Quinoline, quinazoline and acridonealkaloids

Natural Product Reports 25, 166-187

DOI: 10.1039/b612168n

Citation Report

#	Article	IF	CITATIONS
1	Molecular cloning and heterologous expression of acridone synthase from elicited Ruta graveolens L. cell suspension cultures. Plant Molecular Biology, 1995, 27, 681-692.	2.0	60
2	Polycyclic Amine Alkaloids (3-Alkylpiperidine Alkaloids) – Novel Marine Bioactive Compounds: Structure, Synthesis and Biochemical Aspects. Studies in Natural Products Chemistry, 2000, 24, 573-681.	0.8	17
3	Utilization of Aromatic Denitrocyclization Reaction for the Synthesis of 3-Unsubstituted 1,4-Dihydroquinolin-4-one Derivatives. Collection of Czechoslovak Chemical Communications, 2004, 69, 822-832.	1.0	1
4	Indolizidine and quinolizidine alkaloids. Natural Product Reports, 2004, 21, 625.	5.2	214
5	Palladium-Catalyzed Arylation and Heteroarylation of Indolizines. Organic Letters, 2004, 6, 1159-1162.	2.4	289
6	Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids, 2005, 40, 1081-1105.	0.7	38
7	CHRONIC TOXICITY OF POLYCYCLIC AROMATIC COMPOUNDS TO THE SPRINGTAIL FOLSOMIA CANDIDA AND THE ENCHYTRAEID ENCHYTRAEUS CRYPTICUS. Environmental Toxicology and Chemistry, 2006, 25, 2423.	2.2	38
8	Synthesis and Fluorescence Properties of 5,7-Diphenylquinoline and 2,5,7-Triphenylquinoline Derived from m-Terphenylamine. Molecules, 2007, 12, 988-996.	1.7	18
10	Synthesis and potent antileukemic activities of 10-benzyl-9(10H)-acridinones. Bioorganic and Medicinal Chemistry, 2008, 16, 8670-8675.	1.4	44
11	Acridine/acridone: a simple scaffold with a wide range of application in oncology. Expert Opinion on Therapeutic Patents, 2008, 18, 1211-1224.	2.4	63
12	Electrochemical Approach to Quinolinones and Synthesis of Biologically Active Molecules. ECS Meeting Abstracts, 2008, , .	0.0	0
13	A simple and practical method for the synthesis of 2â€aminoâ€5,6â€dihydroâ€5,7â€diarylquinazolinâ€4â€ols. Jou of Heterocyclic Chemistry, 2009, 46, 1346-1348.	rnal 1.4	6
14	Recyclable catalytic synthesis of substituted quinolines: copper-catalyzed heterocyclization of 1-(2-aminoaryl)-2-yn-1-ols in ionic liquids. Tetrahedron, 2009, 65, 8507-8512.	1.0	31
15	Synthesis of furo[2,3-b]pyridin-4(7H)-ones and related quinolinone via Brønsted acid-promoted cyclisation of alkynes. Tetrahedron Letters, 2009, 50, 614-616.	0.7	6
16	Triflic anhydride-mediated tandem formylation/cyclization of cyanoacetanilides: a concise synthesis of glycocitlone alkaloids. Tetrahedron Letters, 2009, 50, 6665-6667.	0.7	17
17	A comprehensive view on 4-methyl-2-quinazolinamine, a new microbial alkaloid from Streptomyces of TCM plant origin. Journal of Antibiotics, 2009, 62, 439-444.	1.0	12
18	A domino three-component condensation of ortho-haloacetophenones with urea or amines: a novel one-pot synthesis of halogen-substituted quinolines. Tetrahedron, 2009, 65, 1316-1320.	1.0	26
19	Convenient, two-step synthesis of 2-styrylquinolines: an application of the CAN-catalyzed vinylogous type-II Povarov reaction. Tetrahedron, 2009, 65, 2087-2096.	1.0	36

#	ARTICLE	IF	Citations
20	Accelerated dereplication of crude extracts using HPLC–PDA–MS–SPE–NMR: Quinolinone alkaloids of Haplophyllum acutifolium. Phytochemistry, 2009, 70, 1055-1061.	1.4	69
21	Chapter 6.1: Six-Membered Ring Systems: Pyridine and Benzo Derivatives. Progress in Heterocyclic Chemistry, 2009, , 330-374.	0.5	6
22	Synthesis of 1,2-Dihydroquinazolinium-4-yl Palladium Complexes through a Cyclization Reaction. Organometallics, 2009, 28, 5915-5924.	1,1	17
23	A Multicomponent Coupling Sequence for Direct Access to Substituted Quinolines. Organic Letters, 2009, 11, 4720-4723.	2.4	61
24	<i>ortho</i> -Lithiophenyl Isocyanide: A Versatile Precursor for 3 <i>H</i> -Quinazolin-4-ones and 3 <i>H</i> -Quinazolin-4-thiones. Organic Letters, 2009, 11, 389-392.	2.4	70
25	Cerium(IV) Ammonium Nitrate Is an Excellent, General Catalyst for the FriedlA¤der and FriedlA¤derâ^'Borsche Quinoline Syntheses: Very Efficient Access to the Antitumor Alkaloid Luotonin A. Journal of Organic Chemistry, 2009, 74, 5715-5718.	1.7	91
26	Facile Access to Benzothiazoleâ€Containing Pyrrolo[1,2â€ <i>a</i>]quinolines and Pyrrolo[2,1â€ <i>a</i>]isoquinolines <i>via</i> Nitrogen Ylides. Journal of the Chinese Chemical Society, 2009, 56, 1180-1185.	0.8	13
27	Syntheses and Absolute Configuration Assignments of Mono- and Di-substituted Chiral Quinoline Alkaloids Obtained by Asymmetric Oxidation. Heterocycles, 2009, 79, 831.	0.4	11
28	Regioselective oxidation of indole- and quinolinecarboxylic acids by cytochrome P450 CYP199A2. Applied Microbiology and Biotechnology, 2010, 85, 1861-1868.	1.7	28
29	Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4′-pyrano[3,2-c]quinoline] scaffold. Molecular Diversity, 2010, 14, 833-839.	2.1	39
30	Catalytic Asymmetric Additions of Carbonâ€Centered Nucleophiles to Nitrogenâ€Containing Aromatic Heterocycles. European Journal of Organic Chemistry, 2010, 2010, 5935-5942.	1.2	102
31	Copper(II) Triflateâ€Catalyzed Intramolecular Hydroamination of Homoallylic Amino Alcohols as an Expedient Route to <i>trans</i> àê€2,5â€Dihydroâ€1 <i>H</i> â€pyrroles and 1,2â€Dihydroquinolines. Advanced Synthesis and Catalysis, 2010, 352, 2521-2530.	2.1	29
32	An efficient synthesis of quinazolines: a theoretical and experimental study on the photochemistry of oxime derivatives. Tetrahedron, 2010, 66, 4469-4473.	1.0	51
33	Hydrogenation of ortho-nitrochalcones over Pd/C as a simple access to 2-substituted 1,2,3,4-tetrahydroquinolines. Tetrahedron, 2010, 66, 5607-5611.	1.0	21
34	Chemistry of Nitroquinolones and Synthetic Application to Unnatural 1-Methyl-2-quinolone Derivatives. Molecules, 2010, 15, 5174-5195.	1.7	19
35	Plant Type III PKS. , 2010, , 171-225.		14
36	Quinoline-Based Antifungals. Current Medicinal Chemistry, 2010, 17, 1960-1973.	1.2	190
37	Aza-[3 + 3] Annulations: A New Unified Strategy in Alkaloid Synthesis. Current Organic Synthesis, 2010, 7, 363-401.	0.7	38

#	Article	IF	Citations
38	A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles. Chemical Communications, 2010, 46, 5244.	2.2	106
39	A One-Step Synthesis of 2,4-Unsubstituted Quinoline-3-carboxylic Acid Esters from o-Nitrobenzaldehydes. Journal of Organic Chemistry, 2010, 75, 3488-3491.	1.7	44
40	Tetrahydroquinazoline Derivatives by Aza Diels-Alder Reaction. Heterocycles, 2010, 80, 1457.	0.4	3
41	Trifluoroacetylation-Induced Houbenâ^'Hoesch-Type Cyclization of Cyanoacetanilides: Increased Nucleophilicity of CN Groups. Journal of Organic Chemistry, 2010, 75, 2741-2744.	1.7	18
42	Zn(OTf)2-Catalyzed Reactions of Ethenetricarboxylates with 2-Aminobenzaldehydes Leading to Tetrahydroquinoline Derivatives. Journal of Organic Chemistry, 2010, 75, 1188-1196.	1.7	20
43	Swift and Efficient Synthesis of 4-Phenylquinazolines: Involvement of <i>N</i> -Heterocyclic Carbene in the Key Cyclization Step. Journal of Organic Chemistry, 2010, 75, 2092-2095.	1.7	9
44	Divergent Route to Access Structurally Diverse 4-Quinolones via Mono or Sequential Cross-Couplings. Journal of Organic Chemistry, 2010, 75, 8654-8657.	1.7	52
45	Diversity-Oriented Synthesis of Quinolines via Friedl \tilde{A} R der Annulation Reaction under Mild Catalytic Conditions. ACS Combinatorial Science, 2010, 12, 100-110.	3.3	53
46	A Simple and Efficient Approach to the Synthesis of 2-Phenylquinazolines via sp ³ Câ^'H Functionalization. Organic Letters, 2010, 12, 2841-2843.	2.4	208
47	Synthesis of new pentacyclic chromophores through a highly regio- and diastereoselective cascade process. Organic and Biomolecular Chemistry, 2010, 8, 4815.	1.5	8
48	Synthetic Applications of Pd(II)-Catalyzed Câ^'H Carboxylation and Mechanistic Insights: Expedient Routes to Anthranilic Acids, Oxazolinones, and Quinazolinones. Journal of the American Chemical Society, 2010, 132, 686-693.	6.6	295
49	Total synthesis of asperlicin C, circumdatin F, demethylbenzomalvin A, demethoxycircumdatin H, sclerotigenin, and other fused quinazolinones. Organic and Biomolecular Chemistry, 2010, 8, 419-427.	1.5	56
50	Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis. Pharmacological Reports, 2011, 63, 305-336.	1.5	130
51	Iridium-Catalyzed Allylic Vinylation and Asymmetric Allylic Amination Reactions with <i>o</i> -Aminostyrenes. Journal of the American Chemical Society, 2011, 133, 19006-19014.	6.6	178
52	Efficient aerobic oxidative synthesis of 2-aryl quinazolines via benzyl Câ€"H bond amination catalyzed by 4-hydroxy-TEMPO. Chemical Communications, 2011, 47, 7818.	2,2	136
54	A Facile Synthesis of Substituted 2-Alkylquinolines through [3 + 3] Annulation between 3-Ethoxycyclobutanones and Aromatic Amines at Room Temperature. Organic Letters, 2011, 13, 5770-5773.	2.4	38
55	An Improved Larock Synthesis of Quinolines via a Heck Reaction of 2-Bromoanilines and Allylic Alcohols. Organic Letters, 2011, 13, 2326-2329.	2.4	64
56	One-Pot Synthesis of Luotonin A and Its Analogues. Organic Letters, 2011, 13, 920-923.	2.4	74

#	Article	IF	CITATIONS
57	Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols. Organic and Biomolecular Chemistry, 2011, 9, 610-615.	1.5	94
58	Rh(NHC)-Catalyzed Direct and Selective Arylation of Quinolines at the 8-Position. Journal of the American Chemical Society, 2011, 133, 3780-3783.	6.6	223
59	Expeditious one-pot synthesis of C3-piperazinyl-substituted quinolines: key precursors to potent c-Met inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 5930.	1.5	13
60	A General Copper Powder-Catalyzed Ullmann-Type Reaction of 3-Halo-4(1H)-quinolones With Various Nitrogen-Containing Nucleophiles. Journal of Organic Chemistry, 2011, 76, 4995-5005.	1.7	66
61	The effective reaction of 2-chloro-3-formylquinoline and acetic acid/sodium acetate under microwave irradiation. International Journal of Engineering, Science and Technology, 2011, 3, .	0.3	4
62	Recent Advances in the Studies on Luotonins. Molecules, 2011, 16, 4861-4883.	1.7	79
63	Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 2011, 35, 247-274.	3.9	477
64	Ytterbium pentafluorobenzoate as a novel fluorous Lewis acid catalyst in the synthesis of 2,4-disubstituted quinolines. Tetrahedron, 2011, 67, 8465-8469.	1.0	51
65	About the intermediacy of 1,2-dihydroquinazolinium salts in the FriedlÃ ¤ der–Borsche synthesis of quinolinium salts in acidic medium. Tetrahedron Letters, 2011, 52, 6298-6302.	0.7	2
66	Mono-, Di-, and Trinuclear Palladium(II) Complexes Containing a Ligand with One, Two, or Three 1,2-Dihydroquinazolinium-4-yl Groups. Organometallics, 2011, 30, 2425-2431.	1.1	3
67	Advances in the Chemistry of Tetrahydroquinolines. Chemical Reviews, 2011, 111, 7157-7259.	23.0	887
68	Convergent assembly of structurally diverse quinazolines. Organic and Biomolecular Chemistry, 2011, 9, 351-357.	1.5	8
69	Synthesis of a family of 3-alkyl- or 3-aryl-substituted 1,2-dihydroquinazolinium salts and their isomerization to 4-iminium-1,2,3,4-tetrahydroquinolines. Organic and Biomolecular Chemistry, 2011, 9, 2279.	1.5	11
70	Crystal Structures of the 1,2-Dihydroquinazolinium-4-yl Pd(II) Complexes [PdI{C=N(Xy)CH(R)NHC6H4-2}(CNXy)2]OTf (RÂ=ÂMe, CHÂ=ÂCH2, C6H4Me-4) and of the 2-Iminoaryl Pd(II) Complex [PdI(C6H4{N=C(H)C6H4Me-4}-2)(2,2′-bipyridine)]. Journal of Chemical Crystallography, 2011, 41, 1961-1967.	0.5	1
71	Novel quinazoline HMJâ€30 induces Uâ€2 OS human osteogenic sarcoma cell apoptosis through induction of oxidative stress and upâ€regulation of ATM/p53 signaling pathway. Journal of Orthopaedic Research, 2011, 29, 1448-1456.	1.2	29
72	Insight into the Mechanism of Quinoline Formation by the Chromium(0) Fischer Carbene Catalytic Transmetallation to Palladium and Rhodium: Application to the Synthesis of the Alkaloids of <i>Ruta chalepensis </i> . European Journal of Organic Chemistry, 2011, 2011, 3293-3300.	1.2	12
75	Assembly of Substituted 2â€Alkylquinolines by a Sequential Palladium atalyzed CN and CC Bond Formation. Angewandte Chemie - International Edition, 2011, 50, 7670-7673.	7.2	52
76	Catalytic Syntheses of Nâ€Heterocyclic Ynones and Ynediones by In Situ Activation of Carboxylic Acids with Oxalyl Chloride. Angewandte Chemie - International Edition, 2011, 50, 10448-10452.	7.2	76

#	Article	IF	CITATIONS
77	Pd(II)-catalyzed oxidative cyclization reaction for the preparation of 2-substituted 1,2,3,4-tetrahydroquinolines with halide functionality. Tetrahedron, 2011, 67, 1501-1505.	1.0	16
78	Simple and straight forward synthesis of 2,4-disubstituted quinazolines in aqueous medium. European Journal of Chemistry, 2012, 3, 252-257.	0.3	8
79	An efficient synthesis of 3-benzylquinazolin-4($1 < i > H < i >$)-one derivatives under catalyst-free and solvent-free conditions. Green Chemistry Letters and Reviews, 2012, 5, 603-607.	2.1	6
80	Synthesis of 2,4-Diaminoquinazolines and Tricyclic Quinazolines by Cascade Reductive Cyclization of Methyl <i>N</i> -Cyano-2-nitrobenzimidates. Journal of Organic Chemistry, 2012, 77, 2649-2658.	1.7	29
81	lodine-Mediated Intramolecular Electrophilic Aromatic Cyclization in Allylamines: A General Route to Synthesis of Quinolines, Pyrazolo[4,3- <i>b</i> pyridines, and Thieno[3,2- <i>b</i> pyridines. Organic Letters, 2012, 14, 6330-6333.	2.4	81
82	Cyanuric Chloride Catalyzed Mild Protocol for Synthesis of Biologically Active Dihydro/Spiro Quinazolinones and Quinazolinone-glycoconjugates. Journal of Organic Chemistry, 2012, 77, 929-937.	1.7	134
83	Acylative kinetic resolution of racemic heterocyclic amines using N-phthaloyl-(S)-amino acyl chlorides with alkyl side chains. Tetrahedron: Asymmetry, 2012, 23, 1640-1646.	1.8	24
84	Quinazoline Alkaloids from Streptomyces michiganensis. Chemistry of Natural Compounds, 2012, 48, 839-841.	0.2	7
86	Palladiumâ€Catalyzed Dehydrogenation/Oxidative Crossâ€Coupling Sequence of βâ€Heteroatomâ€Substituted Ketones. Angewandte Chemie - International Edition, 2012, 51, 11333-11336.	7.2	113
87	Synthesis of substituted quinolines from N-aryl-N-(2-alkynyl)toluenesulfonamides via FeCl3-mediated intramolecular cyclization and concomitant detosylation. Tetrahedron Letters, 2012, 53, 5119-5122.	0.7	25
88	Investigating thermal dimerization of N-methyl-flindersine. Syntheses and characterizations of paraensidimerines. Tetrahedron Letters, 2012, 53, 6138-6143.	0.7	10
89	Synthesis and Reactivity of [PdCl ₂ { <i>C,N</i> -C ₆ H ₄ C(â•NHXy)NH ₂ -2}] and Neutral Palladium 1,2-Dihydroquinazolinium-4-yl Complexes: Depalladation Reactions. Organometallics, 2012, 31. 2697-2708.	1.1	5
90	One-Pot Phosphine-Catalyzed Syntheses of Quinolines. Journal of Organic Chemistry, 2012, 77, 8257-8267.	1.7	84
91	Cu(ii)-promoted three-component coupling sequence for the efficient synthesis of substituted quinolines. Organic and Biomolecular Chemistry, 2012, 10, 8593.	1.5	17
92	Catalyst-free synthesis of quinazolin-4-ones from (hetero)aryl-guanidines: application to the synthesis of pyrazolo[4,3-f]quinazolin-9-ones, a new family of DYRK1A inhibitors. Molecular Diversity, 2012, 16, 659-667.	2.1	14
93	Pd-Catalyzed Dehydrogenative Cross-Coupling of Polyfluoroarenes with Heteroatom-Substituted Enones. Organic Letters, 2012, 14, 1176-1179.	2.4	81
94	Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels–Alder reaction. Tetrahedron Letters, 2012, 53, 6460-6463.	0.7	27
95	Iridium-catalyzed C–H borylation of quinolines and unsymmetrical 1,2-disubstituted benzenes: insights into steric and electronic effects on selectivity. Chemical Science, 2012, 3, 3505.	3.7	152

#	Article	IF	CITATIONS
96	Efficient syntheses of 2,3-disubstituted natural quinazolinones via iridium catalysis. Organic and Biomolecular Chemistry, 2012, 10, 2389.	1.5	53
97	One-pot multicomponent synthesis of medicinally important purine quinazolinone derivatives. Tetrahedron Letters, 2012, 53, 6195-6198.	0.7	16
98	Copper-Catalyzed Oxidative Cyclization of Enynes for the Synthesis of 4-Carbonyl-quinolines with O ₂ . Organic Letters, 2012, 14, 2480-2483.	2.4	71
99	A Novel Solid-Phase Synthesis of Quinolines. Heterocycles, 2012, 85, 667.	0.4	10
100	Organocatalytic Asymmetric 1,4-Addition of Aldehydes to Acridiniums Catalyzed by a Diarylprolinol Silyl Ether. Journal of Organic Chemistry, 2012, 77, 3583-3588.	1.7	28
101	Baseâ€Promoted Heterocyclization of Fluorinated Alkynylphosphonates with Select <i>ortho</i> â€Aminobenzonitriles. European Journal of Organic Chemistry, 2012, 2012, 3684-3690.	1.2	21
102	Novel Route to 4â€(Adamantanâ€1â€yl)quinoline Derivatives Based on the <i>Friedläder</i> Condensation. Helvetica Chimica Acta, 2012, 95, 1003-1017.	1.0	3
103	A Facile and Convenient Method for the Synthesis of 6,8-Bis(trifluoroacetyl)quinolin-5-amines. Heterocycles, 2012, 84, 1277.	0.4	3
107	An Organocatalytic Cascade Approach toward Polysubstituted Quinolines and Chiral 1,4â€Dihydroquinolines–Unanticipated Effect of Nâ€Protecting Groups. Angewandte Chemie - International Edition, 2012, 51, 7282-7286.	7.2	84
108	Palladiumâ€Catalyzed Sequential Formation of CC Bonds: Efficient Assembly of 2â€Substituted and 2,3â€Disubstituted Quinolines. Angewandte Chemie - International Edition, 2012, 51, 7292-7296.	7.2	110
109	A Catalytic Asymmetric Ringâ€Expansion Reaction of Isatins and αâ€Alkylâ€Î±â€Diazoesters: Highly Efficient Synthesis of Functionalized 2â€Quinolone Derivatives. Angewandte Chemie - International Edition, 2012, 51, 8644-8647.	7.2	120
110	Tautomeric Switching and Metalâ€Cation Sensing of Ligandâ€Equipped 4â€Hydroxyâ€∤4â€oxoâ€1,4â€dihydroquinolines. Chemistry - A European Journal, 2012, 18, 7269-7277.	1.7	23
111	Palladium(0)-catalyzed cyclopropane C–H bond functionalization: synthesis of quinoline and tetrahydroquinoline derivatives. Chemical Science, 2012, 3, 244-248.	3.7	100
112	lonic liquid-supported synthesis of dihydroquinazolines and tetrahydroquinazolines under microwave irradiation. Molecular Diversity, 2012, 16, 241-249.	2.1	22
113	Tetrahydroquinazoline-substituted chromones from Diels–Alder reaction of (E)-2-styrylchromones and pyrimidine ortho-quinodimethane. Tetrahedron Letters, 2012, 53, 2722-2725.	0.7	5
114	Stereoselective Synthesis of Tetrahydroquinolines Through an Iminoâ€Ene Cyclization Reaction. European Journal of Organic Chemistry, 2013, 2013, 952-956.	1.2	13
115	Povarov-Reductive Amination Cascade to Access 6-Aminoquinolines and Anthrazolines. Organic Letters, 2013, 15, 4078-4081.	2.4	35
116	Facile synthesis of furoquinoline and effects on radical-induced oxidation of DNA. Medicinal Chemistry Research, 2013, 22, 1563-1569.	1.1	6

#	Article	IF	CITATIONS
117	Oneâ€Pot Synthesis of 4â€Substituted 1 <i>H</i> â€{1,2,3}triazolo[4,5â€ <i>c</i>]quinolines Through CuOâ€Promoted Tandem Cyclization Reactions of (<i>E</i>)â€3â€(2â€Bromoaryl)â€1â€arylpropâ€2â€enâ€1â€c Sodium Azide. European Journal of Organic Chemistry, 2013, 2013, 6246-6248.	n e gwith	13
118	Metal-free C(sp3)â€"H bond activation: first synthesis of diaryl-pyridinium-azaarene-butenolate zwitterionic salts on chalcones. RSC Advances, 2013, 3, 18771.	1.7	19
119	A strategy to access fused triazoloquinoline and related nucleoside analogues. Tetrahedron, 2013, 69, 8547-8558.	1.0	20
120	Alkaloids as Important Scaffolds in Therapeutic Drugs for the Treatments of Cancer, Tuberculosis, and Smoking Cessation. Current Topics in Medicinal Chemistry, 2013, 14, 239-252.	1.0	168
121	Antiparasitic hybrids of Cinchona alkaloids and bile acids. European Journal of Medicinal Chemistry, 2013, 66, 355-363.	2.6	29
122	Thioether-Promoted Direct Olefination of Polyfluoroarenes Catalyzed by Palladium. Organic Letters, 2013, 15, 5266-5269.	2.4	38
123	Microwave-assisted expeditious and efficient synthesis of cyclopentene ring-fused tetrahydroquinoline derivatives using three-component Povarov reaction. Tetrahedron Letters, 2013, 54, 6592-6595.	0.7	34
124	Efficient cyclization of tertiary amines and alkenes promoted by KOt-Bu–DMF. Chemical Communications, 2013, 49, 10974.	2.2	44
125	Synthesis of polysubstituted quinolines via copper(ii)-catalyzed annulation of 2-aminoaryl ketones with alkynoates. RSC Advances, 2013, 3, 24034.	1.7	20
126	Copperâ€Catalyzed <i>N</i> à‷and <i>O</i> àâ€Arylation of Amides: Alternative Approaches to 3,4â€Dihydroquinolinâ€2â€ones, Quinolinâ€2â€ones, and 12 <i>H</i> àâ€Chromeno[2,3â€ <i>b</i>)quinolinâ€12âEuropean Journal of Organic Chemistry, 2013, 2013, 8087-8093.	i€n¤es.	8
127	Rareâ€Earth Metal Chlorides Catalyzed Oneâ€pot Syntheses of Quinolines under Solventâ€free Microwave Irradiation Conditions. Chinese Journal of Chemistry, 2013, 31, 465-471.	2.6	23
128	A concise synthesis of indoloquinoline skeletons applying two consecutive Pd-catalyzed reactions. Tetrahedron, 2013, 69, 9512-9519.	1.0	63
129	A Concise Construction of Polycyclic Quinolines via Annulation of ω-Cyano-1-alkynes with Diaryliodonium Salts. Organic Letters, 2013, 15, 4794-4797.	2.4	61
130	Study of the sedative and hypnotic effects of total alkaloids in male Eucommia flowers. , 2013, , .		1
131	Biphenyl dioxygenase-catalysed cis-dihydroxylation of tricyclic azaarenes: chemoenzymatic synthesis of arene oxide metabolites and furoquinoline alkaloids. RSC Advances, 2013, 3, 10944.	1.7	14
132	Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews, 2013, 113, 2958-3043.	23.0	324
133	Synthesis of 2,4-unsubstituted quinoline-3-carboxylic acid ethyl esters from arylmethyl azides via a domino process. Organic and Biomolecular Chemistry, 2013, 11, 1463.	1.5	28
134	A Pd(II)â€Catalyzed Oxidative Cyclization for the Preparation of Arylâ€Fused Sixâ€Membered Nitrogen Heterocycles with 2â€Acetoxy Functionality. Chinese Journal of Chemistry, 2013, 31, 132-138.	2.6	14

#	Article	IF	CITATIONS
135	Copper(I)â€Catalyzed Intermolecular Cyclization of Methyl Perfluoroalkâ€2â€ynoates with <i>o</i> â€Aminophenyl Ketones: Access to 2â€Perfluoroalkylated Quinolines. European Journal of Organic Chemistry, 2013, 2013, 8323-8329.	1.2	13
136	Synthesis of Pyrazolo[1,5-c]quinazoline Derivatives through Copper-Catalyzed Tandem Reaction of 5-(2-Bromoaryl)-1H-pyrazoles with Carbonyl Compounds and Aqueous Ammonia. Journal of Organic Chemistry, 2013, 78, 3262-3270.	1.7	49
137	Sulfoximine Directed Intermolecular <i>>o</i> -C–H Amidation of Arenes with Sulfonyl Azides. Organic Letters, 2013, 15, 1638-1641.	2.4	168
138	Applications to Alkaloid Synthesis. , 2013, , 459-496.		2
139	A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules. Applied Microbiology and Biotechnology, 2013, 97, 751-760.	1.7	16
140	Copper(II) atalyzed Three omponent Cascade Annulation of Diaryliodoniums, Nitriles, and Alkynes: A Regioselective Synthesis of Multiply Substituted Quinolines. Angewandte Chemie - International Edition, 2013, 52, 5323-5327.	7.2	214
141	Copper-Mediated, Palladium-Catalyzed Cross-Coupling of 3-Iodochromones, Thiochromones, and Quinolones with Ethyl Bromodifluoroacetate. Journal of Organic Chemistry, 2013, 78, 4850-4856.	1.7	45
142	Catalyst-free diastereoselective synthesis of 2-methyl-4-amino-1,2,3,4-tetrahydro-quinoline derivatives in water. Tetrahedron Letters, 2013, 54, 2849-2852.	0.7	10
143	A Catalytic Asymmetric Synthesis of Polysubstituted Piperidines Using a Rhodium(I)â€Catalyzed [2+2+2] Cycloaddition Employing a Cleavable Tether. Angewandte Chemie - International Edition, 2013, 52, 5368-5371.	7.2	29
144	One-pot synthesis of quinazoline derivatives via [2+2+2] cascade annulation of diaryliodonium salts and two nitriles. Chemical Communications, 2013, 49, 6752.	2.2	103
145	Ce(OTf)3-catalyzed multicomponent domino cyclization–aromatization of ferrocenylacetylene, aldehydes, and amines: a straightforward synthesis of ferrocene-containing quinolines. Tetrahedron, 2013, 69, 6223-6229.	1.0	24
146	Asymmetric N-Heterocyclic Carbene Catalyzed Addition of Enals to Nitroalkenes: Controlling Stereochemistry via the Homoenolate Reactivity Pathway To Access Î-Lactams. Journal of the American Chemical Society, 2013, 135, 8504-8507.	6.6	96
147	Palladium-Catalyzed Arylic/Allylic Aminations: Permutable Domino Sequences for the Synthesis of Dihydroquinolines from Morita–Baylis–Hillman Adducts. Organic Letters, 2013, 15, 3050-3053.	2.4	22
148	Alkaloids Derived from Anthranilic Acid: Quinoline, Acridone, and Quinazoline., 2013,, 715-859.		1
149	Synthesis of Novel 1-Alkyl-1,2-dihydro-2-lmino-4-quinazolinamines by Tandem Reaction of the Three Components. Heterocycles, 2013, 87, 1493.	0.4	3
150	Intramolecular Mizoroki–Heck Reaction in the Regioselective Synthesis of 4â€Alkylideneâ€tetrahydroquinolines. European Journal of Organic Chemistry, 2013, 2013, 3013-3022.	1.2	11
151	Survey of Recent Literature Related to the Biologically Active 4(3H)-Quinazolinones Containing Fused Heterocycles. Current Medicinal Chemistry, 2013, 20, 794-814.	1.2	4
152	Biting Deterrence, Repellency, and Larvicidal Activity of <l>Ruta chalepensis</l> (Sapindales:) Tj ETQq1 Entomology, 2013, 50, 1267-1274.	1 0.78431 0.9	.4 rgBT /Ove 49

9

#	ARTICLE	IF	CITATIONS
153	A Total and Convenient Synthesis of Orixiarine. International Journal of Organic Chemistry, 2013, 03, 48-50.	0.3	O
154	Rapid synthesis of novel isoindolo $[1,2-a]$ quinazoline on ionic liquid support under microwave irradiation. Green Processing and Synthesis, 2013, 2, .	1.3	3
155	The PaaX-Type Repressor MeqR2 of Arthrobacter sp. Strain Rue61a, Involved in the Regulation of Quinaldine Catabolism, Binds to Its Own Promoter and to Catabolic Promoters and Specifically Responds to Anthraniloyl Coenzyme A. Journal of Bacteriology, 2013, 195, 1068-1080.	1.0	8
156	Electrocatalytic Fast and Efficient Multicomponent Approach to Medicinally Relevant Pyrano[3,2-c]quinolone Scaffold. Journal of the Electrochemical Society, 2013, 160, G3053-G3057.	1.3	11
157	Identification and Characterization of a Type III Polyketide Synthase Involved in Quinolone Alkaloid Biosynthesis from Aegle marmelos Correa. Journal of Biological Chemistry, 2013, 288, 7271-7281.	1.6	25
160	Synthesis of Quinazolinone Conjugated Shorter Analogues of Bactenecin7 as Potent Antimicrobials. Protein and Peptide Letters, 2013, 20, 146-155.	0.4	4
162	Synthesis and biological activities of the respiratory chain inhibitor aurachin D and new ring versus chain analogues. Beilstein Journal of Organic Chemistry, 2013, 9, 1551-1558.	1.3	40
163	Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43. Applied and Environmental Microbiology, 2014, 80, 7266-7274.	1.4	22
164	Rhodiumâ€Catalyzed Intramolecular Hydroarylation of 1â€Haloâ€1â€alkynes: Regioselective Synthesis of Semihydrogenated Aromatic Heterocycles. Chemistry - A European Journal, 2014, 20, 317-322.	1.7	38
166	Rh(III)-catalyzed synthesis of (dihydro)quinolines via the annulation of N-sulfonyl 2-aminobenzaldehydes with olefins. Chinese Journal of Catalysis, 2014, 35, 1840-1845.	6.9	6
167	Synthesis and Antimicrobial Activity of 6-Thioxo-6,7-dihydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one Derivatives. Scientia Pharmaceutica, 2014, 82, 483-500.	0.7	15
168	Asymmetric addition of chiral boron-ate complexes to cyclic iminium ions. Chemical Science, 2014, 5, 602-607.	3.7	50
169	4-Oxo-1,4-dihydro-quinoline-3-carboxamides as BACE-1 inhibitors: Synthesis, biological evaluation and docking studies. European Journal of Medicinal Chemistry, 2014, 79, 413-421.	2.6	15
170	Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting. Journal of Hazardous Materials, 2014, 267, 119-127.	6.5	19
171	Copper-catalyzed domino reaction between 1-(2-halophenyl)methanamines and amidines or imidates for the synthesis ofÂ2-substituted quinazolines. Tetrahedron, 2014, 70, 3061-3072.	1.0	34
172	Synthesis of batracylin and its N-sulfonamido analogues inÂ[b-3C-im][NTf2] ionic liquid. Tetrahedron, 2014, 70, 2629-2633.	1.0	11
173	4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron, 2014, 70, 484-489.	1.0	59
174	Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Science of the Total Environment, 2014, 473-474, 317-325.	3.9	46

#	Article	IF	Citations
175	Pd-catalyzed aerobic direct olefination of polyfluoroarenes. Tetrahedron Letters, 2014, 55, 2962-2964.	0.7	13
176	Copper-mediated oxidative tandem reactions with molecular oxygen: synthesis of 2-arylbenzoxazinone derivatives from indoles. Tetrahedron Letters, 2014, 55, 2991-2993.	0.7	38
177	New Pyridinium-Based Ionic Liquid as an Excellent Solvent–Catalyst System for the One-Pot Three-Component Synthesis of 2,3-Disubstituted Quinolines. ACS Combinatorial Science, 2014, 16, 93-100.	3.8	40
178	Palladium-catalyzed synthesis of polysubstituted quinolines from 2-amino aromatic ketones and alkynes. Chemical Communications, 2014, 50, 5583-5585.	2.2	35
179	Microwave-Assisted Synthesis of Diverse Pyrrolo [3,4- <i></i> 2014, 16, 333-341.	3.8	57
180	Solvent/Oxidant-Switchable Synthesis of Multisubstituted Quinazolines and Benzimidazoles via Metal-Free Selective Oxidative Annulation of Arylamidines. Organic Letters, 2014, 16, 2822-2825.	2.4	123
181	Catalyst- and solvent-free, pot, atom and step economic synthesis of tetrahydroquinazolines by an aza-Diels–Alder reaction strategy. Green Chemistry, 2014, 16, 1158-1162.	4.6	36
182	Efficient biodegradation of quinolone – Factors determining the process. International Biodeterioration and Biodegradation, 2014, 96, 127-134.	1.9	28
183	One-Pot Synthesis of Multisubstituted 2-Aminoquinolines from Annulation of 1-Aryl Tetrazoles with Internal Alkynes via Double C–H Activation and Denitrogenation. Journal of Organic Chemistry, 2014, 79, 11541-11548.	1.7	65
184	Br $ ilde{A}_i$ nsted Acid Mediated Alkenylation and Copper-Catalyzed Aerobic Oxidative Ring Expansion/Intramolecular Electrophilic Substitution of Indoles with Propargyl Alcohols: A Novel One-Pot Approach to Cyclopenta[<i><i<math>< $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ </i<math></i>	2.4	36
185	Synthesis of substituted quinolines via allylic amination and intramolecular Heck-coupling. Organic and Biomolecular Chemistry, 2014, 12, 9133-9138.	1.5	21
186	Palladium-catalyzed direct ortho-C–H ethoxycarboxylation of anilides at room temperature. Organic Chemistry Frontiers, 2014, 1, 347.	2.3	30
187	AgSbF6-controlled diastereodivergence in alkyne hydroarylation: facile access to Z- and E-alkenyl arenes. Chemical Communications, 2014, 50, 8028.	2.2	34
188	A straight forward synthesis of 4-aryl substituted 2-quinolones via Heck reaction. RSC Advances, 2014, 4, 41148-41151.	1.7	15
189	Potential anti-bacterial agents: montmorillonite clay-catalyzed synthesis of novel 2-(3,5-substituted-1H-pyrazol-1-yl)-3-substituted quinolines and their in silico molecular docking studies. RSC Advances, 2014, 4, 58011-58018.	1.7	4
190	Solid-phase synthesis of benzazoles, quinazolines, and quinazolinones using an alkoxyamine linker. Tetrahedron Letters, 2014, 55, 5793-5797.	0.7	7
191	Synthesis of new organochalcogen (Se or Te) based multifunctional pyrimidine derivatives: X-ray structure determination of 2,4-bis(arylchalcogenyl)pyrimidine and 2-chloro-4,6-bis(arylchalcogenyl)pyrimidine compounds. Polyhedron, 2014, 81, 316-322.	1.0	1
192	Efficient synthesis of functionalized dihydroquinolines, quinolines and dihydrobenzo[b]azepine via an iron(iii) chloride-catalyzed intramolecular alkyne–carbonyl metathesis of alkyne tethered 2-amino benzaldehyde/acetophenone derivatives. Organic and Biomolecular Chemistry, 2014, 12, 1759-1770.	1.5	44

#	Article	lF	Citations
193	Bioâ€inspired Stepâ€Economical, Redoxâ€Economical and Protectingâ€Groupâ€Free Enantioselective Total Syntheses of (â°')â€Chaetominine and Analogues. Chinese Journal of Chemistry, 2014, 32, 757-770.	2.6	30
194	N-heterocyclic carbene (NHC)-modulated Pd/Cu cocatalyzed three-component synthesis of 2,6-diarylquinolines. Organic and Biomolecular Chemistry, 2014, 12, 3114-3122.	1.5	23
195	Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines. Organic and Biomolecular Chemistry, 2014, 12, 5752-5756.	1.5	64
196	Gold/Acidâ€Coâ€catalyzed Direct Microwaveâ€Assisted Synthesis of Fused Azaheterocycles from Propargylic Hydroperoxides. Chemistry - A European Journal, 2014, 20, 3384-3393.	1.7	22
197	Cu–benzotriazole-catalyzed electrophilic cyclization of N-arylimines: a methodical tandem approach to O-protected-4hydroxyquinazolines RSC Advances, 2014, 4, 38375.	1.7	17
198	Rhodium(III)-Catalyzed C–C Bond Formation of Quinoline <i>N</i> -Oxides at the C-8 Position under Mild Conditions. Organic Letters, 2014, 16, 4598-4601.	2.4	213
199	Siteâ€Selective CH Borylation of Quinolines at the C8 Position Catalyzed by a Silicaâ€Supported Phosphane–Iridium System. Chemistry - an Asian Journal, 2014, 9, 434-438.	1.7	97
200	One-pot approach to 2-arylbenzoxazinone derivatives from 2-alkynylanilines using copper-mediated tandem reactions. Tetrahedron, 2014, 70, 5746-5751.	1.0	17
201	Green chemical approach: microwave assisted, titanium dioxide nanoparticles catalyzed, convenient and efficient Cae^{C} bond formation in the synthesis of highly functionalized quinolines and quinolinones. RSC Advances, 2014, 4, 44408-44417.	1.7	12
202	Synthesis of 6,7-Dihydrodibenzo[b,j]phenanthroline Derivatives by Pfitzinger Condensation of Isatin and Cyclic Diketones. Heterocycles, 2014, 89, 209.	0.4	6
203	Rh(III)-Catalyzed Traceless Coupling of Quinoline <i>N</i> -Oxides with Internal Diarylalkynes. Journal of Organic Chemistry, 2014, 79, 9899-9906.	1.7	155
204	Synthesis of 4-methyl-2,3-disubstituted quinoline scaffolds via environmentally benign Fe(iii) catalysed sequential condensation, cyclization and aromatization of 1,3-diketone and 2-ethynylaniline. RSC Advances, 2014, 4, 52060-52066.	1.7	9
205	Direct Inter- and Intramolecular Addition of Amides to Arylalkenes Promoted by KO <i>t</i> -Bu/DMF. Journal of Organic Chemistry, 2014, 79, 8557-8565.	1.7	24
206	Enantioselective Construction of 2,3â€Dihydrofuro[2,3―b]quinolines through Supramolecular Hydrogen Bonding Interactions. Chemistry - A European Journal, 2014, 20, 13522-13526.	1.7	27
207	Dehydrogenative Cross-Coupling Reaction by Cooperative Transition-Metal and Br \tilde{A} ,nsted Acid Catalysis for the Synthesis of \hat{I}^2 -Quinolinyl $\hat{I}\pm$ -Amino Acid Esters. Organic Letters, 2014, 16, 4881-4883.	2.4	91
208	Chromenone and quinolinone derivatives as potent antioxidant agents. Medicinal Chemistry Research, 2014, 23, 4907-4914.	1.1	14
209	Dual-Organocatalyst-Promoted Asymmetric Cascade Reaction: Highly Efficient Construction of Enantiopure Fully Substituted Tetrahydro-1,2-oxazines. Organic Letters, 2014, 16, 752-755.	2.4	25
210	Assembly of 4H-chromenes, imidazobenzothiazines and quinazolines via copper-catalyzed domino reactions using 2-halobenzyl tosylates as substrates. Tetrahedron, 2014, 70, 5682-5695.	1.0	31

#	Article	IF	CITATIONS
211	Regioselective Introduction of Heteroatoms at the C-8 Position of Quinoline ⟨i⟩N⟨/i⟩-Oxides: Remote C–H Activation Using ⟨i⟩N⟨/i⟩-Oxide as a Stepping Stone. Journal of the American Chemical Society, 2014, 136, 10770-10776.	6.6	308
212	Brønsted Acid Catalyzed Benzylic C–H Bond Functionalization of Azaarenes: Nucleophilic Addition to Nitroso Compounds. Organic Letters, 2014, 16, 3664-3667.	2.4	64
213	Iron-Catalyzed, Chelation-Induced Remote C–H Allylation of Quinolines via 8-Amido Assistance. Organic Letters, 2014, 16, 3716-3719.	2.4	128
214	Ultrasonic-mediated catalyst-free rapid protocol for the multicomponent synthesis of dihydroquinoline derivatives in aqueous media. Green Chemistry Letters and Reviews, 2014, 7, 131-136.	2.1	30
215	Alkyltriflate-Triggered Annulation of Arylisothiocyanates and Alkynes Leading to Multiply Substituted Quinolines through Domino Electrophilic Activation. Organic Letters, 2014, 16, 1120-1123.	2.4	75
216	Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg). Chemosphere, 2014, 107, 407-414.	4.2	47
217	Lewis Acid Mediated Intramolecular C–C Bond Formation of Alkyne-Epoxide Leading to Six-Membered Nitrogen and Oxygen Heterocycles. Journal of Organic Chemistry, 2014, 79, 4119-4124.	1.7	23
218	Secondary Metabolism., 0,, 376-395.		7
219	Selective Synthesis of Quinolines and Indoles: Sulfurâ∈Assisted or Seleniumâ∈Catalyzed Reaction of βâ∈(2â∈Nitrophenyl)â∈α,βâ∈unsaturated Ketones with Carbon Monoxide. Heteroatom Chemistry, 2014, 25, 69	8-9 <i>0</i> 3.	18
220	Lowâ€Valent Titaniumâ€Mediated Enantioselective Synthesis of Quinazolinone Alkaloids Circumdatins F, H, and Analogs. Chinese Journal of Chemistry, 2015, 33, 646-654.	2.6	7
222	Asymmetric Syntheses of 3,4â€Disubstituted Tetrahydroquinoline Derivatives Using (+)â€Sparteineâ€mediated Electrophilic Substitution. Bulletin of the Korean Chemical Society, 2015, 36, 1500-1503.	1.0	2
223	Concise Synthesis of 4â€Arylquinolines <i>via</i> Intramolecular Cyclization of Allylamines and Ketones. Advanced Synthesis and Catalysis, 2015, 357, 3474-3478.	2.1	15
224	Synthesis of 2,1â€Borazaroquinolines and 2,1â€Borazaroisoquinolines from VinylÂaminopyridines and Potassium Organotrifluoroborates by Microwaveâ€Assisted Heating. European Journal of Organic Chemistry, 2015, 2015, 5221-5229.	1.2	17
225	Enantioselective Copper atalyzed Quinoline Alkynylation. Angewandte Chemie - International Edition, 2015, 54, 15202-15206.	7.2	111
226	Rh ^{III} â€Catalyzed Dehydrogenative Coupling of Quinoline <i>N</i> â€Oxides with Alkenes: <i>N</i> â€Oxide as Traceless Directing Group for Remote Câ€"H Activation. European Journal of Organic Chemistry, 2015, 2015, 7519-7528.	1.2	65
227	Oneâ€Pot â€ ⁻ Onâ€solvent' Multicomponent Protocol for the Synthesis of Medicinally Relevant 4 <i>H</i> â€Pyrano[3,2â€ <i>c</i>]quinoline Scaffold. Helvetica Chimica Acta, 2015, 98, 1104-1114.	1.0	21
228	Metalâ€Free Oxidative Decarbonylative Coupling of Aliphatic Aldehydes with Azaarenes: Successful Minisciâ€Type Alkylation of Various Heterocycles. Advanced Synthesis and Catalysis, 2015, 357, 2055-2060.	2.1	106
229	Direct access to pyrido/pyrrolo $[2,1-\langle i\rangle b\langle i\rangle]$ quinazolin-9 $(1\langle i\rangle H\langle i\rangle)$ -ones through silver-mediated intramolecular alkyne hydroamination reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 416-424.	1.3	14

#	Article	IF	CITATIONS
230	Syntheses of 4-Indolylquinoline Derivatives via Reductive Cyclization of Indolylnitrochalcone Derivatives by Fe/HCl. Molecules, 2015, 20, 22499-22519.	1.7	5
231	Synthesis, Crystal and Molecular Structure Studies and DFT Calculations of Phenyl Quinoline-2-Carboxylate and 2-Methoxyphenyl Quinoline-2-Carboxylate; Two New Quinoline-2 Carboxylic Derivatives. Crystals, 2015, 5, 100-115.	1.0	7
232	A concise and efficient synthesis of benzimidazo $[1,2-\langle i\rangle c\langle i\rangle]$ quinazolines through Cul-catalyzed intramolecular $\langle i\rangle N\langle i\rangle$ -arylations. Beilstein Journal of Organic Chemistry, 2015, 11, 2365-2369.	1.3	18
233	Copper-mediated synthesis of <i>N</i> -alkenyl- $\hat{l}\pm,\hat{l}^2$ -unsaturated nitrones and their conversion to tri- and tetrasubstituted pyridines. Beilstein Journal of Organic Chemistry, 2015, 11, 2097-2104.	1.3	30
234	Enantioselective synthesis of functionalized 3,4-disubstituted dihydro-2(1H)-quinolinones via Michael–hemiaminalization/oxidation reaction. New Journal of Chemistry, 2015, 39, 5088-5091.	1.4	8
235	Synthesis of 2-substituted quinolines from alcohols. Tetrahedron Letters, 2015, 56, 3790-3792.	0.7	18
236	Ohmic Heating-Assisted Synthesis of 3-Arylquinolin-4(1 <i>H</i>)-ones by a Reusable and Ligand-Free Suzuki–Miyaura Reaction in Water. Journal of Organic Chemistry, 2015, 80, 6649-6659.	1.7	26
237	Regioselective Metal-Free Cross-Coupling of Quinoline <i>N</i> -Oxides with Boronic Acids. Organic Letters, 2015, 17, 3134-3137.	2.4	132
238	Recent Advances in the Chemistry of Acridines. Advances in Heterocyclic Chemistry, 2015, , 287-353.	0.9	46
239	Copper promoted synthesis of substituted quinolines from benzylic azides and alkynes. RSC Advances, 2015, 5, 106012-106018.	1.7	19
240	Copper-Mediated Remote C–H Bond Chalcogenation of Quinolines on the C5 Position. Organic Letters, 2015, 17, 5528-5531.	2.4	120
241	Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via Nâ•N Bond Cleavage for the Regioselective Synthesis of Quinolines. Organic Letters, 2015, 17, 5836-5839.	2.4	37
242	Stereospecific Coupling of Boronic Esters with N-Heteroaromatic Compounds. Journal of the American Chemical Society, 2015, 137, 10958-10961.	6.6	131
243	Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect FriedlÃ ¤ der annulation. Organic and Biomolecular Chemistry, 2015, 13, 9570-9574.	1.5	38
244	Potassium Iodideâ€Catalyzed Threeâ€Component Synthesis of 2â€Arylquinazolines <i>via</i> Amination of Benzylic CH Bonds of Methylarenes. Advanced Synthesis and Catalysis, 2015, 357, 339-344.	2.1	52
245	An efficient synthesis of quinolines via copper-catalyzed C–N cleavage. Organic and Biomolecular Chemistry, 2015, 13, 3924-3930.	1.5	45
246	Procedureâ€"economical enantioselective total syntheses of asperlicins C and E. Tetrahedron Letters, 2015, 56, 1255-1258.	0.7	13
247	Ruthenium(II)â€Catalyzed Hydrogen Transfer/Annulation Cascade Processes between Alcohols and 2â€Nitrobenzaldehydes. Advanced Synthesis and Catalysis, 2015, 357, 583-588.	2.1	30

#	Article	IF	CITATIONS
248	Overâ€expression of bael quinolone synthase in tobacco improves plant vigor under favorable conditions, drought, or salt stress. FEBS Letters, 2015, 589, 332-341.	1.3	11
249	Two Consecutive Palladium(II)â€Promoted CH Alkenylation Reactions for the Synthesis of 3â€Alkenylquinolones. Advanced Synthesis and Catalysis, 2015, 357, 463-473.	2.1	27
250	Metal free access to quinolines via C–C bond cleavage of styrenes. Organic Chemistry Frontiers, 2015, 2, 515-519.	2.3	21
251	Efficient one pot multi-component domino Aldol condensation–Michael addition–Suzuki coupling reaction for the highly functionalized quinolines. Tetrahedron Letters, 2015, 56, 4744-4748.	0.7	11
252	Cp*Ir(III)-Catalyzed Mild and Broad Câ^'H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach. Journal of the American Chemical Society, 2015, 137, 8584-8592.	6.6	125
253	Synthesis and anti-bacterial evaluation of novel thio- and oxazepino [7,6-b] quinolines. Journal of the Iranian Chemical Society, 2015, 12, 2205-2212.	1.2	18
254	Transition-Metal-Catalyzed Site-Selective C–H Functionalization of Quinolines beyond C2 Selectivity. ACS Catalysis, 2015, 5, 5031-5040.	5. 5	206
255	Regioselective, Molecular Iodine-Mediated C3 Iodination of Quinolines. Organic Letters, 2015, 17, 4408-4411.	2.4	67
256	Distant C-H Activation/Functionalization: A New Horizon of Selectivity Beyond Proximity. Catalysis Reviews - Science and Engineering, 2015, 57, 345-405.	5.7	62
257	Divergent Synthesis of Imidazoles and Quinazolines via Pd(OAc)2-Catalyzed Annulation of N-Allylamidines. Organic Letters, 2015, 17, 3434-3437.	2.4	53
258	Efficient synthesis of 2-arylquinazolines via copper-catalyzed dual oxidative benzylic CH aminations of methylarenes. Chinese Chemical Letters, 2015, 26, 1216-1220.	4.8	14
259	Design, synthesis and anticancer activity of functionalized spiro-quinolines with barbituric and thiobarbituric acids. Medicinal Chemistry Research, 2015, 24, 3516-3528.	1.1	22
260	Supported gold-catalyzed and ammonia-promoted selective synthesis of quinazolines in aqueous media. Organic Chemistry Frontiers, 2015, 2, 114-118.	2.3	38
261	Tandem Dehydrogenation/Oxidation/Oxidative Cyclization Approach to Wrightiadione and Its Derivatives. Organic Letters, 2015, 17, 3252-3255.	2.4	28
262	Palladium(ii)-catalysed regioselective synthesis of 3,4-disubstituted quinolines and 2,3,5-trisubstituted pyrroles from alkenes via anti-Markovnikov selectivity. Chemical Communications, 2015, 51, 13795-13798.	2.2	37
263	lodine Catalyzed Oxidative Synthesis of Quinazolin-4(3 <i>H</i>)-ones and Pyrazolo[4,3- <i>d</i>]pyrimidin-7(6 <i>H</i>)-ones via Amination of sp ³ C–H Bond. Journal of Organic Chemistry, 2015, 80, 6915-6921.	1.7	106
264	Metal-free domino one-pot protocols for quinoline synthesis. RSC Advances, 2015, 5, 42020-42053.	1.7	140
265	Copper-catalyzed oxygen atom transfer of N-oxides leading to a facile deoxygenation procedure applicable to both heterocyclic and amine N-oxides. Chemical Communications, 2015, 51, 7035-7038.	2.2	47

#	Article	IF	Citations
266	Synthesis of the tetracyclic core of chlorospermines. Chinese Chemical Letters, 2015, 26, 272-276.	4.8	26
267	Potassium hydroxide-promoted transition-metal-free synthesis of 4(3H)-quinazolinones. Monatshefte FÅ $\frac{1}{4}$ r Chemie, 2015, 146, 1343-1347.	0.9	15
268	Tandem Arylation/Friedel–Crafts Reactions of <i>o</i> â€Acylanilines with Diaryliodonium Salts: A Modular Synthesis of Acridine Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3361-3369.	1.2	53
269	Coproduct Promoted Povarov Reaction: Synthesis of Substituted Quinolines from Methyl Ketones, Arylamines, and α-Ketoesters. Journal of Organic Chemistry, 2015, 80, 5984-5991.	1.7	64
270	Nickel nanoparticles: a highly efficient and retrievable catalyst for the solventless Friedlander annulation of quinolines and their in silico molecular docking studies as histone deacetylase inhibitors. RSC Advances, 2015, 5, 45599-45610.	1.7	19
271	Gold-catalyzed α-furanylations of quinoline N-oxides with alkenyldiazo carbonyl species. Organic and Biomolecular Chemistry, 2015, 13, 6166-6169.	1.5	30
272	Copper-catalyzed C–H alkylation of 8-aminoquinolines via 8-amide chelation assistance. RSC Advances, 2015, 5, 28892-28895.	1.7	28
273	Metal-Catalysed Cross-Coupling Reactions in the Synthesis and Transformations of Quinolones and Acridones. Topics in Heterocyclic Chemistry, 2015, , 159-229.	0.2	3
274	I ₂ -Catalyzed Aerobic Oxidative C(sp ³)â€"H Amination/Câ€"N Cleavage of Tertiary Amine: Synthesis of Quinazolines and Quinazolinones. Journal of Organic Chemistry, 2015, 80, 5581-5587.	1.7	82
275	New Quinolinone Alkaloids from Chestnut (<i>Castanea crenata</i> Sieb) Honey. Journal of Agricultural and Food Chemistry, 2015, 63, 3587-3592.	2.4	19
276	SNAr reaction in aqueous medium in the presence of mixed organic and inorganic bases. RSC Advances, 2015, 5, 31226-31230.	1.7	9
277	Reaction of isatins with 6-amino uracils and isoxazoles: isatin ring-opening vs. annulations and regioselective synthesis of isoxazole fused quinoline scaffolds in water. Green Chemistry, 2015, 17, 3362-3372.	4.6	39
278	Copper-Catalyzed Cross-Dehydrogenative C–N Bond Formation of Azines with Azoles: Overcoming the Limitation of Oxidizing N–O Activation Strategy. ACS Catalysis, 2015, 5, 7194-7198.	5 . 5	70
279	Transition-metal-free synthesis of quinolines from 2-nitrobenzyl alcohol in water. Tetrahedron Letters, 2015, 56, 6758-6761.	0.7	15
280	Synthesis of Highly Substituted Quinolines via a Tandem Ynamide Benzannulation/Iodocyclization Strategy. Journal of Organic Chemistry, 2015, 80, 11794-11805.	1.7	42
281	A one-pot construction of acridones by rhodium catalyzed reaction of N -phenyl-2-(1-sulfonyl-1 H) Tj ETQq $1\ 1\ 0.7$	784314 rg 0.7	:BT /Overlock
282	The regioselective iodination of quinolines, quinolones, pyridones, pyridines and uracil. Chemical Communications, 2015, 51, 17744-17747.	2.2	49
283	Metal free synthesis of 2,4-diarylquinoline derivatives with enamides and imines. RSC Advances, 2015, 5, 88214-88217.	1.7	18

#	Article	IF	CITATIONS
284	Novel 4-aminoquinazoline derivatives as new leads for anticancer drug discovery. Acta Pharmaceutica, 2015, 65, 299-309.	0.9	9
285	Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron, 2015, 71, 8683-8716.	1.0	135
286	Metal-free synthesis of N-fused heterocyclic iodides via Câ€"H functionalization mediated by tert-butylhydroperoxide. Chemical Communications, 2015, 51, 15129-15132.	2.2	40
287	Synthesis of 5,6-dihydroquinolines and succinates via the reaction of $\hat{l}_{\pm},\hat{l}_{\pm}$ -dicyanoolefins and acetylenic esters in a ratio of 2:1. Tetrahedron, 2015, 71, 7885-7891.	1.0	12
288	Recent developments in the chemistry of quinazolinone alkaloids. Organic and Biomolecular Chemistry, 2015, 13, 9336-9352.	1.5	254
289	Ruthenium-Catalyzed Câ^'N and Câ^'O Bond-Forming Processes from Câ^'H Bond Functionalization. Topics in Organometallic Chemistry, 2015, , 189-215.	0.7	25
290	Metal- and Oxidant-Free Synthesis of Quinazolinones from $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ketoesters with $\langle i \rangle \circ \langle i \rangle$ -Aminobenzamides via Phosphorous Acid-Catalyzed Cyclocondensation and Selective Câ \in "C Bond Cleavage. Journal of Organic Chemistry, 2015, 80, 9392-9400.	1.7	95
291	Palladium-Catalyzed Benzylic C–H Arylation of Azaarylmethylamines. Organic Letters, 2015, 17, 5788-5791.	2.4	32
292	ZnCl ₂ â€Promoted Oneâ€Pot Threeâ€Component Synthesis of Multisubstituted Thiazolo[4,5â€ <i>b</i>)pyridines and Thieno[2,3â€ <i>b</i>)classing Synthesis of Multisubstituted Thiazolo [4,5â€ <i>bဲ</i>)dipyridines. European Journal of Organic Chemistry, 2015, 2015, 631-637.	1,2	17
293	CuSO ₄ â€" <scp>d</scp> -glucose, an inexpensive and eco-efficient catalytic system: direct access to diverse quinolines through modified Friedläder approach involving S _N Ar/reduction/annulation cascade in one pot. RSC Advances, 2015, 5, 7654-7660.	1.7	36
294	Copper-Catalyzed Synthesis of Substituted Quinolines via C–N Coupling/Condensation from <i>ortho</i> -Acylanilines and Alkenyl Iodides. Journal of Organic Chemistry, 2015, 80, 1275-1278.	1.7	61
295	Oneâ€Pot Synthesis of 2â€Arylquinazolines and Tetracyclic Isoindolo[1,2â€ <i>a</i>]quinazolines <i>via</i> Cyanation Followed by Rearrangement of <i>ortho</i> â€Substituted 2â€Haloâ€ <i>N</i> â€arylbenzamides. Advanced Synthesis and Catalysis, 2015, 357, 168-176.	2.1	19
296	Efficient \$\$hbox {Cu(OTf)}_{2}\$\$ Cu(OTf) 2 -catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1 \$\$H\$\$ H)-ones. Molecular Diversity, 2015, 19, 67-75.	2.1	9
297	Synthesis of Quinoline Derivatives by Multicomponent Reaction Using Niobium Pentachloride as Lewis Acid. Journal of Heterocyclic Chemistry, 2015, 52, 273-277.	1.4	27
298	Microwave-assisted solid acid-catalyzed synthesis of quinolinyl quinolinones and evaluation of their antibacterial, antioxidant activities. Research on Chemical Intermediates, 2015, 41, 4899-4912.	1,3	21
299	An Efficient Threeâ€component, Oneâ€pot Synthesis of Quinazolines under Solventâ€free and Catalystâ€free Condition. Journal of Heterocyclic Chemistry, 2015, 52, 1253-1259.	1.4	19
300	One-pot cascade synthesis of N-methoxyisoquinolinediones via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion Câ€"H activation/cyclization. Chemical Communications, 2015, 51, 668-671.	2.2	110
301	Quorum quenching enzymes. Journal of Biotechnology, 2015, 201, 2-14.	1.9	263

#	Article	IF	Citations
302	Synthesis and Antimicrobial Evaluation of Polyfunctionally Heterocyclic Compounds Bearing Quinoline Moiety. , $2016, 5, \ldots$		1
303	Isoquinoline-substituted triazole and pyran derivatives: synthesis and computational studies. Turkish Journal of Chemistry, 2016, 40, 655-666.	0.5	1
304	A New Megastigmane Sesquiterpenoid from Zanthoxylum Schinifolium Sieb. et Zucc. Molecules, 2016, 21, 383.	1.7	4
305	Secondary Metabolite Diversity of the Genus Aspergillus: Recent Advances., 2016,, 275-292.		13
306	Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction. International Journal of Molecular Sciences, 2016, 17, 860.	1.8	9
307	Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and Their Fused Analogues. Molecules, 2016, 21, 492.	1.7	39
308	Synthetic Strategies for 5- and 6-Membered Ring Azaheterocycles Facilitated by Iminyl Radicals. Molecules, 2016, 21, 660.	1.7	55
309	Organocatalytic Stereoselective Addition of Aldehydes to Acylquinolinium Ions. European Journal of Organic Chemistry, 2016, 2016, 3200-3207.	1.2	23
310	Activated Alumina Balls under Neat Conditions: A Green Catalyst for the Synthesis of Spiroâ∈Heterocyclic Scaffolds by Ringâ€Opening versus Annulation of the Isatin Moiety. ChemCatChem, 2016, 8, 1185-1198.	1.8	25
311	Copperâ€Catalyzed 8â€Amido Chelationâ€Induced Remote Câ^'H Amination of Quinolines. Chemistry - A European Journal, 2016, 22, 1592-1596.	1.7	81
312	Palladiumâ€Catalyzed Selective Cï£;H Activation: A Simple Method to Synthesize Câ€3 Site Arylated Quinoline Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 375-379.	2.1	20
313	Synthesis and Utility of Dihydropyridine Boronic Esters. Angewandte Chemie - International Edition, 2016, 55, 2205-2209.	7.2	54
314	Iodineâ€Catalyzed Oxidative Benzylic Câ^'H Bond Amination of Azaarenes: Practical Synthesis of Quinazolinâ€4(3 <i>H</i>)â€ones. Asian Journal of Organic Chemistry, 2016, 5, 494-498.	1.3	27
315	Synthesis of (E)â€3â€Styrylquinolinâ€4(1H)â€ones in Water by Ohmic Heating: a Comparison with Other Methodologies. European Journal of Organic Chemistry, 2016, 2016, 2888-2896.	1.2	10
316	Synthesis and Utility of Dihydropyridine Boronic Esters. Angewandte Chemie, 2016, 128, 2245-2249.	1.6	18
317	Cu-Catalyzed Aerobic Oxidation of Di- <i>tert</i> butyl Hydrazodicarboxylate to Di- <i>tert</i> butyl Azodicarboxylate and Its Application on Dehydrogenation of 1,2,3,4-Tetrahydroquinolines under Mild Conditions. Organic Letters, 2016, 18, 6300-6303.	2.4	58
318	Synthesis of quinolines via acid-catalyzed cyclodehydration of 2-(tosylamino)chalcones. Chemistry of Heterocyclic Compounds, 2016, 52, 1087-1091.	0.6	3
319	Novel Synthetic and Mechanistic Approach of TFA Catalysed Friedläder Synthesis of 2â€Acylquinolines from Symmetrical and Unsymmetrical 1,2â€Diketones with <i>o</i> àâ€Aminoarylketones. ChemistrySelect, 2016, 1, 6823-6829.	0.7	14

#	Article	IF	CITATIONS
320	Aryne-induced dearomatized phosphonylation of electron-deficient azaarenes. RSC Advances, 2016, 6, 33606-33610.	1.7	28
321	Oxime ethers as useful synthons in the synthesis of a number of key medicinal heteroaromatic compounds. Journal of the Iranian Chemical Society, 2016, 13, 1235-1256.	1.2	33
322	Direct alkenylation of alkylazaarenes with aldehydes through C(sp3)â€"H functionalization under catalytic InCl3 activation. Tetrahedron, 2016, 72, 2132-2138.	1.0	30
323	Catalytic α-Arylation of Imines Leading to N-Unprotected Indoles and Azaindoles. ACS Catalysis, 2016, 6, 2930-2938.	5.5	26
324	Metal free carboamination of internal alkynes $\hat{a} \in \text{``an easy access to polysubstituted quinolines.}$ Chemical Communications, 2016, 52, 5761-5764.	2.2	36
325	Copper-catalyzed aerobic oxidative decarboxylative amination of arylacetic acids: a facile access to 2-arylquinazolines. RSC Advances, 2016, 6, 36192-36197.	1.7	31
326	Efficient synthesis of 2-acylquinolines based on an aza-vinylogous Povarov reaction. Organic Chemistry Frontiers, 2016, 3, 412-422.	2.3	39
327	Divergent Synthesis of Quinazolin-4(3 <i>H</i>)-ones and Tryptanthrins Enabled by a <i>tert</i> -Butyl Hydroperoxide/K ₃ PO ₄ -Promoted Oxidative Cyclization of Isatins at Room Temperature. Organic Letters, 2016, 18, 2942-2945.	2.4	91
328	A copper catalyzed multicomponent cascade redox reaction for the synthesis of quinazolinones. RSC Advances, 2016, 6, 52884-52887.	1.7	16
329	A direct and vicinal functionalization of the 1-methyl-2-quinolone framework: 4-alkoxylation and 3-chlorination. Organic and Biomolecular Chemistry, 2016, 14, 5128-5135.	1.5	6
330	Metal-free synthesis of highly substituted quinolines under mild conditions. Tetrahedron Letters, 2016, 57, 2981-2984.	0.7	11
331	Fast regioselective sulfonylation of pyridine/quinoline N-oxides induced by iodine. Organic and Biomolecular Chemistry, 2016, 14, 5317-5321.	1.5	52
332	Copperâ€Catalyzed Direct Sulfoximination of Heteroaromatic <i>N</i> à€Oxides by Dual Câ^'H/Nâ^'H Dehydrogenative Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 54-57.	1.7	52
333	Rh- and Cu-Cocatalyzed Aerobic Oxidative Approach to Quinazolines via [4 + 2] C–H Annulation with Alkyl Azides. Organic Letters, 2016, 18, 2150-2153.	2.4	83
334	Bifunctional solid acid photocatalyst TiO 2 /AC/SO 3 H with high acid density for pure green photosynthesis of 2-quinoline carboxamide. Journal of Molecular Catalysis A, 2016, 420, 290-293.	4.8	7
335	A Comparative Investigation: Group 9 Cp*M(III)-Catalyzed Formal $[4\hat{A}+2]$ Cycloaddition as an Atom-Economic Approach to Quinazolines. Organic Letters, 2016, 18, 2090-2093.	2.4	143
336	Gold(i) catalyzed tandem cyclization of propargylic esters to 4-acyloxy-1,2-dihydroquinolines. Chemical Communications, 2016, 52, 6942-6945.	2.2	21
337	Beyond a Protecting Reagent: DMAP-Catalyzed Cyclization of Boc-Anhydride with 2-Alkenylanilines. Journal of Organic Chemistry, 2016, 81, 4645-4653.	1.7	20

#	Article	IF	CITATIONS
338	Rh(II)-Catalyzed Transannulation of $\langle i \rangle$ N $\langle i \rangle$ -Sulfonyl-1,2,3-Triazoles with 2,1-Benzisoxazoles or 1,2-Benzisoxazoles. Organic Letters, 2016, 18, 4990-4993.	2.4	59
339	Synthesis of Quinazolines from <i>N</i> , <i>N</i> ,′-Disubstituted Amidines via I ₂ /KI-Mediated Oxidative C–C Bond Formation. Journal of Organic Chemistry, 2016, 81, 9924-9930.	1.7	38
340	ZnCl2-promoted Friedläder-type synthesis of 4-substituted 3-aroyl quinolines from o-aminoaryl ketones and enaminones. Tetrahedron Letters, 2016, 57, 4987-4990.	0.7	17
341	Copper-catalyzed [3 + 2] cycloaddition reactions: synthesis of substituted pyrazolo[1,5-c]quinazolines with N-iminoquinazolinium ylides and olefins as starting materials. RSC Advances, 2016, 6, 95774-95779.	1.7	5
342	A multi-component domino bicyclization strategy: direct access to skeletally diverse quinazoline collection. Tetrahedron, 2016, 72, 5652-5658.	1.0	10
343	A cascade reaction of o -alkenylphenyl carbodiimides with isocyanides by copper catalysis: direct construction of 4,5-dihydroimidazo[1,5- a]quinazolines. Tetrahedron Letters, 2016, 57, 4207-4209.	0.7	13
344	Copperâ€Catalyzed Crossâ€Dehydrogenative Coupling of <i>N</i> â€Iminoquinolinium Ylides with Secondary Amines. European Journal of Organic Chemistry, 2016, 2016, 4953-4956.	1.2	10
345	Metal-Free Remote C–H Bond Amidation of 8-Amidoquinolines on the C5 Position under Mild Conditions. Organic Letters, 2016, 18, 4478-4481.	2.4	64
346	Cascade bicyclization of triethylammonium thiolates with hydrazines: efficient access to pyrazolo[3,4-c]quinolines. Organic and Biomolecular Chemistry, 2016, 14, 9080-9087.	1.5	9
347	Functionalization of Quinolines through Copperâ€Catalyzed Regioselective Halogenation Reaction. ChemistrySelect, 2016, 1, 1949-1953.	0.7	30
348	The synthesis of iminothiophenone-fused quinolines and evaluation of their serendipitous reactions. RSC Advances, 2016, 6, 92235-92240.	1.7	22
349	Gold atalyzed Synthesis of Quinolines from Propargyl Silyl Ethers and Anthranils through the Umpolung of a Gold Carbene Carbon. Angewandte Chemie - International Edition, 2016, 55, 12688-12692.	7.2	199
350	Copper-catalyzed 8-amido chelation-induced regioselective C–H fluoroalkylation of quinolines. Organic Chemistry Frontiers, 2016, 3, 1309-1313.	2.3	43
351	An isocyanide insertion approach to substituted pyrrolo[2,3-b]quinolines under metal-free and azide-free conditions. Organic Chemistry Frontiers, 2016, 3, 1299-1303.	2.3	19
352	Bimetallic Cu–Mnâ€Catalyzed Synthesis of 2â€Arylquinazolinâ€4(3 <i>H</i>)â€ones: Aqueous Ammonia as Source of a Ring Nitrogen Atom. European Journal of Organic Chemistry, 2016, 2016, 5227-5233.	1.2	12
353	Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde. Green Chemistry, 2016, 18, 5773-5776.	4.6	39
354	Pd-Catalyzed Ligand-Free Synthesis of Arylated Heteroaromatics by Coupling of <i>N</i> -Heteroaromatic Bromides with Iodobenzene Diacetate, Iodosobenzene, or Diphenyliodonium Salts. Journal of Organic Chemistry, 2016, 81, 7958-7962.	1.7	11
355	Carbonylation of Anthranilic Acid with Aryl and Heteroaryl Bromides to Synthesize Benzoxazinone Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 1120-1123.	1.3	4

#	Article	IF	CITATIONS
356	Copperâ€Catalyzed Regioselective Cascade Alkylation and Cyclocondensation of Quinoline <i>N</i> â€Oxides with Diazo Esters: Direct Access to Conjugated Ï€â€Systems. Chemistry - A European Journal, 2016, 22, 13826-13830.	1.7	39
357	Remote C–H Selenylation of 8â€Amidoquinolines via Copperâ€Catalyzed Radical Crossâ€Coupling. European Journal of Organic Chemistry, 2016, 2016, 4321-4327.	1.2	47
358	Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. Organic Letters, 2016, 18, 3514-3517.	2.4	60
359	Transition-metal-free oxidative C5 C–H-halogenation of 8-aminoquinoline amides using sodium halides. Organic and Biomolecular Chemistry, 2016, 14, 10180-10184.	1.5	49
360	Goldâ€katalysierte Synthese von Chinolinen aus Propargylsilylethern und Anthranilen ýber die Umpolung eines Goldcarbenâ€Kohlenstoffatoms. Angewandte Chemie, 2016, 128, 12880-12884.	1.6	59
361	Convenient and efficient method for the synthesis of substituted quinolines via one-pot heteroannulation reaction of o-amino arylketones with \hat{l}_{\pm} -methylene ketones under solvent-free conditions. Synthetic Communications, 2016, 46, 1953-1961.	1.1	6
362	Halogenations of substituted 2-alkylquinoline with iodine and halide exchange with AgF ₂ . RSC Advances, 2016, 6, 111713-111717.	1.7	9
363	Regio- and Chemoselective Mono- and Bisnitration of 8-Amino quinoline Amides with Fe(NO ₃) ₃ ·9H ₂ O as Promoter and Nitro Source. Organic Letters, 2016, 18, 6054-6057.	2.4	76
364	Rh(III)- and Zn(II)-Catalyzed Synthesis of Quinazoline <i>N</i> Oxides via C–H Amidation–Cyclization of Oximes. Organic Letters, 2016, 18, 6144-6147.	2.4	79
365	Synthesis of quinolines through copper-catalyzed intermolecular cyclization reaction from anilines and terminal acetylene esters. RSC Advances, 2016, 6, 103478-103481.	1.7	10
366	Palladium(II)â€Catalyzed Sequential Aminopalladation and Oxidative Coupling with Acetylenes/Enones: Synthesis of Newly Substituted Quinolines from 2â€Aminophenyl Propargyl Alcohols. Advanced Synthesis and Catalysis, 2016, 358, 303-313.	2.1	33
367	Rapid and Efficient Cascade Synthesis of 2â€Aminoâ€4(3 <i>H</i>)â€quinazolinones over an Inâ€Situâ€Ge Heterogeneous CuCO ₃ –K ₂ CO ₃ Nanocomposite. Asian Journal of Organic Chemistry, 2016, 5, 750-754.	enerated 1.3	5
368	Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes. Angewandte Chemie - International Edition, 2016, 55, 2636-2649.	7.2	213
369	Rational design, synthesis, anti-HIV-1 RT and antimicrobial activity of novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one derivatives. Bioorganic Chemistry, 2016, 67, 75-83.	2.0	26
370	Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with \hat{l}_{\pm} -Carbamoyl Sulfides. Journal of Organic Chemistry, 2016, 81, 7230-7236.	1.7	24
371	Robust synthesis of linear and angular furoquinolines using Rap–Stoermer reaction. Chemistry of Heterocyclic Compounds, 2016, 52, 322-325.	0.6	3
372	Synthesis and Modification of Heterocycles by Metal-Catalyzed Cross-coupling Reactions. Topics in Heterocyclic Chemistry, 2016, , .	0.2	10
373	A decade update on solvent and catalyst-free neat organic reactions: a step forward towards sustainability. Green Chemistry, 2016, 18, 4475-4525.	4.6	185

#	Article	IF	CITATIONS
374	Rhodium(iii)-catalyzed alkylation of primary C(sp3)–H bonds with α-diazocarbonyl compounds. Chemical Communications, 2016, 52, 9672-9675.	2.2	67
375	What Happens When the Terminal Aromatization is Blocked? Construction of 1,2â€Dihydroquinoline Derivatives by <i>sp</i> ³ CH Bond Oxidation of <i>N</i> â€Arylalaninates. Advanced Synthesis and Catalysis, 2016, 358, 1004-1010.	2.1	10
376	Rhodium-catalyzed tandem C–H activation and aza-Michael addition of 2-arylquinazolin-4-ones with acrylates for the synthesis of pyrrolo[2,1-b]quinazolin-9(1H)-one derivatives. Tetrahedron, 2016, 72, 1238-1243.	1.0	27
377	Dual-Functionalization of Alkynes via Copper-Catalyzed Carbene/Alkyne Metathesis: A Direct Access to the 4-Carboxyl Quinolines. ACS Catalysis, 2016, 6, 1024-1027.	5. 5	74
378	Synthesis of 2,3-Dihydrothieno(2,3- <i>b</i>)quinolines and Thieno(2,3- <i>b</i>)- quinolines via an Unexpected Domino Aza-MBH/Alkylation/Aldol Reaction. Journal of Organic Chemistry, 2016, 81, 1216-1222.	1.7	19
379	One-pot three-component regioselective synthesis of C1-functionalised 3-arylbenzo[f]quinoline. RSC Advances, 2016, 6, 11675-11682.	1.7	16
380	Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted α-hydroxy carboxylic derivatives. Organic and Biomolecular Chemistry, 2016, 14, 2613-2617.	1.5	45
381	Cobalt(<scp>iii</scp>) catalyzed C-8 selective Câ€"H and Câ€"O coupling of quinoline N-oxide with internal alkynes via Câ€"H activation and oxygen atom transfer. Chemical Communications, 2016, 52, 1338-1341.	2.2	138
382	Rawal's catalyst as an effective stimulant for the highly asymmetric Michael addition of \hat{l}^2 -keto esters to functionally rich nitro-olefins. Organic and Biomolecular Chemistry, 2016, 14, 5494-5499.	1.5	15
383	Rh(<scp>ii</scp>)-Catalyzed formation of pyrrolo[2,3-b]quinolines from azide-methylenecyclopropanes and isonitriles. Chemical Communications, 2016, 52, 1967-1970.	2.2	49
384	Transition Metal-Free Visible Light-Driven Photoredox Oxidative Annulation of Arylamidines. Journal of Organic Chemistry, 2016, 81, 309-317.	1.7	50
385	Cobalt-catalyzed synthesis of quinolines from the redox-neutral annulation of anilides and alkynes. Organic Chemistry Frontiers, 2016, 3, 678-682.	2.3	50
386	Palladium-Catalyzed Benzylic Arylation of Pyridylmethyl Silyl Ethers: One-Pot Synthesis of Aryl(pyridyl)methanols. Organic Letters, 2016, 18, 1590-1593.	2.4	14
387	Visible-light-induced regioselective synthesis of polyheteroaromatic compounds. Chemical Communications, 2016, 52, 4203-4206.	2.2	33
388	Anstifolines A and B, two dimeric furoquinoline alkaloids from the root bark of Dictamnus angustifolius. RSC Advances, 2016, 6, 22550-22554.	1.7	5
389	Copper-catalyzed synthesis of quinoline derivatives via tandem Knoevenagel condensation, amination and cyclization. RSC Advances, 2016, 6, 23987-23994.	1.7	27
390	In Vitro and In Vivo Human Metabolism of Synthetic Cannabinoids FDU-PB-22 and FUB-PB-22. AAPS Journal, 2016, 18, 455-464.	2.2	50
391	Rhodium-catalyzed ortho C–H bond activation of arylamines for the synthesis of quinoline carboxylates. Organic and Biomolecular Chemistry, 2016, 14, 2969-2977.	1.5	19

#	Article	IF	CITATIONS
392	Base catalysed intermolecular cyclisation of N-protected o-amino benzaldehyde/acetophenone with phosphorus/sulphur based allenes: facile synthesis of substituted quinolines. Organic and Biomolecular Chemistry, 2016, 14, 3591-3602.	1.5	13
393	A Computational Mechanistic Study of Amidation of Quinoline N-Oxide: The Relative Stability of Amido Insertion Intermediates Determines the Regioselectivity. ACS Catalysis, 2016, 6, 2452-2461.	5.5	39
394	Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorganic Chemistry, 2016, 64, 66-73.	2.0	32
395	Synthesis of 8-heteroaryl nitroxoline analogues via one-pot sequential Pd-catalyzed coupling reactions. Organic and Biomolecular Chemistry, 2016, 14, 1969-1981.	1.5	16
396	Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids, 2016, 215, 345-386.	2.3	354
397	Thermally induced formal [3+2] cyclization of ortho-aminoaryl-tethered alkylidenecyclopropanes: facile synthesis of furoquinoline and thienoquinoline derivatives. Chemical Communications, 2016, 52, 2701-2704.	2.2	49
398	Copper-catalyzed consecutive reaction to construct quinazolin-4(3H)-ones and pyrido[2,3-d]pyrimidin-4(3H)-ones. Tetrahedron, 2016, 72, 868-874.	1.0	25
399	Ethyl 3-(2,4-dioxocyclohexyl)propanoate as a novel precursor for N-substituted 4,4a,5,6-tetrahydroquinoline-2,7(1H,3H)-diones and their corresponding 3,4-dihydro-7-hydroxyquinolin-2(1H)-ones and 7-hydroxyquinolin-2(1H)-ones synthesis. Molecular Diversity, 2016, 20, 29-40.	2.1	7
400	Stereodivergent and enantioselective total syntheses of isochaetominines A–C and four pairs of isochaetominine C enantiomers: a six-step approach. Organic Chemistry Frontiers, 2016, 3, 24-37.	2.3	22
401	In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicology, 2017, 35, 20-32.	1.4	31
402	Lewis Acid Catalyzed Dehydrogenative Coupling of Tertiary Propargylic Alcohols with Quinoline <i>N</i> -Oxides. Journal of Organic Chemistry, 2017, 82, 1697-1704.	1.7	31
403	Computational Studies on Rhodium(III) Catalyzed C–H Functionalization versus Deoxygenation of Quinoline N-Oxides with Diazo Compounds. Organometallics, 2017, 36, 650-656.	1.1	19
404	Polythiophene-Encapsulated Bimetallic Au-Fe ₃ O ₄ Nano-Hybrid Materials: A Potential Tandem Photocatalytic System for Nondirected C(sp ²)–H Activation for the Synthesis of Quinoline Carboxylates. ACS Catalysis, 2017, 7, 2007-2021.	5 . 5	35
405	Transition-metal-free direct perfluoroalkylation of quinoline amides at C5 position through radical cross-coupling under mild conditions. Organic Chemistry Frontiers, 2017, 4, 1116-1120.	2.3	52
406	A Merged Aldol Condensation, Alkene Isomerization, Cycloaddition/Cycloreversion Sequence Employing Oxazinone Intermediates for the Synthesis of Substituted Pyridines. Synlett, 2017, 28, 1170-1172.	1.0	5
407	Synthesis, crystal structure, magnetic properties and DFT study of dinuclear Ni(II) complex with the condensation product of 2-quinolinecarboxaldehyde and Girard's T reagent. Polyhedron, 2017, 128, 30-37.	1.0	23
408	A facile and general acid-catalyzed deuteration at methyl groups of N-heteroarylmethanes. Organic and Biomolecular Chemistry, 2017, 15, 2507-2511.	1.5	39
409	Iron-mediated remote C–H bond benzylation of 8-aminoquinoline amides. Tetrahedron Letters, 2017, 58, 1912-1916.	0.7	20

#	Article	IF	CITATIONS
410	Metal-free C5-selective halogenation of quinolines under aqueous conditions. Organic Chemistry Frontiers, 2017, 4, 622-626.	2.3	36
411	Quinazolineâ€Directed C–H Bond Functionalization Catalyzed by Ruthenium(II) Carboxylate – Construction of Polyconjugated Arylâ€Heteroaryl Systems. European Journal of Organic Chemistry, 2017, 2017, 1855-1864.	1.2	20
412	Unexpected simultaneous synthesis of trisubstituted quinolines and acylhydrazones under catalyst-free conditions. Synthetic Communications, 2017, 47, 1077-1084.	1.1	1
413	Mechanistic Insights into the B(C ₆ F ₅) ₃ -Initiated Aldehyde–Aniline–Alkyne Reaction To Form Substituted Quinolines. Organometallics, 2017, 36, 1623-1629.	1.1	30
414	Regioselective Metalâ€Free C2â^'H Arylation of Quinoline <i>N</i> à€Oxides with Aryldiazonium Salts/Anilines under Ambient Conditions. Asian Journal of Organic Chemistry, 2017, 6, 1043-1053.	1.3	28
415	Traceless Directing-Group Strategy in the Ru-Catalyzed, Formal [3 + 3] Annulation of Anilines with Allyl Alcohols: A One-Pot, Domino Approach for the Synthesis of Quinolines. Organic Letters, 2017, 19, 2494-2497.	2.4	58
416	AgNO ₃ -catalyzed direct Câ€"H arylation of quinolines by oxidative decarboxylation of aromatic carboxylic acids. Organic Chemistry Frontiers, 2017, 4, 545-554.	2.3	33
417	A rapid and sensitive UHPLC–MS/MS method for quantification of 83b1 in plasma and its application to bioavailability study in rats. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134, 71-76.	1.4	1
418	Synthesis of quinazolines from (2-aminoaryl)methanols and arylmethanamines catalyzed by rhodium complex. Russian Journal of General Chemistry, 2017, 87, 812-815.	0.3	2
419	A novel environmentally sustainable synthesis of Au–Ag@AgCl nanocomposites and their application as an efficient and recyclable catalyst for quinoline synthesis. New Journal of Chemistry, 2017, 41, 5395-5402.	1.4	20
420	Arylation of Azaarylmethylamines with Aryl Chlorides and a NiBr ₂ /NIXANTPHOSâ€based Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 2890-2894.	2.1	20
421	Expeditious synthesis of pyrano[2,3,4-de]quinolines via Rh(<scp>iii</scp>)-catalyzed cascade C–H activation/annulation/lactonization of quinolin-4-ol with alkynes. Chemical Communications, 2017, 53, 7824-7827.	2.2	54
422	Cp*Rh(III)â€Catalyzed Directed Câ^'H Methylation and Arylation of Quinoline <i>N</i> â€Oxides at the Câ€8 Position. Advanced Synthesis and Catalysis, 2017, 359, 3029-3034.	2.1	69
423	ABNOâ€Catalyzed Aerobic Oxidative Synthesis of 2â€Substituted 4 <i>H</i> à€3,1â€Benzoxazines and Quinazolines. European Journal of Organic Chemistry, 2017, 2017, 3335-3342.	1.2	43
424	Novel one pot synthesis of substituted quinazolin-4(3 H)-ones and pyrazolo[4,3- d]pyrimidin-7(6 H) Tj ETQq0 0	O rgBT /O\	verlock 10 Tf
425	Metal–free C5â€H Bromination of Quinolines for Oneâ€pot Câ^'X (X=C, O, S) Bond Formations. Advanced Synthesis and Catalysis, 2017, 359, 2864-2873.	2.1	28
426	Regioâ€Selective Câ^'H Halogenation of 8â€Amidoâ€Quinolines under Transition Metal Free Conditions. ChemistrySelect, 2017, 2, 2745-2749.	0.7	22
427	Iron-catalyzed or iodine-induced intramolecular halocyclization of N-vinyl-tethered methylenecyclopropanes: facile access to halogenated 1,2-dihydroquinolines. Organic Chemistry Frontiers, 2017, 4, 1294-1298.	2.3	8

#	Article	IF	CITATIONS
428	Zinc cation supported on carrageenan magnetic nanoparticles: A novel, green and efficient catalytic system for one $\hat{\epsilon}$ pot three $\hat{\epsilon}$ component synthesis of quinoline derivatives. Applied Organometallic Chemistry, 2017, 31, e3682.	1.7	23
429	Copperâ€Catalyzed Remote Câ^H Amination of Quinolines with <i>N</i> à€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2017, 359, 1037-1042.	2.1	51
430	Palladium(<scp>ii</scp>)-catalyzed direct O-alkenylation of 2-arylquinazolinones with N-tosylhydrazones: an efficient route to O-alkenylquinazolines. Chemical Communications, 2017, 53, 1672-1675.	2.2	15
431	Iodine/TBHPâ€Promoted Oneâ€Pot Deoxygenation and Direct 2â€Sulfonylation of Quinoline <i>N</i> à€Oxides with Sodium Sulfinates: Facile and Regioselective Synthesis of 2â€Sulfonylquinolines. European Journal of Organic Chemistry, 2017, 2017, 1025-1032.	1.2	47
432	Iodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C–O cross-coupling. RSC Advances, 2017, 7, 49436-49439.	1.7	31
433	Visible-light-promoted selective C–H amination of heteroarenes with heteroaromatic amines under metal-free conditions. Organic and Biomolecular Chemistry, 2017, 15, 9590-9594.	1.5	51
434	Oxidative Rearrangement Coupling Reaction for the Functionalization of Tetrahydroâ€Î²â€carbolines with Aromatic Amines. Angewandte Chemie, 2017, 129, 15164-15168.	1.6	6
435	Oxidative Rearrangement Coupling Reaction for the Functionalization of Tetrahydroâ \in $\hat{\mathbf{i}}^2$ â \in carbolines with Aromatic Amines. Angewandte Chemie - International Edition, 2017, 56, 14968-14972.	7.2	36
436	Temperatureâ€Controlled Baseâ€Promoted Cyclization for the Synthesis of 2â€Aminoâ€4 <i>H</i> à€benzo[<i>d</i>][1,3]thiazinâ€4â€ones and 2â€Thioxoâ€4(3 <i>H</i>)â€quinazolinones. Journal of Organic Chemistry, 2017, 6, 1773-1777.	Aistan	9
437	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> à€Oxides with Vinylarenes. Angewandte Chemie, 2017, 129, 16112-16116.	1.6	19
438	Enantioselective Copperâ€Catalyzed Alkylation of Quinoline <i>N</i> â€Oxides with Vinylarenes. Angewandte Chemie - International Edition, 2017, 56, 15896-15900.	7.2	61
439	The one-pot synthesis of quinolines via Co(<scp>iii</scp>)-catalyzed C–H activation/carbonylation/cyclization of anilines. Organic and Biomolecular Chemistry, 2017, 15, 9061-9065.	1.5	34
440	Oxidative Câ \in "H functionalization of N-carbamoyl 1,2-dihydroquinolines. Organic and Biomolecular Chemistry, 2017, 15, 7600-7606.	1.5	14
441	An efficient and green reaction of isatins, 3-amino-1-phenyl-2-pyrazolin-5-one (3-amine-1H-pyrazole), and \hat{l}^2 -diketone in aqueous medium. Molecular Diversity, 2017, 21, 985-997.	2.1	7
442	Energy efficient Pfitzinger reaction: a novel strategy using a surfactant catalyst. New Journal of Chemistry, 2017, 41, 12380-12383.	1.4	14
443	From Anilines to Quinolines: Iodide―and Silverâ€Mediated Aerobic Double Câ^'H Oxidative Annulation–Aromatization. Chemistry - A European Journal, 2017, 23, 15874-15878.	1.7	14
444	A Facile Synthesis of Quinazolinâ€4(3 <i>H</i>)â€ones via Copperâ€Catalyzed Oneâ€Pot, Threeâ€Component Tandem Reaction. ChemistrySelect, 2017, 2, 8016-8019.	0.7	11
445	Transition metal-catalyzed $[2 + 2 + 2]$ cycloaddition of nitrogen-linked 1,6-diynes: a straightforward route to fused pyrrolidine systems. RSC Advances, 2017, 7, 43716-43736.	1.7	43

#	Article	IF	Citations
446	Synthesis of Functionalized Quinolines through a Reaction of Amides and Alkynes Promoted by Triflic Anhydride/Pyridine. Chemistry - A European Journal, 2017, 23, 15300-15304.	1.7	30
447	Acceptorless Dehydrogenative Cyclization of <i>o</i> â€Aminobenzylamines and Aldehydes to Quinazolines in Water Catalyzed by a Waterâ€Soluble Metalâ€Ligand Bifunctional Catalyst. ChemistrySelect, 2017, 2, 5735-5739.	0.7	9
448	Visible-Light Induced and Oxygen-Promoted Oxidative Cyclization of Aromatic Enamines for the Synthesis of Quinolines Derivatives. Journal of Organic Chemistry, 2017, 82, 8455-8463.	1.7	51
449	Cuâ€catalyzed Cascade Cyclization of Isothiocyanates, Alkynes, and Diaryliodonium Salts: Access to Diversely Functionalized Quinolines. Chemistry - A European Journal, 2017, 23, 12462-12466.	1.7	21
450	Divergent Synthesis of Functionalized Quinolines from Aniline and Two Distinct Amino Acids. Journal of Organic Chemistry, 2017, 82, 9210-9216.	1.7	31
451	Indium triflate and ionic liquid-mediated Friedläder synthesis of 2-acylquinolines. Synthetic Communications, 2017, 47, 1940-1954.	1.1	13
452	Synergistic I ₂ /Amine Promoted Povarov-Type Reaction for the Synthesis of 2-Acyl-3-aryl(alkyl)quinolines Using Aryl(alkyl)acetaldehydes as Alkene Surrogates. Organic Letters, 2017, 19, 4179-4182.	2.4	47
453	Ytterbium(<scp>iii</scp>)-catalyzed three-component reactions: synthesis of 4-organoselenium-quinolines. New Journal of Chemistry, 2017, 41, 9884-9888.	1.4	16
454	Photochromism of new unsymmetrical diarylethenes with a quinoline moiety. Journal of Physical Organic Chemistry, 2017, 30, e3716.	0.9	0
455	Copper-Catalyzed Direct, Regioselective Arylamination of N-Oxides: Studies To Access Conjugated π-Systems. Journal of Organic Chemistry, 2017, 82, 8933-8942.	1.7	50
456	Metalâ€Free, Oxidantâ€Free, Siteâ€Selective Câ^'H Halogenations to Aminoquinolines at Room Temperature using <i>N</i> à€Halosaccharins. ChemistrySelect, 2017, 2, 6488-6492.	0.7	18
457	Synthesis of quinolines via copper-catalyzed domino reactions of enaminones. Organic and Biomolecular Chemistry, 2017, 15, 7387-7395.	1.5	23
458	Intramolecular Hydroamidation of <i>ortho</i> â€Vinyl Benzamides Promoted by Potassium <i>tert</i> â€Butoxide/ <i>N,N</i> â€Dimethylformamide. Advanced Synthesis and Catalysis, 2017, 359, 3894-3899.	2.1	22
459	Organoâ€Photoredox Catalyzed Oxidative Dehydrogenation of Nâ€Heterocycles. Chemistry - A European Journal, 2017, 23, 14167-14172.	1.7	65
460	Copper-Catalyzed Cyclization for Access to 6 <i>H</i> -Chromeno[4,3- <i>b</i>)quinolin-6-ones Employing DMF as the Carbon Source. Journal of Organic Chemistry, 2017, 82, 9047-9053.	1.7	43
461	Organocatalytic Visible Light Enabled S _N Ar of Heterocyclic Thiols: A Metal-Free Approach to 2-Aminobenzoxazoles and 4-Aminoquinazolines. Journal of Organic Chemistry, 2017, 82, 13256-13262.	1.7	21
462	Metal-Free Synthesis of 2-Substituted 3-(2-Hydroxyaryl)quinolines and 4-(2-Hydroxyaryl)acridines via Benzyne Chemistry. Journal of Organic Chemistry, 2017, 82, 12307-12317.	1.7	29
463	Cobalt(ii)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Advances, 2017, 7, 51313-51317.	1.7	45

#	Article	IF	CITATIONS
464	Scalable Multigram Syntheses of Antimalarial 4(1 <i>H</i>)â€Quinolones ELQâ€300 and P4Qâ€391. European Journal of Organic Chemistry, 2017, 2017, 3328-3334.	1.2	4
465	Regio- and Diastereoselective Three-Component Reactions via Trapping of Ammonium Ylides with <i>N</i> -Alkylquinolinium Salts: Synthesis of Multisubstituted Tetra- and Dihydroquinoline Derivatives. Organic Letters, 2017, 19, 3783-3786.	2.4	44
466	One-pot and catalyst-free synthesis of pyrroloquinolinediones and quinolinedicarboxylates. Green Chemistry, 2017, 19, 3851-3855.	4.6	37
467	Copper(<scp>ii</scp>) catalyzed domino synthesis of quinoline derivatives from arylamines and alkynes. Organic Chemistry Frontiers, 2017, 4, 2008-2011.	2.3	24
468	Preparation of Quinazolines via a 2+2+2 Annulation from Aryldiazonium Salts and Nitriles. Journal of Organic Chemistry, 2017, 82, 8290-8295.	1.7	35
469	Photochemically Promoted Aza-Diels–Alder-Type Reaction: High Catalytic Activity of the Cr(III)/Bipyridine Complex Enhanced by Visible Light Irradiation. Journal of Organic Chemistry, 2017, 82, 7628-7636.	1.7	21
470	Rhodiumâ€Catalyzed Remote Câ€8 Alkylation of Quinolines with Activated and Unactivated Olefins: Mechanistic Study and Total Synthesis of EP4 Agonist. Advanced Synthesis and Catalysis, 2017, 359, 3022-3028.	2.1	43
471	Simple synthesis of 3-hydroxyquinolines via Na2S2O4-mediated reductive cyclization of (2-(2-nitrophenyl)oxiran-1-yl)(aryl)methanones (o-nitrobenzalacetophenone oxides). Tetrahedron, 2017, 73, 5082-5090.	1.0	16
472	Copper-catalyzed C5-selective thio/selenocyanation of 8-aminoquinolines. Organic Chemistry Frontiers, 2017, 4, 130-134.	2.3	57
473	Efficient one-pot synthesis of new 1-amino substituted pyrrolo[1,2-a]quinoline-4-carboxylate esters via copper-free Sonogashira coupling reactions. Molecular Diversity, 2017, 21, 29-36.	2.1	17
474	Investigation of Linarinic acid and one of its derivatives against cerebral ischemia in mice. Asian Journal of Pharmaceutical Sciences, 2017, 12, 165-171.	4.3	2
475	Efficient fourâ€component synthesis of spiroindole derivatives catalysed by a versatile and reusable nanoâ€paramagnetic catalyst. Applied Organometallic Chemistry, 2017, 31, e3595.	1.7	11
476	Metal-free sequential decarbonylative annulation of N-cyanamides for the construction of 2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-ones. Organic Chemistry Frontiers, 2017, 4, 2370-2374.	2.3	40
477	Palladium-Catalyzed Dehydrogenative Coupling: An Efficient Synthetic Strategy for the Construction of the Quinoline Core. Marine Drugs, 2017, 15, 276.	2.2	11
478	An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base. Molecules, 2017, 22, 1277.	1.7	3
479	Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al ₂ O ₃ /MeSO ₃ H. Beilstein Journal of Organic Chemistry, 2017, 13, 1977-1981.	1.3	21
480	Acridone Alkaloids. The Alkaloids Chemistry and Biology, 2017, 78, 1-108.	0.8	9
481	Design, synthesis and biological evaluation of spiropyrimidinetriones oxazolidinone derivatives as antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1198-1206.	1.0	21

#	ARTICLE	IF	CITATIONS
482	An efficient and green synthesis of ferrocenyl-quinoline conjugates <i>via</i> a TsOH-catalyzed three-component reaction in water. RSC Advances, 2018, 8, 9555-9563.	1.7	9
483	Sequential Photoredox Catalysis for Cascade Aerobic Decarboxylative Povarov and Oxidative Dehydrogenation Reactions of <i>N</i> â€Aryl αâ€Amino Acids. Advanced Synthesis and Catalysis, 2018, 360, 1754-1760.	2.1	56
484	Metalâ€Free Geminal Difunctionalization of Diazocarbonyl Compounds: A Oneâ€Pot Multicomponent Strategy for the Construction of α,βâ€Diamino Carbonyl Derivatives. Chemistry - A European Journal, 2018, 24, 4805-4809.	1.7	13
485	Recent advances in the chemistry of 2-chloroquinoline-3-carbaldehyde and related analogs. RSC Advances, 2018, 8, 8484-8515.	1.7	40
486	Baseâ€Catalyzed Cascade Reaction of <i>ortho</i> àâ€(Propargylamino)aryl Ketones with Nâ€, Oâ€, or Sâ€Based Nucleophiles for the Synthesis of 3â€Functionalized Quinoline Scaffolds. Advanced Synthesis and Catalysis, 2018, 360, 1967-1972.	2.1	5
487	Base-promoted ring opening of 3-chlorooxindoles for the construction of 2-aminoarylthioates and their transformation to quinazolin-4(3 <i>H</i>)-ones. New Journal of Chemistry, 2018, 42, 4735-4741.	1.4	3
488	Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. Journal of Agricultural and Food Chemistry, 2018, 66, 3260-3276.	2.4	88
489	Indium(III) Triflate-Catalyzed Reactions of Aza-Michael Adducts of Chalcones with Aromatic Amines: Retro-Michael Addition versus Quinoline Formation. Journal of Organic Chemistry, 2018, 83, 4087-4091.	1.7	16
490	<i>N</i> -Alkynylpyridinium Salts: Highly Electrophilic Alkyne–Pyridine Conjugates as Precursors of Cationic Nitrogen-Embedded Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 3858-3862.	6.6	27
491	Highly Efficient Construction of 2â€Fluoroalkyl Quinolines through a Palladiumâ€Catalyzed 6â€ <i>endo</i> h>â€trig Heck Cyclization Reaction. Asian Journal of Organic Chemistry, 2018, 7, 1124-1131.	1.3	20
492	TBHP as Methyl Source under Metalâ€Free Aerobic Conditions To Synthesize Quinazolinâ€4(3 <i>H</i>)â€ones and Quinazolines by Oxidative Amination of C(sp ³)â€"H Bond. European Journal of Organic Chemistry, 2018, 2018, 2784-2794.	1.2	12
493	Cu(II)/Ag(I)-Catalyzed Cascade Reaction of Sulfonylhydrazone with Anthranils: Synthesis of 2-Aryl-3-sulfonyl Substituted Quinoline Derivatives. Organic Letters, 2018, 20, 2204-2207.	2.4	55
494	Molybdenumâ€Catalyzed Sustainable FriedlÃ#der Synthesis of Quinolines. Advanced Synthesis and Catalysis, 2018, 360, 2216-2220.	2.1	35
495	Ru(II)-Catalyzed C–H Activation and Annulation Reaction via Carbon–Carbon Triple Bond Cleavage. Organic Letters, 2018, 20, 2297-2300.	2.4	38
496	Iridiumâ€Catalyzed Sequential Silylation and Borylation of Heteroarenes Based on Regioselective Câ^'H Bond Activation. Angewandte Chemie, 2018, 130, 5945-5949.	1.6	8
497	Iridiumâ€Catalyzed Sequential Silylation and Borylation of Heteroarenes Based on Regioselective Câ°'H Bond Activation. Angewandte Chemie - International Edition, 2018, 57, 5843-5847.	7.2	43
498	Efficient dehydrogenation of 1,2,3,4-tetrahydroquinolines mediated by dialkyl azodicarboxylates. Synthetic Communications, 2018, 48, 1291-1298.	1.1	13
499	Theoretical Insight into the Mechansim and Origin of Ligand-Controlled Regioselectivity in Homogenous Gold-Catalyzed Intramolecular Hydroarylation of Alkynes. Journal of Organic Chemistry, 2018, 83, 2763-2772.	1.7	30

#	Article	IF	CITATIONS
500	Rhodium-catalyzed C–H bond activation alkylation and cyclization of 2-arylquinazolin-4-ones. Organic and Biomolecular Chemistry, 2018, 16, 1851-1859.	1.5	27
501	Cobalt-Catalyzed Remote C-4 Functionalization of 8-Aminoquinoline Amides with Ethers via C–H Activation under Visible-Light Irradiation. Access to α-Heteroarylated Ether Derivatives. Organic Letters, 2018, 20, 1011-1014.	2.4	40
502	Stereoselective synthesis of natural product inspired carbohydrate fused pyrano[3,2- <i>c</i>]quinolones as antiproliferative agents. Organic and Biomolecular Chemistry, 2018, 16, 2049-2059.	1.5	23
503	Synthesis of Polysubstituted Quinolines from α-2-Aminoaryl Alcohols Via Nickel-Catalyzed Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 2309-2316.	1.7	107
504	lodine promoted dual oxidative C(sp ³)â€"H amination of 2-methyl-3-arylquinazolin-4(3 <i>H</i>)-ones: a facile route to 1,4-diarylimidazo[1,5- <i>a</i>]quinazolin-5(4 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2018, 16, 1720-1727.	1.5	9
505	Synthesis of 1,2-Dihydroquinolines by $Co(III)$ -Catalyzed [3 + 3] Annulation of Anilides with Benzylallenes. ACS Catalysis, 2018, 8, 1880-1883.	5.5	57
506	Copperâ€Catalyzed Tandem Reaction of Enamino Esters with <i>ortho</i> â€Halogenated Aromatic Carbonyls: Oneâ€Pot Approach to Functionalized Quinolines. European Journal of Organic Chemistry, 2018, 2018, 666-672.	1.2	18
507	lodine/DMSO oxidations: a contemporary paradigm in C–N bond chemistry. New Journal of Chemistry, 2018, 42, 1551-1576.	1.4	63
508	Direct Synthesis of Quinolines via Co(III)-Catalyzed and DMSO-Involved C–H Activation/Cyclization of Anilines with Alkynes. Organic Letters, 2018, 20, 566-569.	2.4	79
509	Visible-light-induced multicomponent cascade cycloaddition involving <i>N</i> -propargyl aromatic amines, diaryliodonium salts and sulfur dioxide: rapid access to 3-arylsulfonylquinolines. Chemical Communications, 2018, 54, 1335-1338.	2.2	84
510	Copper catalyzed oxidative coupling of ortho-vinylanilines with N-tosylhydrazones: Efficient synthesis of polysubstituted quinoline derivatives. Journal of Catalysis, 2018, 363, 102-108.	3.1	16
511	Disruption of IGF‴1R signaling by a novel quinazoline derivative, HMJ‴30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U‴2 OS cells. International Journal of Oncology, 2018, 52, 1465-1478.	1.4	7
512	Divergent Functionalization of <i>N</i> à€Alkylâ€2â€alkenylanilines: Efficient Synthesis of Substituted Indoles and Quinolines. Chemistry - an Asian Journal, 2018, 13, 2499-2504.	1.7	11
513	A novel strategy for the manufacture of idelalisib: controlling the formation of an enantiomer. RSC Advances, 2018, 8, 15863-15869.	1.7	6
514	Selective remote C–H trifluoromethylation of aminoquinolines with CF ₃ SO ₂ Na under visible light irradiation in the absence of an external photocatalyst. Organic Chemistry Frontiers, 2018, 5, 1689-1697.	2.3	62
515	One-pot regioselective synthesis of 2,4-disubstituted quinolines <i>via</i> copper(<scp>ii</scp>)-catalyzed cascade annulation. Organic Chemistry Frontiers, 2018, 5, 1713-1718.	2.3	20
516	High diastereoselective amine-catalyzed Knoevenagel–Michael-cyclization–ring-opening cascade between aldehydes, 3-arylisoxazol-5(4H)-ones and 3-aminocyclohex-2-en-1-ones. Molecular Diversity, 2018, 22, 627-636.	2.1	5
517	An efficient approach to 4-chloro quinolines via TMSCl-mediated cascade cyclization of ortho-propynol phenyl azides. Organic Chemistry Frontiers, 2018, 5, 1537-1541.	2.3	12

#	Article	IF	CITATIONS
518	Application of Microwaves in Sustainable Organic Synthesis., 2018,, 647-671.		3
519	Direct oxidative C–H alkynylation of N-carbamoyl tetrahydroisoquinolines and dihydroisoquinolines. Organic and Biomolecular Chemistry, 2018, 16, 2792-2799.	1.5	11
520	Divergent Synthesis of Quinoline Derivatives via [5+1] Annulation of 2â€Isocyanochalcones with Nitroalkanes. Advanced Synthesis and Catalysis, 2018, 360, 1870-1875.	2.1	33
521	Lewisâ€Acidâ€Catalysed Activation of Nitriles: A Microwaveâ€Assisted Solventâ€Free Synthesis of 2,4â€Disubstituted Quinazolines and 1,3â€Diazaspiro[5.5]undecâ€1â€enes. European Journal of Organic Chemistry, 2018, 2018, 1211-1217.	1.2	20
522	Palladium-Catalyzed Aerobic Oxidative Coupling of Allylic Alcohols with Anilines in the Synthesis of Nitrogen Heterocycles. Journal of Organic Chemistry, 2018, 83, 3941-3951.	1.7	35
523	Switchable intramolecular oxidative amidation of 4-arylquinoline-3-carboxamides: divergent access to dibenzo[c,f][2,7]naphthyridinones and spirocyclohexadienones. Organic Chemistry Frontiers, 2018, 5, 549-554.	2.3	3
524	Synthesis of substituted 4-hydroxyalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Organic Chemistry Frontiers, 2018, 5, 434-441.	2.3	33
525	FeCl ₃ â€Mediated Oneâ€Pot Cyclization–Aromatization of Anilines, Benzaldehydes, and Phenylacetylenes under Ball Milling: A New Alternative for the Synthesis of 2,4â€Diphenylquinolines. Journal of the Chinese Chemical Society, 2018, 65, 65-73.	0.8	8
526	Carbon–SO3H derived from glycerol: a green recyclable catalyst for synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Journal of the Iranian Chemical Society, 2018, 15, 1-9.	1.2	18
527	Incorporation of Fluorinated Pyridine in the Side Chain of 4-Aminoquinolines: Synthesis, Characterization and Antibacterial Activity. Drug Research, 2018, 68, 17-22.	0.7	10
528	Total synthesis of natural products <i>via</i> iridium catalysis. Organic Chemistry Frontiers, 2018, 5, 106-131.	2.3	33
529	Photoredox-catalyzed cascade addition/cyclization of $\langle i \rangle N \langle i \rangle$ -propargyl aromatic amines: access to 3-difluoroacetylated or 3-fluoroacetylated quinolines. Organic Chemistry Frontiers, 2018, 5, 19-23.	2.3	28
530	Biologically active quinoline and quinazoline alkaloids part I. Medicinal Research Reviews, 2018, 38, 775-828.	5.0	262
531	Organocatalytic Enantioselective Functionalization of Hydroxyquinolines through an Azaâ∈Friedelâ∈Crafts Alkylation with Isatinâ∈derived Ketimines. Advanced Synthesis and Catalysis, 2018, 360, 859-864.	2.1	15
532	Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives. Journal of CO2 Utilization, 2018, 23, 42-50.	3.3	38
533	<i>tert</i> -Butyl peroxybenzoate mediated formation of 3-alkylated quinolines from <i>N</i> -propargylamines <i>via</i> a cascade radical addition/cyclization reaction. Organic Chemistry Frontiers, 2018, 5, 855-859.	2.3	28
534	The vinylogous Catellani reaction: a combined computational and experimental study. Chemical Science, 2018, 9, 1191-1199.	3.7	36
535	Synthesis of thieno[2,3- <i>b</i>)quinoline and selenopheno[2,3- <i>b</i>)quinoline derivatives <i>via</i> iodocyclization reaction and a DFT mechanistic study. Organic and Biomolecular Chemistry, 2018, 16, 245-255.	1.5	37

#	Article	IF	CITATIONS
536	Copperâ€Mediated Tandem C(<i>sp</i> ²)â€H Amination and Annulation of Arenes with 2â€Aminopyridines: Synthesis of Pyridoâ€fused Quinazolinone Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 659-663.	2.1	45
537	Four-component quinazoline synthesis from simple anilines, aromatic aldehydes and ammonium iodide under metal-free conditions. Green Chemistry, 2018, 20, 5459-5463.	4.6	43
538	Sulfinates and thiocyanates triggered 6- <i>endo</i> cyclization of <i>o</i> -alkynylisocyanobenzenes. Organic and Biomolecular Chemistry, 2018, 16, 8553-8558.	1.5	18
539	Pd-Catalyzed tandem reaction of $\langle i \rangle N \langle i \rangle - (2$ -cyanoaryl) benzamides with arylboronic acids: synthesis of quinazolines. Organic and Biomolecular Chemistry, 2018, 16, 8596-8603.	1.5	25
540	Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp Beilstein Journal of Organic Chemistry, 2018, 14, 1446-1451.	1.3	19
541	An efficient nickel/silver co-catalyzed remote C–H amination of 8-aminoquinolines with azodicarboxylates at room temperature. RSC Advances, 2018, 8, 37064-37068.	1.7	15
542	Synthesis of pyrrolo[3,4- <i>c</i>]quinoline-1,3-diones: a sequential oxidative annulation followed by dehydrogenation and <i>N</i> -demethylation strategy. New Journal of Chemistry, 2018, 42, 18894-18905.	1.4	25
543	Preparation of 3-hydroxyquinolines from direct oxidation of dihydroquinolinium salts. RSC Advances, 2018, 8, 38166-38174.	1.7	3
544	First synthesis of novel 2,4-bis((E)-styryl)quinoline-3-carboxylate derivatives and their antitumor activity. RSC Advances, 2018, 8, 38844-38849.	1.7	11
545	Quinazolin-4(3H)-ones and 5,6-Dihydropyrimidin-4(3H)-ones from \hat{l}^2 -Aminoamides and Orthoesters. Molecules, 2018, 23, 2925.	1.7	11
546	UV light enabled methylation of quinoline-2-thione using dimethyl sulfoxide to give quinoline methyl sulfide. Tetrahedron Letters, 2018, 59, 4426-4429.	0.7	11
547	Direct Carbamoylation of Quinoline <i>N</i> à€oxides with Hydrazinecarboxamides via Câ^'H Bond Activation Catalyzed by Copper Catalyst. Advanced Synthesis and Catalysis, 2019, 361, 832-835.	2.1	41
548	Synthesis of Benzofuroquinolines via Phosphineâ€Free Direct Arylation of 4â€Phenoxyquinolines in Air. European Journal of Organic Chemistry, 2018, 2018, 6140-6149.	1.2	15
549	Regioselective remote C H fluoroalkylselenolation of 8-aminoquinolines. Tetrahedron, 2018, 74, 6521-6526.	1.0	17
550	Gold-catalyzed post-Ugi alkyne hydroarylation for the synthesis of 2-quinolones. Beilstein Journal of Organic Chemistry, 2018, 14, 2572-2579.	1.3	15
551	Synthesis and Reactivity of 3,3-Diazidooxindoles. Organic Letters, 2018, 20, 7066-7070.	2.4	21
552	DABCO- and DBU-promoted one-pot reaction of <i>N</i> -sulfonyl ketimines with Moritaâ€"Baylisâ€"Hillman carbonates: a sequential approach to (2-hydroxyaryl)nicotinate derivatives. Beilstein Journal of Organic Chemistry, 2018, 14, 2771-2778.	1.3	15
553	Evaluation of Alkaloids Isolated from Ruta graveolens as Photosynthesis Inhibitors. Molecules, 2018, 23, 2693.	1.7	23

#	ARTICLE	IF	CITATIONS
554	Cu(II)–Glucose: Sustainable Catalyst for the Synthesis of Quinazolinones in a Biomass-Derived Solvent 2-MethylTHF and Application for the Synthesis of Diproqualone. ACS Sustainable Chemistry and Engineering, 2018, 6, 14283-14291.	3.2	24
555	Synthesis of quinazolines over recyclable Fe ₃ 0 ₄ @SiO ₂ â€PrNH ₂ â€Fe ³⁺ nanoparticles: A green, efficient, and solventâ€free protocol. Applied Organometallic Chemistry, 2018, 32, e4573.	1.7	18
556	Cu(OAc) ₂ -Promoted Ortho C(sp ²)â€"H Amidation of 8-Aminoquinoline Benzamide with Acyl Azide: Selective Formation of Aroyl or Acetyl Amide Based on Catalyst Loading. Journal of Organic Chemistry, 2018, 83, 11758-11767.	1.7	15
557	Rh(III)-Catalyzed C(8)–H Functionalization of Quinolines via Simultaneous C–C and C–O Bond Formation: Direct Synthesis of Quinoline Derivatives with Antiplasmodial Potential. Journal of Organic Chemistry, 2018, 83, 12702-12710.	1.7	32
558	Benzyloxycalix[8]arene: a new valuable support for NHC palladium complexes in C–C Suzuki–Miyaura couplings. Dalton Transactions, 2018, 47, 13843-13848.	1.6	19
559	Catalyst and Additive-Free Diastereoselective 1,3-Dipolar Cycloaddition of Quinolinium Imides with Olefins, Maleimides, and Benzynes: Direct Access to Fused <i>N,N</i> Activity against a Drug-Resistant Malaria Parasite. Journal of Organic Chemistry, 2018, 83, 11552-11570.	1.7	22
560	Gold- and silver-catalyzed intramolecular annulation and rearrangement of aniline-linked 1,6-enynes containing methylenecyclopropanes. Organic Chemistry Frontiers, 2018, 5, 2091-2097.	2.3	15
561	Synthesis of a new series of aryl(thieno[2,3-b]quinolin-2-yl)methanone and 2-(2-aroyl-2,3-dihydrothieno[2,3-b]quinolin-3-yl)-1-arylethanone derivatives via sequential multi-component reaction. Chemical Papers, 2018, 72, 2467-2478.	1.0	12
562	Weakly-coordinating <i>N</i> -oxide and carbonyl groups for metal-catalyzed C–H activation: the case of A-ring functionalization. Chemical Communications, 2018, 54, 7398-7411.	2.2	59
563	Copperâ€Catalyzed Aerobic Oxidative Cyclization of Anilines, Aryl Methyl Ketones and DMSO: Efficient Assembly of 2â€Arylquinolines. Advanced Synthesis and Catalysis, 2018, 360, 2691-2695.	2.1	51
564	Synthesis, characterization, pharmacological, molecular modeling and antimicrobial activity evaluation of novel isomer quinoline derivatives. Structural Chemistry, 2018, 29, 1677-1695.	1.0	8
565	Palladium-catalyzed four-component carbonylative synthesis of 2,3-disubstituted quinazolin-4(3H)-ones: Convenient methaqualone preparation. Journal of Catalysis, 2018, 365, 10-13.	3.1	30
566	Transition-Metal-Free Approach for the Synthesis of 4-Aryl-quinolines from Alkynes and Anilines. Journal of Organic Chemistry, 2018, 83, 9137-9143.	1.7	52
567	Convenient Synthesis of Quinolineâ€4â€carboxylate Derivatives through the Bi(OTf) ₃ â€Catalyzed Domino Cyclization/Esterification Reaction of Isatins with Enaminones in Alcohols. European Journal of Organic Chemistry, 2018, 2018, 4527-4535.	1.2	19
568	Synthesis of quinolines from anilines, acetophenones and DMSO under air. Tetrahedron Letters, 2018, 59, 2979-2982.	0.7	19
569	Chromatographic fingerprint of the volatile fraction of rare Hedera helix honey and biomarkers identification. European Food Research and Technology, 2018, 244, 2169-2179.	1.6	11
570	Copper-Catalyzed C5–H Sulfenylation of Unprotected 8-Aminoquinolines Using Sulfonyl Hydrazides. Journal of Organic Chemistry, 2018, 83, 11385-11391.	1.7	35
571	Substituentâ€directed ESIPTâ€coupled Aggregationâ€induced Emission in Nearâ€infraredâ€emitting Quinazoline Derivatives. ChemPhysChem, 2018, 19, 2672-2682.	1.0	20

#	Article	IF	CITATIONS
572	Synthesis of Quinazolin-4(3H)-ones via the Reaction of 2-Halobenzamides with Nitriles. Journal of Organic Chemistry, 2018, 83, 10352-10358.	1.7	42
573	Copperâ€Catalyzed Synthesis of 3â€NO ₂ Quinolines from <i>>o</i> àêAzidobenzaldehyde and Nitroâ€olefins and its Application in the Concise Synthesis of Quindolines. Advanced Synthesis and Catalysis, 2018, 360, 4037-4042.	2.1	17
574	Rational Design and Facile Synthesis of a Highly Tunable Quinoline-Based Fluorescent Small-Molecule Scaffold for Live Cell Imaging. Journal of the American Chemical Society, 2018, 140, 9486-9493.	6.6	80
575	One-Pot Strategies for the Synthesis of Nitrogen-Containing Heteroaromatics. Current Green Chemistry, 2018, 5, 22-39.	0.7	7
576	Silver(II) oxide-mediated synthesis of 2,4-diarylquinazolines. Tetrahedron Letters, 2018, 59, 2368-2371.	0.7	3
577	Catalytic Intramolecular Acylsulfenylation of Activated Alkenes: Enantioselective Synthesis of 3,3-Disubstituted Quinoline-2,4-diones. ACS Catalysis, 2018, 8, 5460-5465.	5 . 5	7
578	Palladium-Catalyzed Three-Component Tandem Process: One-Pot Assembly of Quinazolines. Organic Letters, 2018, 20, 3083-3087.	2.4	74
579	Remote Câ°'H Functionalization of 8â€Aminoquinolinamides. Asian Journal of Organic Chemistry, 2018, 7, 1270-1297.	1.3	37
580	A review on transition-metal mediated synthesis of quinolines. Journal of Chemical Sciences, 2018, 130, 1.	0.7	59
581	Synthesis of acridones through palladium-catalyzed carbonylative of 2-bromo-diarylamines. Tetrahedron Letters, 2018, 59, 2889-2892.	0.7	6
582	Transition-Metal-Free Aminoacylation of Ynones with Amides: Synthesis of 3-Carbonyl-4-quinolinones or Functionalized Enaminones. Organic Letters, 2018, 20, 3907-3910.	2.4	29
583	Facile synthesis of substituted quinolines by iron(iii)-catalyzed cascade reaction between anilines, aldehydes and nitroalkanes. Organic and Biomolecular Chemistry, 2019, 17, 7907-7917.	1.5	14
584	Phosphiteâ€Catalyzed Câ^'H Allylation of Azaarenes via an Enantioselective [2,3]â€Azaâ€Wittig Rearrangement. Angewandte Chemie, 2019, 131, 14242-14247.	1.6	2
585	Friedel–Crafts chemistry 56*. Unprecedented construction of functionalized polycyclic quinolines via Friedel–Crafts cycliacylation and Beckmann rearrangement. Chemistry of Heterocyclic Compounds, 2019, 55, 632-643.	0.6	5
586	Nickel-Catalyzed Remote C4–H Arylation of 8-Aminoquinolines. Organic Letters, 2019, 21, 6785-6789.	2.4	18
587	Transition metal-free synthesis of quinazolinones using dimethyl sulfoxide as a synthon. Organic and Biomolecular Chemistry, 2019, 17, 8067-8070.	1.5	24
588	Copper-catalyzed selective difunctionalization of N-heteroarenes through a halogen atom transfer radical process. New Journal of Chemistry, 2019, 43, 13832-13836.	1.4	5
589	Phosphiteâ€Catalyzed Câ^'H Allylation of Azaarenes via an Enantioselective [2,3]â€Azaâ€Wittig Rearrangement. Angewandte Chemie - International Edition, 2019, 58, 14104-14109.	7.2	11

#	Article	IF	CITATIONS
590	Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs and azaarenes) in soils from China and their relationship with geographic location, land use and soil carbon fractions. Science of the Total Environment, 2019, 690, 1268-1276.	3.9	49
591	An organocatalytic method for constructing pyrroles <i>via</i> the cycloisomerisation of <i>Z</i> -1-iodo-4- <i>N</i> -methylbenzenesulfonyl-1,6-enynes. Organic and Biomolecular Chemistry, 2019, 17, 7669-7673.	1.5	7
592	Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline <i>N</i> Oxides. Journal of Organic Chemistry, 2019, 84, 13150-13158.	1.7	32
593	A new acridone with antifungal properties against <i>Candida</i> spp. and dermatophytes, and antibiofilm activity against <i>C. albicans</i> . Journal of Applied Microbiology, 2019, 127, 1362-1372.	1.4	10
594	Effective and Sustainable Access to Quinolines and Acridines: A Heterogeneous Imidazolium Salt Mediates C–C and C–N Bond Formation. European Journal of Organic Chemistry, 2019, 2019, 4928-4940.	1.2	20
595	Chemistry of mixed-ligand oxidovanadium(IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. Journal of Inorganic Biochemistry, 2019, 199, 110786.	1.5	27
596	Eco-efficient synthesis of 2-quinaldic acids from furfural. Green Chemistry, 2019, 21, 4650-4655.	4.6	23
597	Isolation and Identification of Aryl Hydrocarbon Receptor Modulators in White Button Mushrooms (<i>Agaricus bisporus</i>). Journal of Agricultural and Food Chemistry, 2019, 67, 9286-9294.	2.4	6
598	Rearrangement Reactions in Azaâ€Vinylogous Povarov Products: Metalâ€Free Synthesis of C ³ â€Functionalized Quinolines and Studies on their Synthetic Application. European Journal of Organic Chemistry, 2019, 2019, 6452-6464.	1.2	4
599	Iron-Catalyzed Regioselective Remote C(sp ²)-H Carboxylation of Naphthyl and Quinoline Amides. Journal of Organic Chemistry, 2019, 84, 10481-10489.	1.7	19
600	Highly Enantioselective Catalytic Addition of Grignard Reagents to Nâ€Heterocyclic Acceptors. Angewandte Chemie - International Edition, 2019, 58, 12950-12954.	7.2	21
601	Dimeric 1,4-benzoquinone Derivatives with Cytotoxic Activities from the Marine-Derived Fungus Penicillium sp. L129. Marine Drugs, 2019, 17, 383.	2.2	17
602	Highly Enantioselective Catalytic Addition of Grignard Reagents to Nâ€Heterocyclic Acceptors. Angewandte Chemie, 2019, 131, 13084-13088.	1.6	6
603	Visible Light Mediated External Oxidant Free Selective C5 Bromination of 8â€Aminoquinoline Amides under Ambient Conditions. Asian Journal of Organic Chemistry, 2019, 8, 1136-1140.	1.3	13
604	Oneâ€Pot Copper(I)â€Catalyzed Synthesis of 2â€Arylâ€quinazolinâ€4(3 <i>H</i>)â€ones <i>via</i> N―benzylat C _{sp3} – H Oxidation/ CN Hydrolysis/Cyclization. ChemistrySelect, 2019, 4, 9871-9877.	ion / O.7	6
605	Antinociceptive compounds and LC-DAD-ESIMSn profile from Dictyoloma vandellianum leaves. PLoS ONE, 2019, 14, e0224575.	1.1	9
606	TMSBr-Promoted Cascade Cyclization of ortho-Propynol Phenyl Azides for the Synthesis of 4-Bromo Quinolines and Its Applications. Molecules, 2019, 24, 3999.	1.7	5
607	New Strategy for the Synthesis of Heterocycles via Copperâ€Catalyzed Oxidative Decarboxylative Amination of Glyoxylic Acid. European Journal of Organic Chemistry, 2019, 2019, 7800-7803.	1.2	6

#	Article	IF	Citations
608	Synthesis of substituted quinolines via B(C 6 F 5) 3 atalyzed anilineâ€aldehydeâ€pyruvate oxidative annulation. Journal of Heterocyclic Chemistry, 2019, 56, 3333-3342.	1.4	3
609	HOAcâ€Assisted Synthesis of 2,3â€Disubstituted Quinolines from Arylamine and Aliphatic Aldehyde in Water. ChemistrySelect, 2019, 4, 9392-9395.	0.7	7
610	Copper-Catalyzed Ring-Opening/Reconstruction of Anthranils with Oxo-Compounds: Synthesis of Quinoline Derivatives. Journal of Organic Chemistry, 2019, 84, 12301-12313.	1.7	36
611	Catalyst-free cyclization of anthranils and cyclic amines: one-step synthesis of rutaecarpine. Chemical Communications, 2019, 55, 12072-12075.	2.2	26
612	Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorganic Chemistry, 2019, 92, 103291.	2.0	90
613	Cascade Knoevenagel and aza-Wittig reactions for the synthesis of substituted quinolines and quinolin-4-ols. Green Chemistry, 2019, 21, 349-354.	4.6	37
614	Dehydrogenative Synthesis of Quinolines, 2-Aminoquinolines, and Quinazolines Using Singlet Diradical Ni(II)-Catalysts. Journal of Organic Chemistry, 2019, 84, 2626-2641.	1.7	98
615	The solvent-controlled chemoselective construction of C–S/S–S bonds <i>via</i> the Michael reaction/thiol coupling of quinoline-2-thiones. Organic and Biomolecular Chemistry, 2019, 17, 2379-2383.	1.5	11
616	Palladium-Catalysed Synthesis and Transformation of Quinolones. Molecules, 2019, 24, 228.	1.7	22
617	Mesoporous MCMâ€41 Silica Supported Pyridine Nanoparticle: A Highly Efficient, Recyclable Catalyst for Expeditious Synthesis of Quinoline Derivatives through Domino Approach. ChemistrySelect, 2019, 4, 1776-1784.	0.7	18
618	Enantioselective Direct Vinylogous Allylic Alkylation of 4-Methylquinolones under Iridium Catalysis. Organic Letters, 2019, 21, 5315-5320.	2.4	14
619	Solvent-free incorporation of CO ₂ into 2-oxazolidinones: a review. RSC Advances, 2019, 9, 19465-19482.	1.7	48
620	Hetero-bimetallic cooperative catalysis for the synthesis of heteroarenes. Organic and Biomolecular Chemistry, 2019, 17, 7596-7631.	1.5	23
621	Synthesis of 2â€Arylquinolines from 2â€Iodoanilines and <i>β</i> ê€Chloropropiophenones <i>via</i> Palladiumâ€Catalyzed Cascade Reaction. Asian Journal of Organic Chemistry, 2019, 8, 1631-1636.	1.3	5
622	2-Nitrodiphenylalkanes/alkenes as adept photosynthons for direct access to valuable N-heterocycles. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 158-165.	2.0	0
623	Metal―and Catalystâ€Free Electrochemical Synthesis of Quinazolinones from Alkenes and 2â€Aminobenzamides. ChemElectroChem, 2019, 6, 3120-3124.	1.7	26
624	An efficient and green protocol for synthesis of novel $[1,3]$ oxazino $[5,6-\langle i\rangle c\langle i\rangle]$ quinolin-5-one derivatives using $[Et\langle sub\rangle 3\langle sub\rangle NH]$ HSO $\langle sub\rangle 4\langle sub\rangle$ as a reusable catalyst. Synthetic Communications, 2019, 49, 2044-2052.	1.1	5
625	Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Organic Letters, 2019, 21, 4725-4728.	2.4	33

#	Article	IF	CITATIONS
626	Copper-catalyzed synthesis of pyrazolo[5,1- <i>a</i>)isoquinoline derivatives from 2- <i>gem</i> -dipyrazolylvinylbromobenzenes. New Journal of Chemistry, 2019, 43, 10162-10165.	1.4	7
627	Identification of new fluorophores in coelomic fluid of Eisenia andrei earthworms. PLoS ONE, 2019, 14, e0214757.	1.1	3
628	Synthesis of Quinolines and Isoquinolines via Site-Selective, Domino Benzannulation of 2- and 3-Chloropyridyl Ynones with Nitromethane. Journal of Organic Chemistry, 2019, 84, 8731-8742.	1.7	17
629	Isocyanide Reactions Toward the Synthesis of 3-(Oxazol-5-yl)Quinoline-2-Carboxamides and 5-(2-Tosylquinolin-3-yl)Oxazole. Frontiers in Chemistry, 2019, 7, 433.	1.8	7
630	Visible light induced regioselective C5 halogenation of 8-aminoquinolines with 1,3-dihalo-5,5-dimethylhydantoin in continuous flow. Tetrahedron, 2019, 75, 3636-3642.	1.0	12
631	Rhodium-catalyzed regioselective <i>ortho</i> -allylation of 2,4-diarylquinazolines with allylic acetate. Canadian Journal of Chemistry, 2019, 97, 513-519.	0.6	4
632	Quinazolinone Synthesis through Base-Promoted S _N Ar Reaction of <i>ortho</i> Fluorobenzamides with Amides Followed by Cyclization. ACS Omega, 2019, 4, 8207-8213.	1.6	24
633	A Green and Sustainable Approach for Selective Halogenation of Anilides, Benzanilides, Sulphonamides and Heterocycles ^{â€} . Asian Journal of Organic Chemistry, 2019, 8, 1380-1384.	1.3	18
634	Nitroketene $\langle i \rangle N \langle i \rangle, \langle i \rangle S \langle i \rangle$ -acetals: synergistic building blocks for the synthesis of heterocycles. RSC Advances, 2019, 9, 14477-14502.	1.7	40
635	Synthesis and Properties of Acridone Oligomers. European Journal of Organic Chemistry, 2019, 2019, 3217-3223.	1.2	11
636	Heterocycle Synthesis through Pdâ€Catalyzed Carbonylative Coupling. European Journal of Organic Chemistry, 2019, 2019, 4626-4643.	1.2	36
637	Copperâ€Catalyzed Electrophilic Amination of Benzoxazoles via Magnesation. European Journal of Organic Chemistry, 2019, 2019, 3045-3050.	1.2	5
638	Mapping the reactivity of the quinoline ring-system â€" Synthesis of the tetracyclic ring-system of isocryptolepine and regioisomers. Tetrahedron, 2019, 75, 2949-2957.	1.0	9
639	Ultrasound-Promoted One-Pot Synthesis of Mono- or Bis-Substituted Organylselanyl Pyrroles. Journal of Organic Chemistry, 2019, 84, 5471-5482.	1.7	22
640	Recent Advances in the Catalytic Synthesis of 4-Quinolones. CheM, 2019, 5, 1059-1107.	5.8	56
642	Deep eutectic solvent for an expeditious sono-synthesis of novel series of <i>bis</i> -quinazolin-4-one derivatives as potential anti-cancer agents. Royal Society Open Science, 2019, 6, 182046.	1.1	10
643	Phosphine Ligandâ€Free Ruthenium Complexes as Efficient Catalysts for the Synthesis of Quinolines and Pyridines by Acceptorless Dehydrogenative Coupling Reactions. ChemCatChem, 2019, 11, 2500-2510.	1.8	54
644	Metalâ€Free Oxidative Annulation/Cyclization of 1,6â€Enynes for the Synthesis of 4â€Carbonylquinolines. Advanced Synthesis and Catalysis, 2019, 361, 2959-2964.	2.1	13

#	Article	IF	Citations
645	Cobalt(III)â€Catalyzed, DMSOâ€Involved, and TFAâ€Controlled Regioselective Câ^'H Functionalization of Anilines with Alkynes for Specific Assembly of 3â€Arylquinolines. Advanced Synthesis and Catalysis, 2019, 361, 3002-3007.	2.1	26
646	Iron(III)-Catalyzed Highly Regioselective Halogenation of 8-Amidoquinolines in Water. Molecules, 2019, 24, 535.	1.7	12
647	Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation. Journal of Molecular Modeling, 2019, 25, 75.	0.8	20
648	Design and Development of Novel 2-(Morpholinyl)-N-substituted Phenylquinazolin-4-amines as Selective COX-II Inhibitor. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2019, 18, 4-25.	1.1	3
649	Synthesis of quinazolin-4(1 <i>H</i>)-ones <i>via</i> amination and annulation of amidines and benzamides. Organic and Biomolecular Chemistry, 2019, 17, 2356-2360.	1.5	8
650	Discovery of novel glycerolated quinazolinones from <i>Streptomyces</i> sp. MBT27. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 483-492.	1.4	22
651	Palladiumâ€Catalyzed Carbonylative Synthesis of <i>N</i> à€Heterocycles from 1â€Chloroâ€2â€fluorobenzenes. European Journal of Organic Chemistry, 2019, 2019, 2172-2175.	1.2	13
652	ZrOCl ₂ ·8H ₂ O as an efficient and recyclable catalyst for the oneâ€pot multicomponent synthesis of novel [1,3]oxazino[5,6â€e]quinolinâ€5â€one derivatives. Applied Organometallic Chemistry, 2019, 33, e4755.	1.7	4
653	One-pot synthesis of 2,4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Letters, 2019, 60, 965-970.	0.7	6
654	Copper-catalyzed cross-dehydrogenative coupling between quinazoline-3-oxides and indoles. RSC Advances, 2019, 9, 5870-5877.	1.7	17
655	Gold-catalyzed cyclization of 1-($2\hat{a}\in^2$ -azidoaryl) propynols: synthesis of polysubstituted 4-quinolones. Chemical Communications, 2019, 55, 14769-14772.	2.2	19
656	Tandem synthesis of quinazolinone scaffolds from 2-aminobenzonitriles using aliphatic alcohol–water system. Catalysis Science and Technology, 2019, 9, 6002-6006.	2.1	22
657	Exogenous-oxidant- and catalyst-free electrochemical deoxygenative C2 sulfonylation of quinoline $\langle i \rangle N \langle i \rangle$ -oxides. Chemical Communications, 2019, 55, 13852-13855.	2.2	49
658	Oxone promoted dehydrogenative Povarov cyclization of $\langle i \rangle N \langle i \rangle$ -aryl glycine derivatives: an approach towards quinoline fused lactones and lactams. RSC Advances, 2019, 9, 30277-30291.	1.7	11
659	KO ^t Bu-promoted oxidative dimerizations of 2-methylquinolines to 2-alkenyl bisquinolines with molecular oxygen. RSC Advances, 2019, 9, 30139-30143.	1.7	3
660	Synergistic catalysis on Fe–N _x sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones ⟨i>via⟨ i> oxidative coupling of amines and aldehydes. Chemical Science, 2019, 10, 10283-10289.	3.7	86
662	Developments in Cp*Co ^{III} atalyzed Câ^'H Bond Functionalizations. Asian Journal of Organic Chemistry, 2019, 8, 430-455.	1.3	45
663	Inverseâ€Electronâ€Demand [4+2]â€Cycloaddition of 1,3,5â€triazinanes: Facile Approaches to Tetrahydroquinazolines. Advanced Synthesis and Catalysis, 2019, 361, 44-48.	2.1	40

#	Article	IF	Citations
664	Rapid Generation of Molecular Complexity by Chemical Synthesis: Highly Efficient Total Synthesis of Hexacyclic Alkaloid (â^')â€Chaetominine and Its Biosynthetic Implications. Chemical Record, 2019, 19, 523-533.	2.9	11
665	Domino Synthesis of 3â€Alkylidenâ€2,3â€Dihydroâ€4â€Quinolones. Advanced Synthesis and Catalysis, 2019, 361 1102-1107.	l. 2.1	7
666	Multicomponent Reactions of Pyridines To Give Ringâ€Fused Pyridiniums: In Situ Activation Strategy Using 1,2â€Dichloroethane as a Vinyl Equivalent. Angewandte Chemie, 2019, 131, 260-264.	1.6	16
667	Multicomponent Reactions of Pyridines To Give Ringâ€Fused Pyridiniums: In Situ Activation Strategy Using 1,2â€Dichloroethane as a Vinyl Equivalent. Angewandte Chemie - International Edition, 2019, 58, 254-258.	7.2	41
668	Weakly Coordinating, Ketoneâ€Directed (η ⁵ â€Pentamethylcyclopentadienyl)cobalt(III)―and (η ⁵ â€Pentamethylcyclopentadienyl)rhodium(III)â€Catalyzed Câ^'H Amidation of Arenes: A Route to Acridone Alkaloids. Chemistry - A European Journal, 2019, 25, 1806-1811.	1.7	53
669	Radical Câ^H Bond Oxidation Initiated Intramolecular Cyclization of Glycine Esters: Construction of Dihydroquinoline Skeletons. Asian Journal of Organic Chemistry, 2019, 8, 115-118.	1.3	5
670	Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. Journal of Colloid and Interface Science, 2019, 535, 214-226.	5.0	53
671	Synthesis of N'-(Quinazolin-4-yl)isonicotinohydrazides and their biological screening, docking and ADME studies. Arabian Journal of Chemistry, 2020, 13, 1986-2000.	2.3	6
672	Iodine/potassium iodide catalyst for the synthesis of trifluoromethylated quinazolines via intramolecular cyclization of 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides. Molecular Diversity, 2020, 24, 131-139.	2.1	7
673	TEMPO and its derivatives mediated reactions under transition-metal-free conditions. Chinese Chemical Letters, 2020, 31, 39-48.	4.8	25
674	Catalyst Control in Switching the Site Selectivity of Câ^'H Olefinations of 1,2â€Dihydroquinolines: An Approach to Positionalâ€Selective Functionalization of Quinolines. Chemistry - A European Journal, 2020, 26, 927-938.	1.7	8
675	Synthesis of Quinazolines Catalyzed by Immobilized Spirulina on Cellulose/Dendritic Fibrous Nanosilica (DFNS). Silicon, 2020, 12, 2005-2015.	1.8	2
676	Chemical effects of nuclear transformations and possible formation of unknown derivatives with $\langle i \rangle N \langle i \rangle$ -phenylquinazolinium structure. Radiochimica Acta, 2020, 108, 105-111.	0.5	1
677	Gabapentin-based synthesis of novel oxo- and spiro-dihydroquinazoline derivatives. Journal of the Iranian Chemical Society, 2020, 17, 433-440.	1.2	3
678	Design and Expeditious Synthesis of Quinolineâ€Pyreneâ€Based Ratiometric Fluorescent Probes for Targeting Lysosomal pH. ChemBioChem, 2020, 21, 1492-1498.	1.3	16
679	Convenient synthesis of quinoline-fused triazolo-azepine/oxepine derivatives through Pd-catalyzed C–H functionalisation of triazoles. New Journal of Chemistry, 2020, 44, 2367-2373.	1.4	9
680	Intramolecular Palladium(II)-Catalyzed 6- <i>endo</i> Câ€"H Alkenylation Directed by the Remote <i>N</i> Protecting Group: Mechanistic Insight and Application to the Synthesis of Dihydroquinolines. Journal of Organic Chemistry, 2020, 85, 2486-2503.	1.7	9
681	Solvent-controlled divergent annulation of ynones and (iso)quinoline <i>N</i> -oxides: of 3-((iso)quinolin-1-yl)-4 <i>H</i> -chromen-4-ones and 13 <i>H</i> -isoquinolino[2,1- <i>a</i>]quinolin-13-ones. Chemical Communications, 2020, 56, 1183-1186.	2.2	16

#	Article	IF	CITATIONS
682	<i>p</i> -TsOH-mediated synthesis of substituted 2,4-diaryl-3-sulfonylquinolines from functionalized 2-aminobenzophenones and aromatic \hat{l}^2 -ketosulfones under microwave irradiation. Organic and Biomolecular Chemistry, 2020, 18, 305-315.	1.5	17
683	Copper-Catalyzed Electrochemical Selective Bromination of 8-Aminoquinoline Amide Using NH ₄ Br as the Brominating Reagent. Journal of Organic Chemistry, 2020, 85, 3497-3507.	1.7	29
684	Visible-Light-Promoted C2 Selective Arylation of Quinoline and Pyridine <i>N</i> Oxides with Diaryliodonium Tetrafluoroborate. Journal of Organic Chemistry, 2020, 85, 2733-2742.	1.7	29
685	Betaine–Nâ€Heterocyclic Carbene Interconversions of Quinazolinâ€4â€One Imidazolium Mesomeric Betaines. Sulfur, Selenium, and Borane Adduct Formation. European Journal of Organic Chemistry, 2020, 2020, 450-465.	1.2	15
686	Copperâ€catalyzed synthesis of <i>N</i> â€aryl acridones from 2â€amino benzophenones and aryl boronic acids via sequential double oxidative Câ€"N coupling. Applied Organometallic Chemistry, 2020, 34, e5316.	1.7	6
687	Highly Dispersed Single-Phase Ni $<$ sub $>$ 2 $<$ /sub $>$ P Nanoparticles on N,P-Codoped Porous Carbon for Efficient Synthesis of $<$ i $>$ N $<$ i $>$ -Heterocycles. ACS Sustainable Chemistry and Engineering, 2020, 8, 267-277.	3.2	45
688	Organocatalyzed Synthesis of Functionalized Quinolines. Chemistry - an Asian Journal, 2020, 15, 231-241.	1.7	26
689	Pdâ€Catalyzed Decarboxylative Orthoâ€Aroylation of 2â€Arylâ€quinazolinone Comprising Intrinsic Directing Group with αâ€Oxocarboxylic Acids. Asian Journal of Organic Chemistry, 2020, 9, 2095-2098.	1.3	4
690	Acceptorless dehydrogenative coupling with Ru-based catalysts for the synthesis of <i>N</i> -heteroaromatic compounds. Dalton Transactions, 2020, 49, 15527-15547.	1.6	24
691	Oneâ€Pot Mannich, Azaâ€Wittig and Dehydrofluorinative Aromatization Reactions for Direct Synthesis of 2,3â€Disubstituted 4â€Aminoquinolines. Advanced Synthesis and Catalysis, 2020, 362, 5513-5517.	2.1	14
692	Visible light mediated photocatalytic [2 + 2] cycloaddition/ring-opening rearomatization cascade of electron-deficient azaarenes and vinylarenes. Communications Chemistry, 2020, 3, .	2.0	11
693	Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chemical Society Reviews, 2020, 49, 5810-5849.	18.7	76
694	Synthesis of 1,2-Dihydroquinolines via Hydrazine-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis. Organic Letters, 2020, 22, 6026-6030.	2.4	14
695	Functionalization of Heterocycles through 1,2â€Metallate Rearrangement of Boronate Complexes. Chemistry - A European Journal, 2020, 26, 14270-14282.	1.7	26
696	Pd-Catalyzed C–H Halogenation of Indolines and Tetrahydroquinolines with Removable Directing Group. Organic Letters, 2020, 22, 5870-5875.	2.4	23
697	Iodine-Promoted Synthesis of 4-Aryl-2-(arylsulfonyl)quinolones by Desulfurative C–S Cross-Coupling Reaction of Quinoline-2-thiones with Sodium Sulfinates. Synlett, 2020, 31, 1527-1531.	1.0	3
698	Synthesis of New 3â€(2â€Aminoâ€6â€arylpyrimidinâ€4â€yl)â€4â€hydroxyquinolinâ€2(1 <i>H</i>)â€ones and The Antimicrobial and "DPPH―Scavenging Activity Evaluation. ChemistrySelect, 2020, 5, 7967-7972.	eir In Vitro 0.7	8
699	Microwave-Assisted Synthesis of Quinazolines and Quinazolinones: An Overview. Frontiers in Chemistry, 2020, 8, 580086.	1.8	31

#	ARTICLE	IF	Citations
700	Application of Lanthanide Shift Reagent to the 1H-NMR Assignments of Acridone Alkaloids. Molecules, 2020, 25, 5383.	1.7	2
701	Facile Synthesis of Dihydroquinolines via Palladium Catalyzed Sequential Amination and Cyclisation of Moritaâ€Baylisâ€Hillman Alcohols. ChemistrySelect, 2020, 5, 13598-13602.	0.7	2
702	Recent Developments in the Synthetic Strategies of 4â€Quinolones and Its Derivatives. ChemistrySelect, 2020, 5, 14100-14129.	0.7	8
703	Development of Pd(OAc)2-catalyzed tandem oxidation of C N, C C, and C(sp3)–H bonds: Concise synthesis of 1-aroylisoquinoline, oxoaporphine, and 8-oxyprotoberberine alkaloids. Tetrahedron Letters, 2020, 61, 152599.	0.7	6
704	Visible-light induced copper(<scp>i</scp>)-catalyzed oxidative cyclization of <i>o</i> -aminobenzamides with methanol and ethanol <i>via</i> HAT. Organic and Biomolecular Chemistry, 2020, 18, 9601-9605.	1.5	24
707	Cobalt-Catalyzed Tandem Transformation of 2-Aminobenzonitriles to Quinazolinones Using Hydration and Dehydrogenative Coupling Strategy. Journal of Organic Chemistry, 2020, 85, 11359-11367.	1.7	29
708	Cu-Catalyzed Direct Amination of Cyclic Amides via C–OH Bond Activation Using DMF. Organic Letters, 2020, 22, 6547-6551.	2.4	7
709	Convenient synthesis of 3-Hydroxyquinolines via dakin oxidation: A short synthesis of Jineol. Tetrahedron Letters, 2020, 61, 152294.	0.7	2
710	Visibleâ€Lightâ€Induced C2 Alkylation of Heterocyclic Nâ€Oxides with Nâ€Hydroxyphthalimide Esters under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2020, 362, 4707-4715.	2.1	18
711	Oneâ€Pot Synthesis of Highly Substituted Quinolines in Aqueous Medium and Its Application for the Synthesis of Azalignans. European Journal of Organic Chemistry, 2020, 2020, 5551-5556.	1.2	2
712	Heterocyclic N-Oxides as Small-Molecule Fluorogenic Scaffolds: Rational Design and Applications of Their "On–Off―Fluorescence. Analytical Chemistry, 2020, 92, 12282-12289.	3.2	11
713	Catalytic Asymmetric 1,4-Reduction of \hat{l} ±-Branched 2-Vinyl-azaarenes by a Chiral SPINOL-Derived Borophosphate. ACS Catalysis, 2020, 10, 10914-10919.	5.5	14
714	TMSOTf-catalyzed synthesis of substituted quinazolines using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. Organic and Biomolecular Chemistry, 2020, 18, 7201-7212.	1.5	17
715	Regioselective Câ^³H Functionalization of Heteroarene <i>N</i> à€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie - International Edition, 2020, 59, 22675-22683.	7.2	24
716	Metal-free regioselective construction of 2-aryl-substituted quinolines <i>via</i> Aza-Henry (Nitro-Mannich) reactions under neat conditions. Synthetic Communications, 2020, 50, 3652-3660.	1.1	1
717	Regioselective Câ^'H Functionalization of Heteroarene N â€Oxides Enabled by a Traceless Nucleophile. Angewandte Chemie, 2020, 132, 22864-22872.	1.6	2
718	Asymmetric Dearomative Cascade Multiple Functionalizations of Activated $\langle i \rangle N \langle i \rangle$ -Alkylpyridinium and $\langle i \rangle N \langle i \rangle$ -Alkylquinolinium Salts. Organic Letters, 2020, 22, 7617-7621.	2.4	22
719	Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu ₃ (BTC) ₂ MOF as an Efficient and Reusable Catalyst. ChemistrySelect, 2020, 5, 10041-10047.	0.7	13

#	Article	IF	CITATIONS
720	The regioselective coupling of 2-arylquinazolinone Câ€"H with aldehydes and benzyl alcohols under oxidative conditions. New Journal of Chemistry, 2020, 44, 16697-16701.	1.4	3
721	An update on the use of sulfinate derivatives as versatile coupling partners in organic chemistry. Organic and Biomolecular Chemistry, 2020, 18, 9136-9159.	1.5	44
722	Dihydroquinazolinones via A 3 â€Type Reactions of N â€Carbamoyliminium Ions. Chemistry - A European Journal, 2020, 26, 15825-15829.	1.7	2
723	Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Advances, 2020, 10, 44382-44386.	1.7	17
724	A Cascade Reaction of Michael Addition and Truce-Smiles Rearrangement to Synthesize Trisubstituted 4-Quinolone Derivatives. Journal of Organic Chemistry, 2020, 85, 14937-14944.	1.7	10
725	Metalâ€Free Electrochemical Oxidative Dihalogenation of Quinolines on the C5 and C7 Positions Using N â€Halosuccinimides. European Journal of Organic Chemistry, 2020, 2020, 6382-6386.	1.2	14
726	Lewis acid catalyzed reactivity switch: pseudo three-component annulation of nitrosoarenes and (epoxy)styrenes. Chemical Communications, 2020, 56, 15032-15035.	2.2	5
727	Copper-catalyzed Tandem Cyclization to Access 4-Aminoquinoline Derivatives. Chemistry Letters, 2020, 49, 526-529.	0.7	3
728	DMSO/t-BuONa/O2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. Journal of Organic Chemistry, 2020, 85, 7501-7509.	1.7	26
729	Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mechanistic insights and recent applications. Catalysis Science and Technology, 2020, 10, 5345-5361.	2.1	18
730	Substrateâ€Controlled [5+1] Annulation of 5â€Aminoâ€1 <i>H</i> à€phenylpyrazoles with Alkenes: Divergent Synthesis of Multisubstituted 4,5â€Dihydropyrazolo[1,5â€ <i>a</i>)quinazolines. European Journal of Organic Chemistry, 2020, 2020, 3997-4003.	1.2	16
731	Regioselective and Diastereoselective Dearomative Multifunctionalization of In-Situ-Activated Azaarenes: An Access to Bridged Azaheterocycles. Organic Letters, 2020, 22, 5068-5073.	2.4	39
732	Rhodiumâ€Catalyzed Cascade Reactions of Indoles with 4â€Hydroxyâ€2â€Alkynoates for the Synthesis of Indoleâ€Fused Polyheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2953-2960.	2.1	31
733	Rhodium-Catalyzed Merging of 2-Arylquinazolinone and 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Monofluoroolefin Quinazolinone Derivatives. ACS Omega, 2020, 5, 14635-14644.	1.6	12
734	Effect of relative position of donor and acceptor groups on linear and non-linear optical properties of quinoline system. Chemical Physics Letters, 2020, 754, 137582.	1.2	1
735	Cu-NPs@COF: A potential heterogeneous catalyst for CO2 fixation to produce 2-oxazolidinones as well as benzimidazoles under moderate reaction conditions. Journal of CO2 Utilization, 2020, 40, 101180.	3.3	53
736	Co(III)-Catalyzed C–H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. Journal of Organic Chemistry, 2020, 85, 9244-9254.	1.7	20
737	Alkylation of αâ€Oxoâ€Compounds through C(sp ³)â€H Functionalization of 2â€Methyl Quinolines Under Catalyst†and Solventâ€Free Conditions. European Journal of Organic Chemistry, 2020, 2020, 4134-4145.	1.2	6

#	Article	IF	CITATIONS
738	A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedläder condensation. New Journal of Chemistry, 2020, 44, 10982-10988.	1.4	13
739	Remote C–H Functionalization of 8-Aminoquinoline Ring. Topics in Current Chemistry, 2020, 378, 42.	3.0	13
740	An efficient Nano-Copper catalyzed base-free Knoevenagel condensation: A facile synthesis, molecular modelling simulations, SAR and hypoglycemic studies of new quinoline tethered acridine analogues as PPARÎ ³ agonists. Journal of Molecular Structure, 2020, 1220, 128601.	1.8	10
741	The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Computational and Structural Biotechnology Journal, 2020, 18, 482-500.	1.9	36
742	PEG-assisted one-pot three-component synthesis of 1,3-oxazino quinoline and chromeno 1,3-oxazin derivatives under catalyst free condition. Synthetic Communications, 2020, 50, 1456-1467.	1.1	4
743	Metalâ€Free Direct C–H βâ€Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K ₂ S ₂ O ₈ . European Journal of Organic Chemistry, 2020, 2020, 2600-2604.	1.2	17
744	Synthesis of acridone derivatives via heterologous expression of a plant type III polyketide synthase in Escherichia coli. Microbial Cell Factories, 2020, 19, 73.	1.9	13
745	Design and synthesis of novel quinoline derivatives bearing oxadiazole, isoxazoline, triazolothiadiazole, triazolothiadiazine, and piperazine moieties. Journal of Heterocyclic Chemistry, 2020, 57, 2330-2338.	1.4	9
746	Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids)., 2020,, 505-567.		93
747	Rh-Catalyzed C–H Amination/Annulation of Acrylic Acids and Anthranils by Using â^'COOH as a Deciduous Directing Group: An Access to Diverse Quinolines. Organic Letters, 2020, 22, 2600-2605.	2.4	59
748	Rh ^{III} -Catalyzed one-pot cascade synthesis of quinazolines with <i>N</i> -alkoxyamide as an amidating reagent. Organic Chemistry Frontiers, 2020, 7, 1230-1234.	2.3	12
749	FeCl ₃ -Mediated Synthesis of 2-(Trifluoromethyl)quinazolin-4(3 <i>H</i>)-ones from Isatins and Trifluoroacetimidoyl Chlorides. Organic Letters, 2020, 22, 5567-5571.	2.4	47
750	Copper in Efficient Synthesis of Aromatic Heterocycles with Single Heteroatom. European Journal of Organic Chemistry, 2020, 2020, 6859-6869.	1.2	15
751	N-Substitution of acridone with electron-donating groups: crystal packing, intramolecular charge transfer and tuneable aggregation induced emission. RSC Advances, 2020, 10, 7092-7098.	1.7	18
752	Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. Journal of Integrative Medicine, 2020, 18, 189-195.	1.4	46
753	Utilization of Water-Soluble Aminoethylamino–β–Cyclodextrin in the Pfitzinger Reaction—Catalyzed to the Synthesis of Diversely Functionalized Quinaldine. Polymers, 2020, 12, 393.	2.0	4
754	Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or $\hat{l}\pm,\hat{l}\pm,\hat{l}^2$ -Tricarbonyl Sulfoxonium Ylides. Organic Letters, 2020, 22, 1504-1509.	2.4	47
755	Ionically Tagged Magnetic Nanoparticles with Urea Linkers: Application for Preparation of 2-Aryl-quinoline-4-carboxylic Acids via an Anomeric-Based Oxidation Mechanism. ACS Omega, 2020, 5, 3207-3217.	1.6	48

#	Article	IF	CITATIONS
756	Structural analogues of quinoline alkaloids: Straightforward route to [1,3]dioxolo[4,5―c]quinolines with antibacterial properties. Journal of Heterocyclic Chemistry, 2020, 57, 1605-1615.	1.4	5
757	Synthesis of 4-ethenyl quinazolines <i>via</i> rhodium(<scp>iii</scp>)-catalyzed [5 + 1] annulation reaction of <i>N</i> -arylamidines with cyclopropenones. Organic Chemistry Frontiers, 2020, 7, 672-677.	2.3	23
758	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23002-23009.	4.0	27
759	Gold(<scp>iii</scp>)-catalyzed azide-yne cyclization/O–H insertion cascade reaction for the expeditious construction of 3-alkoxy-4-quinolinone frameworks. Organic and Biomolecular Chemistry, 2020, 18, 3888-3892.	1.5	19
760	Synthesis of 2â€Trifluoromethyl Quinolines from α,βâ€Unsaturated Trifluoromethyl Ketones: Regiochemistry Reversal Comparing to the Standard Skraupâ€Doebnerâ€Von Miller Synthesis. ChemistrySelect, 2020, 5, 4099-4103.	0.7	0
761	Silver-catalyzed direct C–H oxidative carbamoylation of quinolines with oxamic acids. Organic and Biomolecular Chemistry, 2020, 18, 2747-2757.	1.5	16
762	Sc(OTf) ₃ -Mediated One-Pot Synthesis of 2,3-Disubstituted Quinolines from Anilines and Epoxides. Journal of Organic Chemistry, 2020, 85, 6741-6746.	1.7	18
763	An $\hat{l}\pm /\hat{l}^2$ -Hydrolase Fold Subfamily Comprising <i>Pseudomonas</i> Quinolone Signal-Cleaving Dioxygenases. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
764	A Highly Efficient and Solvent-Free Approach for the Synthesis of Quinolines and Fused Polycyclic Quinolines Catalyzed by Magnetite Nanoparticle-Supported Acidic Ionic Liquid. Polycyclic Aromatic Compounds, 2021, 41, 440-453.	1.4	22
765	Aqueous NH ₃ -mediated syntheses of 2-styrylquinoline-4-carboxamides by domino ring opening cyclization strategy. Synthetic Communications, 2021, 51, 245-255.	1.1	1
766	PrVO4/SnD NPs as a Nanocatalyst for Carbon Dioxide Fixation to Synthesis Benzimidazoles and 2-Oxazolidinones. Catalysis Letters, 2021, 151, 1623-1632.	1.4	8
767	Palladium-catalyzed cascade reactions in aqueous media: synthesis and photophysical properties of pyrazino-fused quinazolinones. Organic Chemistry Frontiers, 2021, 8, 304-309.	2.3	10
768	A Novel Approach to <i>N</i> â€If 2â€Arylâ€2,3â€Dihydroquinolin―4(1 <i>H</i>)â€ones via a Ligandâ€Free Pd(II)â€Catalyzed Oxidative Azaâ€Michael Cyclization. European Journal of Organic Chemistry, 2021, 2021, 618-622.	1.2	7
769	Synthesis of Green/Blue Light Emitting Quinolines by Aza-D-A Reaction Using InCl3 Catalyst. Journal of Fluorescence, 2021, 31, 247-257.	1.3	4
770	Switchable and efficient conversion of 2-amido-aryl oxazolines to quinazolin-4(3H)-ones and N-(2-chloroethyl)benzamides. Organic Chemistry Frontiers, 2021, 8, 584-590.	2.3	4
771	Copperâ€catalyzed [3+2+1] Annulation of Anthranils with Phenylacetaldehydes: Synthesis of 8â€Acylquinolines. European Journal of Organic Chemistry, 2021, 2021, 1003-1006.	1.2	5
772	Mild and efficient copper-catalyzed oxidative cyclization of oximes with 2-aminobenzyl alcohols at room temperature: synthesis of polysubstituted quinolines. Organic and Biomolecular Chemistry, 2021, 19, 659-666.	1.5	12
773	Recent synthetic methodologies for the tricyclic fused-quinoline derivatives. Synthetic Communications, 2021, 51, 13-36.	1.1	10

#	Article	IF	Citations
774	Lewis-acid-promoted cyclization reaction: synthesis of N3-chloroethyl and N3-thiocyanatoethyl quinazolinones. New Journal of Chemistry, 2021, 45, 9315-9319.	1.4	1
775	Stereoselective synthesis of $(\langle i \rangle Z \langle i \rangle)$ -1,3-bis $(\hat{i}\pm,\hat{i}^2$ -unsaturated carbonyl)-isoindolines from aldehydes and phenacyl azides under metal free conditions. Chemical Communications, 2021, 57, 9542-9545.	2.2	2
776	An environmentally benign regioselective synthesis of 2-benzyl-4-arylquinoline derivatives using aryl amines, styrene oxides and aryl acetylenes. Organic and Biomolecular Chemistry, 2021, 19, 8772-8782.	1.5	4
777	Metal-free C8–H functionalization of quinoline <i>N</i> -oxides with ynamides. Chemical Communications, 2021, 57, 6995-6998.	2.2	10
778	Recent Advances in the Synthesis of Benzoheterocyclic Compounds Involving Isatins. Chinese Journal of Organic Chemistry, 2021, 41, 1527.	0.6	7
779	Iron-catalyzed carboarylation of alkynes via activation of π-activated alcohols: rapid synthesis of substituted benzofused six-membered heterocycles. Organic and Biomolecular Chemistry, 2021, 19, 5155-5160.	1.5	8
780	Ball-milling synthesis of sulfonyl quinolines <i>via</i> coupling of haloquinolines with sulfonic acids. Green Chemistry, 2021, 23, 7589-7593.	4.6	7
781	Rhodium(<scp>iii</scp>)-catalyzed annulation of 3-arylquinazolinones with alkynes <i>via</i> double C–H activation: an efficient route for quinolino[2,1- <i>b</i>)quinazolinones. Organic Chemistry Frontiers, 2021, 8, 6837-6844.	2.3	6
782	PEG-400 as a carbon synthon: highly selective synthesis of quinolines and methylquinolines under metal-free conditions. Green Chemistry, 2021, 23, 5542-5548.	4.6	15
783	Access to 2-arylquinazolines <i>via</i> catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide. Chemical Communications, 2021, 57, 5414-5417.	2.2	23
784	Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with \hat{l}_{\pm} -keto acid under external oxidant and photocatalyst free conditions: access to quinazolinone derivatives. Chemical Communications, 2021, 57, 6050-6053.	2.2	43
785	Electrooxidative tandem cyclization of N-propargylanilines with sulfinic acids for rapid access to 3-arylsulfonylquinoline derivatives. Green Chemistry, 2021, 23, 4733-4740.	4.6	20
786	Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Organic Chemistry Frontiers, 2021, 8, 2673-2709.	2.3	92
787	An environmentally benign, simple and proficient synthesis of quinoline derivatives catalyzed by FeCl3.6H2O as a green and readily available catalyst. Green Chemistry Letters and Reviews, 2021, 14, 119-127.	2.1	1
788	Microwave-assisted catalyst-free organic synthesis. , 2021, , 539-622.		4
789	Applications of the Sonogashira reaction in the total synthesis of alkaloids., 2021,, 295-323.		0
790	Green chemistry of evergreen imines in the synthesis of nitrogen-containing heterocycles. , 2021, , 655-687.		3
791	lonic Liquid as Green and Recyclable Solvent for the Synthesis of Pyrazinoquinazolines: Study of Antioxidant Activity. Polycyclic Aromatic Compounds, 0, , 1-12.	1.4	0

#	Article	IF	Citations
792	Electrolyteâ€Triggered C5â€Selective Trifluoromethylation and Halogenation of 8â€Aminoquinoline Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 559-562.	1.3	10
793	SNH-Arylamination of 1-methylquinolin-2(1H)-one Nitro Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 166-174.	0.6	2
794	Deoxygenative C2-heteroarylation of quinoline $\langle i \rangle N \langle i \rangle$ -oxides: facile access to $\hat{l}\pm$ -triazolylquinolines. Beilstein Journal of Organic Chemistry, 2021, 17, 485-493.	1.3	10
795	Friedel–Crafts synthesis of bis(trifluoromethylated)-4-aryl-3,4-dihydroquinazolines, bis(trifluoromethylated)-3,4-dihydroquinazoline-4-ols and trifluoromethyl arylketoimines using N-aryltrifluoroacetimidoyl chlorides and benzene derivatives. Molecular Diversity, 2022, 26, 815-825.	2.1	2
796	Intermolecular Amination of Ketoximes with Anthranils by Rhâ€Catalyzed Câ^'H Bond Activation in Air. Asian Journal of Organic Chemistry, 2021, 10, 838-844.	1.3	2
797	FriedlÄ n der Synthesis of Novel Polycyclic Quinolines Using Solid SiO2/H2SO4 Catalyst. Organic Preparations and Procedures International, 2021, 53, 138-144.	0.6	8
798	Silverâ€Catalyzed Cross Dehydrogenative Coupling between Heteroarenes and Cyclic Ethers under Mild Conditions. ChemistrySelect, 2021, 6, 2770-2773.	0.7	7
799	Alkyl Phosphine Free, Metalâ€Ligand Cooperative Complex Catalyzed Alcohol Dehydrogenative Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1218-1232.	1.3	16
800	Straightforward Construction and Functionalizations of Nitrogenâ€Containing Heterocycles Through Migratory Insertion of Metalâ€Carbenes/Nitrenes. Chemical Record, 2021, 21, 3411-3428.	2.9	21
801	Synthesis and reactivity of thieno[2,3â€ <i>b</i>]quinoline derivatives (Part <scp>II</scp>). Journal of Heterocyclic Chemistry, 2021, 58, 1705-1740.	1.4	14
802	One-Pot Reductive Alkylation of 2,4-Dihydroxy Quinolines and Pyridines. Journal of Organic Chemistry, 2021, 86, 7148-7162.	1.7	5
803	Organocatalytic asymmetric synthesis of pyrrolo[3,2-c]quinolines via a formal [3+2] cycloaddition-lactamization cascade reaction using a bifunctional squaramide catalyst. Tetrahedron, 2021, 87, 132115.	1.0	8
804	Transition Metalâ€Free Regioselective Remote Câ^'H Bond 2,2,2â€Trifluoroethoxylation of 8â€Aminoquinoline Derivatives at the C5 Position. European Journal of Organic Chemistry, 2021, 2021, 3407-3410.	1.2	6
805	Highly Ordered Mesoporous Cobalt Oxide as Heterogeneous Catalyst for Aerobic Oxidative Aromatization of Nâ€Heterocycles. ChemCatChem, 2021, 13, 3679-3686.	1.8	6
806	NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catalysis, 2021, 11, 7772-7779.	5 . 5	37
807	Synthesis of Quinolines via the Metal-free Visible-Light-Mediated Radical Azidation of Cyclopropenes. Organic Letters, 2021, 23, 5435-5439.	2.4	11
808	Recent Progress in the Synthesis of Heterocycles through Base Metal atalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European Journal of Organic Chemistry, 2021, 2021, 3690-3720.	1.2	37
809	KO ^t Bu-BF ₃ .OEt ₂ mediated synthesis of quinazolin-4(<i>3H</i>)-ones from 2-substituted amides with nitriles and aldehydes. Synthetic Communications, 2021, 51, 2602-2612.	1.1	2

#	Article	IF	CITATIONS
810	Environmentally Friendly Nafion-Catalyzed Synthesis of Substituted 2-Ethyl-3-Methylquinolines from Aniline and Propional dehyde under Microwave Irradiation. Catalysts, 2021, 11, 877.	1.6	3
811	Rhodium(III)-catalyzed [$4\hat{a}\in\%+\hat{a}\in\%2$] annulation of N-arylbenzamidines with 1,4,2-dioxazol-5-ones: Easy access to 4-aminoquinazolines via highly selective C H bond activation. Chinese Chemical Letters, 2021, 32, 2592-2596.	4.8	26
812	Catalytic Functionalization of Metallocarbenes Derived from ⟨i⟩α⟨/i⟩â€Điazocarbonyl Compounds and Their Precursors. Chemical Record, 2021, 21, 3872-3883.	2.9	12
813	A Domino Heck Coupling-Cyclization-Dehydrogenative Strategy: One-Pot Synthesis of Quinolines. Synthesis, 0, , .	1.2	5
814	Switch From Pauliâ€Lowering to LUMOâ€Lowering Catalysis in Brønsted Acidâ€Catalyzed Azaâ€Dielsâ€Alder Reactions. ChemistryOpen, 2021, 10, 784-789.	0.9	6
815	Synthesis of Nâ€Aryl―and Nâ€Alkenylhydrazides through C(sp ²)â^°N Bond Construction. European Journal of Organic Chemistry, 2021, 2021, 4364-4387.	1.2	4
816	Rhodium(III)â€Catalyzed Sequential Câ^'H Activation and Cyclization from <i>N</i> à€Methoxyarylamides and 3â€Diazooxindoles for the Synthesis of Isochromenoindolones. Chemistry - an Asian Journal, 2021, 16, 3179-3187.	1.7	7
817	Na2S·9H2O mediated facile synthesis of 1,3-dihydrofuro[3,4-b]quinoline derivatives via domino reduction approach. Tetrahedron, 2021, 99, 132447.	1.0	2
818	lodine Catalyzed C2â€H Formamidation of Quinoline <i>N</i> â€Oxides using Isocyanides: A Metalâ€Free Approach. Advanced Synthesis and Catalysis, 2022, 364, 149-157.	2.1	7
819	Synthesis and Mechanistic Insights of the Formation of 3-Hydroxyquinolin-2-ones including Viridicatin from 2-Chloro- <i>N</i> ,3-diaryloxirane-2-carboxamides under Acid-Catalyzed Rearrangements. Journal of Organic Chemistry, 2021, 86, 13514-13534.	1.7	7
820	Palladium-Catalyzed Three-Component Cascade Reaction of Nitriles: Synthesis of 2-Arylquinoline-4-carboxylates. Organic Letters, 2021, 23, 7955-7960.	2.4	7
821	Copper Catalyzed Synthesis of 3â€Nitroâ€Quinolines from Nitroâ€Olefins and Anthranils: Its Application in the Synthesis of Quindoline. Advanced Synthesis and Catalysis, 2022, 364, 41-46.	2.1	5
822	Transitionâ€Metalâ€Free Crossâ€Dehydrogenative Couplings of 8â€Aminoquinoline Amides at C5 Position with Acetonitrile, Ethers or Acetone. European Journal of Organic Chemistry, 2021, 2021, 5012-5016.	1.2	6
823	Efficient access to quinolines and quinazolines by ruthenium complexes catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with ketones and nitriles. Molecular Catalysis, 2021, 514, 111773.	1.0	9
824	Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules, 2021, 26, 5467.	1.7	15
825	Design and synthesis of novel substituted 3-(2-(1,3,4-thiadiazol-2-ylamino)acetyl)-2H-selenopyrano[2,3-b]quinolin-2-ones. Chemical Data Collections, 2021, 35, 100748.	1.1	3
826	Mitigation effect of quinazolin-4(3H)-one derivatives on the corrosion behaviour of mild steel in HCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127188.	2.3	10
827	Applications of 2-Oxoaldehydes. , 2022, , 63-171.		0

		IF	CITATIONS
	Exploring packing features of N-substituted acridone derivatives: Synthesis and X-ray crystallography studies. Journal of Molecular Structure, 2022, 1248, 131448.	1.8	3
829 F	Proline and proline-derived organocatalysts in the synthesis of heterocycles. , 2021, , 215-251.		1
	Direct C–H aminocarbonylation of <i>N</i> -heteroarenes with isocyanides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 2917-2922.	1.5	10
831 (Copper-mediated synthesis of quinazolines and related benzodiazines. , 2021, , 289-331.		1
	Practical catalytic enantioselective synthesis of 2,3-dihydroquin-azolinones by chiral brønsted acid catalysis. Organic and Biomolecular Chemistry, 2021, 19, 4146-4151.	1.5	7
833 ^T	Triflic acid-mediated N-heteroannulation of β-anilino-β-(methylthio)acrylonitriles: a facile synthesis of 4-amino-2-(methylthio)quinolines. Organic and Biomolecular Chemistry, 2021, 19, 8544-8553.	1.5	2
	Site-selective C–H functionalization to access the arene backbone of indoles and quinolines. Chemical Society Reviews, 2021, 50, 11249-11269.	18.7	108
835 a	Metal-free synthesis of quinoline-2,4-dicarboxylate derivatives using aryl amines and acetylenedicarboxylates through a pseudo three-component reaction. Organic and Biomolecular Chemistry, 2021, 19, 7041-7050.	1.5	5
836 t	Ruthenium(II)-Catalyzed C–C/C–N Coupling of 2-Arylquinazolinones with Vinylene Carbonate: Access to Fused Quinazolinones. Organic Letters, 2021, 23, 995-999.	2.4	54
	Use of sustainable organic transformations in the construction of heterocyclic scaffolds. , 2020, , 245-352.		8
838 3	A visible-light-induced oxidative cyclization of $\langle i \rangle N \langle i \rangle$ -propargylanilines with sulfinic acids to 3-sulfonated quinoline derivatives without external photocatalysts. Chemical Communications, 2019, 55, 2785-2788.	2.2	48
	IFA/TBHP-promoted oxidative cyclisation for the construction of tetracyclic quinazolinones and rutaecarpine. Organic Chemistry Frontiers, 2020, 7, 1635-1639.	2.3	26
840 \	Hepatitis C virus in vitro replication is efficiently inhibited by acridone Fac4. Journal of General Virology, 2017, 98, 1693-1701.	1.3	12
841 A	Antileishmanial activity of synthetic analogs of the naturally occurring quinolone alkaloid N-methyl-8-methoxyflindersin. PLoS ONE, 2020, 15, e0243392.	1.1	10

#	Article	IF	CITATIONS
846	Novel Pyrazolo [4, 3-c] Quinolin-3-One Derivatives as PDE5A Inhibitors. Current Topics in Medicinal Chemistry, 2019, 19, 305-315.	1.0	1
847	Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. Letters in Organic Chemistry, 2019, 16, 81-92.	0.2	5
848	Synthesis of Novel Amides Based on Acridone Scaffold with Interesting Antineoplastic Activity. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 555-564.	0.9	4
849	Acridine and Acridinones: Old and New Structures with Antimalarial Activity. Open Medicinal Chemistry Journal, 2011, 5, 11-20.	0.9	71
850	INVESTIGATION OF INTERACTION OF 2-S-ALKENYL DERIVATIVE QUINASOLONE ARYLTELLURIUM TRICHLORIDES. Scientific Bulletin of the Uzhhorod University Series «Chemistry», 2019, 41, 86-89.	0.0	3
851	Efficient Syntheses of 1-Azatricyclic Ring Systems from Anthranylamide. Heterocycles, 2009, 78, 635.	0.4	8
852	Synthesis of Tetrahydroquinolines through Intramolecular Carbolithiation Reactions. Heterocycles, 2014, 88, 425.	0.4	7
853	Asymmetric Reactions of a Series of Aromatic Azines with Nucleophiles. Heterocycles, 2012, 86, 821.	0.4	5
854	Chemistry of Nitroaziridines. Heterocycles, 2019, 99, 54.	0.4	6
855	Synthesis of some novel dibromo-2-arylquinazolinone derivatives as cytotoxic agents. Research in Pharmaceutical Sciences, 2019, 14, 115.	0.6	13
856	Evaluation of Antifungal Activity of Plant Extracts against Papaya Anthracnose (Colletotrichum) Tj ETQq0 0 0 rgBT	T Oyerlock	≀ 10 Tf 50 34
857	Utility of 2-Methyl-quinazolin-4(3H)-one in the Synthesis of Heterocyclic Compounds with Anticancer Activity. Open Journal of Medicinal Chemistry, 2014, 04, 12-37.	0.7	14
858	Synergistic Effect of Pd(II) and Acid Catalysts on Tandem Annulation Reaction for the Regioselective Synthesis of Ring-Fused Quinolines. Bulletin of the Korean Chemical Society, 2010, 31, 704-707.	1.0	18
859	An Expeditious Room Temperature Stirring Method for the Synthesis of Isoxazolo[5,4-b]quinolines. Journal of the Korean Chemical Society, 2011, 55, 805-807.	0.2	2
860	Review on Synthesis Route of Quinazoline Based Hybrid Derivatives. Asian Journal of Chemistry, 2021, 33, 2525-2547.	0.1	2
861	Ni-catalyzed cascade coupling reactions: synthesis and thermally-activated delayed fluorescence characterization of quinazolinone derivatives. New Journal of Chemistry, 2021, 45, 20624-20628.	1.4	4
862	Rhodium-Catalyzed Dehydrogenative Annulation of <i>N</i> -Arylmethanimines with Vinylene Carbonate for Synthesizing Quinolines. Organic Letters, 2021, 23, 8527-8532.	2.4	38
863	Recent Advances in Small Moleculeâ€Based Intracellular pH Probes. ChemBioChem, 2022, 23, .	1.3	30

#	Article	IF	CITATIONS
864	Studies Directed towards the Synthesis of the Acridone Family of Natural Products: Total Synthesis of Acronycines and Atalaphyllidines. ACS Omega, 2021, 6, 27062-27069.	1.6	4
865	Medicinal Plants Classified in the Family Rutaceae. , 2006, , 211-231.		0
866	4-Bromo-8-methoxyquinoline. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1117-o1117.	0.2	0
867	N-[2-Chloro-6-(4-chloro-6-methoxypyrimidin-2-ylsulfanyl)benzyl]-3,4-dimethylaniline. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2758-o2758.	0.2	0
868	A Facile Synthesis of 9,10-Dimethoxybenzo [6,7]-ox-epino [3,4- <i>b</i>]quinolin-13 (6 <i>H</i>)-one and Its Derivatives. International Journal of Organic Chemistry, 2013, 03, 119-124.	0.3	0
869	Crystal structure of (4-chlorophenyl)[2-(10-hydroxyphenanthren-9-yl)phenanthro[9,10-b]furan-3-yl]methanone. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 355-358.	0.2	0
872	One Pot Three Component Diastereoselective Synthesis of Tricyclic Furoquinolones and Furocoumarins. Modern Organic Chemistry Research, 2017, 2, 179-188.	0.2	1
873	Efficient Synthesis of Novel Quinolinone Derivatives via Catalyst-free Multicomponent Reaction. Letters in Organic Chemistry, 2020, 17, 403-407.	0.2	0
874	SYNTHESIS OF 2,3-FUNCTIONALIZED QUINOLINES. Scientific Bulletin of the Uzhhorod University Series «Chemistry», 2020, 2, 62-68.	0.0	0
875	Synthesis of Heterocycles Over Nanoporous Zeolites. , 2021, , 1-31.		0
876	Chemistry of herbal biomolecules. , 2022, , 63-79.		0
877	Methods for Enhanced Production of Metabolites Under In Vitro Conditions. , 2020, , 111-140.		5
878	Anti-Cancer Activity and Molecular Docking of Some Pyrano[3,2‑c]quinoline Analogues. Open Journal of Medicinal Chemistry, 2020, 10, 1-14.	0.7	8
880	Yb(OTf) ₃ -Mediated Annulation of Cyclopropane-1,1-dicarbonitriles with 2-Aminobenzaldehydes for Synthesis of Polysubstituted Quinolines. Organic Letters, 2021, 23, 8799-8803.	2.4	7
881	Ionicâ€Liquidâ€Catalyzed Synthesis of Imines, Benzimidazoles, Benzothiazoles, Quinoxalines and Quinolines through Câ^'N, Câ^'S, and Câ^'C Bond Formation. European Journal of Organic Chemistry, 2021, 2021, 6705-6716.	1.2	7
882	Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products. Journal of Organic Chemistry, 2021, 86, 18067-18080.	1.7	15
883	Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron, 2022, 105, 132580.	1.0	7
884	l ₂ /CuCl ₂ -Copromoted Formal $[4+1+1]$ Cyclization of Methyl Ketones, 2-Aminobenzonitriles, and Ammonium Acetate: Direct Access to 2-Acyl-4-aminoquinazolines. Journal of Organic Chemistry, 2021, 86, 16916-16925.	1.7	7

#	Article	IF	CITATIONS
885	Iron-catalyzed indolo[2,3-c]quinoline synthesis from nitroarenes and benzylic alcohols/aldehydes promoted by elemental sulfur. Green Synthesis and Catalysis, 2022, 3, 95-101.	3.7	21
886	Skeletal remodeling of chalcone-based pyridinium salts to access isoindoline polycycles and their bridged derivatives. Chemical Science, 2021, 12, 15389-15398.	3.7	35
887	Genome mining methods to discover bioactive natural products. Natural Product Reports, 2021, 38, 2100-2129.	5.2	61
888	Synthesis of quinolines via sequential addition and I2-mediated desulfurative cyclization. RSC Advances, 2021, 11, 38889-38893.	1.7	2
889	Potentiating the intracellular killing of Staphylococcus aureus by dihydroquinazoline analogues as NorA efflux pump inhibitor. Bioorganic and Medicinal Chemistry, 2022, 54, 116580.	1.4	4
890	Rapid Synthesis of Luotonin A Derivatives via Synergistic Visible-Light Photoredox and Acid Catalysis. Journal of Organic Chemistry, 2022, 87, 1302-1312.	1.7	6
891	Biology of quinoline and quinazoline alkaloids. The Alkaloids Chemistry and Biology, 2022, 88, 1-47.	0.8	2
892	Synthesis of Substituted Pyrano[3,4â€∢i>b]Quinolines by Silverâ€Catalyzed Regioselective Intramolecular Cyclization of 3â€Alkynylquinoline Aldehydes. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
893	Cu/Fe-mediated N(sp2)-arylation/alkenylation of pyridines with aryl-/alkenylboronic acids to yield versatile cationic materials. New Journal of Chemistry, 2022, 46, 2320-2325.	1.4	1
894	[3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. Journal of Organic Chemistry, 2022, 87, 2797-2808.	1.7	13
895	Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters, 2022, 24, 1180-1185.	2.4	11
896	Synthesis of pyrimidine-containing alkaloids. The Alkaloids Chemistry and Biology, 2022, 88, 49-367.	0.8	3
897	Diversity-oriented and diastereoselective synthesis of diverse polycyclic thieno(2,3- <i>b</i>)-quinoline derivatives using a synergistic strategy. Organic and Biomolecular Chemistry, 2022, 20, 1982-1993.	1.5	3
898	Paired electrolysis enabled annulation for the quinolyl-modification of bioactive molecules. Chemical Science, 2022, 13, 2310-2316.	3.7	11
899	lodine-DMSO mediated conversion of $\langle i \rangle N \langle i \rangle$ -arylcyanothioformamides to $\langle i \rangle N \langle i \rangle$ -arylcyanoformamides and the unexpected formation of 2-cyanobenzothiazoles. RSC Advances, 2022, 12, 6133-6148.	1.7	5
900	Well-defined manganese complex catalyzed dehydrogenative synthesis of quinazolin-4($3 < i > H < / i >)$ -ones and 3,4-dihydro-2 $< i > H < / i > -1$,2,4-benzothiadiazine 1,1-dioxides. Catalysis Science and Technology, 2022, 12, 3202-3208.	2.1	13
901	Microwave-assisted annulation for the construction of pyrido-fused heterocycles and their application as photoluminescent chemosensors. Organic and Biomolecular Chemistry, 2022, 20, 3397-3407.	1.5	6
902	Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. New Journal of Chemistry, 2022, 46, 7329-7333.	1.4	8

#	Article	IF	Citations
903	A practical route to arylated dihydroacridine derivatives $\langle i \rangle via \langle i \rangle$ nickel boride mediated intramolecular reductive cyclization-concomitant dehydration. New Journal of Chemistry, 0, , .	1.4	3
904	TMSOTf-mediated Kröhnke pyridine synthesis using HMDS as the nitrogen source under microwave irradiation. RSC Advances, 2022, 12, 8263-8273.	1.7	7
905	An Introduction on Evolution of Azole Derivatives in Medicinal Chemistry. Materials Horizons, 2022, , 79-99.	0.3	6
906	NaN(SiMe ₃) ₂ /CsTFA Copromoted Aminobenzylation/Cyclization of 2-lsocyanobenzaldehydes with Toluene Derivatives or Benzyl Compounds: One-Pot Access to Dihydroquinazolines and Quinazolines. Journal of Organic Chemistry, 2022, 87, 3156-3166.	1.7	12
907	Cross-coupling of 2-methylquinolines and in-situ activated isoquinolines: Construction of 1,2-disubstituted isoquinolinones. Chinese Chemical Letters, 2022, 33, 4874-4877.	4.8	12
908	Electrochemical-Oxidation-Promoted Direct N-ortho-Selective Difluoromethylation of Heterocyclic <i>N</i> -Oxides. Organic Letters, 2022, 24, 1434-1438.	2.4	16
909	Scalable total synthesis of $(+)$ -aniduquinolone A and its acid-catalyzed rearrangement to aflaquinolones. Communications Chemistry, 2022, 5, .	2.0	7
910	Electrosynthesis of CF ₃ â€Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Advanced Synthesis and Catalysis, 2022, 364, 1319-1325.	2.1	23
911	Synthesis of Quinazolinones Via a Tandem Hydrogen-Transfer Strategy Catalyzed by N,S Co-doped Carbon-Anchored Co Nanoparticles. ACS Sustainable Chemistry and Engineering, 2022, 10, 3872-3881.	3.2	7
912	Discovery of new pyrimido[5,4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorganic Chemistry, 2022, 121, 105693.	2.0	24
913	A foundational theoreticalAl ₁₂ E ₁₂ (E = N, P) adsorption and quinolone docking study: cage–quinolone pairs, optics and possible therapeutic and diagnostic applications. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3630-3646.	2.0	17
915	Lithioarene Cycliacylation and Pd-Catalyzed Aminoethylation/Cyclization to Access Electronically Diverse Saturated Isoquinoline Derivatives. Journal of Organic Chemistry, 2022, 87, 776-789.	1.7	1
916	Copperâ€Catalyzed Ligandâ€Free Remote Câ^'H Bond Amidation of 8â€Amidoquinolines with <i>N</i> â€Fluorobenzenesulfonimide. ChemistrySelect, 2021, 6, 13559-13563.	0.7	1
917	Green synthesis and investigation of antioxidant and antimicrobial activity of new schiff base of pyrimidoazepine derivatives: application of Fe3O4/CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst. Molecular Diversity, 2022, 26, 3003-3019.	2.1	1
918	Remote selective decarboxylative difluoroarylmethylation of 8-aminoquinolines under transition metal-free conditions. Organic Chemistry Frontiers, 2022, 9, 3192-3198.	2.3	4
919	3-Arylsulfonylquinolines from <i>N</i> -Propargylamines via Cascaded Oxidative Sulfonylation Using DABSO. Journal of Organic Chemistry, 2022, 87, 6812-6823.	1.7	6
920	An approach for the synthesis of 2-aryl-3-sulfonyl substituted quinolines through an electrochemical cascade annulation pathway. Green Chemistry, 2022, 24, 4425-4431.	4.6	16
921	Evaluation of xanthene-appended quinoline hybrids as potential leads against antimalarial drug targets. Molecular Diversity, 2023, 27, 709-727.	2.1	4

#	Article	IF	Citations
922	Synthesis, Crystal Structures and Antibacterial Properties of Four Complexes Derived from Mono- or Diquinoline-Substituted Acylhydrazone Ligands. SSRN Electronic Journal, 0, , .	0.4	O
923	Single-Molecular Mn(I)-Complex-Catalyzed Tandem Double Dehydrogenation Cross-Coupling of (Amino)Alcohols under Solventless Conditions with the Liberation of H ₂ and H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 7362-7373.	3.2	14
924	1,2,2-三芳基乙酮åŒ−å•̂物å•̂æ^æ−¹æ³•ç"究进展. Scientia Sinica Chimica, 2022, , .	0.2	O
925	Rh(III)â€Catalyzed Câ^H Activation of 2â€Aryl Quinazolinones and Coupling with 2â€Carboxyl Allylic Alcohols for the Synthesis of βâ€Aryl Ketone Substituted Quinazolinones. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
926	Iron–Copper Dual Catalysis Enabling Câ^'C and Câ^'X (X=N, B, P, S, Sn) Bond Formation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
927	Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metalâ€Free Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
928	tert-Butyl Hydroperoxide Promoted the Reaction of Quinazoline-3-oxides with Primary Amines Affording Quinazolin-4(3 <i>H</i>)-ones. Journal of Organic Chemistry, 0, , .	1.7	3
929	Iridium-Catalyzed Borylation of 6-Fluoroquinolines: Access to 6-Fluoroquinolones. Journal of Organic Chemistry, 0, , .	1.7	4
930	Transitionâ€metalâ€catalyzed Heteroannulation Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
931	Synthesis, crystal structures and antibacterial properties of four complexes derived from mono- or diquinoline-substituted acylhydrazone ligands. Inorganica Chimica Acta, 2022, 541, 121080.	1.2	9
932	Cu(OAc)2 Catalyzed Aerobic Oxidative 2-Aryl-3-acylquinoline Synthesis via Aza-Michael Addition and Aldol Condensation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated ketones and 2-Aminobenzyl alcohols. Tetrahedron Letters, 2022, , 154043.	0.7	1
933	Synthesis of pyrano[3,2- <i>c</i>]quinolones and furo[3,2- <i>c</i>]quinolones <i>via</i> acid-catalyzed tandem reaction of 4-hydroxy-1-methylquinolin-2(1 <i>H</i>)-one and propargylic alcohols. RSC Advances, 2022, 12, 21066-21078.	1.7	2
934	Recent progress in organophotoredox reaction. Organic and Biomolecular Chemistry, 2022, 20, 6721-6740.	1.5	19
935	Aminothiolation of 2-(2-bromophenyl)quinazolinones with elemental sulfur to access 7H-benzo[4,5]isothiazolo[3,2-b]quinazolinones through C–S/S–N bond formation under metal-free condition. Tetrahedron, 2022, , 132911.	1.0	1
936	Crossâ€Coupling of Câ^'H and Nâ^'H Bonds: A Hydrogen Evolution Strategy for the Construction of Câ^'N Bonds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	12
937	Photoinduced Threeâ€Component Cyclization of Arylamines, Enaminones and Difluorobromoacetates to 2,3â€Difunctionalized Quinolines. Advanced Synthesis and Catalysis, 2022, 364, 3539-3543.	2.1	11
938	The regioselective one-pot four-component synthesis of novel functionalized 4H-pyrano[2, 3-b]quinoline derivatives using DABCO as a homogeneous organocatalyst. Molecular Diversity, 0, , .	2.1	0
939	Energy-Efficient Process in Organic Synthesis. , 2022, , 37-77.		0

#	Article	IF	Citations
940	An expeditious synthesis of 6,7-dihydrodibenzo $[\langle i\rangle b\langle i\rangle,\langle i\rangle][4,7]$ phenanthroline derivatives as fluorescent materials. RSC Advances, 2022, 12, 27246-27252.	1.7	1
941	De novo transcriptome analysis of Justicia adhatoda reveals candidate genes involved in major biosynthetic pathway. Molecular Biology Reports, 2022, 49, 10307-10314.	1.0	4
942	Spectrophotometric studies on some new hydroxyl-azo dyes derived from 6-ethyl-4-hydroxyquinoline-2(1H)-one. Pigment and Resin Technology, 2024, 53, 201-209.	0.5	0
943	Recent advances in the synthesis of cyclic compounds using $\hat{l}\pm,\hat{l}\pm$ -dicyanoolefins as versatile vinylogous nucleophiles. Organic and Biomolecular Chemistry, 2022, 20, 8366-8394.	1.5	6
945	Efficient excitedâ€state intramolecular proton transfer in acridone derivativesâ€"A case study of Paratrimerin C. International Journal of Quantum Chemistry, 0, , .	1.0	0
946	Metalâ€Free Cascade 1,4â€Conjugate Addition/Selective Annulation Strategy for Divergent Synthesis of Polysubstituted Imidazoles and 4â€Alkenylquinazolines. Advanced Synthesis and Catalysis, 2022, 364, 4103-4109.	2.1	3
947	Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	0
948	Synthesis of 4-styrylquinazolines using copper-based porous solid catalyst. Molecular Catalysis, 2022, 533, 112760.	1.0	1
949	Visible light driven multicomponent synthesis of difluoroamidosulfonyl quinoline derivatives. Organic and Biomolecular Chemistry, 2023, 21, 846-850.	1.5	2
950	Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF ₂ -substituted ring-fused quinazolinones. Organic and Biomolecular Chemistry, 2022, 20, 9722-9733.	1.5	5
951	Potential protective effect of 3,3′-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) against bleomycin-induced lung injury in male albino rat via modulation of Nrf2 pathway: biochemical, histological, and immunohistochemical study. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 771-788.	1.4	2
952	Tandem C–C/C–N Bond Formation via Rh(III)-Catalyzed α-Fluoroalkenylation and Sequential Annulation of 2-Arylquinazolinones and <i>gem</i> -Difluorostyrenes. Journal of Organic Chemistry, 2023, 88, 143-153.	1.7	0
953	Copper Mediated Direct Amination: Synthesis of 1,2,3,15 <i>a</i>)quinazolino[3,2â€ <i>c</i>)quinazolinazolinazolinazolinazolina€4(3 <i>H</i>)â€ones. ChemistrySelect, 2022, 7, .	à ∈łAâ€o nd	ed e rivatives
955	Visible-Light-Mediated Solvent-Switched Photosensitizer-Free Synthesis of Polyfunctionalized Quinolines and Pyridines. Organic Letters, 0, , .	2.4	3
956	Acidâ€Catalysed Cyclization of <i>>o</i> >â€Aminobenzamide with <i>α</i> ê€Oxodithioesters: A Divergent and Regioselective Synthesis of Quinazolinones and 1,3â€Benzothiazinones. ChemistrySelect, 2023, 8, .	0.7	1
957	Tandem Transformation of Indazolones to Quinazolinones through Pd-Catalyzed Carbene Insertion into an N–N Bond. Journal of Organic Chemistry, 2023, 88, 1457-1468.	1.7	5
958	Chemo- and regioselective synthesis of C3-sulfonate esters and C4-chlorides of quinolines under metal-free conditions. Organic Chemistry Frontiers, 0, , .	2.3	0
959	Electrochemically driven [4+2] benzannulation: synthesis of polycyclic (hetero)aromatic compounds. Chemical Communications, 2023, 59, 1681-1684.	2.2	2

#	Article	IF	CITATIONS
960	Catalyst-free visible-light-induced decarbonylative C–H alkylation of quinoxalin-2(1 <i>H</i>)-ones. Organic Chemistry Frontiers, 2023, 10, 1296-1300.	2.3	7
961	Synthesis of Substituted Quinolines through Bismuth-Catalyzed Cyclization. Russian Journal of Organic Chemistry, 2023, 59, 150-157.	0.3	0
962	Metal-Free Synthesis of Functionalized Quinolines from 2-Styrylanilines and 2-Methylbenzothiazoles/2-Methylquinolines. ACS Omega, 2023, 8, 6940-6944.	1.6	0
963	Catalystâ€Free, Heatingâ€Induced Desulfurization Annulation of CF ₃ â€Imidoyl Sulfoxonium Ylides with Isothiocyanates for the Synthesis of 2â€Trifluoromethylâ€4â€aminoquinolines. European Journal of Organic Chemistry, 2023, 26, .	1.2	9
964	Synthesis of Quinoline and Dihydroquinoline Embelin Derivatives as Cardioprotective Agents. Journal of Natural Products, 2023, 86, 317-329.	1.5	3
965	Directed C8–H allylation of quinoline <i>N</i> -oxides with vinylcyclopropanes <i>via</i> sequential C–H/C–C activation. Chemical Communications, 2023, 59, 2823-2826.	2.2	8
966	Diastereoselective Alkylation of Activated Nitrogen Heterocycles with Alkenyl Boronate Complexes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	0
967	Diastereoselective Alkylation of Activated Nitrogen Heterocycles with Alkenyl Boronate Complexes. Angewandte Chemie, 2023, 135, .	1.6	0
968	A Pummerer Reaction-Enabled Modular Synthesis of Alkyl Quinoline-3-carboxylates and 3-Arylquinolines from Amino Acids. Journal of Organic Chemistry, 2023, 88, 3760-3771.	1.7	4
969	Antibiotics: action mechanism and modern challenges. , 2023, , 281-292.		1
970	Metalâ€Free and Mild Synthesis of 2,4â€Diarylquinolines. European Journal of Organic Chemistry, 2023, 26,	1.2	1
971	Unusual coordination of a 1,2,3-triazolyl-pyridine ligand in a Pd(⟨scp⟩ii⟨/scp⟩) complex: application in the Suzuki–Miyaura coupling reaction. New Journal of Chemistry, 2023, 47, 6871-6879.	1.4	3
972	Transition-metal-catalyzed synthesis of quinazolines: A review. Frontiers in Chemistry, 0, 11, .	1.8	5
973	Recent Advances in Molecule Synthesis Involving C-C Bond Cleavage of Ketoxime Esters. Molecules, 2023, 28, 2667.	1.7	3
974	Zircon PrVO (sub) 4 (sub): an efficient heterogeneous catalyst for tandem oxidative synthesis of 2,3-disubstituted quinoline derivatives. Dalton Transactions, 0, , .	1.6	0
975	An efficient route towards quinazolinone derivatives via I2-DMSO promoted oxidative decarboxylation of $\hat{l}\pm$ -amino acid and subsequent oxidative annulation reaction. Synthesis, 0, , .	1.2	0
976	Catalytic Câ^'C/Câ^'H Bond Activation Relay for Synthesis of Fluorescent Naphthoquinolizinium Salts. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
977	Visible-Light-Promoted C4-Selective Phosphorylation of Pyridine and Quinoline Derivatives. Organic Letters, 2023, 25, 2663-2668.	2.4	5

#	Article	IF	CITATIONS
978	Chemo―and Diastereoselective Synthesis of Polyheterocycles by Rhodium(III) atalyzed <i>sp</i> ^{<i>2</i>^{<i>i>sp</i><fi>i>spi>sp<fi>i>definition of a second control of the contro</fi></fi>}}	5 ^{2.1}	3
979	Dirhodium: carbene transformations and beyond. Organic Chemistry Frontiers, 2023, 10, 2849-2878.	2.3	8
980	Transition Metal-Free Synthesis of 3-Acylquinolines through Formal [4+2] Annulation of Anthranils and Enaminones. Catalysts, 2023, 13, 778.	1.6	2
981	Chemoselective and diastereoselective construction of 4-alkylidene-tetrahydroquinoline <i>via</i> a redox-neutral vinylogous cascade [1,7]-hydride transfer/6- <i>endo-trig</i> cyclization strategy. Organic and Biomolecular Chemistry, 2023, 21, 4007-4012.	1.5	1
1001	Photo/electrocatalytic site-selective C–H functionalization of 8-aminoquinolines and their analogues. Green Chemistry, 0, , .	4.6	0