercapacitors. Journal of Power Sources, 2013, 221, 14-20.	4.0	91
534	Fabrication and Surface Modification of Flat Lignocellulosic Carbon Materials. Japanese Journal of Applied Physics, 2013, 52, 010203.	0.8	3
535	Nano-Wedge IrO2/MnO2 Hybrid Film Electrode for Electrochemical Supercapacitors. ECS Electrochemistry Letters, 2013, 2, A118-A120.	1.9	6
536	Fabrication and Basic Investigation of Flat Lignocellulosic Carbon Material for Self-Supporting Electrodes in Electric Double-Layer Capacitors. Materials Research Society Symposia Proceedings, 2013, 1497, 1.	0.1	0
537	A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage. Current Organic Chemistry, 2013, 17, 1390-1401.	0.9	121
538	Fluoroethylene Carbonate as Co-Solvent for Propylene Carbonate Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013, 160, A1025-A1030.	1.3	19
539	Electropolymerized Polyaniline Nanocomposites from Multi-Walled Carbon Nanotubes with Tuned Surface Functionalities for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2013, 160, G3038-G3045.	1.3	59
540	Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials. ECS Journal of Solid State Science and Technology, 2013, 2, M3101-M3119.	0.9	42
541	Storage of Potassium Ions in Layered Vanadium Pentoxide Nanofiber Electrodes for Aqueous Pseudocapacitors. ChemSusChem, 2013, 6, 2231-2235.	3.6	16
542	Demonstrating the Highest Supercapacitive Performance of Branched MnO ₂ Nanorods Grown Directly on Flexible Substrates using Controlled Chemistry at Ambient Temperature. Energy Technology, 2013, 1, 125-130.	1.8	35
543	Metal-catalyst free integration of SiO2 nanowires into carbon MEMS. , 2013, , .		0
544	Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 2013, 3, .	1.6	182
545	Composite Carbon Nano-Tubes (CNT)/Activated Carbon Electrodes for Non-Aqueous Super Capacitors Using Organic Electrolyte Solutions. Journal of the Electrochemical Society, 2013, 160, A1282-A1285.	1.3	39
547	High Power Density Supercapacitors Based on the Carbon Dioxide Activated D-Glucose Derived Carbon Electrodes and Acetonitrile Electrolyte. Journal of the Electrochemical Society, 2013, 160, A1834-A1841.	1.3	47
548	Exploring the Energy Storage Mechanism of High Performance MnO ₂ Electrochemical Capacitor Electrodes: An In Situ Atomic Force Microscopy Study in Aqueous Electrolyte. Advanced Functional Materials, 2013, 23, 4745-4751.	7.8	39
549	SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF GRAPHENE/ MnO₂ /CONDUCTING POLYMER TERNARY COMPOSITE FOR SUPERCAPACITORS. Nano, 2013, 08, 1350004.	0.5	14
550	Evaluation of Double-Layer and Redox Capacitances of Activated Carbon Electrodes in <i>N</i> -Ethyl- <i>N</i> -methylpyrrolidinium Fluorohydrogenate Ionic Liquid. Journal of the Electrochemical Society, 2013, 160, A734-A738.	1.3	16
551	Indirect Transformation of Coordinationâ€Polymer Particles into Magnetic Carbonâ€Coated Mn ₃ O ₄ (Mn ₃ O ₄ @C) Nanowires for Supercapacitor Electrodes with Good Cycling Performance. Chemistry - A European Journal, 2013, 19, 7084-7089.	1.7	47

#	Article	IF	CITATIONS
552	Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application. Scientific Reports, 2013, 3, 2925.	1.6	46
553	Nanowire modified carbon fibers for enhanced electrical energy storage. Journal of Applied Physics, 2013, 114, 104306.	1.1	14
554	Impact of Lithium Salt Addition to Ionic Liquid Electrolytes for High-performance Electric Double-layer Capacitors. Electrochemistry, 2013, 81, 857-862.	0.6	7
555	Prevention of Graphene Restacking for Performance Boost of Supercapacitors—A Review. Crystals, 2013, 3, 163-190.	1.0	98
556	The Structure of Supported Ionic Liquids at the Interface. , 0, , .		1
557	Roll-to-roll production of spray coated N-doped carbon nanotube electrodes for supercapacitors. Applied Physics Letters, 2014, 105, .	1.5	42
558	pHâ€Regulated Synthesis of Multiâ€Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	5.6	154
559	PREPARATION AND ELECTROCHEMICAL CAPACITIVE BEHAVIOR OF GRAPHENE BY MICROWAVE ASSISTED THERMAL REDUCTION OF GRAPHITE OXIDE IN HYDRAZINE HYDRATE. Nano, 2014, 09, 1450066.	0.5	3
560	Electrochemical Behavior and Specific Capacitance of Polyaniline/Silver Nanoparticle/Multi-walled Carbon Nanotube Composites. Chinese Journal of Chemical Physics, 2014, 27, 718-724.	0.6	11
561	Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors. Chinese Physics B, 2014, 23, 086101.	0.7	4
562	Atomic layer deposition of ruthenium on plasma-treated vertically aligned carbon nanotubes for high-performance ultracapacitors. Nanotechnology, 2014, 25, 435404.	1.3	12
563	Ultrahigh Energy Density Realized by a Singleâ€Layer βâ€Co(OH) ₂ Allâ€Solidâ€State Asymmetric Supercapacitor. Angewandte Chemie, 2014, 126, 13003-13007.	1.6	32
564	Ion Intercalation into Graphitic Carbon with a Low Surface Area for High Energy Density Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A1486-A1494.	1.3	27
565	Boosting Capacitive Blue-Energy and Desalination Devices with Waste Heat. Physical Review Letters, 2014, 113, 268501.	2.9	61
566	Supercapacitor based on Multi-walled Carbon Nanotubes/Carbon Black Composites-coated Wooden Sheet. Energy Procedia, 2014, 56, 481-486.	1.8	4
567	Functional Carbon Nanotube/Mesoporous Carbon/MnO2Hybrid Network for High-Performance Supercapacitors. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	7
568	Adding a Spinodal Decomposition Retarder: An Approach to Improving Electrochemical Properties of Ruthenium–Tin Complex Oxides. Journal of the Electrochemical Society, 2014, 161, E119-E127.	1.3	0
569	Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	7

ARTICLE IF CITATIONS # Polyaniline integrated carbon nanohorn: A superior electrode materials for advanced energy storage. 570 1.1 23 EXPRESS Polymer Letters, 2014, 8, 895-907. Realization of polymeric coatings in special electrochemical conditions based on electroactive 571 polymer networks for supercapacitor purposes. , 2014, , . 572 Microwave impedance microscopy of high specific surface area carbon., 2014, , . 0 Realizing a supercapacitor in an electrical circuit. Applied Physics Letters, 2014, 105, . Morphology Effects on the Supercapacitive Electrochemical Performances of Iron Oxide/Reduced 574 1.7 26 Graphene Öxide Nanocomposites. ChemElectroChem, 2014, 1, 747-754. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their 1.5 application in supercapacitors. Applied Physics Letters, 2014, 104, . High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry 576 2.3 420 Communications, 2014, 48, 118-122. Fabricâ€Based Integrated Energy Devices for Wearable Activity Monitors. Advanced Materials, 2014, 26, 577 11.1 311 6329-6334. Seaurchin-like hierarchical NiCo₂O₄@NiMoO₄ coreâ€"shell 578 nanomaterials for high performance supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 102 1.3 23451-23460. Nitrogenâ€Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced 579 1.7 388 Supercapacitors. Chemistry - A European Journal, 2014, 20, 564-574. One-pot synthesis of a Mn(MnO)/Mn₅C₂/carbon nanotube nanocomposite for 580 1.7 9 supercapacitors. RSC Advances, 2014, 4, 64162-64168. Excellent Capacitive Performance of a Threeâ€Dimensional Hierarchical Porous Graphene/Carbon Composite with a Superhigh Surface Area. Chemistry - A European Journal, 2014, 20, 13314-13320. 3D Nanocomposite Architectures from Carbonâ€Nanotubeâ€Threaded Nanocrystals for Highâ€Performance 582 11.1 125 Electrochemical Energy Storage. Advanced Materials, 2014, 26, 339-345. Single-File Charge Storage in Conducting Nanopores. Physical Review Letters, 2014, 113, 048701. Threeâ€Dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of 584 10.2 27 Electrochemical Pseudocapacitors. Advanced Energy Materials, 2014, 4, 1301809. Cubeâ€like αâ€Fe₂O₃ Supported on Ordered Multimodal Porous Carbon as High Performance Electrode Material for Supercapacitors. ChemSusChem, 2014, 7, 3102-3111. Charging dynamics of supercapacitors with narrow cylindrical nanopores. Nanotechnology, 2014, 25, 586 1.341 315401. Multifunctional composites for energy storage., 2014, , .

#	Article	IF	CITATIONS
588	Supercapacitors Based on Propylene Carbonate with Small Addition of Different Sulfur Containing Organic Solvents. Journal of the Electrochemical Society, 2014, 161, A1284-A1290.	1.3	14
589	Macroporous silicon for high-capacitance devices using metal electrodes. Nanoscale Research Letters, 2014, 9, 473.	3.1	6
590	Electrodeposition of porous graphene networks on nickel foams as supercapacitor electrodes with high capacitance and remarkable cyclic stability. Nanoscale Research Letters, 2014, 9, 2496.	3.1	43
591	Electrochemical lithium storage performance of Si/C based anode materials prepared by mechanical alloying. Materials Research Innovations, 2014, 18, S4-10-S4-14.	1.0	2
592	Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. National Science Review, 2014, 1, 277-292.	4.6	298
593	Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. Journal of Power Sources, 2014, 248, 28-36.	4.0	248
594	Effects of adding ethanol to KOH electrolyte on electrochemical performance of titanium carbide-derived carbon. Journal of Power Sources, 2014, 246, 132-140.	4.0	35
595	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
596	Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors. Electrochimica Acta, 2014, 123, 183-189.	2.6	143
597	Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy, 2014, 7, 104-113.	8.2	132
598	Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. Journal of Power Sources, 2014, 251, 202-207.	4.0	127
599	Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte. Electrochimica Acta, 2014, 130, 344-350.	2.6	112
600	Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. Journal of Power Sources, 2014, 256, 200-205.	4.0	108
601	Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors. Journal of Power Sources, 2014, 245, 436-444.	4.0	66
602	Charge Storage Capacity of Renewable Biopolymer/Conjugated Polymer Interpenetrating Networks Enhanced by Electroactive Dopants. Advanced Energy Materials, 2014, 4, 1300443.	10.2	67
603	Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. Journal of Power Sources, 2014, 246, 283-289.	4.0	119
604	High-performance supercapacitors based on freestanding carbon-based composite paper electrodes. Journal of Power Sources, 2014, 246, 540-547.	4.0	28
605	Composites of olive-like manganese oxalate on graphene sheets for supercapacitor electrodes. Ionics, 2014, 20, 145-149.	1.2	29

#	Article	IF	Citations
606	Where Do Batteries End and Supercapacitors Begin?. Science, 2014, 343, 1210-1211.	6.0	4,605
607	Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochimica Acta, 2014, 123, 151-157.	2.6	85
608	MnO ₂ Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 2014, 1, 1003-1008.	1.7	48
609	Synthesis of Freeâ€6tanding Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small, 2014, 10, 766-773.	5.2	413
610	Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained from the Infiltration of Lignin into Zeolite Templates. ChemSusChem, 2014, 7, 1458-1467.	3.6	96
611	Growth of Vertically Aligned Tunable Polyaniline on Graphene/ZrO ₂ Nanocomposites for Supercapacitor Energy torage Application. Advanced Functional Materials, 2014, 24, 1312-1324.	7.8	149
612	Application and Future Challenges of Functional Nanocarbon Hybrids. Advanced Materials, 2014, 26, 2295-2318.	11.1	290
613	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	2.8	363
614	Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells. Electrochimica Acta, 2014, 130, 431-438.	2.6	84
615	One-dimensional ZnO/Mn ₃ O ₄ core/shell nanorod and nanotube arrays with high supercapacitive performance for electrochemical energy storage. RSC Advances, 2014, 4, 17274-17281.	1.7	48
616	Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256, 37-42.	4.0	29
617	MnO 2 -modified hierarchical graphene fiber electrochemical supercapacitor. Journal of Power Sources, 2014, 247, 32-39.	4.0	207
618	Sulfurized activated carbon for high energy density supercapacitors. Journal of Power Sources, 2014, 252, 90-97.	4.0	135
619	Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Materials Research Bulletin, 2014, 52, 89-95.	2.7	87
620	Supercapacitors based on modified graphene electrodes with poly(ionic liquid). Journal of Power Sources, 2014, 256, 264-273.	4.0	74
621	Heterostructured Ni(OH)2–Co(OH)2 composites on 3D ordered Ni–Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589, 364-371.	2.8	37
622	Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 665-672.	1.2	38
623	Nanomaterials for electrochemical energy storage. Frontiers of Physics, 2014, 9, 323-350.	2.4	86

#	Article	IF	CITATIONS
624	Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors — a comparative investigation. Korean Journal of Chemical Engineering, 2014, 31, 268-275.	1.2	56
625	Enhanced capacitance of a NiO electrode prepared in the magnetic field. Journal of Applied Electrochemistry, 2014, 44, 391-398.	1.5	11
626	Facile Synthesis of Porous NiO Nanofibers for High-Performance Supercapacitors. Journal of Materials Engineering and Performance, 2014, 23, 679-683.	1.2	25
627	Liquid precipitation synthesis of Co3O4 for high-performance electrochemical capacitors. Ionics, 2014, 20, 489-494.	1.2	14
628	Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 4795.	5.2	355
629	Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochimica Acta, 2014, 125, 294-301.	2.6	116
630	One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochimica Acta, 2014, 116, 467-474.	2.6	259
631	Preparation of sulfonated graphene/polyaniline composites in neutral solution for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 1127-1135.	1.2	20
632	Rapid synthesis of graphene/cobalt hydroxide composite with enhanced electrochemical performance for supercapacitors. Journal of Power Sources, 2014, 245, 224-231.	4.0	87
633	Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy and Environmental Science, 2014, 7, 1597.	15.6	4,223
634	Supercapacitor Electrodes Derived from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 735-740.	3.2	32
635	Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. RSC Advances, 2014, 4, 6927.	1.7	59
636	Core–Shell CuCo ₂ O ₄ @MnO ₂ Nanowires on Carbon Fabrics as Highâ€Performance Materials for Flexible, Allâ€Solidâ€State, Electrochemical Capacitors. ChemElectroChem, 2014, 1, 559-564.	1.7	149
637	A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. Journal of Colloid and Interface Science, 2014, 417, 270-277.	5.0	93
639	Energy Storing Electrical Cables: Integrating Energy Storage and Electrical Conduction. Advanced Materials, 2014, 26, 4279-4285.	11.1	195
640	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	15.6	1,156
641	Organic Nanoparticles: Mechanism of Electron Transfer to Indigo Nanoparticles. ChemElectroChem, 2014, 1, 714-717.	1.7	30
642	A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte. Carbon, 2014, 72, 381-386.	5.4	103

#	Article	IF	CITATIONS
643	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	10.2	1,727
644	Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. Journal of Power Sources, 2014, 252, 98-106.	4.0	354
645	Paper-based ultracapacitors with carbon nanotubes-graphene composites. Journal of Applied Physics, 2014, 115, 164301.	1.1	32
646	Co/Al layered double hydroxides nanostructures: A binderless electrode for electrochemical capacitor. Electrochemistry Communications, 2014, 43, 9-12.	2.3	26
647	Synthesis of the graphene/nickel oxide composite and its electrochemical performance for supercapacitors. International Journal of Hydrogen Energy, 2014, 39, 16171-16178.	3.8	62
648	All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6, 6448.	2.8	204
649	Graphene-based polyaniline nanocomposites: preparation, properties and applications. Journal of Materials Chemistry A, 2014, 2, 4491-4509.	5.2	225
650	High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chemical Engineering Journal, 2014, 249, 216-225.	6.6	112
651	Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43, 3303.	18.7	978
652	Energy Harvesting for Nanostructured Selfâ€Powered Photodetectors. Advanced Functional Materials, 2014, 24, 2591-2610.	7.8	217
653	Capacitance of carbon-based electrical double-layer capacitors. Nature Communications, 2014, 5, 3317.	5.8	600
654	Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy, 2014, 6, 1-9.	8.2	182
655	Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes. Nano Energy, 2014, 6, 119-128.	8.2	37
656	Fabrication of Highly Flexible, Scalable, and Highâ€Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity. Advanced Functional Materials, 2014, 24, 2489-2499.	7.8	368
657	Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Advances, 2014, 4, 4631-4637.	1.7	64
658	Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores. Advanced Materials, 2014, 26, 2059-2065.	11.1	345
659	A high performance hybrid asymmetric supercapacitor via nano-scale morphology control of graphene, conducting polymer, and carbon nanotube electrodes. Journal of Materials Chemistry A, 2014, 2, 9964-9969.	5.2	57
660	Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology, 2014, 2, 325-341.	1.8	172

		Report	
#	Article	IF	Citations
661	Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage. International Journal of Hydrogen Energy, 2014, 39, 7842-7851.	3.8	55
662	Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6, 3626-3631.	2.8	57
663	Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbideâ€derived carbon, zeoliteâ€templated carbon, carbon aerogels, carbon nanotubes, onionâ€like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 424-473.	1.9	459
664	Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene) Tj ETQq1 1 ().784314 rg 2.6	$_{36}^{BT}/Overloc$
665	Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77, 59-65.	5.4	114
666	Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – A review. Journal of Power Sources, 2014, 263, 338-360.	4.0	360
667	<i>In Situ</i> Small Angle Neutron Scattering Revealing Ion Sorption in Microporous Carbon Electrical Double Layer Capacitors. ACS Nano, 2014, 8, 2495-2503.	7.3	89
668	Threeâ€Dimensional Structural Engineering for Energyâ€Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014, 1, 975-1002.	1.7	53
669	Ionic Liquids at Electrified Interfaces. Chemical Reviews, 2014, 114, 2978-3036.	23.0	1,101
670	A Flexible and Highâ€Voltage Internal Tandem Supercapacitor Based on Grapheneâ€Based Porous Materials with Ultrahigh Energy Density. Small, 2014, 10, 2285-2292.	5.2	56
671	Significantly Enhancing Supercapacitive Performance of Nitrogen-doped Graphene Nanosheet Electrodes by Phosphoric Acid Activation. ACS Applied Materials & Interfaces, 2014, 6, 1563-1568.	4.0	57
672	Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Advances, 2014, 4, 23622-23629.	1.7	75
673	Kirkendall Effect Induced One-Step Fabrication of Tubular Ag/MnO _{<i>x</i>} Nanocomposites for Supercapacitor Application. Journal of Physical Chemistry C, 2014, 118, 6604-6611.	1.5	55
674	Graphitization as a Universal Tool to Tailor the Potentialâ€Dependent Capacitance of Carbon Supercapacitors. Advanced Energy Materials, 2014, 4, 1400316.	10.2	201
675	Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochimica Acta, 2014, 130, 660-669.	2.6	103
676	Accelerating charging dynamics in subnanometre pores. Nature Materials, 2014, 13, 387-393.	13.3	303
677	Fabrication and electrochemical capacitance of polyaniline/titanium nitride core–shell nanowire arrays. Synthetic Metals, 2014, 192, 93-100.	2.1	41
678	Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10889.	5.2	214

#	Article	IF	CITATIONS
679	Ni–Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 6540-6548.	5.2	411
680	RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 2014, 248, 407-415.	4.0	120
681	Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor. Materials Letters, 2014, 128, 136-139.	1.3	24
682	Synergistic Fusion of Vertical Graphene Nanosheets and Carbon Nanotubes for Highâ€Performance Supercapacitor Electrodes. ChemSusChem, 2014, 7, 2317-2324.	3.6	77
683	Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. Journal of Power Sources, 2014, 246, 800-807.	4.0	78
684	Morphological and Electrochemical Cycling Effects in MnO ₂ Nanostructures by 3D Electron Tomography. Advanced Functional Materials, 2014, 24, 3130-3143.	7.8	107
685	Ultramicroporous Carbon Nanoparticles for the High-Performance Electrical Double-Layer Capacitor Electrode. Energy & Fuels, 2014, 28, 1561-1568.	2.5	86
686	A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 1022-1031.	5.2	254
687	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	5.2	79
688	A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. Journal of Power Sources, 2014, 246, 402-408.	4.0	85
689	Strategies for enhancing the performance of carbon/carbon supercapacitors in aqueous electrolytes. Electrochimica Acta, 2014, 128, 210-217.	2.6	48
690	Kinetically enhanced pseudocapacitance of conducting polymer doped with reduced graphene oxide through a miscible electron transfer interface. Nano Energy, 2014, 3, 1-9.	8.2	24
691	The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochimica Acta, 2014, 121, 49-56.	2.6	40
692	An easy one-step electrosynthesis of graphene/polyaniline composites and electrochemical capacitor. Carbon, 2014, 67, 662-672.	5.4	75
693	Amorphous Cobalt Hydroxide with Superior Pseudocapacitive Performance. ACS Applied Materials & Interfaces, 2014, 6, 745-749.	4.0	155
694	Flexible planar/fiber-architectured supercapacitors for wearable energy storage. Journal of Materials Chemistry C, 2014, 2, 1184-1200.	2.7	207
695	Manganese hexacyanoferrate derived Mn3O4 nanocubes–reduced graphene oxide nanocomposites and their charge storage characteristics in supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 4952.	1.3	120
696	Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. Journal of Power Sources, 2014, 249, 48-58.	4.0	154

#	Article	IF	CITATIONS
697	Facile synthesis of ZnWO ₄ nanowall arrays on Ni foam for high performance supercapacitors. RSC Advances, 2014, 4, 4212-4217.	1.7	46
698	Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 183, 54-60.	1.7	63
699	High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy, 2014, 3, 119-126.	8.2	304
700	Tunable self-discharge process of carbon nanotube based supercapacitors. Nano Energy, 2014, 4, 14-22.	8.2	120
701	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources, 2014, 253, 80-89.	4.0	73
702	On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 2014, 8, 1576-1583.	7.3	201
703	Nanostructured Pseudocapacitors Based on Atomic Layer Deposition of V ₂ O ₅ onto Conductive Nanocrystalâ€based Mesoporous ITO Scaffolds. Advanced Functional Materials, 2014, 24, 6717-6728.	7.8	76
704	3D nitrogen-doped graphene/Co(OH)2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances, 2014, 4, 61753-61758.	1.7	26
705	Controlled electrochemical growth of Co(OH) ₂ flakes on 3D multilayered graphene foam for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 19075-19083.	5.2	117
706	Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 150, 23-34.	2.6	120
707	Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. Journal of Materials Chemistry A, 2014, 2, 20916-20922.	5.2	72
708	Electrochemical Performance of Thin-Film Functionalized Carbon Nanotube Electrodes in Nonaqueous Cells. Journal of the Electrochemical Society, 2014, 161, A1625-A1633.	1.3	9
709	High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environmental Science & Technology, 2014, 48, 13951-13959.	4.6	173
710	Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte. ACS Applied Materials & amp; Interfaces, 2014, 6, 19499-19503.	4.0	53
711	Cuprous Chloride Nanocubes Grown on Copper Foil for Pseudocapacitor Electrodes. Nano-Micro Letters, 2014, 6, 340-346.	14.4	14
712	Liquid Crystalline Dispersions of Grapheneâ€Oxideâ€Based Hybrids: A Practical Approach towards the Next Generation of 3D Isotropic Architectures for Energy Storage Applications. Particle and Particle Systems Characterization, 2014, 31, 465-473.	1.2	20
713	Sodium molybdate – an additive of choice for enhancing the performance of AC/AC electrochemical capacitors in a salt aqueous electrolyte. Faraday Discussions, 2014, 172, 199-214.	1.6	31
714	Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors. Nanotechnology, 2014, 25, 035402.	1.3	50

#	Article	IF	CITATIONS
715	Ultrahigh Energy Density Realized by a Single‣ayer βâ€Co(OH) ₂ All‣olid‣tate Asymmetric Supercapacitor. Angewandte Chemie - International Edition, 2014, 53, 12789-12793.	7.2	290
716	Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy, 2014, 8, 133-140.	8.2	232
717	Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine. Journal of Materials Chemistry A, 2014, 2, 11472.	5.2	51
718	In situ synthesis of NixCoyOz–C composites with rod-like Ni@C as support for potential application in supercapacitors. RSC Advances, 2014, 4, 32047.	1.7	4
719	Freestanding 3D mesoporous graphene oxide for high performance energy storage applications. RSC Advances, 2014, 4, 51640-51647.	1.7	15
720	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	5.2	68
721	Hierarchical mesoporous CoS2 microspheres: Morphology-controlled synthesis and their superior pseudocapacitive properties. Electrochimica Acta, 2014, 149, 285-292.	2.6	45
722	Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Advances, 2014, 4, 7538.	1.7	83
723	Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1â^'x(OH)2 core–shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10090.	5.2	174
724	Novel topotactically transformed carbon–CoO–NiO–NiCo ₂ O ₄ nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chemical Communications, 2014, 50, 8697-8700.	2.2	35
725	Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. Physical Chemistry Chemical Physics, 2014, 16, 12909.	1.3	39
726	Synthesis of novel carbon nano-chains and their application as supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16268-16275.	5.2	16
727	Nanoporous carbons from natural lignin: study of structural–textural properties and application to organic-based supercapacitors. RSC Advances, 2014, 4, 48336-48343.	1.7	50
728	An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores. Physical Chemistry Chemical Physics, 2014, 16, 21219-21224.	1.3	30
729	Micelle anchored in situ synthesis of V ₂ O ₃ nanoflakes@C composites for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18806-18815.	5.2	89
731	Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. Journal of Materials Chemistry A, 2014, 2, 8288.	5.2	169
732	Vertically aligned cobalt hydroxide nano-flake coated electro-etched carbon fiber cloth electrodes for supercapacitors. Chemical Physics Letters, 2014, 616-617, 35-39.	1.2	5
733	Studies in the capacitance properties of diaminoalkane-intercalated graphene. Electrochimica Acta, 2014, 148, 220-227.	2.6	6

#	Article	IF	CITATIONS
734	Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. Nanoscale, 2014, 6, 5545-5550.	2.8	70
735	Facile Synthesis of Graphite/PEDOT/MnO ₂ Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 10506-10515.	4.0	205
736	Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate. Journal of Power Sources, 2014, 272, 866-879.	4.0	52
737	Soft-template synthesis of vanadium oxynitride-carbon nanomaterials for supercapacitors. International Journal of Hydrogen Energy, 2014, 39, 16139-16150.	3.8	35
738	Porous NiCo 2 O 4 nanostructures for high performance supercapacitors via a microemulsion technique. Nano Energy, 2014, 10, 125-134.	8.2	135
739	Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discussions, 2014, 176, 135-151.	1.6	57
740	Self-powered electrochemical deposition of Cu@Ni(OH) ₂ nanobelts for high performance pseudocapacitors. Journal of Materials Chemistry A, 2014, 2, 10370-10374.	5.2	24
741	Novel three-dimensional NiCo ₂ O ₄ hierarchitectures: solvothermal synthesis and electrochemical properties. CrystEngComm, 2014, 16, 385-392.	1.3	134
742	Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chemical Communications, 2014, 50, 7067-7070.	2.2	21
743	Preparation of novel pigskin-derived carbon sheets and their low-temperature activation-induced high capacitive performance. RSC Advances, 2014, 4, 45318-45324.	1.7	35
744	Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8603-8606.	5.2	258
745	Proton-Insertion-Enhanced Pseudocapacitance Based on the Assembly Structure of Tungsten Oxide. ACS Applied Materials & Interfaces, 2014, 6, 18901-18910.	4.0	182
746	Ammonia Treatment of Activated Carbon Powders for Supercapacitor Electrode Application. Journal of the Electrochemical Society, 2014, 161, A568-A575.	1.3	51
747	Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12355.	5.2	199
748	The preparation of hierarchical tubular structures comprised of NiO nanosheets with enhanced supercapacitive performance. RSC Advances, 2014, 4, 3181-3187.	1.7	30
749	3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochimica Acta, 2014, 149, 144-151.	2.6	72
750	MnMoO ₄ ·4H ₂ O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. Journal of Materials Chemistry A, 2014, 2, 20723-20728.	5.2	111
751	Paramecium-like α-MnO ₂ hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method. Journal of Materials Chemistry A, 2014, 2, 20729-20738.	5.2	33

# 752	ARTICLE Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	IF 5.2	Citations
753	Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11776-11783.	5.2	147
754	Green synthesis of open porous NiO films with an excellent capacitance performance. Chemical Communications, 2014, 50, 3443.	2.2	56
755	Nitrogen- and oxygen-containing activated carbon nanotubes with improved capacitive properties. RSC Advances, 2014, 4, 5524.	1.7	52
756	Asymmetrical Supercapacitor Composed of Thin Co(OH)2 Nanoflakes on Three-Dimensional Ni/Si Microchannel Plates with Superior Electrochemical Performance. Electrochimica Acta, 2014, 149, 18-27.	2.6	25
757	A hybrid of CoOOH nanorods with carbon nanotubes as a superior positive electrode material for supercapacitors. RSC Advances, 2014, 4, 59088-59093.	1.7	17
758	Graphene fiber-based asymmetric micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 9736-9743.	5.2	172
759	Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale, 2014, 6, 2618-2623.	2.8	77
760	Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO ₂ nanocomposites. Journal of Materials Chemistry A, 2014, 2, 2152-2159.	5.2	64
761	Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Advances, 2014, 4, 51072-51079.	1.7	54
762	High-performance supercapacitors based on defect-engineered carbon nanotubes. Carbon, 2014, 80, 246-254.	5.4	68
763	Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances, 2014, 4, 41910-41921.	1.7	304
764	Shape tailored Ni ₃ (NO ₃) ₂ (OH) ₄ nano-flakes simulating 3-D bouquet-like structures for supercapacitors: exploring the effect of electrolytes on stability and performance. RSC Advances, 2014, 4, 39378-39385.	1.7	30
765	Synthesis of partially graphitic nanoflake-like carbon/Fe3O4 magnetic composites from chitosan as high-performance electrode materials in supercapacitors. RSC Advances, 2014, 4, 39625-39633.	1.7	22
766	A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors. Journal of Materials Chemistry A, 2014, 2, 10029-10033.	5.2	77
767	Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes. Journal of Power Sources, 2014, 272, 90-99.	4.0	18
768	One-step synthesis of hierarchical ZnCo ₂ O ₄ @ZnCo ₂ O ₄ core–shell nanosheet arrays on nickel foam for electrochemical capacitors. RSC Advances, 2014, 4, 38073.	1.7	24
769	A monolithic functional film of nanotubes/cellulose/ionic liquid for high performance supercapacitors. Journal of Power Sources, 2014, 271, 589-596.	4.0	8

	CITATION R	EPORT	
# 770	ARTICLE Synthesis and supercapacitive performance of hierarchically porous graphitic carbon monoliths	IF 2.2	CITATIONS
771	containing cobalt nanoparticles. Microporous and Mesoporous Materials, 2014, 200, 245-252. Porous inorganic nanostructures with colloidal dimensions: synthesis and applications in electrochemical energy devices. Chemical Communications, 2014, 50, 2077-2088.	2.2	24
772	Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. Journal of Physics Condensed Matter, 2014, 26, 284106.	0.7	32
773	Double surfactant-directed controllable synthesis of Sb ₂ S ₃ crystals with comparable electrochemical performances. CrystEngComm, 2014, 16, 7753.	1.3	18
774	Surfactant free gram scale synthesis of mesoporous Ni(OH) ₂ –r-GO nanocomposite for high rate pseudocapacitor application. RSC Advances, 2014, 4, 39875.	1.7	30
775	Freestanding composite electrodes of MnO _x embedded carbon nanofibers for high-performance supercapacitors. RSC Advances, 2014, 4, 39087.	1.7	32
776	Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Advances, 2014, 4, 30887.	1.7	95
777	Highâ€Performance Hybrid Supercapacitor Enabled by a Highâ€Rate Siâ€based Anode. Advanced Functional Materials, 2014, 24, 7433-7439.	7.8	208
778	Molecularâ€6cale Heteroassembly of Redoxable Hydroxide Nanosheets and Conductive Graphene into Superlattice Composites for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 4173-4178.	11.1	161
779	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	15.6	767
780	Application of Functional Hybrids Incorporating Carbon Nanotubes or Graphene. , 2014, , 387-433.		4
781	Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 2014, 6, 16304-16311.	4.0	112
782	Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO2 nanoparticles for a high-performance and semi-transparent supercapacitor electrode. Chemical Communications, 2014, 50, 5652.	2.2	74
783	Preparation of Partially Reduced Graphene Oxide Nanosheets/Poly(Sodium 4-Styrenesulfonate) Composite with High Capacitance. Electrochimica Acta, 2014, 147, 257-264.	2.6	9
784	Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceramics International, 2014, 40, 15641-15646.	2.3	46
785	Development of a novel method to grow mono-/few-layered MoS ₂ films and MoS ₂ –graphene hybrid films for supercapacitor applications. CrystEngComm, 2014, 16, 10845-10855.	1.3	118
786	N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors. Chinese Journal of Catalysis, 2014, 35, 1078-1083.	6.9	35
787	Facile electrochemical synthesis of polydopamine-incorporated graphene oxide/PEDOT hybrid thin films for pseudocapacitive behaviors. Synthetic Metals, 2014, 195, 162-166.	2.1	25

#	Article	IF	CITATIONS
788	A conservative discretization of the Poisson–Nernst–Planck equations on adaptive Cartesian grids. Journal of Computational Physics, 2014, 274, 633-653.	1.9	36
789	Oxidative precipitation of ruthenium oxide for supercapacitors: Enhanced capacitive performances by adding cetyltrimethylammonium bromide. Journal of Power Sources, 2014, 268, 430-438.	4.0	23
790	X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 18706-18712.	1.5	79
791	Mn-modified polypyrrole thin films for supercapacitor electrodes. Synthetic Metals, 2014, 196, 8-19.	2.1	5
792	Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.	1.2	25
793	Co@Co ₃ O ₄ Core–Shell Threeâ€Dimensional Nanoâ€Network for Highâ€Performance Electrochemical Energy Storage. Small, 2014, 10, 2618-2624.	5.2	49
794	Controlled Incorporation of Ni(OH) ₂ Nanoplates Into Flowerlike MoS ₂ Nanosheets for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2014, 24, 6700-6707.	7.8	145
795	Graphene–Single-Walled Carbon Nanotubes–Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials. Industrial & Engineering Chemistry Research, 2014, 53, 13030-13045.	1.8	46
796	Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale, 2014, 6, 4303.	2.8	168
797	Selective Wettingâ€Induced Microâ€Electrode Patterning for Flexible Microâ€Supercapacitors. Advanced Materials, 2014, 26, 5108-5112.	11.1	146
798	Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors. Nature Communications, 2014, 5, 4536.	5.8	68
799	Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2014, 269, 760-767.	4.0	159
800	In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon, 2014, 78, 279-287.	5.4	65
801	Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 2014, 5, 4554.	5.8	1,161
802	Amorphous Ni(OH) ₂ @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 13845-13853.	5.2	389
803	Hierarchical NiCo ₂ O ₄ Nanosheets@halloysite Nanotubes with Ultrahigh Capacitance and Long Cycle Stability As Electrochemical Pseudocapacitor Materials. Chemistry of Materials, 2014, 26, 4354-4360.	3.2	187
804	Synthesis and electrochemical properties of multilayered porous hexagonal Mn(OH) 2 nanoplates as supercapacitor electrode material. Materials Letters, 2014, 136, 7-10.	1.3	13
805	In situ synthesis of SWNTs@MnO 2 /polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy, 2014, 9, 245-251.	8.2	89

#	Article	IF	CITATIONS
806	Ultrathin Nanoflakes Assembled 3D Hierarchical Mesoporous Co ₃ O ₄ Nanoparticles for Highâ€Rate Pseudocapacitors. Particle and Particle Systems Characterization, 2014, 31, 1079-1083.	1.2	32
807	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	5.2	73
808	Facile Inâ€Situ Synthesis of Hierarchical Porous Ni/Ni(OH) ₂ Hybrid Sponges with Excellent Electrochemical Energyâ€&torage Performances for Supercapacitors. Chemistry - an Asian Journal, 2014, 9, 2590-2596.	1.7	9
809	3D Carbon/Cobaltâ€Nickel Mixedâ€Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. Small, 2014, 10, 2937-2945.	5.2	146
810	High capacity NiCo 2 O 4 nanorods as electrode materials for supercapacitor. Journal of Alloys and Compounds, 2014, 617, 988-993.	2.8	88
811	Unveiling the dynamic capacitive storage mechanism of Co3O4 @NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochimica Acta, 2014, 145, 177-184.	2.6	73
812	A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2. Nano Energy, 2014, 10, 63-70.	8.2	99
813	Enhanced lithiation in defective graphene. Carbon, 2014, 80, 305-310.	5.4	186
814	Stable graphene–polyoxometalate nanomaterials for application in hybrid supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 20411-20414.	1.3	92
815	3D ordered nanoporous NiMoO ₄ for high-performance supercapacitor electrode materials. RSC Advances, 2014, 4, 52555-52561.	1.7	74
816	One-step synthesis of TiO ₂ nanorod arrays on Ti foil for supercapacitor application. Nanotechnology, 2014, 25, 435406.	1.3	26
817	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	5.2	138
818	Flexible supercapacitors based on carbon nanotube/MnO ₂ nanotube hybrid porous films for wearable electronic devices. Journal of Materials Chemistry A, 2014, 2, 17561-17567.	5.2	132
819	Anodization driven synthesis of nickel oxalate nanostructures with excellent performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 17307-17313.	5.2	44
820	Solution processed sun baked electrode material for flexible supercapacitors. RSC Advances, 2014, 4, 20281-20289.	1.7	11
821	Flexible, sandwich-like Ag-nanowire/PEDOT:PSS-nanopillar/MnO ₂ high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10923-10929.	5.2	123
822	High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy, 2014, 8, 174-182.	8.2	301
823	Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 69-74.	2.3	18

#	Article	IF	Citations
824	Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. Journal of Materials Chemistry A, 2014, 2, 13136-13142.	5.2	78
825	Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Advances, 2014, 4, 38893-38917.	1.7	143
826	Controllable functionalized carbon fabric for high-performance all-carbon-based supercapacitors. RSC Advances, 2014, 4, 33022.	1.7	40
827	Reduced Graphene Oxide/Manganese Carbonate Hybrid Composite: High Performance Supercapacitor Electrode Material. Electrochimica Acta, 2014, 147, 557-564.	2.6	39
828	Ionic Liquid Dynamics in Nanoporous Carbon Nanofibers in Supercapacitors Measured with <i>in Operando</i> Infrared Spectroelectrochemistry. Journal of Physical Chemistry C, 2014, 118, 21846-21855.	1.5	64
829	Facile synthesis of ZnCo ₂ O ₄ nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16116-16123.	5.2	199
830	Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes. Journal of Solid State Electrochemistry, 2014, 18, 2139-2147.	1.2	17
831	The preparation of novel hollow tetragonal starlike polyaniline and its electrochemical performance. Journal of Materials Science: Materials in Electronics, 2014, 25, 3509-3514.	1.1	2
832	Reduced graphene oxide/Ni _{1â^'x} Co _x Al-layered double hydroxide composites: preparation and high supercapacitor performance. Dalton Transactions, 2014, 43, 11667-11675.	1.6	121
833	Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Advances, 2014, 4, 8466-8471.	1.7	42
834	Nanoporous metal based flexible asymmetric pseudocapacitors. Journal of Materials Chemistry A, 2014, 2, 10910-10916.	5.2	87
835	Intercalating graphene with clusters of Fe ₃ O ₄ nanocrystals for electrochemical supercapacitors. Materials Research Express, 2014, 1, 025015.	0.8	59
836	Fabrication of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2014, 6, 200-209.	4.0	154
837	Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core–shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale, 2014, 6, 6772.	2.8	109
838	Controlled growth of mesoporous ZnCo ₂ O ₄ nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Advances, 2013, 4, 2393-2397.	1.7	85
839	All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. Journal of Power Sources, 2014, 245, 857-865.	4.0	148
840	Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale, 2014, 6, 4083.	2.8	88
841	3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy and Environmental Science, 2014, 7, 728-735.	15.6	348

#	Article	IF	CITATIONS
842	Direct Formation of Reduced Graphene Oxide and 3D Lightweight Nickel Network Composite Foam by Hydrohalic Acids and Its Application for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 10248-10257.	4.0	60
843	Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes. Nanoscale, 2014, 6, 6577-6584.	2.8	127
844	Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application. Nanoscale, 2014, 6, 2426-2433.	2.8	58
845	Hierarchical CNT@NiCo ₂ O ₄ core–shell hybrid nanostructure for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11509-11515.	5.2	102
846	Facile construction of ultrathin standing α-Ni(OH) ₂ nanosheets on halloysite nanotubes and their enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2014, 2, 11299-11304.	5.2	46
847	Tailoring Thickness of Conformal Conducting Polymer Decorated Aligned Carbon Nanotube Electrodes for Energy Storage. Advanced Materials Interfaces, 2014, 1, 1400076.	1.9	28
848	Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochimica Acta, 2014, 138, 367-375.	2.6	37
849	MnO ₂ nanoflakes grown on 3D graphite network for enhanced electrocapacitive performance. RSC Advances, 2014, 4, 30233-30240.	1.7	30
850	High-voltage and high-rate symmetric supercapacitor based on MnO ₂ -polypyrrole hybrid nanofilm. Nanotechnology, 2014, 25, 305401.	1.3	44
851	Nickel Cobaltite Nanostructures with Enhanced Supercapacitance Activity. Journal of Physical Chemistry C, 2014, 118, 17332-17341.	1.5	78
852	Silver-coated graphene electrode produced by electrolytic deposition for electrochemical behaviors. Current Applied Physics, 2014, 14, 1212-1215.	1.1	10
853	Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy, 2014, 6, 82-91.	8.2	44
854	Electrochemical detection of nanoparticles by â€~nano-impact' methods. TrAC - Trends in Analytical Chemistry, 2014, 58, 79-89.	5.8	219
855	Facile preparation of the novel structured \hat{i} ±-MnO2/Graphene nanocomposites and their electrochemical properties. Solid State Sciences, 2014, 27, 17-23.	1.5	26
856	Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 1525-1533.	3.2	99
857	Hydrothermal synthesis of NiCo 2 O 4 nanowires/nitrogen-doped graphene for high-performance supercapacitor. Applied Surface Science, 2014, 314, 1000-1006.	3.1	55
858	Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogen ontaining Chitosan for Supercapacitors. ChemSusChem, 2014, 7, 1637-1646.	3.6	128
859	Electrochemically Self-Doped TiO ₂ Nanotube Arrays for Supercapacitors. Journal of Physical Chemistry C, 2014, 118, 5626-5636.	1.5	281

#	Article	IF	CITATIONS
860	Enhanced Supercapacitive Performance of Chemically Grown Cobalt–Nickel Hydroxides on Three-Dimensional Graphene Foam Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 2450-2458.	4.0	164
861	Anthraquinone on Porous Carbon Nanotubes with Improved Supercapacitor Performance. Journal of Physical Chemistry C, 2014, 118, 8262-8270.	1.5	146
862	Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm, 2014, 16, 2878-2884.	1.3	135
863	Co(OH) ₂ nanosheet-decorated graphene–CNT composite for supercapacitors of high energy density. Science and Technology of Advanced Materials, 2014, 15, 014206.	2.8	47
864	Hydrogenated NiO Nanoblock Architecture for High Performance Pseudocapacitor. ACS Applied Materials & Interfaces, 2014, 6, 4684-4692.	4.0	106
865	Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Advances, 2014, 4, 39066.	1.7	42
866	Fabrication of 1D nickel sulfide nanocrystals with high capacitances and remarkable durability. RSC Advances, 2014, 4, 47513-47516.	1.7	18
867	Hierarchical porous α-Ni(OH) ₂ grown from a compact ion layer as an electrode by using one-pot synthesis and its pseudocapacitive behaviour. RSC Advances, 2014, 4, 567-571.	1.7	14
868	Hierarchical porous NiCo2S4 hexagonal plates: Formation via chemical conversion and application in high performance supercapacitors. Electrochimica Acta, 2014, 144, 16-21.	2.6	74
869	Enhanced Capacitance Retention in a Supercapacitor Made of Carbon from Sugarcane Bagasse by Hydrothermal Pretreatment. Energy & Fuels, 2014, 28, 4233-4240.	2.5	161
870	Aldehyde–poly(ethylene glycol) modified graphene oxide/conducting polymers composite as high-performance electrochemical supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18058-18069.	5.2	41
871	Fabrication of carbon nanotubes/polypyrrole/carbon nanotubes/melamine foam for supercapacitor. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
872	Ultrathin and Lightweight 3D Free-Standing Ni@NiO Nanowire Membrane Electrode for a Supercapacitor with Excellent Capacitance Retention at High Rates. ACS Applied Materials & Interfaces, 2014, 6, 13627-13634.	4.0	71
873	Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy, 2014, 9, 128-141.	8.2	165
874	Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano, 2014, 8, 3761-3770.	7.3	322
875	Novel FeMoO4/graphene composites based electrode materials for supercapacitors. Composites Science and Technology, 2014, 103, 16-21.	3.8	72
876	Recent advances in porous graphene materials for supercapacitor applications. RSC Advances, 2014, 4, 45862-45884.	1.7	213
877	Achieving High Rate Performance in Layered Hydroxide Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1301240.	10.2	166

#	Article	IF	CITATIONS
878	Facile Synthesis of Highly Electrocapacitive Nitrogen-Doped Graphitic Porous Carbons. Journal of Physical Chemistry C, 2014, 118, 9357-9367.	1.5	78
879	Controlled Growth of CoS _{<i>x</i>} Nanostrip Arrays (CoS _{<i>x</i>} â€NSA) on Nickel Foam for Asymmetric Supercapacitors. Energy Technology, 2014, 2, 401-408.	1.8	75
880	Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage. Nanoscale, 2014, 6, 15073-15079.	2.8	33
881	Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. Journal of Materials Chemistry A, 2014, 2, 16516-16522.	5.2	93
882	Stretchable Carbon Nanotube/Ion–Gel Supercapacitors with High Durability Realized through Interfacial Microroughness. ACS Applied Materials & Interfaces, 2014, 6, 13578-13586.	4.0	86
883	Spinel Manganese–Nickel–Cobalt Ternary Oxide Nanowire Array for High-Performance Electrochemical Capacitor Applications. ACS Applied Materials & Interfaces, 2014, 6, 18040-18047.	4.0	172
884	3D Architecture Materials Made of NiCoAlâ€LDH Nanoplates Coupled with NiCo arbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400761.	10.2	251
885	Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chemical Engineering Journal, 2014, 252, 95-103.	6.6	127
886	Electric Double‣ayer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIFâ€67. Chemistry - A European Journal, 2014, 20, 7895-7900.	1.7	423
887	A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658.	4.5	428
888	Facile synthesis of porous MnCo ₂ O _{4.5} hierarchical architectures for high-rate supercapacitors. CrystEngComm, 2014, 16, 2335-2339.	1.3	131
889	Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135.	5.2	35
890	1-D Structured Flexible Supercapacitor Electrodes with Prominent Electronic/Ionic Transport Capabilities. ACS Applied Materials & Interfaces, 2014, 6, 268-274.	4.0	34
891	Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochimica Acta, 2014, 133, 180-187.	2.6	50
892	Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 148-156.	2.3	21
893	Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon, 2014, 69, 66-78.	5.4	169
894	A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application. Materials Letters, 2014, 119, 135-139.	1.3	68
895	Facile synthesis and advanced performance of Ni(OH)2/CNTs nanoflake composites on supercapacitor applications. Chemical Physics Letters, 2014, 601, 168-173.	1.2	54

#	Article	IF	CITATIONS
896	Hydrous ruthenium oxide prepared by steam-assisted thermolysis: Capacitance and stability. Solid State Ionics, 2014, 268, 312-315.	1.3	5
897	Dense carbon monoliths for supercapacitors with outstanding volumetric capacitances. Carbon, 2014, 68, 553-562.	5.4	44
898	Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor. Electrochimica Acta, 2014, 130, 464-469.	2.6	127
899	Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures. Journal of Power Sources, 2014, 248, 1281-1289.	4.0	105
900	Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy, 2014, 7, 114-123.	8.2	192
901	New electrode active materials for supercapacitors: Pencil graphite electrode coated with cobalt ion doped poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2014, 193, 81-88.	2.1	13
902	Controllable Growth of Hierarchical NiCo2O4 Nanowires and Nanosheets on Carbon Fiber Paper and their Morphology-Dependent Pseudocapacitive Performances. Electrochimica Acta, 2014, 133, 382-390.	2.6	62
903	MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors. Materials Research Bulletin, 2014, 49, 448-453.	2.7	41
904	MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 232-239.	2.3	57
905	Dual function of quaternary ammonium in Zn/Br redox flow battery: Capturing the bromine and lowering the charge transfer resistance. Electrochimica Acta, 2014, 127, 397-402.	2.6	99
906	Contribution of carbon fiber paper (CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor. Journal of Power Sources, 2014, 248, 1197-1200.	4.0	15
907	Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. Journal of Power Sources, 2014, 259, 219-226.	4.0	182
908	Hollow SnO2 microspheres and their carbon-coated composites for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 26-32.	2.3	66
909	Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor. Electrochimica Acta, 2014, 123, 450-455.	2.6	160
910	Enhanced Symmetric Supercapacitive Performance of Co(OH)2 Nanorods Decorated Conducting Porous Graphene Foam Electrodes. Electrochimica Acta, 2014, 129, 334-342.	2.6	91
911	Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance. Journal of Alloys and Compounds, 2014, 597, 1-7.	2.8	25
912	Nitrogen- and oxygen-containing hierarchical porous carbon frameworks for high-performance supercapacitors. Electrochimica Acta, 2014, 134, 471-477.	2.6	48
913	A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors. Journal of Energy Chemistry, 2014, 23, 82-90.	7.1	34

#	Article	IF	CITATIONS
914	Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Journal of Electroanalytical Chemistry, 2014, 727, 154-162.	1.9	80
915	Ionic Liquidâ€Assisted Synthesis of Microporous Carbon Nanosheets for Use in High Rate and Long Cycle Life Supercapacitors. Advanced Materials, 2014, 26, 3700-3705.	11.1	162
916	3D Microâ€Extrusion of Grapheneâ€based Active Electrodes: Towards Highâ€Rate AC Line Filtering Performance Electrochemical Capacitors. Advanced Functional Materials, 2014, 24, 4706-4716.	7.8	98
917	A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage. Journal of Materials Chemistry A, 2014, 2, 1974-1979.	5.2	42
918	A Stable Polyanilineâ€Benzoquinoneâ€Hydroquinone Supercapacitor. Advanced Materials, 2014, 26, 5095-5100.	11.1	207
919	Phase Transformation Induced Capacitance Activation for 3D Graphene oO Nanorod Pseudocapacitor. Advanced Energy Materials, 2014, 4, 1301788.	10.2	83
920	Integrated Photoâ€supercapacitor Based on Biâ€polar TiO ₂ Nanotube Arrays with Selective Oneâ€5ide Plasmaâ€Assisted Hydrogenation. Advanced Functional Materials, 2014, 24, 1840-1846.	7.8	163
921	Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application. Journal of Alloys and Compounds, 2014, 612, 343-348.	2.8	14
922	Ionic liquid based EDLCs: influence of carbon porosity on electrochemical performance. Faraday Discussions, 2014, 172, 163-177.	1.6	15
923	Anomalous Capacitive Behaviors of Graphene Oxide Based Solid-State Supercapacitors. Nano Letters, 2014, 14, 1938-1943.	4.5	78
924	Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Industrial & Engineering Chemistry Research, 2014, 53, 3495-3508.	1.8	155
925	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	5.2	402
926	Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors. Small, 2014, 10, 3803-3810.	5.2	143
927	Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. Journal of Power Sources, 2014, 267, 888-900.	4.0	228
928	Self-standing rationally functionalized graphene as high-performance electrode materials for supercapacitors. Journal of Energy Chemistry, 2014, 23, 346-353.	7.1	16
929	Nickel–Cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors. Journal of Power Sources, 2014, 267, 610-616.	4.0	81
930	Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014, 2, 9433.	5.2	144
931	NiCo ₂ O ₄ -based materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14759-14772.	5.2	420

#	Article	IF	CITATIONS
932	Highly Flexible and Adaptable, Allâ€Solidâ€State Supercapacitors Based on Graphene Wovenâ€Fabric Film Electrodes. Small, 2014, 10, 2583-2588.	5.2	85
933	Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy, 2014, 8, 9-16.	8.2	54
934	Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014, 267, 430-444.	4.0	180
935	In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors. Journal of Power Sources, 2014, 267, 188-196.	4.0	89
936	High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Materials Letters, 2014, 131, 100-103.	1.3	83
937	Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy, 2014, 8, 44-51.	8.2	248
938	The facile synthesis of hierarchical NiCoO2 nanotubes comprised ultrathin nanosheets for supercapacitors. Journal of Power Sources, 2014, 267, 641-647.	4.0	72
939	Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: Role of manganese oxide dispersion in performance evolution. Electrochimica Acta, 2014, 116, 137-145.	2.6	58
940	Raman and Infrared Spectroscopic Characterization of Graphene. , 2014, , 165-194.		0
941	A Highâ€Performance Anode Material for Liâ€lon Batteries Based on a Vertically Aligned CNTs/NiCo ₂ O ₄ Core/Shell Structure. Particle and Particle Systems Characterization, 2014, 31, 1151-1157.	1.2	35
942	Highâ€₽ower Electrochemical Energy Storage System Employing Stable Radical Pseudocapacitors. Angewandte Chemie - International Edition, 2014, 53, 1324-1328.	7.2	41
943	Solution-processed flexible solid-state micro-supercapacitors for on-chip energy storage devices. , 2015, , .		6
944	Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1264-1269.	1.7	31
945	Niobium Nitride Nb ₄ N ₅ as a New Highâ€Performance Electrode Material for Supercapacitors. Advanced Science, 2015, 2, 1500126.	5.6	166
946	Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene. Scientific Reports, 2015, 5, 10983.	1.6	53
947	Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces. Physical Review Letters, 2015, 115, 256102.	2.9	54
948	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	1.6	243
949	Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors. Scientific Reports, 2015, 5, 17629.	1.6	71

#	Article	IF	CITATIONS
950	Ice-templated Self-assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes. Scientific Reports, 2015, 5, 13696.	1.6	60
951	High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires. Scientific Reports, 2015, 5, 17858.	1.6	42
952	Degradation Mechanisms of Electric Double Layer Capacitors with Activated Carbon Electrodes on High Voltage Exposure. Electrochemistry, 2015, 83, 609-618.	0.6	12
953	Strategy for improved frequency response of electric double-layer capacitors. Applied Physics Letters, 2015, 107, .	1.5	4
955	lonic structure in liquids confined by dielectric interfaces. Journal of Chemical Physics, 2015, 143, 194508.	1.2	50
956	Carbonâ€Stabilized Highâ€Capacity Ferroferric Oxide Nanorod Array for Flexible Solidâ€State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability. Advanced Functional Materials, 2015, 25, 5384-5394.	7.8	457
957	Microstructure of room temperature ionic liquids at stepped graphite electrodes. AICHE Journal, 2015, 61, 3022-3028.	1.8	32
958	Threeâ€Dimensional NiMoO ₄ Nanosheets Supported on a Carbon Fibers@Preâ€Treated Ni Foam (CF@PNF) Substrate as Advanced Electrodes for Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1745-1752.	1.7	24
959	Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. Particle and Fibre Toxicology, 2015, 13, 5.	2.8	27
960	Shapeâ€Controlled Synthesis of NiCo ₂ O ₄ Microstructures and Their Application in Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1972-1978.	1.7	24
961	Carbon nanohornâ€graphene nanoplate hybrid: An excellent electrode material for supercapacitor application. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
962	Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem, 2015, 2, 679-683.	1.7	16
964	The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications. Advanced Materials, 2015, 27, 3850-3867.	11.1	55
965	Advanced Grapheneâ€Based Binderâ€Free Electrodes for Highâ€Performance Energy Storage. Advanced Materials, 2015, 27, 5264-5279.	11.1	153
966	General Strategy to Fabricate Ternary Metal Nitride/Carbon Nanofibers for Supercapacitors. ChemElectroChem, 2015, 2, 2020-2026.	1.7	19
967	Highâ€5urfaceâ€Area Nitrogenâ€Doped Reduced Graphene Oxide for Electric Double‣ayer Capacitors. ChemSusChem, 2015, 8, 1875-1884.	3.6	83
968	Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors. Advanced Materials, 2015, 27, 6714-6721.	11.1	137
969	Ultrahighâ€Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 2015, 25, 7530-7538.	7.8	359

#	Article	IF	CITATIONS
970	Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications. Nanomaterials, 2015, 5, 697-721.	1.9	28
971	Spinel NiCo ₂ 0 ₄ Nanorods for Supercapacitor Applications. American Journal of Engineering and Applied Sciences, 2015, 8, 371-379.	0.3	25
972	Improved Symmetric Supercapacitive Performance of Binder-free PANI/Carbon Fiber Composites. Current Nanoscience, 2015, 12, 83-89.	0.7	7
974	Hierarchical three-dimensional NiCo ₂ O ₄ nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Advances, 2015, 5, 25304-25311.	1.7	67
975	A hybrid aerogel of Co–Al layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. RSC Advances, 2015, 5, 26017-26026.	1.7	30
976	Highly conductive, twistable and bendable polypyrrole–carbon nanotube fiber for efficient supercapacitor electrodes. RSC Advances, 2015, 5, 22015-22021.	1.7	63
977	One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Advances, 2015, 5, 23073-23079.	1.7	84
978	Hierarchical NiCo ₂ O ₄ @NiMoO ₄ core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 14348-14357.	5.2	213
979	Facile Preparation of MnO ₂ /Graphene Nanocomposites with Spent Battery Powder for Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2015, 3, 1330-1338.	3.2	57
980	Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy, 2015, 15, 587-597.	8.2	79
981	Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Materials Chemistry and Physics, 2015, 160, 59-65.	2.0	26
982	Nitrogen-doped, FeNi alloy nanoparticle-decorated graphene as an efficient and stable electrode for electrochemical supercapacitors in acid medium. Nanoscale Research Letters, 2015, 10, 104.	3.1	18
983	Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy, 2015, 15, 83-91.	8.2	84
984	Microwave assisted synthesis of mesoporous NiCo ₂ O ₄ nanosheets as electrode material for advanced flexible supercapacitors. RSC Advances, 2015, 5, 33146-33154.	1.7	65
985	Facile and low-cost combustion-synthesized amorphous mesoporous NiO/carbon as high mass-loading pseudocapacitor materials. Journal of Power Sources, 2015, 293, 23-32.	4.0	78
986	Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors. Materials Letters, 2015, 156, 1-6.	1.3	36
987	Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor. Scientific Reports, 2015, 5, 11095.	1.6	106
988	Three dimensional architectures: design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 15792-15823.	5.2	135

#	Article	IF	CITATIONS
989	Ethanol-directed morphological evolution of hierarchical CeO _x architectures as advanced electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 13970-13977.	5.2	32
990	Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. Journal of Materials Chemistry A, 2015, 3, 15049-15056.	5.2	93
991	High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy, 2015, 15, 662-669.	8.2	63
992	Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors. Journal of Colloid and Interface Science, 2015, 455, 188-193.	5.0	25
993	Studies on the equivalent serial resistance of carbon supercapacitor. Electrochimica Acta, 2015, 174, 596-600.	2.6	56
994	Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors electrode material application. Journal of Electroanalytical Chemistry, 2015, 752, 33-40.	1.9	72
995	Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices. Small, 2015, 11, 3530-3538.	5.2	116
996	One-Dimensional Vanadium Nitride Nanofibers Fabricated by Electrospinning for Supercapacitors. Electrochimica Acta, 2015, 173, 680-686.	2.6	64
997	Morphology Controlled Synthesis of Nickel Cobalt Oxide for Supercapacitor Application with Enhanced Cycling Stability. Electrochimica Acta, 2015, 174, 51-56.	2.6	58
998	Fabrication of tungsten decorated titania nanotube arrays as electrode materials for supercapacitor applications. International Journal of Hydrogen Energy, 2015, 40, 8769-8777.	3.8	20
999	In situ synchrotron wide-angle X-ray scattering study on rapid lithiation of graphite anode via direct contact method for Li-ion capacitors. Journal of Power Sources, 2015, 283, 68-73.	4.0	41
1000	Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface. Applied Physics A: Materials Science and Processing, 2015, 120, 693-698.	1.1	13
1001	Ultrathin NiCo ₂ O ₄ nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 15331-15338.	5.2	76
1002	Mesoporous ZnCo ₂ O ₄ nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Physical Chemistry Chemical Physics, 2015, 17, 17016-17022.	1.3	104
1003	Facile synthesis of amorphous Co/Ni hydroxide hierarchical films and the study of their morphology and electrochemical properties. RSC Advances, 2015, 5, 25676-25683.	1.7	10
1004	Synthesis of ultralong (NH ₄) ₂ V ₆ O ₁₆ ·1.5H ₂ O nanobelts for application in supercapacitors. Materials Technology, 2015, 30, A109-A114.	1.5	23
1005	Pseudocapacitance of α-CoMoO4 nanoflakes in non-aqueous electrolyte and its bi-functional electro catalytic activity for methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 16297-16305.	3.8	37
1006	On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology, 2015, 26, 425402.	1.3	30

#	Article	IF	CITATIONS
1007	Metallic CoS ₂ nanowire electrodes for high cycling performance supercapacitors. Nanotechnology, 2015, 26, 494001.	1.3	52
1008	Impact of different nanostructures of a PEDOT decorated 3D multilayered graphene foam by chemical methods on supercapacitive performance. RSC Advances, 2015, 5, 107864-107871.	1.7	17
1009	Comprehending the effect of MMoO ₄ (M = Co, Ni) nanoflakes on improving the electrochemical performance of NiO electrodes. Dalton Transactions, 2015, 44, 21131-21140.	1.6	9
1010	A facile approach for fabrication of mechanically strong graphene/polypyrrole films with large areal capacitance for supercapacitor applications. RSC Advances, 2015, 5, 102643-102651.	1.7	39
1011	Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy, 2015, 18, 273-282.	8.2	53
1012	Electrospun porous CuCo ₂ O ₄ nanowire network electrode for asymmetric supercapacitors. RSC Advances, 2015, 5, 96448-96454.	1.7	77
1013	Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Materials, 2015, 1, 112-118.	9.5	83
1014	Synthesis of Amorphous Hydrous Ruthenium Dioxide for Electrochemical Capacitors. Rare Metal Materials and Engineering, 2015, 44, 1866-1872.	0.8	8
1015	One-step hydrothermal synthesis of nitrogen and sulfur co-doped graphene for supercapacitors with high electrochemical capacitance performance. Ionics, 2015, 21, 3233-3238.	1.2	18
1016	Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International, 2015, 25, 379-385.	1.8	329
1017	Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. Journal of Power Sources, 2015, 300, 525-532.	4.0	152
1018	One-Step Combustion Synthesis of CNTs Doped Fe ₂ O ₃ /C Nanocomposites as Electrode Materials for Supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 715-720.	1.0	10
1019	N-doped carbon coated hollow Ni _x Co _{9â^`x} S ₈ urchins for a high performance supercapacitor. Nanoscale, 2015, 7, 3155-3163.	2.8	99
1020	N-doped carbon foam based three-dimensional electrode architectures and asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2853-2860.	5.2	70
1021	Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. Journal of Power Sources, 2015, 279, 138-145.	4.0	60
1022	Synthesis of Ni(OH) ₂ /RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 2015, 3, 3641-3650.	5.2	149
1023	Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy, 2015, 12, 612-625.	8.2	48
1024	Hierarchical structures of nickel, cobalt-based nanosheets and iron oxyhydroxide nanorods arrays for electrochemical capacitors. Electrochimica Acta, 2015, 161, 137-143.	2.6	48

#	Article	IF	Citations
1025	Size-dependent capacitance of NiO nanoparticles synthesized from Ni-based coordination polymer precursors with different crystallinity. Journal of Alloys and Compounds, 2015, 632, 361-367.	2.8	13
1026	Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 157, 290-298.	2.6	223
1027	High performance, All solid state, flexible Supercapacitor based on Ionic liquid functionalized Graphene. Electrochimica Acta, 2015, 157, 245-251.	2.6	63
1028	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	7.8	230
1029	Rational Design of High-Surface-Area Carbon Nanotube/Microporous Carbon Core–Shell Nanocomposites for Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 4817-4825.	4.0	62
1030	Single Electrode Capacitances of Porous Carbons in Neat Ionic Liquid Electrolyte at 100°C: A Combined Experimental and Modeling Approach. Journal of the Electrochemical Society, 2015, 162, A5091-A5095.	1.3	32
1031	Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon, 2015, 86, 235-244.	5.4	68
1032	Superior performance asymmetric supercapacitors based on ZnCo ₂ O ₄ @MnO ₂ core–shell electrode. Journal of Materials Chemistry A, 2015, 3, 5442-5448.	5.2	158
1033	Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. Journal of Power Sources, 2015, 279, 358-364.	4.0	66
1034	Electrochemical behavior of MgO-templated mesoporous carbons in the propylene carbonate solution of sodium hexafluorophosphate. Journal of Applied Electrochemistry, 2015, 45, 273-280.	1.5	6
1035	A Versatile Strategy toward Binary Three-Dimensional Architectures Based on Engineering Graphene Aerogels with Porous Carbon Fabrics for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4257-4264.	4.0	66
1036	Reduction Mechanism and Capacitive Properties of Highly Electrochemically Reduced TiO2 Nanotube Arrays. Electrochimica Acta, 2015, 161, 40-47.	2.6	90
1037	In Situ Preparation of Sandwich MoO ₃ /C Hybrid Nanostructures for Highâ€Rate and Ultralongâ€Life Supercapacitors. Advanced Functional Materials, 2015, 25, 1886-1894.	7.8	116
1038	Applications for <scp>CO</scp> ₂ â€Activated Carbon Monoliths: <scp>II</scp> . <scp>EDLC</scp> Electrodes. International Journal of Applied Ceramic Technology, 2015, 12, E127.	1.1	5
1039	High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. Journal of Power Sources, 2015, 282, 179-186.	4.0	269
1040	Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7513-7522.	5.2	149
1041	Thermal Cyclodebromination of Polybromopyrroles to Polymer with High Performance for Supercapacitor. Journal of Physical Chemistry C, 2015, 119, 3881-3891.	1.5	22
1042	Charge Storage in Cation Incorporated α-MnO ₂ . Chemistry of Materials, 2015, 27, 1172-1180.	3.2	122

#	Article	IF	CITATIONS
1043	Atomic Layer Deposition Encapsulated Activated Carbon Electrodes for High Voltage Stable Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 1899-1906.	4.0	30
1044	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	3.2	34
1045	Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. Journal of Power Sources, 2015, 276, 176-180.	4.0	23
1046	Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 3684-3690.	4.0	261
1047	Polypyrrole Shell@3Dâ€Ni Metal Core Structured Electrodes for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 4614-4621.	1.7	82
1048	Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors. ACS Nano, 2015, 9, 2018-2027.	7.3	277
1049	Promising Performance Indicators for Water Desalination and Aqueous Capacitors Obtained by Engineering the Electric Double Layer in Nano-Structured Carbon Electrodes. Journal of Physical Chemistry C, 2015, 119, 3331-3337.	1.5	22
1050	Ultrathin MoO 3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy, 2015, 12, 510-520.	8.2	192
1051	Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors. Electrochimica Acta, 2015, 157, 62-68.	2.6	85
1052	Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. Journal of Power Sources, 2015, 278, 751-759.	4.0	122
1053	Increasing Capacitance of Zeolite-Templated Carbons in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5070-A5076.	1.3	29
1054	Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Advances, 2015, 5, 13930-13940.	1.7	20
1055	Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Applied Energy, 2015, 153, 41-47.	5.1	191
1056	Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention. RSC Advances, 2015, 5, 16575-16581.	1.7	47
1057	A multi-level structure bio-carbon composite with polyaniline for high performance supercapacitors. RSC Advances, 2015, 5, 12230-12236.	1.7	10
1058	Sulfur-doped porous carbon nanosheets as an advanced electrode material for supercapacitors. RSC Advances, 2015, 5, 13046-13051.	1.7	95
1059	Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. Journal of Power Sources, 2015, 281, 44-48.	4.0	32
1060	Enhanced electrochemical performance of hybrid SnO ₂ @MO _x (M = Ni, Co,) Tj ETQq1 materials. Journal of Materials Chemistry A, 2015, 3, 3676-3682.	1 0.78431 5.2	4 rgBT /Ove 85

#	Article	IF	Citations
1061	Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12. Scientific Reports, 2015, 5, 7780.	1.6	104
1062	Three-dimensional nanostructured NiO–Co3(VO4)2 compound on nickel foam as pseudocapacitive electrodes for electrochemical capacitors. Journal of Alloys and Compounds, 2015, 627, 313-319.	2.8	18
1063	Green synthesis of MnO x nanostructures and studies of their supercapacitor performance. Science China Chemistry, 2015, 58, 627-633.	4.2	14
1064	One-Step Facile Solvothermal Synthesis of Copper Ferrite–Graphene Composite as a High-Performance Supercapacitor Material. ACS Applied Materials & Interfaces, 2015, 7, 2404-2414.	4.0	215
1065	One-step synthesis of three-dimensional porous ionic liquid–carbon nanotube–graphene gel and MnO ₂ –graphene gel as freestanding electrodes for asymmetric supercapacitors. RSC Advances, 2015, 5, 10178-10186.	1.7	68
1066	Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 2015, 137, 1572-1580.	6.6	1,307
1067	Facile Synthesis of Three Dimensional NiCo2O4@MnO2 Core–Shell Nanosheet Arrays and its Supercapacitive Performance. Electrochimica Acta, 2015, 157, 31-40.	2.6	88
1068	Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors. Electrochimica Acta, 2015, 157, 108-114.	2.6	96
1069	Solvent-Free Electrolytes for Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5037-A5040.	1.3	44
1070	Mesoporous V ₂ O ₅ /Ketjin black nanocomposites for all-solid-state symmetric supercapacitors. CrystEngComm, 2015, 17, 1673-1679.	1.3	27
1071	Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Journal of Colloid and Interface Science, 2015, 447, 282-301.	5.0	43
1072	Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co ₃ O ₄ nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Advances, 2015, 5, 12700-12709.	1.7	59
1073	Strongly coupled metal oxide nanorod arrays with graphene nanoribbons and nanosheets enable novel solid-state hybrid cells. Journal of Power Sources, 2015, 283, 95-103.	4.0	11
1074	General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties. RSC Advances, 2015, 5, 26863-26871.	1.7	17
1075	Potentialâ€Induced Electronic Structure Changes in Supercapacitor Electrodes Observed by In Operando Soft Xâ€Ray Spectroscopy. Advanced Materials, 2015, 27, 1512-1518.	11.1	25
1076	Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Advances, 2015, 5, 19294-19300.	1.7	107
1077	Encapsulation of manganese oxides nanocrystals in electrospun carbon nanofibers as free-standing electrode for supercapacitors. Ceramics International, 2015, 41, 7402-7410.	2.3	29
1078	Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes. Electrochimica Acta, 2015, 161, 343-350.	2.6	37

#	Article	IF	CITATIONS
1079	3D Nanostructure of Carbon Nanotubes Decorated Co 3 O 4 Nanowire Arrays for High Performance Supercapacitor Electrode. Electrochimica Acta, 2015, 163, 9-15.	2.6	77
1080	Interwoven Three-Dimensional Architecture of Cobalt Oxide Nanobrush-Graphene@Ni _{<i>x</i>} Co _{2<i>x</i>} (OH) _{6<i>x</i>} for High-Performance Supercapacitors. Nano Letters, 2015, 15, 2037-2044.	4.5	134
1081	Three-dimensional graphene nanosheets/carbon nanotube paper as flexible electrodes for electrochemical capacitors. RSC Advances, 2015, 5, 22173-22177.	1.7	7
1082	Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core/shell hybrid nanostructures. Journal of Applied Physics, 2015, 117, .	1.1	34
1083	Ni ³⁺ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale, 2015, 7, 7168-7173.	2.8	127
1084	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	5.2	70
1085	Three-dimensional Co ₃ O ₄ @C@Ni ₃ S ₂ sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16150-16161.	5.2	171
1086	Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochimica Acta, 2015, 174, 456-463.	2.6	107
1087	Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon, 2015, 94, 879-887.	5.4	107
1088	In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. Journal of Materials Chemistry A, 2015, 3, 17050-17063.	5.2	96
1089	Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. Journal of Materials Chemistry A, 2015, 3, 18154-18162.	5.2	424
1090	Growth of Ultrathin Mesoporous Ni-Mo Oxide Nanosheet Arrays on Ni Foam for High-performance Supercapacitor Electrodes. Electrochimica Acta, 2015, 176, 1343-1351.	2.6	38
1091	Electrochemical Supercapacitors from Diamond. Journal of Physical Chemistry C, 2015, 119, 18918-18926.	1.5	68
1092	Highly porous graphitic carbon and Ni ₂ P ₂ O ₇ for a high performance aqueous hybrid supercapacitor. Journal of Materials Chemistry A, 2015, 3, 21553-21561.	5.2	153
1093	Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochimica Acta, 2015, 176, 1153-1164.	2.6	64
1094	Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature Communications, 2015, 6, 7818.	5.8	300
1095	Novel route to synthesis of N-doped graphene/Cu–Ni oxide composite for high electrochemical performance. Carbon, 2015, 94, 962-970.	5.4	79
1096	Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale, 2015, 7, 14707-14714.	2.8	29

#	Article	IF	CITATIONS
1097	A vertical and cross-linked Ni(OH) ₂ network on cellulose-fiber covered with graphene as a binder-free electrode for advanced asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19077-19084.	5.2	47
1098	The impact of morphologies and electrolyte solutions on the supercapacitive behavior for Fe 2 O 3 and the charge storage mechanism. Electrochimica Acta, 2015, 178, 171-178.	2.6	37
1099	Application of binder-free TiOxN1â^'x nanogrid film as a high-power supercapacitor electrode. Journal of Power Sources, 2015, 296, 53-63.	4.0	25
1100	Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Applied Surface Science, 2015, 355, 160-165.	3.1	45
1101	Three-dimensional α-Fe ₂ O ₃ /carbon nanotube sponges as flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 20927-20934.	5.2	151
1102	Coaxial CoMoO ₄ nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2015, 7, 15159-15167.	2.8	49
1103	Si/NiCo ₂ O ₄ heterostructures electrodes with enhanced performance for supercapacitor. RSC Advances, 2015, 5, 62813-62818.	1.7	4
1104	Scalable fabrication of exceptional 3D carbon networks for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16104-16111.	5.2	55
1105	Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chemistry, 2015, 17, 4888-4907.	4.6	437
1106	A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers. Journal of Materials Chemistry A, 2015, 3, 16162-16167.	5.2	42
1107	Rational design of octahedron and nanowire CeO ₂ @MnO ₂ core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chemical Communications, 2015, 51, 14840-14843.	2.2	160
1108	Highly flexible and transferable supercapacitors with ordered three-dimensional MnO ₂ /Au/MnO ₂ nanospike arrays. Journal of Materials Chemistry A, 2015, 3, 10199-10204.	5.2	53
1109	Large-scale synthesis of Co ₂ V ₂ O ₇ hexagonal microplatelets under ambient conditions for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 16728-16736.	5.2	116
1110	High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. Journal of Power Sources, 2015, 294, 88-93.	4.0	44
1111	Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor. Applied Surface Science, 2015, 351, 862-868.	3.1	69
1112	Hexamethylenetetramine assistedÂhydrothermal synthesis of BiPO4 and its electrochemical properties for supercapacitors. Journal of Physics and Chemistry of Solids, 2015, 86, 11-18.	1.9	36
1113	Two-dimensional titanium carbide electrode with large mass loading for supercapacitor. Journal of Power Sources, 2015, 294, 354-359.	4.0	199
1114	A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synthetic Metals, 2015, 209, 68-73.	2.1	65

#	Article	IF	CITATIONS
1115	Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. Journal of Power Sources, 2015, 294, 120-127.	4.0	142
1116	Vertically oriented Ni ₃ S ₂ /RGO/Ni ₃ S ₂ nanosheets on Ni foam for superior supercapacitors. RSC Advances, 2015, 5, 63528-63536.	1.7	41
1117	A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Advances, 2015, 5, 63553-63560.	1.7	74
1118	One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor. Applied Surface Science, 2015, 355, 419-428.	3.1	40
1119	Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano, 2015, 9, 8569-8577.	7.3	113
1120	Quantitative Analysis of Charge Storage Process of Tungsten Oxide that Combines Pseudocapacitive and Electrochromic Properties. Journal of Physical Chemistry C, 2015, 119, 16483-16489.	1.5	93
1121	Rational design and synthesis of Ni _x Co _{3â^'x} O ₄ nanoparticles derived from multivariate MOF-74 for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20145-20152.	5.2	214
1122	Polypyrrole doped with dodecyl benzene sulfonate electrodeposited on carbon fibers for flexible capacitors with high-performance. Electrochimica Acta, 2015, 176, 594-603.	2.6	36
1123	Synthesis of carbon core–shell pore structures and their performance as supercapacitors. Microporous and Mesoporous Materials, 2015, 218, 130-136.	2.2	35
1124	Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 16686-16693.	4.0	22
1125	Hydrothermal growth of MnO ₂ /RGO/Ni(OH) ₂ on nickel foam with superior supercapacitor performance. RSC Advances, 2015, 5, 62571-62576.	1.7	40
1126	Hierarchical Co3O4@PPy core/shell nanowire arrays on nickel foam for electrochemical energy storage. Materials Letters, 2015, 157, 23-26.	1.3	19
1127	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	4.0	180
1128	Enhanced supercapacitor performance by fabricating hierarchical nanoporous nickel/nickel hydroxide structure. Materials Letters, 2015, 158, 366-369.	1.3	16
1129	Template-grown graphene/porous Fe2O3 nanocomposite: A high-performance anode material for pseudocapacitors. Nano Energy, 2015, 15, 719-728.	8.2	116
1130	Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Physical Chemistry Chemical Physics, 2015, 17, 19885-19894.	1.3	100
1131	Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015, 16, 71-80.	8.2	354
1132	Polypyrrole–polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chemical Communications, 2015, 51, 12377-12380.	2.2	99

#	ARTICLE An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate ca	thode and a	IF 5.2	Citations
1133	Fe ₃ O ₄ /rGO anode. Journal of Materials Chemistry A, 2015, 3, 1 Low Cost Facile Synthesis of Large-Area Cobalt Hydroxide Nanorods with Remarkable	6013-16019.	4.0	38
1135	Pseudocapacitance. ACS Applied Materials & amp; Interfaces, 2015, 7, 9147-9156. In situ fabrication of graphene decorated microstructured globe artichokes of partial mola cobaltite anchored on a Ni foam as a high-performance supercapacitor electrode. RSC Adv	ar nickel vances, 2015,	1.7	55
1136	5, 38407-38416. Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3,	, 11462-11470.	5.2	113
1137	Microwave synthesis of highly oxidized and defective carbon nanotubes for enhancing the performance of supercapacitors. Carbon, 2015, 91, 103-113.	е	5.4	35
1138	Electron beam deposition of amorphous manganese oxide thin film electrodes and their p electrochemical properties. Journal of Power Sources, 2015, 284, 264-271.	predominant	4.0	9
1139	Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor application electrochemically exfoliated graphene. Electrochimica Acta, 2015, 167, 412-420.	ons using	2.6	59
1140	Fabrication of polyaniline/urchin-like mesoporous TiO 2 spheres nanocomposite and its an supercapacitors. Electrochimica Acta, 2015, 163, 232-237.	oplication in	2.6	27
1141	Synthesis and electrochemical properties of poly (2-ethynylpyridine) functionalized graph nanosheets. Journal of Alloys and Compounds, 2015, 640, 267-274.	ene	2.8	10
1142	High power density electric double-layer capacitor based on a porous multi-walled carbon microsphere as a local electrolyte micro-reservoir. Carbon, 2015, 92, 254-261.	nanotube	5.4	37
1143	Facile solvothermal synthesis of porous ZnFe ₂ O ₄ microspheres capacitive pseudocapacitors. RSC Advances, 2015, 5, 39270-39277.	s for	1.7	88
1144	Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochimica Acta, 2015, 169, 186-194.		2.6	200
1145	Ultrafine Ag/MnO nanowire-constructed hair-like nanoarchitecture: In situ synthesis, form mechanism and its supercapacitive property. Journal of Alloys and Compounds, 2015, 64	4, 47-53.	2.8	11
1146	Interfacial Redox Phenomena for Enhanced Aqueous Supercapacitors. Journal of the Elect Society, 2015, 162, A5140-A5147.		1.3	75
1147	Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire a flexible supercapacitor. Journal of Power Sources, 2015, 286, 561-570. Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized	rray for	4.0	116
1148	Nanostructured Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2013 Facile synthesis of three-dimensional structured carbon fiber-NiCo2O4-Ni(OH)2 high-perfo		4.0	36
1149	electrode for pseudocapacitors. Scientific Reports, 2015, 5, 9277. Effect of different reduction methods on electrochemical cycling stability of reduced grap		1.6	78
	in supercapacitors. Journal of Applied Electrochemistry, 2015, 45, 57-65.		210	

#	Article	IF	CITATIONS
1151	Electrochemical fabrication of porous manganese–cobalt oxide films for electrochemical capacitors. Journal of Applied Electrochemistry, 2015, 45, 495-501.	1.5	7
1152	Improvement in flexibility and volumetric performance for supercapacitor application and the effect of Ni–Fe ratio on electrode behaviour. Journal of Materials Chemistry A, 2015, 3, 7607-7615.	5.2	32
1153	Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochimica Acta, 2015, 169, 342-350.	2.6	139
1154	Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy, 2015, 15, 43-53.	8.2	156
1155	Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Journal of Power Sources, 2015, 285, 303-309.	4.0	182
1156	Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors. Materials Letters, 2015, 154, 173-176.	1.3	33
1157	NiO hybrid nanoarchitecture-based pseudocapacitor in organic electrolyte with high rate capability and cycle life. Ionics, 2015, 21, 2623-2631.	1.2	19
1158	Nanoporous Activated Carbons Derived from Agro-Waste Corncob for Enhanced Electrochemical and Sensing Performance. Bulletin of the Chemical Society of Japan, 2015, 88, 1108-1115.	2.0	57
1159	Freestanding and flexible graphene wrapped MnO ₂ /MoO ₃ nanoparticle based asymmetric supercapacitors for high energy density and output voltage. RSC Advances, 2015, 5, 45129-45135.	1.7	30
1160	High performance of supercapacitor based on nitrogen-doped graphene/p-aminophenol electrodes. Ionics, 2015, 21, 2639-2645.	1.2	7
1161	Hierarchical 3-dimensional CoMoO ₄ nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 13776-13785.	5.2	61
1162	One dimensional nickel oxide-decorated cobalt oxide (Co3O4) composites for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2015, 749, 89-95.	1.9	19
1163	Facile synthesis of reduced graphene oxide/CeO2 nanocomposites and their application in supercapacitors. Ceramics International, 2015, 41, 8710-8716.	2.3	63
1164	Microwave-assisted in situ synthesis of reduced graphene oxide/Mn ₃ O ₄ composites for supercapacitor applications. RSC Advances, 2015, 5, 45061-45067.	1.7	18
1165	Synthesis of highly crystalline polyaniline with the use of (Cyclohexylamino)-1-propanesulfonic acid for supercapacitor. Journal of Applied Electrochemistry, 2015, 45, 51-56.	1.5	30
1166	Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano, 2015, 9, 2556-2564.	7.3	1,375
1167	Facile synthesis of flower-like CoMn ₂ O ₄ microspheres for electrochemical supercapacitors. RSC Advances, 2015, 5, 30963-30969.	1.7	86
1168	Hierarchical micro-architectures of electrodes for energy storage. Journal of Power Sources, 2015, 284, 435-445.	4.0	70

#	Article	IF	CITATIONS
1169	Nickel hexacyanoferrate flower-like nanosheets coated three dimensional porous nickel films as binder-free electrodes for neutral electrolyte supercapacitors. Electrochimica Acta, 2015, 166, 157-162.	2.6	30
1170	Fast synthesis and electrochemical performance of hollow NiCo2O4 flowerlike microstructures. RSC Advances, 2015, 5, 31558-31565.	1.7	9
1171	Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO ₂ nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 9754-9762.	5.2	45
1172	Porous and single crystalline Co3O4 nanospheres for pseudocapacitors with enhanced performance. RSC Advances, 2015, 5, 27266-27272.	1.7	7
1173	Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO ₂ and graphene/polypyrrole hybrid architectures. Journal of Materials Chemistry A, 2015, 3, 12828-12835.	5.2	160
1174	Homogeneous core–shell NiCo ₂ S ₄ nanostructures supported on nickel foam for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12452-12460.	5.2	428
1175	Asymmetric Supercapacitive Characteristics of PANI Embedded Holey Graphene Nanoribbons. ACS Sustainable Chemistry and Engineering, 2015, 3, 1460-1469.	3.2	55
1176	Redoxâ€Mediated Synthesis of a Fe ₃ O ₄ –MnO ₂ Nanocomposite for Dye Adsorption and Pseudocapacitance. Chemistry - an Asian Journal, 2015, 10, 1571-1580.	1.7	27
1177	Facile one-step mechanochemical synthesis of [Cu(tu)]Cl·1/2H ₂ O nanobelts for high-performance supercapacitor. RSC Advances, 2015, 5, 38527-38532.	1.7	10
1178	Highly ordered mesoporous NiCo ₂ O ₄ with superior pseudocapacitance performance for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11503-11510.	5.2	36
1179	Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040.	5.8	159
1180	A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Advances, 2015, 5, 42430-42437.	1.7	86
1181	Free-standing graphene-based porous carbon films with three-dimensional hierarchical architecture for advanced flexible Li–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9438-9445.	5.2	51
1182	Co3O4@Reduced Graphene Oxide Nanoribbon for high performance Asymmetric Supercapacitor. Electrochimica Acta, 2015, 169, 276-282.	2.6	70
1183	Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor. Scientific Reports, 2015, 5, 9359.	1.6	147
1184	Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy, 2015, 13, 306-317.	8.2	303
1185	Three dimensional carbon nanotube/nickel hydroxide gels for advanced supercapacitors. RSC Advances, 2015, 5, 30260-30267.	1.7	11
1186	Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of Power Sources, 2015, 286, 1-9.	4.0	108

#	Article	IF	CITATIONS
1187	Sol-gel synthesis of manganese oxide films and their predominant electrochemical properties. Electrochimica Acta, 2015, 167, 126-131.	2.6	32
1188	Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015, 13, 500-508.	8.2	214
1189	Carbon cladded TiO ₂ nanotubes: fabrication and use in 3D-RuO ₂ based supercapacitors. Chemical Communications, 2015, 51, 7614-7617.	2.2	46
1190	Cobalt sulfide nanosheets coated on NiCo ₂ S ₄ nanotube arrays as electrode materials for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 10492-10497.	5.2	161
1191	A facile synthesis of mesoporous Co ₃ O ₄ /CeO ₂ hybrid nanowire arrays for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 10425-10431.	5.2	108
1192	Hydrothermal synthesis of 3D Ni Co1â [~] S2 particles/graphene composite hydrogels for high performance supercapacitors. Carbon, 2015, 90, 44-52.	5.4	68
1193	Enhancing the capacitance and active surface utilization of supercapacitor electrode by graphene nanoplatelets. Composites Science and Technology, 2015, 112, 16-21.	3.8	32
1194	3D hierarchical SnO ₂ @Ni(OH) ₂ core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry A, 2015, 3, 9538-9542.	5.2	33
1198	Mesoporous quasi-single-crystalline NiCo ₂ O ₄ superlattice nanoribbons with optimizable lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 10336-10344.	5.2	78
1199	Rechargeable lithium batteries for energy storage in smart grids. , 2015, , 319-351.		11
1200	Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon, 2015, 92, 271-296.	5.4	88
1201	Construction of Three-Dimensional Homogeneous NiCo ₂ O ₄ Core/Shell Nanostructure as High-Performance Electrodes for Supercapacitors. Journal of the Electrochemical Society, 2015, 162, E319-E324.	1.3	19
1202	A three-dimensional MnO ₂ /graphene hybrid as a binder-free supercapacitor electrode. RSC Advances, 2015, 5, 85613-85619.	1.7	41
1203	A review of negative electrode materials for electrochemical supercapacitors. Science China Technological Sciences, 2015, 58, 1799-1808.	2.0	84
1204	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	8.2	181
1205	Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances. ACS Applied Materials & amp; Interfaces, 2015, 7, 22284-22291.	4.0	77
1206	High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone. Journal of Materials Chemistry A, 2015, 3, 22353-22360.	5.2	91
1207	Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22892-22901.	5.2	63

#	Article	IF	CITATIONS
1208	Self-assembled novel dandelion-like NiCo ₂ O ₄ microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22393-22403.	5.2	78
1209	Nitrogen-doped carbon-coated molybdenum disulfide nanosheets for high-performance supercapacitor. Synthetic Metals, 2015, 209, 528-533.	2.1	19
1210	Capacitance Performance of Sub-2 nm Graphene Nanochannels in Aqueous Electrolyte. Journal of Physical Chemistry C, 2015, 119, 23813-23819.	1.5	25
1211	Towards sustainable power sources: chitin-bound carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 22923-22930.	5.2	22
1212	Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochimica Acta, 2015, 186, 1-6.	2.6	24
1213	Nano-porous activated carbon from sugarcane waste for supercapacitor application. Journal of Energy Storage, 2015, 4, 121-127.	3.9	69
1214	Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Science Advances, 2015, 1, e1500605.	4.7	49
1215	Highly flexible, tailorable and all-solid-state supercapacitors from carbon nanotube–MnO _x composite films. RSC Advances, 2015, 5, 89188-89194.	1.7	10
1216	One-pot synthesis and electrochemical properties of graphene/SnO2/poly (p-phenylenediamine) ternary nanocomposites. Journal of Alloys and Compounds, 2015, 652, 9-17.	2.8	16
1217	Construction of hierarchical CoS nanowire@NiCo ₂ S ₄ nanosheet arrays via one-step ion exchange for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24033-24040.	5.2	119
1218	Enhanced Supercapacitor Performance for Equal Co–Mn Stoichiometry in Colloidal Co _{3-x} Mn _{<i>x</i>} O ₄ Nanoparticles, in Additive-Free Electrodes. Chemistry of Materials, 2015, 27, 7861-7873.	3.2	83
1219	Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 25306-25312.	4.0	18
1220	Nitrogen-Doped Graphene as Electrode Material with Enhanced Energy Density for Next-Generation Supercapacitor Application. ECS Journal of Solid State Science and Technology, 2015, 4, M88-M92.	0.9	15
1221	Controlled synthesis of hierarchical birnessite-type MnO 2 nanoflowers for supercapacitor applications. Applied Surface Science, 2015, 356, 259-265.	3.1	114
1222	Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage. ACS Nano, 2015, 9, 8054-8063.	7.3	75
1223	An investigation of the electrochemically capacitive performances of mesoporous nickel cobaltite hollow spheres. Electrochimica Acta, 2015, 178, 153-162.	2.6	17
1224	Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry, 2015, 24, 559-586.	7.1	19
1225	Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale, 2015, 7, 18459-18463.	2.8	94

#	Article	IF	CITATIONS
1226	Functional Pillared Graphene Frameworks for Ultrahigh Volumetric Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1500771.	10.2	184
1227	Direct formation of porous MnO 2 /Ni composite foam applied for high-performance supercapacitors at mild conditions. Electrochimica Acta, 2015, 178, 823-828.	2.6	40
1228	Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 23333-23344.	5.2	107
1229	Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5, 87077-87083.	1.7	21
1230	Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications – a review. RSC Advances, 2015, 5, 88339-88352.	1.7	168
1231	In situ anchoring uniform MnO ₂ nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes. RSC Advances, 2015, 5, 90307-90312.	1.7	22
1232	Single-crystalline Ni(OH)2nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23412-23419.	5.2	45
1233	Rational Synthesis of Branched CoMoO ₄ @CoNiO ₂ Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance. ACS Applied Materials & Interfaces, 2015, 7, 24204-24211.	4.0	79
1234	Design of mass-controllable NiCo ₂ S ₄ /Ketjen Black nanocomposite electrodes for high performance supercapacitors. CrystEngComm, 2015, 17, 7583-7591.	1.3	20
1235	Nitrogen-enriched hierarchical porous carbon with enhanced performance in supercapacitors and lithium–sulfur batteries. RSC Advances, 2015, 5, 75403-75410.	1.7	8
1236	Amorphous nickel pyrophosphate microstructures for high-performance flexible solid-state electrochemical energy storage devices. Nano Energy, 2015, 17, 339-347.	8.2	148
1237	Three-Dimensional Nanoarchitecture of BiFeO ₃ Anchored TiO ₂ Nanotube Arrays for Electrochemical Energy Storage and Solar Energy Conversion. ACS Sustainable Chemistry and Engineering, 2015, 3, 2254-2263.	3.2	139
1238	Nanocrystal-constructed mesoporous CoFe ₂ O ₄ nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2015, 17, 21476-21484.	1.3	28
1239	Enhanced supercapacitor performances using C-doped porous TiO 2 electrodes. Applied Surface Science, 2015, 356, 553-560.	3.1	30
1240	Fabrication of Uniform Nanocomposite by "Anchoring―Polyaniline Nanofibers on the Surface of Graphene Oxide for Supercapacitors. Integrated Ferroelectrics, 2015, 161, 76-84.	0.3	3
1241	High Energy Density Ternary Composite Electrode Material Based on Polyaniline (PANI), Molybdenum trioxide (MoO3) and Graphene Nanoplatelets (GNP) Prepared by Sono-Chemical Method and Their Synergistic Contributions in Superior Supercapacitive Performance. Electrochimica Acta, 2015, 180, 1-15.	2.6	96
1242	Fabrication of NiCo ₂ O ₄ and carbon nanotube nanocomposite films as a high-performance flexible electrode of supercapacitors. RSC Advances, 2015, 5, 74032-74039.	1.7	28
1243	Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors. RSC Advances, 2015, 5, 77958-77964.	1.7	67

#	Article	IF	CITATIONS
1244	Preparation of ZnCo ₂ O ₄ nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. Journal of Materials Chemistry A, 2015, 3, 21891-21898.	5.2	93
1245	Statistical Mechanics of â€~Unwanted Electroactuation' in Nanoporous Supercapacitors. Electrochimica Acta, 2015, 174, 978-984.	2.6	12
1246	AC-MnO ₂ -CNT Composites for Electrodes of Electrochemical Supercapacitors. Materials Science Forum, 0, 827, 113-118.	0.3	4
1247	Seed-assisted synthesis of hierarchical manganese dioxide/carbonaceous sphere composites with enhanced supercapacitor performance. Electrochimica Acta, 2015, 180, 1033-1040.	2.6	18
1248	Liquor ammonia mediated V(<scp>v</scp>) insertion in thin Co ₃ O ₄ sheets for improved pseudocapacitors with high energy density and high specific capacitance value. Chemical Communications, 2015, 51, 15986-15989.	2.2	52
1249	Hollowed-out tubular carbon@MnO 2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochimica Acta, 2015, 178, 709-720.	2.6	26
1250	Fabrication and electrochemical properties of porous VN hollow nanofibers. Journal of Alloys and Compounds, 2015, 651, 785-792.	2.8	32
1251	The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Physical Chemistry Chemical Physics, 2015, 17, 28666-28673.	1.3	140
1252	One-pot construction of three dimensional CoMoO ₄ /Co ₃ O ₄ hybrid nanostructures and their application in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21201-21210.	5.2	114
1253	MnO ₂ -based nanostructures for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21380-21423.	5.2	817
1254	Triethanolamine functionalized graphene-based composites for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21789-21796.	5.2	112
1255	Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synthetic Metals, 2015, 209, 369-376.	2.1	52
1256	TiC-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis. Materials for Renewable and Sustainable Energy, 2015, 4, 17.	1.5	6
1257	An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement. Journal of Materials Chemistry A, 2015, 3, 21321-21327.	5.2	124
1258	Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. Journal of Alloys and Compounds, 2015, 653, 486-497.	2.8	67
1259	3D interconnected porous NiMoO ₄ nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22081-22087.	5.2	98
1260	Three-Dimensional NiCo ₂ O ₄ @Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2015, 7, 21334-21346.	4.0	286
1261	Cathodic electrodeposition and electrochemical response of manganese oxide pseudocapacitor electrodes. International Journal of Hydrogen Energy, 2015, 40, 16355-16364.	3.8	25

#	Article	IF	CITATIONS
1262	Polypyrrole nanosphere embedded in wrinkled graphene layers to obtain cross-linking network for high performance supercapacitors. Electrochimica Acta, 2015, 184, 179-185.	2.6	9
1263	A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors. Nanotechnology, 2015, 26, 434005.	1.3	18
1264	Hierarchical Mesoporous Zinc–Nickel–Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 26512-26521.	4.0	234
1265	Super-capacitive behavior of carbon nano tube doped 11-(4-cyanobiphenyl-4-oxy) undecan-1-ol. Journal of Molecular Liquids, 2015, 211, 442-447.	2.3	11
1266	A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 949-956.	1.2	32
1267	Conducting polymerâ€based flexible supercapacitor. Energy Science and Engineering, 2015, 3, 2-26.	1.9	516
1268	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 2015, 11, 600-610.	8.2	100
1269	From Rice Bran to High Energy Density Supercapacitors: A New Route to Control Porous Structure of 3D Carbon. Scientific Reports, 2014, 4, 7260.	1.6	128
1270	Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137, 219-225.	6.6	390
1271	Selfâ€Templated Formation of Uniform NiCo ₂ O ₄ Hollow Spheres with Complex Interior Structures for Lithiumâ€Ion Batteries and Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 1868-1872.	7.2	713
1272	Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy, 2015, 11, 687-696.	8.2	284
1273	Plasma-enabled sustainable elemental lifecycles: honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chemistry, 2015, 17, 2164-2171.	4.6	45
1274	Layer-Structured Copper Antimony Chalcogenides (CuSbSe _{<i>x</i>} S _{2–<i>x</i>}): Stable Electrode Materials for Supercapacitors. Chemistry of Materials, 2015, 27, 379-386.	3.2	77
1275	Comparative study on three commercial carbons for supercapacitor applications. Russian Journal of Electrochemistry, 2015, 51, 77-85.	0.3	15
1276	High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. Journal of Materials Chemistry A, 2015, 3, 2903-2913.	5.2	207
1277	N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. Journal of Power Sources, 2015, 278, 218-229.	4.0	126
1278	Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC ₂ O ₄ /ZIF-67) as a supercapacitor electrode. New Journal of Chemistry, 2015, 39, 94-97.	1.4	60
1280	Smart design of free-standing ultrathin Co–Co(OH) ₂ composite nanoflakes on 3D nickel foam for high-performance electrochemical capacitors. Chemical Communications, 2015, 51, 1689-1692.	2.2	38

#	Article	IF	CITATIONS
1281	Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochimica Acta, 2015, 153, 273-279.	2.6	114
1282	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	4.0	154
1283	A two-dimensional highly ordered mesoporous carbon/graphene nanocomposite for electrochemical double layer capacitors: effects of electrical and ionic conduction pathways. Journal of Materials Chemistry A, 2015, 3, 2314-2322.	5.2	49
1284	Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochimica Acta, 2015, 153, 448-455.	2.6	177
1285	Three dimensional Ni foam-supported graphene oxide for binder-free pseudocapacitor. Electrochimica Acta, 2015, 152, 216-221.	2.6	44
1286	Porous NiCo2O4 nanosheets/reduced graphene oxide composite: Facile synthesis and excellent capacitive performance for supercapacitors. Journal of Colloid and Interface Science, 2015, 440, 211-218.	5.0	68
1287	Investigation of Charge Transfer Kinetics of Polyaniline Supercapacitor Electrodes by Scanning Electrochemical Microscopy. Advanced Materials Interfaces, 2015, 2, 1400154.	1.9	40
1288	Quaternary ammonium functionalized poly(aryl ether sulfone)s as separators for supercapacitors based on activated carbon electrodes. Journal of Membrane Science, 2015, 475, 562-570.	4.1	30
1289	Porous reduced graphene oxide wrapped carbon nanotube–manganese dioxide nanocables with enhanced electrochemical capacitive performance. RSC Advances, 2015, 5, 6136-6141.	1.7	9
1290	Facile synthesis of hierarchical porous ZnCo ₂ O ₄ microspheres for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 982-985.	5.2	135
1291	Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors. Electrochimica Acta, 2015, 152, 480-488.	2.6	77
1292	Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy, 2015, 11, 518-525.	8.2	248
1293	2 D amorphous frameworks of NiMoO4 for supercapacitors: defining the role of surface and bulk controlled diffusion processes. Applied Surface Science, 2015, 326, 39-47.	3.1	52
1294	Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochimica Acta, 2015, 152, 126-134.	2.6	99
1295	Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region. Journal of Solid State Electrochemistry, 2015, 19, 769-783.	1.2	18
1296	Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale, 2015, 7, 386-400.	2.8	78
1297	Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.	10.2	139
1298	Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy, 2015, 11, 611-620.	8.2	120

#	Article	IF	CITATIONS
1299	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. Journal of Solid State Chemistry, 2015, 224, 45-51.	1.4	16
1300	Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors. Scientific Reports, 2014, 4, 3669.	1.6	222
1301	Polyaniline/MnO ₂ composite with high performance as supercapacitor electrode via pulse electrodeposition. Polymer Composites, 2015, 36, 113-120.	2.3	35
1302	Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 4518.	1.6	219
1303	Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11, 154-161.	8.2	379
1304	Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO ₂ spheres as "spacers―for high-performance application in supercapacitors. Nanoscale, 2015, 7, 659-669.	2.8	53
1305	High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chemical Engineering Journal, 2015, 262, 980-988.	6.6	143
1306	Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 32-38.	2.3	36
1307	Synthesis of manganese oxide/activated carbon composites for supercapacitor application using a liquid phase plasma reduction system. International Journal of Hydrogen Energy, 2015, 40, 754-759.	3.8	35
1308	Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochimica Acta, 2015, 151, 99-108.	2.6	222
1309	NH ₃ assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors. Nanoscale, 2015, 7, 2060-2068.	2.8	47
1310	Facile fabrication of GNS/NiCoAl-LDH composite as an advanced electrode material for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 607-617.	1.2	31
1311	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	6.4	152
1312	Polyaniline/graphene/carbon fiber ternary composites as supercapacitor electrodes. Materials Letters, 2015, 140, 43-47.	1.3	48
1313	Using common salt to impart pseudocapacitive functionalities to carbon nanofibers. Journal of Materials Chemistry A, 2015, 3, 377-385.	5.2	50
1314	Hybrid NiCo ₂ S ₄ @MnO ₂ heterostructures for high-performance supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 1258-1264.	5.2	269
1315	Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-performance Supercapacitors. Electrochimica Acta, 2015, 151, 510-516.	2.6	47
1316	The development supercapacitor from activated carbon by electroless plating—A review. Renewable and Sustainable Energy Reviews, 2015, 42, 823-834.	8.2	306

#	Article	IF	CITATIONS
1317	Hierarchical nanosheet-based NiMoO ₄ nanotubes: synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 739-745.	5.2	151
1318	Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports, 2014, 4, 3878.	1.6	285
1319	Controlled Growth of NiMoO ₄ Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1401172.	10.2	559
1320	One-step synthesis of mesoporous MnO ₂ /carbon sphere composites for asymmetric electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 1127-1132.	5.2	61
1321	Facile synthesis of ultrathin nickel hydroxides nanoflakes on nickel foam for high-performance supercapacitors. Materials Letters, 2015, 138, 5-8.	1.3	14
1322	Preparation of the cactus-like porous manganese oxide assisted with surfactant sodium dodecyl sulfate for supercapacitors. Journal of Alloys and Compounds, 2015, 621, 86-92.	2.8	26
1323	Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. Journal of Power Sources, 2015, 273, 584-590.	4.0	409
1324	Design and synthesis of nanostructured graphene-SnO2-polyaniline ternary composite and their excellent supercapacitor performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 17-25.	2.3	96
1325	Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles. Advanced Energy Materials, 2015, 5, 1401438.	10.2	134
1326	2D high-ordered nanoporous NiMoO4 for high-performance supercapacitors. Ceramics International, 2015, 41, 1831-1837.	2.3	55
1327	Design and synthesis of hierarchically porous MnO2/carbon hybrids for high performance electrochemical capacitors. Journal of Colloid and Interface Science, 2015, 438, 61-67.	5.0	27
1328	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	15.6	232
1329	Study of Asymmetric Hybrid Supercapacitor using Carbon and Metal Oxides as Electrode Materials. Indian Journal of Science and Technology, 2016, 9, .	0.5	3
1330	A Study of the Electrochemical Performance of Strip Supercapacitors under Bending Conditions. International Journal of Electrochemical Science, 2016, , 7922-7933.	0.5	9
1331	Performance Enhancement of Carbon Nanomaterials for Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-17.	1.5	54
1332	Manganese Oxide on Carbon Fabric for Flexible Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	2
1333	Free-Standing Porous Carbon Nanofiber Networks from Electrospinning Polyimide for Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	9
1334	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	5.2	79

#	Article	IF	CITATIONS
1335	Nanostructured Iron Oxide/Hydroxideâ€Based Electrode Materials for Supercapacitors. ChemNanoMat, 2016, 2, 588-600.	1.5	82
1336	Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites. Angewandte Chemie - International Edition, 2016, 55, 9191-9195.	7.2	146
1337	Designed Formation of MnO ₂ @NiO/NiMoO ₄ Nanowires@Nanosheets Hierarchical Structures with Enhanced Pseudocapacitive Properties. ChemElectroChem, 2016, 3, 1347-1353.	1.7	32
1338	Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure. Nano Energy, 2016, 27, 58-67.	8.2	39
1339	Direct Growth of 3 D Hierarchical Porous Ni ₃ S ₂ Nanostructures on Nickel Foam for Highâ€Performance Supercapacitors. ChemNanoMat, 2016, 2, 719-725.	1.5	20
1340	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. Advanced Functional Materials, 2016, 26, 3472-3479.	7.8	72
1341	Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. Journal of Materials Science, 2016, 51, 8728-8736.	1.7	75
1342	lonic conductivity and dielectric studies of acid doped cellulose acetate propionate solid electrolyte for supercapacitor. Polymer Engineering and Science, 2016, 56, 196-203.	1.5	10
1343	A 1.8 V Aqueous Supercapacitor with a Bipolar Assembly of Ion-Exchange Membranes as the Separator. Journal of the Electrochemical Society, 2016, 163, A1853-A1858.	1.3	42
1344	Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta, 2016, 211, 627-635.	2.6	69
1345	Synergistic effect of cobalt and nickel on the superior electrochemical performances of rGO anchored nickel cobalt binary sulfides. Electrochimica Acta, 2016, 212, 294-302.	2.6	45
1346	lon–Image Interactions and Phase Transition at Electrolyte–Metal Interfaces. Journal of Physical Chemistry Letters, 2016, 7, 2753-2757.	2.1	26
1347	Performance of metal oxide nanoparticle sols as binders in activated carbon electrodes. Journal of Energy Storage, 2016, 7, 147-158.	3.9	8
1348	Hierarchical porous cobalt monoxide nanosheet@ultrathin manganese dioxide nanosheet core-shell arrays for high-performance asymmetric supercapacitor. International Journal of Hydrogen Energy, 2016, 41, 13540-13548.	3.8	28
1349	Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites. Angewandte Chemie, 2016, 128, 9337-9341.	1.6	10
1350	Preparation of 3D MnO ₂ /Polyaniline/Graphene Hybrid Material via Interfacial Polymerization as Highâ€Performance Supercapacitor Electrode. Chinese Journal of Chemistry, 2016, 34, 839-846.	2.6	15
1351	A facile route to largeâ€scale synthesis MoO ₂ and MoO ₃ as electrode materials for highâ€performance supercapacitors. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2468-2473.	0.8	16
1352	Ultrafast Nanocrystallineâ€īiO ₂ (B)/Carbon Nanotube Hyperdispersion Prepared via Combined Ultracentrifugation and Hydrothermal Treatments for Hybrid Supercapacitors. Advanced Materials, 2016, 28, 6751-6757.	11.1	58

#	Article	IF	CITATIONS
1353	UV-assisted reduction of graphene oxide on Ni foam as high performance electrode for supercapacitors. Carbon, 2016, 107, 917-924.	5.4	25
1354	Synthesis and control of high-performance MnO2/carbon nanotubes nanocomposites for supercapacitors. Journal of Alloys and Compounds, 2016, 688, 184-197.	2.8	80

A 4 Farad high energy electrochemical double layer capacitor prototype operating at 3.2ÅV (IES) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 6

1356	Controlled growth of NiMoO ₄ ·H ₂ O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitors. RSC Advances, 2016, 6, 67785-67793.	1.7	25
1357	Ion Intercalation Induced Capacitance Improvement for Grapheneâ€Based Supercapacitor Electrodes. ChemNanoMat, 2016, 2, 635-641.	1.5	41
1358	Capacitance Enhancement in a Semiconductor Nanostructureâ€Based Supercapacitor by Solar Light and a Selfâ€Powered Supercapacitor–Photodetector System. Advanced Functional Materials, 2016, 26, 4481-4490.	7.8	133
1359	Effects of microwave and oxygen plasma treatments on capacitive characteristics of supercapacitor based on multiwalled carbon nanotubes. Japanese Journal of Applied Physics, 2016, 55, 02BD05.	0.8	22
1360	Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability. Electrochimica Acta, 2016, 222, 1585-1591.	2.6	32
1361	A strong and sticky hydrogel electrolyte for flexible supercapacitors. AIP Conference Proceedings, 2016, , .	0.3	1
1362	Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films. AIP Conference Proceedings, 2016, , .	0.3	5
1363	Enhanced energy density of a supercapacitor using 2D CoMoO ₄ ultrathin nanosheets and asymmetric configuration. Nanotechnology, 2016, 27, 505401.	1.3	23
1364	High-voltage ionic liquid electrolytes based on ether functionalized pyrrolidinium for electric double-layer capacitors. Electrochimica Acta, 2016, 222, 1847-1852.	2.6	31
1365	Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes. Scientific Reports, 2016, 6, 39689.	1.6	17
1366	Highly compressible solid-state supercapacitor with folded paper-based electrode. , 2016, , .		0
1367	Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors. Scientific Reports, 2016, 6, 38620.	1.6	117
1368	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	5
1369	Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. Journal of Power Sources, 2016, 317, 35-42.	4.0	49
1370	High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy, 2016, 106, 103-111.	4.5	70

#	Article	IF	CITATIONS
1371	Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. Journal of Power Sources, 2016, 326, 660-671.	4.0	115
1372	Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide. ACS Applied Materials & Interfaces, 2016, 8, 9872-9880.	4.0	78
1373	Nickel hydroxide coated carbon nanoparticles mediated hybrid three-dimensional graphene foam assembly for supercapacitor. RSC Advances, 2016, 6, 36307-36313.	1.7	14
1374	Synthesis of Capsule-like Porous Hollow Nanonickel Cobalt Sulfides via Cation Exchange Based on the Kirkendall Effect for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 9721-9732.	4.0	134
1375	New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016, 138, 5731-5744.	6.6	529
1376	Template-free assembling Ni nanoparticles to a 3D hierarchical structure for superior performance supercapacitors. RSC Advances, 2016, 6, 29519-29523.	1.7	4
1377	Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. Journal of Power Sources, 2016, 317, 133-142.	4.0	79
1378	Functionalization of Petroleum Coke-Derived Carbon for Synergistically Enhanced Capacitive Performance. Nanoscale Research Letters, 2016, 11, 163.	3.1	31
1379	Flexible electrochemical capacitors based on polypyrrole/carbon fibers via chemical polymerization of pyrrole vapor. Applied Surface Science, 2016, 377, 274-282.	3.1	29
1380	Binder-free supercapacitive of ultrathin Co(OH) ₂ nanosheets-decorated nitrogen-doped carbon nanotubes core-shell nanostructures. Materials Technology, 2016, 31, 521-525.	1.5	17
1381	A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Current Applied Physics, 2016, 16, 658-664.	1.1	16
1382	CoO _x nanoparticles embedded in porous graphite carbon nanofibers derived from electrospun polyacrylonitrile@polypyrrole core–shell nanostructures for high-performance supercapacitors. RSC Advances, 2016, 6, 54693-54701.	1.7	29
1383	Sn@SnO 2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor. Electrochimica Acta, 2016, 209, 350-359.	2.6	23
1384	Development of Candle Soot Based Carbon Nanoparticles (CNPs)/Polyaniline Electrode and Its Comparative Study with CNPs/MnO2 in Supercapacitors. Electrochimica Acta, 2016, 210, 190-198.	2.6	25
1385	Crucial role of a nickel substrate in Co3O4 pseudocapacitor directly grown on nickel and its electrochemical properties. Journal of Alloys and Compounds, 2016, 676, 407-413.	2.8	10
1386	Designed construction and validation of carbon-free porous MnO spheres with hybrid architecture as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 15854-15860.	1.3	16
1387	Co ₃ O ₄ /ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Advances, 2016, 6, 52137-52142.	1.7	95
1388	A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors. Materials Research Express, 2016, 3, 065001.	0.8	11

#	Article	IF	CITATIONS
1389	Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes. Journal of Power Sources, 2016, 326, 580-586.	4.0	20
1390	Facile synthesis of nitrogen-doped graphene on Ni foam for high-performance supercapacitors. Journal of Materials Science, 2016, 51, 6348-6356.	1.7	31
1391	Facile synthesis of nickel doped walnut-like MnO2 nanoflowers and their application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2016, 27, 6202-6207.	1.1	12
1392	Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22, 422-438.	8.2	629
1393	Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 7194-7204.	4.0	190
1394	Hierarchical NiO–In ₂ O ₃ microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. Journal of Materials Chemistry A, 2016, 4, 4820-4830.	5.2	102
1395	Graphene and its nanocomposites used as an active materials for supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 1509-1526.	1.2	23
1396	Nitrogen-doped carbon nanosheets for high-performance liquid as well as solid state supercapacitor cells. RSC Advances, 2016, 6, 35014-35023.	1.7	17
1397	Facile synthesis of a metal–organic framework-derived Mn ₂ O ₃ nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. Journal of Materials Chemistry A, 2016, 4, 8283-8290.	5.2	167
1398	Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model. Journal of Power Sources, 2016, 326, 680-685.	4.0	62
1399	Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1-x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors. Electrochimica Acta, 2016, 203, 21-29.	2.6	63
1400	Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode. Journal of Colloid and Interface Science, 2016, 474, 18-24.	5.0	22
1401	Microwave-assisted synthesis of porous nickel cobaltite with different morphologies in ionic liquid and their application in supercapacitors. Materials Chemistry and Physics, 2016, 176, 6-11.	2.0	23
1402	Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy, 2016, 26, 66-73.	8.2	330
1403	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon, 2016, 105, 260-267.	5.4	108
1404	Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale, 2016, 8, 10406-10414.	2.8	82
1405	Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes. Current Applied Physics, 2016, 16, 665-672.	1.1	40
1406	Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. Journal of Power Sources, 2016, 326, 652-659.	4.0	48

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1407	Engineering electrochemical capacitor applications. Journal of Power Sources, 2016, 32	.6, 726-735.	4.0	109
1408	A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors Materials Chemistry A, 2016, 4, 9739-9743.	. Journal of	5.2	96
1409	Fast pseudocapacitive reactions of three-dimensional manganese dioxide structures syn self-limited redox deposition on microwave-expanded graphite oxide. RSC Advances, 20		1.7	2
1410	Room temperature performance of 4ÂV aqueous hybrid supercapacitor using multi-laye lithium-doped carbon negative electrode. Journal of Power Sources, 2016, 326, 711-71	rred 6.	4.0	16
1411	Preparation of high specific surface area composite carbon cryogels from self-assembly oxide and resorcinol monomers for supercapacitors. Journal of Solid State Electrochemi 20, 1793-1802.	of graphene istry, 2016,	1.2	8
1412	Boron doped ZnO embedded into reduced graphene oxide for electrochemical superca Applied Surface Science, 2016, 378, 368-374.	pacitors.	3.1	39
1413	Carbon quantum dots/Ni–Al layered double hydroxide composite for high-performand supercapacitors. RSC Advances, 2016, 6, 39317-39322.	2e	1.7	55
1414	Vanadium nitride supercapacitors: Effect of Processing Parameters on electrochemical ostorage behavior. Electrochimica Acta, 2016, 207, 37-47.	charge	2.6	62
1415	High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqu electrolyte. Journal of Power Sources, 2016, 318, 235-241.	eous	4.0	62
1416	Metal–organic-framework-derived ZnO@C@NiCo ₂ O ₄ core as an advanced electrode for high-performance supercapacitors. Journal of Materials Ch 2016, 4, 8233-8241.		5.2	94
1417	NiCo ₂ O ₄ @MnMoO ₄ core–shell flowers for hi supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8249-8254.	igh performance	5.2	105
1418	In situ hydrothermal fabrication of a MnO ₂ @CoMoO ₄ @Ni na electrode and ultrahigh energy density of ASCs. RSC Advances, 2016, 6, 46508-46515.	anohybrid	1.7	9
1419	Polycrystalline iron oxide nanoparticles prepared by C-dot-mediated aggregation and re supercapacitor application. RSC Advances, 2016, 6, 45023-45030.	duction for	1.7	16
1420	Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor elect Ceramics International, 2016, 42, 8909-8914.	rodes.	2.3	43
1421	Solution Blown Silicon Carbide Porous Nanofiber Membrane as Electrode Materials for Supercapacitors. Electrochimica Acta, 2016, 207, 257-265.		2.6	39
1422	Composition controlled nickel cobalt sulfide core–shell structures as high capacity ar rate-capability electrodes for hybrid supercapacitors. RSC Advances, 2016, 6, 50209-50	nd good 216.	1.7	32
1423	A novel supercapacitor electrolyte of spiro-(1,1')-bipyrolidinium tetrafluoroborate in acetonitrile/dibutyl carbonate mixed solvents for ultra-low temperature applications. Ele Acta, 2016, 200, 106-114.	ectrochimica	2.6	41
1424	In–situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new sub electrodeposition of flower like nickel hydroxide: application as a new high–performa supercapacitor. Electrochimica Acta, 2016, 206, 317-327.	strate for nce	2.6	22

#	Article	IF	CITATIONS
1425	Tuning the morphology of Co ₃ O ₄ on Ni foam for supercapacitor application. RSC Advances, 2016, 6, 45783-45790.	1.7	50
1426	Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8630-8635.	5.2	170
1427	Electrodeposition of three dimensional-porous Ni/Ni(OH) 2 hierarchical nano composite via etching the Ni/Zn/Ni(OH) 2 precursor as a high performance pseudocapacitor. Chemical Engineering Journal, 2016, 299, 282-291.	6.6	33
1428	Excellent Electrochemical Performance Hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for Asymmetric Supercapacitors. Electrochimica Acta, 2016, 207, 87-96.	2.6	85
1429	Nonstoichiometry-Induced Enhancement of Electrochemical Capacitance in Anodic TiO ₂ Nanotubes with Controlled Pore Diameter. Journal of Physical Chemistry C, 2016, 120, 9569-9580.	1.5	25
1430	Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2016, 4, 3008-3016.	3.2	104
1431	Facilely synthesis of 3D Cu O–Cu nanostructures as binder-free electrode for supercapacitors. Chemical Physics Letters, 2016, 652, 172-176.	1.2	13
1432	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205
1433	Amorphous CoMoS4 for a valuable energy storage material candidate. Chemical Engineering Journal, 2016, 301, 266-275.	6.6	94
1434	High performance of Mn3O4 cubes for supercapacitor applications. Materials Letters, 2016, 178, 171-174.	1.3	51
1435	Self-assembled reduced graphene hydrogels by facile chemical reduction using acetaldehyde oxime for electrode materials in supercapacitors. RSC Advances, 2016, 6, 48276-48282.	1.7	7
1436	Hierarchically Layered MoS 2 /Mn 3 O 4 Hybrid Architectures for Electrochemical Supercapacitors with Enhanced Performance. Electrochimica Acta, 2016, 209, 389-398.	2.6	68
1437	Simple synthesis of porous carbon materials for high-performance supercapacitors. Journal of Applied Electrochemistry, 2016, 46, 703-712.	1.5	19
1438	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	8.2	74
1439	In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8888-8897.	5.2	118
1440	Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li ₃ VO ₄ /MWCNT Composites for Hybrid Supercapacitors. ACS Nano, 2016, 10, 5398-5404.	7.3	78
1441	Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9113-9123.	5.2	120
1442	Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. Journal of Membrane Science, 2016, 514, 366-375.	4.1	41

#	Article	IF	CITATIONS
1443	Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2016, 4, 15968-15979.	5.2	80
1444	Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co 3 O 4 nanoparticles and MnO x composites. Electrochimica Acta, 2016, 215, 535-542.	2.6	22
1445	Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors. Journal of Power Sources, 2016, 329, 473-483.	4.0	55
1446	Porous carbon nanosheets derived from Al-based MOFs for supercapacitors. Microporous and Mesoporous Materials, 2016, 236, 94-99.	2.2	43
1447	Preparation of High-Performance Internal Tandem Electric Double-Layer Capacitors (IT-EDLCs) from Melt-Spun Lignin Fibers. Journal of Wood Chemistry and Technology, 2016, 36, 418-431.	0.9	9
1448	Facile and Scalable Ultra–fine Cobalt Oxide/Reduced Graphene Oxide Nanocomposites for High Energy Asymmetric Supercapacitorsâ€. ChemistrySelect, 2016, 1, 3455-3467.	0.7	58
1449	Performance of High Energy Density Symmetric Supercapacitor Based on Sputtered MnO ₂ Nanorods. ChemistrySelect, 2016, 1, 3885-3891.	0.7	57
1450	Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. Journal of Power Sources, 2016, 330, 195-203.	4.0	157
1451	Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure. Chemical Physics Letters, 2016, 664, 23-28.	1.2	24
1452	Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement. Journal of Physics Condensed Matter, 2016, 28, 464007.	0.7	18
1453	Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH) ₂ Nanowires for Ultrahigh Volumetric Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27868-27876.	4.0	82
1454	Application of Nanoparticles. , 2016, , 163-193.		5
1455	Surface modified catalytically grown carbon nanofibers/MnO2 composites for use in supercapacitor. Thin Solid Films, 2016, 620, 54-63.	0.8	23
1456	High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes. Journal of Power Sources, 2016, 332, 413-419.	4.0	35
1457	A binder free synthesis of 1D PANI and 2D MoS ₂ nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Advances, 2016, 6, 101592-101601.	1.7	57
1458	One-step hydrothermal preparation of TiO2/RGO/Ni(OH)2/NF electrode with high performance for supercapacitors. Electrochimica Acta, 2016, 218, 216-227.	2.6	51
1459	Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance. Journal of Power Sources, 2016, 333, 125-133.	4.0	31
1460	High-performance MgCo2O4 nanocone arrays grown on three-dimensional nickel foams: Preparation and application as binder-free electrode for pseudo-supercapacitor. Journal of Power Sources, 2016, 333, 118-124.	4.0	94

#	Article	IF	CITATIONS
1461	The Origin of Improved Electrical Double‣ayer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 13822-13827.	7.2	161
1462	ZnO@MnO ₂ Core–Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 30531-30542.	4.0	130
1463	The Origin of Improved Electrical Double‣ayer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Angewandte Chemie, 2016, 128, 14026-14031.	1.6	13
1464	Heteroatomâ€Doped Porous Carbon Nanosheets: General Preparation and Enhanced Capacitive Properties. Chemistry - A European Journal, 2016, 22, 16668-16674.	1.7	17
1465	Proportion of composition in a composite does matter for advanced supercapacitor behavior. Journal of Materials Chemistry A, 2016, 4, 17440-17454.	5.2	26
1466	Highly Ordered Hierarchical Mesoporous MnCo ₂ O ₄ with Cubic <i>I</i> α3 <i>d</i> Symmetry for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23976-23983.	1.5	34
1467	Phaseâ€5eparated Polyaniline/Graphene Composite Electrodes for Highâ€Rate Electrochemical Supercapacitors. Advanced Materials, 2016, 28, 10211-10216.	11.1	130
1468	Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016, 1, .	19.8	1,655
1469	Preparation and performance of novel enhanced electrochemical capacitors based on graphene constructed self-assembled Co ₃ O ₄ microspheres. RSC Advances, 2016, 6, 91904-91909.	1.7	4
1470	3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 6463-6472.	3.2	51
1471	Assembly of porous NiO nanowires on carbon cloth as a flexible electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 74874-74877.	1.7	19
1472	A Binder-Free Hybrid of CuO-Microspheres and rGO Nanosheets as an Alternative Material for Next Generation Energy Storage Application. ChemistrySelect, 2016, 1, 2826-2833.	0.7	28
1473	Nanowire-Enabled Energy Storage. Nanoscience and Technology, 2016, , 203-225.	1.5	0
1474	Facile synthesis of porous SnO2 film grown on Ni foam applied for high-performance supercapacitors. Journal of Alloys and Compounds, 2016, 689, 587-592.	2.8	35
1475	A flexible and high-performance all-solid-state supercapacitor device based on Ni3S2 nanosheets coated ITO nanowire arrays on carbon fabrics. RSC Advances, 2016, 6, 75186-75193.	1.7	29
1476	Tungsten addenda mixed heteropolymolybdates supported on functionalized graphene for high-performance aqueous supercapacitors. RSC Advances, 2016, 6, 81085-81091.	1.7	36
1477	Fabrication of porous double-urchin-like MgCo2O4 hierarchical architectures for high-rate supercapacitors. Journal of Alloys and Compounds, 2016, 688, 933-938.	2.8	54
1478	Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene. Advanced Energy Materials, 2016, 6, 1600969.	10.2	580

#	Article	IF	CITATIONS
1479	A high energy asymmetric supercapacitor based on flower-like CoMoO 4 /MnO 2 heterostructures and activated carbon. Electrochimica Acta, 2016, 213, 663-671.	2.6	62
1480	Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors. Journal of Power Sources, 2016, 327, 535-542.	4.0	32
1481	Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry. Electrochemistry Communications, 2016, 70, 73-77.	2.3	40
1482	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	3.2	116
1483	Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2016, 4, 14586-14594.	5.2	44
1484	Free standing hollow carbon nanofiber mats for supercapacitor electrodes. RSC Advances, 2016, 6, 78528-78537.	1.7	32
1485	Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Nanoscale, 2016, 8, 16323-16331.	2.8	49
1486	High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode. Electrochimica Acta, 2016, 213, 626-632.	2.6	37
1487	Mesoporous graphitic carbon microtubes derived from fullerene C ₇₀ tubes as a high performance electrode material for advanced supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13899-13906.	5.2	81
1488	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie, 2016, 128, 9728-9731.	1.6	48
1489	Highly compressionâ€ŧolerant folded carbon nanotube/paper as solidâ€state supercapacitor electrode. Micro and Nano Letters, 2016, 11, 586-590.	0.6	12
1490	Comparative Study of Individual and Mixed Aqueous Electrolytes with ZnFe ₂ O ₄ Nano–flakes Thin Film as an Electrode for Supercapacitor Application. ChemistrySelect, 2016, 1, 959-966.	0.7	32
1491	Carbon supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors. Materials Letters, 2016, 183, 290-295.	1.3	24
1492	Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceramics International, 2016, 42, 18058-18063.	2.3	36
1493	Facile synthesis of Cu ₃ Mo ₂ O ₉ @Ni foam nano - structures for high-performance supercapacitors. Materials Technology, 2016, 31, 653-657.	1.5	14
1494	Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials. RSC Advances, 2016, 6, 87188-87212.	1.7	58
1495	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45, 5925-5950.	18.7	2,969
1496	2D materials for renewable energy storage devices: Outlook and challenges. Chemical Communications, 2016, 52, 13528-13542.	2.2	96

#	Article	IF	CITATIONS
1497	Electrochemical kinetics of nanostructure LiFePO 4 /graphitic carbon electrodes. Electrochemistry Communications, 2016, 72, 10-14.	2.3	21
1498	Self-supporting hierarchical rGO@Ni nanosheet@Co3O4 nanowire array and its application in high-rate batteries. Journal of Power Sources, 2016, 327, 281-288.	4.0	10
1499	Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. Journal of Power Sources, 2016, 328, 520-526.	4.0	35
1500	Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. Journal of Power Sources, 2016, 328, 510-519.	4.0	123
1501	Electric capacity of electrochemical capacitors with composite electrodes based on the aluminum–active carbon system. Russian Journal of Electrochemistry, 2016, 52, 762-769.	0.3	1
1502	Effects of activation temperature on the deoxygenation, specific surface area and supercapacitor performance of graphene. Carbon, 2016, 109, 558-565.	5.4	40
1503	New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping. Nano Letters, 2016, 16, 5719-5727.	4.5	108
1504	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Materials, 2016, 8, e300-e300.	3.8	80
1505	Solid Fullerenes under Compression. , 2016, , 195-208.		5
1506	Potentiostatic deposition of CoNi2S4 nanosheet arrays on nickel foam: effect of depostion time on the morphology and pseudocapacitive performance. Journal of Materials Science, 2016, 51, 10641-10651.	1.7	30
1507	Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery. Journal of Power Sources, 2016, 328, 405-412.	4.0	25
1508	Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. Journal of Materials Chemistry A, 2016, 4, 14298-14306.	5.2	117
1509	In situ removal of template to synthesize mesoporous NiCo 2 O 4 for high performance battery–type electrode. Journal of Electroanalytical Chemistry, 2016, 782, 133-137.	1.9	10
1510	Asymmetric Supercapacitor Based on Nanostructured Ceâ€doped NiO (Ce:NiO) as Positive and Reduced Graphene Oxide (rGO) as Negative Electrode. ChemistrySelect, 2016, 1, 3471-3478.	0.7	44
1511	One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors. International Journal of Hydrogen Energy, 2016, 41, 17496-17505.	3.8	55
1512	In Situ Growth of Free-Standing All Metal Oxide Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 26019-26029.	4.0	80
1513	Recent Developments in Design and Fabrication of Graphene-Based Interdigital Micro-Supercapacitors for Miniaturized Energy Storage Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1752-1765.	1.4	21
1514	Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Advances, 2016, 6,	1.7	18

#	Article	IF	CITATIONS
1515	A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors. Journal of Materials Chemistry A, 2016, 4, 16432-16445.	5.2	287
1516	Superior Cycle Stability Performance of Quasi-Cuboidal CoV ₂ O ₆ Microstructures as Electrode Material for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27291-27297.	4.0	79
1517	Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. Journal of Power Sources, 2016, 327, 135-144.	4.0	73
1518	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
1519	Nylon 6,6/Polyaniline Based Sheath Nanofibers for High-Performance Supercapacitors. Electrochimica Acta, 2016, 213, 124-131.	2.6	30
1520	Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. Journal of Power Sources, 2016, 324, 788-797.	4.0	72
1521	Review on α-Fe2O3 based negative electrode for high performance supercapacitors. Journal of Power Sources, 2016, 327, 297-318.	4.0	293
1522	Flower-Like Nickel–Cobalt Oxide Decorated Dopamine-Derived Carbon Nanocomposite for High Performance Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 5013-5020.	3.2	90
1523	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 9576-9579.	7.2	87
1524	Synthesis of 3D flower-like Co3O4/Polypyrrole nanosheet networks electrode for high performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 646-653.	2.3	28
1525	High-Performance Supercapacitor Electrode Based on Cobalt Oxide–Manganese Dioxide–Nickel Oxide Ternary 1D Hybrid Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 20786-20792.	4.0	188
1526	Ni _{0.9} Co _{1.92} Se ₄ nanostructures: binder-free electrode of coral-like bimetallic selenide for supercapacitors. RSC Advances, 2016, 6, 75251-75257.	1.7	82
1527	A Ni _{1â^²x} Zn _x S/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 12929-12939.	5.2	52
1528	Membrane Separators for Electrochemical Energy Storage Technologies. Nanostructure Science and Technology, 2016, , 417-462.	0.1	1
1529	Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes. Electrochimica Acta, 2016, 212, 671-677.	2.6	33
1530	A Novel Sustainable Flour Derived Hierarchical Nitrogenâ€Doped Porous Carbon/Polyaniline Electrode for Advanced Asymmetric Supercapacitors. Advanced Energy Materials, 2016, 6, 1601111.	10.2	303
1531	Electrospun ZnFe2O4-based nanofiber composites with enhanced supercapacitive properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 211, 141-148.	1.7	44
1532	Two-dimensional cobalt–manganese binary metal oxide porous nanosheets for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 3473-3480.	1.2	4

#	Article	IF	Citations
1533	Facile one-pot synthesis of a NiMoO ₄ /reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Advances, 2016, 6, 69627-69633.	1.7	51
1534	Asymmetric Behavior of Positive and Negative Electrodes in Carbon/Carbon Supercapacitors and Its Underlying Mechanism. Journal of Physical Chemistry C, 2016, 120, 24675-24681.	1.5	38
1535	A novel open architecture built by ultra-fine single-crystal Co ₂ (CO ₃)(OH) ₂ nanowires and reduced graphene oxide for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17171-17179.	5.2	74
1536	MnO2/PVP/MWCNT hybrid nano composites as electrode materials for high performance supercapacitor. Materials Research Express, 2016, 3, 105503.	0.8	7
1537	Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes. Journal of Power Sources, 2016, 334, 162-169.	4.0	38
1538	Facile fabrication of Co ₂ CuS ₄ nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17560-17571.	5.2	147
1539	Superstructure ZrV ₂ O ₇ nanofibres: thermal expansion, electronic and lithium storage properties. Physical Chemistry Chemical Physics, 2016, 18, 32160-32168.	1.3	8
1540	Facile synthesis of carbon sphere@Ni(OH) ₂ and derivatives for high-performance supercapacitors. Functional Materials Letters, 2016, 09, 1642002.	0.7	28
1541	Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Advances, 2016, 6, 107426-107432.	1.7	34
1542	Porous carbons produced by the pyrolysisof green onion leaves and their capacitive behavior. New Carbon Materials, 2016, 31, 475-484.	2.9	28
1543	Size and Structural Effect of Crumpled Graphene Balls on the Electrochemical Properties for Supercapacitor Application. Electrochimica Acta, 2016, 222, 58-63.	2.6	30
1544	Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 33626-33634.	4.0	222
1545	Effect of thickness on the capacitive behavior and stability of ultrathin polyaniline for high speed super capacitors. Russian Journal of Electrochemistry, 2016, 52, 933-937.	0.3	16
1546	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426.	4.0	31
1547	High-Capacitance Mechanism for Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene by <i>in Situ</i> Electrochemical Raman Spectroscopy Investigation. ACS Nano, 2016, 10, 11344-11350.	7.3	455
1548	Three-dimensional porous polyaniline/graphene-coated activated carbon fiber electrodes for supercapacitors. RSC Advances, 2016, 6, 111465-111471.	1.7	17
1549	Nanocarbon Hybrid Materials. , 2016, , 625-646.		0
1550	Advanced Materials for Supercapacitors. , 2016, , 99-128.		Ο

#	Article	IF	CITATIONS
1551	KOHâ€Activated Porous Carbons Derived from Chestnut Shell with Superior Capacitive Performance. Chinese Journal of Chemistry, 2016, 34, 1093-1102.	2.6	22
1552	Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors. Scientific Reports, 2016, 6, 21177.	1.6	123
1553	Preparation of a hybrid Cu ₂ O/CuMoO ₄ nanosheet electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17749-17756.	5.2	71
1554	Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application. Scientific Reports, 2016, 6, 25151.	1.6	47
1555	Flower-like ZnO@MnCo ₂ O ₄ nanosheet structures on nickel foam as novel electrode material for high-performance supercapacitors. RSC Advances, 2016, 6, 102961-102967.	1.7	47
1556	Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage. Scientific Reports, 2016, 6, 31120.	1.6	125
1557	Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)2 core/shell electrodes. Scientific Reports, 2016, 6, 21566.	1.6	24
1558	Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Scientific Reports, 2016, 6, 22699.	1.6	178
1559	From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics. Semiconductor Science and Technology, 2016, 31, 103002.	1.0	45
1560	Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo ₂ O ₄ Nanowire Cathode and MoO ₂ –C Nanofilm Anode. ACS Applied Materials & Interfaces, 2016, 8, 30232-30238.	4.0	90
1561	Facile synthesis of hierarchical CoMoO ₄ @NiMoO ₄ core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 18578-18584.	5.2	171
1562	Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Advances, 2016, 6, 109340-109345.	1.7	38
1563	Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid. ChemSusChem, 2016, 9, 3093-3101.	3.6	33
1564	Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific Reports, 2016, 6, 19028.	1.6	96
1565	Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports, 2016, 6, 31555.	1.6	26
1566	Chemically Integrated Inorganicâ€Graphene Twoâ€Dimensional Hybrid Materials for Flexible Energy Storage Devices. Small, 2016, 12, 6183-6199.	5.2	126
1567	The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors. Science China Materials, 2016, 59, 629-638.	3.5	28
1568	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. Environmental Science & Technology, 2016, 50, 12421-12428.	4.6	52

#	Article	IF	CITATIONS
1569	Large-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors. Scientific Reports, 2016, 6, 20021.	1.6	63
1570	Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Scientific Reports, 2016, 6, 31465.	1.6	71
1571	A three-dimensional vertically aligned carbon nanotube/polyaniline composite as a supercapacitor electrode. RSC Advances, 2016, 6, 110592-110599.	1.7	15
1572	Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices. Electrochimica Acta, 2016, 220, 296-303.	2.6	56
1573	PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor. Scientific Reports, 2016, 6, 35490.	1.6	67
1574	Hybridized Phosphate with Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors. Scientific Reports, 2016, 6, 17613.	1.6	86
1575	Nanostructured carbon—Ni(OH)2 composites. Russian Chemical Bulletin, 2016, 65, 120-124.	0.4	2
1576	Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from <i>Moringa oleifera</i> Branches for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 33060-33071.	4.0	137
1577	Manganese silicate drapes as a novel electrode material for supercapacitors. RSC Advances, 2016, 6, 105771-105779.	1.7	26
1578	Synthesis of additive free electrode material of supercapacitor for energy storage applications. , 2016,		2
1579	Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional Materials, 2016, 26, 903-910.	7.8	63
1580	3D Freeze asting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	11.1	390
1581	3 D Interlayer Nanohybrids Composed of Sulfamicâ€Acidâ€Doped PEdot Grown on Expanded Graphite for Highâ€Performance Supercapacitors. ChemPlusChem, 2016, 81, 242-250.	1.3	10
1582	Directlyâ€Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for Highâ€Performance Flexible Supercapacitors. ChemSusChem, 2016, 9, 370-378.	3.6	52
1583	The Excellence of Both Worlds: Developing Effective Double Perovskite Oxide Catalyst of Oxygen Reduction Reaction for Room and Elevated Temperature Applications. Advanced Functional Materials, 2016, 26, 4106-4112.	7.8	106
1584	Origin and Tunability of Unusually Large Surface Capacitance in Doped Cerium Oxide Studied by Ambientâ€Pressure Xâ€Ray Photoelectron Spectroscopy. Advanced Materials, 2016, 28, 4692-4697.	11.1	34
1585	Armoring Graphene Cathodes for Highâ€Rate and Longâ€Life Lithium Ion Supercapacitors. Advanced Energy Materials, 2016, 6, 1502064.	10.2	83
1586	High Pseudocapacitive Performance of MnO ₂ Nanowires on Recyclable Electrodes. ChemSusChem, 2016, 9, 1020-1026.	3.6	13

#	Article	IF	CITATIONS
1587	Facile Self-Cross-Linking Synthesis of 3D Nanoporous Co ₃ O ₄ /Carbon Hybrid Electrode Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 16035-16044.	4.0	64
1588	Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring. Journal of Solid State Electrochemistry, 2016, 20, 1413-1420.	1.2	3
1589	Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Materials Research Bulletin, 2016, 83, 167-171.	2.7	48
1590	Quinone and its derivatives for energy harvesting and storage materials. Journal of Materials Chemistry A, 2016, 4, 11179-11202.	5.2	211
1591	Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10869-10877.	5.2	83
1592	Enhanced Durability of Porous Carbon/Single-Walled Carbon Nanotube Composite Electrodes for Supercapacitors. Journal of the Electrochemical Society, 2016, 163, A1753-A1758.	1.3	5
1593	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	1.3	51
1594	Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application. Synthetic Metals, 2016, 220, 227-235.	2.1	25
1595	Suitable Morphology Makes CoSn(OH) ₆ Nanostructure a Superior Electrochemical Pseudocapacitor. ACS Applied Materials & Interfaces, 2016, 8, 17987-17998.	4.0	58
1596	Novel three-dimensional flower-like porous Al ₂ O ₃ nanosheets anchoring hollow NiO nanoparticles for high-efficiency lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11507-11515.	5.2	30
1597	Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 15661-15667.	4.0	275
1598	Synthesis of hybrid Ni-Co oxide @ 3D carbon skeleton derived from pollen grains for advanced supercapacitors. Electrochimica Acta, 2016, 210, 695-703.	2.6	8
1599	Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode materials. Electrochimica Acta, 2016, 210, 915-924.	2.6	72
1600	A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 2016, 321, 257-263.	4.0	127
1601	Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale, 2016, 8, 12330-12338.	2.8	31
1602	High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. Journal of Power Sources, 2016, 324, 302-308.	4.0	124
1603	Solid waste for energy storage material as electrode of supercapacitors. Materials Letters, 2016, 181, 191-195.	1.3	12
1604	Preparation and supercapacitor performance of assembled graphene fiber and foam. Progress in Natural Science: Materials International, 2016, 26, 212-220.	1.8	29

#	Article	IF	CITATIONS
1605	Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. Journal of Physical Chemistry Letters, 2016, 7, 2333-2338.	2.1	60
1606	Ni(OH)2 nanowires/graphite foam composite as an advanced supercapacitor electrode with improved cycle performance. International Journal of Hydrogen Energy, 2016, 41, 12136-12145.	3.8	21
1607	Three dimensional iron oxide/graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Advances, 2016, 6, 58994-59000.	1.7	80
1608	High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon, 2016, 107, 844-851.	5.4	66
1609	Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors. Electrochimica Acta, 2016, 213, 400-407.	2.6	52
1610	Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10786-10793.	5.2	125
1611	Ultrafine V ₂ O ₅ Nanowires in 3D Current Collector for Highâ€Performance Supercapacitor. ChemElectroChem, 2016, 3, 704-708.	1.7	31
1612	High-performance supercapacitors based on graphene/MnO ₂ /activated carbon fiber felt composite electrodes in different neutral electrolytes. RSC Advances, 2016, 6, 12525-12529.	1.7	22
1613	Dual tuning of 1 D heteroatoms doped porous carbon nanoarchitectures for supercapacitors: the role of balanced P/N doping and core@shell nano-networks. RSC Advances, 2016, 6, 9180-9185.	1.7	9
1614	MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 3362-3370.	5.2	85
1615	A self-assembled intercalated metal–organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors. Journal of Materials Chemistry A, 2016, 4, 3398-3405.	5.2	34
1616	Synthesis of Ag/PANI@MnO ₂ core–shell nanowires and their capacitance behavior. RSC Advances, 2016, 6, 17415-17422.	1.7	18
1617	Band gap engineering of MnO ₂ through in situ Al-doping for applicable pseudocapacitors. RSC Advances, 2016, 6, 13914-13919.	1.7	56
1618	A facile enhancement in battery-type of capacitive performance of spinel NiCo2O4 nanostructure via directly tuning thermal decomposition temperature. Electrochimica Acta, 2016, 191, 364-374.	2.6	27
1619	Hierarchical porous nitrogen doping activated carbon with high performance for supercapacitor electrodes. RSC Advances, 2016, 6, 15320-15326.	1.7	21
1620	Hierarchically MnO ₂ –Nanosheet Covered Submicrometer-FeCo ₂ O ₄ -Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4762-4770.	4.0	104
1621	A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4233-4241.	4.0	58
1622	Nanostructured Si@C/NiCo ₂ O ₄ heterostructures for a high performance supercapacitor. RSC Advances, 2016, 6, 15137-15142.	1.7	5

#	Article	IF	CITATIONS
1623	Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Applied Surface Science, 2016, 366, 46-52.	3.1	41
1624	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	15.6	623
1625	Simple synthesis of a CoMoS ₄ based nanostructure and its application for high-performance supercapacitors. RSC Advances, 2016, 6, 7633-7642.	1.7	69
1626	Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochimica Acta, 2016, 191, 346-354.	2.6	42
1627	Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.	8.2	2,197
1628	Hollow NiCo ₂ S ₄ nanotube arrays grown on carbon textile as a self-supported electrode for asymmetric supercapacitors. RSC Advances, 2016, 6, 9950-9957.	1.7	47
1629	Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101, 49-56.	5.4	275
1630	Self-Assembled Graphene/Polyaniline/Co3O4 Ternary Hybrid Aerogels for Supercapacitors. Electrochimica Acta, 2016, 191, 444-451.	2.6	107
1631	Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy, 2016, 21, 90-105.	8.2	65
1632	Rational synthesis of Cu-doped porous l´-MnO2 microsphere for high performance supercapacitor applications. Electrochimica Acta, 2016, 191, 716-723.	2.6	52
1633	Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, 307, 391-400.	4.0	499
1634	Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Materials Letters, 2016, 164, 401-404.	1.3	17
1635	Preparation of Y-doped ZrO ₂ coatings on MnO ₂ electrodes and their effect on electrochemical performance for MnO ₂ electrochemical supercapacitors. RSC Advances, 2016, 6, 1750-1759.	1.7	19
1636	Ultrathin NiO nanoflakes electrode materials for supercapacitors. Applied Surface Science, 2016, 360, 8-13.	3.1	103
1637	Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 2016, 19, 109-123.	8.3	811
1638	Hierarchical structures composed of MnCo ₂ O ₄ @MnO ₂ core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Transactions, 2016, 45, 572-578.	1.6	88
1639	Facile hydrothermal synthesis of NiS hollow microspheres with mesoporous shells for high-performance supercapacitors. New Journal of Chemistry, 2016, 40, 1663-1670.	1.4	31
1640	Microstructural tunability of co-continuous bijel-derived electrodes to provide high energy and power densities. Journal of Materials Chemistry A, 2016, 4, 1000-1007.	5.2	56

#	Article	IF	CITATIONS
1641	Nanocomposites of Graphene Nanosheets/Multiwalled Carbon Nanotubes as Electrodes for In-plane Supercapacitors. Electrochimica Acta, 2016, 187, 312-322.	2.6	51
1642	Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 3265-3270.	1.1	20
1643	One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. Journal of Power Sources, 2016, 315, 120-126.	4.0	118
1644	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	4
1645	Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 2016, 22, 414-421.	8.2	138
1646	Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016, 227, 210-218.	2.2	32
1647	High-performance nickel cobalt sulfide materials via low-cost preparation for advanced asymmetric supercapacitors. RSC Advances, 2016, 6, 42633-42642.	1.7	29
1648	Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science, 2016, 51, 5573-5588.	1.7	48
1649	Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability. Journal of Power Sources, 2016, 312, 184-191.	4.0	37
1650	Salt Solutions in Carbon Nanotubes: The Role of Cationâ `Ï€ Interactions. Journal of Physical Chemistry C, 2016, 120, 7332-7338.	1.5	62
1651	Engineering the Morphology of Carbon Materials: 2D Porous Carbon Nanosheets for Highâ€Performance Supercapacitors. ChemElectroChem, 2016, 3, 822-828.	1.7	85
1652	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy and Environmental Science, 2016, 9, 2053-2060.	15.6	212
1653	Nanoporous Metals for Advanced Energy Technologies. , 2016, , .		27
1654	Nanoporous Metals for Supercapacitor Applications. , 2016, , 137-173.		5
1655	One-pot synthesis of pearl-chain-like manganese dioxide-decorated titanium grids as advanced binder-free supercapacitors electrodes. Ceramics International, 2016, 42, 9227-9233.	2.3	21
1656	Ceria nanoparticles uniformly decorated on graphene nanosheets with coral-like morphology for high-performance supercapacitors. Materials Research Bulletin, 2016, 78, 163-171.	2.7	20
1657	Unique Core–Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo ₂ O ₄ Support for High-Performance Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 6093-6100.	4.0	205
1658	Layer-by-layer assembled (high-energy carbon nanotube/conductive carbon nanotube) _n nanocomposites for high volumetric capacitance supercapacitor electrodes. RSC Advances, 2016, 6, 21844-21853.	1.7	14

#	Article	IF	CITATIONS
1659	Construction of a novel hierarchical structured NH ₄ -Co-Ni phosphate toward an ultrastable aqueous hybrid capacitor. Nanoscale, 2016, 8, 6636-6645.	2.8	69
1660	lonogel-based solid-state supercapacitor operating over a wide range of temperature. Electrochimica Acta, 2016, 206, 490-495.	2.6	84
1661	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
1662	Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2016, 2, 37-54.	2.8	620
1663	Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapacitors. Materials Letters, 2016, 170, 105-109.	1.3	36
1664	The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochimica Acta, 2016, 193, 199-205.	2.6	48
1665	Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior. Electrochimica Acta, 2016, 193, 293-301.	2.6	15
1666	Biomass-Swelling Assisted Synthesis of Hierarchical Porous Carbon Fibers for Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 28283-28290.	4.0	190
1667	Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 4724-4729.	4.0	119
1668	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
1669	Manganous-Manganic Oxide@Carbon Core-Shell Nanorods for Supercapacitors with High Cycle Retention. ECS Journal of Solid State Science and Technology, 2016, 5, M5-M11.	0.9	15
1670	Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. Electrochimica Acta, 2016, 193, 116-127.	2.6	151
1671	Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes. Journal of Industrial and Engineering Chemistry, 2016, 36, 139-146.	2.9	11
1672	Graphene-constructed flower-like porous Co(OH) ₂ with tunable hierarchical morphologies for supercapacitors. RSC Advances, 2016, 6, 16745-16750.	1.7	31
1673	Rapid Preparation of Crosslinked N-doped Graphene by Burning Method for High-Performance Electrochemical Capacitors. Electrochimica Acta, 2016, 192, 243-250.	2.6	12
1674	Revisiting Li+ intercalation into various crystalline phases of Nb2O5 anchored on graphene sheets as pseudocapacitive electrodes. Journal of Power Sources, 2016, 309, 42-49.	4.0	78
1675	High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. Journal of Materials Chemistry A, 2016, 4, 3828-3834.	5.2	42
1676	Zinc Oxide Encapsulated Carbon Nanotube Thin Films for Energy Storage Applications. Electrochimica Acta, 2016, 192, 377-384.	2.6	57

#	Article	IF	CITATIONS
1677	Hierarchical Manganese Dioxide/Poly(3,4-ethylenedioxythiophene) Core–Shell Nanoflakes on Ramie-Derived Carbon Fiber for High-Performance Flexible All-Solid-State Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 1201-1211.	3.2	81
1678	Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. Journal of Power Sources, 2016, 308, 158-165.	4.0	164
1679	High Performance Supercapacitors from Novel Metal-Doped Ceria-Decorated Aminated Graphene. Journal of Physical Chemistry C, 2016, 120, 3107-3116.	1.5	83
1680	FexSnyMn1-x-yO2 deposited on MCM-41 as electrode for electrochemical supercapacitor. Electrochimica Acta, 2016, 192, 328-339.	2.6	6
1681	Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electrochimica Acta, 2016, 192, 259-267.	2.6	60
1682	Comparative Electrochemical Charge Storage Properties of Bulk and Nanoscale Vanadium Oxide Electrodes. Journal of Solid State Electrochemistry, 2016, 20, 1445-1458.	1.2	27
1683	Nickel-Manganese Layered Double Hydroxide Nanosheets Supported on Nickel Foam for High-performance Supercapacitor Electrode Materials. Electrochimica Acta, 2016, 194, 179-186.	2.6	208
1684	Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Materials, 2016, 3, 113-122.	9.5	72
1685	Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 449-457.	1.2	36
1686	Diverse birnessite MnO 2 nanosheets-based nanocomposites for supercapacitors. Materials Letters, 2016, 171, 319-322.	1.3	15
1687	Growth of NiCo ₂ O ₄ @MnMoO ₄ Nanocolumn Arrays with Superior Pseudocapacitor Properties. ACS Applied Materials & Interfaces, 2016, 8, 8568-8575.	4.0	100
1688	High-quality Porous Cobalt Monoxide Nanowires @ Ultrathin Manganese dioxide Sheets Core-Shell Nanowire Arrays on Ni Foam for High-Performance Supercapacitor. Electrochimica Acta, 2016, 194, 377-384.	2.6	53
1689	Frequency-dependence of electric double layer capacitance of TiO 2 -based composite nanotube arrays. Journal of Electroanalytical Chemistry, 2016, 779, 199-206.	1.9	5
1690	NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. Journal of Power Sources, 2016, 312, 156-164.	4.0	357
1691	Non-aqueous nanoporous gold based supercapacitors with high specific energy. Scripta Materialia, 2016, 116, 76-81.	2.6	22
1692	Tuning electromechanics of dynamic ripple pattern in graphene monolayer. Carbon, 2016, 98, 510-518.	5.4	10
1693	Understanding the mechanism of hydrogenated NiCo ₂ O ₄ nanograss supported on Ni foam for enhanced-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5198-5204.	5.2	64
1694	Electrochemical Preparation of Porous Poly(3,4-ethylenedioxythiophene) Electrodes from Room Temperature Ionic Liquids for Supercapacitors. Journal of the Electrochemical Society, 2016, 163, G61-G68.	1.3	23

#	Article	IF	CITATIONS
1695	Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors. ACS Nano, 2016, 10, 3977-3984.	7.3	99
1696	Solid-state NMR studies of supercapacitors. Solid State Nuclear Magnetic Resonance, 2016, 74-75, 16-35.	1.5	49
1697	Synthesis and electrochemical performances of mixed-valence vanadium oxide/ordered mesoporous carbon composites for supercapacitors. RSC Advances, 2016, 6, 25056-25061.	1.7	15
1698	Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double-layer capacitors with activated carbon electrodes. Journal of Membrane Science, 2016, 505, 148-156.	4.1	25
1699	NiCo ₂ S ₄ nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors. CrystEngComm, 2016, 18, 2363-2374.	1.3	72
1700	Carbon-Doped Hollow Titania with Tuneable Shell Architecture for Supercapacitors. Australian Journal of Chemistry, 2016, 69, 183.	0.5	2
1701	3D Graphene-Nickel Hydroxide Hydrogel Electrode for High-Performance Supercapacitor. Electrochimica Acta, 2016, 196, 653-660.	2.6	83
1702	Porous carbon@MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density. Journal of Electroanalytical Chemistry, 2016, 763, 90-96.	1.9	64
1703	A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon, 2016, 99, 633-641.	5.4	77
1704	Correlation between the pore structure and electrode density of MgO-templated carbons for electric double layer capacitor applications. Journal of Power Sources, 2016, 305, 128-133.	4.0	23
1705	Integrated copper–nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horizons, 2016, 1, 150-155.	4.1	93
1706	Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016, 190, 1134-1141.	2.6	217
1707	Probing the electrochemical properties of TiO2/graphene composite by cyclic voltammetry and impedance spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 206, 22-29.	1.7	28
1708	Mesoporous TiO2 and Co-doped TiO2 Nanotubes/Reduced Graphene Oxide Composites as Electrodes for Supercapacitors. Electrochimica Acta, 2016, 190, 104-117.	2.6	81
1709	Facile synthesis of nickel-foam-based nano-architectural composites as binder-free anodes for high capacity Li-ion batteries. Journal of Power Sources, 2016, 304, 311-318.	4.0	16
1710	Hierarchical core/shell structures of ZnO nanorod@CoMoO ₄ nanoplates used as a high-performance electrode for supercapacitors. RSC Advances, 2016, 6, 3020-3024.	1.7	30
1711	Graphene decorated with MoS ₂ nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Transactions, 2016, 45, 2637-2646.	1.6	200
1712	A facile hydrothermal synthesis of a reduced graphene oxide modified cobalt disulfide composite electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 7129-7138.	1.7	41

ARTICLE IF CITATIONS Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for 1713 2.6 49 supercapacitors and lithium ion batteries. Electrochimica Acta, 2016, 190, 346-353. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in 1714 245 organic electrolytes. Journal of Power Sources, 2016, 306, 510-515. NafionÂ[®] and FumapemÂ[®] polymer electrolytes for the development of advanced solid-state 1715 2.6 13 supercapacitors. Electrochimica Acta, 2016, 206, 432-439. Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal–organic 1716 1.4 frameworks with superior capacitive properties. New Journal of Chemistry, 2016, 40, 1100-1103. Facile synthesis of Cu₂O microstructures and their morphology dependent 1717 1.7 92 electrochemical supercapacitor properties. RSC Advances, 2016, 6, 3815-3822. Honeycomb-like NiCo2O4 films assembled from interconnected porous nanoflakes for supercapacitor. 1718 Materials Chemistry and Physics, 2016, 171, 208-215. Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental 1719 3.3 77 remediation. Journal of Environmental Chemical Engineering, 2016, 4, 835-856. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites 2.8 37 for high-performance supercapacitors. Nanoscale, 2016, 8, 1854-1860. 3D self-supported nanopine forest-like Co3O4@CoMoO4 coreâ€"shell architectures for high-energy 1721 8.2 321 solid state supercapacitors. Nano Energy, 2016, 19, 222-233. One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. 4.1 Nanoscale Horizons, 2016, 1, 27-40. Mass production of graphene nanoscrolls and their application in high rate performance 1723 2.8 57 supercapacitors. Nanoscale, 2016, 8, 1413-1420. Morphological control of RGO/CdS hydrogels for energy storage. CrystEngComm, 2016, 18, 1090-1095. 1724 1.3 36 Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state 1725 1.2 11 supercapacitor. Journal of Solid State Electrochemistry, 2016, 20, 1903-1911. MnO₂nanomaterials for flexible supercapacitors: performance enhancement via intrinsic 4.1 and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124. Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior 1727 50 7.1 performance electrode materials in supercapacitor. Journal of Energy Chemistry, 2016, 25, 26-34. Hierarchical architectures of Co₃O₄ ultrafine nanowires grown on Co₃O₄ nanowires with fascinating electrochemical performance. New 1.4 Journal of Chemistry, 2016, 40, 377-384. Anatase TiO2 nanotube by electrochemical anodization method: effect of tubes dimension on the 1729 1.2 19 supercapacitor application. Ionics, 2016, 22, 99-105. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?. 4.1 Nanoscale Horizons, 2016, 1, 45-52.

ARTICLE IF CITATIONS SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach 1731 3.8 39 for supercapacitor applications. Ultrasonics Sonochemistry, 2016, 29, 205-212. Asymmetric supercapacitors with high energy density based on helical hierarchical porous Na_xMnO₂and MoO₂. Chemical Science, 2016, 7, 510-517. 3.7 89 Preparation of Porous Graphene-Based Nanomaterials for Electrochemical Energy Storage Devices. 1733 0 1.5 KAIST Research Series, 2016, , 229-252. Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell application. Arabian Journal of Chemistry, 2016, 9, 1734 219-228. Flexible polyethylene terephthalate (PET) electrodes based on single-walled carbon nanotubes 1735 1.3 7 (SWCNTs) for supercapacitor application. Composite Interfaces, 2017, 24, 99-109. Flexible Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. ChemSusChem, 2017, 10, 2301-2308. 3.6 37 One step synthesis of Ni/Ni(OH)₂ nano sheets (NSs) and their application in asymmetric 1737 1.7 139 supercapacitors. RSC Advances, 2017, 7, 5898-5911. A phytic acid etched Ni/Fe nanostructure based flexible network as a high-performance wearable 5.2 hybríd energy storage device. Journal of Materials Chemistry A, 2017, 5, 3274-3283. 1739 Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon, 2017, 115, 617-624. 20 5.4 A novel copper nanoparticles/bean dregs-based activated carbon composite as pseudocapacitors. 1740 2.7 Materials Research Bulletin, 2017, 89, 33-41. An Approach To Fabricate PDMS Encapsulated All-Solid-State Advanced Asymmetric Supercapacitor Device with Vertically Aligned Hierarchical Zn–Fe–Co Ternary Oxide Nanowire and Nitrogen Doped 1741 4.081 Graphene Nanosheet for High Power Device Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 5947-5958 All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and 1742 184 activated carbon. RSC Advances, 2017, 7, 6648-6659. Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS 2 nanocomposite 1743 with high electrochemical performance for supercapacitors. Journal of Alloys and Compounds, 2017, 2.8 31 699, 176-182. A study on optimal pore development of modified commercial activated carbons for electrode 1744 3.1 materials of supercapacitors. Applied Surface Science, 2017, 415, 61-66. Facile ultrasound assisted synthesis of monodisperse spherical CuMn(OH) 3 NO 3 nanoparticles for 1745 2.8 13 energy storage applications. Journal of Alloys and Compounds, 2017, 699, 745-750. Metalâ€"Phenolic Carbon Nanocomposites for Robust and Flexible Energyâ€Storage Devices. 1746 ChemSusChem, 2017, 10, 1675-1682. Silver Fiber Fabric as the Current Collector for Preparation of Graphene-Based Supercapacitors. 1747 2.6 19 Electrochimica Acta, 2017, 227, 246-254. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors. 1748 3.1 Applied Surface Science, 2017, 400, 194-199.

#	Article	IF	CITATIONS
1749	Preparation and formation mechanism of porous carbon nanosheets by thermal decomposition of polyvinyl alcohol films impregnated with zinc (II) and nitrate ions. Solid State Sciences, 2017, 65, 33-40.	1.5	5
1750	Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. Journal of Power Sources, 2017, 342, 872-878.	4.0	85
1751	Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors. Journal of Power Sources, 2017, 343, 492-501.	4.0	33
1752	Nanotextured alpha Ni(<scp>ii</scp>)–Co(<scp>ii</scp>) hydroxides as supercapacitive active phases. RSC Advances, 2017, 7, 5595-5600.	1.7	20
1753	Electrochemically deposited layered MnO 2 films for improved supercapacitor. Journal of Electroanalytical Chemistry, 2017, 788, 175-183.	1.9	23
1754	Materials Design and System Construction for Conventional and New oncept Supercapacitors. Advanced Science, 2017, 4, 1600382.	5.6	365
1755	Ni Foamâ€Ni ₃ S ₂ @Ni(OH) ₂ â€Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance. Chemistry - A European Journal, 2017, 23, 4128-4136.	1.7	43
1756	A new insight into the rechargeable mechanism of manganese dioxide based symmetric supercapacitors. RSC Advances, 2017, 7, 8561-8566.	1.7	19
1757	Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors. Ionics, 2017, 23, 1489-1498.	1.2	12
1758	A transparent solid-state ion gel for supercapacitor device applications. Journal of Solid State Electrochemistry, 2017, 21, 1431-1444.	1.2	13
1759	A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta, 2017, 228, 76-81.	2.6	49
1760	MnS nanocomposites based on doped graphene: simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors. RSC Advances, 2017, 7, 2249-2257.	1.7	68
1761	Nitrogen and sulfur co-doped polyurethane-based porous carbon materials as supercapacitors exhibit excellent electrochemical performance. Journal of Solid State Electrochemistry, 2017, 21, 1457-1465.	1.2	14
1762	A Ni/Zn bi-metallic coordination supramolecular network applied for high performance energy storage material. Electrochimica Acta, 2017, 228, 233-240.	2.6	15
1763	Synthesis of nickel chalcogenide hollow spheres using an <scp>l</scp> -cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 3621-3627.	5.2	99
1764	One-step microwave synthesis of pure and Mn doped WO3 nanoparticles and its structural, optical and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 6635-6642.	1.1	35
1765	Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2017, 702, 236-243.	2.8	38
1766	A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 6880-6888.	1.1	29

ARTICLE IF CITATIONS Tunable supercapacitance of electrospun Mn3O4 beaded chains via charge-discharge cycling and 1767 3.1 15 control parameters. Applied Surface Science, 2017, 403, 601-611. Fabrication of mesoporous gold networks@MnO2 for high-performance supercapacitors. Gold 1768 1.1 Bulletin, 2017, 50, 61-68. A novel fluffy nanostructured 3D network of Ni(C7H4O5) for supercapacitors. Electrochimica Acta, 1769 2 2.6 2017, 230, 141-150. A Highly Durable, Transferable, and Substrateâ€Versatile Highâ€Performance Allâ€Polymer 1770 11.1 160 Microâ€Supercapacitor with Plugâ€andâ€Play Function. Advanced Materials, 2017, 29, 1605137. Batteryâ€Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017, 1771 5.6 1,223 4, 1600539. Graphite felt decorated with porous NiCo2O4 nanosheets for high-performance pseudocapacitor electrodes. Journal of Materials Science, 2017, 52, 5179-5187. 1772 1.7 Flexible, sandwich-like CNTs/NiCo₂O₄ hybrid paper electrodes for all-solid 1773 5.2 82 state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5886-5894. Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for 2.8 pseudocapacitors with enhanced performance. Journal of Alloys and Compounds, 2017, 706, 126-132. Mn₃O₄ hollow microcubes and solid nanospheres derived from a metal 1775 1.7 24 formate framework for electrochemical capacitor applications. RSC Advances, 2017, 7, 11129-11134. 1776 Nanotechnology in Electrochemical Capacitors., 2017, , 131-169. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for 1777 103 2.6 superior potassium-ion capacitors. Electrochimica Acta, 2017, 232, 106-113. Temperature dependence of ion diffusion coefficients in NaCl electrolyte confined within graphene 1778 1.3 nanochannels. Physical Chemistry Chemical Physics, 2017, 19, 7678-7688. Urchin-like α-FeOOH@MnO2 coreâ€"shell hollow microspheres for high-performance supercapacitor 1779 1.5 22 electrode. Journal of Applied Electrochemistry, 2017, 47, 433-444. Maximizing volumetric energy density of all-graphene-oxide-supercapacitors and their potential applications for energy harvest. Journal of Power Sources, 2017, 346, 113-119. 1780 4.0 29 Tuning the electrochemical behavior of Co x Mn3â° x sulfides by varying different Co/Mn ratios in 1781 1.7 44 supercapacitor. Journal of Materials Science, 2017, 52, 6687-6696. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. 1782 148 Chemical Engineering Journal, 2017, 316, 770-777. Engineering hierarchical nanotrees with CuCo₂O₄ trunks and NiO branches 1783 5.2100 for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5820-5828. A two-volt aqueous supercapacitor from porous dehalogenated carbon. Journal of Materials 1784 5.2 Chemistry A, 2017, 5, 6734-6739.

#	Article	IF	Citations
1785	Transmission electron microscopy analysis of some transition metal compounds for energy storage and conversion. TrAC - Trends in Analytical Chemistry, 2017, 90, 62-79.	5.8	8
1786	Flexible Graphene-Based Composite Films for Supercapacitors with Tunable Areal Capacitance. Electrochimica Acta, 2017, 235, 233-241.	2.6	18
1787	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	2.6	84
1788	Synthesis of nitrogen-doped porous carbon from zeolitic imidazolate framework-67 and phenolic resin for high performance supercapacitors. Ceramics International, 2017, 43, 6502-6510.	2.3	49
1789	Flexible micro-supercapacitors prepared using direct-write nanofibers. RSC Advances, 2017, 7, 11724-11731.	1.7	26
1790	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	11.1	1,021
1791	High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale, 2017, 9, 5063-5071.	2.8	95
1792	A 1000-Volt planar micro-supercapacitor by direct-write laser engraving of polymers. , 2017, , .		4
1793	Synthesis of sandwich-like vanadium pentoxide/carbon nanotubes composites for high performance supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 708, 134-140.	2.8	27
1794	Galvanic displacement assembly of ultrathin Co ₃ O ₄ nanosheet arrays on nickel foam for a high-performance supercapacitor. Nanotechnology, 2017, 28, 105604.	1.3	18
1795	A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Scientific Reports, 2017, 7, 40990.	1.6	79
1796	Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications. Journal of Solid State Electrochemistry, 2017, 21, 2567-2576.	1.2	42
1797	Promising biomass-derived hierarchical porous carbon material for high performance supercapacitor. RSC Advances, 2017, 7, 10385-10390.	1.7	46
1798	Hierarchical walnut-like Ni _{0.5} Co _{0.5} O hollow nanospheres comprising ultra-thin nanosheets for advanced energy storage devices. Journal of Materials Chemistry A, 2017, 5, 5781-5790.	5.2	23
1799	Mesoporous MnO 2 Nanosphere/Graphene Sheets as Electrodes for Supercapacitor Synthesized by a Simple and Inexpensive Reflux Reaction. Electrochimica Acta, 2017, 238, 30-35.	2.6	28
1800	Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. lonics, 2017, 23, 1637-1643.	1.2	17
1801	Redox enhanced energy storage in an aqueous high-voltage electrochemical capacitor with a potassium bromide electrolyte. Journal of Power Sources, 2017, 348, 219-228.	4.0	43
1802	Controllable Synthesis of NiCo LDH Nanosheets for Fabrication of Highâ€Performance Supercapacitor Electrodes. Electroanalysis, 2017, 29, 1286-1293.	1.5	95

#	Article	IF	CITATIONS
1803	NiMn ₂ O ₄ Nanosheetâ€Decorated Hierarchically Porous Polyaromatic Carbon Spheres for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 1214-1221.	1.7	39
1804	Amorphous vanadyl phosphate/graphene composites for high performance supercapacitor electrode. Journal of Power Sources, 2017, 344, 185-194.	4.0	38
1805	Template-free single pot synthesis of SnS ₂ @Cu ₂ O/reduced graphene oxide (rGO) nanoflowers for high performance supercapacitors. New Journal of Chemistry, 2017, 41, 2702-2716.	1.4	46
1806	Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity. Journal of Materials Science: Materials in Electronics, 2017, 28, 11119-11124.	1.1	14
1807	Multiscale Pore Network Boosts Capacitance of Carbon Electrodes for Ultrafast Charging. Nano Letters, 2017, 17, 3097-3104.	4.5	251
1808	Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 8981-8988.	5.2	32
1809	Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10098-10105.	1.1	15
1810	TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. Journal of Materials Science, 2017, 52, 7733-7743.	1.7	27
1811	A Sustainable Bioeconomy. , 2017, , .		31
1812	Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategy. International Journal of Hydrogen Energy, 2017, 42, 12384-12395.	3.8	110
1813	Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713, 10-17.	2.8	71
1814	Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9873-9881.	5.2	75
1815	Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017, 4, 453-489.	4.6	651
1816	Highly exposed nickel cobalt sulfide–rGO nanoporous structures: an advanced energy-storage electrode material. Journal of Materials Chemistry A, 2017, 5, 9991-9997.	5.2	55
1817	Rational design of microsphere and microcube MnCO 3 @MnO 2 heterostructures for supercapacitor electrodes. Journal of Power Sources, 2017, 353, 202-209.	4.0	53
1818	Hierarchical Cu(OH) ₂ @Ni ₂ (OH) ₂ CO ₃ core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9960-9969.	5.2	122
1819	Facile Synthesis of Porous NiCoO ₂ Nanosheets as Ultra-High Rate Redox-Capacitive Materials. Journal of the Electrochemical Society, 2017, 164, A1158-A1164.	1.3	13
1820	Hybrid Reduced Graphene Oxide/Manganese Diselenide Cubes: A New Electrode Material for Supercapacitors. Energy Technology, 2017, 5, 1953-1962.	1.8	55

#	Article	IF	CITATIONS
1821	Hierarchical Core-Shell Nanosheet Arrays with MnO2 Grown on Mesoporous CoFe2O4 Support for High-Performance Asymmetric Supercapacitors. Electrochimica Acta, 2017, 240, 31-42.	2.6	59
1822	Redoxâ€Additiveâ€Enhanced High Capacitance Supercapacitors Based on Co ₂ P ₂ O ₇ Nanosheets. Advanced Materials Interfaces, 2017, 4, 1700059.	1.9	85
1823	Three-dimensional heterostructured MnO ₂ /graphene/carbon nanotube composite on Ni foam for binder-free supercapacitor electrode. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 391-396.	1.0	6
1824	Chemical synthesis of flower-like hybrid Cu(OH) 2 /CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance. Colloids and Surfaces B: Biointerfaces, 2017, 156, 165-174.	2.5	34
1825	High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo 2 S 4 /Polyaniline nanosheets. Chemical Engineering Journal, 2017, 325, 134-143.	6.6	201
1826	Polymer Nanocomposites for Energy and Fuel Cell Applications. , 2017, , 107-137.		2
1827	High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers. Journal of Power Sources, 2017, 358, 13-21.	4.0	22
1828	A facile sonochemical assisted synthesis of α-MnMoO 4 /PANI nanocomposite electrode for supercapacitor applications. Journal of Electroanalytical Chemistry, 2017, 797, 78-88.	1.9	102
1829	Molybdenum–Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 18699-18709.	4.0	30
1830	Different morphologies of MnO2 grown on the graphene@nickel foam electrode for supercapacitor application. Materials Letters, 2017, 208, 102-106.	1.3	28
1831	Cobalt phosphide nanowire arrays grown on carbon cloth as novel electrode material for supercapacitors. Materials Science in Semiconductor Processing, 2017, 66, 140-143.	1.9	13
1832	Controllable synthesis of Ni–Co–Mn multi-component metal oxides with various morphologies for high-performance flexible supercapacitors. RSC Advances, 2017, 7, 24353-24358.	1.7	41
1833	KOH direct treatment of kombucha and in situ activation to prepare hierarchical porous carbon for high-performance supercapacitor electrodes. Journal of Solid State Electrochemistry, 2017, 21, 2929-2938.	1.2	33
1834	Hierarchical nanoflowers assembled from MoS 2 /polyaniline sandwiched nanosheets for high-performance supercapacitors. Electrochimica Acta, 2017, 243, 98-104.	2.6	56
1835	Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 16986-16994.	4.0	113
1836	Interconnected Phosphorus and Nitrogen Codoped Porous Exfoliated Carbon Nanosheets for High-Rate Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 17317-17325.	4.0	79
1837	Facile fabrication of rGO/CNT hybrid fibers for high-performance flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 12147-12157.	1.1	6
1838	Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chemical Engineering Journal, 2017, 324, 35-43.	6.6	80

		CITATION REPORT		
#	Article		IF	Citations
1839	Highâ€Power Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat,	2017, 3, 436-446.	1.5	39
1841	Understanding the role of Co 3 O 4 on stability between active hierarchies and scaffold into NiMoO 4 composites for supercapacitors. Applied Surface Science, 2017, 416, 16		3.1	19
1842	Outstanding electrochemical performance of highly N- and O-doped carbons derived fr Green Chemistry, 2017, 19, 2653-2665.	om pine tannin.	4.6	63
1843	Engineering the Pores of Biomassâ€Đerived Carbon: Insights for Achieving Ultrahigh St Power in Highâ€Energy Supercapacitors. ChemSusChem, 2017, 10, 2805-2815.	cability at High	3.6	96
1844	Single-step growth of pyramidally textured NiO nanostructures with improved superca properties. International Journal of Hydrogen Energy, 2017, 42, 6080-6087.	pacitive	3.8	31
1845	Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3â^'x. N 2017, 16, 454-460.	Nature Materials,	13.3	1,632
1846	BaMF4 (MÂ= Mn, Co, Ni): New electrode materials for hybrid supercapacitor with layer structure. Journal of Power Sources, 2017, 359, 585-591.	ed polar	4.0	15
1847	Cyclic voltammetry modeling of proton transport effects on redox charge storage in co materials: application to a TiO ₂ mesoporous film. Physical Chemistry Che 2017, 19, 17944-17951.	onductive mical Physics,	1.3	18
1848	High electrochemical performance of hierarchical porous activated carbon derived fron cork (Quercus suber). Journal of Materials Science, 2017, 52, 10600-10613.	n lightweight	1.7	47
1849	Intense pulsed white light assisted fabrication of Co-CoOx core-shell nanoflakes on gra flexible hybrid supercapacitors. Electrochimica Acta, 2017, 246, 757-765.	phite felt for	2.6	29
1850	Direct successive ionic layer adsorption and reaction (SILAR) synthesis of nickel and co composites for supercapacitor applications. Journal of Alloys and Compounds, 2017, 7		2.8	45
1851	Biomass-derived carbon electrode materials for supercapacitors. Sustainable Energy an 1265-1281.	ıd Fuels, 2017, 1,	2.5	287
1852	Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxo Positive and Negative Electrodes. ChemSusChem, 2017, 10, 2742-2750.	ometalates as	3.6	89
1853	Li4Ti5O12-based energy conversion and storage systems: Status and prospects. Coorc Reviews, 2017, 343, 139-184.	lination Chemistry	9.5	97
1854	MnO _x -decorated carbonized porous silicon nanowire electrodes for high p supercapacitors. Energy and Environmental Science, 2017, 10, 1505-1516.	performance	15.6	109
1855	Asymmetric supercapacitor based on activated expanded graphite and pinecone tree a with excellent stability. Applied Energy, 2017, 207, 417-426.	ctivated carbon	5.1	68
1856	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carl hybrids for asymmetric supercapacitor anodes. Journal of Materials Chemistry A, 2017,		5.2	41
1857	Coreâ€shell NiCo ₂ S ₄ @MnMoO ₄ as an Advanc for Highâ€performance Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 2		1.7	15

#	Article	IF	CITATIONS
1858	In-situ synthesis of hierarchical Mn-decorated NiCo2S4 nanosheet arrays on Ni foam as binder-free electrodes for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 14646-14654.	1.1	5
1859	Nano-sheet-like KNiPO4 as a positive electrode material for aqueous hybrid supercapacitors. Electrochimica Acta, 2017, 246, 963-970.	2.6	15
1860	Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor. Nanotechnology, 2017, 28, 345401.	1.3	5
1861	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	0.7	17
1862	Growth of highly mesoporous CuCo2O4 nanoflakes@Ni(OH)2 nanosheets as advanced electrodes for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2017, 722, 928-937.	2.8	27
1863	Facile Fabrication of Three-Dimensional Graphene and Metal–Organic Framework Composites and Their Derivatives for Flexible All-Solid-State Supercapacitors. Chemistry of Materials, 2017, 29, 6058-6065.	3.2	220
1864	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	5.2	132
1865	Synthesis of 3D flower-like cobalt sulfide hierachitecture for high-performance electrochemical energy storage. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	11
1866	A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Applied Surface Science, 2017, 422, 597-606.	3.1	40
1867	Needle-like Co Mo O with multi-modal porosity for pseudocapacitors. Materials Chemistry and Physics, 2017, 198, 258-265.	2.0	16
1868	Hierarchical Co 3 O 4 @PPy core-shell composite nanowires for supercapacitors with enhanced electrochemical performance. Materials Research Bulletin, 2017, 96, 463-470.	2.7	38
1869	Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 20566-20576.	4.0	54
1870	Direct aqueous solution synthesis of an ultra-fine amorphous nickel–boron alloy with superior pseudocapacitive performance for advanced asymmetric supercapacitors. New Journal of Chemistry, 2017, 41, 7302-7311.	1.4	38
1871	Engineering biorefinery residues from loblolly pine for supercapacitor applications. Carbon, 2017, 120, 304-312.	5.4	51
1872	Tunable morphology and property of a MnO2/carbonized cotton textile hybrid electrode for electrochemical capacitors. Journal of Alloys and Compounds, 2017, 729, 655-662.	2.8	22
1873	Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. Journal of Alloys and Compounds, 2017, 721, 205-212.	2.8	20
1874	Influence of Iodide Ions Concentration on the Stability of 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molybdenum Carbide Derived Carbon Electrode Interface. Journal of the Electrochemical Society, 2017, 164, A1110-A1119.	1.3	13
1875	Semitransparent, flexible electrochemical capacitors with excellent stability fabricated with polypyrrole–titanium mesh electrodes. Journal of Applied Polymer Science, 2017, 134, 45235.	1.3	2

#	Article	IF	CITATIONS
1876	Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage. Electrochimica Acta, 2017, 245, 51-58.	2.6	16
1877	Synthesis of rGO/PS compound with sandwich structure on Ni foam as binder-free electrode for supercapacitor. Functional Materials Letters, 2017, 10, 1750032.	0.7	7
1878	Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochimica Acta, 2017, 245, 268-278.	2.6	32
1879	Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 5679-5685.	3.2	49
1880	Twoâ€Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 2017, 3, 373-391.	1.5	106
1881	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	15.6	294
1882	Balanced mesoporous nickle cobaltite-graphene and doped carbon electrodes for high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2017, 326, 401-410.	6.6	34
1883	Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. Journal of Power Sources, 2017, 359, 349-354.	4.0	62
1884	Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Advances, 2017, 7, 28945-28950.	1.7	25
1885	Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105
1886	Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochimica Acta, 2017, 246, 59-67.	2.6	46
1887	Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2017, 721, 803-812.	2.8	94
1888	Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 14568-14574.	1.1	20
1889	Electrochemical properties of solid leather wastes based supercapacitor electrodes using H2SO4 electrolyte. Materials Letters, 2017, 205, 56-61.	1.3	10
1890	Solid-state supercapacitor based on breath figured polymethyl methacrylate deposited by graphene: the effect of electrode surface. Journal of Materials Science: Materials in Electronics, 2017, 28, 14121-14130.	1.1	10
1891	Flower-like molybdenum disulfide nanosheets grown on carbon nanosheets to form nanocomposites: Novel structure and excellent electrochemical performance. Journal of Alloys and Compounds, 2017, 722, 250-258.	2.8	24
1892	Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochimica Acta, 2017, 237, 94-101.	2.6	114
1893	Effects of amount of graphene oxide and the times of LightScribe on the performance of all-solid-state flexible graphene-based micro-supercapacitors. Materials Research Express, 2017, 4, 036304.	0.8	19

#	Article	IF	CITATIONS
1894	High-density freestanding graphene/carbide-derived carbon film electrodes for electrochemical capacitors. Carbon, 2017, 118, 642-649.	5.4	47
1895	High performance sodium-ion hybrid capacitor based on Na 2 Ti 2 O 4 (OH) 2 nanostructures. Journal of Power Sources, 2017, 353, 85-94.	4.0	95
1896	Ni nanoparticles embedded into cross-linked NiO nanoflakes as enhanced cathode for alkaline batteries. Materials Research Bulletin, 2017, 96, 315-319.	2.7	16
1897	Low-cost synthesis and electrochemical characteristics of ternary Cu-Co sulfides for high performance full-cell asymmetric supercapacitors. Materials Research Bulletin, 2017, 91, 68-76.	2.7	27
1898	3D flower-like NiCo 2 O 4 electrode material prepared by a modified solvothermal method for supercapacitor. Journal of Alloys and Compounds, 2017, 711, 670-676.	2.8	28
1899	Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Research, 2017, 10, 2570-2583.	5.8	100
1900	Effect of low water content in protic ionic liquid on ions electrosorption in porous carbon: application to electrochemical capacitors. Physical Chemistry Chemical Physics, 2017, 19, 11173-11186.	1.3	25
1901	Cabbage-like α-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chemical Physics Letters, 2017, 677, 75-79.	1.2	31
1902	Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO 4 nanoparticles for high performance asymmetric supercapacitors. Electrochimica Acta, 2017, 238, 337-348.	2.6	78
1903	Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources, 2017, 352, 34-41.	4.0	128
1904	One-dimensional Co 3 O 4 nanonet with enhanced rate performance for lithium ion batteries: Carbonyl- β -cyclodextrin inducing and kinetic analysis. Chemical Engineering Journal, 2017, 321, 31-39.	6.6	40
1905	Tuning the electro-chemical properties by selectively substituting transition metals on carbon in Ni/Co oxide–carbon composite electrodes for supercapacitor devices. New Journal of Chemistry, 2017, 41, 3562-3573.	1.4	21
1906	Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment. Chemical Engineering Journal, 2017, 321, 554-563.	6.6	42
1907	Preparation of three-dimensional graphene foam for high performance supercapacitors. Progress in Natural Science: Materials International, 2017, 27, 177-181.	1.8	56
1908	One-step fabrication of porous GaN crystal membrane and its application in energy storage. Scientific Reports, 2017, 7, 44063.	1.6	38
1909	Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage. Scientific Reports, 2017, 7, 44191.	1.6	10
1910	An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo ₂ O ₄ and porous VN nanowires electrode materials. Journal of Materials Chemistry A, 2017, 5, 6928-6936.	5.2	81
1911	Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Materials, 2017, 7, 216-221.	9.5	94

#	Article	IF	CITATIONS
1912	Controllable MnCo ₂ S ₄ nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 7494-7506.	5.2	198
1913	Facile synthesis of ultrathin NiCo ₂ S ₄ nano-petals inspired by blooming buds for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 7144-7152.	5.2	251
1914	Pushing the Energy Output and Cyclability of Sodium Hybrid Capacitors at High Power to New Limits. Advanced Energy Materials, 2017, 7, 1602654.	10.2	105
1915	Hierarchical flower-like nickel phenylphosphonate microspheres and their calcined derivatives for supercapacitor electrodes. Journal of Materials Chemistry A, 2017, 5, 7474-7481.	5.2	61
1916	A Cost-Effective and High-Performance Core-Shell-Nanorod-Based ZnO/α-Fe ₂ O ₃ //ZnO/C Asymmetric Supercapacitor. Journal of the Electrochemical Society, 2017, 164, A987-A994.	1.3	20
1917	Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous and Mesoporous Materials, 2017, 246, 72-80.	2.2	156
1918	N-Doped hierarchical porous carbon from waste boat-fruited sterculia seed for high performance supercapacitors. RSC Advances, 2017, 7, 16678-16687.	1.7	52
1919	Reducing and Uniforming the Co3 O 4 Particle Size by Sulfonated Graphenal Polymers for Electrochemical Applications. Nanoscale Research Letters, 2017, 12, 165.	3.1	11
1920	Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Applied Surface Science, 2017, 411, 251-260.	3.1	81
1921	Hierarchical porous carbon with ordered straight micro-channels templated by continuous filament glass fiber arrays for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 1516-1525.	5.2	62
1922	Cheap, High-Performance, and Wearable Mn Oxide Supercapacitors with Urea-LiClO ₄ Based Gel Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 479-486.	4.0	15
1923	Microwave assisted fabrication of a nanostructured reduced graphene oxide (rGO)/Fe ₂ O ₃ composite as a promising next generation energy storage material. RSC Advances, 2017, 7, 309-317.	1.7	74
1924	Oneâ€6tep Synthesis of Co ₃ O ₄ /Graphene Aerogels and Their Allâ€6olidâ€6tate Asymmetric Supercapacitor. European Journal of Inorganic Chemistry, 2017, 2017, 1143-1152.	1.0	34
1925	Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy, 2017, 118, 1313-1321.	4.5	58
1926	Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochimica Acta, 2017, 226, 69-78.	2.6	101
1927	Nanoconfined Ionic Liquids. Chemical Reviews, 2017, 117, 6755-6833.	23.0	499
1928	In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor. Electrochimica Acta, 2017, 224, 517-526.	2.6	29
1929	Nitrogenâ€Doped Porous Carbon Nanosheets from Ecoâ€Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Chemistry - A European Journal, 2017, 23, 3683-3690.	1.7	132

		TATION REPC		
#	Article	I	-	CITATIONS
1930	Facile synthesis of flower-like Ni x Co 3-x O 4 (0≤≤.5) microstructures as high-performance electrode materials for supercapacitors. Electrochimica Acta, 2017, 225, 283-291.	2	.6	17
1931	Development of SnS ₂ /RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology, 2017, 28, 025401.	1	.3	74
1932	Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochimica Acta, 2017, 223, 21-30.	2	.6	132
1933	A Novel and Generalized Lithiumâ€lonâ€Battery Configuration utilizing Al Foil as Both Anode and Cur Collector for Enhanced Energy Density. Advanced Materials, 2017, 29, 1604219.	rrent 1	1.1	128
1934	Materials for Electrochemical Capacitors. , 2017, , 495-561.			25
1935	An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Base on 3D Ni(OH) ₂ /MnO ₂ @Carbon Nanotube and Activated Polyaniline-Derive Carbon. ACS Applied Materials & amp; Interfaces, 2017, 9, 668-676.		.0	78
1936	One-pot hydrothermal synthesis and supercapacitive performance of nitrogen and MnO co-doped hierarchical porous carbon monoliths. Ceramics International, 2017, 43, 4427-4433.	2	.3	10
1937	One-pot synthesis of <i>^ĵ3</i> -MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors. Nanotechnology, 2017, 28, 065402.	1	.3	34
1938	Facile synthesis of Tremelliform Co0.85Se nanosheets for supercapacitor. Journal of Alloys and Compounds, 2017, 697, 124-131.	2	.8	40
1939	Multi-dimensional carbon nanofibers for supercapacitor electrodes. Journal of Electroceramics, 2017, 38, 43-50.	C	0.8	13
1940	Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatomâ€doped Car Nanofibers for Flexible Supercapacitors. Chemistry - A European Journal, 2017, 23, 2610-2618.	bon 1	.7	35
1941	Facile synthesis of hierarchical nanocage MnCo 2 O 4 for high performance supercapacitor. Electrochimica Acta, 2017, 225, 39-46.	2	.6	131
1942	CuCo 2 O 4 nanowall morphology as Li-ion battery anode: Enhancing electrochemical performance through stoichiometry control. Materials Research Bulletin, 2017, 90, 303-310.	2	.7	30
1943	A new protocol for the distribution of MnO 2 nanoparticles on rGO sheets and the resulting electrochemical performance. Applied Surface Science, 2017, 399, 95-105.	3	.1	30
1944	The synergistic effect achieved by combining different nitrogen-doped carbon shells for high performance capacitance. Chemical Communications, 2017, 53, 857-860.	2	.2	16
1945	Selfâ€Supporting GaN Nanowires/Graphite Paper: Novel Highâ€Performance Flexible Supercapacitor Electrodes. Small, 2017, 13, 1603330.	5	.2	70
1946	Simple in-situ growth of layered Ni 3 S 2 thin film electrode for the development of high-performance supercapacitors. Applied Surface Science, 2017, 399, 432-439.	3	.1	21
1947	Solvent Polarity Governs Ion Interactions and Transport in a Solvated Room-Temperature Ionic Liquid. Journal of Physical Chemistry Letters, 2017, 8, 167-171.	. 2	.1	45

#	Article	IF	CITATIONS
1948	A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New Journal of Chemistry, 2017, 41, 857-864.	1.4	65
1949	Hierarchically nanostructured boron-doped diamond electrode surface. Diamond and Related Materials, 2017, 72, 13-19.	1.8	22
1950	Layer-structured nanohybrid MoS ₂ @rGO on 3D nickel foam for high performance energy storage applications. New Journal of Chemistry, 2017, 41, 1473-1482.	1.4	65
1951	Preparation of three-dimensional compressible MnO ₂ @carbon nanotube sponges with enhanced supercapacitor performance. New Journal of Chemistry, 2017, 41, 14906-14913.	1.4	35
1952	NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer, 2017, 132, 31-40.	1.8	85
1953	Using Polymeric Ionic Liquids as an Active Binder in Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A3253-A3258.	1.3	7
1954	Carbon cloth@T-Nb2O5@MnO2: A rational exploration of manganese oxide for high performance supercapacitor. Electrochimica Acta, 2017, 253, 311-318.	2.6	38
1955	Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Advances, 2017, 7, 45968-45977.	1.7	76
1956	Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22527-22535.	5.2	141
1957	Recent Progress in Microâ€Supercapacitors with Inâ€Plane Interdigital Electrode Architecture. Small, 2017, 13, 1701989.	5.2	180
1958	Three-dimensional CoMoO 4 nanorods/nanographene composites on a Ni coated macroporous electrically conductive network with excellent electrochemical performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 177-187.	1.7	7
1959	DFT investigation of the interaction between single-walled carbon nanotubes and fluorene-based conjugated oligomers. Physical Chemistry Chemical Physics, 2017, 19, 28071-28082.	1.3	7
1960	Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 41224-41232.	4.0	23
1961	Highly compressible reduced graphene oxide/polypyrrole/MnO2 aerogel electrodes meeting the requirement of limiting space. Materials Research Express, 2017, 4, 115602.	0.8	6
1962	Confinement of iodides in carbon porosity to prevent from positive electrode oxidation in high voltage aqueous hybrid electrochemical capacitors. Carbon, 2017, 125, 391-400.	5.4	30
1963	Nanophase-segregation in the dielectric layer enhances the charge storage capacity of polymeric electrochemical supercapacitors. Organic Electronics, 2017, 51, 322-331.	1.4	7
1964	Effect of fine layer structure on electrochemistry properties. Journal of Electroanalytical Chemistry, 2017, 804, 185-191.	1.9	4
1965	Ni nanoparticles@Ni–Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale, 2017, 9, 18032-18041.	2.8	59

#	Article	IF	CITATIONS
1966	Nitrogenâ€Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 3181-3187.	1.7	41
1967	Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors. ACS Nano, 2017, 11, 10077-10087.	7.3	85
1968	Vanadium trioxide@carbon nanosheet array-based ultrathin flexible symmetric hydrogel supercapacitors with 2ÂV voltage and high volumetric energy density. Journal of Materials Chemistry A, 2017, 5, 22216-22223.	5.2	30
1969	Formation of Micron-Sized Nickel Cobalt Sulfide Solid Spheres with High Tap Density for Enhancing Pseudocapacitive Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 9945-9954.	3.2	38
1970	Ultracentrifugation: An effective novel route to ultrafast nanomaterials for hybrid supercapacitors. Current Opinion in Electrochemistry, 2017, 6, 120-126.	2.5	8
1971	Hierarchical mesoporous Co Ni1â^'O as advanced electrode material for hybrid supercapacitors. International Journal of Hydrogen Energy, 2017, 42, 28445-28452.	3.8	21
1972	Hierarchical mesoporous Co 3 O 4 /C@MoS 2 core–shell structured materials for electrochemical energy storage with high supercapacitive performance. Synthetic Metals, 2017, 233, 101-110.	2.1	37
1973	Organic multi-electron redox couple-induced functionalization for enabling ultrahigh rate and cycling performances of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 25420-25430.	5.2	57
1974	Oxygen-functionalized Porous Carbon as Single-phase Mixed Electron/Proton Conductor with Capacitance Properties. Chemistry Letters, 2017, 46, 1828-1831.	0.7	7
1975	The Pineâ€Needleâ€Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for Highâ€Performance Flexible Supercapacitors. Small, 2017, 13, 1702142.	5.2	35
1976	Three-Dimensional Co ₃ O ₄ @NiCo ₂ S ₄ Core/Shell Nanoflower Array with Enhanced Electrochemical Performance. ChemistrySelect, 2017, 2, 9537-9545.	0.7	13
1977	Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochimica Acta, 2017, 258, 51-60.	2.6	61
1978	<i>In situ</i> nitrogen-doped mesoporous carbon nanofibers as flexible freestanding electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23620-23627.	5.2	95
1979	Simultaneous polymerization enabled the facile fabrication of S-doped carbons with tunable mesoporosity for high-capacitance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23513-23522.	5.2	31
1980	"Design and Synthesis of 3Dâ€Ordered Mesoporous Co ₃ O ₄ Nanostructures for Their Improved Supercapacitance and Photocatalytic Activity― ChemistrySelect, 2017, 2, 9726-9735.	0.7	3
1981	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	8.2	351
1982	Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 2017, 9, 93-106.	1.5	107
1983	Low-cost superior symmetric solid-state supercapacitors based on MWCNTs/MnO 2 nanocomposite thin film. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 503-510.	2.7	40

#	Article	IF	CITATIONS
1984	Miniature graphene-based supercapacitors fabricated by laser ablation. Microelectronic Engineering, 2017, 182, 1-7.	1.1	15
1985	Allâ€Solidâ€State Flexible Fiberâ€Based MXene Supercapacitors. Advanced Materials Technologies, 2017, 2, 1700143.	3.0	156
1986	In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO ₂ -Based Energy Storage Devices. Analytical Chemistry, 2017, 89, 9671-9675.	3.2	10
1987	Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19687-19696.	5.2	151
1988	Hierarchical design of Cu _{1â^'x} Ni _x S nanosheets for high-performance asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19760-19772.	5.2	116
1989	Pore structure improvement of carbon aerogel and investigation of the supercapacitive behavior of a Co ₃ O ₄ nanoball/carbon aerogel composite. New Journal of Chemistry, 2017, 41, 11731-11741.	1.4	8
1990	Nitrogen-rich green leaves of papaya and Coccinia grandis as precursors of activated carbon and their electrochemical properties. RSC Advances, 2017, 7, 42064-42072.	1.7	14
1991	Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28, 445401.	1.3	137
1992	Facile Preparation of Varisized ZIF-8 and ZIF-8/Polypyrrole Composites for Flexible Solid-State Supercapacitor. ChemistrySelect, 2017, 2, 7530-7534.	0.7	9
1993	In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2017, 802, 48-56.	1.9	13
1994	High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. Journal of Materials Science, 2017, 52, 13897-13908.	1.7	8
1995	Recent developed different structural nanomaterials and their performance for supercapacitor application. Applied Materials Today, 2017, 9, 300-313.	2.3	62
1996	Substrate-integrated core–shell Co ₃ O ₄ @Au@CuO hybrid nanowires as efficient cathode materials for high-performance asymmetric supercapacitors with excellent cycle life. Journal of Materials Chemistry A, 2017, 5, 21715-21725.	5.2	62
1997	Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 35040-35047.	4.0	107
1998	Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. Journal of Power Sources, 2017, 364, 200-207.	4.0	48
1999	Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries. Scientific Reports, 2017, 7, 10503.	1.6	38
2000	CeO2/CNTs hybrid with high performance as electrode materials for supercapacitor. Journal of Alloys and Compounds, 2017, 729, 64-70.	2.8	62
2001	The effect of finite pore length on ion structure and charging. Journal of Chemical Physics, 2017, 147, 104708.	1.2	29

#	Article	IF	CITATIONS
2002	Three-Dimensional NiCo ₂ O ₄ @MnMoO ₄ Core–Shell Nanoarrays for High-Performance Asymmetric Supercapacitors. Langmuir, 2017, 33, 10446-10454.	1.6	90
2003	Porous asphalt/graphene composite for supercapacitors with high energy density at superior power density without added conducting materials. Journal of Materials Chemistry A, 2017, 5, 21757-21764.	5.2	24
2004	Urine to highly porous heteroatom-doped carbons for supercapacitor: A value added journey for human waste. Scientific Reports, 2017, 7, 10910.	1.6	55
2005	Supercapacitor performance of perovskite La _{1â^x} Sr _x MnO ₃ . Dalton Transactions, 2017, 46, 13720-13730.	1.6	210
2006	Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. Journal of Power Sources, 2017, 365, 362-371.	4.0	28
2007	Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods. Journal of Power Sources, 2017, 366, 123-130.	4.0	54
2008	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of Na2Ti3O7 Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. ACS Omega, 2017, 2, 5726-5736.	1.6	14
2009	Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nature Communications, 2017, 8, 536.	5.8	313
2010	Heterostructural MnO ₂ @NiS ₂ /Ni(OH) ₂ materials for high-performance pseudocapacitor electrodes. RSC Advances, 2017, 7, 44289-44295.	1.7	26
2011	Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites. Energy and Environmental Science, 2017, 10, 2372-2382.	15.6	156
2012	Pseudocapacitance of Mesoporous Spinel-Type MCo ₂ O ₄ (M = Co, Zn, and Ni) Rods Fabricated by a Facile Solvothermal Route. ACS Omega, 2017, 2, 6003-6013.	1.6	79
2013	Threeâ€Dimensional Hierarchical NiCo ₂ O ₄ Nanosheets/Carbon Nanotubes/Carbon Cloth as a Flexible Electrode Material for Electrochemical Capacitors. ChemistrySelect, 2017, 2, 8618-8624.	0.7	12
2014	Highly porous nitrogen-doped carbon for superior electric double-layer capacitors. RSC Advances, 2017, 7, 44735-44742.	1.7	22
2015	Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 18040-18048.	1.1	69
2016	Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 31699-31709.	4.0	103
2017	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 31940-31949.	4.0	53
2018	Synthesis and electrochemical performance of ZnO@MnO2 core–shell column arrays on Ni Foam as electrode for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18262-18268.	1.1	2
2019	High-performance asymmetric supercapacitor with ultrahigh energy density based on hierarchical graphene sheets@NiO core-shell nanosheets and 3D drilled graphene sheets hydrogel. Journal of Alloys and Compounds, 2017, 727, 1189-1202.	2.8	16

#	Article	IF	CITATIONS
2020	Molecular mechanism of water reorientational slowing down in concentrated ionic solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10023-10028.	3.3	38
2021	SFG Study of the Potential-Dependent Adsorption of the <i>p</i> -Toluenesulfonate Anion at an Activated Carbon/Propylene Carbonate Interface. Journal of Physical Chemistry C, 2017, 121, 20567-20575.	1.5	6
2022	Black Phosphorus Nanoflakes/Polyaniline Hybrid Material for High-Performance Pseudocapacitors. Journal of Physical Chemistry C, 2017, 121, 20532-20538.	1.5	85
2023	Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes. Microsystems and Nanoengineering, 2017, 3, 17032.	3.4	48
2024	A Review of On-Chip Micro Supercapacitors for Integrated Self-Powering Systems. Journal of Microelectromechanical Systems, 2017, 26, 949-965.	1.7	106
2025	Manganese Oxide/Single-Walls Carbon Nanotubes Electrodeposited Films for Supercapacitors. Key Engineering Materials, 2017, 744, 354-358.	0.4	0
2026	Carbon nitride embedded MnO2 nanospheres decorated with low-content Pt nanoparticles as highly efficient and durable electrode material for solid state supercapacitors. Journal of Electroanalytical Chemistry, 2017, 801, 84-91.	1.9	8
2027	Nitrogen‣uperdoped 3D Graphene Networks for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1701677.	11.1	230
2028	3D Nanostructured Polypyrrole/Sodium Alginate Conducting Hydrogel from self-assembly with High Supercapacitor Performance. Journal of Macromolecular Science - Physics, 2017, 56, 532-540.	0.4	18
2029	Twoâ€Step Deposition/Reduction Synthesis of Porous Lamellar βâ€Ni(OH) ₂ /Reduced Graphene Oxide Composites with Large Capacitance for Supercapacitors. ChemElectroChem, 2017, 4, 2826-2834.	1.7	11
2030	Embedding Reduced Graphene Oxide in Bacterial Celluloseâ€Đerived Carbon Nanofibril Networks for Supercapacitors. ChemElectroChem, 2017, 4, 2448-2452.	1.7	14
2031	Bioâ€Nanotechnology in Highâ€Performance Supercapacitors. Advanced Energy Materials, 2017, 7, 1700592.	10.2	168
2032	Novel Core–Shell FeOF/Ni(OH) ₂ Hierarchical Nanostructure for Allâ€Solidâ€State Flexible Supercapacitors with Enhanced Performance. Advanced Functional Materials, 2017, 27, 1701014.	7.8	106
2033	Chemical Synthesis of 3D Grapheneâ€Like Cages for Sodiumâ€Ion Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	10.2	113
2034	Rational Synthesis of Nanostructured Electrode Materials for High-Performance Supercapacitors. , 2017, , .		0
2035	Assembly of highly stable aqueous dispersions and flexible films of nitrogen-doped graphene for high-performance stretchable supercapacitors. Journal of Materials Science, 2017, 52, 12751-12760.	1.7	4
2036	Graphene-anchored NiCoO2 nanoarrays as supercapacitor electrode for enhanced electrochemical performance. Electrochimica Acta, 2017, 248, 562-569.	2.6	58
2037	An excellent strategy for synthesis of coral-like ZnFe2O4 particles for capacitive pseudocapacitors. Journal of Alloys and Compounds, 2017, 726, 154-163.	2.8	18

#	Article	IF	CITATIONS
2038	Highly stable 2,3,5,6-tetrachloro-1,4-benzoquinone electrodes for supercapacitors. Synthetic Metals, 2017, 231, 25-33.	2.1	7
2039	Enhanced electrochemical response of activated carbon nanostructures from tree-bark biomass waste in polymer-gel active electrolytes. RSC Advances, 2017, 7, 37286-37295.	1.7	31
2040	A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Scientific Reports, 2017, 7, 7362.	1.6	84
2041	A Novel Phaseâ€Transformation Activation Process toward Ni–Mn–O Nanoprism Arrays for 2.4 V Ultrahighâ€Voltage Aqueous Supercapacitors. Advanced Materials, 2017, 29, 1703463.	11.1	238
2042	Facile synthesis and supercapacitor performances of nitrogen doped CNTs grown over mesoporous Fe/SBA-15 catalyst. New Journal of Chemistry, 2017, 41, 11591-11599.	1.4	17
2043	Synthesis, characterization, and properties of nickel–cobalt layered double hydroxide nanostructures. RSC Advances, 2017, 7, 38945-38950.	1.7	45
2044	Enhanced tortuosity for electrolytes in microwave irradiated self-organized carbon-doped Ni/Co hydroxide nanocomposite electrodes with higher Ni/Co atomic ratio and rate capability for an asymmetric supercapacitor. Nanotechnology, 2017, 28, 445405.	1.3	6
2045	Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19323-19332.	5.2	69
2046	High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale, 2017, 9, 13747-13759.	2.8	113
2047	Structurally Stable Mesoporous Hierarchical NiMoO ₄ Hollow Nanofibers for Asymmetric Supercapacitors with Enhanced Capacity and Improved Cycling Stability. ChemElectroChem, 2017, 4, 3331-3339.	1.7	29
2048	Fine decoration of carbon nanotubes with metal organic frameworks for enhanced performance in supercapacitance and oxygen reduction reaction. Science Bulletin, 2017, 62, 1132-1141.	4.3	37
2049	Hierarchical Porous Carbons from Poly(methyl methacrylate)/Bacterial Cellulose Composite Monolith for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2017, 5, 9390-9401.	3.2	41
2050	2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors. Nanoscale, 2017, 9, 13272-13280.	2.8	73
2051	Highly Uniform Anodically Deposited Film of MnO ₂ Nanoflakes on Carbon Fibers for Flexible and Wearable Fiber-Shaped Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 28386-28393.	4.0	71
2052	Facile Synthesis of Flowerlike LiFe ₅ O ₈ Microspheres for Electrochemical Supercapacitors. Inorganic Chemistry, 2017, 56, 14960-14967.	1.9	26
2053	An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. Journal of Materials Chemistry C, 2017, 5, 12657-12673.	2.7	141
2054	High Specific Capacitance Based on N-Doped Microporous Carbon in [EMIm]Al _x Cl _y Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A3319-A3325.	1.3	10
2055	The Electrochemical Behavior of 1-Ethyl-3-Methyl Imidazolium Tetracyanoborate Visualized by In Situ X-ray Photoelectron Spectroscopy at the Negatively and Positively Polarized Micro-Mesoporous Carbon Electrode. Journal of the Electrochemical Society, 2017, 164, A3393-A3402.	1.3	17

#	Article	IF	CITATIONS
2056	N-doped ordered mesoporous carbon/graphene composites with supercapacitor performances fabricated by evaporation induced self-assembly. International Journal of Hydrogen Energy, 2017, 42, 29820-29829.	3.8	45
2057	Variable texture few-layer ordered macroporous carbon for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 25171-25176.	5.2	6
2058	Porous Carbon with Willow-Leaf-Shaped Pores for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 42699-42707.	4.0	36
2059	ITO nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 25177-25186.	5.2	26
2060	Nanowire-assembled Co ₃ O ₄ @NiCo ₂ O ₄ architectures for high performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24981-24988.	5.2	81
2061	Solid-state preparation of CuO/ZnO nanocomposites for functional supercapacitor electrodes and photocatalysts with enhanced photocatalytic properties. International Journal of Hydrogen Energy, 2017, 42, 30098-30108.	3.8	79
2062	Surface modification of single-walled carbon nanotubes by functional nitrogen-containing groups and study of their properties. Doklady Physical Chemistry, 2017, 476, 186-189.	0.2	5
2063	Hierarchical polypyrrole nanotubes@NiCo2S4 nanosheets core-shell composites with improved electrochemical performance as supercapacitors. Electrochimica Acta, 2017, 258, 182-191.	2.6	76
2064	Microwave-assisted synthesis of novel nanostructured Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O and Zn ₂ V ₂ O ₇ as electrode materials for supercapacitors. New Journal of Chemistry, 2017, 41, 15298-15304.	1.4	39
2065	Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Progress in Crystal Growth and Characterization of Materials, 2017, 63, 72-93.	1.8	12
2066	An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell. Solar Energy, 2017, 155, 110-120.	2.9	16
2067	Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega, 2017, 2, 2866-2877.	1.6	56
2068	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 13, 1700917.	5.2	110
2069	Nanostructured polyaniline/kenaf-derived 3D porous carbon materials with high cycle stability for supercapacitor electrodes. Journal of Materials Science, 2017, 52, 2158-2168.	1.7	29
2070	Highly stable 3D porous heterostructures with hierarchically-coordinated octahedral transition metals for enhanced performance supercapacitors. Nano Energy, 2017, 39, 337-345.	8.2	72
2071	Low-temperature fabrication of 3D drilled graphene sheets hydrogel for supercapacitors with ultralong cycle life. Chemical Physics Letters, 2017, 684, 290-297.	1.2	2
2072	High-performance pseudocapacitor electrode materials: cobalt (II) chloride–GQDs electrodes. Emerging Materials Research, 2017, 6, 227-233.	0.4	17
2073	A high-capacity dual core–shell structured MWCNTs@S@PPy nanocomposite anode for advanced aqueous rechargeable lithium batteries. Nanoscale, 2017, 9, 11004-11011.	2.8	41

#	Article	IF	CITATIONS
2074	Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. Journal of Materials Chemistry A, 2017, 5, 15759-15770.	5.2	72
2075	Tuning band gaps and optical absorption of BiOCl through doping and strain: insight form DFT calculations. Physical Chemistry Chemical Physics, 2017, 19, 20968-20973.	1.3	34
2076	Fabrication of vanadium oxide, with different valences of vanadium, -embedded carbon fibers and their electrochemical performance for supercapacitor. New Journal of Chemistry, 2017, 41, 8977-8984.	1.4	53
2077	Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. Journal of Materials Chemistry A, 2017, 5, 17998-18011.	5.2	191
2078	Rational construction of 3D NiCo2O4@CoMoO4 core/shell nanoarrays as a positive electrode for asymmetric supercapacitor. Journal of Alloys and Compounds, 2017, 729, 716-723.	2.8	44
2079	One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors. Chemical Research in Chinese Universities, 2017, 33, 638-642.	1.3	6
2080	One-step synthesis of highly reduced graphene hydrogels for high power supercapacitor applications. Journal of Power Sources, 2017, 360, 538-547.	4.0	69
2081	Evaluation of the Polyaniline Based Nanocomposite Modified with Graphene Nanosheet, Carbon Nanotube, and Pt Nanoparticle as a Material for Supercapacitor. Electrochimica Acta, 2017, 247, 116-124.	2.6	47
2082	Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceramics International, 2017, 43, 13119-13126.	2.3	72
2083	Urchin-like NiCo ₂ O ₄ nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors. Dalton Transactions, 2017, 46, 9457-9465.	1.6	30
2084	Independently double-crosslinked carbon nanotubes/polyaniline composite films as flexible and robust free-standing electrodes for high-performance supercapacitors. Carbon, 2017, 122, 761-774.	5.4	36
2085	Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy, 2017, 39, 162-171.	8.2	273
2086	Graphene-based carbons as supercapacitor electrodes with bicontinuous, porous polyacrylonitrile. Japanese Journal of Applied Physics, 2017, 56, 075103.	0.8	0
2087	Self-supported hierarchical MnCo2O4@Ni3S2 core–shell heterostructures on Ni foam as a binder-free electrode for high-performance supercapacitors. Ceramics International, 2017, 43, 12948-12956.	2.3	21
2088	Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Advanced Energy Materials, 2017, 7, 1601301.	10.2	334
2089	Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors. Applied Surface Science, 2017, 396, 412-420.	3.1	17
2090	Threeâ€Dimensional Hierarchically Mesoporous ZnCo ₂ O ₄ Nanowires Grown on Graphene/Sponge Foam for Highâ€Performance, Flexible, Allâ€Solidâ€State Supercapacitors. Chemistry - A European Journal, 2017, 23, 597-604.	1.7	83
2091	Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors. Journal of the Iranian Chemical Society, 2017, 14, 419-425.	1.2	16

#	Article	IF	CITATIONS
2092	Design and synthesis of porous TiO2@C nanotube bundles with enhanced supercapacitive performance. Ceramics International, 2017, 43, 2876-2880.	2.3	14
2093	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	1.7	32
2094	Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renewable and Sustainable Energy Reviews, 2017, 75, 644-659.	8.2	48
2095	Fallen-leaf-derived microporous pyropolymers for supercapacitors. Journal of Industrial and Engineering Chemistry, 2017, 45, 223-228.	2.9	28
2096	Porous nitrogen-doped graphene for high energy density supercapacitors in an ionic liquid electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 759-766.	1.2	15
2097	Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Materials, 2017, 6, 70-97.	9.5	260
2098	Design of Architectures and Materials in Inâ€Plane Microâ€supercapacitors: Current Status and Future Challenges. Advanced Materials, 2017, 29, 1602802.	11.1	373
2099	Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. National Science Review, 2017, 4, 71-90.	4.6	215
2100	Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor. Nano-Micro Letters, 2017, 9, 6.	14.4	93
2101	Polypyrrole/iron oxide/reduced graphene oxide ternary composite as aÂbinderless electrode material with high cyclic stability for supercapacitors. Composites Part B: Engineering, 2017, 109, 23-29.	5.9	120
2102	Rational design of nickel cobalt sulfide/oxide core-shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors. Ceramics International, 2017, 43, 2155-2164.	2.3	39
2103	Porous carbons derived from pyrene-based conjugated microporous polymer for supercapacitors. Microporous and Mesoporous Materials, 2017, 240, 73-79.	2.2	31
2104	Electrochemical properties of hollow MnO2 nanostructure: synthesis and application. Journal of Materials Science: Materials in Electronics, 2017, 28, 418-425.	1.1	7
2105	Highâ€Performance Supercapacitor Electrode Materials from Chitosan via Hydrothermal Carbonization and Potassium Hydroxide Activation. Energy Technology, 2017, 5, 452-460.	1.8	41
2106	An Aqueous Asymmetric Supercapacitor Based on Activated Carbon and Tungsten Trioxide Nanowire Electrodes. Chinese Journal of Chemistry, 2017, 35, 61-66.	2.6	14
2107	Electrochemical energy storage performance of heterostructured SnO2@MnO2 nanoflakes. Ceramics International, 2017, 43, 1688-1694.	2.3	18
2108	Mimics of microstructures of Ni substituted Mn1â~'xNixCo2O4 for high energy density asymmetric capacitors. Chemical Engineering Journal, 2017, 307, 300-310.	6.6	76
2109	Porous manganese oxide nanospheres for pseudocapacitor applications. Journal of Alloys and Compounds, 2017, 695, 771-778.	2.8	25

#	Article	IF	Citations
2110	Enriched Doping Level and Tuned Fiber Fractal Dimensions in Nonwoven Carbonâ€Doped Polyaniline for Efficient Solid‧tate Supercapacitors. Energy Technology, 2017, 5, 253-266.	1.8	13
2111	One-step synthesis of nitrogen-doped porous carbon for supercapacitors utilizing KNO3 as an electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 171-181.	1.2	5
2112	Hydrothermally reduced nano porous graphene–polyaniline nanofiber composites for supercapacitor. FlatChem, 2017, 1, 1-5.	2.8	37
2113	Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor. Journal of Colloid and Interface Science, 2017, 486, 287-295.	5.0	48
2114	Highly densified carbon electrode materials towards practical supercapacitor devices. Science China Materials, 2017, 60, 25-38.	3.5	57
2115	The Role of Thin and Mobile Electric Double Layer in Water Purification and Energy Storage. Springer Theses, 2017, , 37-51.	0.0	0
2117	Effects of oxygen-containing functional groups on the supercapacitor performance of incompletely reduced graphene oxides. International Journal of Hydrogen Energy, 2017, 42, 7186-7194.	3.8	47
2118	Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. Chemical Engineering Journal, 2017, 312, 296-305.	6.6	95
2119	Capacitive vs Faradaic Energy Storage in a Hybrid Cell with LiFePO ₄ /RGO Positive Electrode and Nanocarbon Negative Electrode. Journal of the Electrochemical Society, 2017, 164, A6140-A6146.	1.3	3
2120	Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors. Chemical Engineering Journal, 2017, 312, 180-190.	6.6	130
2121	Surfaceâ€Chargeâ€Mediated Formation of Hâ€īiO ₂ @Ni(OH) ₂ Heterostructures for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1604164.	11.1	203
2122	High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes. High Performance Polymers, 2017, 29, 984-993.	0.8	19
2123	Amorphous Cobalt Boron Alloy@Graphene Oxide Nanocomposites for Pseudocapacitor Applications. Journal of Materials Science and Technology, 2017, 33, 438-443.	5.6	9
2124	Directional synthesis of Ni2P nanoflakes with highly porous walls for electrochemical energy storage application. Materials Research Bulletin, 2017, 85, 147-151.	2.7	19
2125	Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives. Journal of Materials Science, 2017, 52, 815-831.	1.7	21
2126	On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 2017, 7, 16594.	1.6	30
2127	Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nature Communications, 2017, 8, 2188.	5.8	103
2128	Electrodeposition of Hierarchical Nanosheet Arrays of NiCo ₂ S ₄ onto a Polymer Substrate: A New High Power Flexible Battery Electrode. Journal of the Electrochemical Society, 2017, 164, A3793-A3803.	1.3	8

			0
#		IF	CITATIONS
2129	Hierarchical Polyanilineâ€MnO ₂ â€Reduced Graphene Oxide Ternary Nanostructures with Whiskersâ€Like Polyaniline for Supercapacitor Application. ChemistrySelect, 2017, 2, 11783-11789.	0.7	21
2130	An intelligent scheme for source management. , 2017, , .		0
2131	Facial synthesis of nanostructured ZnCo ₂ O ₄ on carbon cloth for supercapacitor application. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012004.	0.3	9
2132	All-printed paper based supercapacitors. , 2017, , .		0
2133	Hierarchical Multicomponent Electrode with Interlaced Ni(OH) ₂ Nanoflakes Wrapped Zinc Cobalt Sulfide Nanotube Arrays for Sustainable Highâ€Performance Supercapacitors. Advanced Energy Materials, 2017, 7, 1701228.	10.2	162
2134	Neighborhood field optimization algorithm with dendritical structure. , 2017, , .		Ο
2135	Superelastic Graphene Aerogel/Poly(3,4-Ethylenedioxythiophene)/MnO2 Composite as Compression-Tolerant Electrode for Electrochemical Capacitors. Materials, 2017, 10, 1353.	1.3	6
2136	Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances. Nanomaterials, 2017, 7, 409.	1.9	13
2137	Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers, 2017, 9, 510.	2.0	22
2138	Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes. Materials, 2017, 10, 936.	1.3	43
2139	Influence of Activated Condition on the Structure of Diatomite-templated Carbons and Their Electrochemical Properties as Supercapacitors. Electrochemistry, 2017, 85, 708-714.	0.6	6
2140	Enhanced Hybrid Supercapacitors Utilizing Nanostructured Metal Oxides. , 2017, , 247-264.		5
2141	Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode. Nanoscale Research Letters, 2017, 12, 630.	3.1	34
2142	Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Scientific Reports, 2017, 7, 9764.	1.6	51
2143	Electro-deposition of Co-Ni sulfide nanosheet arrays on nickel foam and investigation of the pseudocapacitive performance. , 2017, , .		1
2144	A Study of the Electrochemical Performance of Strip Supercapacitors under Static and Dynamic Mechanical Tests. International Journal of Electrochemical Science, 2017, , 1463-1473.	0.5	2
2145	Design and Synthesis of Ternary Graphene/Polyaniline/Co3O4 Hierarchical Nanocomposites for Supercapacitors. International Journal of Electrochemical Science, 2017, 12, 3721-3731.	0.5	23
2146	A Novel Kind of Activated Carbon Foam Electrode for Electric Double Layer Capacitors. International Journal of Electrochemical Science, 2017, 12, 1846-1862.	0.5	20

#	Article	IF	CITATIONS
2147	Facile Preparation of Highly Porous Carbon from Bean Dregs for Enhanced Electrochemical Performance. International Journal of Electrochemical Science, 2017, 12, 7326-7340.	0.5	5
2148	Energy transmission and storage. , 2017, , 569-646.		3
2149	Facile Synthesis of MnCO3 Nanoparticles on Ni Foam for Binder-Free Supercapacitor Electrodes. International Journal of Electrochemical Science, 2017, 12, 5898-5909.	0.5	9
2150	Facile Hydrothermal Synthesis of Manganese Dioxide/Nitrogen- Doped Graphene Composites as Electrode Material for Supercapacitors. International Journal of Electrochemical Science, 2017, , 11171-11180.	0.5	10
2151	N,P,S-Codoped Hierarchically Porous Carbon Spheres with Well-Balanced Gravimetric/Volumetric Capacitance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 5265-5272.	3.2	120
2152	Electrochemical analysis of Graphene Oxide/Polyaniline/Polyvinyl alcohol composite nanofibers for supercapacitor applications. Applied Surface Science, 2018, 449, 551-557.	3.1	89
2153	One-step synthesis of porous carbon derived from starch for all-carbon binder-free high-rate supercapacitor. Electrochimica Acta, 2018, 269, 676-685.	2.6	56
2154	Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. Journal of Colloid and Interface Science, 2018, 523, 133-143.	5.0	170
2155	Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. Journal of Saudi Chemical Society, 2018, 22, 908-918.	2.4	29
2156	Facile preparation of porous nickel oxide membrane for flexible supercapacitors electrode via phase-separation method of polymer. Materials Research Bulletin, 2018, 103, 25-31.	2.7	14
2157	Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel–Cobalt Sulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 10087-10095.	4.0	111
2158	Capacitance enhancement of hybrid electrochemical capacitor with asymmetric carbon electrodes configuration in neutral aqueous electrolyte. Electrochimica Acta, 2018, 269, 640-648.	2.6	32
2159	Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 6476-6492.	5.2	49
2160	Highly compressible graphene/polypyrrole aerogel for superelastic pseudocapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 23-29.	1.0	7
2161	The effect of SiO ₂ additives on solid hydroxide ion-conducting polymer electrolytes: a Raman microscopy study. Physical Chemistry Chemical Physics, 2018, 20, 7148-7155.	1.3	10
2162	High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. Journal of Power Sources, 2018, 383, 102-109.	4.0	108
2163	Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy, 2018, 47, 43-50.	8.2	183
2164	Charge transport in carbon electrodes made by electrospray of precursor sol and subsequent carbonization in situ. Journal of Solid State Electrochemistry, 2018, 22, 2149-2157.	1.2	2

#	Article	IF	CITATIONS
2165	Thiolated-graphene-based supercapacitors with high energy density and stable cycling performance. Carbon, 2018, 134, 326-333.	5.4	38
2166	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
2167	Multifunctional Nickel Phosphate Nano/Microflakes 3D Electrode for Electrochemical Energy Storage, Nonenzymatic Glucose, and Sweat pH Sensors. ACS Applied Materials & Interfaces, 2018, 10, 8599-8610.	4.0	114
2168	Capacitive Enhancement Mechanisms and Design Principles of Highâ€Performance Graphene Oxideâ€Based Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1706721.	7.8	27
2169	Ultrathin NiCo ₂ S ₄ @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 5856-5861.	5.2	164
2170	Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy and Environmental Science, 2018, 11, 1261-1270.	15.6	124
2171	In-situ synthesis of NiO foamed sheets on Ni foam as efficient cathode of battery-type supercapacitor. Electrochimica Acta, 2018, 269, 62-69.	2.6	46
2172	Effect of chelating agent on the sol-gel thermolysis synthesis of LiNiPO 4 and its electrochemical properties for hybrid capacitors. Journal of Physics and Chemistry of Solids, 2018, 119, 183-192.	1.9	24
2173	Specific capacitance, energy and power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode. Organic Electronics, 2018, 57, 110-117.	1.4	32
2174	TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: effect of substrate. Journal of Materials Science: Materials in Electronics, 2018, 29, 10814-10824.	1.1	22
2175	A facile one-step hydrothermal approach to synthesize hierarchical core–shell NiFe ₂ O ₄ @NiFe ₂ O ₄ nanosheet arrays on Ni foam with large specific capacitance for supercapacitors. RSC Advances, 2018, 8, 15222-15228.	1.7	40
2176	Comparison of supercapacitive behaviors of polyaniline doped with two lowâ€molecularâ€weight organic acids: Dâ€ŧartaric acid and citric acid. Advances in Polymer Technology, 2018, 37, 3038-3044.	0.8	4
2177	Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes <i>via</i> nonsolvent-induced phase separation for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8909-8915.	5.2	23
2178	Controllable morphologies of Co3O4@MnO2 core-shell structure grown on nickel foam and their supercapacitor behavior. Solid State Communications, 2018, 277, 19-24.	0.9	22
2179	Multiâ€Anion Intercalated Layered Double Hydroxide Nanosheetâ€Assembled Hollow Nanoprisms with Improved Pseudocapacitive and Electrocatalytic Properties. Chemistry - an Asian Journal, 2018, 13, 1129-1137.	1.7	24
2180	Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 817, 111-117.	1.9	67
2181	Nanoengineering S-Doped TiO ₂ Embedded Carbon Nanosheets for Pseudocapacitance-Enhanced Li-Ion Capacitors. ACS Applied Energy Materials, 2018, 1, 1708-1715.	2.5	34
2182	Halloysite nanotubes favored facile deposition of nickel disulfide on NiMn oxides nanosheets for high-performance energy storage. Electrochimica Acta, 2018, 273, 349-357.	2.6	10

#	Article	IF	CITATIONS
2183	Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10, 11775-11781.	2.8	274
2184	Rapid transformation of heterocyclic building blocks into nanoporous carbons for high-performance supercapacitors. RSC Advances, 2018, 8, 12300-12309.	1.7	38
2185	A phenylenediamine-mediated organic electrolyte for high performance graphene-hydrogel based supercapacitors. Electrochimica Acta, 2018, 273, 495-501.	2.6	14
2186	A novel porous carbon material made from wild rice stem and its application in supercapacitors. Materials Chemistry and Physics, 2018, 213, 267-276.	2.0	53
2187	Hierarchical 3D Zn–Ni–P nanosheet arrays as an advanced electrode for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8669-8681.	5.2	116
2188	Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Composites Communications, 2018, 8, 83-91.	3.3	133
2189	In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications. Journal of Electroanalytical Chemistry, 2018, 817, 217-225.	1.9	38
2190	Novel supercapacitor electrodes based semiconductor nanoheterostructure of CdS/rGO/CeO 2 as efficient candidates. Arabian Journal of Chemistry, 2018, 11, 692-699.	2.3	30
2191	Selfâ€Templateâ€Directed Metal–Organic Frameworks Network and the Derived Honeycombâ€Like Carbon Flakes via Confinement Pyrolysis. Small, 2018, 14, e1704461.	5.2	44
2192	Lithium salt assisted enhanced performance of supercapacitor based on quasi solid-state electrolyte. Journal of Saudi Chemical Society, 2018, 22, 838-845.	2.4	10
2193	Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors. Ionics, 2018, 24, 2073-2082.	1.2	18
2194	Mesoporous Fe–Ni–Co ternary oxide nanoflake arrays on Ni foam for high-performance supercapacitor applications. Journal of Industrial and Engineering Chemistry, 2018, 63, 181-190.	2.9	71
2195	CaTiO3 perovskite in the framework of activated carbon and its effect on enhanced electrochemical capacitance. Electrochimica Acta, 2018, 268, 73-81.	2.6	29
2196	Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1703259.	10.2	679
2197	A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon, 2018, 132, 503-511.	5.4	60
2198	Enhanced pseudocapacitance from finely ordered pristine α-MnO2 nanorods at favourably high current density using redox additive. Applied Surface Science, 2018, 449, 492-499.	3.1	47
2199	Surface modification of titania nanotube arrays with crystalline manganese-oxide nanostructures and fabrication of hybrid electrochemical electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2018, 62, 409-417.	2.9	14
2200	Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. Journal of Power Sources, 2018, 379, 74-83.	4.0	101

#	Article	IF	CITATIONS
2201	Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy, 2018, 46, 277-289.	8.2	317
2202	High Performance Supercapacitor Electrode Materials from Electrospun Carbon Nanofibers in Situ Activated by High Decomposition Temperature Polymer. ACS Applied Energy Materials, 2018, 1, 431-439.	2.5	74
2203	Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance. Journal of Power Sources, 2018, 379, 261-269.	4.0	50
2204	Coal-Based Hierarchical Porous Carbon Synthesized with a Soluble Salt Self-Assembly-Assisted Method for High Performance Supercapacitors and Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 3255-3263.	3.2	80
2205	Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (UBs) graphite and its application in supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 98-108.	2.3	90
2206	Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews, 2018, 47, 2065-2129.	18.7	1,338
2207	Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances. Applied Surface Science, 2018, 440, 730-740.	3.1	7
2208	Template-free fabrication of hollow N-doped carbon sphere (h-NCS) to synthesize h-NCS@PANI positive material for MoO3//h-NCS@PANI asymmetric supercapacitor. Applied Surface Science, 2018, 442, 476-486.	3.1	30
2209	Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon, 2018, 132, 241-248.	5.4	75
2210	Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors. Materials Research Bulletin, 2018, 101, 140-145.	2.7	16
2211	Nitrogen Graphene: A New and Exciting Generation of Visible Light Driven Photocatalyst and Energy Storage Application. ACS Omega, 2018, 3, 1801-1814.	1.6	28
2212	Synthesis of porous MnO2-CoO microsheets and nanocones as a high-performance battery-type capacitive material. Materials Research Bulletin, 2018, 101, 123-131.	2.7	3
2213	Ultrafast Allâ€Solidâ€State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	10.2	86
2214	Activated Biomass-derived Graphene-based Carbons for Supercapacitors with High Energy and Power Density. Scientific Reports, 2018, 8, 1915.	1.6	79
2215	Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Advanced Energy Materials, 2018, 8, 1702702.	10.2	90
2216	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	14.4	73
2217	Yolk Type Asymmetric Ag–Cu ₂ O Hybrid Nanoparticles on Graphene Substrate as Efficient Electrode Material for Hybrid Supercapacitors. Zeitschrift Fur Physikalische Chemie, 2018, 233, 85-104.	1.4	17
2218	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226

#	Article	IF	CITATIONS
2219	In situ growth of hexagonal-shaped α-Fe2O3 nanostructures over few layered graphene by hydrothermal method and their electrochemical performance. Journal of Materials Science: Materials in Electronics, 2018, 29, 6898-6908.	1.1	16
2220	Electrospun Mat of Poly(vinyl alcohol)/Graphene Oxide for Superior Electrolyte Performance. ACS Applied Materials & Interfaces, 2018, 10, 7927-7934.	4.0	38
2221	Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma. Applied Surface Science, 2018, 446, 243-249.	3.1	21
2222	Inhibition of Redox Behaviors in Hierarchically Structured Manganese Cobalt Phosphate Supercapacitor Performance by Surface Trivalent Cations. ACS Omega, 2018, 3, 1718-1725.	1.6	30
2223	Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. Journal of Power Sources, 2018, 378, 603-609.	4.0	68
2224	Recent Advances in Two-Dimensional Nanomaterials for Supercapacitor Electrode Applications. ACS Energy Letters, 2018, 3, 482-495.	8.8	618
2225	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	10.2	757
2226	Hydrothermal Synthesis of Hybrid Rodâ€Like Hollow CoWO ₄ /Co _{1â^'<i>x</i>} S for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 1047-1055.	1.7	30
2227	Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotubes in carbon nanotube film for supercapacitor. Chemical Engineering Journal, 2018, 337, 552-559.	6.6	77
2228	Effect of oxidation state of manganese in manganese oxide thin films on their capacitance performances. Surface Science, 2018, 676, 71-76.	0.8	13
2229	Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices. Journal of Materials Science: Materials in Electronics, 2018, 29, 4869-4880.	1.1	21
2230	Multilayered Flexible Fibers with High Performance for Wearable Supercapacitor Applications. Advanced Sustainable Systems, 2018, 2, 1700143.	2.7	13
2231	Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. Journal of Materials Chemistry A, 2018, 6, 1840-1849.	5.2	70
2232	High Performance of Nâ€Doped Graphene with Bubbleâ€like Textures for Supercapacitors. Small, 2018, 14, 1702570.	5.2	56
2233	Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance. Journal of Electroanalytical Chemistry, 2018, 809, 111-116.	1.9	16
2234	Biosourced Foamâ€Like Activated Carbon Materials as Highâ€Performance Supercapacitors. Advanced Sustainable Systems, 2018, 2, 1700123.	2.7	36
2235	Metal-organic framework-derived hierarchical ZnO/NiO composites: Morphology, microstructure and electrochemical performance. Journal of Industrial and Engineering Chemistry, 2018, 62, 250-257.	2.9	48
2236	Design of multidimensional nanocomposite material to realize the application both in energy storage and electrocatalysis. Science Bulletin, 2018, 63, 152-154.	4.3	27

#	Article	IF	CITATIONS
2237	Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors. Applied Surface Science, 2018, 439, 612-622.	3.1	24
2238	In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors. Electrochimica Acta, 2018, 263, 515-523.	2.6	102
2239	Construction of Core–Shell NiMoO ₄ @Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 4662-4671.	4.0	195
2240	Fast ion transport through ultrathin shells of metal sulfide hollow nanocolloids used for high-performance energy storage. Scientific Reports, 2018, 8, 30.	1.6	14
2241	Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitors. RSC Advances, 2018, 8, 1857-1865.	1.7	16
2242	Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries. Journal of Alloys and Compounds, 2018, 741, 404-408.	2.8	53
2243	Core–Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 4041-4049.	4.0	73
2244	NiCuCo ₂ O ₄ Supported Ni–Cu Ion-Exchanged Mesoporous Zeolite Heteronano Architecture: An Efficient, Stable, and Economical Nonprecious Electrocatalyst for Methanol Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 2023-2036.	3.2	51
2245	Hierarchically Porous Carbon as a Highâ€Rate and Long‣ife Electrode Material for Highâ€Performance Supercapacitors. ChemElectroChem, 2018, 5, 770-777.	1.7	35
2246	Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochimica Acta, 2018, 263, 391-399.	2.6	72
2247	Novel freestanding N-doped carbon coated Fe3O4 nanocomposites with 3D carbon fibers network derived from bacterial cellulose for supercapacitor application. Journal of Electroanalytical Chemistry, 2018, 810, 18-26.	1.9	18
2248	Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for Nitrogen-Rich Hollow Carbon Shell Frameworks toward alkaline and neutral supercapacitors. Carbon, 2018, 136, 176-186.	5.4	74
2249	High performing all-solid electrochemical capacitor using chitosan/poly(acrylamide-co-diallyldimethylammonium chloride) as anion conducting membranes. Electrochimica Acta, 2018, 276, 319-324.	2.6	11
2250	Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceramics International, 2018, 44, 13879-13887.	2.3	89
2251	Self-Generated Nanoporous Silver Framework for High-Performance Iron Oxide Pseudocapacitor Anodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 17223-17231.	4.0	21
2252	Hierarchical MnCo2O4@CoMoO4 core-shell nanowire arrays supported on Ni foam for supercapacitor. Journal of Alloys and Compounds, 2018, 753, 761-770.	2.8	34
2253	Study on effects of applied current and voltage on the ageing of supercapacitors. Electrochimica Acta, 2018, 276, 343-351.	2.6	22
2254	Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors. Carbon, 2018, 136, 204-210.	5.4	61

#	Article	IF	CITATIONS
2255	Synthesis and characterization of GO/IrO 2 thin film supercapacitor. Journal of Alloys and Compounds, 2018, 754, 14-25.	2.8	55
2256	Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 268, 260-267.	2.2	39
2257	Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. Journal of Alloys and Compounds, 2018, 749, 900-908.	2.8	50
2258	Oxygen-Incorporated and Polyaniline-Intercalated 1T/2H Hybrid MoS2 Nanosheets Arrayed on Reduced Graphene Oxide for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 8128-8136.	1.5	32
2259	A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode. RSC Advances, 2018, 8, 11608-11621.	1.7	90
2260	Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21, 437-454.	8.3	255
2261	Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors. Advanced Energy Materials, 2018, 8, 1800026.	10.2	122
2262	Etchingâ€Assisted Crumpled Graphene Wrapped Spiky Iron Oxide Particles for Highâ€Performance Liâ€lon Hybrid Supercapacitor. Small, 2018, 14, e1704209.	5.2	63
2263	Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochimica Acta, 2018, 270, 387-394.	2.6	64
2264	<i>In situ</i> electrochemical electron paramagnetic resonance spectroscopy as a tool to probe electrical double layer capacitance. Chemical Communications, 2018, 54, 3827-3830.	2.2	22
2265	Facilely prepared, N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes. Chemical Physics, 2018, 506, 17-25.	0.9	11
2266	Nitrogen-rich hollow carbon spheres decorated with FeCo/fluorine-rich carbon for high performance symmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 7522-7531.	5.2	33
2267	Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. Journal of Power Sources, 2018, 384, 396-407.	4.0	25
2268	Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications. Materials Research Express, 2018, 5, 044002.	0.8	2
2269	High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemical Engineering Journal, 2018, 345, 186-195.	6.6	88
2270	Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors. New Journal of Chemistry, 2018, 42, 7043-7048.	1.4	12
2271	Hierarchical porous carbon materials from nanosized metal-organic complex for high-performance symmetrical supercapacitor. Electrochimica Acta, 2018, 269, 580-589.	2.6	47
2272	N-Doped hierarchically porous carbon derived from heterogeneous core–shell ZIF-L(Zn)@ZIF-67 for supercapacitor application. New Journal of Chemistry, 2018, 42, 6719-6726.	1.4	53

#	Article	IF	CITATIONS
2273	Stretchable V ₂ O ₅ /PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators. Nanoscale, 2018, 10, 7719-7725.	2.8	26
2274	H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors. Applied Surface Science, 2018, 444, 105-117.	3.1	103
2275	Rational design of binder-free ZnCo2O4 and Fe2O3 decorated porous 3D Ni as high-performance electrodes for asymmetric supercapacitor. Ceramics International, 2018, 44, 10635-10645.	2.3	31
2276	Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochimica Acta, 2018, 270, 37-47.	2.6	62
2277	Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale, 2018, 10, 8953-8961.	2.8	76
2278	Carbon-based core–shell nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 7310-7337.	5.2	102
2279	Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithiumâ€lon Capacitors. Advanced Materials, 2018, 30, e1705670.	11.1	334
2280	3D Hybrids of Interconnected Porous Carbon Nanosheets/Vertically Aligned Polyaniline Nanowires for Highâ€Performance Supercapacitors. Advanced Materials Interfaces, 2018, 5, 1800106.	1.9	39
2281	A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids. Advanced Energy Materials, 2018, 8, 1703329.	10.2	61
2282	Applications of KPFM-Based Approaches for Surface Potential and Electrochemical Measurements in Liquid. Springer Series in Surface Sciences, 2018, , 391-433.	0.3	3
2283	Wide potential window and high specific capacitance triggered via rough NiCo2S4 nanorod arrays with open top for symmetric supercapacitors. Electrochimica Acta, 2018, 269, 397-404.	2.6	72
2284	Triethylenediamine-assisted one-step hydrothermal synthesis of polyhedron-shaped Co3S4 for high performance supercapacitor. Ceramics International, 2018, 44, 1836-1842.	2.3	17
2285	Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. Journal of Alloys and Compounds, 2018, 734, 89-111.	2.8	381
2286	CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors. Ceramics International, 2018, 44, 980-987.	2.3	41
2287	Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors. Journal of Colloid and Interface Science, 2018, 512, 713-721.	5.0	33
2288	Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Fieldâ€Based Techniques. Advanced Materials Technologies, 2018, 3, 1700168.	3.0	12
2289	Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor. Journal of Materials Science, 2018, 53, 2658-2668.	1.7	40
2290	A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes. Energy Storage Materials, 2018, 11, 75-82.	9.5	73

#	Article	IF	CITATIONS
2291	Novel multifunctional of magnesium ions (Mg++) incorporated calcium phosphate nanostructures. Journal of Alloys and Compounds, 2018, 730, 31-35.	2.8	15
2292	Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. Journal of Colloid and Interface Science, 2018, 511, 128-134.	5.0	107
2293	Supercapacitor electrodes from activation of binderless green monoliths of biomass self-adhesive carbon grains composed of varying amount of graphene additive. Ionics, 2018, 24, 1195-1210.	1.2	6
2294	Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 657-666.	1.2	22
2295	High-frequency supercapacitors based on doped carbon nanostructures. Carbon, 2018, 126, 305-312.	5.4	65
2296	New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, 3639-3649.	1.7	211
2297	Understanding and controlling the rest potential of carbon nanotube-based supercapacitors for energy density enhancement. Applied Surface Science, 2018, 433, 765-771.	3.1	13
2298	Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 914-921.	1.1	24
2299	Enhanced performance of PbO nanoparticles and PbO-CdO and PbO-ZnO nanocomposites for supercapacitor application. Journal of Alloys and Compounds, 2018, 731, 55-63.	2.8	34
2300	Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode. Journal of Materials Science, 2018, 53, 749-758.	1.7	29
2301	Colloidal Supercapattery: Redox Ions in Electrode and Electrolyte. Chemical Record, 2018, 18, 282-292.	2.9	36
2302	Fabrication of completely interface-engineered Ni(OH)2/rGO nanoarchitectures for high-performance asymmetric supercapacitors. Applied Surface Science, 2018, 460, 65-73.	3.1	38
2303	Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2018, 333, 111-121.	6.6	206
2304	High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Research, 2018, 11, 1651-1663.	5.8	58
2305	Understanding electrochemical performance of Ni(OH)2 films: a study contributions to energy storage. Journal of Solid State Electrochemistry, 2018, 22, 1621-1628.	1.2	4
2306	Doping and controllable pore size enhanced electrochemical performance of free-standing 3D graphene films. Applied Surface Science, 2018, 427, 598-604.	3.1	11
2307	A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochimica Acta, 2018, 259, 793-802.	2.6	55
2308	Tubular TiO ₂ Nanostructures: Toward Safer Microsupercapacitors. Advanced Materials Technologies, 2018, 3, 1700194.	3.0	9

#	Article	IF	CITATIONS
2309	One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials. Applied Surface Science, 2018, 435, 462-467.	3.1	27
2310	Synthesis and controlled sulfidation of Ni-Co alloy on reduced graphene oxide as an electrode with enhanced conductivity and capacitance for supercapacitors. Journal of Alloys and Compounds, 2018, 735, 409-416.	2.8	19
2311	Engineered carbon fiber papers as flexible binder-free electrodes for high-performance capacitive energy storage. Journal of Industrial and Engineering Chemistry, 2018, 59, 277-285.	2.9	22
2312	Flexible Solidâ€State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Advanced Functional Materials, 2018, 28, 1704463.	7.8	239
2313	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
2314	A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(<scp>ii</scp>) ion active electrolyte. Physical Chemistry Chemical Physics, 2018, 20, 131-136.	1.3	41
2315	Fluorescent modified graphene oxide/polyaniline nanowhiskers composites as smart electrode material for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 117-128.	2.7	8
2316	Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chemical Engineering Journal, 2018, 334, 2058-2067.	6.6	61
2317	Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2018, 735, 1505-1513.	2.8	81
2318	Inâ€Plane Assembled Orthorhombic Nb ₂ O ₅ Nanorod Films with Highâ€Rate Li ⁺ Intercalation for Highâ€Performance Flexible Liâ€Ion Capacitors. Advanced Functional Materials, 2018, 28, 1704330.	7.8	207
2319	Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2018, 334, 1573-1583.	6.6	360
2320	Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon, 2018, 129, 236-244.	5.4	244
2321	Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4334-4344.	1.1	48
2322	A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. Journal of Materials Chemistry A, 2018, 6, 1244-1254.	5.2	360
2323	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Doubleâ€Layer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	2.7	46
2324	Two-Dimensional Polymer Synthesized <i>via</i> Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano, 2018, 12, 852-860.	7.3	91
2325	Sustainable Carbon/Carbon Supercapacitors Operating Down to â^'40 °C in Aqueous Electrolyte Made with Cholinium Salt. ChemSusChem, 2018, 11, 975-984.	3.6	45
2326	Monolithic mesoporous graphitic composites as super capacitors: from Starbons to Starenes®. Journal of Materials Chemistry A, 2018, 6, 1119-1127.	5.2	13

#	Article	IF	CITATIONS
2327	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
2328	Porous carbon with interpenetrating framework from Osmanthus flower as electrode materials for high-performance supercapacitor. Journal of Environmental Chemical Engineering, 2018, 6, 258-265.	3.3	35
2329	In Situ Synthesis of Nitrogen- and Sulfur-Enriched Hierarchical Porous Carbon for High-Performance Supercapacitor. Energy & Fuels, 2018, 32, 908-915.	2.5	37
2330	Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustainable Energy and Fuels, 2018, 2, 455-465.	2.5	63
2331	Electrochemical performances of iron-cobalt oxides nanoparticles loaded crumpled graphene for supercapacitor. Journal of Alloys and Compounds, 2018, 735, 2030-2037.	2.8	43
2332	A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth. Chemical Engineering Journal, 2018, 335, 638-646.	6.6	34
2333	PVP-assisted enhancement in ion storage performance of sol-gel derived nano-structured NiCo2O4 thin films as battery-type electrode. Materials Research Bulletin, 2018, 99, 336-342.	2.7	23
2334	Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 160-166.	5.2	139
2335	Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Science China Materials, 2018, 61, 48-56.	3.5	23
2336	Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement. Applied Energy, 2018, 211, 200-217.	5.1	118
2337	Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chemical Engineering Journal, 2018, 336, 64-73.	6.6	80
2338	Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties. Journal of Materials Science, 2018, 53, 2648-2657.	1.7	53
2339	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie, 2018, 130, 8124-8128.	1.6	67
2340	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 7992-7996.	7.2	193
2341	Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder. Applied Surface Science, 2018, 435, 91-101.	3.1	36
2342	Skeleton/skin structured (RGO/CNTs)@PANI composite fiber electrodes with excellent mechanical and electrochemical performance for all-solid-state symmetric supercapacitors. Journal of Colloid and Interface Science, 2018, 513, 295-303.	5.0	44
2343	Facile synthesis of hollow Ni0.2Mn0.8O1.5 twin microspheres for electrochemical energy storage. Journal of Applied Electrochemistry, 2018, 48, 15-26.	1.5	5
2344	Plasmonic Optical Fibre Sensors for Electrochemical Activities Monitoring in Energy Storage Devices. Journal of Physics: Conference Series, 2018, 1065, 202010.	0.3	0

# 2345	ARTICLE The relationship of surface area to cell capacitance for monolith carbon electrode from biomass materials for supercapacitor aplication. Journal of Physics: Conference Series, 2018, 1116, 032040.	IF 0.3	Citations 18
2346	Preparation and Characterization of Activated Carbons from Oxygen-rich Lignite for Electric Double-layer Capacitor. International Journal of Electrochemical Science, 2018, 13, 2800-2816.	0.5	19
2347	Microstructure Investigation of Polyaniline (PANI) Conductive Polymer Synthesized through Chemical Polymerization. Journal of Physics: Conference Series, 2018, 1123, 012014.	0.3	0
2348	Pseudocapacitive-battery-like behavior of cobalt manganese nickel sulfide (CoMnNiS) nanosheets grown on Ni-foam by electrodeposition for realizing high capacity. RSC Advances, 2018, 8, 40198-40209.	1.7	33
2349	Nanoionic transport and electric double layer formation at the electrode/polymer interface for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23650-23658.	5.2	14
2350	Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. CrystEngComm, 2018, 20, 7428-7434.	1.3	70
2351	Tracking the interfacial charge transfer behavior of hydrothermally synthesized ZnO nanostructures <i>via</i> complementary electrogravimetric methods. Physical Chemistry Chemical Physics, 2018, 20, 27140-27148.	1.3	7
2352	3D Ti ₃ C ₂ T _x aerogels with enhanced surface area for high performance supercapacitors. Nanoscale, 2018, 10, 20828-20835.	2.8	105
2353	Nitrogen-doped micro-nano carbon spheres with multi-scale pore structure obtained from interpenetrating polymer networks for electrochemical capacitors. RSC Advances, 2018, 8, 35083-35093.	1.7	3
2354	Nanowires of polyaniline festooned silver coated paper electrodes for efficient solid-state symmetrical supercapacitors. RSC Advances, 2018, 8, 33314-33324.	1.7	10
2355	Porous NiCoP <i>in situ</i> grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23746-23756.	5.2	74
2356	Zipping assembly of an Fe ₃ O ₄ /carbon nanosheet composite as a high-performance supercapacitor electrode material. RSC Advances, 2018, 8, 37417-37423.	1.7	7
2357	Methane adsorption and methanol desorption of copper modified boron silicate. RSC Advances, 2018, 8, 36369-36374.	1.7	3
2358	Two-dimensional Pd ₃ P ₂ S ₈ semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. Journal of Materials Chemistry A, 2018, 6, 23495-23501.	5.2	51
2359	Chapter Activity Committee, Awards and Amateur Radio News, and New Chapters [Chapter News]. IEEE Antennas and Propagation Magazine, 2018, 60, 8-136.	1.2	0
2360	Advances in Molecular Electronics: A Brief Review. Engineering, 2018, 4, 760-771.	3.2	65
2361	Hierarchical Flowerlike 3D nanostructure of Co3O4@MnO2/N-doped Graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Scientific Reports, 2018, 8, 16543.	1.6	71
2362	Ternary core-shell structured transition metal chalcogenide for hybrid electrochemical capacitor. Chinese Chemical Letters, 2018, 29, 1799-1803.	4.8	26

#	Article	IF	CITATIONS
2363	Development of supercapacitor systems based on binary and ternary nanocomposites using chitosan, graphene and polyaniline. Chemical Data Collections, 2018, 17-18, 459-471.	1.1	15
2364	A Flexible Supercapacitor with High True Performance. IScience, 2018, 9, 138-148.	1.9	17
2365	Graphene Oxide/MnO ₂ Composites Synthesized by "Quenching" for Supercapacitors with High Capacitance. Solid State Phenomena, 0, 278, 121-129.	0.3	1
2366	Efficient Super Capacitors fuelled by smart thermoelectric cloths to charge smart devices. , 2018, , .		0
2367	Nickel/cobalt based materials for supercapacitors. Chinese Chemical Letters, 2018, 29, 1731-1740.	4.8	79
2368	Synthesis and characterization of 3D CoMoO <inf>4</inf> /rGO aerogel for supercapacitor electrodes. , 2018, , .		1
2369	Short-term memory in electric double-layer capacitors. Applied Physics Letters, 2018, 113, .	1.5	41
2370	Stretchable and Compressible Supercapacitor with Polyaniline on Hydrogel Electrolyte. Journal of the Electrochemical Society, 2018, 165, A3792-A3798.	1.3	17
2371	Enhanced Electrochemical Performance of Carbon Nanotube with Nitrogen and Iron Using Liquid Phase Plasma Process for Supercapacitor Applications. International Journal of Molecular Sciences, 2018, 19, 3830.	1.8	6
2372	Fabrication and Characterization of Supercapacitors toward Self-Powered System. , 0, , .		4
2373	N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 6742-6751.	2.4	33
2374	VO2(B)/Graphene Composite-Based Symmetrical Supercapacitor Electrode via Screen Printing for Intelligent Packaging. Nanomaterials, 2018, 8, 1020.	1.9	22
2375	A pH dependent high voltage aqueous supercapacitor with dual electrolytes. Chemical Physics Letters, 2018, 712, 160-164.	1.2	12
2376	Multi-compositional hierarchical nanostructured Ni ₃ S ₂ @MoS _x /NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A, 2018, 6, 20491-20499.	5.2	25
2377	Strong interface coupling and few-crystalline MnO2/Reduced graphene oxide composites for supercapacitors with high cycle stability. Electrochimica Acta, 2018, 292, 115-124.	2.6	50
2378	Enhancement of Bromine Reversibility using Chemically Modified Electrodes and their Applications in Zinc Bromine Hybrid Redox Flow Batteries. ChemElectroChem, 2018, 5, 3411-3418.	1.7	24
2379	Advances in Flexible Supercapacitors for Portable and Wearable Smart Gadgets. , 2018, , 209-246.		5
2380	Effect of Rare Earth Doping on Electrochemical Properties of Fe ₂ O ₃ Nanoparticle for Supercapacitor. Solid State Phenomena, 0, 281, 743-747.	0.3	1

#	Article	IF	CITATIONS
2381	Terephthalate-based cobalt hydroxide: a new electrode material for supercapacitors with ultrahigh capacitance. Dalton Transactions, 2018, 47, 14958-14967.	1.6	38
2382	Origins and Implications of Interfacial Capacitance Enhancements in C ₆₀ -Modified Graphene Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 36860-36865.	4.0	23
2383	Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. Journal of Power Sources, 2018, 404, 47-55.	4.0	42
2384	Nitrogen-rich Porous Carbon Derived from Biomass as High Performance Electrode Materials for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 5204-5218.	0.5	8
2385	Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Synthesized 1,3,5-tris (1-imidazolyl) benzene. International Journal of Electrochemical Science, 2018, , 8792-8802.	0.5	3
2386	Fully Controllable Design and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 39839-39850.	4.0	50
2387	Metal oxides in supercapacitors. , 2018, , 169-203.		38
2388	One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance. Chemical Research in Chinese Universities, 2018, 34, 882-886.	1.3	17
2389	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	5.2	29
2390	High–performance Activated Carbons Prepared by KOH Activation of Gulfweed for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 1728-1743.	0.5	44
2391	Capacitance of electrical double layer formed inside a single infinitely long cylindrical pore. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 103203.	0.9	19
2392	Integration of solar cells with hierarchical CoS nanonets hybrid supercapacitors for self-powered photodetection systems. Journal of Power Sources, 2018, 404, 118-125.	4.0	23
2393	Synthesis of a Structurally Controlled Polyacrylonitrile Gel for Energy-Storage Devices by an Organotellerium-Mediated Radical Copolymerization and Subsequent Cross-Linking Reaction. ACS Symposium Series, 2018, , 129-142.	0.5	1
2394	Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 2018, 96, 103-107.	2.3	191
2395	Wireless Sensor Network Utilizing Radio-Frequency Energy Harvesting for Smart Building Applications [Education Corner]. IEEE Antennas and Propagation Magazine, 2018, 60, 124-136.	1.2	27
2396	Nitrogen Selfâ€Doped Hierarchical Porous Carbon from Myriophyllum Aquaticum for Supercapacitor Electrode. ChemistrySelect, 2018, 3, 11350-11356.	0.7	16
2397	Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 39777-39784.	4.0	56
2398	Using the Surface Features of Plant Matter to Create All-Polymer Pseudocapacitors with High Areal Capacitance. ACS Applied Materials & Interfaces, 2018, 10, 38574-38580.	4.0	11

#	Article	IF	CITATIONS
2399	High-Performance Asymmetric Supercapacitor Based on Hierarchical NiMn ₂ O ₄ @CoS Core–Shell Microspheres and Stereotaxically Constricted Graphene. ACS Sustainable Chemistry and Engineering, 2018, 6, 16933-16940.	3.2	65
2400	Green Chemistry in Environmental Sustainability and Chemical Education. , 2018, , .		3
2401	Co ₃ O ₄ /carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance. International Journal of Materials Research, 2018, 109, 873-879.	0.1	9
2402	Increasing the stability of very high potential electrical double layer capacitors by operando passivation. Journal of Power Sources, 2018, 402, 53-61.	4.0	12
2403	Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Advances, 2018, 8, 31296-31302.	1.7	62
2404	Puzzles and confusions in supercapacitor and battery: Theory and solutions. Journal of Power Sources, 2018, 401, 213-223.	4.0	220
2405	Graphene–Carbon Nanotube Aerogel with a Scroll-Interconnected-Sheet Structure as an Advanced Framework for a High-Performance Asymmetric Supercapacitor Electrode. ACS Applied Nano Materials, 2018, 1, 4435-4441.	2.4	34
2406	Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous and ionic liquid electrolytes. Journal of Materials Chemistry A, 2018, 6, 18701-18711.	5.2	26
2407	Water printing of ferroelectric polarization. Nature Communications, 2018, 9, 3809.	5.8	75
2408	A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustainable Energy and Fuels, 2018, 2, 2727-2732.	2.5	23
2409	NiO/Ni _x Co _{3â^'x} O ₄ porous ultrathin nanosheet/nanowire composite structures as high-performance supercapacitor electrodes. RSC Advances, 2018, 8, 31853-31859.	1.7	6
2410	X-ray emission spectroscopy: an effective route to extract site occupation of cations. Physical Chemistry Chemical Physics, 2018, 20, 28990-29000.	1.3	16
2411	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
2412	Advanced binder-free electrodes based on CoMn ₂ O ₄ @Co ₃ O ₄ core/shell nanostructures for high-performance supercapacitors. RSC Advances, 2018, 8, 31594-31602.	1.7	32
2413	Tridimensional few-layer graphene-like structures from sugar-salt mixtures as high-performance supercapacitor electrodes. Materials Today Energy, 2018, 10, 118-125.	2.5	3
2414	Carbon fibers surface-grown with helical carbon nanotubes and polyaniline for high-performance electrode materials and flexible supercapacitors. Journal of Electroanalytical Chemistry, 2018, 828, 24-32.	1.9	30
2415	Flower-Shaped Self-Assembled Ni _{0.5} Cu _{0.5} Co ₂ O ₄ Porous Architecture: A Ternary Metal Oxide as a High-Performance Charge Storage Electrode Material. ACS Applied Nano Materials, 2018, 1, 5812-5822.	2.4	35
2416	Microstructure and Properties of Aminated Carbon Nanotubes/Graphene Oxide-MnO ₂ Composite for Supercapacitor Electrodes. Key Engineering Materials, 2018, 777, 196-204.	0.4	1

# 2417	ARTICLE Hetero-structure arrays of NiCoO2 nanoflakes@nanowires on 3D graphene/nickel foam for high-performance supercapacitors. Electrochimica Acta, 2018, 289, 193-203.	IF 2.6	CITATIONS
2418	Controlled Airâ€Etching Synthesis of Porousâ€Carbon Nanotube Aerogels with Ultrafast Charging at 1000 A g ^{â^'1} . Small, 2018, 14, e1802394.	5.2	37
2419	Facile preparation of reduced graphene oxide/polypyrrole nanocomposites with urchin-like microstructure for wide-potential-window supercapacitors. Electrochimica Acta, 2018, 289, 238-247.	2.6	33
2420	Long-term-stable, solution-processable, electrochromic carbon nanotubes/polymer composite for smart supercapacitor with wide working potential window. Journal of Materials Chemistry A, 2018, 6, 18994-19003.	5.2	55
2421	In Situ Doping Boron Atoms into Porous Carbon Nanoparticles with Increased Oxygen Graft Enhances both Affinity and Durability toward Electrolyte for Greatly Improved Supercapacitive Performance. Advanced Functional Materials, 2018, 28, 1804190.	7.8	149
2422	Investigation of hydroxide ion-conduction in solid polymer electrolytes via electrochemical impedance spectroscopy. Electrochimica Acta, 2018, 288, 1-11.	2.6	4
2423	A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chemical Communications, 2018, 54, 10499-10502.	2.2	192
2424	Electrochemical Performance of Few-Layer Graphene Nano-Flake Supercapacitors Prepared by the Vacuum Kinetic Spray Method. Coatings, 2018, 8, 302.	1.2	24
2425	Employment of ultra-thin carbon layer-coated porous tin oxide as anode in lithium-ion capacitor. Applied Surface Science, 2018, 461, 161-170.	3.1	13
2426	Nitrogen and sulfur co-doped graphene aerogel for high performance supercapacitors. RSC Advances, 2018, 8, 18966-18971.	1.7	19
2427	Three-dimensional reduced-graphene/MnO ₂ prepared by plasma treatment as high-performance supercapacitor electrodes. Materials Research Express, 2018, 5, 065504.	0.8	8
2428	Facile synthesis of functionalized graphene hydrogel for high performance supercapacitor with high volumetric capacitance and ultralong cycling stability. Applied Surface Science, 2018, 455, 683-695.	3.1	67
2429	Ordered mesoporous carbons obtained by soft-templating of tannin in mild conditions. Microporous and Mesoporous Materials, 2018, 270, 127-139.	2.2	54
2430	Band gap-Tunable Porous Borocarbonitride Nanosheets for High Energy-Density Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 19588-19597.	4.0	86
2431	Pitch-based porous aerogel composed of carbon onion nanospheres for electric double layer capacitors. Carbon, 2018, 137, 304-312.	5.4	31
2432	Molten salt synthesis of Mn2O3 nanoparticle as a battery type positive electrode material for hybrid capacitor in KNO3-NaNO2-NaNO3 melts. Chemical Engineering Journal, 2018, 349, 613-621.	6.6	16
2433	Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes. Applied Surface Science, 2018, 455, 795-807.	3.1	52
2434	Construction of hierarchical zinc cobalt sulfide@nickel sulfide core-shell nanosheet arrays for high-performance asymmetric solid-state supercapacitors. Chemical Engineering Journal, 2018, 349, 397-407.	6.6	45

#	Article	IF	CITATIONS
2435	Electrochemical Double‣ayer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie, 2018, 130, 8346-8350.	1.6	13
2436	Electrochemical Doubleâ€Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 8214-8218.	7.2	59
2437	Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: Fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor. Chemical Engineering Journal, 2018, 349, 491-499.	6.6	67
2438	Microwave synthesis of mesoporous CuCo 2 S 4 nanoparticles for supercapacitor applications. Materials Chemistry and Physics, 2018, 215, 121-126.	2.0	42
2439	Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors. Electrochimica Acta, 2018, 281, 525-533.	2.6	61
2440	Ti3C2Tx-foam as free-standing electrode for supercapacitor with improved electrochemical performance. Ceramics International, 2018, 44, 13901-13907.	2.3	31
2441	Efficient utilization of oxygen-vacancies-enabled NiCo2O4 electrode for high-performance asymmetric supercapacitor. Electrochimica Acta, 2018, 279, 269-278.	2.6	52
2442	Camellia pollen-derived carbon for supercapacitor electrode material. Journal of Power Sources, 2018, 394, 9-16.	4.0	83
2443	Synthesis and Characterization of GO/V2O5 Thin Film Supercapacitor. Synthetic Metals, 2018, 242, 37-48.	2.1	27
2444	Enhancement of β-phase crystallization and electrical properties of PVDF by impregnating ultra high diluted novel metal derived nanoparticles: prospect of use as a charge storage device. Journal of Materials Science: Materials in Electronics, 2018, 29, 14535-14545.	1.1	13
2445	The way to improve the energy density of supercapacitors: Progress and perspective. Science China Materials, 2018, 61, 1517-1526.	3.5	102
2446	Safe and high-rate supercapacitors based on an "acetonitrile/water in salt―hybrid electrolyte. Energy and Environmental Science, 2018, 11, 3212-3219.	15.6	297
2447	Graphitization induced by KOH etching for the fabrication of hierarchical porous graphitic carbon sheets for high performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 14170-14177.	5.2	66
2448	Review—Advent of TiO ₂ Nanotubes as Supercapacitor Electrode. Journal of the Electrochemical Society, 2018, 165, E345-E358.	1.3	65
2449	Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte. Journal of Cleaner Production, 2018, 197, 930-936.	4.6	51
2450	Robust Nanocomposite of Nitrogen-Doped Reduced Graphene Oxide and MnO ₂ Nanorods for High-Performance Supercapacitors and Nonenzymatic Peroxide Sensors. ACS Sustainable Chemistry and Engineering, 2018, 6, 10489-10504.	3.2	57
2451	Capacitive performance of vertically aligned reduced titania nanotubes coated with Mn ₂ O ₃ by reverse pulse electrodeposition. RSC Advances, 2018, 8, 23040-23047.	1.7	11
2452	In situ fabrication of Ni(OH)2/Cu2O nanosheets on nanoporous NiCu alloy for high performance supercapacitor. Electrochimica Acta, 2018, 283, 970-978.	2.6	28

ARTICLE

 $_{2453}$ General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M=) Tj ETQq0.0.0 rgBT $_{11}^{10}$ verlock 1

2454	Ion Correlation and Collective Dynamics in BMIM/BF ₄ -Based Organic Electrolytes: From Dilute Solutions to the Ionic Liquid Limit. Journal of Physical Chemistry B, 2018, 122, 7154-7169.	1.2	60
2455	Stabilizing NiCo ₂ O ₄ hybrid architectures by reduced graphene oxide interlayers for improved cycling stability of hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22106-22114.	5.2	88
2456	A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chemical Engineering Journal, 2018, 352, 29-38.	6.6	259
2457	Conversion of biomass waste to multi-heteroatom-doped carbon networks with high surface area and hierarchical porosity for advanced supercapacitors. Journal of Materials Science, 2018, 53, 14536-14547.	1.7	44
2458	Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765, 489-496.	2.8	22
2459	Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. Journal of Power Sources, 2018, 397, 1-10.	4.0	194
2460	Electrochemical properties of Ni(OH)2/MnO2 on hybrid N-doped carbon structure as high-performance electrode material. AIP Advances, 2018, 8, .	0.6	3
2461	Hydrothermal growth of ferrous hydroxide terephthalate as a new positive electrode material for supercapacitors. Dalton Transactions, 2018, 47, 12056-12060.	1.6	1
2462	Transitionâ€Metal Oxides Anchored on Nitrogenâ€Enriched Carbon Ribbons for Highâ€Performance Pseudocapacitors. Chemistry - A European Journal, 2018, 24, 16104-16112.	1.7	22
2463	Nitrogenâ€Doped Porous Carbon Derived from Carbazoleâ€Substituted Tetraphenylethyleneâ€Based Hypercrosslinked Polymer for Highâ€Performance Supercapacitor. ChemistrySelect, 2018, 3, 8483-8490.	0.7	18
2464	Stackingâ€Controlled Assembly of Cabbageâ€Like Graphene Microsphere for Charge Storage Applications. Small, 2018, 14, 1801948.	5.2	10
2465	Hierarchical self-assembly flower-like ammonium nickel phosphate as high-rate performance electrode material for asymmetric supercapacitors with enhanced energy density. Nanotechnology, 2018, 29, 425401.	1.3	31
2466	Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coordination Chemistry Reviews, 2018, 376, 1-19.	9.5	49
2467	Single-Step Direct Hydrothermal Growth of NiMoO4 Nanostructured Thin Film on Stainless Steel for Supercapacitor Electrodes. Nanomaterials, 2018, 8, 563.	1.9	12
2468	Phosphate ion functionalization of Co(OH)2 nanosheets by a simple immersion method. Journal of Alloys and Compounds, 2018, 768, 57-64.	2.8	19
2469	Engineered Nanomaterials for Energy Applications. , 2018, , 751-767.		13
2470	Facile synthesis of hierarchical mesoporous beta-manganese dioxide nanoflowers with extremely high specific surface areas for high-performance electrochemical capacitors. Electrochimica Acta, 2018, 284, 52-59.	2.6	12

щ.		IF	CITATION
# 2471	ARTICLE Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 15621-15630.	lF 1.7	CITATIONS
2472	Electro-exfoliation of graphite for large scale production of graphene and its composite with PANI for application in supercapacitors. Materials Research Express, 2018, 5, 095602.	0.8	2
2473	Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochimica Acta, 2018, 284, 336-345.	2.6	130
2474	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e1801588.	11.1	249
2475	Synergistic effects of engineered spinel hetero-metallic cobaltites on electrochemical pseudo-capacitive behaviors. Journal of Materials Chemistry A, 2018, 6, 15033-15039.	5.2	13
2476	Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018, 4, 4.	2.1	251
2477	Component-controllable bimetallic nickel cobalt selenides (Ni Co1-)0.85Se for high performance supercapacitors. Journal of Alloys and Compounds, 2018, 766, 527-535.	2.8	23
2478	One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochimica Acta, 2018, 283, 664-675.	2.6	87
2479	High Piezoelectric Conversion Properties of Axial InGaN/GaN Nanowires. Nanomaterials, 2018, 8, 367.	1.9	14
2480	Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode. Nanomaterials, 2018, 8, 412.	1.9	52
2481	Cutting-Processed Single-Wall Carbon Nanotubes with Additional Edge Sites for Supercapacitor Electrodes. Nanomaterials, 2018, 8, 464.	1.9	8
2482	An Organoâ€Fluorine Compound Mixed Electrolyte for Ultrafast Electric Double Layer Supercapacitors. ChemElectroChem, 2018, 5, 2767-2773.	1.7	14
2483	Morphology-dependent electrochemical performance of spinel-cobalt oxide nanomaterials towards lithium-ion batteries. Electrochimica Acta, 2018, 283, 1668-1678.	2.6	22
2484	Hexagonal WO ₃ Nanorods as Ambipolar Electrode Material in Asymmetric WO ₃ //WO ₃ /MnO ₂ Supercapacitor. Journal of the Electrochemical Society, 2018, 165, A2108-A2114.	1.3	22
2485	Fabrication of hierarchical NiCo2O4@NiCo2S4 core/shell nanowire arrays by an ion-exchange route and application to asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 767, 232-240.	2.8	27
2486	One-pot synthesis of self-supported hierarchical urchin-like Ni ₃ S ₂ with ultrahigh areal pseudocapacitance. Journal of Materials Chemistry A, 2018, 6, 22115-22122.	5.2	44
2487	Hierarchical NiCoO2 single-crystalline nanoflake arrays on Ni foam for supercapacitors and Li-ion batteries application. Journal of Alloys and Compounds, 2018, 766, 952-958.	2.8	17
2488	Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chemical Communications, 2018, 54, 7873-7891.	2.2	373

#	Article	IF	CITATIONS
2489	Hierarchical nickel nanowire@NiCo ₂ S ₄ nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15284-15293.	5.2	77
2490	Oneâ€Step Controllable Synthesis of Mesoporous MgCo ₂ O ₄ Nanosheet Arrays with Ethanol on Nickel Foam as an Advanced Electrode Material for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2018, 24, 14982-14988.	1.7	37
2491	Preparation of the poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)@g-C3N4 composite by a simple direct mixing method for supercapacitor. Electrochimica Acta, 2018, 283, 1468-1474.	2.6	25
2492	Redox-active, pyrene-based pristine porous organic polymers for efficient energy storage with exceptional cyclic stability. Chemical Communications, 2018, 54, 6796-6799.	2.2	56
2493	Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures. Nanoscale, 2018, 10, 10109-10115.	2.8	51
2494	Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochimica Acta, 2018, 279, 44-56.	2.6	47
2495	An extra-long-life supercapacitor based on NiO/C&S composite by decomposition of Ni-based coordination complex. Materials and Design, 2018, 153, 203-210.	3.3	16
2496	Improvement in the pore structure of gulfweed–based activated carbon via two–step acid treatment for high performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 820, 103-110.	1.9	17
2497	Cellulose-Solvent-Assisted, One-Step Pyrolysis to Fabricate Heteroatoms-Doped Porous Carbons for Electrode Materials of Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7715-7724.	3.2	25
2498	Hierarchical CuCo2O4 nanourchin supported by Ni foam with superior electrochemical performance. Journal of Alloys and Compounds, 2018, 756, 68-75.	2.8	53
2499	Facile synthesis of ultrathin and perpendicular NiMn ₂ O ₄ nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1714-1720.	3.0	38
2500	MnO2 Nanoparticles Embedded Polypyrrole Nanotubes for Supercapacitor Electrodes. , 2018, , 201-208.		0
2501	A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140â€ [–] °C. Journal of Power Sources, 2018, 400, 126-134.	4.0	34
2502	Yarn-form electrodes with high capacitance and cycling stability based on hierarchical nanostructured nickel-cobalt mixed oxides for weavable fiber-shaped supercapacitors. Journal of Power Sources, 2018, 400, 157-166.	4.0	33
2503	The Properties of Carbons Derived through the Electrolytic Reduction of Molten Carbonates under Varied Conditions: Part I. A Study Based on Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A2608-A2624.	1.3	13
2504	Nest-like V ₃ O ₇ self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon. Journal of Materials Chemistry A, 2018, 6, 16475-16484.	5.2	32
2505	Facile hydrothermal synthesis of NiCo2O4- decorated filter carbon as electrodes for high performance asymmetric supercapacitors. Electrochimica Acta, 2018, 285, 405-414.	2.6	51
2506	Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydrate Polymers, 2018, 200, 456-467.	5.1	37

#	Article	IF	CITATIONS
2507	Electrochemical properties of a modified electrode with δ-MnO2-based new nanocomposites. Solid State Ionics, 2018, 325, 74-79.	1.3	16
2508	Temperature-induced hierarchical Tremella-like and Pinecone-like NiO microspheres for high-performance supercapacitor electrode materials. Journal of Materials Science, 2018, 53, 12477-12491.	1.7	19
2509	Lithium Ferrites@Polydopamine Core–Shell Nanoparticles as a New Robust Negative Electrode for Advanced Asymmetric Supercapacitors. Particle and Particle Systems Characterization, 2018, 35, 1800128.	1.2	8
2510	Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 12782-12793.	5.2	93
2511	Selfâ€Assembled Nanostructured CuCo ₂ O ₄ for Electrochemical Energy Storage and the Oxygen Evolution Reaction via Morphology Engineering. Small, 2018, 14, e1800742.	5.2	100
2512	Ion effect on the dynamics of water hydrogen bonding network: A theoretical and computational spectroscopy point of view. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1373.	6.2	11
2513	Reduced graphene oxide–poly(methyl methacrylate) nanocomposite as a supercapacitor. Journal of Applied Polymer Science, 2018, 135, 46685.	1.3	5
2514	A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene. Journal of Materials Chemistry A, 2018, 6, 13717-13724.	5.2	17
2515	Highly loaded manganese oxide with high rate capability for capacitive applications. Journal of Power Sources, 2018, 396, 238-245.	4.0	19
2516	2.21 Supercapacitors. , 2018, , 663-695.		8
2516 2517	2.21 Supercapacitors. , 2018, , 663-695. Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77.	2.6	8
	Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a	2.6	
2517	Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation.		83
2517 2518	Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & amp; Technology, 2018, 52, 7477-7485. Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & amp; Interfaces, 2018, 10,	4.6	83 36
2517 2518 2519	 Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & amp; Technology, 2018, 52, 7477-7485. Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 23063-23073. Mechanochemically Prepared Nanocomposites Based on Polyaniline and Molybdenum and Tungsten Disulfides as Electrode Materials for Supercapacitors. Theoretical and Experimental Chemistry, 2018, 	4.6 4.0	83 36 199
2517 2518 2519 2520	Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & amp; Technology, 2018, 52, 7477-7485. Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 23063-23073. Mechanochemically Prepared Nanocomposites Based on Polyaniline and Molybdenum and Tungsten Disulfides as Electrode Materials for Supercapacitors. Theoretical and Experimental Chemistry, 2018, 54, 85-91. Electroplating of polyaniline on carbon fiber cloth in a simple two electrode system: Application for	4.6 4.0 0.2	83 36 199 4
2517 2518 2519 2520 2521	 Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochimica Acta, 2018, 281, 69-77. Pore Structure-Dependent Mass Transport in Flow-through Electrodes for Water Remediation. Environmental Science & amp; Technology, 2018, 52, 7477-7485. Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 23063-23073. Mechanochemically Prepared Nanocomposites Based on Polyaniline and Molybdenum and Tungsten Disulfides as Electrode Materials for Supercapacitors. Theoretical and Experimental Chemistry, 2018, 54, 85-91. Electroplating of polyaniline on carbon fiber cloth in a simple two electrode system: Application for the electrochemical filter in wastewater treatment. AIP Conference Proceedings, 2018, Earth-abundant nanotubes with layered assembly for battery-type supercapacitors. Chemical 	4.6 4.0 0.2 0.3	 83 36 199 4 1

#	Article	IF	CITATIONS
2525	CuCo ₂ S ₄ Nanosheets Coupled With Carbon Nanotube Heterostructures for Highly Efficient Capacitive Energy Storage. ChemElectroChem, 2018, 5, 2496-2502.	1.7	21
2526	Inorganic Nanofibers by Electrospinning Techniques and Their Application in Energy Conversion and Storage Systems. Semiconductors and Semimetals, 2018, 98, 1-70.	0.4	15
2527	An extra-long-life supercapacitor based on Co3O4/NiCo2O4/NiO/C&S composite by decomposition of Co/Ni-based coordination complex. Journal of Alloys and Compounds, 2018, 764, 684-690.	2.8	17
2528	Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. Journal of Energy Chemistry, 2019, 31, 167-177.	7.1	34
2529	Hybrid of Fe3C@N, S co-doped carbon nanotubes coated porous carbon derived from metal organic frameworks as an efficient catalyst towards oxygen reduction. Journal of Colloid and Interface Science, 2019, 533, 311-318.	5.0	26
2530	Facile synthesis of reduced graphene oxide/tungsten disulfide/tungsten oxide nanohybrids for high performance supercapacitor with excellent rate capability. Applied Surface Science, 2019, 463, 150-158.	3.1	26
2531	Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor. Microporous and Mesoporous Materials, 2019, 274, 236-244.	2.2	70
2532	Three-Dimensional Interconnected Microporous Carbon Network Derived from Aniline Formaldehyde Resin/Sodium Polyacrylate Interpenetrating Polymer Networks (AF/PAAS IPNs) with Controllable Porosity for Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6440-6452.	2.5	7
2533	Development of electrospun PVdF polymer membrane as separator for supercapacitor applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 2294-2308.	1.2	15
2534	Side-chain effects on the capacitive behaviour of ionic liquids in microporous electrodes. Molecular Physics, 2019, 117, 3603-3613.	0.8	11
2535	Graphene-based materials. , 2019, , 41-56.		0
2536	Energy storage properties of graphene nanofillers. , 2019, , 155-179.		1
2537	MoO3 nanobelts for high-performance asymmetric supercapacitor. Journal of Materials Science, 2019, 54, 13685-13693.	1.7	36
2538	An asymmetric supercapacitor using sandwich-like NiS/NiTe/Ni positive electrode exhibits a super-long cycle life exceeding 200â€ ⁻ 000 cycles. Journal of Power Sources, 2019, 438, 227000.	4.0	45
2539	Highly Enhanced Pseudocapacitive Performance of Vanadiumâ€Doped MXenes in Neutral Electrolytes. Small, 2019, 15, e1902649.	5.2	46
2540	Synthesis of Hierarchical Graphene-MnO2 Nanowire Composites with Enhanced Specific Capacitance. Asian Journal of Chemistry, 2019, 31, 1709-1718.	0.1	1
2541	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. Carbon, 2019, 154, 169-177.	5.4	32
2542	High performance supercapacitor based on thick buckypaper/polyaniline composite electrodes. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 025004.	0.7	4

#	Article	IF	CITATIONS
2543	Synthesis of single-phase CuCo2â^'xNixS4 for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 555, 284-293.	5.0	21
2544	Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors. Journal of Electroanalytical Chemistry, 2019, 848, 113348.	1.9	27
2545	Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor. Journal of Power Sources, 2019, 438, 226936.	4.0	76
2546	Pseudo-capacitance behaviour of reactively sputtered vanadium nitride electrodes deposited at different working pressures: The critical role of surface chemistry. Materials Chemistry and Physics, 2019, 236, 121820.	2.0	10
2547	Ionic-liquid-assisted synthesis of nitrogen-doped porous carbon for high-performance supercapacitors. Journal of Alloys and Compounds, 2019, 806, 1542-1549.	2.8	3
2548	Robust, Flexible, and Binder Free Highly Crystalline V ₂ O ₅ Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 13115-13126.	3.2	63
2549	Pulverized Graphite by Ball Milling for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A2471-A2476.	1.3	5
2550	Self-supported Ni3S2/NiCo2O4 core-shell flakes-arrays on Ni foam for enhanced charge storage properties. Electrochimica Acta, 2019, 319, 783-790.	2.6	27
2551	High performance asymmetric supercapacitor having novel 3D networked polypyrrole nanotube/N-doped graphene negative electrode and core-shelled MoO3/PPy supported MoS2 positive electrode. Electrochimica Acta, 2019, 320, 134533.	2.6	52
2552	Nitrogen self-doped activated carbons <i>via</i> the direct activation of <i>Samanea saman</i> leaves for high energy density supercapacitors. RSC Advances, 2019, 9, 21724-21732.	1.7	17
2553	Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor. Journal of Alloys and Compounds, 2019, 806, 343-349.	2.8	54
2554	Direct Synthesis of cubic shaped Ag2S on Ni mesh as Binder-free Electrodes for Energy Storage Applications. Scientific Reports, 2019, 9, 10108.	1.6	34
2555	All-Solid-State Supercapacitor Based on MoS2–Graphite Composite Prepared by the Vacuum Kinetic Spray Method. Journal of Thermal Spray Technology, 2019, 28, 963-973.	1.6	7
2556	Activated carbon with exceptionally high surface area and tailored nanoporosity obtained from natural anthracite and its use in supercapacitors. Journal of Power Sources, 2019, 436, 226882.	4.0	53
2557	Nitrogen-doped porous carbon derived from ginkgo leaves with remarkable supercapacitance performance. Diamond and Related Materials, 2019, 98, 107475.	1.8	49
2558	Polyaniline coated 3D crosslinked carbon nanosheets for high-energy-density supercapacitors. Applied Surface Science, 2019, 493, 506-513.	3.1	21
2559	Extraordinary cycling stability of Ni3(HITP)2 supercapacitors fabricated by electrophoretic deposition: Cycling at 100,000 cycles. Chemical Engineering Journal, 2019, 378, 122150.	6.6	66
2560	Well Controlled 3D Iridium Oxide/Platinum Nanocomposites with Greatly Enhanced Electrochemical Performances. Advanced Materials Interfaces, 2019, 6, 1900356.	1.9	13

#	Article	IF	CITATIONS
2561	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 13060-13065.	7.2	49
2562	New insight on the mechanism of electrochemical cycling effects in MnO2-based aqueous supercapacitor. Journal of Power Sources, 2019, 436, 226795.	4.0	46
2563	One-step synthesis of PPyNT/NiO _x nanocomposites via microwave method and application for supercapacitor. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 661-668.	1.0	4
2564	An Asymmetric Supercapacitor–Diode (CAPode) for Unidirectional Energy Storage. Angewandte Chemie, 2019, 131, 13194-13199.	1.6	6
2565	Designed Construction of Hierarchical CuCo ₂ S ₄ @Co(OH) ₂ Core‧hell Nanoarrays as Electrode Materials for Highâ€Performance Supercapacitors. ChemistrySelect, 2019, 4, 7751-7758.	0.7	6
2566	Electrochemical study of 3D hierarchical dandelion-fiber flake-like structure of Al(OH)3/MnO2 nanocomposite thin film for future supercapacitor applications. Electrochimica Acta, 2019, 319, 832-842.	2.6	14
2567	Density functional theory simulation of cobalt oxide aggregation and facile synthesis of a cobalt oxide, gold and multiwalled carbon nanotube based ternary composite for a high performance supercapattery. New Journal of Chemistry, 2019, 43, 13183-13195.	1.4	24
2568	Unveiling highly ambient-stable multilayered 1T-MoS ₂ towards all-solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19152-19160.	5.2	71
2569	Dual Functionalized CuMOF-Based Composite for High-Performance Supercapacitors. Inorganic Chemistry, 2019, 58, 9844-9854.	1.9	39
2570	Enhanced supercapacitive performance of the CoFe ₂ O ₄ /CoFe ₂ S ₄ composite nanoflake array induced by surface sulfidation. New Journal of Chemistry, 2019, 43, 13491-13498.	1.4	20
2571	Performance and Applications of Lithium Ion Capacitors. , 2019, , .		0
2572	Two Dimensional Transition Metal Dichalcogenides. , 2019, , .		7
2573	Transition Metal Dichalcogenides for Energy Storage Applications. , 2019, , 173-201.		2
2574	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	3.9	417
2575	Morphology tuned synthesis of battery-type NiCo2O4 for high performance hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 804, 1-9.	2.8	25
2576	Ni/NiFe ₂ O ₄ @carbon nanocomposite involving synergistic effect for high-energy density and high-power density supercapattery. Materials Research Express, 2019, 6, 095503.	0.8	19
2577	TiO2 Nanomembranes Fabricated by Atomic Layer Deposition for Supercapacitor Electrode with Enhanced Capacitance. Nanoscale Research Letters, 2019, 14, 92.	3.1	25
2578	Energy Harvesting For Wearable Devices: A Review. IEEE Sensors Journal, 2019, 19, 9047-9062.	2.4	130

#	Article	IF	CITATIONS
2579	Monodispersed and hierarchical silica@manganese silicate core–shell spheres as potential electrodes for supercapacitor. Journal of Solid State Chemistry, 2019, 277, 475-483.	1.4	12
2580	Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 378, 122162.	6.6	24
2581	Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 26946-26955.	4.0	51
2582	Encapsulating V ₂ O ₃ Nanoparticles in Carbon Nanofibers with Internal Void Spaces for a Self-Supported Anode Material in Superior Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 19483-19495.	3.2	41
2583	3D hierarchical porous carbon derived from direct carbonization and <i>in-situ</i> chemical activation of potatoes toward high-performance supercapacitors. Materials Research Express, 2019, 6, 115615.	0.8	12
2584	Influence of electrochemically deposited polypyrrole layers on NiCo 2 O 4 -decorated carbon fiber paper electrodes for high-performance hybrid supercapacitor applications. Functional Composites and Structures, 2019, 1, 045003.	1.6	7
2585	Study of NiO/CNSs hybrid nanostructure as an electrode material: synthesis and excellent electrochemical performance for application of supercapacitors. Journal of Applied Electrochemistry, 2019, 49, 1181-1191.	1.5	4
2586	Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors. Nanomaterials, 2019, 9, 1413.	1.9	11
2587	High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte. Electrochimica Acta, 2019, 324, 134874.	2.6	68
2588	Binary nickel–cobalt metal–organic frameworks as electrode for high performance pseudocapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 19477-19486.	1.1	16
2589	Controlled growth of polypyrrole microtubes on disposable pencil graphite electrode and their supercapacitor behavior. Electrochimica Acta, 2019, 324, 134875.	2.6	20
2590	Sulphur doped iron cobalt oxide nanocaterpillars: An electrode for supercapattery with ultrahigh energy density and oxygen evolution reaction. Electrochimica Acta, 2019, 328, 135076.	2.6	20
2591	Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors. Journal of Alloys and Compounds, 2019, 810, 151841.	2.8	28
2592	Electrochemical performance of heterogeneous, mesopores and non-centrosymmetric Core@shell NiCo2O4@MnO2 nanocomposites and itsÂMWCNT blended complex for supercapacitor applications. Journal of Solid State Chemistry, 2019, 280, 121013.	1.4	24
2593	Thermally Durable Lithiumâ€lon Capacitors with High Energy Density from All Hydroxyapatite Nanowireâ€Enabled Fireâ€Resistant Electrodes and Separators. Advanced Energy Materials, 2019, 9, 1902497.	10.2	34
2594	Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44352-44359.	4.0	62
2596	In situ and operando magnetic resonance imaging of electrochemical cells: A perspective. Journal of Magnetic Resonance, 2019, 308, 106600.	1.2	31
2597	Photolithographic fabrication of graphene-based all-solid-state planar on-chip microsupercapacitors with ultrahigh power characteristics. Journal of Applied Physics, 2019, 126, .	1.1	16

#	Article	IF	CITATIONS
2598	Porous Thin-Wall Hollow Co3O4 Spheres for Supercapacitors with High Rate Capability. Applied Sciences (Switzerland), 2019, 9, 4672.	1.3	21
2599	MnO2/SWCNT buckypaper for high performance supercapacitors. Journal of Energy Storage, 2019, 26, 100960.	3.9	9
2600	Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/βâ€FeOOH Hybrids for Supercapacitors. Advanced Functional Materials, 2019, 29, 1906998.	7.8	20
2601	Scalable and green production of porous graphene nanosheets for flexible supercapacitors. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	7
2602	Coreâ€5hell Structured Cobalt Sulfide/Cobalt Aluminum Hydroxide Nanosheet Arrays for Pseudocapacitor Application. Chemistry - an Asian Journal, 2019, 14, 446-453.	1.7	15
2603	Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors. Applied Surface Science, 2019, 470, 1043-1052.	3.1	48
2604	Layer-by-layer inkjet printing GO film and Ag nanoparticles supported nickel cobalt layered double hydroxide as a flexible and binder-free electrode for supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 691-699.	5.0	41
2605	CoNi2S4 nanosheets on nitrogen-doped carbon foam as binder-free and flexible electrodes for high-performance asymmetric supercapacitors. Nanotechnology, 2019, 30, 495404.	1.3	20
2606	Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems. Materials Chemistry Frontiers, 2019, 3, 2221-2245.	3.2	63
2607	Deposition of Ni(OH)2 on nickel substrate using vacuum kinetic spray and its application to high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 17481-17490.	1.1	4
2608	Structure, chemistry and physicochemistry of lignin for material functionalization. SN Applied Sciences, 2019, 1, 1.	1.5	28
2609	Electrochemical Properties of Supercapacitors Using Boron Nitrogen Double-Doped Carbon Nanotubes as Conductive Additive. Nano, 2019, 14, 1950080.	0.5	5
2610	Self-coupled nickel sulfide @ nickel vanadium sulfide nanostructure as a novel high capacity electrode material for supercapattery. Applied Surface Science, 2019, 497, 143778.	3.1	59
2611	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	6.2	33
2612	Hall Effect Measurements of the Double-Layer Capacitance of the Graphene–Electrolyte Interface. Journal of Physical Chemistry C, 2019, 123, 22706-22710.	1.5	5
2613	Graphene/Carbon Paper Combined with Redox Active Electrolyte for Supercapacitors with High Performance. Polymers, 2019, 11, 1355.	2.0	7
2614	Effect of Combustion Reaction Based on Capacitive Discharge Ignition in Air-Propane Equivalence Ratio. International Journal of Automotive Technology, 2019, 20, 855-866.	0.7	4
2615	Synthesis and Application of MnO2/PANI/MWCNT Ternary Nanocomposite as an Electrode Material for Supercapacitors. International Journal of Electrochemical Science, 2019, 14, 9298-9310.	0.5	28

# 2616	ARTICLE Facile Synthesis of N,S-Codoped Hierarchically Porous Carbon with High Volumetric Pseudocapacitance. ACS Sustainable Chemistry and Engineering, 2019, 7, 16710-16719.	IF 3.2	Citations 45
2617	Comparison of perovskite and perovskite derivatives for use in anion-based pseudocapacitor applications. Journal of Materials Chemistry A, 2019, 7, 21222-21231.	5.2	21
2618	Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage. Journal of Colloid and Interface Science, 2019, 557, 76-83.	5.0	35
2619	Hierarchical NiCoO2@Ni3S2 core/shell nanoflakes arrays with superior capacitive performances for energy storage. Applied Surface Science, 2019, 495, 143557.	3.1	23
2620	Porous materials of nitrogen doped graphene oxide@SnO2 electrode for capable supercapacitor application. Scientific Reports, 2019, 9, 12622.	1.6	48
2621	Reduced graphene oxide/CoS ₂ porous nanoparticle hybrid electrode material for supercapacitor application. RSC Advances, 2019, 9, 26637-26645.	1.7	23
2622	High-Performance Ni-Co Sulfide Nanosheet-Nanotubes Grown on Ni Foam as a Binder Free Electrode for Supercapacitors. Applied Sciences (Switzerland), 2019, 9, 3082.	1.3	14
2623	Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 135-143.	5.0	56
2624	Fabrication of hierarchical core/shell MgCo2O4@MnO2 nanowall arrays on Ni-foam as high–rate electrodes for asymmetric supercapacitors. Scientific Reports, 2019, 9, 12557.	1.6	27
2625	One-step hydrothermal synthesis of NiCo2S4 nanoplates/nitrogen-doped mesoporous carbon composites as advanced electrodes for asymmetric supercapacitors. Journal of Power Sources, 2019, 439, 227082.	4.0	26
2626	Implication of charge transfer property on the supercapacitive performance of manganese oxide originated through different synthesis routes. Journal of Electroanalytical Chemistry, 2019, 849, 113366.	1.9	0
2627	Structure and spectroscopy of the supercapacitor material hydrous ruthenium oxide, RuO ₂ · <i>x</i> H ₂ o, by neutron scattering*. Molecular Physics, 2019, 117, 3417-3423.	0.8	9
2628	Hierarchically hybrid nanostructure of carbon nanoparticles decorated graphene sheets as an efficient electrode material for supercapacitors, aqueous Al-ion battery and capacitive deionization. Electrochimica Acta, 2019, 324, 134870.	2.6	29
2629	Production of iron oxide and nickel oxide nanostructural particles, investigation of the supercapacitor and photocatalytic properties. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 725-731.	0.4	7
2630	Synthesis and improvement of photocatalytic performance of ZnMn2O4/ZnMgO composite layered microspheres. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	1
2631	Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2019, 850, 113398.	1.9	4
2632	A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications. Coatings, 2019, 9, 631.	1.2	42
2633	Salt-assisted pyrolysis of covalent organic frameworks to porous heteroatom-doped carbons for supercapacitive energy storage. Journal of Materials Chemistry A, 2019, 7, 26829-26837.	5.2	33

#	Article	IF	CITATIONS
2634	Hetero-structure arrays of MnCo2O4 nanoflakes@nanowires grown onÂNi foam: Design, fabrication and applications in electrochemical energy storage. Journal of Alloys and Compounds, 2019, 811, 152084.	2.8	133
2635	Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrasonics Sonochemistry, 2019, 59, 104736.	3.8	81
2636	Three-dimensional honeycomb-like porous carbon strutted nickel phosphide grown by analogous gel blowing for aqueous asymmetric supercapacitor. Journal of Energy Storage, 2019, 25, 100872.	3.9	10
2637	Active electrode materials of graphene balls and their composites for supercapacitors: A perspective view. Advanced Powder Technology, 2019, 30, 3079-3087.	2.0	5
2638	Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications. Journal of Power Sources, 2019, 439, 227046.	4.0	34
2639	Synergy of Mn and Co in Slab-Based Nanocomposites for Hybrid Supercapacitors: Impact of Restacking Process on Electrochemical Properties. ACS Applied Energy Materials, 2019, 2, 7832-7842.	2.5	16
2640	Molecular Cooperative Assembly-Mediated Synthesis of Ultra-High-Performance Hard Carbon Anodes for Dual-Carbon Sodium Hybrid Capacitors. ACS Nano, 2019, 13, 11935-11946.	7.3	29
2641	Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor. Journal of Electroanalytical Chemistry, 2019, 852, 113507.	1.9	29
2642	Fabrication of mesoporous TiVN powders and their electrochemical performance. Journal of the Ceramic Society of Japan, 2019, 127, 728-735.	0.5	6
2643	Enhanced Quality Factor of Polyvinyl formal (PVF) Based Nanocomposites Filled with Zinc Oxide and Carbon Black Nanoparticles for Wireless Sensing Applications. Materials Today: Proceedings, 2019, 9, 199-216.	0.9	19
2644	Microwave rapid synthesis of CuxO@polypyrrole nanofibre (PpyNF) composites for supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 947-952.	1.0	3
2645	Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for high-performance electrochemical supercapacitive behaviour. Journal of Materials Chemistry A, 2019, 7, 372-380.	5.2	60
2646	Designing oxygen bonding between reduced graphene oxide and multishelled Mn ₃ O ₄ hollow spheres for enhanced performance of supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6686-6694.	5.2	103
2647	Low concentrated carbonaceous suspensions assisted with carboxymethyl cellulose as electrode for electrochemical flow capacitor. European Physical Journal E, 2019, 42, 8.	0.7	6
2648	An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls. Nanomaterials, 2019, 9, 148.	1.9	63
2649	Microstructures and capacitance performance of MnO2 films fabricated by ultrasonic-assisted electrodeposition. Applied Surface Science, 2019, 478, 94-102.	3.1	34
2650	Ion Dynamics at the Single Wall Carbon Nanotube Based Composite Electrode/Electrolyte Interface: Influence of the Cation Size and Electrolyte pH. Journal of Physical Chemistry C, 2019, 123, 4262-4273.	1.5	9
2651	Improving Supercapacitance of Electrospun Carbon Nanofibers through Increasing Micropores and Microporous Surface Area. Advanced Materials Interfaces, 2019, 6, 1801900.	1.9	16

#	Article	IF	CITATIONS
2652	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	11.1	188
2653	Preparation of Fe–C nanofiber composites by metal organic complex and potential application in supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 4665-4675.	1.1	10
2654	Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon. Scientific Reports, 2019, 9, 1104.	1.6	105
2655	Flexible Supercapacitors: A Materials Perspective. Frontiers in Materials, 2019, 5, .	1.2	125
2656	Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. Journal of Electroanalytical Chemistry, 2019, 837, 39-47.	1.9	79
2657	A 3D walking palm-like core–shell CoMoO ₄ @NiCo ₂ S ₄ @nickel foam composite for high-performance supercapacitors. Dalton Transactions, 2019, 48, 3853-3861.	1.6	103
2658	Nitrogen-Doped Hierarchically Porous Carbons Derived from Polybenzoxazine for Enhanced Supercapacitor Performance. Nanomaterials, 2019, 9, 131.	1.9	26
2659	The Microwaveâ€Assisted Hydrothermal Synthesis of CoV ₂ O ₆ and Co ₃ V ₂ O ₈ with Morphology Tuning by pH Adjustments for Supercapacitor Applications. ChemistrySelect, 2019, 4, 956-962.	0.7	24
2660	Layered nanoblades of iron cobaltite for high performance asymmetric supercapacitors. Applied Surface Science, 2019, 476, 1025-1034.	3.1	33
2661	Boron doped graphene cathode for capacitor via a new one-step method. Ceramics International, 2019, 45, 7095-7101.	2.3	8
2662	Hierarchical electrodes assembled by alternate NiCo hydroxide nanowires arrays and conductive interlayers with enhanced properties for electrochemical supercapacitors. Journal of Alloys and Compounds, 2019, 785, 725-731.	2.8	13
2663	Enhanced energy storage activity of NiMoO4 modified by graphitic carbon nitride. Journal of Materials Science: Materials in Electronics, 2019, 30, 5109-5119.	1.1	13
2664	A hydrothermal carbonization process for the preparation of activated carbons from hemp straw: an efficient electrode material for supercapacitor application. Ionics, 2019, 25, 3299-3307.	1.2	27
2665	Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. Journal of Physics and Chemistry of Solids, 2019, 130, 84-92.	1.9	14
2666	Facile Synthesis of Manganese Cobalt Oxide/Nickel Cobalt Oxide Composites for High-Performance Supercapacitors. Frontiers in Chemistry, 2018, 6, 661.	1.8	26
2667	Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm, 2019, 21, 470-477.	1.3	68
2668	Covalently functionalized heterostructured carbon by redox-active <i>p</i> -phenylenediamine molecules for high-performance symmetric supercapacitors. New Journal of Chemistry, 2019, 43, 1688-1698.	1.4	22
2669	Enhanced electrochemical performance of the activated carbon electrodes with a facile and in-situ phosphoric acid modification. Journal of Energy Storage, 2019, 24, 100744.	3.9	2

#	Article	IF	CITATIONS
2670	Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials, 2019, 9, 1900334.	10.2	151
2671	Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications. Electrochimica Acta, 2019, 316, 202-218.	2.6	45
2672	Understanding ageing mechanisms of porous carbons in non-aqueous electrolytes for supercapacitors applications. Journal of Power Sources, 2019, 434, 226734.	4.0	19
2673	Dynamic Ripples in Graphene Monolayer. Springer Theses, 2019, , 39-54.	0.0	0
2674	Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors. Chemical Engineering Journal, 2019, 375, 121988.	6.6	48
2675	Facilely Hierarchical Growth of N-Doped Carbon-Coated NiCo ₂ O ₄ Nanowire Arrays on Ni Foam for Advanced Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
2676	Fabrication of nitrogen-rich three-dimensional porous carbon composites with nanosheets and hollow spheres for efficient supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 2082-2089.	3.0	12
2677	Palm Spathe Derived N-Doped Carbon Nanosheets as a High Performance Electrode for Li-Ion Batteries and Supercapacitors. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	19
2678	Highly doped N, S-Codoped carbon nanomeshes for excellent electrocapacitive performance. Journal of Alloys and Compounds, 2019, 803, 704-710.	2.8	12
2679	Electrochemical Properties of CNT/MnO ₂ Hybrid Nanostructure with Low-Temperature Hydrothermal Synthesis as High-Performance Supercapacitor. Journal of the Electrochemical Society, 2019, 166, A2194-A2198.	1.3	18
2680	A deeper understanding of the electron transfer is the key to the success of biredox ionic liquids. Energy Storage Materials, 2019, 21, 240-245.	9.5	10
2681	Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 26235-26242.	4.0	35
2682	Metal-free multiporous carbon for electrochemical energy storage and electrocatalysis applications. New Journal of Chemistry, 2019, 43, 11653-11659.	1.4	31
2683	Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors. Microporous and Mesoporous Materials, 2019, 287, 101-106.	2.2	13
2684	Oxygen Groups Immobilized on Micropores for Enhancing the Pseudocapacitance. ACS Sustainable Chemistry and Engineering, 2019, 7, 11407-11414.	3.2	23
2685	Cs ₃ Bi ₂ I ₉ as high-performance electrode material achieving high capacitance and stability in an economical supercapacitor. JPhys Energy, 2019, 1, 034001.	2.3	15
2686	One-dimensional mesoporous Co3O4 tubules for enhanced performance supercapacitor and enzymeless glucose sensing. Ionics, 2019, 25, 5445-5458.	1.2	9
2687	A honeycomb-like ZnO/SnO ₂ nanocomposite on nickel foam for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2019, 43, 10583-10589.	1.4	29

#	Article	IF	Citations
2688	The effect of deposition cycles on intrinsic and electrochemical properties of metallic cobalt sulfide by Simple chemical route. Materials Science in Semiconductor Processing, 2019, 101, 16-27.	1.9	7
2689	Highly compressible 3-D hierarchical porous carbon nanotube/metal organic framework/polyaniline hybrid sponges supercapacitors. AIP Advances, 2019, 9, .	0.6	18
2690	An interesting charge accumulation process of Bi12O15Cl6. Journal of Electroanalytical Chemistry, 2019, 846, 113169.	1.9	12
2691	Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Materials, 2019, 21, 427-438.	9.5	28
2692	A Host–Guest Supercapacitor Electrode Material Based on a Mixed Hexa-Transition Metal Sandwiched Arsenotungstate Chain and Three-Dimensional Supramolecular Metal–Organic Networks with One-Dimensional Cavities. Inorganic Chemistry, 2019, 58, 7947-7957.	1.9	40
2693	Ion-Liquid Based Supercapacitors with Inner Gate Diode-Like Separators. ChemEngineering, 2019, 3, 39.	1.0	3
2694	Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 17470-17492.	3.8	45
2695	Efficiency of Thermally Assisted Capacitive Mixing and Deionization Systems. ACS Sustainable Chemistry and Engineering, 2019, 7, 11334-11340.	3.2	13
2696	Tuning Ni/Al Ratio to Enhance Pseudocapacitive Charge Storage Properties of Nickel–Aluminum Layered Double Hydroxide. Advanced Electronic Materials, 2019, 5, 1900215.	2.6	39
2697	3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode. Journal of Physical Chemistry C, 2019, 123, 15458-15466.	1.5	35
2698	Advanced battery-supercapacitor hybrid device based on Co/Ni-ZIFs-derived NiCo2S4 ultrathin nanosheets electrode with high performance. Applied Surface Science, 2019, 490, 137-144.	3.1	39
2699	Maize-like ionic liquid@polyaniline nanocomposites for high performance supercapacitor. E-Polymers, 2019, 19, 313-322.	1.3	8
2700	Synthesis of mesoporous carbon-polymeric hybrid material for energy storage application. SN Applied Sciences, 2019, 1, 1.	1.5	11
2701	Computational screening of electrolyte materials: status quo and open problems. Current Opinion in Chemical Engineering, 2019, 23, 58-69.	3.8	23
2702	High cell-potential and high-rate neutral aqueous supercapacitors using activated biocarbon: In situ electrochemical gas chromatography. Electrochimica Acta, 2019, 313, 31-40.	2.6	9
2703	Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61, 517-532.	8.2	135
2704	Water-based synthesis of spiro-(1,1′)-bipyrrolidinium bis(fluorosulfonyl)imide electrolyte for high-voltage and low-temperature supercapacitor. Chemical Engineering Journal, 2019, 373, 1012-1019.	6.6	27
2705	Scalable ternary hierarchical microspheres composed of PANI/ rGO/CeO2 for high performance supercapacitor applications. Carbon, 2019, 151, 192-202.	5.4	107

#	Article	IF	CITATIONS
2706	One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 373, 1132-1143.	6.6	120
2707	Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technology, 2019, 7, 1900430.	1.8	20
2708	Microwave-assisted green synthesis of manganese molybdate nanorods for high-performance supercapacitor. lonics, 2019, 25, 4361-4370.	1.2	12
2709	The multi-structure NiCo2S4 prepared by solvothermal method for supercapacitor accompanied with positron annihilation study. Journal of Applied Physics, 2019, 125, 175103.	1.1	12
2710	Controllable spatial engineering of flexible all-in-one graphene-based supercapacitors with various architectures. Energy Storage Materials, 2019, 23, 269-276.	9.5	22
2711	The effect of nanoscale architecture on ionic diffusion in rGo/aramid nanofiber structural electrodes. Journal of Applied Physics, 2019, 125, .	1.1	12
2712	Natural nanofibers stacked porous nitrogen-doped carbon nanosheets with promising capacitive performance. Cellulose, 2019, 26, 5395-5407.	2.4	2
2713	NiCo ₂ S ₄ Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as Electrode Material with Enhanced Performance for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11157-11165.	3.2	73
2714	Hybrid solar energy harvesting and storage devices: The promises and challenges. Materials Today Energy, 2019, 13, 22-44.	2.5	71
2715	High-performance asymmetric supercapacitor based on vanadium dioxide and carbonized iron-polyaniline electrodes. AIP Advances, 2019, 9, .	0.6	26
2716	Modified silicon nanowires@polypyrrole core-shell nanostructures by poly(3,4-ethylenedioxythiophene) for high performance on-chip micro-supercapacitors. Applied Surface Science, 2019, 487, 236-243.	3.1	20
2717	Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Materials, 2019, 23, 491-498.	9.5	93
2718	Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors. Nano-Micro Letters, 2019, 11, 35.	14.4	83
2719	Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 372, 151-162.	6.6	231
2720	Mesopore-Rich Activated Carbons for Electrical Double-Layer Capacitors by Optimal Activation Condition. Nanomaterials, 2019, 9, 608.	1.9	21
2721	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	15.6	481
2722	Polyacetylene carbon materials: facile preparation using AlCl ₃ catalyst and excellent electrochemical performance for supercapacitors. RSC Advances, 2019, 9, 11986-11995.	1.7	11
2723	Self-assembled three-dimensional hierarchical CoMoO4 nanosheets on NiCo2O4 for high-performance supercapacitor. Journal of Alloys and Compounds, 2019, 793, 418-424.	2.8	25

#	Article	IF	CITATIONS
2724	Hierarchical nanoflake-assembled flower-like NiCo double hydroxide@NiC ₂ O ₄ microspheres for high-performance supercapacitor. Materials Technology, 2019, 34, 571-580.	1.5	20
2725	Rapid design of a core–shell-like metal hydroxide/oxide composite and activated carbon from biomass for high-performance supercapattery applications. Inorganic Chemistry Frontiers, 2019, 6, 1707-1720.	3.0	19
2726	Binder-Free Hierarchical Urchin-like Manganese–Cobalt Selenide with High Electrochemical Energy Storage Performance. ACS Applied Energy Materials, 2019, 2, 3595-3604.	2.5	69
2727	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	7.8	18
2728	Promising application of MOF as composite solid electrolytes via clathrates of ionic liquid. Inorganica Chimica Acta, 2019, 491, 128-131.	1.2	10
2729	Manganese oxide(â¢)/carbon hybrids with interesting morphologies as improved active materials for supercapacitors. International Journal of Hydrogen Energy, 2019, 44, 13623-13631.	3.8	12
2730	Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. Journal of Physical Chemistry C, 2019, 123, 12583-12591.	1.5	15
2731	Controlled synthesis of SnO2@NiCo2O4/nitrogen doped multiwalled carbon nanotube hybrids as an active electrode material for supercapacitors. Journal of Alloys and Compounds, 2019, 794, 186-194.	2.8	40
2732	Selenium vacancies enriched the performance of supercapacitors with excellent cycling stability <i>via</i> a simple chemical bath deposition method. Dalton Transactions, 2019, 48, 8254-8263.	1.6	21
2733	Facile synthesis of ZnWO4@WS2 cauliflower-like structures for supercapacitors with enhanced electrochemical performance. Journal of Electroanalytical Chemistry, 2019, 841, 86-93.	1.9	47
2734	Facile Green Route to Ni/Co Oxide Nanoparticle Embedded 3D Graphitic Carbon Nanosheets for High Performance Hybrid Supercapacitor Devices. ACS Applied Energy Materials, 2019, 2, 3389-3399.	2.5	75
2735	Nitrogen-doped 3D web-like interconnected porous carbon prepared by a simple method for supercapacitors. Ionics, 2019, 25, 4333-4340.	1.2	8
2736	Impact of Charger Salt Content in Electrophoretic Deposition on Characteristics of Carbon Nanotubes Composite for Electrochemical Power Sources. , 2019, , .		1
2737	Co ²⁺ induced phase transformation from δ- to α-MnO ₂ and their hierarchical α-MnO ₂ @δ-MnO ₂ nanostructures for efficient asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12661-12668.	5.2	43
2738	Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochimica Acta, 2019, 311, 230-243.	2.6	30
2739	The application of transition metal cobaltites in electrochemistry. Energy Storage Materials, 2019, 23, 439-465.	9.5	48
2740	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12654-12660.	5.2	86
2741	Fe substitution in urchin-like NiCo ₂ O ₄ for energy storage devices. RSC Advances, 2019, 9, 7210-7217.	1.7	26

#	Article	IF	CITATIONS
2742	High-performance supercapacitors based on reduced graphene oxide -wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions. Electrochimica Acta, 2019, 306, 549-557.	2.6	14
2743	High Potential of Aerosolâ€Made 3D Grapheneâ€Based Composites for Enhanced Energy Storage. Macromolecular Rapid Communications, 2019, 40, e1800832.	2.0	4
2744	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
2745	Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Transactions, 2019, 48, 5193-5202.	1.6	224
2746	From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chinese Chemical Letters, 2019, 30, 1445-1449.	4.8	58
2747	Facile synthesis of hierarchical CoMoO4@Ni(OH)2 core-shell nanotubes for bifunctional supercapacitors and oxygen electrocatalysts. Journal of Alloys and Compounds, 2019, 789, 684-692.	2.8	24
2749	A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors. Electrochimica Acta, 2019, 305, 56-63.	2.6	23
2750	Synthesis of graphene on Ni foam with enhanced capacitive performance by embedding PS spacers. Materials Technology, 2019, 34, 499-505.	1.5	5
2751	Mesoporous NH4NiPO4·H2O for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. Frontiers in Chemistry, 2019, 7, 118.	1.8	22
2752	Electrical characteristics of large state-of-the-art electrochemical capacitors. Electrochimica Acta, 2019, 307, 564-572.	2.6	12
2753	Effect of different pretreatment methods on sesame husk-based activated carbon for supercapacitors with aqueous and organic electrolytes. Journal of Materials Science: Materials in Electronics, 2019, 30, 7873-7882.	1.1	23
2754	Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 8568-8576.	1.1	16
2755	High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors. Journal of Power Sources, 2019, 423, 106-114.	4.0	48
2756	Fabrication of Hierarchical NiMoO4/NiMoO4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Performance. Energies, 2019, 12, 1143.	1.6	26
2757	Designed cross-linking nanoporous Zn0.76Co0.24S @C-ZIF-Zn0.76Co0.24S core-shell nanosheet arrays on nickle foam for battery-type electrodes with high performance electrochemical energy storage. Synthetic Metals, 2019, 250, 136-145.	2.1	3
2758	High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure. Dalton Transactions, 2019, 48, 5271-5284.	1.6	10
2759	Serrated-like NiCoO2 nanoarrays on Ni foam for high-performance supercapacitors. Applied Surface Science, 2019, 481, 1220-1227.	3.1	31
2760	Formation of nickel–cobalt sulphide@graphene composites with enhanced electrochemical capacitive properties. RSC Advances, 2019, 9, 6946-6955.	1.7	10

#	Article	IF	CITATIONS
2761	Charge Storage by Electrochemical Reaction of Water Bilayers Absorbed on MoS2 Monolayers. Scientific Reports, 2019, 9, 3980.	1.6	16
2762	Pulse Potentiostatic Deposition of Polyaniline Nanobumps on 3D Graphene Hydrogel for High-Performance Supercapacitor Electrode. International Journal of Electrochemical Science, 2019, , 3968-3977.	0.5	1
2763	The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon, 2019, 147, 451-459.	5.4	46
2764	Synthesis of MnCo2O4@MnCo2S4 core/shell micro-nanostructures on Ni foam for high performance asymmetric supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 73-80.	2.3	47
2765	A low-cost "water-in-salt―electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A, 2019, 7, 7541-7547.	5.2	260
2766	A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceramics International, 2019, 45, 12558-12562.	2.3	30
2767	Facile synthesis of nanowire and rectangular flakes of Co3O4 onto Ni foam for high-performance asymmetric supercapacitors. Ionics, 2019, 25, 3875-3883.	1.2	4
2768	Construction of layered hierarchical CoMoO 4 nanostructured arrays for supercapacitors with enhanced areal capacitance. Royal Society Open Science, 2019, 6, 181592.	1.1	3
2769	Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon, 2019, 147, 540-549.	5.4	374
2770	Polypyrrole nanostructures//activated carbon based electrode for energy storage applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 7890-7900.	1.1	5
2771	Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 216-222.	0.4	11
2772	Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices. Chemical Engineering Journal, 2019, 371, 327-336.	6.6	46
2773	Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 9877-9887.	1.1	17
2774	Hierarchically Porous Carbons Derived from Metal–Organic Framework/Chitosan Composites for Highâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3583-3589.	1.7	19
2775	Ionic liquids to monitor the nano-structuration and the surface functionalization of material electrodes: a proof of concept applied to cobalt oxyhydroxide. Nanoscale Advances, 2019, 1, 2240-2249.	2.2	11
2776	Temperature-directed synthesis of N-doped carbon-based nanotubes and nanosheets decorated with Fe (Fe ₃ O ₄ , Fe ₃ C) nanomaterials. Nanoscale, 2019, 11, 9155-9162.	2.8	37
2777	The impact of carbonate solvents on the self-discharge, thermal stability and performance retention of high voltage electrochemical double layer capacitors. Physical Chemistry Chemical Physics, 2019, 21, 9089-9097.	1.3	23
2778	Biomass-Derived Porous Carbon Materials for Supercapacitor. Frontiers in Chemistry, 2019, 7, 274.	1.8	162

#	Article	IF	CITATIONS
2779	N-doped graphene framework supported nickel cobalt oxide as supercapacitor electrode with enhanced performance. Applied Surface Science, 2019, 484, 135-143.	3.1	43
2780	Three-Dimensional Interconnected Binder-Free Mn–Ni–S Nanosheets for High Performance Asymmetric Supercapacitor Devices with Exceptional Cyclic Stability. ACS Applied Energy Materials, 2019, 2, 3717-3725.	2.5	88
2781	Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH) ₂ supercapacitor electrodes. Nanoscale, 2019, 11, 9598-9607.	2.8	90
2782	Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor. Superlattices and Microstructures, 2019, 130, 50-60.	1.4	34
2783	"lon sliding―on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horizons, 2019, 4, 1077-1091.	4.1	22
2784	Preparation and electrochemical performance of nitrogen-enriched activated carbon derived from silkworm pupae waste. RSC Advances, 2019, 9, 9878-9886.	1.7	18
2785	Block copolymers for supercapacitors, dielectric capacitors and batteries. Journal of Physics Condensed Matter, 2019, 31, 233001.	0.7	27
2786	Preparation of silicon oxide–carbon composite from benzene and trimethoxyphenylsilane by a liquid phase plasma method for supercapacitor applications. Applied Surface Science, 2019, 481, 625-631.	3.1	9
2787	Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochimica Acta, 2019, 311, 221-229.	2.6	49
2788	Supercapacitors with electrical gates. Electrochimica Acta, 2019, 307, 459-464.	2.6	16
2789	Simultaneous Electrochemical Deposition of Cobalt Complex and Poly(pyrrole) Thin Films for Supercapacitor Electrodes. Scientific Reports, 2019, 9, 5650.	1.6	43
2790	Unusual formation of NiCo ₂ O ₄ @MnO ₂ /nickel foam/MnO ₂ sandwich as advanced electrodes for hybrid supercapacitors. Dalton Transactions, 2019, 48, 7403-7412.	1.6	28
2791	Electrolyte-Philic Electrode Material with a Functional Polymer Brush. ACS Applied Materials & Interfaces, 2019, 11, 16087-16095.	4.0	16
2792	Solid-state NMR and electrochemical dilatometry study of charge storage in supercapacitor with redox ionic liquid electrolyte. Energy Storage Materials, 2019, 20, 80-88.	9.5	19
2793	Three-dimensional MnCo2O4/graphene composites for supercapacitor with promising electrochemical properties. Journal of Alloys and Compounds, 2019, 792, 122-129.	2.8	81
2794	Vapor-assisted synthesis of hierarchical porous graphitic carbon materials towards energy storage devices. Journal of Power Sources, 2019, 425, 10-16.	4.0	24
2795	Co 0.5 Ni 0.5 MoO 4 Double‣helled Hollow Spheres with Enhanced Electrochemical Performance for Supercapacitors and Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1801160.	1.8	10
2796	Preparation of Hierarchic Porous Films of α-MnO ₂ Nanoparticles by Using the Breath Figure Technique and Application for Hybrid Capacitor Electrodes. ACS Omega, 2019, 4, 3827-3831.	1.6	12

#	Article	IF	CITATIONS
2797	Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Needâ€Tailored Devices. Advanced Science, 2019, 6, 1801797.	5.6	250
2798	Preparation and capacitive performance of modified carbon black-doped porous carbon nanofibers. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	8
2799	Zirconiumâ€Based Materials for Electrochemical Energy Storage. ChemElectroChem, 2019, 6, 1949-1968.	1.7	5
2800	Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nature Communications, 2019, 10, 675.	5.8	213
2801	αâ€Fe ₂ O ₃ Based Carbon Composite as Pure Negative Electrode for Application as Supercapacitor. European Journal of Inorganic Chemistry, 2019, 2019, 1301-1312.	1.0	37
2802	In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochimica Acta, 2019, 302, 327-337.	2.6	79
2803	Preparation of polyvinylidene fluoride-co-hexafluoropropylene-based polymer gel electrolyte and its performance evaluation for application in EDLCs. Bulletin of Materials Science, 2019, 42, 1.	0.8	20
2804	CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: High-performance electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 30-37.	1.9	53
2805	Nanofiber Celluloseâ€Incorporated Nanomesh Graphene–Carbon Nanotube Buckypaper and Ionic Liquidâ€Based Solid Polymer Electrolyte for Flexible Supercapacitors. Energy Technology, 2019, 7, 1900014.	1.8	7
2806	Scalable Production of Graphene Inks via Wetâ€et Milling Exfoliation for Screenâ€Printed Microâ€Supercapacitors. Advanced Functional Materials, 2019, 29, 1807659.	7.8	174
2807	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	1.2	43
2808	A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy, 2019, 59, 41-49.	8.2	203
2809	Facile fabrication of Ni _{0.85} Se nanowires by the composite alkali salt method as a novel cathode material for asymmetric supercapacitors. Dalton Transactions, 2019, 48, 3906-3913.	1.6	17
2810	Constructing metallic zinc–cobalt sulfide hierarchical core–shell nanosheet arrays derived from 2D metal–organic-frameworks for flexible asymmetric supercapacitors with ultrahigh specific capacitance and performance. Journal of Materials Chemistry A, 2019, 7, 7138-7150.	5.2	82
2811	in Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate. Nanomaterials, 2019, 9, 304.	1.9	11
2812	Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Materials, 2019, 19, 408-423.	9.5	189
2813	Polymer/block copolymer blending system as the compatible precursor system for fabrication of mesoporous carbon nanofibers for supercapacitors. Journal of Power Sources, 2019, 419, 137-147.	4.0	37
2814	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	4.0	54

#	Article	IF	CITATIONS
2815	Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS2@N-rGO hybrids electrode. Journal of Colloid and Interface Science, 2019, 543, 147-155.	5.0	58
2816	Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6374-6386.	5.2	59
2817	In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor. Journal of Alloys and Compounds, 2019, 787, 1044-1050.	2.8	37
2818	Beyond Activated Carbon: Graphiteâ€Cathodeâ€Derived Liâ€Ion Pseudocapacitors with High Energy and High Power Densities. Advanced Materials, 2019, 31, e1807712.	11.1	67
2819	Analysis of Energy Storage System Requirements for Aircraft Electric Taxiing Operations. , 2019, , .		3
2820	In-situ continuous growth of carbon nanotubes on the surface of carbon fibres. IOP Conference Series: Earth and Environmental Science, 2019, 354, 012077.	0.2	1
2821	Electrode Electrolyte Compatibility for Superior Performance of Super-Capacitor. , 2019, , .		3
2822	Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior. Journal of Chemical Physics, 2019, 151, 184105.	1.2	9
2823	Nanoneedle-decorated NiCo-layered double hydroxide microspheres tuned as high-efficiency electrodes for pseudocapacitors. CrystEngComm, 2019, 21, 6985-6990.	1.3	12
2824	Selective design of binder-free hierarchical nickel molybdenum sulfide as a novel battery-type material for hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 25467-25480.	5.2	49
2825	A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC Advances, 2019, 9, 36123-36135.	1.7	65
2826	α- and β-Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors. Nanomaterials, 2019, 9, 1686.	1.9	21
2827	Graphiteâ€Aligned Ni/Ni(OH) ₂ Nanowireâ€Based Aqueous Asymmetric Supercapacitors Exhibiting Excellent Cycle Stability, High Rate Performance, and Wide Operation Voltage. ChemistrySelect, 2019, 4, 13543-13550.	0.7	4
2828	Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn–O–F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors. Nanoscale Advances, 2019, 1, 4669-4678.	2.2	9
2829	Towards fast-charging technologies in Li ⁺ /Na ⁺ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors. Nanoscale, 2019, 11, 19225-19240.	2.8	44
2830	Construction of NiCo ₂ S ₄ @NiMoO ₄ Coreâ€Shell Nanosheet Arrays with Superior Electrochemical Performance for Asymmetric Supercapacitors. ChemElectroChem, 2019, 6, 590-597.	1.7	49
2831	Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Applied Surface Science, 2019, 463, 879-888.	3.1	21
2832	Toward high-performance all-solid-state supercapacitors using facilely fabricated graphite nanosheet-supported CoMoS4 as electrode material. Chemical Engineering Journal, 2019, 355, 891-900.	6.6	50

#	Article	IF	CITATIONS
2833	Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials, 2019, 16, 545-573.	9.5	489
2834	Silica-grafted ionic liquid for maximizing the operational voltage of electrical double-layer capacitors. Energy Storage Materials, 2019, 18, 253-259.	9.5	18
2835	Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes. Composites Communications, 2019, 12, 21-25.	3.3	54
2836	Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Applied Surface Science, 2019, 473, 807-819.	3.1	78
2837	Swallowâ€Nestâ€Inspired Strategy towards Ultralight Functional Multiwallâ€Carbonâ€Nanotubeâ€Based Aerogels for Supercapacitors. ChemElectroChem, 2019, 6, 1661-1667.	1.7	1
2838	High-mass loading electrodes with exceptional areal capacitance and cycling performance through a hierarchical network of MnO2 nanoflakes and conducting polymer gel. Journal of Power Sources, 2019, 412, 655-663.	4.0	27
2839	Low-Charge-Carrier-Scattering Three-Dimensional α-MnO ₂ /β-MnO ₂ Networks for Ultra-High-Rate Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2019, 2, 1051-1059.	2.5	30
2840	Hierarchical 3D electrodes for electrochemical energy storage. Nature Reviews Materials, 2019, 4, 45-60.	23.3	554
2841	Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chemical Engineering Journal, 2019, 361, 1030-1042.	6.6	74
2842	Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Materials, 2019, 21, 22-40.	9.5	160
2843	Ultrathin Ni12P5 nanoplates for supercapacitor applications. Journal of Alloys and Compounds, 2019, 782, 545-555.	2.8	21
2844	Enhanced energy density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Materials Chemistry and Physics, 2019, 225, 192-199.	2.0	42
2845	Emerging opportunities for black phosphorus in energy applications. Materials Today Energy, 2019, 12, 1-25.	2.5	88
2846	Electrochemical Effects of Depositing Iridium Oxide Nanoparticles onto Conductive Woven and Nonwoven Flexible Substrates. ACS Applied Energy Materials, 2019, 2, 372-381.	2.5	6
2847	Fluorinated carbonaceous nanoparticles as active material in primary lithium battery. Journal of Fluorine Chemistry, 2019, 219, 1-9.	0.9	9
2848	Synthesis, characterization and electrochemical properties of cadmium sulfide – Reduced graphene oxide nanocomposites. Results in Physics, 2019, 12, 878-885.	2.0	16
2849	High tap-density graphene cathode material for lithium-ion capacitors via a mass-scalable synthesis method. Chemical Engineering Journal, 2019, 360, 1233-1240.	6.6	15
2850	Preparation of urchin-like NiCo ₂ O ₄ material and studies of its electrochemical performance for supercapacitors. Functional Materials Letters, 2019, 12, 1950026.	0.7	3

#	Article	IF	Citations
2851	Ni(OH) ₂ Nanoflakes Supported on 3D Ni ₃ Se ₂ Nanowire Array as Highly Efficient Electrodes for Asymmetric Supercapacitor and Ni/MH Battery. Small, 2019, 15, e1802861.	5.2	84
2852	Nickel self-doped iron oxide/manganese carbonate hierarchical 2D/3D structures for electrochemical energy storage. Electrochimica Acta, 2019, 297, 77-86.	2.6	20
2853	Textileâ€Based Triboelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2019, 29, 1804533.	7.8	148
2854	Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties. Ionics, 2019, 25, 999-1006.	1.2	9
2855	One-Step Polyoxometalates-Assisted Synthesis of Manganese Dioxide for Asymmetric Supercapacitors with Enhanced Cycling Lifespan. ACS Sustainable Chemistry and Engineering, 2019, 7, 258-264.	3.2	38
2856	Examination of High-Porosity Activated Carbon Obtained from Dehydration of White Sugar for Electrochemical Capacitor Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 537-546.	3.2	39
2857	Electrode based on nanoporous (Co-Ni)@(CoO,NiO) nanocomposites with ultrahigh capacitance after activation. Journal of Alloys and Compounds, 2019, 778, 239-246.	2.8	10
2858	ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. Journal of Energy Chemistry, 2019, 35, 124-131.	7.1	122
2859	Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 914-925.	1.1	34
2860	Design of organic supercapacitors with high performances using pore size controlled active materials. Current Applied Physics, 2019, 19, 89-96.	1.1	10
2861	Ternary nickel-cobalt selenide nanosheet arrays with enhanced electrochemical performance for hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 778, 848-857.	2.8	33
2862	N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochimica Acta, 2019, 296, 653-661.	2.6	135
2863	Low-cost fabrication of amorphous cobalt-iron-boron nanosheets for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 296, 198-205.	2.6	33
2864	Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. Journal of Power Sources, 2019, 409, 112-122.	4.0	94
2865	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	2.5	88
2866	Redoxâ€Mediatorâ€Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. ChemSusChem, 2019, 12, 1118-1132.	3.6	67
2867	Fabrication of porous MgCo2O4 nanoneedle arrays/Ni foam as an advanced electrode material for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 779, 100-107.	2.8	36
2868	Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudosupercapacitor electrode with improved electrochemical stability. Applied Surface Science, 2019, 470, 783-791.	3.1	14

ARTICLE IF CITATIONS Engineering hydrogenated manganese dioxide nanostructures for high-performance supercapacitors. 2869 5.0 11 Journal of Colloid and Interface Science, 2019, 537, 661-670. Investigation of ion transport in chemically tuned pillared graphene materials through 2870 2.6 electrochemical impedance analysis. Electrochimica Acta, 2019, 296, 882-890. Void-bearing electrodes with microporous activated carbon for electric double-layer capacitors. 2871 1.9 9 Journal of Electroanalytical Chemistry, 2019, 833, 33-38. Enhanced electrochemical performance of salen-type transition metal polymer with 1.2 electron-donating substituents. Ionics, 2019, 25, 1045-1055. Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon, 2873 5.4 22 2019, 145, 281-289. 2874 Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360. 11.7 High mass loading of h-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric 2875 2.6 61 supercapacitor. Electrochimica Acta, 2019, 299, 245-252. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of 3.9 271 Energy Storage, 2019, 21, 632-646 Tuning Charge Storage Properties of Supercapacitive Electrodes Evidenced by In Situ Gravimetric and 2877 3.2 16 Viscoelastic Explorations. Analytical Chemistry, 2019, 91, 2885-2893. Vertically Aligned Reduced Graphite Oxide Nanosheet Film and its Application in a High-Speed 2878 2.5 Charge/Discharge Electrochemical Capacitor. ACS Applied Energy Materials, 2019, 2, 1033-1039. Rationally assembled porous carbon superstructures for advanced supercapacitors. Chemical 2879 6.6 67 Engineering Journal, 2019, 361, 1296-1303. Dual functional nickel cobalt/MWCNT composite electrode-based electrochemical capacitor and enzymeless glucose biosensor applications: Influence of Ni/Co molar ratio. Journal of Industrial and 2880 Engineering Chemistry, 2019, 73, 1-7 Anion-Based Pseudocapacitance of the Perovskite Library La<sub>1â€"<i>x</i>/sub>Sr<i>_x</i>BO_{3â¹î} (B = Fe, Mn, Co). ACS Applied 2881 4.0 60 Materials & amp; Interfaces, 2019, 11, 5084-5094. Moss-Derived Mesoporous Carbon as Bi-Functional Electrode Materials for Lithium–Sulfur Batteries 2882 1.9 and Supercapacitors. Nanomaterials, 2019, 9, 84. Improved capacitance of NiCo2O4/carbon composite resulted from carbon matrix with multilayered 2883 2.6 24 graphene. Electrochimica Acta, 2019, 295, 376-383. Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. 2884 111 Progress in Materials Science, 2019, 101, 46-89. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation 2885 5.439 for high performance flexible supercapacitors. Carbon, 2019, 143, 147-153. Moltenâ€Saltâ€Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising 2886 Electrode Materials for Supercapacitors and Lithiumâ€Ion Batteries. ChemSusChem, 2019, 12, 283-290.

#	Article	IF	CITATIONS
2887	Enhanced breakdown strength and energy storage of PVDFâ€based dielectric composites by incorporating exfoliated mica nanosheets. Polymer Composites, 2019, 40, 2088-2094.	2.3	51
2888	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
2889	Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodiumâ€Ion Capacitors. Small Methods, 2019, 3, 1800371.	4.6	41
2890	Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1667-1678.	2.0	17
2891	Redox-Mediated Shape Transformation of Fe ₃ O ₄ Nanoflakes to Chemically Stable Auâ^'Fe ₂ O ₃ Composite Nanorods for a High-Performance Asymmetric Solid-State Supercapacitor Device. ACS Sustainable Chemistry and Engineering, 2019, 7, 724-733.	3.2	35
2892	Metal Oxynitrides as Promising Electrode Materials for Supercapacitor Applications. ChemElectroChem, 2019, 6, 1255-1272.	1.7	34
2893	Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature. Journal of Materials Science: Materials in Electronics, 2019, 30, 2600-2609.	1.1	15
2894	Influence of electrodeposition temperature in the electrochemical properties of Ni(OH)2: An experimental and theoretical study. Thin Solid Films, 2019, 670, 24-33.	0.8	9
2895	Effects of Sodium Alginate on the Composition, Morphology, and Electrochemical Properties of Electrospun Carbon Nanofibers as Electrodes for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 632-640.	3.2	30
2896	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. Small, 2019, 15, e1804104.	5.2	77
2897	Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. Journal of Power Sources, 2019, 412, 1-9.	4.0	150
2898	Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy, 2019, 56, 828-839.	8.2	237
2899	Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. Journal of Power Sources, 2019, 412, 321-330.	4.0	31
2900	Firstâ€Principles Studies of Li Nucleation on Double‣ayered Defective Graphene. ChemElectroChem, 2019, 6, 810-817.	1.7	7
2901	Mesoporous Mn ₃ O ₄ coated reduced graphene oxide for high-performance supercapacitor applications. Materials Research Express, 2019, 6, 015037.	0.8	13
2902	Graphene: Properties and Applications. , 2019, , 287-304.		4
2903	Enhanced capacitive property of HfN film electrode by plasma etching for supercapacitors. Materials Letters, 2019, 235, 148-152.	1.3	43
2904	Sprayâ€Assisted Synthesis of MnO@C/Graphene Composites as Electrode Materials for Supercapacitors. Energy Technology, 2019, 7, 1800625.	1.8	6

#	Article	IF	CITATIONS
2905	High–performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization. Electrochimica Acta, 2019, 293, 273-282.	2.6	37
2906	Hydrothermal-assisted synthesis of a porous polyaniline/reduced graphene oxide composite as a high-performance electrode material for supercapacitors. Composites Part B: Engineering, 2019, 159, 4-12.	5.9	64
2907	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	11.1	313
2908	Microwave-assisted synthesis of Fe-doped NiMnO3 as electrode material for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2019, 23, 63-72.	1.2	22
2909	Regulating polycrystalline behavior of the βâ€nucleated isotactic polypropylene/graphene oxide composites by melt memory effect. Polymer Composites, 2019, 40, E440.	2.3	24
2910	Facile synthesis of ZnMn2O4 nanosheets via cathodic electrodeposition: characterization and supercapacitor behavior studies. Ionics, 2019, 25, 275-285.	1.2	16
2911	Synthesis, Characterization, and Improvement of Supercapacitor Properties of NiMoO4 Nanocrystals with Polyaniline. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 310-321.	1.9	40
2912	Nanomaterials. , 2020, , 515-539.		3
2913	Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors. Green Energy and Environment, 2020, 5, 69-75.	4.7	55
2914	Preparation of MOFs derived nitrogen self-doped porous carbon and its electrochemical performance in mixed electrolytes. Applied Surface Science, 2020, 500, 143936.	3.1	11
2915	Nickel–zinc sulfide nanocomposite thin film as an efficient cathode material for high-performance hybrid supercapacitors. Materials Science in Semiconductor Processing, 2020, 105, 104709.	1.9	29
2916	Fabrication of hybrid CoMoO4–NiMoO4 nanosheets by chitosan hydrogel assisted calcinations method with high electrochemical performance. Journal of Sol-Gel Science and Technology, 2020, 93, 131-141.	1.1	11
2917	MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties. Journal of Materials Science, 2020, 55, 2482-2491.	1.7	39
2918	Structural Design and Applications of Stereoregular Fused Thiophenes and Their Oligomers and Polymers. Polymer Reviews, 2020, 60, 318-358.	5.3	27
2919	Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Storage Materials, 2020, 24, 6-21.	9.5	108
2920	Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors. Energy Storage Materials, 2020, 24, 541-549.	9.5	160
2921	Facile fabrication of MnO ₂ -embedded 3-D porous polyaniline composite hydrogel for supercapacitor electrode with high loading. High Performance Polymers, 2020, 32, 286-295.	0.8	11
2922	Optimized supercapacitive performance of graphene-hydrogel by porous texture controlling. Journal of Porous Materials, 2020, 27, 11-19.	1.3	3

#	Article	IF	CITATIONS
2923	Neutralization reaction in synthesis of carbon materials for supercapacitors. Chemical Engineering Journal, 2020, 381, 122547.	6.6	23
2924	Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2020, 385, 123455.	6.6	55
2925	Fabrication and evaluation of hybrid supercapacitor consisting of nano cobalt oxide and manganese oxide deposited electrochemically on nanoporous Au-Electrode. Electrochimica Acta, 2020, 330, 135199.	2.6	26
2926	Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy, 2020, 68, 104226.	8.2	48
2927	Embedded coral reef sponge like structured Al(OH)3/FeOOH composite for flexible solid-state symmetric supercapacitor. Journal of Power Sources, 2020, 445, 227304.	4.0	29
2928	Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel. Electrochimica Acta, 2020, 330, 135207.	2.6	41
2929	Core-shell MnO2@CoS nanosheets with oxygen vacancies for high-performance supercapattery. Journal of Power Sources, 2020, 446, 227335.	4.0	133
2930	Ni(HCO3)2 nanosheet/nickel tetraphosphate (Ni(P4O11)) nanowire composite as a high-performance electrode material for asymmetric supercapacitors. Nanotechnology, 2020, 31, 015401.	1.3	7
2931	Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors. Nanotechnology, 2020, 31, 035402.	1.3	42
2932	Well-designed nanosheet-constructed porous CoMoS4 arrays for ultrahigh-performance supercapacitors. Ceramics International, 2020, 46, 4878-4888.	2.3	36
2933	3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high performance supercapacitor electrodes. Composite Interfaces, 2020, 27, 631-644.	1.3	9
2934	High Specific Capacitance of the Electrodeposited MnO2 on Porous Foam Nickel Soaked in Alcohol and its Dependence on Precursor Concentration. Materials, 2020, 13, 181.	1.3	12
2935	NiWO ₄ nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. Journal of Materials Chemistry C, 2020, 8, 3418-3430.	2.7	40
2936	A unique ZnFe2O4/graphene nanoplatelets nanocomposite for electrochemical energy storage and efficient visible light driven catalysis for the degradation of organic noxious in wastewater. Journal of Physics and Chemistry of Solids, 2020, 140, 109333.	1.9	43
2937	A mini-review: emerging all-solid-state energy storage electrode materials for flexible devices. Nanoscale, 2020, 12, 3560-3573.	2.8	73
2938	Review of Transition Metal Nitrides and Transition Metal Nitrides/Carbon nanocomposites for supercapacitor electrodes. Materials Chemistry and Physics, 2020, 245, 122533.	2.0	98
2939	Enhanced pseudocapacitive energy storage properties of budding-branch like MoO ₂ @C/CNT nanorods. Dalton Transactions, 2020, 49, 1637-1645.	1.6	14
2940	The role of iodine in the enhancement of the supercapacitance properties of HI-treated flexible reduced graphene oxide film: an experimental study with insights from DFT simulations. New Journal of Chemistry, 2020, 44, 1418-1425.	1.4	13

#	Article	IF	CITATIONS
2941	Synthesis of novel bimetallic nickel cobalt telluride nanotubes on nickel foam for high-performance hybrid supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 477-486.	3.0	42
2942	A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. Journal of Materials Chemistry C, 2020, 8, 550-560.	2.7	109
2943	Nitrogen-doped hierarchical porous carbon derived from ZIF-8 supported on carbon aerogels with advanced performance for supercapacitor. Applied Surface Science, 2020, 507, 145166.	3.1	62
2944	Synthesis of self-assembled nickel cobaltite microspheres and their electrocapacitive behavior in aqueous electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124329.	2.3	22
2945	Nickel-copper graphene foam prepared by atmospheric pressure chemical vapour deposition for supercapacitor applications. Surface and Coatings Technology, 2020, 383, 125230.	2.2	22
2946	Selective Growth of Zn–Co–Se Nanostructures on Various Conductive Substrates for Asymmetric Flexible Hybrid Supercapacitor with Enhanced Performance. Advanced Materials Technologies, 2020, 5, 1900873.	3.0	33
2947	Highly conductive Mn3O4/MnS heterostructures building multi-shelled hollow microspheres for high-performance supercapacitors. Chemical Engineering Journal, 2020, 392, 123890.	6.6	54
2948	One-pot synthesis of hydrazide-pillar[5]arene functionalized reduced graphene oxide for supercapacitor electrode. Chemical Engineering Journal, 2020, 391, 123511.	6.6	23
2949	Effect of ruthenium based catalyst loading on the electrochemical properties of carbon xerogel. Chemical Physics Letters, 2020, 739, 136947.	1.2	2
2950	Planar supercapacitor with high areal capacitance based on Ti3C2/Polypyrrole composite film. Electrochimica Acta, 2020, 330, 135277.	2.6	68
2951	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
2952	A polypyrrole-adorned, self-supported, pseudocapacitive zinc vanadium oxide nanoflower and nitrogen-doped reduced graphene oxide-based asymmetric supercapacitor device for power density applications. New Journal of Chemistry, 2020, 44, 1063-1075.	1.4	35
2953	Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors. Journal of Energy Storage, 2020, 27, 101149.	3.9	34
2954	Aerogel from fruit biowaste produces ultracapacitors with high energy density and stability. Journal of Energy Storage, 2020, 27, 101152.	3.9	45
2955	Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: High volumetric, areal energy density and potential wearability. Electrochimica Acta, 2020, 332, 135492.	2.6	25
2956	Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 498-511.	3.2	58
2957	Layer-by-layer growth of ZIF-8 on electrospun carbon nanofiber membranes for high-performance supercapacistor electrode. Journal of Energy Chemistry, 2020, 47, 221-224.	7.1	14
2958	Self-standing Substrates. Engineering Materials, 2020, , .	0.3	2

#	Article	IF	CITATIONS
2959	Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. Journal of Energy Storage, 2020, 27, 101038.	3.9	234
2960	Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 2020, 138, 109307.	1.9	11
2961	Impact of morphological variation by phase-oriented MnO2-based hierarchical ternary composites for the fabrication of solid-state symmetric supercapacitor. Ionics, 2020, 26, 2563-2579.	1.2	12
2962	Highâ€performance activated carbons for electrochemical double layer capacitors: Effects of morphology and porous structures. International Journal of Energy Research, 2020, 44, 1930-1950.	2.2	24
2963	Nanotechnology in energy storage: the supercapacitors. Studies in Surface Science and Catalysis, 2020, 179, 431-458.	1.5	28
2964	Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porousÂelectrode materials. Energy Storage Materials, 2020, 27, 555-590.	9.5	179
2965	Nanostructured Nickel/Ruthenium/Rutheniumâ€Oxide Supercapacitor Displaying Exceptional High Frequency Response. Advanced Electronic Materials, 2020, 6, 1900844.	2.6	20
2966	Coupled cobalt silicate nanobelt-on-nanobelt hierarchy structure with reduced graphene oxide for enhanced supercapacitive performance. Journal of Power Sources, 2020, 448, 227407.	4.0	82
2967	Graphene oxide – Based supercapacitors from agricultural wastes: A step to mass production of highly efficient electrodes for electrical transportation systems. Renewable Energy, 2020, 151, 731-739.	4.3	76
2968	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	6.6	78
2969	Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. Journal of Energy Chemistry, 2020, 46, 178-186.	7.1	107
2970	MXene Tunable Lamellae Architectures for Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 411-422.	2.5	46
2971	High performance flexible supercapacitors including redox active molybdate incorporated Poly(vinylphosphonic acid) hydrogels. International Journal of Hydrogen Energy, 2020, 45, 2186-2194.	3.8	35
2972	Facile Synthesis of Bio-Templated Tubular Co ₃ O ₄ Microstructure and Its Electrochemical Performance in Aqueous Electrolytes. Journal of Nanoscience and Nanotechnology, 2020, 20, 3182-3194.	0.9	10
2973	K2Ti6O13 Nanoparticle-Loaded Porous rGO Crumples for Supercapacitors. Nano-Micro Letters, 2020, 12, 10.	14.4	6
2974	High-performance 2.6ÂV aqueous symmetric supercapacitor based on porous boron-doped diamond via regrowth of diamond nanoparticles. Carbon, 2020, 160, 71-79.	5.4	41
2975	N, S codoped activated mesoporous carbon derived from the Datura metel seed pod as active electrodes for supercapacitors. Diamond and Related Materials, 2020, 102, 107687.	1.8	26
2976	A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 2571-2580.	5.2	95

#	Article	IF	CITATIONS
2977	In situ vanadophosphomolybdate impregnated into conducting polypyrrole for supercapacitor. Electrochimica Acta, 2020, 364, 137286.	2.6	24
2978	Electrochemical capacitance of intermetallic vanadium carbide. Intermetallics, 2020, 127, 106976.	1.8	12
2979	Ultrahighâ€Rate Supercapacitor Based on Carbon Nanoâ€Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter. Advanced Energy Materials, 2020, 10, 2002132.	10.2	42
2980	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	10.2	45
2981	High surface N-/O-doped microporous carbons for stable supercapacitor and carbon dioxide sorption applications. Microporous and Mesoporous Materials, 2020, 308, 110526.	2.2	8
2982	Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers. Beilstein Journal of Nanotechnology, 2020, 11, 1280-1290.	1.5	6
2983	A novel porous organic polymer-derived hierarchical carbon for supercapacitors with ultrahigh energy density and durability. Journal of Electroanalytical Chemistry, 2020, 876, 114723.	1.9	14
2984	Facile synthesis of hierarchically self-assembled dandelion-like microstructures of bimetallic-MOF as a novel electrode material for high-rate supercapacitors. Materials Letters, 2020, 281, 128616.	1.3	17
2985	Electrospun Ni-Ni(OH)2/Carbon Nanofibers as Flexible Binder-Free Supercapacitor Electrode with Enhanced Specific Capacitance. Journal of Electronic Materials, 2020, 49, 7211-7218.	1.0	11
2986	Core–shell carbon fiber@Co1.5Mn1.5O4 mesoporous spinel electrode for high performance symmetrical supercapacitors. Applied Surface Science, 2020, 534, 147678.	3.1	10
2987	Engineering early prediction of supercapacitors' cycle life using neural networks. Materials Today Energy, 2020, 18, 100537.	2.5	14
2988	Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	12
2989	ZIF-67 derived nitrogen doped CNTs decorated with sulfur and Ni(OH)2 as potential electrode material for high-performance supercapacitors. Electrochimica Acta, 2020, 364, 137147.	2.6	48
2990	A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. Journal of Energy Storage, 2020, 32, 101831.	3.9	102
2991	Hierarchical nanostructured Au–SnO2 for enhanced energy storage performance. International Journal of Hydrogen Energy, 2020, 45, 29395-29406.	3.8	12
2992	Electrochemical impedance spectroscopy correlation among graphene oxide/carbon fibers (GO/CF) composites and GO structural parameters produced at different oxidation degrees. Journal of Materials Research and Technology, 2020, 9, 10841-10853.	2.6	12
2993	Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study. Journal of Chemical Physics, 2020, 153, 134703.	1.2	4
2994	Preparation and characterisation of MnS@ Mn3O4/C nanoflakes for hybrid supercapacitor applications. Materials Technology, 2020, , 1-8.	1.5	7

#	Article	IF	CITATIONS
2995	Construction of NiCo2S4 heterostructure based on electrochemically exfoliated graphene for high-performance hybrid supercapacitor electrode. Journal of Alloys and Compounds, 2020, 845, 156164.	2.8	57
2996	Facile synthesis of SnO2 nanoparticle intercalated unzipped multi-walled carbon nanotubes via an ultrasound-assisted route for symmetric supercapacitor devices. Sustainable Energy and Fuels, 2020, 4, 5120-5131.	2.5	4
2997	Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020, 420, 213438.	9.5	280
2998	Bundlelike CuCo ₂ O ₄ Microstructures Assembled with Ultrathin Nanosheets As Battery-Type Electrode Materials for High-Performance Hybrid Supercapacitors. ACS Applied Energy Materials, 2020, 3, 8026-8037.	2.5	172
2999	Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon, 2020, 168, 701-709.	5.4	118
3000	Mn incorporated MoS2 nanoflowers: A high performance electrode material for symmetric supercapacitor. Electrochimica Acta, 2020, 338, 135815.	2.6	68
3001	Metal–organic framework derived amorphous VO _x coated Fe ₃ O ₄ /C hierarchical nanospindle as anode material for superior lithium-ion batteries. Nanoscale, 2020, 12, 16901-16909.	2.8	31
3002	Hierarchical CoS@MoS2 core-shell nanowire arrays as free-standing electrodes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 825, 154085.	2.8	19
3003	Hybrid supercapacitors from porous boron-doped diamond with water-soluble redox electrolyte. Surface and Coatings Technology, 2020, 398, 126103.	2.2	22
3004	Electrodeposited NiFe ₂ Se ₄ on Nickel Foam as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 14163-14171.	1.8	31
3005	In-situ growth of core-shell NiCo2O4@Ni-Co layered double hydroxides for all-solid-state flexible hybrid supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125417.	2.3	22
3006	Effect of different aqueous electrolytes on electrochemical performance of activated carbon anchored by multiwalled carbon nanotubes for supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	3
3007	Materials Combining Asymmetric Pore Structures with Well-Defined Mesoporosity for Energy Storage and Conversion. ACS Nano, 2020, 14, 16897-16906.	7.3	18
3008	Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 2020, 3, 905-920.	1.0	36
3009	How to speed up ion transport in nanopores. Nature Communications, 2020, 11, 6085.	5.8	57
3010	Design of best performing hexagonal shaped Ag@CoS/rGO nanocomposite electrode material for electrochemical supercapacitor application. Transactions of Nonferrous Metals Society of China, 2020, 30, 2764-2774.	1.7	6
3011	Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies, 2020, 13, 5847.	1.6	58
3012	Simulated field-modulated x-ray absorption in titania. Journal of Chemical Physics, 2020, 153, 054110.	1.2	5

#	Article	IF	CITATIONS
3013	Tuning electrochemical performance of carbon-sphere-based supercapacitors by compressive stress. Electrochimica Acta, 2020, 357, 136874.	2.6	27
3014	A Mn(<scp>ii</scp>)–MOF with inherent missing metal-ion defects based on an imidazole-tetrazole tripodal ligand and its application in supercapacitors. Dalton Transactions, 2020, 49, 12150-12155.	1.6	11
3016	Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger's base polymers for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147146.	3.1	12
3017	Self-standing star-shaped tri-metallic oxides for pseudocapacitive energy storage electrode materials. Applied Surface Science, 2020, 530, 147251.	3.1	15
3018	Integral capacitance of diffusion layer for rectangular structures. Journal of Energy Storage, 2020, 30, 101477.	3.9	6
3019	Modular theory for DC-biased electrochemical impedance response of supercapacitor. Journal of Power Sources, 2020, 473, 228467.	4.0	33
3020	Biomolecule-assisted synthesis of porous network-like Ni ₃ S ₂ nanoarchitectures assembled with ultrathin nanosheets as integrated negative electrodes for high-performance lithium storage. New Journal of Chemistry, 2020, 44, 14453-14462.	1.4	4
3021	Effect of aqueous electrolytes on the supercapacitive performance of glycolâ€mediated CoFe ₂ O ₄ nanoparticles. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2548.	0.8	5
3022	Constructing high-performance electrode materials using core–shell ZnCo ₂ O ₄ @PPy nanowires for hybrid batteries and water splitting. RSC Advances, 2020, 10, 28324-28331.	1.7	8
3023	Metal phthalocyanine-linked conjugated microporous polymer hybridized with carbon nanotubes as a high-performance flexible electrode for supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 22950-22958.	3.8	37
3024	Metallenes: Recent Advances and Opportunities in Energy Storage and Conversion Applications. , 2020, 2, 1148-1172.		64
3025	Three-dimensional honeycomb-like porous carbon derived from Ganoderma lucidum spore for high-performance electrochemical capacitors. Ionics, 2020, 26, 5805-5815.	1.2	9
3026	Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochimica Acta, 2020, 357, 136855.	2.6	45
3027	Formation of hierarchical 3D cross-linked porous carbon with small addition of graphene for supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 27471-27481.	3.8	20
3028	Supramolecular-induced confining methylene blue in three-dimensional reduced graphene oxide for high-performance supercapacitors. Journal of Power Sources, 2020, 475, 228554.	4.0	34
3029	Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17558-17567.	5.2	64
3030	Oxygen Vacancyâ€Engineered Tiâ^'Moâ^'Ni Ternary Oxide Nanotubes as Binderâ€Free Supercapacitor Electrodes with Exceptional Potential Window. ChemNanoMat, 2020, 6, 1513-1518.	1.5	13
3031	Microwave-assisted preparation and improvement mechanism of carbon nanotube@NiMn2O4 core-shell nanocomposite for high performance asymmetric supercapacitors. Journal of Power Sources, 2020, 473, 228609.	4.0	55

#	Article	IF	CITATIONS
3032	Structural Elucidation and Supercapacitive Performance on a Mn(II)-Based MOF. Crystal Growth and Design, 2020, 20, 5682-5687.	1.4	24
3033	A core–shell structure of cobalt sulfide//G-ink towards high energy density in asymmetric hybrid supercapacitors. Sustainable Energy and Fuels, 2020, 4, 4848-4858.	2.5	11
3034	Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles. Journal of Energy Storage, 2020, 31, 101677.	3.9	39
3035	One-Step Synergistic Effect to Produce Two-Dimensional N-Doped Hierarchical Porous Carbon Nanosheets for High-Performance Flexible Supercapacitors. ACS Applied Energy Materials, 2020, 3, 8562-8572.	2.5	32
3036	Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. Journal of Materials Chemistry A, 2020, 8, 18538-18559.	5.2	86
3037	A heterojunction of VO(OH) ₂ nanorods onto hemp stem derived carbon for high voltage (1.5 V) symmetric supercapacitors. Sustainable Energy and Fuels, 2020, 4, 5102-5113.	2.5	4
3038	Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. Journal of Power Sources, 2020, 480, 228873.	4.0	53
3039	Directly synthesized nitrogen-and-oxygen–doped microporous carbons derived from a bio-derived polybenzoxazine exhibiting high-performance supercapacitance and CO2 uptake. European Polymer Journal, 2020, 138, 109954.	2.6	52
3040	Selfâ€Assembly/Sacrificial Synthesis of Highly Capacitive Hierarchical Porous Carbon from Longan Pulp Biomass. ChemElectroChem, 2020, 7, 4606-4613.	1.7	11
3041	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	10.2	107
3042	Morphology and crystal structure dependent pseudocapacitor performance of hydrated WO ₃ nanostructures. Materials Advances, 2020, 1, 2492-2500.	2.6	35
3043	Electrodeposited Films of Graphene, Carbon Nanotubes, and Their Mixtures for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 10003-10013.	2.4	17
3044	Electrode surface modification of graphene-MnO2 supercapacitors using molecular dynamics simulations. Journal of Molecular Modeling, 2020, 26, 251.	0.8	3
3045	Hierarchical Carbon Nanowire/Ni@MnO ₂ Nanocomposites for Highâ€Performance Asymmetric Supercapacitors. Chemistry - A European Journal, 2020, 26, 16392-16401.	1.7	18
3046	Computational Insights into Charge Storage Mechanisms of Supercapacitors. Energy and Environmental Materials, 2020, 3, 235-246.	7.3	49
3047	Cobalt Nanorods as Transition Metal Electrode Materials for Asymmetric Supercapacitor Applications. Journal of Physical Chemistry C, 2020, 124, 20746-20756.	1.5	8
3048	Highly Packed Monodisperse Porous Carbon Microspheres for Energy Storage in Supercapacitors and Liâ^'S Batteries. ChemElectroChem, 2020, 7, 3798-3810.	1.7	10
3049	Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in	1.1	35

#	Article	IF	CITATIONS
3050	Ion transport in small-molecule and polymer electrolytes. Journal of Chemical Physics, 2020, 153, 100903.	1.2	53
3051	Catalytic <scp>HTL</scp> â€derived biochar and solâ€gel synthesized (Mn, Ti)â€oxides for asymmetric supercapacitors. International Journal of Energy Research, 2020, 44, 12546-12558.	2.2	7
3052	Ball mill assisted synthesis of cobalt–iron sulfide/N-doped carbon for high performance asymmetric supercapacitors. Journal of Applied Electrochemistry, 2020, 50, 1119-1128.	1.5	11
3053	Impact of phase segregation on optical and electrochemical property of BiPO4 nanostructures for energy storage applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 16867-16881.	1.1	10
3054	Graphene–Ionic Liquid Interfacial Potential Drop from Density Functional Theory-Based Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2020, 124, 19548-19555.	1.5	24
3055	Solutionâ€processed Nonstoichiometry NiOx Nanocrystal Aggregations for Supercapacitor Electrodes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1904-1910.	0.6	1
3056	Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines, 2020, 11, 1125.	1.4	41
3057	Sulfidation of NiCo-Layered Double Hydroxide and its Capacitance performance. International Journal of Electrochemical Science, 2020, , 10117-10128.	0.5	0
3058	Application of Ionic Liquids in Electrochemistry—Recent Advances. Molecules, 2020, 25, 5812.	1.7	83
3059	A Universal Strategy For Nâ€Doped 2D Carbon Nanosheets With Subâ€Nanometer Micropore For Highâ€Performance Supercapacitor. Energy and Environmental Materials, 2021, 4, 569-576.	7.3	22
3060	Ag nanoparticles effect on BaTiO ₃ -Graphite-AC/Aluminum foil symmetric supercapacitor. Journal of Physics: Conference Series, 2020, 1595, 012009.	0.3	2
3061	Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for electrochemical energy storage. RSC Advances, 2020, 10, 43825-43833.	1.7	5
3062	Facile Synthesis of MnO ₂ /Ti ₃ C ₂ T _x /CC as Positive Electrode of Allâ€Solidâ€State Flexible Asymmetric Supercapacitor. ChemistrySelect, 2020, 5, 14768-14775.	0.7	24
3063	Electrochemical evaluation of polyaniline/multi-walled carbon nanotube composite synthesized by microwave plasma polymerization as a supercapacitor electrode. IOP Conference Series: Materials Science and Engineering, 2020, 757, 012036.	0.3	4
3064	Facile Cetyl Trimethyl Ammonium Bromide-assisted Hydrothermal Synthesis of Spinel NiCo2O4 Nanoplates as an Electrode Material for Supercapacitor Application. Journal of Materials Engineering and Performance, 2020, 29, 8395-8405.	1.2	1
3065	Self-assembled activated carbon sandwiched graphene film for symmetrical supercapacitors. Journal of Central South University, 2020, 27, 3603-3614.	1.2	5
3066	Rolled Supercapacitor Device Model Using Carbon-Sheet as Electrodes in KCl Electrolyte System. Key Engineering Materials, 2020, 860, 53-58.	0.4	2
3067	Transforming waste sugar solution into N-doped hierarchical porous carbon for high performance supercapacitors in aqueous electrolytes and ionic liquid. International Journal of Hydrogen Energy, 2020, 45, 31367-31379.	3.8	17

#	Article	IF	CITATIONS
3068	Exceptional rate capability from carbonâ€encapsulated polyaniline supercapacitor electrodes. Energy and Environmental Materials, 2020, 3, 389-397.	7.3	41
3069	Electrochemical properties and mechanism of CoMoO ₄ @NiWO ₄ core–shell nanoplates for high-performance supercapacitor electrode application studied <i>via in situ</i> X-ray absorption spectroscopy. Nanoscale, 2020, 12, 13388-13397.	2.8	44
3070	A tightly packed Co3O4/C&S composite for high-performance electrochemical supercapacitors from a cobalt(III) cluster-based coordination precursor. Journal of Solid State Chemistry, 2020, 288, 121435.	1.4	20
3071	Surfactant-Assisted Growth of a Conversion-Type Binary Metal Oxide-Based Composite Electrode for Boosting the Reversible Lithium Storage. ACS Omega, 2020, 5, 12476-12485.	1.6	3
3072	Thermal dynamic study of the gradual desolvation in submicropores for carbon-based supercapacitor at low temperature. Ionics, 2020, 26, 4695-4704.	1.2	3
3073	Tailoring Surface Chemistry and Morphology of Titanium Nitride Electrode for On-Chip Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 7869-7878.	3.2	27
3074	Comparative Study of the Supercapacitive Performance of Three Ferroceneâ€Based Structures: Targeted Design of a Conductive Ferroceneâ€Functionalized Coordination Polymer as a Supercapacitor Electrode. Chemistry - A European Journal, 2020, 26, 9518-9526.	1.7	23
3075	Synthesis of Nitrogenâ€Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for Highâ€Performance Symmetrical Supercapacitors. ChemElectroChem, 2020, 7, 2592-2598.	1.7	8
3076	Binder Free and Flexible Asymmetric Supercapacitor Exploiting Mn3O4 and MoS2 Nanoflakes on Carbon Fibers. Nanomaterials, 2020, 10, 1084.	1.9	30
3077	Construction of hierarchical nanoporous CuCo2V2O8 hollow spheres as a novel electrode material for high-performance asymmetric supercapacitors. Applied Surface Science, 2020, 527, 146855.	3.1	44
3078	Nanoflower-like NiCo2O4 grown on biomass carbon coated nickel foam for asymmetric supercapacitor. Journal of Alloys and Compounds, 2020, 835, 155270.	2.8	61
3079	Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications. Composites Science and Technology, 2020, 196, 108212.	3.8	36
3080	Preparation of activated carbon via acidic dehydration of durian husk for supercapacitor applications. Diamond and Related Materials, 2020, 107, 107906.	1.8	31
3081	Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. Journal of Electroanalytical Chemistry, 2020, 868, 114197.	1.9	49
3082	Hierarchical CuO@ZnCo–OH core-shell heterostructure on copper foam as three-dimensional binder-free electrodes for high performance asymmetric supercapacitors. Journal of Power Sources, 2020, 465, 228239.	4.0	40
3083	Benefits of Organoâ€Aqueous Binary Solvents for Redox Supercapacitors Based on Polyoxometalates. ChemElectroChem, 2020, 7, 2466-2476.	1.7	8
3084	A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 2020, 12, 118.	14.4	146
3085	Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices. Ceramics International, 2020, 46, 21343-21350.	2.3	37

#	Article	IF	CITATIONS
3086	Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors. Energy, 2020, 203, 117918.	4.5	21
3087	Effective improvement of electrochemical performance of electrodeposited MnO2 and MnO2/reduced graphene oxide supercapacitor materials by alcohol pretreatment. Journal of Energy Storage, 2020, 30, 101511.	3.9	23
3088	A cheese-shaped bio-carbon for high performance supercapacitors prepared from Juncus effuses. L. Journal of Energy Storage, 2020, 30, 101531.	3.9	3
3089	Structural Analysis of Furfural Resin-based Active Carbon to Control an Electric Double-layer Capacitor. Electrochemistry, 2020, 88, 127-131.	0.6	2
3090	CoP nanoprism arrays: Pseudocapacitive behavior on the electrode-electrolyte interface and electrochemical application as an anode material for supercapacitors. Applied Surface Science, 2020, 527, 146682.	3.1	46
3091	Aqueous Al-ion cells and supercapacitors —ÂA comparison. Energy Reports, 2020, 6, 166-173.	2.5	29
3092	Enhanced supercapacitor and capacitive deionization boosted by constructing inherent N and P external defects in porous carbon framework with a hierarchical porosity. Electrochimica Acta, 2020, 353, 136523.	2.6	44
3093	The design and synthesis of NiCoO2@NiCoO2@Ni nanoflakes arrays for electrochemical energy storage. Journal of Alloys and Compounds, 2020, 830, 154667.	2.8	13
3094	3D hierarchical self-supported NiO/Co ₃ O ₄ @C/CoS ₂ nanocomposites as electrode materials for high-performance supercapacitors. Nanoscale Advances, 2020, 2, 2785-2791.	2.2	27
3095	Hierarchical Co(OH) ₂ @NiMoS ₄ nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors. RSC Advances, 2020, 10, 22606-22615.	1.7	20
3096	Nanoengineered Skeletonâ€surface of Nickel Foam with Additional Dual Functions of Rateâ€capability Promotion and Cyclingâ€life Stabilization for Nickel Sulfide Electrodes. ChemNanoMat, 2020, 6, 1365-1372.	1.5	1
3097	Fluorine-Free Ionic Liquid-Based Electrolyte for Supercapacitors Operating at Elevated Temperatures. ACS Sustainable Chemistry and Engineering, 2020, 8, 10212-10221.	3.2	19
3098	Design and synthesis of high performance flexible and green supercapacitors made of manganeseâ€dioxideâ€decorated alkali lignin. Energy Storage, 2020, 2, e184.	2.3	21
3099	MnOx nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors. Applied Surface Science, 2020, 527, 146842.	3.1	20
3100	Should we pose a closure problem for capacitive charging of porous electrodes?. Europhysics Letters, 2020, 130, 34003.	0.7	5
3101	Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device. International Journal of Hydrogen Energy, 2020, 45, 20820-20831.	3.8	64
3102	Hexaaminobenzene Derived Two-Dimensional Polymer Supercapacitor with High Specific Capacitance and Energy Density. ACS Applied Energy Materials, 2020, 3, 6352-6359.	2.5	7
3103	Morphologyâ€Controlled Molybdenum Disulfide/Candle Soot Carbon Composite for Highâ€Performance Supercapacitor. ChemistrySelect, 2020, 5, 6809-6817.	0.7	13

#	Article	IF	CITATIONS
3104	Manipulation of Nitrogen-Heteroatom Configuration for Enhanced Charge-Storage Performance and Reliability of Nanoporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 32797-32805.	4.0	32
3105	Bulk-synthesis and supercapacitive energy storage applications of nanoporous triazine-based graphdiyne. Carbon, 2020, 167, 202-208.	5.4	25
3106	Graphene-based composite materials for flexible supercapacitors. , 2020, , 345-372.		4
3107	Graphene Foam (GF)/Manganese Oxide (MnO2) Nanocomposites for High Performance Supercapacitors. Journal of Energy Storage, 2020, 30, 101575.	3.9	17
3108	High performance hybrid-capacitor based on MoTe2/graphene through ultra-fast, facile microwave-initiated synthesis. Journal of Alloys and Compounds, 2020, 846, 155886.	2.8	24
3109	Nanostructured Fe2O3@nitrogen-doped multiwalled nanotube/cellulose nanocrystal composite material electrodes for high-performance supercapacitor applications. Journal of Materials Research and Technology, 2020, 9, 7615-7627.	2.6	26
3110	Electrochemical capacitive performance of intact anaerobic granular sludge-based 3D bioanode. Journal of Power Sources, 2020, 470, 228399.	4.0	18
3111	"Waste to Wealth― Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. ChemSusChem, 2020, 13, 2807-2827.	3.6	55
3112	Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Industrial & Engineering Chemistry Research, 2020, 59, 6347-6374.	1.8	132
3113	Formation of microns long thin wire networks with a controlled spatial distribution of elements. Catalysis Science and Technology, 2020, 10, 2020-2028.	2.1	4
3114	A single-step synthesis and direct growth of microspheres containing the nanoflakes-like structure of Zn0.76Co0.24S as a high-performance electrode for supercapacitors. Journal of Energy Storage, 2020, 29, 101349.	3.9	39
3115	2D materials as the basis of supercapacitor devices. , 2020, , 97-130.		3
3116	Current Technology of Supercapacitors: A Review. Journal of Electronic Materials, 2020, 49, 3520-3532.	1.0	134
3117	Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8, 7066-7082.	5.2	57
3118	Preparation of Foam-like Network Structure of Polypyrrole/Graphene Composite Particles Based on Cellulose Nanofibrils as Electrode Material. ACS Omega, 2020, 5, 4778-4786.	1.6	12
3119	Synthesis of graphene oxide-polychrysoidine nanocomposite for supercapacitor applications. Journal of Energy Storage, 2020, 29, 101334.	3.9	11
3120	Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. Journal of Energy Chemistry, 2020, 49, 348-357.	7.1	48
3121	High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance. Journal of Energy Chemistry, 2020, 50, 240-247.	7.1	35

#	Article	IF	Citations
3122	Optical and electrochemical performance of hydrothermal synthesis of BiPO4 nanostructures for supercapacitor applications. Materials Today: Proceedings, 2020, 32, 498-503.	0.9	6
3123	Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 2020, 164, 42-50.	5.4	114
3124	High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres. Electrochimica Acta, 2020, 342, 136111.	2.6	24
3125	Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode. Nanoscale, 2020, 12, 10117-10126.	2.8	23
3126	A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124683.	2.3	45
3127	Controlling reaction kinetics of layered zinc vanadate having brucite-like Zn–O layers supported by pyrovanadate pillars for use in supercapacitors. Journal of Alloys and Compounds, 2020, 829, 154479.	2.8	25
3128	Improved Capacitive Performances from Adjusted Graphite Microcrystallites with Multilayer Graphene Being In Situ Formed in Amorphous Carbons. Energy Technology, 2020, 8, 1901500.	1.8	2
3129	Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors. Catalysts, 2020, 10, 256.	1.6	27
3130	All-climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate. Journal of Energy Chemistry, 2020, 49, 198-204.	7.1	63
3131	Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures. Frontiers in Chemistry, 2020, 8, 6.	1.8	5
3132	Engineered defects in cerium oxides: tuning chemical reactivity for biomedical, environmental, & energy applications. Nanoscale, 2020, 12, 6879-6899.	2.8	79
3133	Conjugated polyimide-coated carbon nanofiber aerogels in a redox electrolyte for binder-free supercapacitors. Chemical Engineering Journal, 2020, 401, 126031.	6.6	45
3134	Mass fabrication of oxygen and nitrogen co-doped 3D hierarchical porous carbon nanosheets by an explosion-assisted strategy for supercapacitor and dye adsorption application. Applied Surface Science, 2020, 529, 147079.	3.1	26
3135	Design and synthesis of FeMoO4/CuO for electrochemical energy storage system. Journal of Molecular Liquids, 2020, 314, 113693.	2.3	14
3136	Nickel oxide nanoparticle incorporated polypyrrole nanocomposite for supercapacitor application. AIP Conference Proceedings, 2020, , .	0.3	3
3137	Electrochemical properties of Bi0.85Mg0.15PO4 nanostructures for supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	1
3138	Overlooking Issues and Prospective Resolutions Behind the Prosperity of Three-Dimensional Porous Carbon Supercapacitor Electrodes. Frontiers in Energy Research, 2020, 8, .	1.2	3
3139	Template Synthesis of a Heterostructured MnO ₂ @SnO ₂ Hollow Sphere Composite for High Asymmetric Supercapacitor Performance. ACS Applied Energy Materials, 2020, 3, 7284-7293.	2.5	38

#	Article	IF	Citations
3140	Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chemical Engineering Journal, 2020, 401, 126136.	6.6	158
3141	Hierarchical porous nitrogen-doped carbon microspheres after thermal rearrangement as high performance electrode materials for supercapacitors. Applied Surface Science, 2020, 529, 147141.	3.1	41
3142	Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 13623-13630.	1.8	12
3143	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
3144	Structural Anomalies and Electronic Properties of an Ionic Liquid under Nanoscale Confinement. Journal of Physical Chemistry Letters, 2020, 11, 6150-6155.	2.1	5
3145	Ultrahigh rate capability supercapacitors based on tremella-like nitrogen and phosphorus co-doped graphene. Materials Chemistry Frontiers, 2020, 4, 2704-2715.	3.2	24
3146	Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochimica Acta, 2020, 354, 136711.	2.6	26
3147	Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Materials, 2020, 31, 252-266.	9.5	141
3148	Design and synthesis of NiCo2O4/NiCoO2/graphene hybrid nanoarrays with enhanced capacitive performance. Ceramics International, 2020, 46, 20191-20200.	2.3	14
3149	High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes. Journal of Polymer Research, 2020, 27, 1.	1.2	29
3150	Enhanced capacitive performances and excellent stability of cadmium-sulfide-concealed nickel sulfide (Ni3S2/CdS) for electrochemical capacitors. Journal of Alloys and Compounds, 2020, 826, 154211.	2.8	25
3151	Multidimensional structure of CoNi ₂ S ₄ materials: structural regulation promoted electrochemical performance in a supercapacitor. RSC Advances, 2020, 10, 7541-7550.	1.7	17
3152	Moltenâ€Salt Media Synthesis of Nâ€Doped Carbon Tubes Containing Encapsulated Co Nanoparticles as a Bifunctional Air Cathode for Zincâ€Air Batteries. Chemistry - A European Journal, 2020, 26, 10752-10758.	1.7	25
3153	Nanofiber NiMoO4/g-C3N4 Composite Electrode Materials for Redox Supercapacitor Applications. Nanomaterials, 2020, 10, 392.	1.9	63
3154	High energy density supercapacitors based on porous mSiO2@Ni3S2/NiS2 promoted with boron nitride and carbon. Chemical Engineering Journal, 2020, 390, 124561.	6.6	38
3155	Hydrothermal synthesis of novel nickel oxide@nitrogenous mesoporous carbon nanocomposite using costless smoked cigarette filter for high performance supercapacitor. Materials Letters, 2020, 266, 127492.	1.3	53
3156	Construction of flower-like ZnCo2S4/ZnCo2O4 arrays on Ni foam for high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 4895-4904.	1.1	12
3157	Interweaving Activated Carbon with Multi-dimensional Carbon Nanomaterials for High-performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 040507.	1.3	9

#	Article	IF	CITATIONS
3158	3D printing for aqueous and non-aqueous redox flow batteries. Current Opinion in Electrochemistry, 2020, 20, 28-35.	2.5	28
3159	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	11.7	88
3160	Growth of Film Electrodes through Electrospray Coating of Precursor Sol for Use in Asymmetric Supercapacitor. Industrial & Engineering Chemistry Research, 2020, 59, 4428-4436.	1.8	6
3161	Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects. Current Opinion in Electrochemistry, 2020, 21, 167-174.	2.5	15
3162	A Hierarchical Interconnected Nanosheet Structure of Porous δ-MnO ₂ on Graphite Paper as Cathode with a Broad Potential Window for NaNO ₃ Aqueous Electrolyte Supercapacitors. ACS Applied Energy Materials, 2020, 3, 2614-2622.	2.5	32
3164	The use of activated carbon from coffee endocarp for the manufacture of supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 7547-7554.	1.1	10
3165	Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113933.	1.9	61
3166	Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications. ACS Omega, 2020, 5, 3405-3417.	1.6	54
3167	Reduced holey graphene oxide film and carbon nanotubes sandwich structure as a binder-free electrode material for supercapcitor. Scientific Reports, 2020, 10, 2315.	1.6	30
3168	The effects of deposition time and current density on the electrochemical performance of flexible and high-performance MnO ₂ @PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553.	1.7	8
3168 3169		1.7 4.6	8
	and high-performance MnO ₂ @PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4,		
3169	and high-performance MnO ₂ @PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material	4.6	403
3169 3170	 and high-performance MnO₂@PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Applied Sciences, 2020, 2, 1. Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy 	4.6 1.5	403 9
3169 3170 3171	 and high-performance MnO₂@PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Applied Sciences, 2020, 2, 1. Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 10211-10223. Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. 	4.6 1.5 4.0	403 9 10
3169 3170 3171 3172	 and high-performance MnO₂@PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Applied Sciences, 2020, 2, 1. Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 10211-10223. Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. Electrochimica Acta, 2020, 338, 135896. Morphology control of nanoscale metal-organic frameworks for high-performance supercapacitors. 	4.6 1.5 4.0 2.6	403 9 10 65
3169 3170 3171 3172 3173	 and high-performance MnO₂@PFG composite electrodes. RSC Advances, 2020, 10, 3544-3553. Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 2020, 4, 1900853. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Applied Sciences, 2020, 2, 1. Large Capacity Enhancement of Carbon Electrodes by Solution Processing for High Density Energy Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 10211-10223. Core-shell nanostructured MnO2@Co9S8 arrays for high-performance supercapacitors. Electrochimica Acta, 2020, 338, 135896. Morphology control of nanoscale metal-organic frameworks for high-performance supercapacitors. Electrochimica Acta, 2020, 343, 135617. A multicore-shell architecture with a phase-selective (αÂ+ÂÎ)MnO2 shell for an aqueous-KOH-based 	4.6 1.5 4.0 2.6 2.6	403 9 10 65 36

#	Article	IF	CITATIONS
3177	Inner Layer Capacitance of Organic Electrolytes from Constant Voltage Molecular Dynamics. Journal of Physical Chemistry C, 2020, 124, 2907-2922.	1.5	25
3178	Role of Nitrogen on the Porosity, Surface, and Electrochemical Characteristics of Activated Carbon. ACS Omega, 2020, 5, 1911-1918.	1.6	27
3179	Research Frontiers in Energyâ€Related Materials and Applications for 2020–2030. Advanced Sustainable Systems, 2020, 4, 1900145.	2.7	30
3180	Doped CuCrO2: A possible material for supercapacitor applications. Materials Science in Semiconductor Processing, 2020, 109, 104928.	1.9	20
3181	Bio-based electric devices. , 2020, , 311-355.		1
3182	Mn3O4 tetragonal bipyramid laden nitrogen doped and hierarchically porous carbon composite as positive electrode for high-performance asymmetric supercapacitor. Journal of Power Sources, 2020, 451, 227775.	4.0	34
3183	Hierarchically hollow structured NiCo ₂ S ₄ @NiS for high-performance flexible hybrid supercapacitors. Nanoscale, 2020, 12, 4686-4694.	2.8	80
3184	Synthesis of Nitrogenâ€Doped Mesoporous Structures from Metal–Organic Frameworks and Their Utilization Enabling High Performances in Hybrid Sodiumâ€Ion Energy Storages. Advanced Science, 2020, 7, 1902986.	5.6	13
3185	Free energy barriers for TMEA+, TMA+, and BF4- ion diffusion through nanoporous carbon electrodes. Carbon, 2020, 161, 550-561.	5.4	11
3186	Hollow and Hierarchical Cobalt–Metal Organic Framework@CoCr ₂ O ₄ Microplate Array as a Batteryâ€Type Electrode for Highâ€Performance Hybrid Supercapacitors. ChemElectroChem, 2020, 7, 437-444.	1.7	17
3187	Boron doping and structure control of carbon materials for supercapacitor application: the effect of freeze-drying and air-drying for porosity engineering. Journal of Solid State Electrochemistry, 2020, 24, 641-654.	1.2	17
3188	Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application. Nanotechnology, 2020, 31, 185403.	1.3	13
3189	Improvement of a commercial activated carbon for organic electric double-layer capacitors using a consecutive doping method. Carbon, 2020, 160, 45-53.	5.4	38
3190	Facile Synthesis of Hierarchical MgCo ₂ O ₄ @MnO ₂ Core-Shell Nanosheet Arrays on Nickel Foam as an Advanced Electrode for Asymmetric Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 020510.	1.3	13
3191	Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Materials, 2020, 28, 307-314.	9.5	279
3192	Achieving Durable and Fast Charge Storage of MoO2-Based Insertion-Type Pseudocapacitive Electrodes via N-Doped Carbon Coating . ACS Sustainable Chemistry and Engineering, 2020, 8, 2806-2813.	3.2	13
3193	Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes. Journal of Materials Chemistry A, 2020, 8, 3746-3753.	5.2	22
3194	Hierarchical materials constructed by 1D hollow nickel–cobalt sulfide nanotubes supported on 2D ultrathin MXenes nanosheets for high-performance supercapacitor. Ceramics International, 2020, 46, 12200-12208.	2.3	17

#	Article	IF	CITATIONS
3195	Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. Journal of Power Sources, 2020, 450, 227678.	4.0	161
3196	Ag nanoparticles decorated N/S dual-doped graphene nanohybrids for high-performance asymmetric supercapacitors. Carbon, 2020, 161, 726-735.	5.4	29
3197	Solvothermal synthesis of Fe3S4@graphene composite electrode materials for energy storage. Carbon Letters, 2020, 30, 667-673.	3.3	8
3198	In-situ carbon-coated tin oxide (ISCC-SnO2) for micro-supercapacitor applications. Carbon Letters, 2020, 30, 699-707.	3.3	16
3199	Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 2020, 12, 85.	14.4	164
3200	Liquidâ€Phase Synthesis of Iron Oxide Nanostructured Materials and Their Applications. Chemistry - A European Journal, 2020, 26, 9180-9205.	1.7	13
3201	Recent developments in ionic liquid-based electrolytes for energy storage supercapacitors and rechargeable batteries. , 2020, , 199-221.		16
3202	Rational design and construction of nickel molybdate nanohybrid composite for high-performance supercapattery. Applied Surface Science, 2020, 515, 146023.	3.1	15
3203	3D porous nickel nanosheet arrays as an advanced electrode material for high energy hybrid supercapacitors. Journal of Electroanalytical Chemistry, 2020, 864, 114118.	1.9	5
3204	Constructing N, O-Containing micro/mesoporous covalent triazine-based frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance. Nano Energy, 2020, 74, 104789.	8.2	18
3205	Fabrication of an asymmetric supercapacitor based on reduced graphene oxide/polyindole/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="bold-italic">i³<mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â[^]<mml:mrow>Al2O3 ternary nanocomposite with</mml:mrow></mml:mo></mml:mi </mml:mrow></mml:math 	1.8	32
3206	high-performance capacitive behavior. Polymer, 2020, 195, 122429. Influence of Surface Potential on the Capacitive Performance of the TiO ₂ Thin-Film Electrode with Different Crystalline Forms. Langmuir, 2020, 36, 3836-3842.	1.6	16
3207	Targeted synthesis and reaction mechanism discussion of Mo ₂ C based insertion-type electrodes for advanced pseudocapacitors. Journal of Materials Chemistry A, 2020, 8, 7819-7827.	5.2	14
3208	Recent Advances in Supercapacitors: Ultrafast Materials Make Innovations. Electrochemistry, 2020, 88, 83-87.	0.6	5
3209	Nitrogen-doped black titania for high performance supercapacitors. Science China Materials, 2020, 63, 1227-1234.	3.5	17
3210	Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochimica Acta, 2020, 348, 136313.	2.6	41
3211	Effects of electrodeposition time on a manganese dioxide supercapacitor. RSC Advances, 2020, 10, 15860-15869.	1.7	37
3212	Stamp-assisted flexible graphene-based micro-supercapacitors. Journal of Power Sources, 2020, 462, 228166.	4.0	27

#	Article	IF	CITATIONS
3213	Energetic Cost for Being "Redox-Site-Rich―in Pseudocapacitive Energy Storage with Nickel–Aluminum Layered Double Hydroxide Materials. Journal of Physical Chemistry Letters, 2020, 11, 3745-3753.	2.1	11
3214	In Situ Ice Template Approach to Fabricate 3D Flexible MXene Filmâ€Based Electrode for High Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000922.	7.8	188
3215	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. Nanomaterials, 2020, 10, 728.	1.9	35
3216	Graphitic nanopetals and their applications in electrochemical energy storage and biosensing. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
3217	MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochimica Acta, 2020, 346, 136201.	2.6	41
3218	Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. Journal of Power Sources, 2020, 461, 228151.	4.0	99
3219	Electrochemical analysis of CuO-AC based nanocomposite for supercapacitor electrode application. Materials Today: Proceedings, 2020, 28, 366-374.	0.9	9
3220	Achieving a 2.7 V aqueous hybrid supercapacitor by the pH-regulation of electrolyte. Journal of Materials Chemistry A, 2020, 8, 8648-8660.	5.2	29
3221	Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. Chemosphere, 2020, 253, 126755.	4.2	81
3222	Fabrication of supercapacitor using banyan leaves-based activated carbon electrode and formic acid-based polymer electrolyte. Materials Today: Proceedings, 2020, 28, 320-324.	0.9	2
3223	Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews, 2020, 49, 3005-3039.	18.7	391
3224	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 5672-5684.	1.6	45
3225	3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors. Acta Metallurgica Sinica (English Letters), 2021, 34, 85-97.	1.5	10
3226	High-rate quasi-solid-state hybrid supercapacitor of hierarchical flowers of hydrated tungsten oxide nanosheets. Electrochimica Acta, 2021, 366, 137389.	2.6	28
3227	Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation. International Journal of Biological Macromolecules, 2021, 166, 923-933.	3.6	54
3228	Electrochemical Capacitors: Performance Metrics and Evaluation by Testing and Analysis. Advanced Energy Materials, 2021, 11, .	10.2	66
3229	Investigation of the microstructure on the nanoporous carbon based capacitive performance. Microporous and Mesoporous Materials, 2021, 310, 110629.	2.2	6
3230	Interconnected polyaniline nanostructures: Enhanced interface for better supercapacitance retention. Polymer, 2021, 212, 123169.	1.8	12

#	Article	IF	CITATIONS
3231	Electrospun carbon nanofibers as electrode materials for supercapacitor applications. , 2021, , 641-688.		5
3232	Preparation of activated carbon derived from oil palm empty fruit bunches and its modification by nitrogen doping for supercapacitors. Journal of Porous Materials, 2021, 28, 9-18.	1.3	21
3233	Fabrication of three-dimensionally heterostructured rGO/WO3·0.5H2O@Cu2S electrodes for high-energy solid-state pouch-type asymmetric supercapacitor. Chemical Engineering Journal, 2021, 403, 126411.	6.6	70
3234	0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chemical Engineering Journal, 2021, 403, 126352.	6.6	755
3235	Development of Co-doped MnFe2O4 nanoparticles for electrochemical supercapacitors. Ceramics International, 2021, 47, 10268-10273.	2.3	19
3236	Ultrafine chromium oxide (Cr2O3) nanoparticles as a pseudocapacitive electrode material for supercapacitors. Journal of Alloys and Compounds, 2021, 851, 156046.	2.8	34
3237	Nanophase MnV2O4 particles as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 852, 156999.	2.8	16
3238	Nickel foam-supported starfish-like Ni(OH)2@CoS nanostructure with obvious core–shell heterogeneous interfaces for hybrid supercapacitors application. Journal of Materials Science, 2021, 56, 3280-3295.	1.7	20
3239	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	9.5	61
3240	Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 583, 722-733.	5.0	49
3241	Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.	2.2	10
3242	Deep eutectic solvent-assisted in-situ synthesis of nanosheet-packed Ni3S2 porous spheres on Ni foam for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 583, 594-604.	5.0	20
3243	Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6†V flexible aqueous asymmetric supercapacitors. Chemical Engineering Journal, 2021, 407, 126874.	6.6	24
3244	Rational design of bimetallic metal–organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chemical Engineering Journal, 2021, 404, 127111.	6.6	70
3245	Design and construction of ZIF(8 and 67) supported Fe3O4 composite as advanced materials of high performance supercapacitor. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114442.	1.3	32
3246	Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors. Journal of Materials Science and Technology, 2021, 65, 182-189.	5.6	25
3247	Synthesize of WO3 thin film supercapacitor and its characterization. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 388, 127059.	0.9	10
3248	Comparative performance analysis of electrospun <scp>TiO₂</scp> embedded poly(vinylidene fluoride) nanocomposite membrane for supercapacitors. Journal of Applied Polymer Science, 2021, 138, 50323.	1.3	10

#	Article	IF	CITATIONS
3249	Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors. Carbon, 2021, 173, 910-917.	5.4	86
3250	Bilateral growth of monoclinic WO3 and 2D Ti3C2Tx on 3D free-standing hollow graphene foam for all-solid-state supercapacitor. Chemical Engineering Journal, 2021, 421, 127883.	6.6	36
3251	Novel ZIF67/Mn/MWCNTs decorated with layer double hydroxide supercapacitor electrodes. Electrochimica Acta, 2021, 368, 137577.	2.6	18
3252	Ag+ preintercalation enabling high performance AgxMnO2 cathode for aqueous Li-ion and Na-ion hybrid supercapacitors. Journal of Power Sources, 2021, 484, 229316.	4.0	8
3253	Ultrasonic and NH4+ assisted Ni foam substrate oxidation to achieve high performance MnO2 supercapacitor. Applied Surface Science, 2021, 541, 148546.	3.1	32
3254	Electrochemical performance of quaternary (1-x)ZnMn2O4/(x)MgFe2O4 solid solution as supercapacitor electrode. Ceramics International, 2021, 47, 7475-7486.	2.3	26
3255	Self-Healable Inks Permitting 3D Printing of Diverse Systems towards Advanced Bicontinuous Supercapacitors. Energy Storage Materials, 2021, 35, 345-352.	9.5	28
3256	Iron-doped carbon electrode materials derived from polyethersulfone. Journal of Energy Storage, 2021, 33, 102099.	3.9	2
3257	Facile development of cost effective and greener for all solid-state supercapacitor on paper substrate. Journal of Energy Storage, 2021, 33, 102107.	3.9	9
3258	Postâ€synthetic Modification of Covalent Organic Frameworks through inâ€situ Polymerization of Aniline for Enhanced Capacitive Energy Storage. Chemistry - an Asian Journal, 2021, 16, 158-164.	1.7	31
3259	Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environmental Chemistry Letters, 2021, 19, 1667-1691.	8.3	94
3260	Review on supercapacitors: Technologies and performance evaluation. Journal of Energy Chemistry, 2021, 59, 276-291.	7.1	260
3261	MXenes for Rechargeable Batteries Beyond the Lithiumâ€lon. Advanced Materials, 2021, 33, e2004039.	11.1	224
3262	Microrecycling of waste flexible printed circuit boards for in-situ generation of O- and N-doped activated carbon with outstanding supercapacitance performance. Resources, Conservation and Recycling, 2021, 167, 105221.	5.3	13
3263	Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorganic Chemistry Communication, 2021, 123, 108332.	1.8	39
3264	In situ analysis of pore size effect of ionic solvation during the formation of double electric layers. Journal of Electroanalytical Chemistry, 2021, 880, 114846.	1.9	3
3265	Spontaneously Forming Oxide Layer of High Entropy Alloy Nanoparticles Deposited on Porous Carbons for Supercapacitors. ChemElectroChem, 2021, 8, 260-269.	1.7	15
3266	A Review on the Morphologically Controlled Synthesis of Polyphosphazenes for Electrochemical Applications. ChemElectroChem, 2021, 8, 759-782.	1.7	16

#	Article	IF	CITATIONS
3267	Electrosynthesis and characterization of Layered Double Hydroxides on different supports. Applied Clay Science, 2021, 202, 105949.	2.6	5
3268	A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors. Electrochimica Acta, 2021, 368, 137579.	2.6	56
3269	Modulating vacancies in nonstoichiometric oxides by annealing polarized nanoporous NiCoMn as thick pseudocapacitive electrode. Electrochimica Acta, 2021, 368, 137628.	2.6	2
3270	Electrochemical capacitors: Materials, technologies and performance. Energy Storage Materials, 2021, 36, 31-55.	9.5	87
3271	S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors. Nanoscale Advances, 2021, 3, 738-746.	2.2	9
3272	Study of solvent variation on controlled synthesis of different nanostructured NiCo2O4 thin films for supercapacitive application. Journal of Colloid and Interface Science, 2021, 588, 589-601.	5.0	36
3273	Synthesis of Highly-Ordered Two-Dimensional Hierarchically Porous Carbon Nanosheet Stacks as Advanced Electrode Materials for Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 226-232.	2.5	7
3274	Waste plastics derived graphene nanosheets for supercapacitor application. Materials and Manufacturing Processes, 2021, 36, 171-177.	2.7	24
3275	Green Precursors and Soft Templating for Printing Porous Carbonâ€Based Microâ€supercapacitors. Chemistry - A European Journal, 2021, 27, 1356-1363.	1.7	6
3276	Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 2021, 19, 375-439.	8.3	255
3277	One step solvothermal synthesis and characterization of rGO/NiO nanocomposites. Materials Today: Proceedings, 2021, 35, 17-22.	0.9	2
3278	Supercapacitors based on MXenes (transition metal carbides and nitrides) and their hybrids. , 2021, , 217-233.		0
3279	Synthesis and structural/electrochemical evaluation of N, S coâ€doped activated porous carbon spheres as efficient electrode material for supercapacitors. Electrochemical Science Advances, 2021, 1, e2000021.	1.2	2
3280	Metal organic framework/layer double hydroxide/graphene oxide nanocomposite supercapacitor electrode. Applied Physics Letters, 2021, 118, .	1.5	15
3281	Electrochemical study of copper oxide and activated charcoal based nanocomposite electrode for supercapacitor. Materials Today: Proceedings, 2021, 46, 5722-5729.	0.9	4
3282	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
3283	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
3284	Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. Nanoscale, 2021, 13, 7761-7773.	2.8	16

# 3285	ARTICLE Nanowires self-assemble into Î ² -MnO2 nanospheres to form crosslinking 3D hierarchical porous networks: with template-free fabrication and good supercapacitive performance over a broad temperature range. Sustainable Energy and Fuels, 2021, 5, 4944-4954.	IF 2.5	CITATIONS
3286	Pseudocapacitive trimetallic NiCoMn-111 perovskite fluorides for advanced Li-ion supercabatteries. Nanoscale Advances, 2021, 3, 5703-5710.	2.2	4
3287	Synthesis of a Co ₃ V ₂ O ₈ /CN _x hybrid nanocomposite as an efficient electrode material for supercapacitors. New Journal of Chemistry, 2021, 45, 5897-5906.	1.4	20
3288	Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior. Journal of Composites Science, 2021, 5, 25.	1.4	2
3289	Versatile materials for energy devices and systems. , 2021, , 265-291.		0
3290	Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. Journal of Materials Chemistry A, 2021, 9, 24094-24147.	5.2	141
3291	Synthesis of Two-Dimensional Sr-Doped LaNiO3 Nanosheets with Improved Electrochemical Performance for Energy Storage. Nanomaterials, 2021, 11, 155.	1.9	12
3292	Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO2 Capture and Supercapacitor. Molecules, 2021, 26, 738.	1.7	77
3293	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
3294	A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15880-15918.	5.2	484
3295	Controllable synthesis of multilayered porous carbon by ice templating with graphene addition for supercapacitors. Journal of Materials Science, 2021, 56, 7533-7546.	1.7	9
3296	Ru-based perovskites/RGO composites for applications in high performance supercapacitors. , 2021, , 335-354.		6
3297	Binder-Free and Flexible Carbon-Encapsulated Oxygen-Vacancy Cerium Dioxide Electrode for High-Performance Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 010536.	1.3	11
3298	Bipolar redox electrolyte-synergistically mediated NiCoMn-811 high-Ni ternary perovskite fluorides for advanced supercapacitors in both alkaline and neutral media. Journal of Materials Chemistry A, 2021, 9, 9624-9633.	5.2	14
3299	"Bubble-in-bowl―structured metal phosphide@N, P codoped carbon <i>via</i> bio-assisted combustion synthesis for high-performance potassium-ion hybrid capacitors in a wide temperature range. Journal of Materials Chemistry A, 2021, 9, 16028-16038.	5.2	11
3300	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
3301	Chitosan-based materials for supercapacitor applications: a review. Journal of Materials Chemistry A, 2021, 9, 17592-17642.	5.2	74
3302	Engineering two-dimensional materials for high-performance supercapacitor devices. , 2021, , 359-387.		6

#	Article	IF	CITATIONS
3303	Supercapacitors based on graphene and its hybrids. , 2021, , 129-157.		0
3304	Transformation of Battery to High Performance Pseudocapacitor by the Hybridization of W ₁₈ O ₄₉ with RuO ₂ Nanostructures. Langmuir, 2021, 37, 1141-1151.	1.6	26
3305	Overview of Electrode Materials Progressed for Application in Electrochemical Supercapacitors: An Update. Asian Journal of Chemistry, 2021, 33, 1039-1050.	0.1	1
3306	Controllable architecture of the NiCoZnS@NiCoFe layered double hydroxide coral-like structure for high-performance supercapacitors. Dalton Transactions, 2021, 50, 11542-11554.	1.6	8
3307	Green and facile preparation of graphene/resveratrol/polyaniline composites for high-performance supercapacitors. New Journal of Chemistry, 2021, 45, 3581-3588.	1.4	2
3308	Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes. Journal of Solid State Electrochemistry, 2021, 25, 1121-1129.	1.2	9
3309	Optimization of metal–organic framework derived transition metal hydroxide hierarchical arrays for high performance hybrid supercapacitors and alkaline Zn-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 3325-3335.	3.0	27
3310	Poly(Ether Amide)-Derived, Nitrogen Self-Doped, and Interfused Carbon Nanofibers as Free-Standing Supercapacitor Electrode Materials. ACS Applied Energy Materials, 2021, 4, 1517-1526.	2.5	12
3311	3D Graphene Nanocomposite by Electrospinning for Supercapacitor. Carbon Nanostructures, 2021, , 93-118.	0.1	0
3312	Supercapacitor: Evolution and review. Materials Today: Proceedings, 2021, 46, 3984-3988.	0.9	58
3313	lonophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids. Journal of Materials Chemistry A, 2021, 9, 15985-15992.	5.2	27
3314	Supercapacitors based on two-dimensional metal oxides, hydroxides, and its graphene-based hybrids. , 2021, , 193-215.		1
3315	Hierarchical Assembly of MnO ₂ Nanosheet on CuCo ₂ O ₄ Nanoflake over Fabric Scaffold for Symmetric Supercapacitor. ACS Applied Nano Materials, 2021, 4, 1420-1433.	2.4	24
3316	Luminescent MoS ₂ Quantum Dots with Tunable Operating Potential for Energy-Enhanced Aqueous Supercapacitors. ACS Omega, 2021, 6, 4542-4550.	1.6	18
3317	Supramolecular assisted fabrication of Mn3O4 anchored nitrogen-doped reduced graphene oxide and its distinctive electrochemical activation process during supercapacitive study. Electrochimica Acta, 2021, 370, 137739.	2.6	15
3318	RF Sputter-Deposited Nanostructured CuO Films for Micro-Supercapacitors. Applied Nano, 2021, 2, 46-66.	0.9	17
3319	Comparison of electrochemical response and electric field emission characteristics of pristine La2NiO4 and La2NiO4/CNT composites: Origin of multi-functionality with theoretical penetration by density functional theory. Electrochimica Acta, 2021, 369, 137676.	2.6	15
3320	Effects of water content on electrochemical capacitive behavior of nanostructured Cu3(BTC)2 MOF prepared in aqueous solution. Electrochimica Acta, 2021, 368, 137616.	2.6	17

#	Article	IF	CITATIONS
3321	A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochimica Acta, 2021, 370, 137746.	2.6	42
3322	Mechanically Strong Double-Layered Aramid Nanofibers/MWCNTs/PANI Film Electrode for Flexible Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 020513.	1.3	18
3323	Maximizing Redox Charge Storage via Cation (V)–Anion (S) Dual Doping on Nickel Diselenide Nanodiscs for Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 2430-2439.	2.5	19
3324	Mesoporous Thornâ€Covered Core–Shell Cathode and 3D Reduced Graphene Oxide Aerogel Composite Anode with Conductive Multivalence Metal Sulfides for Highâ€Performance Aqueous Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2003563.	10.2	16
3325	High electrochemical energy-storage performance promoted by SnSe nanorods anchored on rGO nanosheets. Journal of Electroanalytical Chemistry, 2021, 883, 115063.	1.9	27
3326	One-Pot Hydrothermal Synthesis of Solution-Processable MoS ₂ /PEDOT:PSS Composites for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 7285-7296.	4.0	41
3327	Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Scientific Reports, 2021, 11, 3916.	1.6	76
3328	High Performance Supercapacitors Based on Mesopore Structured Multiwalled Carbon Nanotubes. ChemistryOpen, 2021, 10, 347-351.	0.9	7
3329	Effect of various aqueous electrolytes on the electrochemical performance of V2O5 spindle-like nanostructures as electrode material for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2021, 32, 6623-6635.	1.1	5
3330	High-Potential Pseudocapacitive Energy Storage System: Iron-Based Polyferric Sulfate Electrolyte and Partially Sacrificial Graphite Electrode. Science of Advanced Materials, 2021, 13, 490-496.	0.1	Ο
3331	Past, present and future of electrochemical capacitors: Technologies, performance and applications. Journal of Energy Storage, 2021, 35, 102310.	3.9	24
3332	Hierarchical Ni2P@Ni(OH)2 architectures supported on carbon cloth as battery-type electrodes for hybrid supercapacitors with boosting specific capacitance and cycle stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 7973-7986.	1.1	4
3333	Facile Synthesis of MgCo ₂ O ₄ @MMoO ₄ (M = Co, Ni) Nanosheet Arrays on Nickel Foam as an Advanced Electrode for Asymmetric Supercapacitors. Energy & Fuels, 2021, 35, 6272-6281.	2.5	7
3334	Graphene Oxide-Mesoporous Silica-Polyaniline Composite with Intercalated Structures As Supercapacitor Electrode Materials. Russian Journal of Physical Chemistry A, 2021, 95, 623-629.	0.1	Ο
3335	High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials, 2021, 11, 785.	1.9	14
3336	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
3337	Synergistic Interaction of Ternary Niâ^'Coâ^'Cu Chalcogenides Confined in Nanosheets Array to Advance Supercapacitors and Solar Steam Generation. Solar Rrl, 2021, 5, 2100021.	3.1	21
3338	A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid. Microporous and Mesoporous Materials, 2021, 316, 110951.	2.2	21

#	Article	IF	Citations
3339	Sputtered titanium nitride films with finely tailored surface activity and porosity for high performance on-chip micro-supercapacitors. Journal of Power Sources, 2021, 489, 229406.	4.0	18
3340	Electrochemical performance comparison study of ternary RGO/ÄŸ-Ni(OH) ₂ -CeO ₂ nanocomposite prepared from hydrothermal and solid-state methods for supercapacitors. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2021. 12. 015016.	0.7	5
3341	Effect of acid treatment substrate for supercapacitor electrode based on multi-walled carbon nanotubes. Journal of Physics: Conference Series, 2021, 1835, 012106.	0.3	2
3342	Nanoporous Goldâ€Based Materials for Electrochemical Energy Storage and Conversion. Energy Technology, 2021, 9, 2000927.	1.8	26
3343	Recent advances in functional fiber electronics. SusMat, 2021, 1, 105-126.	7.8	77
3344	The prospects and challenges of solar electrochemical capacitors. Journal of Energy Storage, 2021, 35, 102294.	3.9	10
3345	Porous monoliths of 3D graphene for electric doubleâ€layer supercapacitors. , 2021, 3, 193-224.		46
3346	Superionic Liquids in Conducting Nanoslits: Insights from Theory and Simulations. Journal of Physical Chemistry C, 2021, 125, 4968-4976.	1.5	11
3347	Storage system design based on equivalent-circuit-model simulations: Comparison of eight different electrochemical capacitor storage systems. Journal of Power Sources, 2021, 491, 229441.	4.0	2
3348	Reinforced polyaniline-dodecyl benzene sulfonate hydrogel with well-aligned fibrous morphology as durable electrode materials for Zn-ion battery. Synthetic Metals, 2021, 274, 116721.	2.1	13
3349	Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. Small, 2021, 17, e2008047.	5.2	23
3350	An enhanced electrochemical performance of in milk, pigeon meat and eggs samples using se nanorods capped with Co3O4 nanoflowers decorated on graphene oxide. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111577.	2.5	21
3351	Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 17957-17970.	4.0	10
3352	Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express, 2021, 2, 022004.	1.2	37
3353	A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high- performance energy storage material. Carbon, 2021, 175, 534-575.	5.4	72
3354	Aerosol-Jet-Printed CoFe2O4 Nanoparticle â^ Vertically Aligned Carbon Nanotube Composite for Microsupercapacitors. Journal of Physical Chemistry C, 2021, 125, 7590-7597.	1.5	7
3355	Fabrication of Rambutan-like Activated Carbon Sphere/Carbon Nanotubes and Their Application as Supercapacitors. Energy & Fuels, 2021, 35, 8313-8320.	2.5	18
3356	One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors. ACS Omega, 2021, 6, 11199-11208.	1.6	23

#	Article	IF	CITATIONS
3357	Boron-Decorated Pillared Graphene as the Basic Element for Supercapacitors: An Ab Initio Study. Applied Sciences (Switzerland), 2021, 11, 3496.	1.3	5
3358	Forest-like carbon foam templated rGO/CNTs/MnO2 electrode for high-performance supercapacitor. Electrochimica Acta, 2021, 375, 137960.	2.6	41
3359	A dual NiCo metal-organic frameworks derived NiCo2S4 core-shell nanorod arrays as high-performance electrodes for asymmetric supercapacitors. Electrochimica Acta, 2021, 374, 137794.	2.6	50
3360	Enhancement of Volumetric Capacitance of Binder-Free Single-Walled Carbon Nanotube Film via Fluorination. Nanomaterials, 2021, 11, 1135.	1.9	6
3361	Role of molar concentration in NiCo2O4 nanoparticles synthesis for supercapacitor applications. Materials Today: Proceedings, 2021, 50, 53-53.	0.9	1
3362	Capillary Ionization and Jumps of Capacitive Energy Stored in Mesopores. Journal of Physical Chemistry C, 2021, 125, 10243-10249.	1.5	4
3363	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
3364	Recent progress and prospects in anode materials for potassium-ion capacitors. New Carbon Materials, 2021, 36, 253-277.	2.9	14
3365	Novel cobalt (II) phthalocyanine with appliance of CNTs on GCE: Flexible super apacitance by electrochemical methods. Electrochemical Science Advances, 2022, 2, e2100006.	1.2	7
3366	Porous organic/inorganic polymers based on double-decker silsesquioxane for high-performance energy storage. Journal of Polymer Research, 2021, 28, 1.	1.2	22
3367	Porous structural effect of carbon electrode formed through one-pot strategy on performance of ionic liquid-based supercapacitors. Chemical Engineering Journal, 2021, 411, 128573.	6.6	27
3368	Electrolyte mixture based on acetonitrile and ethyl acetate for a wide temperature rangeÂperformance of the supercapacitors. Journal of Power Sources, 2021, 495, 229442.	4.0	19
3369	Multimodal cell with simultaneous electrochemical quartz crystal microbalance and <i>in operando</i> spectroscopic ellipsometry to understand thin film electrochemistry. Review of Scientific Instruments, 2021, 92, 053902.	0.6	6
3370	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
3371	N-Doped Carbon Nanosheets from Biomass for Ultra Long-Cycling and High Energy Density Symmetric Supercapacitors. ECS Journal of Solid State Science and Technology, 2021, 10, 051004.	0.9	4
3372	Facile Fabrication of MnCo2O4/NiO Flower-Like Nanostructure Composites with Improved Energy Storage Capacity for High-Performance Supercapacitors. Nanomaterials, 2021, 11, 1424.	1.9	20
3373	Developing Binderâ€Free Electrode Based on Metalâ€Organic Frameworks and Graphene Hydrogel for Electrochemical Energy Storage. Energy Technology, 2021, 9, 2100121.	1.8	4
3374	Robust, freestanding, and bendable multi-walled carbon nanotube buckypapers as electrode materials for quasi-solid-state potassium-ion supercapacitors. Diamond and Related Materials, 2021, 115, 108354.	1.8	8

#	Article	IF	CITATIONS
3377	Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors. Green Energy and Environment, 2022, 7, 95-104.	4.7	10
3378	Highâ€Performance Allâ€Solidâ€State Supercapacitor Electrode Materials Using Freestanding Electrospun Carbon Nanofiber Mats of Polyacrylonitrile and Novolac Blends. Macromolecular Materials and Engineering, 2021, 306, 2100040.	1.7	7
3379	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44
3380	Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Letters, 2021, 13, 129.	14.4	75
3381	Multidimensional Carbon-Modified NiCo ₂ O ₄ /Ni–Co–S Nanocomposite Electrode Material for High-Energy Asymmetric Supercapacitors. Energy & Fuels, 2021, 35, 9692-9704.	2.5	14
3382	Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983.	11.1	63
3383	Tobacco stalk-derived carbon prepared by one-step molten salt carbonization for supercapacitor. Functional Materials Letters, 2021, 14, 2151021.	0.7	2
3384	Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorganic Chemistry Communication, 2021, 127, 108523.	1.8	31
3387	Sonochemical synthesis of Ag2WO4/RGO-based nanocomposite as a potential material for supercapacitors electrodes. Ceramics International, 2021, 47, 14075-14086.	2.3	35
3388	2D Covalentâ€Organic Framework Electrodes for Supercapacitors and Rechargeable Metalâ€Ion Batteries. Advanced Energy Materials, 2022, 12, 2100177.	10.2	87
3389	Facile synthesis of porous waist drum-like α-Fe2O3 nanocrystals as electrode materials for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2021, 32, 18777-18789.	1.1	2
3390	Carbon-Based Nanocomposite Materials for High-Performance Supercapacitors. , 0, , .		2
3391	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
3392	An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor. Energies, 2021, 14, 3237.	1.6	5
3393	Aging processes in high voltage lithium-ion capacitors containing liquid and gel-polymer electrolytes. Journal of Power Sources, 2021, 496, 229797.	4.0	7
3394	Comprehensive study to ascertain the effect of MnO ₂ loading on supercapacitive properties of conducting polymers. International Journal of Polymer Analysis and Characterization, 2021, 26, 593-603.	0.9	2
3395	The structure-stabilized Co3O4@Co9S8 core-shell nanorods synthesized by in-situ sulfuration of Co3O4 for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 865, 158296.	2.8	31
3396	Cucurbit[8]uril-derived porous carbon as high-performance electrode material for ionic liquid-based supercapacitor. Journal of Energy Storage, 2021, 38, 102527.	3.9	11

#	Article	IF	CITATIONS
3397	One-pot hydrothermal synthesis of 3D Cu2Se/CoSe composite as a novel battery-type cathode material with enhanced capacitive properties. Journal of Alloys and Compounds, 2021, 866, 158972.	2.8	27
3398	Enhanced specific energy of silver-doped MnO2/graphene oxide electrodes as facile fabrication symmetric supercapacitor device. Materials Today Chemistry, 2021, 20, 100473.	1.7	24
3399	Facile synthesis of chitosan derived heteroatoms-doped hierarchical porous carbon for supercapacitors. Microporous and Mesoporous Materials, 2021, 320, 111106.	2.2	43
3400	Controllable nanoporous copper synthesized by dealloying metallic glasses: New insights into the tuning pore structure and applications. Chemical Engineering Journal, 2021, 427, 130861.	6.6	6
3401	One-step molten salt carbonization of tobacco stem for capacitive carbon. Journal of Porous Materials, 2021, 28, 1629-1642.	1.3	6
3402	Facile fabrication 1D/2D/3D Co3O4 nanostructure in hydrothermal synthesis for enhanced supercapacitor performance. Journal of Energy Storage, 2021, 38, 102586.	3.9	22
3403	Metal phthalocyanine-based conjugated microporous polymer/carbon nanotube composites as flexible electrodes for supercapacitors. Dyes and Pigments, 2021, 190, 109299.	2.0	10
3404	Towards understanding the impact of operating voltage on the stability of adiponitrile-based electrical double-layer capacitors. Journal of Power Sources, 2021, 496, 229841.	4.0	9
3405	Super-criticism of electrochemical double layer capacitor for diffusion phenomenon: A fractional application of ultracapacitor. AEJ - Alexandria Engineering Journal, 2021, 60, 3361-3368.	3.4	9
3406	Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid—Solvent Mixtures. Molecules, 2021, 26, 3668.	1.7	17
3407	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
3408	N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochimica Acta, 2021, 380, 138237.	2.6	78
3409	Simple and cost-effective synthesis of activated carbon@few layers of graphene composite electrode for supercapacitor applications. IOP Conference Series: Materials Science and Engineering, 2021, 1166, 012007.	0.3	1
3410	A Novel Strategy of Multiâ€element Nanocomposite Synthesis for High Performance <scp>ZnO oSe₂</scp> Supercapacitor Material Development. Chinese Journal of Chemistry, 2021, 39, 2441-2450.	2.6	16
3411	Extraordinary Compatibility to Mass Loading and Rate Capability of Hierarchically Porous Carbon Nanorods Electrode Derived from the Waste Tire Pyrolysis Oil. Energy and Environmental Materials, 2022, 5, 1238-1250.	7.3	4
3412	Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste. Environmental Science and Pollution Research, 2021, 28, 66888-66900.	2.7	32
3413	Review—Clay Mineral Materials for Electrochemical Capacitance Application. Journal of the Electrochemical Society, 2021, 168, 070558.	1.3	27
3414	Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink. Materials Research Bulletin, 2021, 139, 111266.	2.7	18

#	Article	IF	CITATIONS
3415	Facile Synthesis of Porous Hollow Cobaltâ€Doped λâ€MnO 2 Nano Architectures as a Highâ€performance Anode Material for Liâ€ion Batteries and Liâ€ion Hybrid Supercapacitors. ChemistrySelect, 2021, 6, 7012-7024.	0.7	7
3416	Carbon Nanocoil-Supported Three-Dimensional Structure of Nickel–Cobalt Nitrides as the Electrode Material for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 6678-6687.	2.5	12
3417	Compulsive malposition of birnessite slab in 2D-Parallel birnessite on β-MnO2 networks for enhanced pseudocapacitance performances. Nano Materials Science, 2021, 3, 404-411.	3.9	3
3418	Conductive Metalâ€Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry - A European Journal, 2021, 27, 11482-11538.	1.7	25
3419	Asymmetric Supercapacitors with Nanostructured RuS ₂ . Energy & Fuels, 2021, 35, 12671-12679.	2.5	8
3420	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
3421	Improvement of capacitive performance of polyaniline based hybrid supercapacitor. Heliyon, 2021, 7, e07407.	1.4	21
3422	Hierarchical Nanoporous C/C Composite from Humic Fulvic Acid and Sulfonated Pitch for Highâ€Energyâ€Density EDLC Electrodes. ChemNanoMat, 2021, 7, 1131-1137.	1.5	8
3423	Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage, 2021, 39, 102646.	3.9	176
3424	Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies. International Journal of Hydrogen Energy, 2021, 46, 26053-26073.	3.8	44
3425	Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor. Carbon Letters, 2022, 32, 251-263.	3.3	18
3426	Ball milling modification of perovskite LaNiO3 powders for enhancing electrochemical pseudocapacitor. Surfaces and Interfaces, 2021, 25, 101282.	1.5	5
3427	Microcrystalline cellulose derived hierarchically porous nanocarbons via a template-free method for high performance supercapacitors. Diamond and Related Materials, 2021, 117, 108462.	1.8	7
3428	Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti ₃ C ₂ MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces, 2021, 13, 43597-43605.	4.0	8
3429	Low-Cost Activated Carbon Electrodes from Waste Maple Leaves for Organic Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2021, 168, 080532.	1.3	2
3430	Wearable Supercapacitors, Performance, and Future Trends. , 0, , .		0
3431	Flexible Supercapacitors Based on CNT/MnO2-BP Composite Yarn Synthesized by In Situ Reduction. Journal of the Electrochemical Society, 2021, 168, 080524.	1.3	7
3432	Facile hydrothermal synthesis of urchinâ€like <scp> NiCo ₂ O ₄ </scp> as advanced electrochemical pseudocapacitor materials. International Journal of Energy Research, 2021, 45, 20186-20198.	2.2	28

#	Article	IF	CITATIONS
3433	Studies on 2D-molybdenum diselenide (MoSe2) based electrode materials for supercapacitor and batteries: A critical analysis. Journal of Energy Storage, 2021, 40, 102809.	3.9	31
3434	MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor. Chemical Engineering Journal, 2021, 417, 129243.	6.6	93
3435	Ni-Co sulfide hollow nanoboxes with enhanced lattice interfaces for high performance hybrid supercapacitors. Electrochimica Acta, 2021, 386, 138445.	2.6	18
3436	Boosting the Local Temperature of Hybrid Prussian Blue/NiO Nanotubes by Solar Light: Effect on Energy Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 11837-11846.	3.2	7
3437	Preparation of 3DGO/Co3O4 anode for lithium-ion batteries. Materials Today Communications, 2021, 28, 102734.	0.9	4
3438	Super-hydrophilic microporous biochar from biowaste for supercapacitor application. Applied Surface Science, 2021, 561, 150076.	3.1	29
3439	CF4 plasma-treated porous silicon nanowire arrays laminated with MnO2 nanoflakes for asymmetric pseudocapacitors. Chemical Engineering Journal, 2021, 419, 129515.	6.6	8
3440	Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahigh energy density. Journal of Power Sources, 2021, 507, 230252.	4.0	44
3441	Construction of copper porphyrin-linked conjugated microporous polymer/carbon nanotube composite as flexible electrodes for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 24953-24963.	1.1	12
3442	Solution-processable hierarchical-porous vanadium nitride films on silicon substrates for highly efficient symmetric supercapacitors. Journal of Power Sources, 2021, 507, 230269.	4.0	8
3443	Novel Rugby-Ball-like FeCoCuS ₂ Triple-Shelled Hollow Nanostructures with Enhanced Performance for Supercapattery. Energy & Fuels, 2021, 35, 15108-15117.	2.5	9
3444	Hexagonal nanostructured cobalt oxide @ nitrogen doped multiwalled carbon nanotubes/polypyyrole composite for supercapacitor and electrochemical glucose sensor. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111840.	2.5	27
3445	One-Step Hydrothermal Synthesis of a CoTe@rGO Electrode Material for Supercapacitors. Transactions of Tianjin University, 2022, 28, 112-122.	3.3	6
3446	An aqueous symmetrical supercapacitor with high bulk pseudocapacitance induced by phase transformation of MnO2. Journal of Alloys and Compounds, 2021, 876, 160148.	2.8	11
3447	Electrochemical and In Situ Spectroscopic Study of the Effect of Prussian Blue as a Mediator in a Solid-State Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 106505.	1.3	3
3448	New insights into the performance of an acid-base electrochemical flow battery. Journal of Power Sources, 2021, 506, 230233.	4.0	7
3449	Nanolayers of carbon protected copper oxide nanocomposite for high performance energy storage and non-enzymatic glucose sensor. Journal of Alloys and Compounds, 2021, 875, 160063.	2.8	15
3450	Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Metals, 2022, 41, 830-835.	3.6	43

#	Article	IF	CITATIONS
3451	Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers. Journal of Physical Chemistry C, 2021, 125, 20204-20218.	1.5	16
3452	Fast and low-consumption granular NiCo-LDH/graphene nanosheet composites for high-performance supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 23750-23761.	1.1	5
3453	On the causes of non-linearity of galvanostatic charge curves of electrical double layer capacitors. Electrochimica Acta, 2021, 390, 138896.	2.6	9
3454	Enhancing pseudocapacitive performance of CoP coating on nickel foam via surface Ni2P modification and Ni (II) doping for supercapacitor energy storage application. Surface and Coatings Technology, 2021, 421, 127469.	2.2	12
3455	Porous nanocomposites by cotton-derived carbon/NiO with high performance for lithium-ion storage. Journal of Alloys and Compounds, 2021, 874, 159788.	2.8	12
3456	Zwitterionic polymer coupled with high concentrated electrolytes to achieve high ionic conductivity and wide electrochemical window for supreme specific energy aqueous supercapacitors. Journal of Energy Storage, 2021, 42, 103060.	3.9	6
3457	High-performance all-solid-state flexible asymmetric supercapacitors composed of PPy@Ti3C2Tx/CC and Ti3C2Tx/CC electrodes. Surfaces and Interfaces, 2021, 26, 101393.	1.5	8
3458	Realizing high-voltage and ultralong-life supercapacitors by a universal interfacial engineering strategy. Journal of Power Sources, 2021, 510, 230406.	4.0	9
3459	Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors. Journal of Colloid and Interface Science, 2021, 599, 68-78.	5.0	37
3460	Laser synthesis of NixZnyO/reduced graphene oxide/carbon nanotube electrodes for energy storage applications. Applied Surface Science, 2021, 563, 150234.	3.1	9
3461	Carbon nanodot modified N, O-doped porous carbon for solid-state supercapacitor: A comparative study with carbon nanotube and graphene oxide. Journal of Alloys and Compounds, 2021, 877, 160237.	2.8	17
3462	Facile fabrication of novel heterostructured tin disulfide (SnS2)/tin sulfide (SnS)/N-CNO composite with improved energy storage capacity for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2021, 899, 115695.	1.9	51
3463	Pizza-like heterostructured Ti3C2T /Bi2S3@N-C with ultra-high specific capacitance as a potential electrode material for aqueous zinc-ion hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160881.	2.8	20
3464	Self-assembled 3D graphene-based aerogel with Au nanoparticles as high-performance supercapacitor electrode. Journal of Energy Storage, 2021, 43, 103157.	3.9	17
3465	Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. Journal of Energy Storage, 2021, 43, 103171.	3.9	22
3466	Achieving ion accessibility within graphene films by carbon nanofiber intercalation for high mass loading electrodes in supercapacitors. Journal of Power Sources, 2021, 513, 230559.	4.0	13
3467	High performance alkaline battery-supercapacitor hybrid device based on diffusion driven double shelled CoSn(OH)6 nanocube@â^•Ni(OH)2 core-shell nanoflower. Journal of Energy Storage, 2021, 43, 103206.	3.9	5
3468	Facile synthesis of three-dimensional Ni3Sn2S2 as a novel battery-type electrode material for high-performance supercapacitors. Electrochimica Acta, 2021, 396, 139216.	2.6	8

#	Article	IF	CITATIONS
3469	Boosted energy storage via carbon surface passivation. Carbon, 2021, 185, 105-112.	5.4	5
3470	Biomass derived carbon containing in-situ constructed nickel-based hydroxide nanostructures based on MnO2 template for high performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 884, 161149.	2.8	8
3471	Investigations into the supercapacitor activity of bisphosphonate-polyoxovanadate compounds. Journal of Solid State Chemistry, 2021, 304, 122566.	1.4	4
3472	Meso-pore dominant activated carbon from spent coffee grounds for high-performance electrochemical capacitors in organic electrolyte. Journal of Environmental Chemical Engineering, 2021, 9, 106418.	3.3	12
3473	Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chemical Engineering Journal, 2021, 426, 131544.	6.6	36
3474	Recent advances of transition metal oxalate-based micro- and nanomaterials for electrochemical energy storage: a review. Materials Today Chemistry, 2021, 22, 100564.	1.7	22
3475	High-performance flexible supercapacitor enabled by Polypyrrole-coated NiCoP@CNT electrode for wearable devices. Journal of Colloid and Interface Science, 2022, 606, 135-147.	5.0	48
3476	Redox-etching induced porous carbon cloth with pseudocapacitive oxygenic groups for flexible symmetric supercapacitor. Journal of Energy Chemistry, 2022, 64, 136-143.	7.1	31
3477	Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors. Energy, 2022, 238, 121767.	4.5	35
3478	Synthesis of high-performance nickel hydroxide nanosheets/gadolinium doped-α-MnO2 composite nanorods as cathode and Fe3O4/GO nanospheres as anode for an all-solid-state asymmetric supercapacitor. Journal of Energy Chemistry, 2022, 64, 475-484.	7.1	92
3479	Rationally tuning ratio of micro- to meso-pores of biomass-derived ultrathin carbon sheets toward supercapacitors with high energy and high power density. Journal of Colloid and Interface Science, 2022, 606, 817-825.	5.0	50
3480	Structure-dependent electrochemical properties of cobalt (II) carbonate hydroxide nanocrystals in supercapacitors. Journal of Colloid and Interface Science, 2022, 607, 1633-1640.	5.0	9
3481	Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chemical Engineering Journal, 2022, 428, 131107.	6.6	77
3482	Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications. Chemical Engineering Journal, 2022, 428, 131119.	6.6	64
3483	Historical Background and Present Status of the Capacitors and Supercapacitor for High Bioenergy Storage Applications. , 2022, , 692-702.		0
3484	Fundamentals, Mechanisms and Key Performance Factors in Super-Capacitor. , 2021, , .		1
3485	Biopolymer-based (nano)materials for supercapacitor applications. , 2021, , 609-671.		7
3486	NiMnO _{<i>x</i>} /TiN/CC electrode with a branch–leaf structure: a novel approach to improve the performance of supercapacitors with high mass loading of amorphous metal oxides. Journal of Materials Chemistry A, 2021, 9, 21948-21957.	5.2	12

\sim			<u> </u>		
	ΙΤΔΤ	ION	RE	DO	DT
<u> </u>	והו		IVL	. 0	

#	Article	IF	CITATIONS
3487	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
3488	Cracked bark-inspired ternary metallic sulfide (NiCoMnS4) nanostructure on carbon cloth for high-performance aqueous asymmetric supercapacitors. Science China Materials, 2021, 64, 1632-1641.	3.5	32
3489	Role of graphene in solid-state asymmetric supercapacitors. , 2021, , 123-147.		0
3491	High performance CuO@brass supercapacitor electrodes through surface activation. Journal of Materials Chemistry A, 2021, 9, 9327-9336.	5.2	28
3492	Efficient energy storage performance of polyaniline based supercapacitor. AlP Conference Proceedings, 2021, , .	0.3	1
3493	A novel 3D porous electrode of polyaniline and PEDOT:PSS coated SiNWs for low-cost and high-performance supercapacitors. Materials Chemistry Frontiers, 2021, 5, 6114-6124.	3.2	6
3494	Fast and durable anodes for sodium-/potassium-ion hybrid capacitors: tailoring self-adaptive nanocages inside hybrid fibers with high alignment. Journal of Materials Chemistry A, 2021, 9, 13986-13995.	5.2	12
3495	Recycling of Plastics into Advance Carbon Nanomaterials and Their Application in Energy Storage System. Composites Science and Technology, 2021, , 259-281.	0.4	1
3496	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 5612-5624.	7.2	198
3497	Preparation and Capacitance Properties of Graphene Quantum Dot/NiFeâ^'Layered Doubleâ€Hydroxide Nanocomposite. European Journal of Inorganic Chemistry, 2021, 2021, 258-266.	1.0	6
3498	Conductive Polymer Based Flexible Supercapacitor. Engineering Materials, 2020, , 211-233.	0.3	1
3499	Halloysite Nanotubes: An â€~Aluminosilicate Nanosupport' for Energy and Environmental Applications. Green Energy and Technology, 2020, , 125-144.	0.4	6
3500	Graphene/Reduced Graphene Oxide as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 271-296.	0.4	14
3501	Transition Metal Oxide/Graphene/Reduced Graphene Oxide Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 297-331.	0.4	15
3502	Carbon Nanofiber as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 179-200.	0.4	20
3503	Application of Carbon Nanotubes for Resolving Issues and Challenges on Electrochemical Capacitors. , 2015, , 415-445.		2
3504	Application of Nanofibers in Supercapacitors. Nanostructure Science and Technology, 2014, , 163-181.	0.1	8
3505	Facile preparation and properties of cubic TiN@CN nanocapsules as electrode materials for supercapacitors and as microwave absorbers. Journal of Materials Science: Materials in Electronics, 2020, 31, 10574-10584.	1.1	7

	CITATION		
#	Article	IF	CITATIONS
3506	Future of analytical chemistry with graphene. Comprehensive Analytical Chemistry, 2020, 91, 355-389.	0.7	7
3507	Electrochemical synthesis of three-dimensional porous networks of nickel with different micro-nano structures for the fabrication of Ni/MnOx nanocomposites with enhanced supercapacitive performance. Applied Surface Science, 2017, 419, 165-176.	3.1	29
3508	PEDOT-modified laser-scribed graphene films as bginder– and metallic current collector–free electrodes for large-sized supercapacitors. Applied Surface Science, 2020, 518, 146193.	3.1	23
3509	Asymmetric Carbon Supercapacitor with Activated Expanded Graphite as Cathode and Pinecone Tree Activated Carbon as Anode Materials. Energy Procedia, 2017, 105, 4098-4103.	1.8	20
3510	High-performance energy storage of Ag-doped Co(OH)2-coated graphene paper: In situ electrochemical X-ray absorption spectroscopy. Electrochimica Acta, 2017, 252, 91-100.	2.6	25
3511	Mixed metal oxides in synergy at nanoscale: Electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor. Electrochimica Acta, 2020, 347, 136277.	2.6	11
3512	Investigation of mixed molybdates of cobalt and nickel for use as electrode materials in alkaline solution. International Journal of Hydrogen Energy, 2020, 45, 11040-11051.	3.8	16
3513	Propionitrile as a single organic solvent for high voltage electric double-layer capacitors. Journal of Power Sources, 2020, 463, 228134.	4.0	15
3514	Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform. Microchemical Journal, 2020, 157, 104973.	2.3	41
3515	Surface Redox-Active Organosulfur-Tethered Carbon Nanotubes for High Power and Long Cyclability of Na–Organosulfur Hybrid Energy Storage. ACS Energy Letters, 2021, 6, 280-289.	8.8	20
3516	In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light: Science and Applications, 2018, 7, 34.	7.7	129
3517	Biomass chitin-derived honeycomb-like nitrogen-doped carbon/graphene nanosheet networks for applications in efficient oxygen reduction and robust lithium storage. Journal of Materials Chemistry A, 2016, 4, 11789-11799.	5.2	71
3518	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	2.8	28
3519	Enhanced performance of supercapacitors by constructing a "mini parallel-plate capacitor―in an electrode with high dielectric constant materials. Journal of Materials Chemistry A, 2020, 8, 16661-16668.	5.2	14
3520	Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23059-23095.	5.2	151
3521	Screened Coulomb interactions of general macroions with nonzero particle volume. Physical Review Research, 2020, 2, .	1.3	2
3522	Understanding the Effect of Capacitive Discharge Ignition on Plasma Formation and Flame Propagation of Air–Propane Mixture. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141,	1.4	11
3523	Modeling Costs and Benefits of Energy Storage Systems. Annual Review of Environment and Resources, 2020, 45, 445-469.	5.6	19

#	Article	IF	CITATIONS
3524	Hierarchical Porous Carbon with Interconnected Ordered Pores from Biowaste for High-Performance Supercapacitor Electrodes. Nanoscale Research Letters, 2020, 15, 88.	3.1	30
3525	Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen. Eurasian Chemico-Technological Journal, 2017, 19, 289.	0.3	1
3526	Conducting Polymers and their Applications. Current Physical Chemistry, 2012, 2, 224-240.	0.1	112
3527	Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. Materials, 2020, 13, 2371.	1.3	18
3528	Characterization of Electric Double-Layer Capacitor with 0.75M Nal and 0.5 M VOSO4 Electrolyte. Journal of Electrochemical Science and Technology, 2018, 9, 20-27.	0.9	3
3529	Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC. Journal of Electrochemical Science and Technology, 2018, 9, 9-19.	0.9	4
3530	Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly(Carbazole) Films. Journal of Electrochemical Science and Technology, 2020, 11, 41-49.	0.9	14
3531	Preparation of Co3O4/NF Anode for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 0, , .	0.9	1
3532	High-performance asymmetric supercapacitor made of NiMoO ₄ nanorods@Co ₃ O ₄ on a cellulose-based carbon aerogel. Beilstein Journal of Nanotechnology, 2020, 11, 240-251.	1.5	17
3533	Comparison Between Conventional Nano-sized and Honeycomb-shaped LiFePO4 Cathode Materials for Li-ion Batteries. Journal of the Korean Physical Society, 2020, 77, 505-509.	0.3	1
3534	Modeling and Sizing of Supercapacitors. Advances in Electrical and Computer Engineering, 2008, 8, 15-22.	0.5	24
3535	Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates. Bulletin of the Korean Chemical Society, 2010, 31, 3697-3702.	1.0	28
3536	Effect of crystallinity on the electrochemical properties of carbon black electrodes. Carbon Letters, 2011, 12, 252-255.	3.3	22
3537	A mechanically robust all-solid-state supercapacitor based on a highly conductive double-network hydrogel electrolyte and Ti ₃ C ₂ T _{<i>x</i>} MXene electrode with anti-freezing property. Journal of Materials Chemistry A, 2021, 9, 25073-25085.	5.2	25
3538	Fabrication and Supercapacitor Applications of Multiwall Carbon Nanotube Thin Films. Journal of Carbon Research, 2021, 7, 70.	1.4	9
3539	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
3540	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
3542	Electrochemical storage mechanism of interstratification-assembled Ti3C2Tx MXene/NiCo-LDHs electrode in alkaline, acid and neutral electrolytes. Ceramics International, 2022, 48, 3884-3894.	2.3	9

#	Article		CITATIONS
3543	Flowerlike Fe2O3–polyaniline nanocomposite as electrode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 27794-27800.	1.1	8
3544	Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review. Ionics, 2022, 28, 27-52.	1.2	13
3545	Facile microwave synthesis of Sn-doped WO3 for pseudocapacitor applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 9246-9255.	1.1	5
3546	Capacitive energy storage in single-file pores: Exactly solvable models and simulations. Journal of Chemical Physics, 2021, 155, 174112.	1.2	8
3547	Emerging Two-dimensional Materials Constructed Nanofluidic Fiber: Properties, Preparation and Applications. Advanced Fiber Materials, 2022, 4, 129-144.	7.9	26
3548	A study of <scp>Coâ€Mn</scp> phosphate supported with graphene foam as promising electrode materials for future electrochemical capacitors. International Journal of Energy Research, 2022, 46, 3080-3094.	2.2	9
3549	Environmental life cycle assessment of supercapacitor electrode production using algae derived biochar aerogel. Biochar, 2021, 3, 701-714.	6.2	17
3550	MXeneâ€Coupled Sandwichâ€Like Polyaniline as Dual Conductive Electrode for Flexible Allâ€Solidâ€State and Ionicâ€liquidâ€Based Supercapacitors with Superior Energy Density. Advanced Materials Interfaces, 2021, 8, 2101263.	1.9	14
3551	Application of carbon quantum dots in supercapacitors: A mini review. Electrochemistry Communications, 2021, 132, 107143.	2.3	41
3552	Synthesis and electrochemical performance of porous FeCo2S4 nanorods as an electrode material for supercapacitor. Journal of Energy Storage, 2021, 44, 103330.	3.9	17
3553	Piezoelectric vibrational energy harvesting. Engineering & Technology Reference, 2012, 1, .	0.1	0
3554	Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers. Porrime, 2012, 36, 321-325.	0.0	0
3555	Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons. Porrime, 2012, 36, 739-744.	0.0	0
3556	A novel electrochemical capacitor using halogen redox reactions. Tanso, 2013, 2013, 15-21.	0.1	1
3557	Redox Capacitor. , 2014, , 1779-1786.		0
3558	Nanomaterials for Electrical Energy Storage Devices. , 2016, , 2473-2485.		1
3559	Strategic Energy Management in Sultanate of Oman. Montenegrin Journal of Economics, 2016, 12, 95-105.	0.5	2
3562	Advanced Materials for Supercapacitors. , 2017, , 99-128.		1

#	Article	IF	CITATIONS
3563	Synthesis of Mesoporous Carbon Nanofilament and the Application to Electrodes for Electric Double Layer Capacitor. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 635-640.	0.1	0
3564	A Flexible Supercapacitor with High True Performance. SSRN Electronic Journal, 0, , .	0.4	0
3565	A Review on Synthesis and Application of Copper Cobalt Sulfide Nanomaterials. Material Sciences, 2018, 08, 245-252.	0.0	0
3566	Fiber grating assisted surface plasmon resonance for biochemical and electrochemical sensing. , 2018, , .		1
3567	Oneâ€step combustion synthesis porous amorphous NiO/C/CNTs composite for highâ€performance supercapacitors. Micro and Nano Letters, 2018, 13, 1209-1212.	0.6	0
3568	Graphene, Its Analogues, and Modern Science. Springer Proceedings in Physics, 2019, , 215-236.	0.1	0
3569	Huge enhancement in electrochemical performance of nano carbide-derived carbon obtained by simply room-temperature soaking treatment in HF and HNO3 mixed solution. Journal of Porous Materials, 2019, 26, 1241-1248.	1.3	1
3570	High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes. Korean Journal of Materials Research, 2019, 29, 121-128.	0.1	1
3571	Development of high performance hybrid capacitors. , 2019, , .		0
3572	Graphene-Based Materials for Flexible Supercapacitors. Engineering Materials, 2020, , 297-326.	0.3	2
3573	Mechanochemical Processing of Natural Graphite under Different Atmospheres for Fabricating Electrodes Used in Electric Double-layer Capacitors. Electrochemistry, 2020, 88, 94-98.	0.6	3
3574	PREPARATION AND ELECTROCHEMICAL BEHAVIOR OF THE ACTIVATED CARBON FROM POMEGRANATE PEELS AS ENERGY-STORAGE MATERIALS. Al-Azhar Bulletin of Science, 2020, 31, 1-9.	0.0	0
3575	İndirgenmiÅŸ Grafen Oksit/Çinko Oksit Kompozitlerin Üretimi ve Süper Kapasitör Uygulamaları. Bilecik Å Edebali Üniversitesi Fen Bilimleri Dergisi, 2020, 7, 201-210.	Åžeyh 0.1	0
3576	Exploring the underlying kinetics of electrodeposited PANIâ€CNT composite using distribution of relaxation times. Electrochimica Acta, 2022, 401, 139501.	2.6	2
3577	Layered Double Hydroxide Hollowcages with Adjustable Layer Spacing for High Performance Hybrid Supercapacitor. Small, 2021, 17, e2104423.	5.2	57
3578	Influence of pH on optical and electrochemical performance of BiPO4 electrode material for energy storage applications. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 137, 115020.	1.3	2
3579	The influence of surface modification on the optical and capacitive properties of NiO nanoparticles synthesized via surfactant-assisted coprecipitation. Journal of Energy Storage, 2021, 44, 103321.	3.9	12
3580	High voltage electrochemical capacitors operating at elevated temperature based on 1,1-dimethylpyrrolidinium tetrafluoroborate. Energy Storage Materials, 2022, 44, 66-72.	9.5	27

ARTICLE IF CITATIONS Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coordination 3581 9.5 86 Chemistry Reviews, 2022, 451, 214242. Effect of pore structures on desolvation of carbon materials as the electrode materials of 1.4 supercapacitors: A first-principles study. Computational Materials Science, 2022, 202, 110983. Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based 3583 6.6 23 supercapacitors. Chemical Engineering Journal, 2022, 430, 132836. An all-in-one flexible supercapacitor based on redox ionogel electrolyte with high cycle performance. 3584 2.8 Journal of Alloys and Compounds, 2022, 893, 162197. Self-assembling of interconnected strips of CoMoO4 on graphene sheet as supercapacitor electrodes. 3585 0.3 0 AIP Conference Proceedings, 2020, , . Nanoporous Activated Carbon and Multi-walled Carbon Nanotubes from Renewable Botanical Hydrocarbons and their Impact on Efficiency of Supercapacitor Performance. Journal of 3586 0.1 Environmental Nanotechnology, 2020, 9, 01-04. Conducting Polymers-Based Supercapacitors., 2022, , 486-496. 3587 4 Self-templating synthesis of nitrogen-rich porous carbons using pyridyl functionalized conjugated microporous polytriphenylamine for electrochemical energy storage. Electrochimica Acta, 2022, 402, 2.6 16 139531. Ultrafast Nonvolatile Ionic Liquids-Based Supercapacitors with Al Foam-Enhanced Carbon Electrode. 3589 4.0 4 ACS Applied Materials & amp; Interfaces, 2021, 13, 53904-53914. Formation mechanism of nano graphitic structures during microwave catalytic graphitization of 1.8 activated carbon. Diamond and Related Materials, 2021, 120, 108699. Review of electrochemical production of doped graphene for energy storage applications. Journal of 3591 3.9 14 Energy Storage, 2022, 46, 103527. Graphitic Azaâ \in Fused $\tilde{I} \in a \in C$ onjugated Networks: Construction, Engineering, and Taskâ \in Specific Applications. 11.1 Advanced Materials, 2022, 34, e2107947. Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material 3593 3.1 26 for supercapacitor applications. Applied Surface Science, 2022, 576, 151714. Polymer/graphene nanocomposites as versatile platforms for energy and electronic devices. , 2022, , 3594 173-196 Nano-on-micro approach for fabricating ternary metal oxy-hydroxideâ€"based flexible supercapacitors. 3595 1.1 0 Journal of Industrial Textiles, 0, , 152808372110523. Facile synthesis and characteristics of NiMoS2/rGO nanocomposites for energy and environmental application. Carbon Letters, 2022, 32, 753-765. "Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: 3597 5.6 9 Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953. Construction of porous NiCo2S4 hierarchical nanoflakes based on zeolitic imidazolate frameworks 3598 as battery-type electrodes for high performance supercapacitors. Journal of Energy Storage, 2021, 47, 103583

#	Article	IF	Citations
3599	Rational design of KCu7S4@NiCo2O4 in-situ growth on nickel foam for high performance supercapacitor electrode. Journal of Alloys and Compounds, 2022, 898, 162791.	2.8	16
3600	A systematic investigation on the effect of Reducing Agents towards Specific Capacitance of NiMg@OH/ Reduced Graphene Oxide Nanocomposites. Materials Technology, 2022, 37, 1864-1876.	1.5	3
3601	Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.	2.5	5
3602	Recovering the electrochemical window by forming a localized solvation nanostructure in ionic liquids with trace water. Science China Chemistry, 2022, 65, 96-105.	4.2	2
3603	Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors. Materials, 2021, 14, 7148.	1.3	12
3604	Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors. Journal of Electroanalytical Chemistry, 2022, 904, 115856.	1.9	24
3605	Facile synthesis of efficient construction of tungsten disulfide/iron cobaltite nanocomposite grown on nickel foam as a battery-type energy material for electrochemical supercapacitors with superior performance. Journal of Colloid and Interface Science, 2022, 609, 434-446.	5.0	69
3606	Sol-gel synthesized nickel oxide nanostructures on nickel foam and nickel mesh for a targeted energy storage application. Journal of Energy Storage, 2022, 47, 103658.	3.9	21
3607	Hierarchically nanostructured 1D-2D flowerlike copper sulfide electrode for high-performance supercapacitor application by one-pot synthetic procedure. Applied Surface Science, 2022, 578, 152086.	3.1	7
3608	Material Nanoarchitectonics of Functional Polymers and Inorganic Nanomaterials for Smart Supercapacitors. Small, 2022, 18, e2102397.	5.2	22
3609	Evaluation of a 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid-Based Electrolyte and Its Performance in an Electrochemical Double-Layer Capacitor. Journal of Electronic Materials, 2022, 51, 793-802.	1.0	0
3610	Simple fabrication of Co ₃ O ₄ nanoparticles on N-doped laser-induced graphene for high-performance supercapacitors. RSC Advances, 2021, 11, 38547-38554.	1.7	10
3611	Viologens: a versatile organic molecule for energy storage applications. Journal of Materials Chemistry A, 2021, 9, 27215-27233.	5.2	38
3612	Polyaniline/carbon nanotube composite supercapacitor electrodes synthesized by a microwave-plasma polymerization. AIP Conference Proceedings, 2021, , .	0.3	1
3613	Nano Carbon/Vertical Graphene/MnO ₂ Nanosheets Composite Particles for Highâ€Performance Supercapacitors. Energy Technology, 2022, 10, 2100884.	1.8	13
3614	Insight into defect-engineered gallium oxynitride nanoparticle-based electrodes with improved electrochemical performance for supercapacitors. Electrochimica Acta, 2022, 404, 139733.	2.6	6
3615	Ion-pore size match effects and high-performance cucurbit[8]uril-carbon-based supercapacitors. Electrochimica Acta, 2022, 405, 139827.	2.6	9
3616	Phase and morphology change of NiCo hydroxides with controlled solvothermal synthesis for high-performance hybrid supercapacitors. Applied Clay Science, 2022, 217, 106408.	2.6	8

#	Article	IF	Citations
3617	Ion transport from water-in-salt electrolyte through porosity of hierarchical porous carbons unraveled by solid-state NMR. Electrochimica Acta, 2022, 404, 139716.	2.6	4
3618	3D nitrogen-doped Ti3C2Tx/rGO foam with marco- and microporous structures for enhance supercapacitive performance. Electrochimica Acta, 2022, 404, 139752.	2.6	9
3619	Synthesis and Electrochemical Characterization of NiCo(_2)S(_4) Nanosheets/reduced Graphene Oxide for Energy Storage Applications. Communications in Physics, 2020, 30, 399.	0.0	0
3620	High Yield Design of Mesoporous Tetrakaidecahedron-Like Îʿ-Fe ₂ O ₃ Nanocrystals with Enhanced Supercapacitive Performance. SSRN Electronic Journal, 0, , .	0.4	0
3621	Synthesis and Electrochemical Properties of \hat{I}_{\pm} and \hat{I}_{2} Modifications of MnO ₂ for Supercapacitors Application. Journal of Nano Research, 0, 71, 111-119.	0.8	0
3622	Snow crystal-like structure of NiSe as a binder-free electrode for high-performance hybrid supercapacitor. Journal of Materials Science, 2022, 57, 9955-9970.	1.7	16
3623	Extraction of unburned carbon from coal fly ash. , 2022, , 403-449.		1
3624	Ammonium nickelâ€cobalt phosphate nanoflowers on highly conductive carbon fibers as an electrode material for enhanced electrochemical performance supercapacitors. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	4
3625	A Cu(II) Metal Organic Framework with a Tetranuclear Core: Structure, Magnetism, and Supercapacitor Activity. Crystal Growth and Design, 2022, 22, 1172-1181.	1.4	5
3626	Uniquely Designed Tungsten Oxide Nanopetal Decorated Electropsun PAN Nanofiber for a Flexible Supercapacitor with Ultrahigh Rate Capability and Cyclability. ACS Applied Energy Materials, 2022, 5, 1767-1780.	2.5	9
3627	Biomass-Derived Graphene-Based Materials Embedded with Onion-Like Carbons for High Power Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 010509.	1.3	23
3628	Energized Composites for Electric Vehicles: A Dual Function Energyâ€6toring Supercapacitorâ€Based Carbon Fiber Composite for the Body Panels. Small, 2022, 18, e2107053.	5.2	17
3629	Ultrahigh-power supercapacitors from commercial activated carbon enabled by compositing with carbon nanomaterials. Electrochimica Acta, 2022, 403, 139728.	2.6	11
3630	Hydrothermally synthesized N and S co-doped mesoporous carbon microspheres from poplar powder for supercapacitors with enhanced performance. Advanced Composites and Hybrid Materials, 2022, 5, 2306-2316.	9.9	13
3631	Hybrid Carbon Nanofibers Derived from MXene Nanosheets and Aromatic Poly(ether amide) for Selfâ€ s tanding Electrochemical Energy Storage Materials. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
3632	Cellulose-based composite carbon nanofibers. , 2022, , 159-174.		0
3633	Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor. Electrochimica Acta, 2022, 403, 139692.	2.6	5
3634	Electrochemical deposition of Indium(III) hydroxide nanostructures for novel battery-like capacitive materials. Journal of Energy Storage, 2022, 45, 103678.	3.9	10

#	Article	IF	CITATIONS
3635	Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer using an Oil Droplet. Advanced Functional Materials, 2022, 32, .	7.8	20
3636	Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications. Energy and Environmental Science, 2022, 15, 1156-1171.	15.6	74
3637	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	4.6	5
3638	High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. Journal of Power Sources, 2022, 524, 231102.	4.0	17
3639	Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance. Journal of Colloid and Interface Science, 2022, 613, 244-255.	5.0	22
3640	Engineered phase of nickel sulfides inside hairy hollow fibers towards high-performance anodes for flexible potassium ion hybrid capacitors. Journal of Materials Chemistry A, 2022, 10, 5569-5579.	5.2	10
3641	Porous Architecture of Ni substituted ZnMn2O4 nanospheres as an electrode material for supercapacitor applications. Physica B: Condensed Matter, 2022, 633, 413767.	1.3	10
3642	A survey of hybrid energy devices based on supercapacitors. Green Energy and Environment, 2023, 8, 972-988.	4.7	33
3643	NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 49, 104176.	3.9	12
3644	Green synthesis of reduced graphene oxide using Plectranthus amboinicus leaf extract and its supercapacitive performance. Bulletin of Materials Science, 2022, 45, 1.	0.8	4
3646	Ionic liquid surfactant-derived carbon micro/nanostructures toward application of supercapacitors. Inorganic Chemistry Frontiers, 2022, 9, 1609-1621.	3.0	5
3647	Theory-augmented informatics of ionic liquid electrolytes for co-design with nanoporous electrode materials. Nanoscale, 2022, 14, 4922-4928.	2.8	2
3648	Development of Perovskite Based Electrode Materials for Application in Electrochemical Supercapacitors: Present Status and Future Prospects. Asian Journal of Chemistry, 2022, 34, 497-507.	0.1	1
3649	ĐĐ»ĐμаÑ,Ñ€Đ¾ĐƊ½Ñ‹Đ¹ Đ¼Đ°Ñ,ĐμÑ€Đ,ал ĐƊ»Ñ•ÑÑƒĐ¿ĐμÑ€ĐºĐ¾Đ½ĐƊμĐ½ÑаÑ,Đ¾Ñ€Đ¾Đ² Ε	0¹⁄2а Đ³⁄4	ÑÐð/2Ð3⁄4Ð ² E
3650	Fabrication of an ultra-stable composite electrode material of La ₂ O ₃ /Co ₃ O ₄ /graphene on nickel foam for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 7202-7211.	1.4	2
3651	Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chemistry, 2022, 24, 3864-3894.	4.6	97
3652	Polymerization of pyrrole induced by pillar[5]arene functionalized graphene for supercapacitor electrode. Chinese Chemical Letters, 2022, 33, 4846-4849.	4.8	20
3653	Metalâ€Organicâ€Framework as Novel Electrode Materials for Hybrid Battery upercapacitor Applications. ChemElectroChem, 2022, 9, .	1.7	17

#	Article	IF	CITATIONS
3654	Delafossite CuCrO2 nanoparticles as possible electrode material for electrochemical supercapacitor. Ceramics International, 2022, 48, 16667-16676.	2.3	17
3655	Ionic liquids in conducting nanoslits: how important is the range of the screened electrostatic interactions?. Journal of Physics Condensed Matter, 2022, 34, 26LT01.	0.7	4
3656	Capacitance of Carbon Nanotube/Graphene Composite Electrodes with [BMIM ⁺][BF ₄ [–]]/Acetonitrile: Fixed Voltage Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2022, 126, 5822-5837.	1.5	10
3658	Coherent V4+-rich V2O5/carbon aerogel nanocomposites for high performance supercapacitors. Science China Materials, 2022, 65, 1797-1804.	3.5	8
3659	Heteroatom-doped reduced graphene oxide integrated with nickel-cobalt phosphide for high-performance asymmetric hybrid supercapacitors. Materials Today Nano, 2022, 18, 100195.	2.3	11
3660	Activated carbon fibers derived from natural cattail fibers for supercapacitors. Carbon Letters, 2022, 32, 907-915.	3.3	21
3661	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	1.2	15
3662	Significant Enhancement in the Power Density of Micro-Supercapacitors by the In Situ Growth of TiN/TiO <i>_x</i> N <i>_y</i> -Laminated Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 3614-3622.	3.2	4
3663	Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Crystals, 2022, 12, 389.	1.0	13
3664	Design of hydroxylated MnO2 nano-bricks for high-performance supercapacitors. Materials Today: Proceedings, 2022, , .	0.9	Ο
3666	Hierarchical CuCo Carbonate Hydroxide Nanowires@FeCo‣ayered Double Hydroxide Hexagonal Nanosheets of Penetrating Architecture for Highâ€Performance Asymmetric Supercapacitor. Batteries and Supercaps, 2022, 5, .	2.4	12
3667	Fe2O3/nitrogen-doped carbon nanotube composites as positive electrode for high-performance asymmetric supercapacitors. Ionics, 2022, 28, 2943-2955.	1.2	2
3668	Electrode Material for Supercapacitors Based on Products of Solid Phase Pyrolysis of Metal-Phthalocyanines. Journal of Contemporary Physics, 2022, 57, 76-80.	0.1	1
3669	Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces, 2022, 14, 16800-16808.	4.0	9
3670	Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67, 1145-1153.	4.3	23
3671	Synthesis and Electrochemical Properties of Lignin-Derived High Surface Area Carbons. Surfaces, 2022, 5, 265-279.	1.0	2
3672	Efficient method for synthesizing graphene materials applied in lithium-ion capacitors with high performance. Ionics, 0, , 1.	1.2	1
3673	High capacitance of polypyrrole hydrogel electrode synthesized by polymerization of conjugated pyrrole salt. Electrochimica Acta, 2022, 412, 140108.	2.6	9

		CITATION R	EPORT	
#	Article		IF	CITATIONS
3674	Ion-plus salinity gradient flow Battery. Chemical Engineering Science, 2022, 253, 117580).	1.9	5
3675	High-mass-density nanographene frameworks for compact capacitive energy storage. Jou Sources, 2022, 529, 231266.	rnal of Power	4.0	3
3676	Self-supported electrode based on two-dimensional NiPS3 for supercapacitor application. Colloid and Interface Science, 2022, 616, 401-412.	. Journal of	5.0	13
3677	Improved supercapacitor performance based on sustainable synthesis using chemically ac porous carbon. Journal of Alloys and Compounds, 2022, 906, 164287.	ctivated	2.8	12
3678	Ultra-high energy stored into multi-layered functional porous carbon tubes enabled by hig intercalated pseudocapacitance. Carbon, 2022, 192, 153-161.	şh-rate	5.4	7
3679	Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacito nanodiscs thickness influences electrochemical performance. Journal of Energy Storage, 2 104329.		3.9	6
3680	One pot solvothermal synthesis of bimetallic copper iron sulfide (CuFeS2) and its use as material in supercapacitor applications. Applied Surface Science Advances, 2022, 9, 1002		2.9	8
3681	Facile synthesis of hierarchical core-shell heterostructured NiCo2O4@MnMoO4 nanoshe arrays on nickel foam for high-performance asymmetric supercapacitors. Journal of Energ 2022, 51, 104602.		3.9	8
3682	From salt-filled ZIF-8 to open-door nanoporous carbon with optimized pore system for electrochemical supercapacitor with enhanced energy density. Journal of Energy Storage, 2022, 51, 104421.		3.9	7
3683	Ag nanoparticles-decorated hierarchical porous carbon from cornstalk for high-performance supercapacitor. Journal of Energy Storage, 2022, 51, 104364.		3.9	12
3684	Unveiling the promotion of intermediates transport kinetics on the N/S co-doping 3D strutitanium carbide aerogel for high-performance supercapacitors. Journal of Colloid and InterScience, 2022, 618, 161-172.		5.0	8
3685	A sustainable and foldable supercapacitor made with electrodes of recycled soda-label/graphene/ZnO:Ca and its mechanism for the charge storage. Journal of Energy 2022, 51, 104601.	Storage,	3.9	10
3686	Producing Electrodes for Innovative Power Sources by Thin-Film Technology. Russian Eng Research, 2021, 41, 1175-1178.	ineering	0.2	1
3687	Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Electrodes for Selective Detection of Biochemical Trace Elements. Polymers, 2022, 14, 31	Graphite 	2.0	6
3688	Large-Pore Ordered Mesoporous Turbostratic Carbon Films Prepared Using Rapid Therma for High-Performance Micro-pseudocapacitors. ACS Applied Materials & 2 61027-61038.	l Annealing 2021, 13,	4.0	10
3689	Oxygenâ€Ðeficient Metal Oxides for Supercapacitive Energy Storage: From Theoretical C Structural Regulation and Utilization. Advanced Energy and Sustainability Research, 2022	alculation to 2, 3, .	2.8	5
3690	Coupling High Rate Capability and High Capacity in an Intercalation-Type Sodium-Ion Hyb Anode Material of Hydrated Vanadate via Interlayer-Cation Engineering. ACS Applied Mat Interfaces, 2022, 14, 17547-17559.		4.0	4
3691	Recent advances in solidâ€state supercapacitors: From emerging materials to advanced a International Journal of Energy Research, 2022, 46, 10389-10452.	applications.	2.2	16

#	Article	IF	CITATIONS
3692	One-Dimensional Nanoscale Si/Co Based on Layered Double Hydroxides towards Electrochemical Supercapacitor Electrodes. Nanomaterials, 2022, 12, 1404.	1.9	5
3693	Effects of Valence States of Working Cations on the Electrochemical Performance of Sodium Vanadate. ACS Applied Materials & Interfaces, 2022, 14, 19714-19724.	4.0	2
3694	High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104318.	2.7	10
3695	Recent trend of CeO2-based nanocomposites electrode in supercapacitor: A review on energy storage applications. Journal of Energy Storage, 2022, 50, 104643.	3.9	69
3696	Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. Journal of Colloid and Interface Science, 2022, 621, 169-179.	5.0	9
3697	Charge storage mechanism in vanadium telluride/carbon nanobelts as electroactive material in an aqueous asymmetric supercapacitor. Journal of Colloid and Interface Science, 2022, 621, 110-118.	5.0	24
3698	Mathematical modeling of electrothermal couple stress nanofluid flow and entropy in a porous microchannel under injection process. Applied Mathematics and Computation, 2022, 426, 127110.	1.4	8
3702	Designing supercapacitor electrolyte <i>via</i> ion counting. Energy and Environmental Science, 2022, 15, 2948-2957.	15.6	17
3703	Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors. RSC Advances, 2022, 12, 12590-12599.	1.7	5
3704	Two-dimensional layered nickel-based coordination polymer for supercapacitive performance. Sustainable Energy and Fuels, 0, , .	2.5	11
3705	Poly(methyl methacrylate) Nanocomposite Foams Reinforced with Carbon and Inorganic Nanoparticles—State-of-the-Art. Journal of Composites Science, 2022, 6, 129.	1.4	8
3706	Quadrangular Prism Porous Shells Constructed by Parallelly Interconnected and Latticeâ€Strained NiCoP Nanoflakes for Maximized Energy Storage. Advanced Materials Interfaces, 0, , 2200590.	1.9	2
3707	Chemical Production of Graphene Oxide with High Surface Energy for Supercapacitor Applications. Journal of Carbon Research, 2022, 8, 27.	1.4	8
3708	Crystal structure controlled synthesis of tin oxide nanoparticles for enhanced energy storage activity under neutral electrolyte. Journal of Materials Science: Materials in Electronics, 2022, 33, 13668-13683.	1.1	5
3709	Preparation of Porous Fe–N–C Composite from Cotton Straw and Its Supercapacitor Performance. Journal of the Electrochemical Society, 2022, 169, 053505.	1.3	3
3710	Lignin Isolated from Poplar Wood for Porous Carbons as Electrode for High-Energy Renewable Supercapacitor Driven by Lignin/Deep Eutectic Solvent Composite Gel Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 6393-6400.	2.5	22
3711	In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15, 7759-7768.	5.8	25
3712	Exploring the chemistry of "Organic/water-in-salt―electrolyte in graphene-polypyrrole based high-voltage (2.4V) microsupercapacitor. Electrochimica Acta, 2022, 421, 140499.	2.6	12

#	Article	IF	CITATIONS
3713	Elementâ€Ðoped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740.	5.2	43
3714	Coâ€doping Graphene with B and N Heteroatoms for Application in Energy Conversion and Storage Devices. ChemNanoMat, 2022, 8, .	1.5	8
3715	In situ deposition of conducting polymer on metal organic frameworks for high performance hybrid supercapacitor electrode materials. Journal of Energy Storage, 2022, 52, 104729.	3.9	18
3716	Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage. Journal of Colloid and Interface Science, 2022, 622, 327-335.	5.0	16
3717	Novel thiophene-based donor–acceptor scaffolds as cathodes for rechargeable aqueous zinc-ion hybrid supercapacitors. Chemical Communications, 2022, 58, 6689-6692.	2.2	6
3719	Biochar electrocatalysts for clean energy applications. , 2022, , 333-343.		0
3721	A Study on Pre-Oxidation of Petroleum Pitch-Based Activated Carbons for Electric Double-Layer Capacitors. Molecules, 2022, 27, 3241.	1.7	2
3722	V2O5 nano sheets assembled on nitrogen doped multiwalled carbon nanotubes/carboxy methyl cellulose composite for two-electrode configuration of supercapacitor applications. Ceramics International, 2022, 48, 29247-29256.	2.3	20
3723	An overview of patents and recent development in flexible supercapacitors. Journal of Energy Storage, 2022, 52, 104887.	3.9	22
3724	2D Ti3C2@MoO3 composite as an efficient anode material for high-performance supercapacitors. Materials Research Bulletin, 2022, 153, 111902.	2.7	14
3725	Low-temperature carbonization of p-Phenylenediamine guided by an iron alginate template for lithium-ion capacitors. New Journal of Chemistry, 2022, 46, 12229-12236.	1.4	2
3726	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	2.6	11
3727	High specific surface area triphenylamine-based covalent organic framework/polyaniline nanocomposites for supercapacitor application. High Performance Polymers, 0, , 095400832211012.	0.8	0
3728	The Semicoherent Interface and Vacancy Engineering for Constructing Ni(Co)Se ₂ @Co(Ni)Se ₂ Heterojunction as Ultrahighâ€Rate Batteryâ€Type Supercapacitor Cathode. Advanced Functional Materials, 2022, 32, .	7.8	57
3729	Electrochemical and physical properties of pulverized graphite for use in electric double layer capacitors. , 2022, 1, 50-58.		0
3730	Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. Journal of Energy Storage, 2022, 52, 104938.	3.9	63
3731	Sulfides and selenides as electrodes for supercapacitor. , 2022, , 733-757.		0
3732	Review—The Synthesis and Characterization of Recent Two-Dimensional Materials for Energy Storage Applications. ECS Journal of Solid State Science and Technology, 2022, 11, 063015.	0.9	2

#	Article	IF	CITATIONS
3733	Electrodeposition of polyaniline on high electroactive indium tin oxide nanoparticles-modified fluorine doped tin oxide electrode for fabrication of high-performance hybrid supercapacitor. Arabian Journal of Chemistry, 2022, 15, 104058.	2.3	28
3734	Fast Activation of Graphene with a Highly Distorted Surface and Its Role in Improved Aqueous Electrochemical Capacitors. ACS Applied Energy Materials, 2022, 5, 8004-8014.	2.5	6
3735	Sustainable supercapacitor electrodes based on preagglomerated carbon onions and a green binder. Carbon, 2022, 197, 555-562.	5.4	16
3736	Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material. Fuel, 2022, 325, 124843.	3.4	14
3737	Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Progress in Materials Science, 2022, 130, 100995.	16.0	25
3738	Conjugated polymer-based electrodes for flexible all-solid-state supercapacitors. , 2022, , 243-281.		0
3739	Understanding the effects of electrode meso-macropore structure and solvent polarity on electric double layer capacitors based on a continuum model. Chinese Journal of Chemical Engineering, 2022, 50, 423-434.	1.7	1
3740	A Conjugately Configured Supercapacitor with Suppressed Self-Discharge by Coupling Pairs of Presodiated Manganese Oxides. Energy & Fuels, 2022, 36, 7140-7146.	2.5	5
3741	Engineering of Co/Co3O4 core/shell nano-heterostructures for high performance supercapacitor electrodes. Materials Today: Proceedings, 2022, , .	0.9	2
3742	Partially carbonized tungsten oxide as electrode material for asymmetric supercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 2039-2048.	1.2	3
3743	Elucidating the Charge Storage Mechanism on Ti ₃ C ₂ MXene through In Situ Raman Spectroelectrochemistry. ChemElectroChem, 2022, 9, .	1.7	13
3744	Investigation of copper/cobalt <scp>MOFs</scp> nanocomposite as an electrode material in supercapacitors. International Journal of Energy Research, 2022, 46, 17404-17415.	2.2	15
3745	Fabrication of Zn-Cu-Ni Ternary Oxides in Nanoarrays for Photo-Enhanced Pseudocapacitive Charge Storage. Nanomaterials, 2022, 12, 2457.	1.9	1
3746	Co-Precipitation Synthesis of Co3[Fe(CN)6]2·10H2O@rGO Anode Electrode for Lithium-Ion Batteries. Materials, 2022, 15, 4705.	1.3	3
3747	A review on challenges to remedies of MnO2 based transition-metal oxide, hydroxide, and layered double hydroxide composites for supercapacitor applications. Materials Today Communications, 2022, 32, 104033.	0.9	44
3748	Facile synthesis of N, S co-doped hierarchical porous carbon/MnO2 composites for supercapacitor electrodes via sodium alginate crosslinking. Journal of Alloys and Compounds, 2022, 923, 166333.	2.8	13
3749	Entropy Generation of Electrothermal Nanofluid Flow Between Two Permeable Walls Under Injection Process. Journal of Nanofluids, 2022, 11, 714-727.	1.4	1
3750	Controlled synthesis of the state-of-the-art quasi one-dimensional graphene nanostructure for high performance supercapacitor. Synthetic Metals, 2022, 289, 117131.	2.1	7

#	Article	IF	CITATIONS
3751	Supercapacitor and battery performances of multi-component nanocomposites: Real circuit and equivalent circuit model analysis. Journal of Energy Storage, 2022, 53, 105093.	3.9	15
3752	Hydrothermal preparation of MnNiO3/Ni6MnO8 nanospheres on nickel foam as a high stability electrode material for supercapacitor. Journal of Alloys and Compounds, 2022, 924, 166490.	2.8	3
3753	Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid supercapacitor with high volumetric energy density. Carbon, 2022, 198, 252-263.	5.4	7
3754	Thermal behavior analysis of lithium-ion capacitors at transient high discharge rates. Journal of Energy Storage, 2022, 53, 105208.	3.9	6
3755	Spherical spinel NiMn2O4 in-situ grown on MWCNT via solvothermal synthesis for supercapacitors. Diamond and Related Materials, 2022, 128, 109266.	1.8	13
3756	Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor. Fuel, 2022, 329, 125398.	3.4	24
3757	Bioinspired Sustainable Sheetlike Porous Carbon Derived from <i>Cassia fistula</i> Flower Petal as an Electrode for High-Performance Supercapacitors. Energy & Fuels, 2022, 36, 9337-9346.	2.5	10
3758	Preparation of Manganese Dioxide Supercapacitors by Secondary Construction of Three-Dimensional Substrates and Ion Embedding. Electronic Materials Letters, 2022, 18, 475-488.	1.0	2
3759	Two-Dimensional Heterostructure of PPy/CNT–E. coli for High-Performance Supercapacitor Electrodes. Materials, 2022, 15, 5804.	1.3	2
3760	Enhancing the capacitive performance of microporous materials with protic ionic liquids. Journal of Molecular Liquids, 2022, 365, 120161.	2.3	1
3761	Biosourced quinones for high-performance environmentally benign electrochemical capacitors via interface engineering. Communications Chemistry, 2022, 5, .	2.0	12
3762	Functional MXeneâ€Based Materials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2022, 34, .	11.1	42
3763	Selectively designed hierarchical copper-cobalt oxysulfide nanoarchitectures for high-rate hybrid supercapacitors. Journal of Alloys and Compounds, 2022, 926, 166814.	2.8	6
3764	AgI/g-C3N4 nanocomposite as electrode material for supercapacitors: Comparative study for its efficiency in three different aqueous electrolytes. Electrochimica Acta, 2022, 430, 141052.	2.6	32
3765	βâ€Cyclodextrin Anchor NiCo ₂ S ₄ on Graphene to Enhance Electrochemical Performance of Supercapacitor. Energy Technology, 2022, 10, .	1.8	5
3766	Preparation of Spinel Form Co ₃ O ₄ and CoO ₂ Thin Film at Low Temperature by Electrochemical Method as a Thin Film Oxide Layer. ECS Journal of Solid State Science and Technology, 2022, 11, 081014.	0.9	3
3767	Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes. Carbon Letters, 2022, 32, 1481-1505.	3.3	17
3768	Photo-assisted charging of carbon fiber paper-supported CeO2/MnO2 heterojunction and its long-lasting capacitance enhancement in dark. Journal of Advanced Ceramics, 2022, 11, 1735-1750.	8.9	9

#	Article	IF	CITATIONS
3769	Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Materials Today Sustainability, 2022, 19, 100214.	1.9	41
3770	Single step assemble of cerium oxide embellished on layered graphene oxide: An efficacious electrode for supercapacitors and hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 284, 115924.	1.7	3
3771	Spray pyrolysis: Approaches for nanostructured metal oxide films in energy storage application. Journal of Energy Storage, 2022, 54, 105387.	3.9	11
3772	A molten salt route to binder-free CeO2 on carbon cloth for high performance supercapacitors. Journal of Energy Storage, 2022, 55, 105451.	3.9	4
3773	Electrospun NiMoO4-encapsulated carbon nanofibers electrodes for advanced supercapacitors. Journal of Energy Storage, 2022, 55, 105490.	3.9	11
3774	Rice husk derived capacitive carbon prepared by one-step molten salt carbonization for supercapacitors. Journal of Energy Storage, 2022, 55, 105437.	3.9	19
3775	Simple direct fabrication of manganese oxide 3-D electrodes on Ni foam via thermal decomposition of manganese Formate-Amine ink for supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115962.	1.7	1
3776	Sulfur-deficient flower-like zinc cobalt sulfide microspheres as an advanced electrode material for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 628, 631-641.	5.0	15
3777	Anodic TiO2 nanotubes: A promising material for energy conversion and storage. Applied Materials Today, 2022, 29, 101613.	2.3	11
3778	Construction and application in solid-state asymmetric supercapacitors of gladiolus-like NiSe/CoSe/Ni3Se2 hierarchical nanocomposite with synergistic structural advantages. Journal of Alloys and Compounds, 2022, 925, 166696.	2.8	7
3779	Synthesis of amorphous Nickel-Cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additive. Chemical Engineering Journal, 2023, 451, 138613.	6.6	18
3780	Surface and diffusive capacity controlled electrochemistry in nickel boride/nickel borate. Journal of Industrial and Engineering Chemistry, 2022, 116, 351-358.	2.9	3
3781	Chemically Synthesized Iron-Oxide-Based Pure Negative Electrode for Solid-State Asymmetric Supercapacitor Devices. Materials, 2022, 15, 6133.	1.3	9
3782	Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance. Science China Materials, 2023, 66, 577-586.	3.5	7
3783	Rethinking residential energy storage: GHG minimization potential of a Carbon Reinforced Concrete facade with function integrated supercapacitors. Building and Environment, 2022, 224, 109520.	3.0	3
3784	Insights into mixed metal sulfides of MnxSn1-xS2 for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2022, 923, 116819.	1.9	7
3785	The performance of a new electrolyte for organic supercapacitors: Poly(hydridocarbyne). Journal of the Indian Chemical Society, 2022, 99, 100732.	1.3	0
3786	Calorimetry can detect the early onset of hydrolysis in hybrid supercapacitors with aqueous electrolytes. Journal of Power Sources, 2022, 548, 232069.	4.0	1

# 3787	ARTICLE Controllable synthesis of hierarchically porous polyaniline/MnO2 composite with wide potential window towards symmetric supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130199.	IF 2.3	CITATIONS 8
3788	Layered (NH4)2V10O25·8H2O coupled with Two-Electron iodide redox achieving exponential energy density enhancement of NH4+ supercapacitors. Applied Surface Science, 2022, 605, 154688.	3.1	5
3789	High-surface-area activated carbon from pine cones for semi-industrial spray deposition of supercapacitor electrodes. Nanoscale Advances, 2022, 4, 4689-4700.	2.2	8
3790	Facile design and synthesis of a nickel disulfide/zeolitic imidazolate framework-67 composite material with a robust cladding structure for high-efficiency supercapacitors. RSC Advances, 2022, 12, 23912-23921.	1.7	4
3791	Nanostructured materials for electrochemical capacitors. , 2022, , .		0
3792	Nature Rubber Latex Templated Ti3c2t X Mxene Foam for Low Cost Producing High Performance Electrode. SSRN Electronic Journal, 0, , .	0.4	0
3793	Printed Electronics Applications: Energy Conversion and Storage Devices. , 2022, , 445-515.		0
3794	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
3795	Binder-free Mn–V–Sn oxyhydroxide decorated with metallic Sn as an earth-abundant supercapattery electrode for intensified energy storage. Sustainable Energy and Fuels, 2022, 6, 4787-4799.	2.5	8
3796	Rationally designed N/P dual-doped ordered mesoporous carbon for supercapacitors. Journal of Materials Science, 2022, 57, 17380-17397.	1.7	2
3797	Recent Progress in Aqueous Ammonium-Ion Batteries. ACS Omega, 2022, 7, 33732-33748.	1.6	12
3798	Enhanced the electrochemical performance and stability of supercapattery device with carbon nanotube/cobaltâ€manganese sulfideâ€based composite electrode material. International Journal of Energy Research, 2022, 46, 24355-24367.	2.2	26
3799	Structure-Integrated Thin-Film Supercapacitor as a Sensor. Sensors, 2022, 22, 6932.	2.1	2
3800	Charge Carriers for Aqueous Dualâ€lon Batteries. ChemSusChem, 2023, 16, .	3.6	4
3801	Binder-Free Zinc–Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors. Nanomaterials, 2022, 12, 3154.	1.9	7
3802	<scp>2Dâ€TMDs</scp> based electrode material for supercapacitor applications. International Journal of Energy Research, 2022, 46, 22336-22364.	2.2	37
3803	Preparation of N-doped porous carbon nanofibers derived from their phenolic-resin-based analogues for high performance supercapacitor. Journal of Electroanalytical Chemistry, 2022, 925, 116869.	1.9	4
3804	Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Applied Surface Science, 2023, 608, 155215.	3.1	15

#	Article	IF	CITATIONS
3805	Efficient electrochemical performance of nitrogen-doped porous activated carbon for high energy symmetric pouch cell supercapacitors. Journal of Energy Storage, 2022, 55, 105698.	3.9	7
3806	Effects of pyridinic N of carboxylic acid on the polymerization of polyaniline and its supercapacitor performances. Journal of Energy Storage, 2022, 55, 105740.	3.9	16
3807	Experimental and DFT studies on spinel NiMn2O4 flower derived from bimetallic MOF as an efficient electrode for next-generation supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130244.	2.3	5
3808	Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials, 2022, 12, 3708.	1.9	54
3809	NiCo ₂ O ₄ @V ₂ O ₅ nanobelts as electrode materials for efficient electrochemical charge storage. Nano Futures, 0, , .	1.0	0
3810	Systematic study on electrochemical performances of Co–Ni layered double hydroxides grown directly on stainless steel wire mesh. Journal of Materials Science: Materials in Electronics, 2022, 33, 25768-25786.	1.1	1
3811	Flexible Carbon Dotsâ€Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	49
3812	Layer-by-Layer Heterostructure of MnO2@Reduced Graphene Oxide Composites as High-Performance Electrodes for Supercapacitors. Membranes, 2022, 12, 1044.	1.4	5
3813	Urea-Assisted Nickel-Manganese Phosphate Composite Microarchitectures with Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach. Energy & Fuels, 2022, 36, 13356-13369.	2.5	4
3814	All-solid-state printable supercapacitors based on bimetallic sulfide NiCo2S4 with in-plane interdigital electrode architecture. Journal of Materials Science, 2022, 57, 19381-19395.	1.7	3
3815	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	0.7	3
3816	Applications of Carbon Dots in Electrochemical Energy Storage. ACS Applied Electronic Materials, 2022, 4, 5144-5164.	2.0	8
3817	Optimization of preparation of lignite-based activated carbon for high-performance supercapacitors with response surface methodology. Journal of Energy Storage, 2022, 56, 105913.	3.9	17
3818	Green synthesis and electrochemical properties of A3(PO4)2 (A = Mn, Zn, and Co) hydrates for supercapacitors with long-term cycling stability. Journal of Power Sources, 2022, 552, 232245.	4.0	4
3819	Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews, 2023, 475, 214910.	9.5	41
3820	Surface fractality and crystallographic texture properties of mixed and mono metallic MOFs as a new concept for energy storage devices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130450.	2.3	2
3821	Effect of electronic structure modulation and layer spacing change of NiAl layered double hydroxide nanoflowers caused by cobalt doping on supercapacitor performance. Journal of Colloid and Interface Science, 2023, 630, 973-983.	5.0	25
3822	All-in-one structured textile energy storage electrodes prepared via Janus bond assembly-induced electrodeposition. Chemical Engineering Journal, 2023, 454, 140150.	6.6	2

ARTICLE

IF CITATIONS

3823	ĐžÑĐ¾Đ±ĐµĐ½Đ½Đ¾ÑÑ,Đ, Đ²Đ»Đ,ÑĐ½Đ,Ñ•ÑƒĐ³Đ»ĐµÑ€Đ¾ĐĐ½Ñ‹Ñ… Đ½Đ°Đ½Đ¾Ñ,Ñ€ÑƒĐ±Đ¾Đ	⁰£Đ,₽01,∕øĐ°Đ	¹ ⁄2 Ð ¾Ð2о
3825	High Power-Density WO3-x–Grafted Corannulene-Modified graphene nanostructures for Micro-Supercapacitors. Journal of Electroanalytical Chemistry, 2023, 928, 116990.	1.9	1
3826	Amorphous Ni-Co binary hydroxide with super-long cycle life and ultrahigh rate capability as asymmetric supercapacitors. Nanotechnology, 0, , .	1.3	1
3827	Exploring the synergy of binder free MoWS2@Ag as electrode materials for hybrid supercapacitors. Journal of Energy Storage, 2022, 56, 105925.	3.9	15
3828	Fabrication of NiCo2Se4@ NiWO4 nanocomposites for high performance supercapacitor applications. Journal of Energy Storage, 2022, 56, 106111.	3.9	6
3829	Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 53, 100555.	5.6	21
3830	A Review on the Application of Cobalt-Based Nanomaterials in Supercapacitors. Nanomaterials, 2022, 12, 4065.	1.9	10
3831	Effects of diffusive Reynolds number on electro-osmotic pulsating nanofluid flow. Physics of Fluids, 2022, 34, .	1.6	6
3832	Metal Sulfides and Phosphides for Supercapacitors. , 2022, , 1-32.		0
3833	Fabrication of honeycomb-structured composite material of Pr ₂ O ₃ , Co ₃ O ₄ , and graphene on nickel foam for high-stability supercapacitors. New Journal of Chemistry, 2022, 47, 211-219.	1.4	2
3834	Construction of shrimp shell (SS) waste-based carbon electrode-gel polymer electrolyte (GPE) system for flexible symmetric supercapacitors. Journal of Materials Chemistry A, 2023, 11, 878-890.	5.2	4
3835	Facile synthesis of dual-morphological MgCo ₂ O ₄ with remarkable performance for pseudosupercapacitors. Materials Advances, 0, , .	2.6	1
3836	High-performance solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/VS2 cathode and Fe3O4@rGO hydrogel anode. Electrochimica Acta, 2023, 438, 141572.	2.6	9
3837	Widening the limit of capacitance at high frequency for AC line-filtering applications using aqueous carbon-based supercapacitors. Carbon, 2023, 203, 686-694.	5.4	7
3838	MnO ₂ -based materials for supercapacitor electrodes: challenges, strategies and prospects. RSC Advances, 2022, 12, 35556-35578.	1.7	15
3839	A review on few-layer graphene flakes deposition by kinetic spray process for energy storage devices. AIP Conference Proceedings, 2022, , .	0.3	0
3840	Design of an Internal/External Bicontinuous Conductive Network for High-Performance Asymmetrical Supercapacitors. Molecules, 2022, 27, 8168.	1.7	0
3841	One-Pot In Situ Synthesis of Mn ₃ O ₄ /N-rGO Nanohybrids for the Fabrication of High Cell Voltage Aqueous Symmetric Supercapacitors: An Analysis of Redox Activity of Mn ₃ O ₄ toward Stabilizing the High Potential Window in Salt-in-Water and	2.5	7

#	Article	IF	CITATIONS
3842	Importance of Anion–Anion Pairing for Capacitance of Carbon/Ionic Liquid Interfaces. Journal of Physical Chemistry C, 2022, 126, 20213-20225.	1.5	4
3843	Nanoarchitectonics of eco-friendly nickel oxide nanoplatelets for energy storage. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
3844	Thicknessâ€Independent Capacitive Performance of Holey Ti ₃ C ₂ T <i>_x</i> Film Prepared through a Mild Oxidation Strategy. Small, 2023, 19, .	5.2	9
3845	Improving the Stability of Supercapacitors at High Voltages and High Temperatures by the Implementation of Ethyl Isopropyl Sulfone as Electrolyte Solvent. Advanced Energy Materials, 2023, 13,	10.2	15
3846	Optimising nanoporous supercapacitors for heat-to-electricity conversion. Journal of Molecular Liquids, 2023, 371, 121093.	2.3	4
3847	Facile in-situ synthesis of MnO2-ITO NWs composite for electrochemical supercapacitors. Solid State Ionics, 2022, 388, 116080.	1.3	1
3848	Natural Polymer Template for Low-Cost Producing High-Performance Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 56877-56885.	4.0	11
3849	Novel Interconnected Nickel–Iron Layered Double Hydroxide Nanoweb Structure for Highâ€Performance Supercapacitor Electrodes. Advanced Materials Interfaces, 2023, 10, .	1.9	4
3850	Surfactant-assisted hydrothermal synthesis of CoMn2O4 nanostructures for efficient supercapacitors. Journal of Solid State Electrochemistry, 2023, 27, 785-796.	1.2	3
3851	Supramolecular engineering of cathode materials for aqueous zinc-ion hybrid supercapacitors: novel thiophene-bridged donor–acceptor sp ² carbon-linked polymers. Journal of Materials Chemistry A, 2023, 11, 2718-2725.	5.2	5
3852	Tuning oxygen-containing functional groups of graphene for supercapacitors with high stability. Nanoscale Advances, 2023, 5, 1163-1171.	2.2	16
3853	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 4205-4219.	5.2	10
3854	Best practices for electrochemical characterization of supercapacitors. Journal of Energy Chemistry, 2023, 80, 265-283.	7.1	12
3855	Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. Journal of Power Sources, 2023, 557, 232558.	4.0	32
3856	Microwave-assisted fabrication of SnO2 nanostructures as electrode for high-performance pseudocapacitors. Journal of Energy Storage, 2023, 59, 106358.	3.9	4
3857	Preparation of hierarchical micro-meso porous carbon and carbon nanofiber from polyacrylonitrile/polysulfone polymer via one-step carbonization for supercapacitor electrodes. Electrochimica Acta, 2023, 441, 141827.	2.6	15
3858	A new strategy for the preparation of multi-walled carbon nanotubes/NiMoO4 nanostructures for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2023, 59, 106438.	3.9	24
3859	All layered iron vanadate (FeV3O9.2.1H2O) as electrode for symmetric supercapacitor application in aqueous electrolyte. Journal of Alloys and Compounds, 2023, 938, 168641.	2.8	4

#	Article	lF	CITATIONS
3860	Molecular insights into temperature oscillation of electric double-layer capacitors in charging–discharging cycles. Journal of Power Sources, 2023, 559, 232596.	4.0	5
3861	Multistage Activation of Anthracite Coal-Based Activated Carbon for High-Performance Supercapacitor Applications. Energy & Fuels, 2023, 37, 1327-1343.	2.5	7
3862	Active Carbon-Based Electrode Materials from Petroleum Waste for Supercapacitors. Journal of Carbon Research, 2023, 9, 4.	1.4	2
3863	Graphene based nano-inks for electronic industries. , 2023, , 197-226.		2
3864	Potential impact of smart-hybrid supercapacitors in novel electronic devices and electric vehicles. , 2023, , 795-850.		1
3865	Polymer–metal oxide heterostructures: formation, characteristics and applications. , 2023, , 141-190.		0
3866	High-Entropy Oxides Prepared by Dealloying Method for Supercapacitors. , 2023, 1, 780-789.		2
3867	Fundamentals of supercapacitors. , 2023, , 83-100.		1
3868	Visibly transparent supercapacitors. Journal of Materials Chemistry A, 2023, 11, 4907-4936.	5.2	20
3869	Novel Biogenic Synthesis of Pd/TiO@BC as an electrocatalytic and possible energy storage materials. Ceramics International, 2023, 49, 15874-15883.	2.3	6
3870	Comparison between supercapacitors and other energy storing electrochemical devices. , 2023, , 673-712.		1
3871	Fabrication of ultrahigh-performance asymmetrical supercapacitor with pristine Zeolitic Imidazolate Framework-8 and a redox additive electrolyte. Materials Science in Semiconductor Processing, 2023, 158, 107383.	1.9	12
3872	Energy storage improvement of graphene based super capacitors. Materials Today: Proceedings, 2023, 78, 919-923.	0.9	6
3873	New Parameter Identification Method for Supercapacitor Model. IEEE Access, 2023, 11, 21771-21782.	2.6	3
3874	Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry, 2023, 5, 100885.	0.9	30
3875	Pencil graphite–turned graphene oxide for supercapacitor electrodes. Emergent Materials, 0, , .	3.2	0
3876	Molecular insights into the electric double-layer structure at a polymer electrolyte-electrode interface. Electrochimica Acta, 2023, 446, 142131.	2.6	2
3877	Hierarchical porous carbon with high specific surface area and superb capacitance made from palm shells for supercapacitors. Diamond and Related Materials, 2023, 135, 109852.	1.8	12

#	Article	IF	CITATIONS
3878	Ni3S2/NiSe2 hollow spheres with low bonding energy Ni-Se bonds for excellent lithium-ion charge-discharge stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131122.	2.3	4
3879	Toward better porous carbon-based electrodes by investigation of the viscoelastic properties of carbon suspension. Chemical Engineering Journal, 2023, 463, 142476.	6.6	1
3880	Enhancing quantum capacitance of iron sulfide supercapacitor through defect-engineering: A first-principles calculation. Electrochimica Acta, 2023, 449, 142235.	2.6	3
3881	Synthesis and characterization of polyaniline nanotube supported nanocomposite of RuO2 as electrode material for application in supercapacitor device. Materialia, 2023, 28, 101732.	1.3	1
3882	Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application. Journal of Alloys and Compounds, 2023, 952, 169907.	2.8	4
3883	Facilely prepared nickel‑manganese layered double hydroxide-supported manganese dioxide on nickel foam for aqueous asymmetric supercapacitors with high performance. Journal of Energy Storage, 2023, 65, 107340.	3.9	7
3884	High-valent bimetal Ni2P/Co2P heterostructures induced by Mo doping as an advanced electrode for hybrid supercapacitors. Journal of Alloys and Compounds, 2023, 952, 169985.	2.8	1
3885	Enhancing charge storage of O-doped perovskite fluorides via in-situ electrochemical oxidation for high-performance potassium-ion capacitors. Journal of Materials Science and Technology, 2023, 158, 111-120.	5.6	3
3886	Recent advances and perspectives on graphene-based gels for superior flexible all-solid-state supercapacitors. Journal of Power Sources, 2023, 565, 232916.	4.0	23
3887	Binder-free hybrid cobalt-based sulfide/oxide nanoarrays toward enhanced energy storage performance for hybrid supercapacitors. Journal of Energy Storage, 2023, 63, 106979.	3.9	6
3888	Evaluating the role of current collectors in supercapacitor electrodes with NiCo2O4 nanospheres. Journal of Physics and Chemistry of Solids, 2023, 178, 111347.	1.9	2
3889	Porous Carbon Nanofiber Flexible Membranes via a Bottlebrush Copolymer Template for Enhanced High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2023, 15, 5644-5656.	4.0	2
3890	Stability study of transition metal oxide electrode materials. Journal of Power Sources, 2023, 560, 232710.	4.0	17
3891	Preparation of two-dimensional manganese dioxide nanosheets by stirred media milling and its application as supercapacitor electrode materials. Inorganic Chemistry Communication, 2023, 149, 110440.	1.8	1
3892	Covalent Organic Frameworks for Capacitive Energy Storage: Recent Progress and Technological Challenges. Advanced Materials Technologies, 2023, 8, .	3.0	7
3893	H-CoNiSe2/NC dodecahedral hollow structures for high-performance supercapacitors. Scientific Reports, 2023, 13, .	1.6	4
3894	Evaluation of the Dielectric Constant for Bi1.6Pb0.4Sr2Ca2Cu3-xZnxO Thin Film. Journal of Superconductivity and Novel Magnetism, 2023, 36, 487-491.	0.8	0
3895	Carbon armour with embedded carbon dots for building better supercapacitor electrodes. Nano Research, 2023, 16, 6815-6824.	5.8	13

#	Article	IF	CITATIONS
3896	In-situ-foaming synthesis of cheese-like Fe3S4/Ti3C2T electrode material with both high energy and power density for Al/Zn-ion supercapacitors. Journal of Materials Research and Technology, 2023, 23, 3547-3556.	2.6	4
3897	Hydrothermally synthesized aster flowers of MnCo2O4 for development of high-performance asymmetric coin cell supercapacitor. Journal of Electroanalytical Chemistry, 2023, 932, 117253.	1.9	9
3898	Role of oxygen vacancies and porosity in enhancing the electrochemical properties of Microwave synthesized hematite (α-Fe2O3) nanostructures for supercapacitor application. Vacuum, 2023, 210, 111903.	1.6	8
3899	Tailoring stress-relieved structure for ternary cobalt Phosphoselenide@N/P codoped carbon towards high-performance potassium-ion hybrid capacitors and potassium-ion batteries. Energy Storage Materials, 2023, 57, 180-194.	9.5	11
3900	The Progress and Comprehensive Analysis of Supercapacitors for Alternating Current Line Filtering: A Review. Batteries and Supercaps, 2023, 6, .	2.4	3
3901	Recent developments, challenges and future prospects of magnetic field effects in supercapacitors. Journal of Materials Chemistry A, 2023, 11, 5495-5519.	5.2	18
3902	Coral-Inspired Hierarchical Structure Promotes a Win–Win on Mass Loading and Rate Capability: A Nickel–Cobalt–Zinc–Sulfide@Nickel–Cobalt Layered Double Hydroxide Electrode for a High-Performance Hybrid Supercapacitor. ACS Applied Energy Materials, 2023, 6, 2781-2792.	2.5	6
3903	Hybrid polymer gels for energy applications. Journal of Materials Chemistry A, 2023, 11, 12593-12642.	5.2	10
3904	Exploring the electrochemical characteristics of the nucleobase-template assisted NiCo ₂ O ₄ electrode for supercapacitors. New Journal of Chemistry, 2023, 47, 6235-6245.	1.4	1
3905	Oneâ€Dimensional <i>Ï€</i> â€d Conjugated Coordination Polymer Intercalated MXene Compound for Highâ€Performance Supercapacitor Electrode. Small Methods, 2023, 7, .	4.6	7
3906	Bubble Up Induced Graphene Microspheres for Engineering Capacitive Energy Storage. Advanced Energy Materials, 2023, 13, .	10.2	6
3907	Development of Mesoporous Carbon Composites with Waste Plastics Derived Graphene and MnO ₂ for Supercapacitor Applications. Journal of the Electrochemical Society, 2023, 170, 040518.	1.3	2
3908	Nanostructured Fe-substituted NiCo2O4@NiMnCo-LDH ternary composite as an electrode material for high-performance supercapacitors. Journal of Materials Science, 2023, 58, 4882-4900.	1.7	7
3909	α-NiO/Ni(OH) ₂ /AgNP/F-Graphene Composite for Energy Storage Application. ACS Omega, 2023, 8, 10906-10918.	1.6	1
3910	In-Situ Synthesis Strategy of S-Doped Hierarchical Ni-MOF Nanosheet Supercapacitor Electrodes via Nickle Foam Etching. ACS Applied Energy Materials, 2023, 6, 3789-3798.	2.5	7
3911	AgBTC MOF-Mediated Approach to Synthesize Silver Nanoparticles Decorated on Reduced Graphene Oxide (rGO@Ag) for Energy Storage Applications. ACS Applied Energy Materials, 2023, 6, 9159-9169.	2.5	6
3912	Boosting the crystallinity of novel two-dimensional hexamine dipyrazino quinoxaline-based covalent organic frameworks for electrical double-layer supercapacitors. Materials Chemistry Frontiers, 2023, 7, 2464-2474.	3.2	9
3913	Quinone-based imide conjugated microporous polymer-reductive graphene oxide composite as an efficient electrode for hybrid supercapacitors. New Journal of Chemistry, 0, , .	1.4	Ο

#	Article	IF	CITATIONS
3914	Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth and Design, 2023, 23, 3057-3078.	1.4	9
3915	NiS/MoS ₂ Anchored Multiwall Carbon Nanotube Electrocatalyst for Hydrogen Generation and Energy Storage Applications. ChemNanoMat, 2023, 9, .	1.5	12
3916	Multielement Doped Barium Strontium Titanate Nanomaterials as Capacitors. Journal of Chemistry, 2023, 2023, 1-22.	0.9	1
3917	Theoretical investigation of some transition metal sulfides nanomaterials: CDFT approach. Theoretical Chemistry Accounts, 2023, 142, .	0.5	0
3918	A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	3
3919	The high-efficiency supercapacitor electrodes influencing laser-induced nanomaterials with co-doped Nitrogen and Phosphorous. Materials Today: Proceedings, 2023, , .	0.9	0
3920	On the key role of electrolyte–electrode van der Waals interactions in the simulation of ionic liquids-based supercapacitors. Electrochimica Acta, 2023, 455, 142380.	2.6	5
3921	Recent advances in transition metal phosphide materials: Synthesis and applications in supercapacitors. Nano Materials Science, 2023, , .	3.9	2
3922	Understanding supercapacitive performance of a N-doped vanadium carbide/carbon composite as an anode material in an all pseudocapacitive asymmetric cell. Sustainable Energy and Fuels, 2023, 7, 2613-2626.	2.5	2
3923	Graphene and Graphene-Like Materials Derived from Biomass for Supercapacitor Applications. Green Energy and Technology, 2023, , 223-243.	0.4	0
3931	A review on graphene in energy devices. AIP Conference Proceedings, 2023, , .	0.3	0
3932	Facile sol-gel preparation of NiCo2O4 nanoparticles based pseudocapacitive electrode for proficient supercapacitor performance. AlP Conference Proceedings, 2023, , .	0.3	Ο
3933	Hydrothermal synthesis of reduced graphene oxide decorated Co3O4 nanocomposite as a high-performance supercapacitor material. AIP Conference Proceedings, 2023, , .	0.3	0
3960	Asymmetrical supercapacitor of manganese iron oxide– graphene nanoplatelets (Mnfe2o4–GNPs) nanocomposite on nickel foam for energy storage applications. AIP Conference Proceedings, 2023, , .	0.3	1
3971	Electrophoretic deposition of metal oxide nanostructures. , 2023, , 221-266.		0
3974	Novel self-regenerative and non-flammable high-performance hydrogel electrolytes with anti-freeze properties and intrinsic redox activity for energy storage applications. Journal of Materials Chemistry A, 2023, 11, 16009-16018.	5.2	7
3980	A tutorial mini-review on nanoporous carbons from biosourced compounds: ordered hierarchical nanoarchitectures through benign methodologies. , 2023, 1, 1354-1368.		0
3989	Specific applications of the lanthanides. , 2023, , 649-741.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
3997	Environmental Applications of Carbon-Based Supercapacitors. Materials Horizons, 202	4, , 373-387.	0.3	0
3998	Functionalized Carbon and Its Derivatives Dedicated to Supercapacitors in Industrial A Materials Horizons, 2024, , 569-598.	pplications.	0.3	0
3999	Current Trends in the Commercialization of Supercapacitors as Emerging Energy Storir Materials Horizons, 2024, , 631-651.	ng Systems.	0.3	0
4002	Polymer Composites for Energy Storage Application. , 2023, , 87-122.			0
4006	Preparation of carbon nanotube films towards mechanical and electrochemical energy Research, 2023, 16, 12411-12429.	storage. Nano	5.8	1
4011	Nitrogen-doped biochar from algal biomass: preparation, modification, and application Conversion and Biorefinery, 0, , .	. Biomass	2.9	0
4035	Mathematical modelling and performance analysis of supercapacitors with variable cap constant power loads. AIP Conference Proceedings, 2023, , .	pacitance under	0.3	0
4064	Evaluation of the Electrical Properties of MnO/ZnO:Zn Thin-Films for Potential Applicat Solid-State Supercapacitors. , 2023, , .	ions in		0
4068	Pseudocapacitance: Fundamentals to Advanced Applications. Engineering Materials, 20	024, , 19-37.	0.3	0
4069	Introduction to Green Supercapacitors: Fundamentals, Design, Challenges, and Future 2023, , 1-33.	Prospects. ,		0
4076	Introduction to Low-carbon Supercapacitors: New Prospects. , 2023, , 34-62.			0
4078	Chlorophyll interpolated nafion-membrane for flexible supercapacitor with methanol ar oxidation reaction. Journal of Applied Electrochemistry, 0, , .	nd ethanol	1.5	Ο