CITATION REPORT List of articles citing

Modern strategies in electroorganic synthesis

DOI: 10.1021/cr0680843 Chemical Reviews, 2008, 108, 2265-99.

Source: https://exaly.com/paper-pdf/43581961/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1087	ChemInform Abstract: Modern Strategies in Electroorganic Synthesis. 2008 , 39, no		
1086	Practical Electrochemical Iodination of Aromatic Compounds. 2008, 12, 1130-1136		33
1085	Intramolecular anodic olefin coupling reactions: the use of a nitrogen trapping group. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13542-3	16.4	114
1084	Alpha- and beta-glycosyl sulfonium ions: generation and reactivity. <i>Chemistry - A European Journal</i> , 2009 , 15, 2252-5	4.8	68
1083	Coupling Radical and Ionic Processes: An Unusual Rearrangement Affords Sugar and C-Glycoside Derivatives. 2009 , 2009, 3853-3857		6
1082	Organocatalyzed ⊞-Oxyamination of Aldehydes Using Anodic Oxidation. 2009 , 2009, 5309-5312		65
1081	Direct and indirect electrochemical generation of alkoxycarbenium ion pools from thioacetals. 2009 , 65, 10901-10907		31
1080	Anodic acyloxylation based on the acidBase reactions between acetic acid or trifluoroacetic acid and solid-supported bases. 2009 , 54, 5959-5963		14
1079	Anodic oxidations and polarity: exploring the chemistry of olefinic radical cations. 2009 , 65, 10863-108	75	44
1078	Highly diastereoselective synthesis of pyrido[2,1-b][1,3]oxazin-4(6H)-one by intramolecular anodic oxidation. 2009 , 20, 2014-2020		17
1077	The double role of ionic liquids in organic electrosynthesis: Precursors of N-heterocyclic carbenes and green solvents. Henry reaction. 2009 , 11, 1523-1526		25
1076	Highly efficient and selective electrochemical fluorination of organosulfur compounds in Et3N.3HF ionic liquid under ultrasonication. <i>Chemical Communications</i> , 2009 , 956-8	5.8	33
1075	Synthesis, structure and reactivity of azosalophen complexes of vanadium(IV): studies on cytotoxic properties. 2009 , 6220-30		25
1074	Core-shell particle interconversion with di-stimuli-responsive diblock copolymers. <i>Chemical Communications</i> , 2009 , 6065-7	5.8	42
1073	Palladium-catalyzed aromatic C-H halogenation with hydrogen halides by means of electrochemical oxidation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11310-1	16.4	262
1072	Electrochemical polymer reaction: selective fluorination of a poly(fluorene) derivative. <i>Chemical Communications</i> , 2009 , 1718-20	5.8	41
1071	Addition of ArSSAr to dienes via intramolecular C-C bond formation initiated by a catalytic amount of ArS+. <i>Chemical Communications</i> , 2009 , 5448-50	5.8	40

1070	Generation of Diarylcarbenium Ion Pools via Electrochemical CH Bond Dissociation. 2009 , 82, 594-599		32
1069	Thiofluorination of Carbon C arbon Multiple Bonds Using Electrochemically Generated ArS(ArSSAr)+BF4[1 2009 , 38, 1186-1187		21
1068	A selective electrochemical method of glycosylation of 3beta-hydroxy-Delta 5-steroids. 2010 , 345, 1051	-5	8
1067	Electrochemical oxidation of substituted catechols in the presence of pyrazol-5-ones: characterization of products and reaction mechanism. 2010 , 66, 9880-9887		5
1066	Electrosynthesis of cholesta-4,6-dien-3-one from cholesterol on a laboratory synthetic scale. <i>Tetrahedron Letters</i> , 2010 , 51, 129-132	2	12
1065	Electro-Organocatalysis: Enantioselective ⊞-Alkylation of Aldehydes. 2010 , 2010, n/a-n/a		13
1064	Product Selectivity Control in the Heteroannulation of o-(1-Alkynyl)benzamides. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 136-142	5.6	63
1063	Electropolymerized Films of EConjugated Polymers. A Tool for Surface Functionalization: A Brief Historical Evolution and Recent Trends. 2010 , 1-26		2
1062	Aerobic and electrochemical oxidative cross-dehydrogenative-coupling (CDC) reaction in an imidazolium-based ionic liquid. <i>Chemistry - A European Journal</i> , 2010 , 16, 8162-6	4.8	103
1061	Anodic Oxidation and Organocatalysis: Direct Regio- and Stereoselective Access to meta-Substituted Anilines by ∃-Arylation of Aldehydes. <i>Angewandte Chemie</i> , 2010 , 122, 133-137	3.6	43
1060	Anodische Phenol-Aren-Kreuzkupplung an bordotierten Diamantelektroden. <i>Angewandte Chemie</i> , 2010 , 122, 983-987	3.6	95
1059	Elektrochemische Herstellung von adressierbaren Bibliotheken als Plattform filbiologische Assays. <i>Angewandte Chemie</i> , 2010 , 122, 3806-3809	3.6	3
1058	Bipolar Patterning of Conducting Polymers by Electrochemical Doping and Reaction. <i>Angewandte Chemie</i> , 2010 , 122, 10334-10337	3.6	28
1057	Anodic oxidation and organocatalysis: direct regio- and stereoselective access to meta-substituted anilines by alpha-arylation of aldehydes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 129-33	16.4	114
1056	Anodic phenol-arene cross-coupling reaction on boron-doped diamond electrodes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 971-5	16.4	226
1055	Building addressable libraries as platforms for biological assays by an electrochemical method. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3720-2	16.4	6
1054	Bipolar patterning of conducting polymers by electrochemical doping and reaction. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 10136-9	16.4	88
1053	Fabrication of Ag/Au bimetallic nanoparticles by UPD-redox replacement: Application in the electrochemical reduction of benzyl chloride. 2010 , 12, 1233-1236		25

1052 Continuous electrochemical synthetic system using a multiphase electrolyte solution. 2010 , 55, 4112	-4119	17
1051 Electrochemical coupling reactions of benzyl halides on a powder cathode and cavity cell. 2010 , 56, 5	75-579	11
1050 Addition of ArSSAr to carbonDarbon multiple bonds using electrochemistry. 2010 , 66, 2823-2829		24
Electrochemical carboxylation of benzylic carbonates: alternative method for efficient synthesis of arylacetic acids. 2010 , 66, 7732-7737		36
1048 Diastereoselective ⊞-allylation of secondary amines. 2010 , 66, 10002-10007		11
Aqueous electrosynthesis of carbonyl compounds and the corresponding homoallylic alcohols in a divided cell. <i>Tetrahedron Letters</i> , 2010 , 51, 1426-1429	2	15
A new highly sterically demanding silyl (TEDAMS) group. Synthesis by multiple substitution of tris(diphenylmethyl)silane with diarylcarbenium ions. <i>Tetrahedron Letters</i> , 2010 , 51, 4107-4109	2	21
In situ identification of intermediates of benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9534-6	16.4	102
1044 Anodic coupling reactions and the synthesis of C-glycosides. <i>Organic Letters</i> , 2010 , 12, 2590-3	6.2	42
1043 Microreactors with Electrical Fields. 2010 , 38, 37-102		5
Intramolecular hydroamination of dithioketene acetals: an easy route to cyclic amino acid derivatives. <i>Organic Letters</i> , 2010 , 12, 5174-7	6.2	8
Electrochemical and chemical oxidation of dithia-, diselena-, ditellura-, selenathia-, and tellurathiamesocycles and stability of the oxidized species. 2010 , 75, 1997-2009		26
1040 Synthesis of highly fluorinated 2,2'-biphenols and 2,2'-bisanisoles. <i>Organic Letters</i> , 2010 , 12, 4288-91	6.2	13
Building addressable libraries: the use of "safety-catch" linkers on microelectrode arrays. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17405-7	16.4	8
Building addressable libraries: the use of "safety-catch" linkers on microelectrode arrays. <i>Journal of</i>		8
Building addressable libraries: the use of "safety-catch" linkers on microelectrode arrays. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17405-7		
Building addressable libraries: the use of "safety-catch" linkers on microelectrode arrays. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17405-7 Synthesis of tetrahydroisoquinoline alkaloids via anodic cyanation as the key step. 2010 , 75, 5721-4		49

1034	Connecting the dots: using sunlight to drive electrochemical oxidations. 2011 , 13, 1652		22
1033	Direct dendronization of polystyrenes using dendritic diarylcarbenium ion pools. <i>Chemical Communications</i> , 2011 , 47, 5575-7	5.8	20
1032	Direct electrochemical imidation of aliphatic amines via anodic oxidation. <i>Chemical Communications</i> , 2011 , 47, 5488-90	5.8	41
1031	Electrochemical synthesis of 1,2-disilylethanes from \oplus -silylacetic acids. 2011 , 76, 4710-4		17
1030	Electron-transfer-induced intermolecular [2+2] cycloaddition reactions based on the aromatic "redox tag" strategy. 2011 , 76, 3470-6		59
1029	Anodic coupling reactions: exploring the generality of Curtin-Hammett controlled reactions. <i>Organic Letters</i> , 2011 , 13, 1678-81	6.2	29
1028	o-Carborane as an electron-transfer mediator in electrocatalytic reduction. <i>Chemical Communications</i> , 2011 , 47, 8632-4	5.8	59
1027	Quantum-chemical predictions of redox potentials of carbamates in methanol. 2011 , 13, 17696-703		15
1026	Anodic coupling of guaiacol derivatives on boron-doped diamond electrodes. <i>Organic Letters</i> , 2011 , 13, 3126-9	6.2	70
1025	Electrochemical synthesis and mechanestic study of quinone imines exploiting the dual character of N,N-dialkyl-p-phenylenediamines. <i>Organic Letters</i> , 2011 , 13, 1928-31	6.2	38
1024	Selective electrochemical fluorination of organic molecules and macromolecules in ionic liquids. <i>Chemical Communications</i> , 2011 , 47, 10211-23	5.8	105
1023	Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11840-3	16.4	98
1022	Electrolytic Reactions. 2011 , 101-127		5
1021	Electrochemical synthesis and chemistry of chiral 1-cyanotetrahydroisoquinolines. An approach to the asymmetric syntheses of the alkaloid (-)-crispine a and its natural (+)-antipode. 2011 , 76, 9720-32		52
1020	Organic reactions mediated by electrochemically generated ArS+. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 2586-96	3.9	27
1019	A practical microreactor for electrochemistry in flow. 2011 , 7, 1108-14		81
1018	Use of Diamond Films in Organic Electrosynthesis. 2011 , 483-510		10
1017	Electrochemical Carboxylation of Flavones: Facile Synthesis of Flavanone-2-carboxylic Acids. 2011 , 79, 862-864		15

1016	Heterogeneous continuous flow synthetic system using cyclohexane-based multiphase electrolyte solutions. <i>Tetrahedron Letters</i> , 2011 , 52, 4690-4693	2	12
1015	Synthesis and optical properties of acidochromic amine-substituted benzo[a]phenazines. 2011 , 76, 6134	1-45	76
1014	Furan and Its Derivatives. 2011 , 97-152		38
1013	Contributions of organic electrosynthesis to green chemistry. 2011 , 14, 745-765		187
1012	Rate Acceleration of the Baylis-Hillman Reaction within Microreactors. 2011 , 29, 2385-2388		5
1011	Green and sustainable chemical synthesis using flow microreactors. 2011 , 4, 331-40		344
1010	Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations. <i>Angewandte Chemie</i> , 2011 , 123, 5259-5262	3.6	12
1009	Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1415-9	16.4	74
1008	Indirect cation-flow method: flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5153-6	16.4	61
1007	Bis(2,2'-biphenoxy)borates for electrochemical double-layer capacitor electrolytes. <i>Chemistry - A European Journal</i> , 2011 , 17, 3082-5	4.8	12
1006	Electrosynthesis as a powerful method for the generation of catalytic intermediates: efficient isolation of a palladium aryl halide oxidative addition product. <i>Chemistry - A European Journal</i> , 2011 , 17, 9901-6	4.8	8
1005	Highly selective electrosynthesis of biphenols on graphite electrodes in fluorinated media. <i>Chemistry - A European Journal</i> , 2011 , 17, 14164-9	4.8	49
1004	Electrochemical study of 1,2-dihydropyridazine-3,6-dione in protic and aprotic solvents: Oxidative ring cleavage and reduction. 2011 , 56, 6089-6096		27
1003	Electrochemical synthesis of dendritic diarylcarbenium ion pools. 2011 , 67, 4664-4671		16
1002	Water-promoted One-step Anodic Acetoxylation of Benzene to Phenyl Acetate with High Selectivity. 2011 , 24, 244-248		1
1001	Boron-doped diamond electrodes for electroorganic chemistry. 2012 , 320, 1-31		36
1000	Electrochemical Behavior of Biologically Important Indole Derivatives. 2011 , 2011, 1-10		11
999	The Double Role of Ionic Liquids in Electroorganic Synthesis: Green Solvents and Precursors of N-Heterocyclic Carbenes. 2012 , 9, 40-52		18

Anodic Selective Functionalization of Cyclic Amine Derivatives. 2012, 85, 2111 998 23 Synthesis Assisted by Electricity. 2012, 363 997 Site-selective sequential coupling reactions controlled by "Electrochemical Reaction Site Switching": a straightforward approach to 1,4-bis(diaryl)buta-1,3-diynes. Organic and Biomolecular 996 28 3.9 Chemistry, 2012, 10, 9562-9 Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with 16.4 995 359 high capacity. Journal of the American Chemical Society, 2012, 134, 19694-700 Decatungstate as photoredox catalyst: benzylation of electron-poor olefins. Organic Letters, 2012, 6.2 994 55 14. 4218-21 Electrochemical cleavage of sulfonamides: an efficient and tunable strategy to prevent 6.2 26 993 Fragmentation and epimerization. Organic Letters, 2012, 14, 942-5 Palladium-catalyzed Kumada coupling reaction of bromoporphyrins with silylmethyl Grignard reagents: preparation of silylmethyl-substituted porphyrins as a multipurpose synthon for 992 22 fabrication of porphyrin systems. 2012, 77, 10488-97 Electrochemical synthesis of a novel compound, 5-acetyl-2,9-decanedione, and theoretical analysis 991 of its lithium ion complex. 2012, 2, 9998 Electrochemical Oxidation of 4-Morpholinoaniline in Nonaqueous Solvents. 2012, 159, H680-H684 990 9 Soluble-support-assisted electrochemical reactions: application to anodic disulfide bond formation. 6.2 989 31 Organic Letters, 2012, 14, 5960-3 Cycloalkane-based thermomorphic systems for organic electrochemistry: an application to 988 15 Kolbe-coupling. 2012, 68, 5857-5862 Controlled Polymerization in Flow Microreactor Systems. 2012, 1 987 Catalytic electrochemical C-H iodination and one-pot arylation by ON/OFF switching of electric 986 97 current. 2012, 77, 7718-24 Synthesis of \oplus -germyl and \oplus -silylcarboxylic acids and selected electrochemical oxidations. Journal of 985 2.3 2 Organometallic Chemistry, 2012, 706-707, 13-19 Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. 984 16.4 258 Journal of the American Chemical Society, 2012, 134, 3571-6 Room Temperature Ionic Liquids (RTILs) Versus Volatile Organic Compounds (VOCs) in Organic 983 Electrosynthesis: The Requirement of a Careful Comparison. 2012, 435-471 Novel triarylimidazole redox catalysts: synthesis, electrochemical properties, and applicability to 6.2 982 75 electrooxidative C-H activation. Organic Letters, 2012, 14, 1314-7 Green Solvents II. 2012, 981 26

980	Oxidative hydroxylation mediated by alkoxysulfonium ions. <i>Organic Letters</i> , 2012 , 14, 938-41	6.2	62
979	Cyclohexane-Based Liquid-Biphasic Systems for Organic Electrochemistry. 2012 ,		
978	Organocatalyzed anodic oxidation of aldehydes. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12374-7	16.4	120
977	Metal- and Chemical-Oxidant-Free C?H/C?H Cross-Coupling of Aromatic Compounds: The Use of Radical-Cation Pools. <i>Angewandte Chemie</i> , 2012 , 124, 7371-7374	3.6	64
976	Metal- and chemical-oxidant-free C-H/C-H cross-coupling of aromatic compounds: the use of radical-cation pools. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7259-62	16.4	153
975	Electrochemically active cross-linking reaction for fluorescent labeling of aliphatic alkenes. <i>Chemistry - A European Journal</i> , 2012 , 18, 6284-8	4.8	11
974	Direct ⊞-functionalization of saturated cyclic amines. <i>Chemistry - A European Journal</i> , 2012 , 18, 10092-14	12 .8	336
973	Electrochemical synthesis of adiponitrile from the renewable raw material glutamic acid. 2012 , 5, 617-2	0	43
972	Development of triarylamine mediator having ionic-tag and its application to electrocatalytic reaction in ionic liquid. 2012 , 77, 47-53		21
971	Electrophilic substitution reactions using an electrogenerated ArS(ArSSAr)+ cation pool as an ArS+ equivalent. <i>Tetrahedron Letters</i> , 2012 , 53, 1916-1919	2	24
970	One-Pot Conversion of Serine Derivatives and Amino Sugars into Oxazine Derivatives of EAryl-E(hydroxy)amines. 2012 , 2012, 391-397		7
969	Efficient Intermolecular Carbontarbon Bond-Formation Reactions Assisted by Surface-Condensed Electrodes. 2012 , 2012, 243-246		12
968	Visible-light-induced hydroalkoxymethylation of electron-deficient alkenes by photoredox catalysis. <i>Chemical Communications</i> , 2013 , 49, 7249-51	5.8	90
967	Transition-metal catalyst free CN coupling with phenol/phenoxide: a green synthesis of a benzoxazole scaffold by an anodic oxidation reaction. 2013 , 3, 7330		19
966	The Addition of ArSSAr to Alkenes: The Implications of a Cationic Chain Mechanism Initiated by Electrogenerated ArS(ArSSAr)+. 2013 , 2, 325-329		23
965	Electrochemical synthesis at pre-pilot scale of 1-phenylethanol by cathodic reduction of acetophenone using a solid polymer electrolyte. 2013 , 34, 316-319		10
964	Electrosynthesis of imidazolium carboxylates. <i>Organic Letters</i> , 2013 , 15, 4410-3	6.2	30
963	De novo synthesis of polysubstituted naphthols and furans using photoredox neutral coupling of alkynes with 2-bromo-1,3-dicarbonyl compounds. <i>Organic Letters</i> , 2013 , 15, 4884-7	6.2	94

(2013-2013)

962	Automated solution-phase synthesis of oligosaccharides via iterative electrochemical assembly of thioglycosides. <i>Organic Letters</i> , 2013 , 15, 4520-3	6.2	83
961	Electrochemical synthesis of the aryl \oplus -ketoesters from acetophenones mediated by KI. <i>Chemistry - A European Journal</i> , 2013 , 19, 17711-4	4.8	62
960	Halogen and chalcogen cation pools stabilized by DMSO. Versatile reagents for alkene difunctionalization. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16070-3	16.4	121
959	Preparative microfluidic electrosynthesis of drug metabolites. 2013 , 4, 1119-23		64
958	Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides. <i>Tetrahedron Letters</i> , 2013 , 54, 7156-7159	2	25
957	Nanoporous gold microelectrode prepared from potential modulated electrochemical alloyingBealloying in ionic liquid. 2013 , 111, 114-119		18
956	Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor. <i>Chemical Communications</i> , 2013 , 49, 4501-3	5.8	28
955	Efficient Indirect Electrochemical Synthesis of 2-Substituted Benzoxazoles using Sodium Iodide as Mediator. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2884-2890	5.6	75
954	Inversion of regioselectivity in the electrochemical prenylation of benzaldehyde on a graphite powder cathode. 2013 , 3, 6526		5
953	Electrocatalytic debromination of open-chain and cyclic dibromides in ionic liquids with cobalt(II)salen complex as mediator. 2013 , 39, 89-99		8
952	Electrocatalytic hydrogenation of acetophenone using a Polymer Electrolyte Membrane Electrochemical Reactor. 2013 , 91, 69-74		32
951	Understanding the reactivity of enol ether radical cations: investigation of anodic four-membered carbon ring formation. 2013 , 78, 2626-38		34
950	Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5000-3	16.4	191
949	Integration of electrooxidative cyclization and chemical oxidation via alkoxysulfonium ions. Synthesis of exocyclic ketones from alkenes with cyclization. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 3322-31	3.9	29
948	Electrochemical synthesis of azanucleoside derivatives using a lithium perchlorate-nitromethane system. <i>Chemical Communications</i> , 2013 , 49, 6525-7	5.8	24
947	Electrosynthesis and screening of novel 1,3,4-oxadiazoles as potent and selective antifungal agents. 2013 , 3, 4237		27
946	An efficient electrochemical method for the atom economical synthesis of some benzoxazole derivatives. 2013 , 15, 2441		34
945	Efficient Factors on the Reaction Rate and Site-Selectivity in Sulfonylation of Catechol and Hydroquinone Derivatives: Experimental and Theoretical Studies. 2013 , 160, G3001-G3007		16

944	Direct nucleophilic functionalization of C(sp2)⊞-bonds in arenes and hetarenes by electrochemical methods. 2013 , 82, 747-771	30
943	Nano-Roughening a Pt Disk Microelectrode via Electrochemical Alloying-Dealloying in Ionic Liquid Electrolyte. 2013 , 25, 2015-2020	7
942	Electrogenerated Acid (EGA)-catalyzed Addition of Diaryl Disulfides to Carbon©arbon Multiple Bonds. 2013 , 42, 843-845	7
941	5.??????????????. 2013 , 81, 293-298	
940	Cyclic Voltammetric Studies on Electrocatalytic Intermolecular [2 + 2] Cycloaddition Reactions in Lithium Perchlorate/Nitromethane Electrolyte Solution. 2013 , 81, 331-333	3
939	Anodic Alkoxylation of Lactams Followed by Reactions with Carbon Nucleophiles in a One-Pot Manner Using HFIP as a Solvent. 2013 , 81, 353-355	7
938	Investigation of the Pathway for Intramolecular Electron Transfer in Anodic [2 + 2] Cycloaddition Reactions. 2013 , 81, 377-379	1
937	Multiple Alkylation of Thiophene Derivatives with Simple and Extended Diarylcarbenium Ion Pools. 2013 , 81, 399-401	9
936	Sodium Salts Dissolution in an Aprotic Solvent by Coordination of Poly(ethylene glycol) for Effective Anodic Reactions of Organic Compounds. 2013 , 81, 365-367	7
935	An Electrolytic System Based on the Acid-Base Reaction between Solid-Supported Acids and Water. 2013 , 81, 371-373	4
934	Regioselective Electrochemical Carboxylation of Polyfluoroarenes. 2013 , 81, 380-382	13
933	Anodic coupling of carboxylic acids to electron-rich double bonds: A surprising non-Kolbe pathway to lactones. 2013 , 9, 1630-6	35
932	???????? [®] ???????. 2013 , 81, 589-594	
931	Recent Developments in the ^ ^ldquo;Cation Pool^ ^rdquo; Method. 2013, 71, 1136-1144	26
930	Development of Triarylamine Mediator Having Ionic-Tag and Its Application to Electrocatalytic Reaction in Ionic Liquid. 2013 ,	
929	The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon-carbon bond formation via electrogenerated N-acyliminium ions. 2014 , 10, 3056-72	62
928	Direct and indirect single electron transfer (SET)-photochemical approaches for the preparation of novel phthalimide and naphthalimide-based lariat-type crown ethers. 2014 , 10, 514-27	9
927	. 2014,	50

910

909

2014, 31, 365-373

Chemie - International Edition, 2014, 53, 5210-3

Electrochemical behaviour of aldehyde-N-arylhydrazones at platinum electrode and their 926 characterization. 2014, 50, 831-837 A comparative study of organic electron transfer redox mediators: electron transfer kinetics for 28 925 triarylimidazole and triarylamine mediators in the oxidation of 4-methoxybenzyl alcohol. 2014, 142, 254-260 Asymmetric Catalysis Facilitated by Photochemical or Electrochemical Methods. 2014, 475-500 924 1 Anodic substitution reaction of proline derivatives using the 2,4,6-trimethoxyphenyl leaving group. 6.2 36 923 Organic Letters, 2014, 16, 6404-7 Renaissance elektrochemischer Methoden zum Aufbau komplexer Molekle. Angewandte Chemie, 3.6 922 71 2014. 126. 7248-7249 New Methodology of Organic Electrochemical Synthesis. 2014, 129-186 921 Organic Electrode Reactions. 2014, 45-82 920 1 Encyclopedia of Applied Electrochemistry. 2014, 65-73 919 Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous 918 46 Complexes, and Complexes Adsorbed to Mineral Surfaces. 2014, 4, 345-387 Recent advances in the electrochemical construction of heterocycles. 2014, 10, 2858-73 917 90 Sunlight, electrochemistry, and sustainable oxidation reactions. 2014, 16, 69-72 916 77 Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic 915 114 cathode materials. **2014**, 260, 211-217 An electrocatalytic reactor for the high selectivity production of sodium 18 914 2,2,3,3-tetrafluoropropionate from 2,2,3,3-tetrafluoro-1-propanol. 2014, 123, 33-41 Electrochemical oxidation of aldehyde-N-arylhydrazones into 913 10 symmetrical-2,5-disubstituted-1,3,4-oxadiazoles. 2014, 40, 947-960 Anodic cyclization of dimethyl 2-(5-aryl-5-oxopentyl)malonates into the corresponding dimethyl 912 3 2-aroylcyclopentane-1,1-dicarboxylates. Tetrahedron Letters, 2014, 55, 1299-1302 Redox catalysis in organic electrosynthesis: basic principles and recent developments. 2014, 43, 2492-521 987 911 Electrochemical bromination and oxidation of alkyl aromatic compounds by two-phase electrolysis.

Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angewandte

16.4

5

115

908	Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. <i>Chemical Reviews</i> , 2014 , 114, 5848-958	68.1	302
907	Electrochemical post-functionalization of conducting polymers. 2014 , 35, 854-67		36
906	Nitrogen-Containing Polycyclic Quinones as Cathode Materials for Lithium-ion Batteries with Increased Voltage. 2014 , 2, 155-158		47
905	Ionic liquids at electrified interfaces. <i>Chemical Reviews</i> , 2014 , 114, 2978-3036	68.1	905
904	Electrogenerated base-promoted synthesis of 5-aryl-5,6-dihydro-2H-pyrano[2,3-d]pyrimidine-2,4,7-triones by multicomponent assembly of barbituric acid, aldehydes and Meldrum's acid at room temperature. 2014 , 4, 55313-55317		13
903	Electrochemical cleavage of aryl ethers promoted by sodium borohydride. 2014 , 79, 10189-95		36
902	9.14 Preparative Electrochemistry for Organic Synthesis. 2014 , 351-389		2
901	Electrochemically initiated oxidative amination of benzoxazoles using tetraalkylammonium halides as redox catalysts. 2014 , 79, 9613-8		113
900	Regioselectivity of Electrochemical C-H Functionalization Via Iminium Ion. 2014 , 142, 299-306		3
899	Cyclization reactions of anode-generated amidyl radicals. 2014 , 79, 379-91		89
898	Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology. <i>Organic Letters</i> , 2014 , 16, 4618-21	6.2	71
897	The green and convergent paired DielsAlder electro-synthetic reaction of 1,4-hydroquinone with 1,2-bis(bromomethyl)benzene. 2014 , 49, 65-69		15
896	Electrochemical intramolecular aminooxygenation of unactivated alkenes. <i>Chemistry - A European Journal</i> , 2014 , 20, 12740-4	4.8	81
895	Screening of Ion©raphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure. 2014 , 118, 5841-5847		50
894	Electrochemical synthesis of 3,5-disubstituted isoxazoles. 2014 , 727, 120-124		21
893	Carbontarbon Bond Formation via Electron Transfer: Anodic Coupling. 2014 , 6, 2792-2795		6
892	Anodic Cyclization: A Protocol for the Green Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles. 2014 , 49, 1508-1514		5
891	Ionic liquids for solid-state electrolytes and electrosynthesis. 2014 , 714-715, 63-69		17

890	Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor. 2014 , 130, 170-178		70
889	Phase-transfer-mediated electrochemical reaction: anodic disulfide bond formation under biphasic condition. <i>Tetrahedron Letters</i> , 2014 , 55, 3622-3624	2	11
888	Direct C-N coupling of imidazoles with aromatic and benzylic compounds via Electrooxidative C-H functionalization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4496-9	16.4	144
887	Biomimetic oxidative dimerization of anodically generated stilbene radical cations: effect of aromatic substitution on product distribution and reaction pathways. 2014 , 79, 4528-43		26
886	Renaissance of electrosynthetic methods for the construction of complex molecules. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7122-3	16.4	156
885	Addition of N-Acyliminium Ion Pools to Alkenes Having a Nucleophilic Moiety: Integration of Intermolecular and Intramolecular Reactions. 2014 , 43, 210-212		8
884	Photoinduced HBr-catalyzed CBi bond cleavage of benzylsilanes and their subsequent oxidation into benzoic acids with air as the terminal oxidant. 2014 , 1, 1201-1204		9
883	4. ??????????????????? 2014 , 82, 688-693		1
882	Metall- und reagensfreie hochselektive anodische Kreuzkupplung von Phenolen. <i>Angewandte Chemie</i> , 2014 , 126, 5311-5314	3.6	110
881	Activation Of The Carbon[Halogen Bond. 2015 , 937-960		
880	Electrosynthesis Of Bioactive Materials. 2015 , 1455-1480		
879	Chapter 15Electron Transfer©atalyzed Reactions. 2015 , 551-576		
878	Reaction Integration Using Electrogenerated Cationic Intermediates. 2015 , 88, 763-775		28
877	Recent Developments in Organocatalyzed Electroorganic Chemistry. 2015, 44, 10-16		49
876	Polymer Reactions of π-Conjugated Polymers by Electrochemical Methods. 2015 , 72, 561-572		1
875	Esterification of Carboxylic Acids with Alkyl Halides Using Electroreduction. 2015 , 83, 161-164		2
874	Carbon Electrodes in Electrochemical Technology. 2015 , 313-338		
873	Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization. <i>Angewandte Chemie</i> , 2015 , 127, 10701-10704	3.6	14

872	Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization. Angewandte Chemie - International Edition, 2015 , 54, 10555-8	16.4	60
871	A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives. <i>Chemistry - A European Journal</i> , 2015 , 21, 13878-82	4.8	62
870	Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions. 2015 , 11, 280-7		35
869	Switching the reaction pathways of electrochemically generated		22
868	Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption. 2015 , 11, 473-80		83
867	Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor. 2015 , 329, 187-194		41
866	Competition studies and the relative reactivity of enol ether and allylsilane coupling partners toward ketene dithioacetal derived radical cations. <i>Tetrahedron Letters</i> , 2015 , 56, 3595-3599	2	11
865	Vielflige elektrochemische C-H-Aminierung Ber Zincke-Zwischenstufen. <i>Angewandte Chemie</i> , 2015 , 127, 6496-6497	3.6	54
864	Creation of Nanoporous Ag Surface Layers through a Two-Stage Electrochemical Deposition-Dissolution of Zn and Intercalation-Deintercalation of Chloride Ions in an Ionic Liquid Bath. 2015 , 4, N5084-N5088		3
863	Electrochemical direct carboxylation of benzyl alcohols having an electron-withdrawing group on the phenyl ring: one-step formation of phenylacetic acids from benzyl alcohols under mild conditions. <i>Tetrahedron Letters</i> , 2015 , 56, 6772-6776	2	19
862	Electro-organic Mediated Synthesis of bis-1,3,4-Oxadiazoles and Evaluation of Their Antifungal Activity. 2015 , 85, 29-34		5
861	Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: fabrication of gradient and patterned polymer brushes. Angewandte Chemie - International Edition, 2015, 54, 3922-6	16.4	81
860	Polymeric Ionic Liquid and Carbon Black Composite as a Reusable Supporting Electrolyte: Modification of the Electrode Surface. <i>Angewandte Chemie</i> , 2015 , 127, 3815-3818	3.6	20
859	An efficient electrochemical synthesis of vinyl sulfones from sodium sulfinates and olefins. 2015 , 71, 2119-2123		41
858	Polymeric ionic liquid and carbon black composite as a reusable supporting electrolyte: modification of the electrode surface. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3744-7	16.4	49
857	Electrochemical synthesis of N1,N4-diphenyl-2-(phenylsulfonyl)benzene-1,4-diamine derivatives: Introducing an example of ECDispCMich mechanism. 2015 , 157, 166-174		3
856	Electrochemical intramolecular C-H amination: synthesis of benzoxazoles and benzothiazoles. <i>Chemistry - A European Journal</i> , 2015 , 21, 3211-4	4.8	64
855	Electrochemically induced ring-opening/Friedel@rafts arylation of chalcone epoxides catalyzed by a triarylimidazole redox mediator. 2015 , 80, 781-9		33

(2015-2015)

854	Electrochemically Mediated Atom Transfer Radical Polymerization from a Substrate Surface Manipulated by Bipolar Electrolysis: Fabrication of Gradient and Patterned Polymer Brushes. <i>Angewandte Chemie</i> , 2015 , 127, 3994-3998	3.6	21
853	Electrochemical hydrodefluorination of fluoroaromatic compounds. <i>Tetrahedron Letters</i> , 2015 , 56, 1520	-1523	15
852	Non-precious metal nanoparticle electrocatalysts for electrochemical modification of lignin for low-energy and cost-effective production of hydrogen. 2015 , 40, 4519-4530		25
851	Heterocyclization Approach for Electrooxidative Coupling of Functional Primary Alkylamines with Aromatics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9816-9	16.4	109
850	Chemical Glycosylation by Single Electron Transfer. 2015 , 55, 297-305		16
849	Low temperature in situ Raman spectroscopy of an electro-generated arylbis(arylthio)sulfonium ion. <i>Chemical Communications</i> , 2015 , 51, 13106-9	5.8	5
848	Polymerization of vinyl ethers initiated by dendritic cations using flow microreactors. 2015 , 71, 5973-59	78	18
847	Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes. 2015 , 11, 174-83		12
846	Three-component coupling reaction of benzylic halides, carbon dioxide, and N,N-dimethylformamide by using paired electrolysis: sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. 2015 , 71, 3850-3856		40
845	Electrochemical and chemical synthesis of different types of sulfonamide derivatives of N,N-dimethyl-1,4-benzenediamine using 4-nitroso-N,N-dimethylaniline. 2015 , 17, 3508-3514		24
844	A highly efficient electrochemical route for the conversion of aldehydes to nitriles. 2015 , 58, 747-750		12
843	Gellan gumlbnic liquid membranes for electrochromic device application. 2015, 274, 64-70		18
842	Electrosynthesis methods and approaches for the preparative production of metabolites from parent drugs. 2015 , 70, 58-66		22
841	Versatile Electrochemical C-H Amination via Zincke Intermediates. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6398-9	16.4	94
840	Electrogenerated base promoted synthesis of 3-methyl-4-aryl-2,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones via multicomponent reactions of 5-methylpyrazol-3-amine, aldehydes, and Meldrum acid. <i>Tetrahedron Letters</i> , 2015 , 56, 1882-1886	2	15
839	Electrocatalytic stereoselective transformation of aldehydes and two molecules of pyrazolin-5-one into (R*,R*)-bis(spiro-2,4-dihydro-3H-pyrazol-3-one)cyclopropanes. <i>Catalysis Science and Technology</i> , 2015 , 5, 2384-2387	5.5	29
838	Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors. 2015 , 19, 1428-1433		70
837	Ionic liquids as an electrolyte for the electro synthesis of organic compounds. <i>Chemical Communications</i> , 2015 , 51, 17499-516	5.8	51

836	How to estimate solid-electrolyte-interphase features when screening electrolyte materials. 2015 , 17, 22799-808	31
835	Electroreductive nucleophile acceptor generation. Electrochemical synthesis of N-(4-(dimethylamino)phenyl)benzenesulfonamide. 2015 , 180, 909-913	10
834	Regioselective Green Electrochemical Approach to the Synthesis of Nitroacetaminophen Derivatives. <i>Organic Letters</i> , 2015 , 17, 4666-9	25
833	An experimentalist guide to electrosynthesis: the Shono oxidation. <i>Tetrahedron Letters</i> , 2015 , 56, 6863- <u>6</u> 867	21
832	Possible trends in the development of applied electrochemical synthesis of organic compounds (Review). 2015 , 51, 999-1020	14
831	Solvolysis, Electrochemistry, and Development of Synthetic Building Blocks from Sawdust. 2015 , 80, 11953-62	31
830	Electrochemical Synthesis in Microreactors. 2015 , 4, 2-11	83
829	Quick and easy access to N-Mannich bases of 1-isoindolinones by catalytic electroactivation of primary and secondary amines and tandem reaction with 2-formylbenzonitriles. <i>New Journal of 3.6 Chemistry</i> , 2015 , 39, 81-84	8
828	Electrochemical Reactivity at Free and Supported Gold Nanocatalysts Surface. 2016,	1
827	Photo-Organocatalysis, Photo-Redox, and Electro- Organocatalysis Processes. 2016 ,	1
826	Catalysis of Cascade and Multicomponent Reactions of Carbonyl Compounds and C?H Acids by Electricity. 2016 , 16, 1950-64	21
825	Decarboxylative Coupling of \oplus -Keto Acids with ortho-Phenylenediamines Promoted by an Electrochemical Method in Aqueous Media. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 1975-1981	47
824	Electrochemical CII/NII Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angewandte Chemie, 2016 , 128, 9314-9318	51
823	Electrochemical C-H/N-H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angewandte Chemie - International Edition, 2016 , 55, 9168-72	178
822	Electrochemical Synthesis of Benzazoles from Alcohols and o-Substituted Anilines with a Catalytic Amount of Co(II) Salt. <i>Chemistry - A European Journal</i> , 2016 , 22, 5425-9	48
821	Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2226-9	168
820	Electrochemical Properties and Reactions of Organoboronic Acids in the Presence of Fluoride Ions. 2016 , 28, 2797-2801	18
819	Electrosynthesis of Arylsulfonamides from Amines and Sodium Sulfinates Using H2O-NaI as the Electrolyte Solution at Room Temperature. 2016 , 34, 1277-1282	17

(2016-2016)

818	Advanced Surfactant-free Nanomaterials for Electrochemical Energy Conversion Systems: From Electrocatalysis to Bionanotechnology. 2016 , 103-145		3
817	Electrochemical Properties and Reactions of Sulfur-Containing Organoboron Compounds. 2016 , 199, 314-318		18
816	Electrochemical C目 functionalization and subsequent CB and CN bond formation: paired electrosynthesis of 3-amino-2-thiocyanato-日,和nsaturated carbonyl derivatives mediated by bromide ions. 2016 , 18, 3767-3774		85
815	Electrochemical Oxidative Amination of Sodium Sulfinates: Synthesis of Sulfonamides Mediated by NH4I as a Redox Catalyst. 2016 , 81, 4713-9		70
814	Electrochemical synthesis of 1-N-phenyl-4-(sulfonyl)benzene-1,2-diamine derivatives: a mild and regioselective protocol. <i>New Journal of Chemistry</i> , 2016 , 40, 5442-5447	3.6	9
813	Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates. <i>Chemical Reviews</i> , 2016 , 116, 9850-913	68.1	668
812	Scalable and sustainable electrochemical allylic C-H oxidation. 2016 , 533, 77-81		436
811	Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method. 2016 , 2, 302-8		567
810	Electrochemically initiated formation of sulfonyl radicals: synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion. 2016 , 18, 6311-6319		66
809	1-[(N-Methyl-N-tritylamino)methyl]silatrane: Synthesis and structure. 2016 , 117, 377-380		5
808	Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations. 2016 , 81, 9612-9619		62
807	Synthesis of N-(Silylmethyl)amides of Carboxylic Acids and Related Compounds. 2016 , 295-338		Ο
806	C⊞ functionalization of azines. Anodic dehydroaromatization of 9-(hetero)aryl-9,10-dihydroacridines. 2016 , 6, 77834-77840		17
805	Aromatic "Redox Tag"-assisted Diels-Alder reactions by electrocatalysis. 2016 , 7, 6387-6393		63
804	Zugang zu Pyrazolidin-3,5-dionen durch anodischen N-N-Bindungsaufbau. <i>Angewandte Chemie</i> , 2016 , 128, 9587-9590	3.6	52
803	Chapter Introduction to Micro Reaction Technology. 2016 , 23-58		
802	Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation. 2016 , 45, 10173-80		34
801	Beneficial Effects of Electrochemistry in Cross-Coupling Reactions: Electroreductive Synthesis of 4-Aryl- or 4-Heteroaryl-6-pyrrolylpyrimidines. 2016 , 2016, 4865-4871		16

800	Electrochemical Allylic Oxidation of Olefins: Sustainable and Safe. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12578-80	16.4	53
799	Electrochemical Oxidative C-H/N-H Coupling between Lactams and Anilines. <i>Chemistry - A European Journal</i> , 2016 , 22, 14293-6	4.8	29
798	Considering organic mechanisms and the optimization of current flow in an electrochemical oxidative condensation reaction. 2016 , 3, 1236-1240		10
797	Elektrochemische allylische Oxidation von Olefinen: nachhaltig und sicher. <i>Angewandte Chemie</i> , 2016 , 128, 12766-12768	3.6	21
796	Generation, Characterization, and Reactions of Thionium Ions Based on the Indirect Cation Pool Method. 2016 , 89, 61-66		7
795	Electrochemical Oxidation of Organotrifluoroborate Compounds. 2016 , 3, 2078-2083		23
794	Access to Pyrazolidin-3,5-diones through Anodic N-N Bond Formation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9437-40	16.4	113
793	C-Glycosides, Array-based Addressable Libraries, and the Versatility of Constant Current Electrochemistry. 2016 , 28, 2808-2817		2
792	Electrochemical behavior of 2-aminodiphenylamine and efficient factors on the site-selectivity of sulfonylation reaction: Experimental and theoretical studies. 2016 , 222, 845-855		6
791	Paired Electrolysis in the Simultaneous Production of Synthetic Intermediates and Substrates. Journal of the American Chemical Society, 2016 , 138, 15110-15113	16.4	83
790	Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based on Ionically Tagged Phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol. <i>Organic Letters</i> , 2016 , 18, 5896-5899	6.2	94
789	Electrochemically Oxidative ⊞-C-H Functionalization of Ketones: A Cascade Synthesis of ⊞-Amino Ketones Mediated by NHI. 2016 , 81, 11565-11573		78
788	Electrocatalytic Generation of Amidyl Radicals for Olefin Hydroamidation: Use of Solvent Effects to Enable Anilide Oxidation. <i>Angewandte Chemie</i> , 2016 , 128, 2266-2269	3.6	58
787	Electrochemical Amination of Less-Activated Alkylated Arenes Using Boron-Doped Diamond Anodes. 2016 , 2016, 1274-1278		49
786	Smooth Photocatalyzed Benzylation of Electrophilic Olefins via Decarboxylation of Arylacetic Acids. 2016 , 81, 7102-9		48
7 ⁸ 5	The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8400-3	16.4	150
7 ⁸ 4	PERFORMANCE ASSESSMENT OF A POLYMER ELECTROLYTE MEMBRANE ELECTROCHEMICAL REACTOR UNDER ALKALINE CONDITIONS (A CASE STUDY WITH THE ELECTROOXIDATION OF ALCOHOLS. 2016 , 206, 165-175		2
783	Classical-Reaction-Driven Stereo- and Regioselective C(sp(3))-H Functionalization of Aliphatic Amines. 2016 , 16, 1477-88		33

(2017-2016)

782	Direct Arylation of Pyrroles via Indirect Electroreductive C-H Functionalization Using Perylene Bisimide as an Electron-Transfer Mediator. <i>Organic Letters</i> , 2016 , 18, 544-7	38	
781	Applicability of a Polymerized Ionic Liquid/Carbon Nanoparticle Composite Electrolyte to Reductive Cyclization and Dimerization Reactions. 2016 , 196, 735-740	7	
7 ⁸ 0	Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution. 2016 , 32, 3164-73	9	
779	Electrochemical analysis of the triarylimidazole-type organic redox catalysts: Chemical stability and homogeneous electron transfer kinetics for the oxidation of 4-methoxybenzyl alcohol. 2016 , 199, 357-365	9	
778	Electrochemical Screening for Electroorganic Synthesis. 2016 , 20, 26-32	109	
777	Electrochemically catalyzed amino-oxygenation of styrenes: n-Bu4NI induced CN followed by a CD bond formation cascade for the synthesis of indolines. 2016 , 18, 2222-2230	83	
776	Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor. 2016 , 189, 1-8	53	
775	Tubular electrocatalytic membrane reactor for alcohol oxidation: CFD simulation and experiment. 2017 , 25, 18-25	16	
774	Nonconventional Techniques in Sustainable Flow Chemistry. 2017 , 219-248	2	
773	Toward Three-Dimensional Chemical Imaging of Ternary Cu-Sn-Pb Alloys Using Femtosecond Laser Ablation/Ionization Mass Spectrometry. 2017 , 89, 1632-1641	38	
772	Electrocatalytic intramolecular oxidative annulation of N-aryl enamines into substituted indoles mediated by iodides. <i>Chemical Communications</i> , 2017 , 53, 3354-3356	69	
771	Cathodic reductive couplings and hydrogenations of alkenes and alkynes catalyzed by the B12 model complex. <i>Journal of Organometallic Chemistry</i> , 2017 , 839, 71-77	14	
770	Electrochemical synthesis of benzoxazoles from anilides - a new approach to employ amidyl radical intermediates. <i>Chemical Communications</i> , 2017 , 53, 2974-2977	71	
769	Electrochemical properties and reactions of organoboron compounds. 2017 , 2, 32-37	16	
768	Electrocatalytic Oxidant-Free Dehydrogenative C-H/S-H Cross-Coupling. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3009-3013	1 234	
767	Palladium-Catalyzed C(sp)-H Oxygenation via Electrochemical Oxidation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3293-3298	4 249	
766	Frontiers in poly(ionic liquid)s: syntheses and applications. 2017 , 46, 1124-1159	596	
765	Eco-efficient electrocatalytic CP bond formation. 2017, 89, 311-330	30	

764	Synthesis of Azanucleosides by Anodic Oxidation in a Lithium Perchlorate-Nitroalkane Medium and Diversification at the 4'-Nitrogen Position. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4011-40	14·4	20
763	Organocatalysis in Inert C-H Bond Functionalization. <i>Chemical Reviews</i> , 2017 , 117, 9433-9520	68.1	403
762	Metal- and Reagent-Free Intramolecular Oxidative Amination of Tri- and Tetrasubstituted Alkenes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2956-2959	16.4	165
761	Catalytic Asymmetric Electrochemical Oxidative Coupling of Tertiary Amines with Simple Ketones. <i>Organic Letters</i> , 2017 , 19, 2122-2125	6.2	109
760	Electron-transfer-induced molecular reactions: Electrode processes in organic synthesis. 2017 , 2, 53-59		8
759	Palladium-Catalyzed Electrochemical Allylic Alkylation between Alkyl and Allylic Halides in Aqueous Solution. <i>Organic Letters</i> , 2017 , 19, 2022-2025	6.2	40
75 ⁸	Electrochemical Properties and Reactions of Organoboronic Acid Esters Containing Unsaturated Bonds at Their ⊞-Position. 2017 , 164, G23-G28		6
757	Bidirectional Access to Radical Cation Diels-Alder Reactions by Electrocatalysis. 2017 , 4, 1852-1855		13
756	Access to cyclic gem-difluoroacyl scaffolds via electrochemical and visible light photocatalytic radical tandem cyclization of heteroaryl chlorodifluoromethyl ketones. <i>Chemical Communications</i> , 2017 , 53, 5653-5656	5.8	14
755	Highly Modular Flow Cell for Electroorganic Synthesis. 2017 , 21, 771-778		107
755 754	Highly Modular Flow Cell for Electroorganic Synthesis. 2017, 21, 771-778 Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross CL coupling reactions. 2017, 19, 2931-2935		107
	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative		
754	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross CL coupling reactions. 2017 , 19, 2931-2935 Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical		22
754 753	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross Cl coupling reactions. 2017, 19, 2931-2935 Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. 2017, 46, 683-685	3.6	22
754 753 752	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross CL coupling reactions. 2017, 19, 2931-2935 Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. 2017, 46, 683-685 Catalytic, Asymmetric Alkylation via Excited-State Iminium Ions. 2017, 2, 616-618 Enantioselective Formal \(\theta\)-Methylation and \(\theta\)-Benzylation of Aldehydes by Means of	3.6 3.6	13
754 753 752 751	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross Ct coupling reactions. 2017, 19, 2931-2935 Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. 2017, 46, 683-685 Catalytic, Asymmetric Alkylation via Excited-State Iminium Ions. 2017, 2, 616-618 Enantioselective Formal #-Methylation and #-Benzylation of Aldehydes by Means of Photo-organocatalysis. Angewandte Chemie, 2017, 129, 4518-4522 Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a PyrenememPO Conjugate. Angewandte Chemie, 2017,		13 1 18
754 753 752 751 750	Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross Ctl coupling reactions. 2017, 19, 2931-2935 Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. 2017, 46, 683-685 Catalytic, Asymmetric Alkylation via Excited-State Iminium Ions. 2017, 2, 616-618 Enantioselective Formal B-Methylation and B-Benzylation of Aldehydes by Means of Photo-organocatalysis. Angewandte Chemie, 2017, 129, 4518-4522 Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene EMPO Conjugate. Angewandte Chemie, 2017, 129, 9018-9023		13 1 18 27

 $_{746} \quad \text{Electrocatalytic C-H/N-H Coupling of 2'-Aminoacetophenones for the Synthesis of Isatins.} \ \textbf{2017}, 82, 6434-6440 \\ _{70}$

745	Palladium-Catalyzed C(sp)-H Acetoxylation via Electrochemical Oxidation. <i>Organic Letters</i> , 2017 , 19, 29	0 5. 290	8109
744	Electrochemically Mediated Oxidative Transformations of Substituted 4-Methoxystilbenes: Effect of Ortho-Substituted Nucleophilic Groups. 2017 , 82, 6172-6191		13
743	The Hitchhiker's Guide to Flow Chemistry . <i>Chemical Reviews</i> , 2017 , 117, 11796-11893	68.1	933
742	New Approach to 1,4-Benzoxazin-3-ones by Electrochemical C-H Amination. <i>Chemistry - A European Journal</i> , 2017 , 23, 12096-12099	4.8	47
741	Electrocatalytic Oxidant-Free Dehydrogenative CH/SH Cross-Coupling. <i>Angewandte Chemie</i> , 2017 , 129, 3055-3059	3.6	56
740	Electrochemical Fluorination. 2017 , 71-123		8
739	Synthesis of Azanucleosides by Anodic Oxidation in a Lithium Perchlorate Nitroalkane Medium and Diversification at the 4?-Nitrogen Position. <i>Angewandte Chemie</i> , 2017 , 129, 4069-4072	3.6	6
738	Thiolation of cycloalkenes C5, C6 by redox-activation of hydrogen sulfide. 2017 , 27, 180-182		4
737	Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO/WO photoanode. <i>Chemical Communications</i> , 2017 , 53, 4378-4381	5.8	41
736	Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4734-4738	16.4	127
735	Synthesis of C3-Fluorinated Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling. <i>Angewandte Chemie</i> , 2017 , 129, 4812-4816	3.6	41
734	Entropic electrolytes for anodic cycloadditions of unactivated alkene nucleophiles. <i>Chemical Communications</i> , 2017 , 53, 3960-3963	5.8	32
733	TEMPO-Catalyzed Electrochemical CH Thiolation: Synthesis of Benzothiazoles and Thiazolopyridines from Thioamides. 2017 , 7, 2730-2734		145
73 ²	Mechanistic study of in vitro chemical interaction of trimipramine drug with barbituric derivative after its oxidation: Electrochemical synthesis of new dibenzazepine derivative. 2017 , 76, 153-160		4
731	Visible-light excitation of iminium ions enables the enantioselective catalytic		182
730	Enantioselective Formal ⊞-Methylation and ⊞-Benzylation of Aldehydes by Means of Photo-organocatalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4447-4451	16.4	64
729	Electrochemical intramolecular dehydrogenative CB bond formation for the synthesis of benzothiazoles. 2017 , 19, 2092-2095		90

728	Palladium catalyzed CH functionalization with electrochemical oxidation. <i>Tetrahedron Letters</i> , 2017 , 58, 797-802	2	71
727	Lewis Acid Induced Toggle from Ir(II) to Ir(IV) Pathways in Photocatalytic Reactions: Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents. 2017 , 3, 66-72		33
726	Direct Electrochemical Synthesis of an Unusual Complex Salt: Almost Structural Identity Different Charge. 2017 , 643, 266-275		3
725	Amidinyl Radical Formation through Anodic NH Bond Cleavage and Its Application in Aromatic CH Bond Functionalization. <i>Angewandte Chemie</i> , 2017 , 129, 602-605	3.6	39
724	Amidinyl Radical Formation through Anodic N-H Bond Cleavage and Its Application in Aromatic C-H Bond Functionalization. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 587-590	16.4	150
723	Electro-oxidative C(sp3)日 Amination of Azoles via Intermolecular Oxidative C(sp3)日/N日 Cross-Coupling. 2017 , 7, 8320-8323		111
722	Electrocatalytic Minisci Acylation Reaction of N-Heteroarenes Mediated by NHI. <i>Organic Letters</i> , 2017 , 19, 5517-5520	6.2	112
721	External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. <i>Nature Communications</i> , 2017 , 8, 775	17.4	120
720	Continuous direct anodic flow oxidation of aromatic hydrocarbons to benzyl amides. 2017 , 2, 822-825		15
719	Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources. <i>Journal of the American Chemical Society</i> , 2017 , 139, 15548-15553	16.4	149
718	Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. <i>Chemical Reviews</i> , 2017 , 117, 13230-13319	68.1	1481
717	Photocatalyst-free, Visible Light Driven, Gold Promoted Suzuki Synthesis of (Hetero)biaryls. 2017 , 9, 4456-4459		46
716	A Visible-Light-Driven, Metal-free Route to Aromatic Amides via Radical Arylation of Isonitriles. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3826-3830	5.6	38
715	Reagent-Free CH/NH Cross-Coupling: Regioselective Synthesis of N-Heteroaromatics from Biaryl Aldehydes and NH3. <i>Angewandte Chemie</i> , 2017 , 129, 12906-12909	3.6	28
714	Electrochemically Enabled, Nickel-Catalyzed Amination. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13088-13093	16.4	187
713	Electrochemically Enabled, Nickel-Catalyzed Amination. <i>Angewandte Chemie</i> , 2017 , 129, 13268-13273	3.6	63
712	Electrochemical Decarboxylative Sulfonylation of Cinnamic Acids with Aromatic Sulfonylhydrazides to Vinyl Sulfones. 2017 , 82, 9655-9661		66
711	Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization. 2017 , 50, 2346-	2352	136

710	Bio-based amines through sustainable heterogeneous catalysis. 2017 , 19, 5303-5331		130
709	Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane. 2017 , 253, 357-367		35
708	Ru atom-modified covalent triazine framework as a robust electrocatalyst for selective alcohol oxidation in aqueous electrolytes. <i>Chemical Communications</i> , 2017 , 53, 10437-10440	5.8	36
707	Liquid Quinones for Solvent-Free Redox Flow Batteries. 2017 , 29, 1606592		29
706	Green Electrochemical Synthesis of N-Phenylquinoneimine Derivatives: Dual Action of 4-Morpholinoaniline and N-(4-Aminophenyl) Acetamide. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 9423-9430	8.3	12
705	Photoelectrochemical Oxidation of Benzylic Alcohol Derivatives on BiVO4/WO3 under Visible Light Irradiation. 2017 , 4, 3283-3287		28
704	An Electrochemical Method for Carboxylic Ester Synthesis from N-Alkoxyamides. 2017 , 82, 10025-10032		14
703	Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. 2017 , 18, 2573-	2605	30
702	Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8892-8897	16.4	78
701	Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications. 2017 , 21, 1213-1226		112
700	High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. 2017 , 8, 6493-6498		13
699	Preparation and characterization of a TiO2-NT/SnO2Bb tubular porous electrode with long service lifetime for wastewater treatment process. 2017 , 7, 37806-37814		19
698	Insights into the Mechanism of Anodic N-N Bond Formation by Dehydrogenative Coupling. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12317-12324	16.4	127
69 7	Reagent-Free C-H/N-H Cross-Coupling: Regioselective Synthesis of N-Heteroaromatics from Biaryl Aldehydes and NH. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12732-12735	16.4	106
696	Continuous Flow Synthesis of Morpholines and Oxazepanes with Silicon Amine Protocol (SLAP) Reagents and Lewis Acid Facilitated Photoredox Catalysis. <i>Organic Letters</i> , 2017 , 19, 4696-4699	6.2	41
695	Metal-catalyzed electrochemical diazidation of alkenes. 2017 , 357, 575-579		385
694	An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. 2017 , 19, 4061-4066		92
693	Electrochemical Synthesis of Polycyclic N-Heteroaromatics through Cascade Radical Cyclization of Diynes. 2017 , 7, 5810-5813		100

692	Anodic Methoxylation of 2-Acyloxy-3,3,3-trifluoropropyl Sulfides Accompanying with [1,2]-Rearrangement of the Acyloxy Group and Anodic Cyclization of 2-(t-Butoxycarbonyl)oxy-3,3,3-trifluoropropyl Sulfide. 2017 , 164, G121-G127		4
691	Engineering Interface with One-Dimensional CoO Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. 2017 , 11, 12365-12377		61
690	Electrochemical Cobalt-Catalyzed C-H Oxygenation at Room Temperature. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18452-18455	16.4	232
689	An approach to CN activation: coupling of arenesulfonyl hydrazides and arenesulfonyl chlorides with tert-amines via a metal-, oxidant- and halogen-free anodic oxidation. 2017 , 19, 5940-5948		27
688	Synthesis of 4H-1,3-Benzoxazines via Metal- and Oxidizing Reagent-Free Aromatic C-H Oxygenation. <i>Organic Letters</i> , 2017 , 19, 6332-6335	6.2	40
687	Selective CH Functionalizations by Electrochemical Reactions with Palladium Catalysts. 2017 , 57, 953-9	63	16
686	A green strategy for the synthesis of sulfone derivatives of p-methylaminophenol: Kinetic evaluation and antibacterial susceptibility. 2017 , 7, 4436		11
685	Metal-Free Benzylic C-H Amination via Electrochemically Generated Benzylaminosulfonium Ions. <i>Chemistry - A European Journal</i> , 2017 , 23, 61-64	4.8	54
684	Electrochemical Properties and Reactions of Oxygen-Containing Organotrifluoroborates and Their Boronic Acid Esters. 2017 , 4, 183-187		16
683	Bromo-catalyzed photo esterification of benzylsilanes with alcohols under aerobic conditions. 2017 , 21, 245-249		2
682	Pulsed electroconversion for highly selective enantiomer synthesis. <i>Nature Communications</i> , 2017 , 8, 2087	17.4	25
681	Recent Advances of Microfluidics Technologies in the Field of Medicinal Chemistry. 2017 , 50, 87-147		2
68o	Reaction of (chloromethyl)trichlorosilane with 2,2-dimethylpropane-1,3-diol. 2017 , 66, 2339-2342		1
679	Sustainable Reactor Design. 2017 , 525-540		1
678	Cathodic Aromatic C,C Cross-Coupling Reaction via Single Electron Transfer Pathway. 2017 , 22,		6
677	NMR reaction monitoring in flow synthesis. 2017 , 13, 285-300		50
676	Intermolecular Electrochemical C(sp3)-H/N-H Cross-coupling of Xanthenes with N-alkoxyamides: Radical Pathway Mediated by Ferrocene as a Redox Catalyst. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1665-1672	5.6	44
675	Electrochemical C-H Amination by Cobalt Catalysis in a Renewable Solvent. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5090-5094	16.4	180

674	A Versatile Cℍ Halogenation Strategy for Indole Derivatives under Electrochemical Catalyst- and Oxidant-Free Conditions. 2018 , 2018, 4949-4952		30
673	Recent advances in iodine mediated electrochemical oxidative cross-coupling. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 2375-2387	3.9	104
672	Electrochemical CH Amination by Cobalt Catalysis in a Renewable Solvent. <i>Angewandte Chemie</i> , 2018 , 130, 5184-5188	3.6	58
671	Electrochemical C-O Bond Formation: Facile Access to Aromatic Lactones. <i>Chemistry - A European Journal</i> , 2018 , 24, 6932-6935	4.8	39
670	Oxidant-Free C(sp)-H Functionalization/C-O Bond Formation: Alkolbe Oxidative Cyclization Process. 2018 , 83, 3200-3207		34
669	Electrochemical synthesis of 1,2,4-triazole-fused heterocycles. 2018 , 20, 1732-1737		64
668	Ruthenium-Catalyzed Electrochemical Dehydrogenative Alkyne Annulation. 2018, 8, 3820-3824		142
667	Cobalt(II)-Catalyzed Electrooxidative C-H Amination of Arenes with Alkylamines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4195-4199	16.4	213
666	Electrochemical Oxidative CH Amination of Phenols: Access to Triarylamine Derivatives. <i>Angewandte Chemie</i> , 2018 , 130, 4827-4831	3.6	35
665	Electrochemical Oxidative C-H Amination of Phenols: Access to Triarylamine Derivatives. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4737-4741	16.4	120
664	Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions. <i>Chemical Reviews</i> , 2018 , 118, 4817-4833	68.1	345
663	Electrochemical Functional-Group-Tolerant Shono-type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. <i>Angewandte Chemie</i> , 2018 , 130, 6796-6800	3.6	27
662	Electrochemical Intramolecular CH/OH Cross-Coupling of 2-Arylbenzoic Acids. 2018 , 36, 619-624		26
661	Electrochemical Functional-Group-Tolerant Shono-type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6686-6690	16.4	69
660	Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. <i>Chemical Communications</i> , 2018 , 54, 4601-4604	5.8	57
659	Electrochemical Sulfenylation of Indoles with Disulfides Mediated by Potassium Iodide. 2018 , 165, G67	-G74	18
658	Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5828-5832	16.4	136
657	Production of High-Value-Added Chemicals on Oxide Semiconductor Photoanodes under Visible Light for Solar Chemical-Conversion Processes. 2018 , 3, 1093-1101		88

656	Electrooxidative Rhodium-Catalyzed CH/CH Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation. <i>Angewandte Chemie</i> , 2018 , 130, 5930-5934	3.6	52
655	Organic electrosynthesis 🖪 road to greater application. A mini review. 2018 , 88, 1-4		33
654	Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2438-2441	16.4	159
653	Electrochemical Difluoromethylarylation of Alkynes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2460-2464	16.4	155
652	Electrochemical synthesis of methyl sulfoxides from thiophenols/thiols and dimethyl sulfoxide. 2018 , 20, 1405-1411		27
651	An electrochemical oxidative homo-coupling reaction of imidazopyridine heterocycles to biheteroaryls. 2018 , 20, 583-587		38
650	Recent Advances in Organic Electrochemical CH Functionalization. 2018, 36, 338-352		211
649	Electrochemical Generation of Diaza-oxyallyl Cation for Cycloaddition in an All-Green Electrolytic System. <i>Organic Letters</i> , 2018 , 20, 1324-1327	6.2	27
648	Ni-Catalyzed Electrochemical Decarboxylative C-C Couplings in Batch and Continuous Flow. <i>Organic Letters</i> , 2018 , 20, 1338-1341	6.2	87
647	Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6018-6041	16.4	518
646	Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. <i>Angewandte Chemie</i> , 2018 , 130, 6124-6149	3.6	185
645	Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a CN Bond-Forming Radical Cascade. <i>Angewandte Chemie</i> , 2018 , 130, 1652-1655	3.6	34
644	Electrochemical Synthesis of Imidazo-Fused N-Heteroaromatic Compounds through a C-N Bond-Forming Radical Cascade. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1636-1639	16.4	120
643	Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. 2018 , 4, 27-45		459
642	Palladium-Catalyzed C-H Bond Acetoxylation via Electrochemical Oxidation. <i>Organic Letters</i> , 2018 , 20, 204-207	6.2	109
641	Electrochemical CH/NH Activation by Water-Tolerant Cobalt Catalysis at Room Temperature. <i>Angewandte Chemie</i> , 2018 , 130, 2407-2411	3.6	53
640	Electrochemical Acceptorless Dehydrogenation of N-Heterocycles Utilizing TEMPO as Organo-Electrocatalyst. 2018 , 8, 1192-1196		88
639	Metal-Free Electrocatalytic Aerobic Hydroxylation of Arylboronic Acids. <i>Organic Letters</i> , 2018 , 20, 361-	3642	20

638	Electrochemical C-H/N-H Activation by Water-Tolerant Cobalt Catalysis at Room Temperature. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2383-2387	16.4	171
637	Electrochemical Synthesis of Bisindolylmethanes from Indoles and Ethers. <i>Organic Letters</i> , 2018 , 20, 29	16 .2 91	531
636	Cobalt-Catalyzed Electrochemical Oxidative Cℍ/Nℍ Carbonylation with Hydrogen Evolution. 2018 , 8, 5448-5453		92
635	Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. <i>Angewandte Chemie</i> , 2018 , 130, 5501-5505	3.6	3
634	An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes. 2018 , 8, 5175-5187		305
633	Iridium-catalyzed Synthesis of Saturated N-Heterocycles from Aldehydes and SnAP Reagents with Continuous Flow Photochemistry. <i>Organic Letters</i> , 2018 , 20, 2071-2075	6.2	23
632	Electrochemical N-Formylation of Amines via Decarboxylation of Glyoxylic Acid. <i>Organic Letters</i> , 2018 , 20, 2112-2115	6.2	47
631	Electrochemical Hydroxylation of Arenes Catalyzed by a Keggin Polyoxometalate with a Cobalt(IV) Heteroatom. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5403-5407	16.4	23
630	Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. <i>Chemical Reviews</i> , 2018 , 118, 4702-4730	68.1	312
629	Fischer I ropsch acid water processing by Kolbe electrolysis. 2018 , 211, 415-419		7
629	Fischer Tropsch acid water processing by Kolbe electrolysis. 2018, 211, 415-419 Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018, 118, 4485-	-468.0	655
		-458.0	
628	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018 , 118, 4485-Preparation of Fe3O4@5,10-dihydropyrido[2,3-b]quinoxaline-7,8-diol copper complex: A capable	- 458.0 16.4	655
628	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018 , 118, 4485-Preparation of Fe3O4@5,10-dihydropyrido[2,3-b]quinoxaline-7,8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1H-tetrazoles. 2018 , 32, e3988 Synthetic Organic Electrochemistry: Calling All Engineers. <i>Angewandte Chemie - International</i>		655
628 627 626	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018 , 118, 4485- Preparation of Fe3O4@5,10-dihydropyrido[2,3-b]quinoxaline-7,8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1H-tetrazoles. 2018 , 32, e3988 Synthetic Organic Electrochemistry: Calling All Engineers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4149-4155 Synthetisch-organische Elektrochemie: Ein Aufruf an alle Ingenieure. <i>Angewandte Chemie</i> , 2018 ,	16.4	655 16 198 48
628 627 626	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018 , 118, 4485- Preparation of Fe3O4@5,10-dihydropyrido[2,3-b]quinoxaline-7,8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1H-tetrazoles. 2018 , 32, e3988 Synthetic Organic Electrochemistry: Calling All Engineers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4149-4155 Synthetisch-organische Elektrochemie: Ein Aufruf an alle Ingenieure. <i>Angewandte Chemie</i> , 2018 , 130, 4219-4225 Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. <i>Chemical Reviews</i> , 2018 ,	16.4 3.6 68.1	655 16 198 48
628 627 626 625 624	Use of Electrochemistry in the Synthesis of Heterocyclic Structures. <i>Chemical Reviews</i> , 2018 , 118, 4485- Preparation of Fe3O4@5,10-dihydropyrido[2,3-b]quinoxaline-7,8-diol copper complex: A capable nanocatalyst for the green synthesis of 1-substituted 1H-tetrazoles. 2018 , 32, e3988 Synthetic Organic Electrochemistry: Calling All Engineers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4149-4155 Synthetisch-organische Elektrochemie: Ein Aufruf an alle Ingenieure. <i>Angewandte Chemie</i> , 2018 , 130, 4219-4225 Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. <i>Chemical Reviews</i> , 2018 , 118, 4573-4591	16.4 3.6 68.1	655 16 198 48 240

620	The influence of electron donating tendency on electrochemical oxidative behavior of hydroquinone: Experimental and theoretical investigations. 2018 , 260, 221-234		9
619	Acyl Radicals from Acylsilanes: Photoredox-Catalyzed Synthesis of Unsymmetrical Ketones. 2018 , 8, 304-3	309	73
618	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. <i>Chemical Reviews</i> , 2018 , 118, 4592-4630	8.1	95
617	N-Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C-H Functionalization. <i>Journal of the American Chemical Society</i> , 2018 , 140, 22-25	6.4	110
616	Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. 2018 , 9, 356-361		54
615	Leaded Bronze: An Innovative Lead Substitute for Cathodic Electrosynthesis. 2018 , 5, 247-252		18
614	On the Use of Polyelectrolytes and Polymediators in Organic Electrosynthesis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 422-426	6.4	20
613	Catalyst- and Supporting-Electrolyte-Free Electrosynthesis of Benzothiazoles and Thiazolopyridines in Continuous Flow. <i>Chemistry - A European Journal</i> , 2018 , 24, 487-491	8	80
612	Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Application to Organic Energy Storage Materials. 2018 , 86, 298-302		1
611	Design and application of a modular and scalable electrochemical flow microreactor. 2018 , 8, 157-165		49
610	Electrochemical synthesis of tetrazoles via metal- and oxidant-free $[3+2]$ cycloaddition of azides with hydrazones. 2018 , 20, 5271-5275		34
609	Learning from B enzymes: biomimetic and bioinspired catalysts for eco-friendly organic synthesis. 2018 , 14, 2553-2567		18
608	Electrochemical Oxidation with Lewis-Acid Catalysis Leads to Trifluoromethylative Difunctionalization of Alkenes Using CFSONa. <i>Organic Letters</i> , 2018 , 20, 7396-7399	2	94
607	Electrochemical oxidative $[4 + 2]$ annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. 2018 , 20, 4870-4874		47
606	Fluoride Ion-Mediated Electrochemical Synthesis of Trifluorolactic Aldehyde Equivalent and CF3-Containing 1,3-Oxathiolanes. 2018 , 165, G171-G175		2
605	Reactivity of Anodically Generated 4-Methoxystilbene Cation Radicals: The Influence of Ortho-Substituted Hydroxymethyl, Aminomethyl, and Carboxylic Acid Groups. 2018 , 83, 15087-15100		4
604	Electrochemical Sulfonylation/Heteroarylation of Alkenes via Distal Heteroaryl ipso-Migration. Organic Letters, 2018 , 20, 7784-7789	 2	40
603	(Iodomethyl)fluorosilanes: Synthesis and Reactions. 2018 , 88, 2084-2088		1

(2018-2018)

602	Electrochemical cobalt-catalyzed C-H or N-H oxidation: a facile route to synthesis of substituted oxindoles. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 8917-8921	3.9	12	
601	One-Pot Synthesis of Quinazolin-4(3H)-ones through Anodic Oxidation and the Related Mechanistic Studies. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 4764-4773	5.6	20	
600	Metal- and Oxidant-Free Alkenyl C⊞/Aromatic C⊞ Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. <i>Angewandte Chemie</i> , 2018 , 130, 13073-13077	3.6	3	
599	Electrochemical synthesis of 7-membered carbocycles through cascade 5-exo-trig/7-endo-trig radical cyclization. 2018 , 5, 3129-3132		27	
598	Mechanistic Studies on the Anodic Functionalization of Alkenes Catalyzed by Diselenides. 2018 , 8, 109	01-109	12 7	
597	Nickel-Catalyzed Electrooxidative C-H Amination: Support for Nickel(IV). <i>Chemistry - A European Journal</i> , 2018 , 24, 19166-19170	4.8	80	
596	Electrochemically Enabled Carbohydroxylation of Alkenes with HO and Organotrifluoroborates. Journal of the American Chemical Society, 2018 , 140, 16387-16391	16.4	91	
595	A general electrochemical strategy for the Sandmeyer reaction. 2018 , 9, 8731-8737		48	
594	An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone. 2018 , 14, 537-546		2	
593	Stepwise radical cation Diels-Alder reaction via multiple pathways. 2018 , 14, 704-708		11	
592	Synthesis of N-Heterocycles by Dehydrogenative Annulation of N-Allyl Amides with 1,3-Dicarbonyl Compounds. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14070-14074	16.4	46	
591	Dehydrogenative reagent-free annulation of alkenes with diols for the synthesis of saturated O-heterocycles. <i>Nature Communications</i> , 2018 , 9, 3551	17.4	88	
590	Cathode Material Determines Product Selectivity for Electrochemical CH Functionalization of Biaryl Ketoximes. <i>Angewandte Chemie</i> , 2018 , 130, 15373-15376	3.6	20	
589	Cathode Material Determines Product Selectivity for Electrochemical C-H Functionalization of Biaryl Ketoximes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15153-15156	16.4	72	
588	Zinc Battery Driven by an Electro-Organic Reactor Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15007-15014	8.3	1	
587	Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. <i>Chemistry - A European Journal</i> , 2018 , 24, 17205-17209	4.8	27	
586	Iridium-Catalyzed Electrooxidative CH Activation by Chemoselective Redox-Catalyst Cooperation. <i>Angewandte Chemie</i> , 2018 , 130, 14375-14379	3.6	33	
585	Synthesis of N-Heterocycles by Dehydrogenative Annulation of N-Allyl Amides with 1,3-Dicarbonyl Compounds. <i>Angewandte Chemie</i> , 2018 , 130, 14266-14270	3.6	21	

584	Iridium-Catalyzed Electrooxidative C-H Activation by Chemoselective Redox-Catalyst Cooperation. Angewandte Chemie - International Edition, 2018 , 57, 14179-14183	16.4	91
583	Sustainable Electrocatalytic Oxidant-Free Syntheses of Thiosulfonates from Thiols. 2018 , 5, 3619-3623		11
582	Recent Advances in the Synthesis of Carboxylic Acid Esters. 2018,		6
581	Metal- and Oxidant-Free Alkenyl C-H/Aromatic C-H Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12891-12895	16.4	7
580	Switchable Interfaces: Redox Monolayers on Si(100) by Electrochemical Trapping of Alcohol Nucleophiles. 2018 , 1, 3-11		12
579	Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO-N Charge-Transfer Complex. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12511-12520	16.4	102
578	Copper-Catalyzed Electrochemical C-H Amination of Arenes with Secondary Amines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11487-11494	16.4	206
577	Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7913-7921	16.4	168
576	Bioinspired Underwater Superoleophobic Electrodes with Superior Kolbe Electrochemical Performances. 2018 , 28, 1800712		9
575	Electrochemical conversion of palmitic acid via Kolbe electrolysis for synthesis of n-triacontane. 2018 , 822, 73-80		11
574	An integrated mass spectrometry platform enables picomole-scale real-time electrosynthetic reaction screening and discovery. 2018 , 9, 5724-5729		17
573	Electrocatalytic and Electroanalytic Investigation of Carbohydrates Oxidation on Gold-Based Nanocatalysts in Alkaline and Neutral pHs. 2018 , 165, H425-H436		16
572	A mild electroassisted synthesis of (hetero)arylphosphonates. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 4495-4500	3.9	24
571	Synthesis of Chlorotrifluoromethylated Pyrrolidines by Electrocatalytic Radical Ene-Yne Cyclization. <i>Chemistry - A European Journal</i> , 2018 , 24, 12274-12279	4.8	63
570	Carbenium ion formation by fragmentation of electrochemically generated oxonium ions. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 5094-5096	3.9	5
569	Electrochemical Synthesis of (Aza)indolines via Dehydrogenative [3+2] Annulation: Application to Total Synthesis of (\(\extstyle \))-Hinckdentine A. 2018 , 36, 909-915		52
568	Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis. <i>Chemistry - A European Journal</i> , 2018 , 24, 13399-13407	4.8	64
567	Asymmetric Photocatalytic C-H Functionalization of Toluene and Derivatives. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8439-8443	16.4	76

566	Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide. 2018 , 5, 2244-2248	67
565	Electrochemical Synthesis of a New Derivative of 1,4-Dihydroxybenzene: Embedded Nucleophile in the Structure of Electrophile. 2018 , 165, H667-H672	1
564	A general, electrocatalytic approach to the synthesis of vicinal diamines. 2018 , 13, 1725-1743	33
563	Modern Technologies in Natural Product Synthesis. 2018 , 447-464	
562	Electrochemical Applications of Microphase-Separated Block Copolymer Thin Films. 2018, 5, 2937-2953	18
561	Nano-V2O5/Ti porous membrane electrode with enhanced electrochemical activity for the high-efficiency oxidation of cyclohexane. 2018 , 20, 3944-3953	29
560	Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell. 2018 , 20, 4036-4042	18
559	Automated Electrochemical Assembly of the 虹1,3)-虹1,6)-Glucan Hexasaccharide Using Thioglucoside Building Blocks. 2018 , 7, 1802-1805	13
558	Stereoselective nucleophilic addition reactions to cyclic -acyliminium ions using the indirect cation pool method: Elucidation of stereoselectivity by spectroscopic conformational analysis and DFT calculations. 2018 , 14, 1192-1202	9
557	Exploring Mechanisms in Ni Terpyridine Catalyzed CII Cross-Coupling Reactions Review. 2018 , 6, 18	35
556	Photoelectrochemical driving and clean synthesis of energetic salts of 5,5?-azotetrazolate at room temperature. 2018 , 20, 3722-3726	14
555	Oxidant-free oxidation of CH bonds by cathodic hydrogen evolution: a phosphonic Kolbe oxidation/cyclization process. 2018 , 20, 3916-3920	23
554	A happy couple. 2018 , 1, 484-485	1
553	Cobalt-Catalyzed Green Cross-Dehydrogenative C(sp2)-H/P-H Coupling Reactions. 2018, 61, 1949-1956	13
552	Electro-Oxidative S-H/S-H Cross-Coupling with Hydrogen Evolution: Facile Access to Unsymmetrical Disulfides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8115-8119	102
551	Adsorption and Electrochemical Oxidation of Small Sulfur C ontaining Anions on Pt Electrodes in Organic Media. 2018 , 5, 2228-2234	O
550	Electro-Oxidative SB/SB Cross-Coupling with Hydrogen Evolution: Facile Access to Unsymmetrical Disulfides. <i>Angewandte Chemie</i> , 2018 , 130, 8247-8251	27
549	Investigating radical cation chain processes in the electrocatalytic Diels-Alder reaction. 2018, 14, 642-647	17

548	Expanding the medicinal chemistry synthetic toolbox. 2018 , 17, 709-727		223
547	Electrochemical Synthesis of 3,5-Disubstituted-1,2,4-thiadiazoles through NH4I-Mediated Dimerization of Thioamides. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 4043-4048	5.6	38
546	Electrochemical Corey-Winter reaction. Reduction of thiocarbonates in aqueous methanol media and application to the synthesis of a naturally occurring \oplus -pyrone. 2018 , 14, 547-552		4
545	Enantioselective radical conjugate additions driven by a photoactive intramolecular iminium-ion-based EDA complex. <i>Nature Communications</i> , 2018 , 9, 3274	17.4	80
544	Electrochemical treatment of flutriafol wastewater using a novel 3D macroporous PbO filter: Operating parameters, mechanism and toxicity assessment. 2018 , 358, 187-197		29
543	"One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. <i>Chemical Reviews</i> , 2018 , 118, 8025-8104	68.1	139
542	Catalyst- and Reagent-Free Electrochemical Azole C-H Amination. <i>Chemistry - A European Journal</i> , 2018 , 24, 12784-12789	4.8	59
541	Electrochemical Methods as Enabling Tools for Glycosylation. 2018 , 7, 1719-1729		13
540	Anodic benzylic C(sp3) amination: unified access to pyrrolidines and piperidines. 2018, 20, 3191-3196		67
539	Electrocatalytic CH Activation. 2018 , 8, 7086-7103		394
539 538	Electrocatalytic CH Activation. 2018, 8, 7086-7103 Complete electron economy by pairing electrolysis with hydrogenation. 2018, 1, 501-507		394 90
538	Complete electron economy by pairing electrolysis with hydrogenation. 2018 , 1, 501-507	7 4.8	90
538 537	Complete electron economy by pairing electrolysis with hydrogenation. 2018 , 1, 501-507 Electrochemical strategies for C-H functionalization and C-N bond formation. 2018 , 47, 5786-5865	74.8	90
538537536	Complete electron economy by pairing electrolysis with hydrogenation. 2018 , 1, 501-507 Electrochemical strategies for C-H functionalization and C-N bond formation. 2018 , 47, 5786-5865 Electrochemical Cobalt-Catalyzed C-H Activation. <i>Chemistry - A European Journal</i> , 2018 , 24, 16209-16217	74.8 5.8	90 513 94
538537536535	Complete electron economy by pairing electrolysis with hydrogenation. 2018 , 1, 501-507 Electrochemical strategies for C-H functionalization and C-N bond formation. 2018 , 47, 5786-5865 Electrochemical Cobalt-Catalyzed C-H Activation. <i>Chemistry - A European Journal</i> , 2018 , 24, 16209-16217 Organic chemistry at anodes and photoanodes. 2018 , 2, 1905-1927 Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization.		90 513 94 45
538537536535534	Complete electron economy by pairing electrolysis with hydrogenation. 2018, 1, 501-507 Electrochemical strategies for C-H functionalization and C-N bond formation. 2018, 47, 5786-5865 Electrochemical Cobalt-Catalyzed C-H Activation. <i>Chemistry - A European Journal</i> , 2018, 24, 16209-16217 Organic chemistry at anodes and photoanodes. 2018, 2, 1905-1927 Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization. <i>Chemical Communications</i> , 2019, 55, 10848-10851 Electrochemical oxidative annulation of amines and aldehydes or ketones to synthesize polysubstituted pyrroles. 2019, 21, 4941-4945		90 513 94 45 22

Benzaldehyde- and Nickel-Catalyzed Photoredox C(sp)-H Alkylation/Arylation with Amides and Thioethers. <i>Organic Letters</i> , 2019 , 21, 6329-6332	6.2	22
Synthesis of N-methyl-N-(silylmethyl)amines. 2019 , 68, 1555-1557		О
Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp3)⊞ Bonds. <i>Angewandte Chemie</i> , 2019 , 131, 6451-6456	3.6	39
Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. 2019 , 52, 2598	3-2608	66
Selective Defluoroallylation of Trifluoromethylarenes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14120-14125	16.4	40
1-[N-phenyl(aminomethyl)]silatrane: Synthesis, reactivity and structure. <i>Journal of Organometallic Chemistry</i> , 2019 , 898, 120870	2.3	3
Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct CH Alkynylation and Decarboxylative CH/CL Manifolds. 2019 , 9, 7690-7696		53
Intramolecular electrochemical dehydrogenative NN bond formation for the synthesis of 1,2,4-triazolo[1,5-a]pyridines. 2019 , 21, 4035-4039		27
Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13318-13322	16.4	101
Electroorganic Synthesis and the Construction of Addressable Molecular Surfaces. 2019 , 6, 4134-4143		6
Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. <i>Organic Letters</i> , 2019 , 21, 5862-5866	6.2	14
Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. 2019 , 10, 7982-7987		41
Metal-Reductant-Free Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile. 2019 , 23, 1746-1751		47
Direct anodic (thio)acetalization of aldehydes with alcohols (thiols) under neutral conditions, and computational insight into the electrochemical formation of the acetals. 2019 , 21, 4030-4034		10
Direct Arylation of \oplus -Amino C(sp)-H Bonds by Convergent Paired Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16548-16552	16.4	51
CoreBhell [email[protected] Nanothorns on Carbon Fiber Paper Electrodes for Carboxylic Acid Valorization via Kolbe Electrolysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18061-18066	8.3	6
Direct Arylation of ⊞-Amino C(sp3)-H Bonds by Convergent Paired Electrolysis. <i>Angewandte Chemie</i> , 2019 , 131, 16700-16704	3.6	19
Scalable Rhodium(III)-Catalyzed Aryl CH Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. <i>Angewandte Chemie</i> , 2019 , 131, 16926-16930	3.6	21
	Synthesis of N-methyl-N-(silylmethyl)amines. 2019, 68, 1555-1557 Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(5p3)Bi Bonds. Angewandte Chemie, 2019, 131, 6451-6456 Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. 2019, 52, 2598 Selective Defluoroallylation of Trifluoromethylarenes. Journal of the American Chemical Society, 2019, 141, 14120-14125 1-[N-phenyl(aminomethyl)] silatrane: Synthesis, reactivity and structure. Journal of Organometallic Chemistry, 2019, 898, 120870 Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct CB Alkynylation and Decarboxylative CB/CII Manifolds. 2019, 9, 7690-7696 Intramolecular electrochemical dehydrogenative NBi bond formation for the synthesis of 1,2,4-triazolo[1,5-a]pyridines. 2019, 21, 4035-4039 Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. Angewandte Chemie - International Edition, 2019, 58, 13318-13322 Electroorganic Synthesis and the Construction of Addressable Molecular Surfaces. 2019, 6, 4134-4143 Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. Organic Letters, 2019, 21, 5862-5866 Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. 2019, 10, 7982-7987 Metal-Reductant-Free Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile. 2019, 23, 1746-1751 Direct anodic (thio)acetalization of aldehydes with alcohols (thiols) under neutral conditions, and computational insight into the electrochemical formation of the acetals. 2019, 21, 4030-4034 Direct Arylation of B-Amino C(sp)-H Bonds by Convergent Paired Electrolysis. Angewandte Chemie - International Edition, 2019, 58, 16548-16552 CoreBhell [emai[Errotected] Nanothorns on Carbon Fiber Paper Electrodes for Carboxylic Acid Valorization via Kolbe Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 1806	Synthesis of N-methyl-N-(silylmethyl)amines. 2019, 68, 1555-1557 Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp3)B Bonds. Angewandte Chemie, 2019, 131, 6451-6456 Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. 2019, 52, 2598-2608 Selective Defluoroallylation of Trifluoromethylarenes. Journal of the American Chemical Society, 2019, 141, 14120-14125 1-[N-phenyl(aminomethyl)] silatrane: Synthesis, reactivity and structure. Journal of Organometallic Chemistry, 2019, 898, 120870 Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct CH Alkynylation and Decarboxylative CB/CII Manifolds. 2019, 9, 7690-7696 Intramolecular electrochemical dehydrogenative NII bond formation for the synthesis of 1,2,4-triazolof [1,5-alpyridines. 2019, 21, 4035-4039] Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication. Angewandte Chemie-International Edition, 2019, 58, 13318-13322 Electroorganic Synthesis and the Construction of Addressable Molecular Surfaces. 2019, 6, 4134-4143 Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalysts. Organic Letters, 2019, 21, 5862-5866 Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. 2019, 10, 7982-7987 Metal-Reductant-Free Electrochemical Nickel-Catalyzed Couplings of Aryl and Alkyl Bromides in Acetonitrile. 2019, 23, 1746-1751 Direct Anylation of H-Amino C(sp.)-H Bonds by Convergent Paired Electrolysis. Angewandte Chemie-International Edition, 2019, 58, 16548-16552 CoreShell [emailEprotected] Nanothorns on Carbon Fiber Paper Electrodes for Carboxylic Acid Valorization via Kolbe Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18061-18066 8-3 Direct Arylation of B-Amino C(sp.)-H Bonds by Convergent Paired Electrolysis. Angewandte Chemie, 2019, 131, 16700-16704 Scalable Rhodum(III)-Catalyzed Aryl CB Phosphorylation

512	Electrochemistry-Enabled Ir-Catalyzed Vinylic C-H Functionalization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18970-18976	16.4	77
511	Electroorganic Synthesis under Flow Conditions. 2019 , 52, 3287-3296		109
510	. 2019,		21
509	Electrochemical Coupling of Arylsulfonyl Hydrazides and Tertiary Amines for the Synthesis of Mamidovinyl Sulfones. 2019 , 2019, 6951-6955		10
508	CV-driven Optimization: Cobalt-Catalyzed Electrochemical Expedient Oxychlorination of Alkenes via ORR. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 5626-5633	5.6	8
507	Scalable Rhodium(III)-Catalyzed Aryl C-H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16770-16774	16.4	70
506	Iron-Electrocatalyzed C-H Arylations: Mechanistic Insights into Oxidation-Induced Reductive Elimination for Ferraelectrocatalysis. <i>Chemistry - A European Journal</i> , 2019 , 25, 16382-16389	4.8	33
505	Electrochemical Alkoxysulfonylation Difunctionalization of Styrene Derivatives Using Sodium Sulfinates as Sulfonyl Sources. 2019 , 4, 14353-14359		17
504	The Recent Developments of Electrochemical Oxidation. 2019 , 409-437		
503	The Mn-catalyzed paired electrochemical facile oxychlorination of styrenes via the oxygen reduction reaction. <i>Chemical Communications</i> , 2019 , 55, 12104-12107	5.8	23
502	Understanding the Role of Metal and Molecular Structure on the Electrocatalytic Hydrogenation of Oxygenated Organic Compounds. 2019 , 9, 9964-9972		45
501	Photoelectrochemical Driving and Simultaneous Synthesis of 3-pyridinecarboxylic Acid and Hydrogen in WO3 Photoanode-Based Cell. 2019 , 166, H662-H668		5
500	Electrochemical Dehydrogenative Phosphorylation of Thiols. Organic Letters, 2019, 21, 7833-7836	6.2	23
499	Photoelectrochemical CH Alkylation of Heteroarenes with Organotrifluoroborates. <i>Angewandte Chemie</i> , 2019 , 131, 4640-4643	3.6	47
498	Electrochemical oxidation synergizing with Br $\overline{0}$ sted-acid catalysis leads to $[4+2]$ annulation for the synthesis of pyrazines. 2019 , 21, 765-769		24
497	Scalable electrochemical oxidant-and metal-free dehydrogenative coupling of S-H/N-H. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 1370-1374	3.9	14
496	Electrochemical oxidative C-H/S-H cross-coupling between enamines and thiophenols with H evolution. 2019 , 10, 2791-2795		49
495	Electrochemical Fluoroalkynylation of Aryl Alkenes with Fluoride Ions and Alkynyltrifluoroborate Salts. 2019 , 8, 658-660		20

(2019-2019)

494	Metal- and Oxidant-free Electrosynthesis of 1,2,3-Thiadiazoles from Element Sulfur and N-tosyl Hydrazones. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 1756-1760	5.6	38	
493	Paired Electrochemical Reactions and the On-Site Generation of a Chemical Reagent. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3562-3565	16.4	55	
492	Electrochemical Synthesis of [1,2,3]Triazolo[1,5-a]pyridines through Dehydrogenative Cyclization. 2019 , 6, 4177-4179		16	
491	Mn-Mediated Electrochemical Trifluoromethylation/C(sp)-H Functionalization Cascade for the Synthesis of Azaheterocycles. <i>Organic Letters</i> , 2019 , 21, 762-766	6.2	68	
490	Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution. 2018 , 24,		7	
489	Electrochemical Synthesis of Aryl Methoxymethyl Ethers. 2019 , 6, 4180-4183		10	
488	Electrochemically Promoted Nickel-Catalyzed CarbonBulfur Bond Formation. 2019, 9, 1630-1634		72	
487	Electrochemical Difluoromethylation of Electron-Deficient Alkenes. 2019 , 12, 3060-3063		27	
486	Highly selective electrochemical hydrogenation of alkynes: Rapid construction of mechanochromic materials. 2019 , 5, eaaw2774		27	
485	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. 2019 , 6, 4067-4092		73	
484	Iodophenylsulfonates and Iodobenzoates as Redox-Active Supporting Electrolytes for Electrosynthesis. 2019 , 6, 4229-4237		19	
483	Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis. 2019 , 24,		51	
482	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. <i>Angewandte Chemie</i> , 2019 , 131, 9115-9119	3.6	9	
481	Metal- and Catalyst-Free Electrochemical Synthesis of Quinazolinones from Alkenes and 2-Aminobenzamides. 2019 , 6, 3120-3124		17	
480	Electrochemical Oxidative Aryl(alkyl)trifluoromethylation of Allyl Alcohols via 1,2-Migration. <i>Organic Letters</i> , 2019 , 21, 4619-4622	6.2	45	
479	Supporting-Electrolyte-Free Electrochemical Methoxymethylation of Alcohols Using a 3D-Printed Electrosynthesis Continuous Flow Cell System. 2019 , 6, 4144-4148		27	
478	Multidimensional dynamic experiments for data-rich process development of reactions in flow. 2019 , 4, 1637-1645		15	
477	Anodic Cyclizations, Seven-Membered Rings, and the Choice of Radical Cation vs. Radical Pathways. 2019 , 37, 672-678		3	

476	Recent Advances in Oxidative R-H/R-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. <i>Chemical Reviews</i> , 2019 , 119, 6769-6787	68.1	321
475	De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9017-9021	16.4	42
474	Reactions of Anodically Generated Methoxystilbene Cation Radicals: The Influence of Ortho-Substituted Vinyl and Formyl Groups. 2019 , 84, 7279-7290		
473	Thermal oxygen activation followed by in situ work function measurements over carbon-supported noble metal-based catalysts. 2019 , 44, 16648-16656		11
472	Electrons and Holes as Catalysts in Organic Electrosynthesis. 2019 , 6, 4373-4382		35
471	Concepts and tools for mechanism and selectivity analysis in synthetic organic electrochemistry. 2019 , 116, 11147-11152		34
470	Two-Dimensional Metal-Organic Layers for Electrochemical Acceptorless Dehydrogenation of N-Heterocycles. 2019 , 14, 3557-3560		13
469	Asymmetric Lewis Acid Catalyzed Electrochemical Alkylation. <i>Angewandte Chemie</i> , 2019 , 131, 7073-707	73.6	18
468	Intermolecular Anodic Oxidative Cross-Dehydrogenative C(sp)-N Bond-Coupling Reactions of Xanthenes with Azoles. <i>Organic Letters</i> , 2019 , 21, 3228-3231	6.2	50
467	New Revolution in Biaryl Synthesis: Transition Metal-Free CL Bond Formation Promoted by the Mixture of 2-Mercaptoethanol/KOH/DMSO. 2019 , 4, 4735-4738		O
466	Sulfonamide Synthesis through Electrochemical Oxidative Coupling of Amines and Thiols. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5664-5668	16.4	91
465	Continuous-Flow Electrosynthesis of Benzofused S-Heterocycles by Dehydrogenative C-S Cross-Coupling. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6650-6653	16.4	64
464	Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019 , 141, 6392-6402	16.4	152
463	Electrochemical [4+2] Annulation-Rearrangement-Aromatization of Styrenes: Synthesis of Naphthalene Derivatives. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6756-6760	16.4	22
462	Cobaltaelectro-Catalyzed C-H Activation with Carbon Monoxide or Isocyanides. 2019 , 12, 3023-3027		48
461	Visible Light Uranyl Photocatalysis: Direct C⊞ to CL Bond Conversion. 2019 , 9, 3054-3058		52
460	Mixed-Electrolyte-Driven Stereoselective Electrochemical Glycosylation. 2019 , 6, 4149-4152		11
459	Recent Advances in Constructing Nitrogen-Containing Heterocycles via Electrochemical Dehydrogenation. 2019 , 37, 513-528		43

458	Efficient Synthesis of Mandel Acetates by Electrochemical Carboxylation of Benzal Diacetates. 2019 , 6, 4158-4164		9	
457	Learning From Vitamin B12-Mediated Reactions: Cobalt(III) Carbon-Assisted Catalytic CH Difluoroacylation of (Hetero) Arenes through Controlled-Potential Electrolysis. 2019 , 6, 4199-4203		10	
456	Asymmetric Lewis Acid Catalyzed Electrochemical Alkylation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6999-7003	16.4	47	
455	A diastereoselective approach to axially chiral biaryls via electrochemically enabled cyclization cascade. 2019 , 15, 795-800		10	
454	Electrogenerated hypervalent iodine compounds as mediators in organic synthesis. 2019 , 15, 83-88		43	
453	Electrochemical Decarboxylative Trifluoromethylation of \Box , \Box Unsaturated Carboxylic Acids with CF3SO2Na. 2019 , 11, 2350-2354		17	
452	Electrochemical Pinacol Coupling of Acetophenone Using Boron-Doped Diamond Electrode. 2019 , 6, 4153-4157		10	
451	Electrochemical C日/N日 Oxidative Cross Coupling of Imidazopyridines with Diarylamines to Synthesize Triarylamine Derivatives. 2019 , 6, 4173-4176		14	
450	Electrosynthesis of (E)-Vinyl Thiocyanates from Cinnamic Acids via Decarboxylative Coupling Reaction. <i>Organic Letters</i> , 2019 , 21, 1958-1962	6.2	42	
449	Electrochemical Cross-Dehydrogenative Coupling of N-Aryl-tetrahydroisoquinolines with Phosphites and Indole. 2019 , 2019, 2498-2501		16	
448	Electrochemical [4+2] Annulation-Rearrangement-Aromatization of Styrenes: Synthesis of Naphthalene Derivatives. <i>Angewandte Chemie</i> , 2019 , 131, 6828-6832	3.6	11	
447	Direct Electrochemical Carboxylation of Benzylic CN Bonds with Carbon Dioxide. 2019 , 9, 4699-4705		49	
446	The Role of Electrochemistry in Future Dynamic Bio-Refineries: A Focus on (Non-)Kolbe Electrolysis. 2019 , 91, 699-706		12	
445	Electrochemical Semipinacol Rearrangements of Allylic Alcohols: Construction of All-Carbon Quaternary Stereocenters. <i>Organic Letters</i> , 2019 , 21, 2536-2540	6.2	54	
444	Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes. 2019 , 173-197		7	
443	Continuous-Flow Electrosynthesis of Benzofused S-Heterocycles by Dehydrogenative CB Cross-Coupling. <i>Angewandte Chemie</i> , 2019 , 131, 6722-6725	3.6	14	
442	Facile Synthesis of ⊞-exo-Methylene Ketones from ⊞,⊞-Disubstituted Allyl Alcohols by Electrochemical Oxidative Migration. 2019 , 6, 4169-4172		5	
441	Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 2804-2824	5.6	27	

440	Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. 2019, 37, 292		65
439	Catalyst-Free, Direct Electrochemical Tri- and Difluoroalkylation/Cyclization: Access to Functionalized Oxindoles and Quinolinones. <i>Organic Letters</i> , 2019 , 21, 1237-1240	6.2	75
438	Electrooxidative para-selective C-H/N-H cross-coupling with hydrogen evolution to synthesize triarylamine derivatives. <i>Nature Communications</i> , 2019 , 10, 639	17.4	76
437	Nickel-Catalyzed Thiolation of Aryl Halides and Heteroaryl Halides through Electrochemistry. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5033-5037	16.4	99
436	Electrochemical Radical Borylation of Aryl Iodides. 2019 , 37, 347-351		10
435	Electrochemical Aminoselenation and Oxyselenation of Styrenes with Hydrogen Evolution. <i>Organic Letters</i> , 2019 , 21, 1297-1300	6.2	59
434	Synthesis, structural and spectroscopic features of 2,2,2-trichloro-N-[(trimethylsilyl)methyl]acetamide and 2,2,2-trimethyl-N-[(trimethylsilyl)methyl]acetamide. 2019 , 1184, 200-206		2
433	Electrocatalytic Synthesis of Non-Symmetric Biphenols Mediated by Tri(p-bromophenyl)amine: Selective Oxidative Cross-Coupling of Different Phenols and Naphthols. 2019 , 37, 352-358		6
432	Bioorganometallic B12 as Versatile Catalyst for Green Organic Synthesis. 2019 , 379-398		
431	Electrochemically initiated intermolecular CN formation/cyclization of ketones with 2-aminopyridines: an efficient method for the synthesis of imidazo[1,2-a]pyridines. 2019 , 21, 1619-162-	4	34
430	Electrochemical dehydrogenation of hydrazines to azo compounds. 2019 , 21, 1680-1685		23
429	Electrochemical Oxidative Cross-Coupling Reaction to Access Unsymmetrical Thiosulfonates and Selenosulfonates. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 2014-2019	5.6	16
428	Electrochemically Promoted Fluoroalkylation-Distal Functionalization of Unactivated Alkenes. <i>Organic Letters</i> , 2019 , 21, 1857-1862	6.2	52
427	Interplay of arene radical cations with anions and fluorinated alcohols in hole catalysis. <i>Communications Chemistry</i> , 2019 , 2,	6.3	16
426	Total Synthesis of (-)-Oxycodone via Anodic Aryl-Aryl Coupling. <i>Organic Letters</i> , 2019 , 21, 1828-1831	6.2	37
425	Electrochemical Umpolung of Bromide: Transition-Metal-Free Bromination of Indole C?H Bond. 2019 , 24,		13
424	Electrooxidative Amination of sp C-H Bonds: Coupling of Amines with Aryl Amides via Copper Catalysis. <i>Organic Letters</i> , 2019 , 21, 1968-1972	6.2	41
	Nickel-Catalyzed Thiolation of Aryl Halides and Heteroaryl Halides through Electrochemistry.	3.6	32

422	Stereoconfining macrocyclizations in the total synthesis of natural products. 2019 , 36, 1546-1575		23
421	Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp)-H Bonds. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6385-6390	16.4	111
420	Paired Electrochemical Reactions and the On-Site Generation of a Chemical Reagent. <i>Angewandte Chemie</i> , 2019 , 131, 3600-3603	3.6	26
419	A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. 2019 , 15, 2710-2746		81
418	Electrochemistry of Organoboron Compounds. 2019 , 1-26		
417	Metal- and oxidant-free electrochemical synthesis of sulfinic esters from thiols and alcohols. 2019 , 21, 5528-5531		23
416	Electrochemical oxidation induced intermolecular aromatic C-H imidation. <i>Nature Communications</i> , 2019 , 10, 5467	17.4	40
415	Catalyst-free electrochemical decarboxylative cross-coupling of N-hydroxyphthalimide esters and N-heteroarenes towards C(sp)-C(sp) bond formation. <i>Chemical Communications</i> , 2019 , 55, 14922-14925	5.8	33
414	Synthesis of aminobenzoxazoles via simple, clean and efficient electrochemical redox reactions. <i>Tetrahedron Letters</i> , 2019 , 60, 358-361	2	6
413	Fourth-Generation Oxidative Cross-Coupling Reactions. 2019 , 155-192		3
412	Electricity-driven asymmetric Lewis acid catalysis. 2019 , 2, 34-40		68
411	Electrochemical Dehydrogenative Phosphorylation of Alcohols for the Synthesis of Organophosphinates. 2019 , 84, 949-956		38
410	Oxidative Cleavage of the Acyl-Carbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. 2019 , 6, 4194-4198		8
409	Photoelectrochemical C-H Alkylation of Heteroarenes with Organotrifluoroborates. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4592-4595	16.4	126
408	Electrocatalytic Fixation of Carbon Dioxide with Amines and Arylketones. 2019 , 6, 4292-4296		10
407	Electro-Oxidative C-C Alkenylation by Rhodium(III) Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2731-2738	16.4	83
406	Electrochemically Oxidative CIL Bond Cleavage of Alkylarenes for Anilines Synthesis. 2019, 9, 2063-2067	7	46
405	Mechanistische Studien in der Photokatalyse. <i>Angewandte Chemie</i> , 2019 , 131, 3768-3786	3.6	82

404	Electrochemical Oxidative CH Sulfenylation of Imidazopyridines with Hydrogen Evolution. 2019 , 37, 49-52		52
403	Mechanistic Studies in Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3730-3747	16.4	318
402	Electrochemical Reductive Smiles Rearrangement for C-N Bond Formation. <i>Organic Letters</i> , 2019 , 21, 10-13	6.2	22
401	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. 2018 , 377, 2		69
400	Mn-Catalyzed Electrochemical Chloroalkylation of Alkenes. 2019 , 9, 746-754		65
399	Palladium-Catalyzed Electrochemical CH Alkylation of Arenes. 2019, 38, 1208-1212		21
398	Electrochemical Transition-Metal-Catalyzed C-H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. 2019 , 12, 115-132		43
397	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 409-417	16.4	77
396	Electrochemically Induced Diels-Alder Reaction: An Overview. 2020, 20, 273-331		1
395	Electrochemical Dearomatization: Evolution from Chemicals to Traceless Electrons. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 462-477	5.6	32
394	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. <i>Angewandte Chemie</i> , 2020 , 132, 417-425	3.6	33
393	Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron-Rich Substrates. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1155-1160	16.4	51
392	Electrochemical Oxidation of d-Glucose in Alkaline Medium: Impact of Oxidation Potential and Chemical Side Reactions on the Selectivity to d-Gluconic and d-Glucaric Acid. 2020 , 7, 86-95		18
391	Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 2102-2119	5.6	33
390	Electrochemical Chalcogenation of #Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 1046-1052	5.6	25
389	Electrochemical Cross-Dehydrogenative Coupling between Phenols and EDicarbonyl Compounds: Facile Construction of Benzofurans. <i>Chemistry - A European Journal</i> , 2020 , 26, 4297-4303	4.8	7
388	Electrochemical Synthesis of Ketosulfones from Switchable Starting Materials. <i>Organic Letters</i> , 2020 , 22, 464-467	6.2	40
387	Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives. <i>Nature Communications</i> , 2020 , 11, 3	17.4	38

(2020-2020)

386	Highly enantioselective electrosynthesis of C2-quaternary indolin-3-ones. <i>Chemical Communications</i> , 2020 , 56, 623-626	5.8	18
385	From Molecules to Molecular Surfaces. Exploiting the Interplay Between Organic Synthesis and Electrochemistry. 2020 , 53, 135-143		49
384	Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. <i>Chemical Communications</i> , 2020 , 56, 1393-1396	5.8	27
383	Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through CII bond cleavage. 2020 , 22, 1099-1104		38
382	Merging photochemistry with electrochemistry in organic synthesis. 2020 , 7, 131-135		67
381	Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal. 2020 , 16, 1572-1581		9
380	Application of electrochemical oxidative methods in the C(sp2) H functionalization of heterocyclic compounds. 2020 , 1-47		5
379	Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. <i>Chemistry - A European Journal</i> , 2020 , 26, 3241-3246	4.8	64
378	Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond. 2020 , 53, 84-104		238
377	Electrochemical Vicinal Difluorination of Alkenes: Scalable and Amenable to Electron-Rich Substrates. <i>Angewandte Chemie</i> , 2020 , 132, 1171-1176	3.6	15
376	Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes via Amidyl Radical Cyclization. 2020 , 38, 394-398		19
375	Regioselective electrolytic 5,8-difluorination of quinolines. <i>Tetrahedron Letters</i> , 2020 , 61, 151474	2	2
374	Elektrochemischer Zugang zu aza-polycyclischen aromatischen Kohlenwasserstoffen: Rhoda-elektrokatalytische Domino-Alkin-Anellierungen. <i>Angewandte Chemie</i> , 2020 , 132, 5596-5601	3.6	11
373	Electrochemical Access to Aza-Polycyclic Aromatic Hydrocarbons: Rhoda-Electrocatalyzed Domino Alkyne Annulations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5551-5556	16.4	50
372	Synthetische Photoelektrochemie. <i>Angewandte Chemie</i> , 2020 , 132, 11828-11844	3.6	25
371	Synthetic Photoelectrochemistry. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11732-11747	16.4	120
370	Electrocatalytic Oxidative Transformation of Organic Acids for Carbon-Heteroatom and Sulfur-Heteroatom Bond Formation. 2020 , 13, 1661-1687		9
369	Electrochemical access to aryl sulfides from aryl thiols and electron-rich arenes with the potassium iodide as a mediator. 2020 , 331, 135371		4

368	Direct Electrochemical Defluorinative Carboxylation of -Difluoroalkenes with Carbon Dioxide. <i>Organic Letters</i> , 2020 , 22, 8424-8429	6.2	11
367	Progress in Electrochemical Trifluoromethylation Reactions. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 5219-5237	5.6	27
366	Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C-N bond formation. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 8994-9017	3.9	3
365	Anodic oxidation triggered divergent 1,2- and 1,4-group transfer reactions of hydroxycarboxylic acids enabled by electrochemical regulation. 2020 , 11, 12021-12028		8
364	Merging Electrosynthesis and Bifunctional Squaramide Catalysis in the Asymmetric Detrifluoroacetylative Alkylation Reactions. <i>Angewandte Chemie</i> , 2020 , 132, 18658-18662	3.6	1
363	Iodine-Mediated Electrochemical C(sp)-H Amination: Switchable Synthesis of Indolines and Indoles. <i>Organic Letters</i> , 2020 , 22, 5773-5777	6.2	22
362	New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. 2020 , 6, 1317-1340		116
361	Electrochemical Synthesis of O-Phthalimide Oximes from ∃-Azido Styrenes via Radical Sequence: Generation, Addition and Recombination of Imide-N-Oxyl and Iminyl Radicals with CD/ND Bonds Formation. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 3864-3871	5.6	16
360	Electrochemical Radical-Radical Cross-Coupling Approach between Sodium Sulfinates and 2-Indazoles to 3-Sulfonylated 2-Indazoles. <i>Organic Letters</i> , 2020 , 22, 6319-6323	6.2	28
359	N-Methyl-N,N-bis(Silatranylmethyl)amine: Structure and reactivity. <i>Journal of Organometallic Chemistry</i> , 2020 , 919, 121319	2.3	O
358	Electrochemically Enabled Intramolecular and Intermolecular Annulations of Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 3709-3726	5.6	33
357	Electrochemical Synthesis of Dimeric 2-Oxindole Sharing Vicinal Quaternary Centers Employing Proton-Coupled Electron Transfer. 2020 , 85, 14926-14936		10
356	Bridging Lab and Industry with Flow Electrochemistry. 2020 , 23, 101720		29
355	A Perspective on Organic Electrochemistry. 2020 , 85, 13375-13390		36
354	The continuous-flow electrosynthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones from N-alkyl-N-methacryloyl benzamides under metal-free and oxidant-free conditions. 2020 , 7, 3223-3228		10
353	Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. 2020 , 41, 091708		9
352	Direct electrochemical defluorinative carboxylation of ⊞-CF alkenes with carbon dioxide. 2020 , 11, 104°	14-104	292
351	Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. 2020 , 7, 3100-3119		49

(2020-2020)

350	Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides. 2020 , 1, 143-149		2
349	Electrochemical regioselective selenylation/oxidation of N-alkylisoquinolinium salts via double C(sp)-H bond functionalization. <i>Chemical Communications</i> , 2020 , 56, 15325-15328	5.8	7
348	Chemistry of electrochemical oxidative reactions of sulfinate salts. 2020 , 22, 3028-3059		40
347	Electro-organic synthesis - a 21 century technique. 2020 , 11, 12386-12400		148
346	Electrochemical oxidative C(sp3) azolation of lactams under mild conditions. 2020, 22, 3742-3747		21
345	Electrochemical Oxidative [4+2] Annulation for the Extension of Unfunctionalized Heterobiaryl Compounds. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15238-15243	16.4	22
344	Electrochemical Oxidative [4+2] Annulation for the Extension of Unfunctionalized Heterobiaryl Compounds. <i>Angewandte Chemie</i> , 2020 , 132, 15350-15355	3.6	8
343	Cull/TEMPO-Catalyzed Enantioselective C(sp3)H Alkynylation of Tertiary Cyclic Amines through Shono-Type Oxidation. <i>Angewandte Chemie</i> , 2020 , 132, 15366-15371	3.6	10
342	Stereoselective Electro-2-deoxyglycosylation from Glycals. <i>Angewandte Chemie</i> , 2020 , 132, 15316-15320	3.6	2
341	Cu /TEMPO-Catalyzed Enantioselective C(sp)-H Alkynylation of Tertiary Cyclic Amines through Shono-Type Oxidation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15254-15259	16.4	39
340	Stereoselective Electro-2-deoxyglycosylation from Glycals. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15204-15208	16.4	14
339	Cobalta-Electrocatalyzed CH Allylation with Unactivated Alkenes. 2020 , 10, 6457-6462		30
338	Electrochemical oxidation-induced etherification via C(sp)-H/O-H cross-coupling. 2020, 6, eaaz0590		28
337	3d metallaelectrocatalysis for resource economical syntheses. 2020 , 49, 4254-4272		73
336	Making electrochemistry easily accessible to the synthetic chemist. 2020 , 22, 3358-3375		64
335	Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid 2020 , 10, 18978-19002		3
334	Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. 2020 , 16, 1163-11	87	32
333	Catalytic Asymmetric Electrochemical \square -Arylation of Cyclic \square Ketocarbonyls with Anodic Benzyne Intermediates. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14347-14351	16.4	23

332	Organic electrosynthesis using a fluoride ion mediator. 2020 , 24, 24-30		5
331	Insights into Cobalta(III/IV/II)-Electrocatalysis: Oxidation-Induced Reductive Elimination for Twofold C-H Activation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10955-10960	16.4	35
330	. 2020,		
329	Mechanistische Studien zu Cobalta(III/IV/II)-Elektrokatalyse: Oxidativ-induzierte reduktive Eliminierung zur zweifachen C-H-Aktivierung. <i>Angewandte Chemie</i> , 2020 , 132, 11048-11053	3.6	9
328	Paired electrolysis for simultaneous generation of synthetic fuels and chemicals. <i>New Journal of Chemistry</i> , 2020 , 44, 5617-5637	3.6	26
327	Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11583-11590	16.4	31
326	Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10859-10863	16.4	31
325	Recent Advances in the Electrochemical Reduction of Substrates Involving ND Bonds. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 2088-2101	5.6	21
324	Copper-Catalyzed Electrochemical Selective B-H Oxygenation of -Carboranes at Room Temperature. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6940-6945	16.4	34
323	Tunable Electrochemical CN versus NN Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. <i>Angewandte Chemie</i> , 2020 , 132, 11680-1	1 6 87	6
322	Catalytic Asymmetric Electrochemical \Box -Arylation of Cyclic \blacksquare Ketocarbonyls with Anodic Benzyne Intermediates. <i>Angewandte Chemie</i> , 2020 , 132, 14453-14457	3.6	1
321	Merging Electrosynthesis and Bifunctional Squaramide Catalysis in the Asymmetric Detrifluoroacetylative Alkylation Reactions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18500	o-18 5 04	4 ¹⁰
320	Friedel@rafts Alkylation with Carbenium Ions Generated by Electrochemical Oxidation of Stannylmethyl Ethers. 2020 , 2020, 4510-4516		0
319	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. <i>Angewandte Chemie</i> , 2020 , 132, 7260-7264	3.6	5
318	A design of flow electrolysis cell for ℍomel abrication. 2020 , 5, 712-718		12
317	Asymmetric Electrochemical Transformations. <i>Angewandte Chemie</i> , 2020 , 132, 12712-12722	3.6	8
316	Reductive Coupling of Aromatic Aldehydes and Ketones Under Electrochemical Conditions. 2020 , 167, 046504		3
315	Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7193-7197	16.4	31

	314	Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. 2020 , 53, 547-560		234	
,	313	Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators. 2020 , 53, 561-574		159	
,	312	Asymmetric Electrochemical Transformations. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1261	26.1426	5 25 8	
,	311	Electrochemical Selective Oxidative Functionalization of Caffeine. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 1138-1143	5.6	6	
,	310	Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2093-2099	16.4	103	
,	309	Anodically Triggered Aldehyde Cation Autocatalysis for Alkylation of Heteroarenes. 2020 , 13, 1997-2001		2	
,	308	Fundamental Aspects of Electrocatalysis 1). 2020 , 773-890		8	
,	307	Electrons, Electrodes, and the Transformation of Organic Molecules. 2020 , 827-891		4	
,	306	Electrochemical Synthesis of Ketonitriles from Aryl Methyl Ketones. 2020 , 5, 564-568		7	
,	305	Electrochemical Intramolecular Oxytrifluoromethylation of -Tethered Alkenyl Alcohols: Synthesis of Functionalized Morpholines. <i>Organic Letters</i> , 2020 , 22, 1580-1584	6.2	29	
,	304	Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Organic Letters, 2020, 22, 4016-402	10 2	17	
,	303	Rhodium-Catalyzed Electrooxidative C-H Olefination of Benzamides. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15076-15080	16.4	19	
,	302	Rhodiumkatalysierte elektrooxidative C-H-Olefinierung von Benzamiden. <i>Angewandte Chemie</i> , 2020 , 132, 15188-15192	3.6	3	
,	301	Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angewandte Chemie, 2020 , 132, 10951-10955	3.6	5	
,	300	Electrochemical oxidative aminocarbonylation of terminal alkynes. 2020 , 3, 438-445		40	
	299	Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. <i>Chemistry - A European Journal</i> , 2020 , 26, 10936-10947	4.8	16	
	298	A Versatile Electrochemical Batch Reactor for Synthetic Organic and Inorganic Transformations and Analytical Electrochemistry. 2020 , 24, 1084-1089		6	
	297	Electrocatalytic Hydrogenation and Oxidation in Aqueous Conditions 2020, 38, 996-1004		13	

296	Late-Stage Diversification of Natural Products. 2020 , 6, 622-635		88
295	Cobaltaelectro-catalyzed C-H activation for resource-economical molecular syntheses. 2020 , 15, 1760-1	774	12
294	Convenient Synthesis of 5,5?-azotetrazolate Energetic Salts through Electrochemical Oxidative-Coupling of 5-amino-1H-tetrazole Under Mild Conditions. 2020 , 167, 065503		1
293	Advances in Electrochemical Decarboxylative Transformation Reactions. <i>Chemistry - A European Journal</i> , 2021 , 27, 3213-3228	4.8	21
292	Electrochemical Oxidative Carbon-Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1573-1577	16.4	8
291	Electrochemical Oxidative Carbon-Atom Difunctionalization: Towards Multisubstituted Imino Sulfide Ethers. <i>Angewandte Chemie</i> , 2021 , 133, 1597-1601	3.6	O
29 0	Electrochemically Tuned Oxidative [4+2] Annulation and Dioxygenation of Olefins with Hydroxamic Acids. <i>Angewandte Chemie</i> , 2021 , 133, 3219-3225	3.6	8
289	Electrochemically Tuned Oxidative [4+2] Annulation and Dioxygenation of Olefins with Hydroxamic Acids. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3182-3188	16.4	15
288	Electro-Descriptors for the Performance Prediction of Electro-Organic Synthesis. <i>Angewandte Chemie</i> , 2021 , 133, 4245-4253	3.6	6
287	Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers. 2021 , 53, 879-888		2
286	Electrocatalytic redox neutral [3 + 2] annulation of -cyclopropylanilines and alkenes. 2020 , 12, 969-975		9
285	Electro-Descriptors for the Performance Prediction of Electro-Organic Synthesis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4199-4207	16.4	15
284	Construction of Partially Protected Nonsymmetrical Biaryldiols via Semipinacol Rearrangement of -NQM Derived from Enynones. <i>Organic Letters</i> , 2021 , 23, 71-75	6.2	0
283	Electrochemical access to benzimidazolone and quinazolinone derivatives generation of isocyanates. <i>Chemical Communications</i> , 2021 , 57, 631-634	5.8	8
282	Radical generation from electroreduction of aryl and benzyl ammonium salts: synthesis of organoboronates. 2021 , 8, 702-707		6
281	Electrochemical Oxidative Functionalization of Arylalkynes: Access to ∃,∃-Dibromo Aryl Ketones. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 1022-1027	5.6	6
2 80	Electrochemical synthesis of 3-azido-indolines from amino-azidation of alkenes. 2021 , 32, 1033-1036		4
279	Merging cobalt catalysis and electrochemistry in organic synthesis. 2021 , 32, 963-972		9

(2021-2021)

278	Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction. 2021 , 25, 509-516		1
277	Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. 2021 , 41, 3034		3
276	Hole-mediated photoredox catalysis: tris(p-substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. 2021 , 8, 1132-1142		21
275	Iminyl-radicals by electrochemical decarboxylation of ⊞-imino-oxy acids: construction of indole-fused polycyclics. <i>Chemical Communications</i> , 2021 , 57, 10242-10245	5.8	1
274	Metal-free nanostructured catalysts: sustainable driving forces for organic transformations. 2021 , 23, 6223-6272		19
273	Electrochemical oxidative cyclization of alkenes, boronic acids, and dichalcogenides to access chalcogenated boronic esters and 1,3-diols.		O
272	Electrochemical Trifluoromethylation of Thiophenols with Sodium Trifluoromethanesulfinate. 2021 , 86, 16114-16120		3
271	Recent progress on electrochemical synthesis involving carboxylic acids. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 5501-5520	3.9	16
270	Energy-, time-, and labor-saving synthesis of ⊞-ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. 2021 , 23, 5825-5831		5
269	Electrocatalytic ethylbenzene valorization using a polyoxometalate@covalent triazine framework with water as the oxygen source. <i>Chemical Communications</i> , 2021 , 57, 7430-7433	5.8	2
268	Post-Functionalization of Aromatic CH Bonds at the Main Chains of Econjugated Polymers via Anodic Chlorination Facilitated by Lewis Acids. 2021 , 54, 1539-1547		3
267	Multi-vacancy Co3O4 on nickel foam synthesized via a one-step hydrothermal method for high-efficiency electrocatalytic benzyl alcohol oxidation. 2021 , 56, 6689-6703		5
266	Catalyst-free synthesis of phenanthridines via electrochemical coupling of 2-isocyanobiphenyls and amines. <i>New Journal of Chemistry</i> , 2021 , 45, 6367-6378	3.6	2
265	Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. <i>Tetrahedron Letters</i> , 2021 , 65, 152755	2	4
264	Electrooxidative Rhodium-Catalyzed [5+2] Annulations via C-H/O-H Activations. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6419-6424	16.4	24
263	Analysis of the hydrogen evolution reaction at Ni micro-patterned electrodes. 2021 , 368, 137678		5
262	Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. 2021 , 2, 19-26		26
261	Elektrooxidative Rhodium-katalysierte [5+2]-Anellierung durch C-H/O-H-Aktivierung. <i>Angewandte Chemie</i> , 2021 , 133, 6490-6495	3.6	6

16.4

5.6

12

5

Recent Advances in the Synthesis of Arylamines in the Light of Application in Pharmaceutical and 260 Chemical Industry. 2021, 377-444 Electrochemical Sulfenylation of 4-Hydroxycoumarins with Aryl Thiols Catalyzed by Potassium 259 lodide. 2021, 168, 025504 One-pot synthesis of 2-aminobenzoxazole derivatives using acetic acid as an electrolyte under 258 electrochemical conditions. 2021, 18, 2241-2248 Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl 16.4 257 45 Halides. Journal of the American Chemical Society, 2021, 143, 3536-3543 Recent Advances in Transition Metal-Catalyzed Selective B-H Functionalization of o-Carboranes. 256 26 2021, 94, 879-899 Ni(II) Schiff-Base Complexes as Chiral Electroauxiliaries and Methodological Platform for 2 Stereoselective Electrochemical Functionalization of Amino Acids. 2021, 21, 2178-2192 Photochemical and Electrochemical Strategies towards Benzylic CH Functionalization: A Recent 5.6 14 254 Update. Advanced Synthesis and Catalysis, 2021, 363, 1810-1834 Organic Electrochemistry: Molecular Syntheses with Potential. 2021, 7, 415-431 253 77 Electrochemical esterification via oxidative coupling of aldehydes and alcohols. Tetrahedron Letters, 2 252 \circ **2021**, 68, 152898 Electrosynthesis in Laminar Flow Using a Flow Microreactor. 2021, 21, 2164-2177 251 4 Late-stage azolation of benzylic C-H bonds enabled by electrooxidation. 2021, 64, 800-807 250 14 Electrochemical Tri- and Difluoromethylation-Triggered Cyclization Accompanied by the Oxidative 4.8 249 Cleavage of Indole Derivatives. Chemistry - A European Journal, 2021, 27, 6522-6528 248 Xanthine Scaffold: Available Synthesis Routes to Deliver Diversity by Derivatization. 2021, 18, 27-42 2 A facile electrochemical synthesis of suvorexant. Tetrahedron Letters, 2021, 70, 153014 247 2 One-Pot Synthesis of Tertiary Amides from Organic Trichlorides through Oxygen Atom 246 5 Incorporation from Air by Convergent Paired Electrolysis. 2021, 86, 5983-5990

Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan-Lam Coupling

Electrochemical Generation of N-Heterocyclic Carbenes for Use in Synthesis and Catalysis.

Electricity-Driven Post-Functionalization of Conducting Polymers. 2021, 21, 2107-2119

Reactions. Journal of the American Chemical Society, 2021, 143, 6257-6265

Advanced Synthesis and Catalysis, 2021, 363, 3189

245

244

243

242	From Bench to Plant: An Opportunity for Transition Metal Paired Electrocatalysis.		6
241	Electrosynthesis of Phosphacycles via Dehydrogenative C-P Bond Formation Using DABCO as a Mediator. <i>Organic Letters</i> , 2021 , 23, 3120-3124	6.2	8
240	Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. 2021 , 86, 15914-15926		4
239	Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. 2021 , 21, 2574-2584		11
238	Electrochemical Dehydrogenative C(sp)-H Amination. <i>Chemistry - A European Journal</i> , 2021 , 27, 8008-80	1428	3
237	Supporting-Electrolyte-Free Anodic Oxidation of Oxamic Acids into Isocyanates: An Expedient Way to Access Ureas, Carbamates, and Thiocarbamates.		4
236	Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. 2021 , 88, 132140		7
235	Electrochemical Fixation of Carbon Dioxide: Synthesis of Carboxylic Acids. 2021 , 21, 2354-2374		5
234	Electrochemical C-C bond cleavage of cyclopropanes towards the synthesis of 1,3-difunctionalized molecules. <i>Nature Communications</i> , 2021 , 12, 3075	17.4	14
233	Reaction Selectivity Control in Flash Synthetic Chemistry. 2021 , 79, 483-491		
233	Reaction Selectivity Control in Flash Synthetic Chemistry. 2021 , 79, 483-491 Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 12993-13000	3.6	3
	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 ,	3.6	3
232	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 12993-13000 Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. 2021 ,	3.6	
232	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 12993-13000 Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. 2021 , 21, 2453-2471	3.6	10
232 231 230	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 12993-13000 Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. 2021 , 21, 2453-2471 Catalytic asymmetric C-C cross-couplings enabled by photoexcitation. 2021 , 13, 575-580 Electrophotocatalytic Acetoxyhydroxylation of Aryl Olefins. <i>Journal of the American Chemical</i>		10 17 15
232 231 230 229	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 12993-13000 Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. 2021 , 21, 2453-2471 Catalytic asymmetric C-C cross-couplings enabled by photoexcitation. 2021 , 13, 575-580 Electrophotocatalytic Acetoxyhydroxylation of Aryl Olefins. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7247-7252 Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> -	16.4	10 17 15
232 231 230 229	Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie</i> , 2021, 133, 12993-13000 Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. 2021, 21, 2453-2471 Catalytic asymmetric C-C cross-couplings enabled by photoexcitation. 2021, 13, 575-580 Electrophotocatalytic Acetoxyhydroxylation of Aryl Olefins. <i>Journal of the American Chemical Society</i> , 2021, 143, 7247-7252 Organic Electrochemistry: Expanding the Scope of Paired Reactions. <i>Angewandte Chemie-International Edition</i> , 2021, 60, 12883-12890	16.4	10 17 15

224	Electrochemical Assembly for Synthesis of Middle-Sized Organic Molecules. 2021 , 21, 2389-2396	1
223	Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. 2021 , 11, 8155-8164	6
222	Role of Graphite Felt Electrode and Electron Delocalization of Cinnamate Ester in Electrochemical Hydrogenation Reaction. 2021 , 125, 13871-13879	3
221	Electrochemical Synthesis of Cyanoformamides from Trichloroacetonitrile and Secondary Amines Mediated by the B Derivative. 2021 , 86, 16134-16143	2
220	Electro-oxidative Intermolecular Allylic C(sp)-H Aminations. 2021 , 86, 15935-15945	2
219	Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. 2021 , 86, 15973-15991	6
218	Hydrosilane-Mediated Electrochemical Reduction of Amides. 2021 , 86, 15992-16000	1
217	Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. 2021 , 86, 15961-15972	8
216	Research Progress on Microreactor Technology in Oxidation Reactions. 2021 , 25, 1235-1245	
215	Bioinspired Electrolysis for Green Molecular Transformations of Organic Halides Catalyzed by B Complex. 2021 , 21, 2080-2094	2
214	Anodic Olefin Coupling Reactions: Elucidating Radical Cation Mechanisms and the Interplay between Cyclization and Second Oxidation Steps. 2021 , 21, 2442-2452	2
213	Electrochemical Oxidation of 2,3-Dihydroxypyridine in the Presence of Benzenesulfinic Acid: A Green Method for the Synthesis of a Novel Heterocycle Dye. 2021 , 168, 075501	
212	Electrochemical dual-oxidation strategy enables access to θ -chlorosulfoxides from sulfides. 2021 , 67, 79-79	6
211	Electrochemical Reductive Transformations. 2021 , 129-152	
210	The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. 2021 , 21, 2472-2487	3
209	C-H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. 2021 , 5, 173-228	10
208	Paired Electrolysis. 2021 , 209-223	1
207	Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. 2021 , 66, 2412-2412	35

206	Manganese-catalyzed chlorosulfonylation of terminal alkene and alkyne via convergent paired electrolysis. 2021 , 2, 100476		2
205	Electrochemical Oxidation Cross Dehydrogenative Coupling of Enamines and Thiophenols for the Synthesis of Vinyl Sulfides. 2021 , 6, 6460-6463		О
204	Electrodimerization of -Alkoxyamides for the Synthesis of Hydrazines. 2021 , 86, 16068-16076		1
203	Direct Electrocatalytic Nℍ Aziridination of Aromatic Alkenes Using Ammonia. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11596-11603	8.3	2
202	Electrochemical Dimethyl Sulfide-Mediated Esterification of Amino Acids.		О
201	Recent Advances in the Synthesis of Ibuprofen and Naproxen. 2021 , 26,		3
200	Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. 2021 , 86, 12378-12385		10
199	Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. <i>Organic Letters</i> , 2021 , 23, 7171-7176	6.2	8
198	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. 2021 , 86, 16035-16044		2
197	Tunable System for Electrochemical Reduction of Ketones and Phthalimides.		3
196	Asymmetric electrosynthesis: Recent advances in catalytic transformations. 2021, 28, 100714		4
195	Study of the Redox Potentials of Benzoquinone and Its Derivatives by Combining Electrochemistry and Computational Chemistry. 2021 , 98, 3019-3025		2
194	High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective.		5
193	Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles.		1
192	Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. <i>Angewandte Chemie</i> ,	3.6	
191	Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. 2021,		3
190	Electrochemical Deoxygenative Thiolation of Preactivated Alcohols and Ketones. <i>Organic Letters</i> , 2021 , 23, 7524-7528	6.2	2
189	Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	5

188	Synthesis of Oligosaccharides of Glucosamine by Automated Electrochemical Assembly. 2021 , 79, 839-8	48	2
187	Electrochemically promoted decarboxylative borylation of alkyl N-hydroxyphthalimide esters. 2021		3
186	Manganaelectro-Catalyzed Azine CEI Arylations and CEI Alkylations by Assistance of Weakly Coordinating Amides. 2021 , 11, 11639-11649		5
185	Electrochemical methods for synthesis and in situ generation of organometallic compounds. 2021 , 442, 213986		8
184	Electro-oxidative Coupling of Azoles with 2- and 3-Haloindoles/Thiophenes Providing Access to 2/3-Halo(Azol-1-yl) Indoles/Thiophenes. <i>Advanced Synthesis and Catalysis</i> ,	5.6	1
183	Recent advances in transition metal-catalyzed asymmetric electrocatalysis. 2021 , 444, 214065		5
182	Transition Metal Complexes as Catalysts for the Electroconversion of CO: An Organometallic Perspective. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11628-11686	16.4	46
181	Green Chemistry on Cℍ Activation. 2021 , 181-200		
180	Oxidant- and Catalyst-Free Synthesis of Sulfonated Benzothiophenes via Electrooxidative Tandem Cyclization. 2021 , 86, 2593-2601		11
179	Bergangsmetallkomplexe als Katalysatoren fildie elektrische Umwandlung von CO2 leine metallorganische Perspektive. <i>Angewandte Chemie</i> , 2021 , 133, 11732-11792	3.6	3
178	An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. 2021 , 8, 1315-1328		8
177	Redox Active Sodium Iodide/Recyclable Heterogeneous Solid Acid: An Efficient Dual Catalytic System for Electrochemically Oxidative \oplus -C \oplus Thiocyanation and Sulfenylation of Ketones. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1444-1452	5.6	38
176	Molecularly Controlled Catalysis Targeting Synergies Between Local and Non-local Environments. 2021 , 13, 1659-1682		11
175	Encyclopedia of Applied Electrochemistry. 2014 , 386-392		3
174	Encyclopedia of Applied Electrochemistry. 2014 , 143-148		2
173	Electrochemistry in continuous systems. 2020 , 26, 100355		9
172	Constructing defect-rich V2O5 nanorods in catalytic membrane electrode for highly efficient oxidation of cyclohexane. 2020 , 387, 154-162		11
171	Cobalt fluorides: preparation, reactivity and applications in catalytic fluorination and C-F functionalization. <i>Chemical Communications</i> , 2020 , 56, 8512-8523	5.8	8

(2021-2020)

170	Exclusively explored electrochemical halogenation of aryl compounds; periodical updates: Since 2000. 2020 , 50, 2391-2412		7
169	Highly Selective and Efficient Electrocatalytic Semihydrogenation of Diphenylacetylene in a PEM Reactor with PtBd Alloy Cathode Catalysts. 2020 , 167, 155506		8
168	Dissolution of Pt and Its Temperature Dependence in Anhydrous Acetonitrile- and Methanol-Based Electrolytes. 2020 , 167, 121507		5
167	Using a Combination of Electrochemical and Photoelectron Transfer Reactions to Gain New Insights into Oxidative Cyclization Reactions. 2020 , 167, 155520		2
166	Functionalization of Porphyrins through C-C Bond Formation Reactions with Functional Group-Bearing Organometallic Reagents. 2013 , 87, 1659		11
165	Selective Synthesis of 3,4-Dihydrocoumarins and Chalcones from Substituted Aryl Cinnamic Esters. 2011 , 32, 65-70		11
164	3.??????????????????????. 2015 , 83, 472-476		1
163	Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 9541-9564	3.9	Ο
162	Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. 2021, 41, 3414		Ο
161	Enantioselective palladaelectro-catalyzed C-H olefinations and allylations for N-C axial chirality. 2021 , 12, 14182-14188		9
160	Electrochemical synthesis of colloidal lead- and bismuth-based perovskite nanocrystals. <i>Chemical Communications</i> , 2021 , 57, 11553-11556	5.8	0
159	Electrochemical metal- and oxidant-free synthesis of S-thiocarbamates. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 9491-9500	3.9	1
158	Oxidative electro-organic synthesis of dimeric hexahydropyrrolo-[2,3-]indole alkaloids involving PCET: total synthesis of (\(\mathrea)\)-folicanthine. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 9390-9395	3.9	2
157	Electrochemically selective double $C(sp)-X$ ($X = S/Se, N$) bond formation of isocyanides. 2021 , 12, 14121-	-1412	5 2
156	Regio- and Chemoselectivity of Oxidative Conversion of Diarylamines to N,NEDiaryldihydrophenazines and N,NEDiarylbenzidines: DFT and Experimental Study. 2021 , 6, 9769-977	'5	О
155	Photochemical Organocatalytic Regio- and Enantioselective Conjugate Addition of Allyl Groups to Enals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26373-26377	16.4	2
154	Photochemical Organocatalytic Regio- and Enantioselective Conjugate Addition of Allyl Groups to Enals. <i>Angewandte Chemie</i> , 2021 , 133, 26577	3.6	0
153	Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. <i>Nature Communications</i> , 2021 , 12, 5956	17.4	5

152	Intermolecular Olefin Cross-Metathesis Initiated by the Umpolung of Enol Ethers. 2012, 70, 701-710	2
151	Molecular Conversion of Conjugated Polymers via Electron-Transfer on Electrode as a Key Step. 2012 , 70, 606-614	
150	Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides. 2013 , 34, 1108-1114	
149	Encyclopedia of Applied Electrochemistry. 2014 , 140-143	
148	Encyclopedia of Applied Electrochemistry. 2014 , 516-522	
147	Encyclopedia of Applied Electrochemistry. 2014 , 100-105	
146	Encyclopedia of Applied Electrochemistry. 2014 , 467-469	
145	Development of Novel Organic Electrosynthetic Processes Utilizing Electrochemical Microreactor. 2014 , 72, 506-517	1
144	Encyclopedia of Applied Electrochemistry. 2014 , 793-797	
143	2.????????????. 2015 , 83, 467-471	
143	2.?????????. 2015, 83, 467-471 Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015, 73, 171-180	
	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their	
142	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015 , 73, 171-180	1
142 141	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015 , 73, 171-180 Controlling Competitive Consecutive Reactions Using Micromixing. 2015 , 59-71 Mathematical description of Apolythiophene paradox for potentiostatic electropolymerization of	1
142 141 140	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015, 73, 171-180 Controlling Competitive Consecutive Reactions Using Micromixing. 2015, 59-71 Mathematical description of Polythiophene paradox for potentiostatic electropolymerization of electrochemically modified thiophenes. 2016, 3, 278-288 Bioinspired Molecular Transformations by Biorelated Metal Complexes Combined with Electrolysis	1
142 141 140	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015, 73, 171-180 Controlling Competitive Consecutive Reactions Using Micromixing. 2015, 59-71 Mathematical description of Repolythiophene paradox for potentiostatic electropolymerization of electrochemically modified thiophenes. 2016, 3, 278-288 Bioinspired Molecular Transformations by Biorelated Metal Complexes Combined with Electrolysis and Photoredox Systems. 2018, 76, 894-903	1
142 141 140 139	Development of Cross-Coupling Reactions Including Electro-oxidative Processes and Their Applications to the Synthesis of Extended Compounds. 2015, 73, 171-180 Controlling Competitive Consecutive Reactions Using Micromixing. 2015, 59-71 Mathematical description of Repolythiophene paradox for potentiostatic electropolymerization of electrochemically modified thiophenes. 2016, 3, 278-288 Bioinspired Molecular Transformations by Biorelated Metal Complexes Combined with Electrolysis and Photoredox Systems. 2018, 76, 894-903 Electrocatalysis: Application of Nanocomposite Materials. 2020, 113-123	1

134	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. <i>Chemical Reviews</i> , 2021 ,	68.1	20
133	Continuous Flow Electrochemical Oxidative Cyclization and Successive Functionalization of 2-Pyrrolidinones.		О
132	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. <i>Chemical Reviews</i> , 2021 ,	68.1	30
131	Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of NCentered Radicals in an Electrochemical C(sp)-H Arylation Reaction. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	10
130	Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis.		1
129	Divergent Electrochemical Carboamidation of Cyclic Amines 2022,		О
128	Flash Electrochemical Approach to Carbocations. <i>Angewandte Chemie</i> ,	3.6	
127	Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through Anodically Generated Cationic Pd <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	1
126	Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution-Phase Chemical Reaction. <i>Angewandte Chemie</i> ,	3.6	
125	Lessons from an Array: Using An Electrode Surface to Control The Selectivity of a Solution Phase Chemical Reaction <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	
124	Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of $C\mathbb{N}$ bonds.		6
123	Flash Electrochemical Approach to Carbocations Angewandte Chemie - International Edition, 2021,	16.4	1
122	Electrochemical dehydrogenative CN coupling of hydrazones for the synthesis of 1H-indazoles.		2
121	Anodic C(sp)-H Acyloxylation of Indolin-3-ones Enabled by Oxidant-Free Cross-Dehydrogenative C(sp)-O Coupling 2022 ,		О
120	Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza-Diels-Alder Cycloaddition. <i>Advanced Synthesis and Catalysis</i> ,	5.6	О
119	Benzils: A Review on their Synthesis.		Ο
118	Electrochemical Cross-Dehydrogenative Aromatization Protocol for the Synthesis of Aromatic Amines <i>Organic Letters</i> , 2022 ,	6.2	
117	Continuous flow technology-a tool for safer oxidation chemistry.		O

Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. **2022**, 91,

115	Electrochemical Synthesis of Isoxazolines: Method and Mechanism <i>Chemistry - A European Journal</i> , 2022 ,	4.8	2
114	Sustainable protocols for direct C-H bond arylation of (hetero)arenes.		5
113	Electrochemistry Enabled Nickel-Catalyzed Selective CB Bond Coupling Reaction. 2022, 2022,		O
112	Electro-Oxidative sp C-H Bond Functionalization and Annulation Cascade: Synthesis of Novel Heterocyclic Substituted Indolizines 2022 ,		0
111	Electrochemical-induced benzyl CH amination towards the synthesis of isoindolinones via aroyloxy radical-mediated CH activation.		3
110	Sustainable Electrochemical Dehydrogenative C(sp3)⊞ mono/di-Alkylations.		0
109	Electrochemistry for the Chemoselective Modification of Peptides and Proteins <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	4
108	Application of bioorganometallic B in green organic synthesis 2022 , 119, 23-42		
107	Electrochemical and mechanochemical synthesis of dihydrofuro[3,2-c]chromenones via intramolecular Csp3H cross-dehydrogenative oxygenation within warfarin frameworks: an efficient and straightforward dual approach. 2022 , 24, 2825-2838		3
106	Electrocatalytic alcohol oxidation by a molecular iron complex 2022,		0
105	Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency 2022 ,		12
104	Electrochemical Synthesis of Substituted Morpholines via a Decarboxylative Intramolecular Etherification <i>Organic Letters</i> , 2022 ,	6.2	2
103	Direct Anodic N - Hydroxylation: Accessing Versatile Intermediates for Azanucleoside Derivatives.		O
102	Understanding the reaction mechanism of Kolbe electrolysis on Pt anodes. 2022,		2
101	A Flow Electrochemical Cell with Split Bipolar Electrode for Anodic Oxidation of Organic Compounds. 2022 , 9,		2
100	Alternating Current Electrolysis Enabled Formal CD/OH Cross-Metathesis of 4-Alkoxy Anilines with Alcohols. <i>Angewandte Chemie</i> ,	3.6	
99	Alternating Current Electrolysis Enabled Formal C-O/O-H Cross-Metathesis of 4-Alkoxy Anilines with Alcohols <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	O

98	Developments in the electrochemical synthesis of thia-heterocycles. 1-8		0
97	Hydropyridylation of 日,即nsaturated Esters through Electroreduction of 4-Cyanopyridine 2022 ,		O
96	Electrochemical Difunctionalization of Terminal Alkynes: Access to 1,4-Dicarbonyl Compounds Organic Letters, 2021 ,	6.2	О
95	Electrochemical Desaturative Acylation of Cyclic N-Aryl Amines. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
94	Electrochemical Desaturative Acylation of Cyclic N -Aryl Amines. <i>Angewandte Chemie</i> , 2022 , 134,	3.6	
93	Electro-organic conversions: A review on electrocatalysis of Heck reactions. 2022 , 5, 100313		
92	Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes 2022		1
91	Flash Synthesis and Continuous Production of C-Arylglycosides in a Flow Electrochemical Reactor. 2022 , 4,		O
90	???????????????. 2021 , 59, 212-215		
89	Electrochemical Method: A Green Approach for the Synthesis of Organic Compounds. 2022, 26,		O
88	Electrochemistry-controlled dearomative 2,3-difunctionalization of indoles to synthesize oxoindoline derivatives		1
87	Flow chemistry in the synthesis of organochalcogen compounds. 2022 , 83-122		
86	Development of a multistep, electrochemical flow platform for automated catalyst screening. <i>Catalysis Science and Technology</i> ,	5.5	
85	Oxidation Potential Gap (Eox): The Hidden Parameter in Redox Chemistry. <i>Angewandte Chemie - International Edition</i> ,	16.4	O
84	Oxidation Potential Gap (Eox): The Hidden Parameter in Redox Chemistry. Angewandte Chemie,	3.6	
83	Electrocatalysis with Molecular Transition-Metal Complexes for Reductive Organic Synthesis. <i>Jacs Au</i> ,		5
82	Electropolymerization without an electric power supply. Communications Chemistry, 2022, 5,	6.3	0
81	Controlling One- or Two-Electron Oxidation for Selective Amine Functionalization by Alternating Current Frequency. <i>Journal of the American Chemical Society</i> ,	16.4	3

80	Photoelectrochemical Oxidation of Glycerol to Dihydroxyacetone Over an Acid-Resistant Ta:BiVO4 Photoanode. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	1
79	ASYMMETRIC PHOTOREDOX REACTIONS WITHOUT PHOTOCATALYSTS. 2022 , 329-354		
78	Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. <i>Organic</i> and Biomolecular Chemistry,	3.9	3
77	Synthesis of cyclic <code>H-1,4-oligo-N-acetylglucosamine</code> <code>ByclokasaodorinD</code> ia a one-pot electrochemical polyglycosylation <code>B</code> omerization <code>B</code> or cross. Chemical Communications,	5.8	1
76	Atom-economical, catalyst-free hydrosulfonation of densely functionalized alkenes: access to oxindole-containing sulfones. <i>New Journal of Chemistry</i> ,	3.6	1
75	Counter Electrode Reactions Important Stumbling Blocks on the Way to a Working Electro-Organic Synthesis. <i>Angewandte Chemie - International Edition</i> ,	16.4	4
74	Counter Electrode Reactions Important Stumbling Blocks on the Way to a Working Electro-Organic Synthesis. <i>Angewandte Chemie</i> ,	3.6	
73	Electrosynthesis of Stabilized Diazo Compounds from Hydrazones. Organic Letters,	6.2	2
72	Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. <i>Chemical Communications</i> ,	5.8	
71	Electrosynthesis of (Hetero)aryl Nitriles from \Box -Imino-oxy Acids via Oxidative Decarboxylation/N-O Cleavage. <i>Chemical Communications</i> ,	5.8	1
70	Facile and general electrochemical deuteration of unactivated alkyl halides. <i>Nature Communications</i> , 2022 , 13,	17.4	7
69	Electrochemical [3+2] Cycloaddition of Anilines and 1,3-Dicarbonyl Compounds: Construction of Multisubstituted Indoles. <i>Advanced Synthesis and Catalysis</i> ,	5.6	
68	Synthesis of Cyclopentene Derivatives via Electrochemical-Induced Intermolecular Selective (3+2) Annulation. <i>Angewandte Chemie</i> ,	3.6	
67	Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. <i>Journal of the American Chemical Society</i> ,	16.4	8
66	Chemo- and Site-Selective Electrooxidative Alkane Fluorination by C(sp3)日 Cleavage. <i>Chemistry - A European Journal</i> ,	4.8	4
65	Facile Electrochemical Synthesis of Silyl Acetals: An Air-Stable Precursor to Formylsilane. <i>Tetrahedron Letters</i> , 2022 , 154026	2	
64	Synthesis of Cyclopentene Derivatives via Electrochemical-Induced Intermolecular Selective (3+2) Annulation. <i>Angewandte Chemie - International Edition</i> ,	16.4	1
63	N,N-Bis(Silylmethyl)anilines: Synthesis and structure. <i>Journal of Organometallic Chemistry</i> , 2022 , 976, 122438	2.3	

62	Water enables the tunable electrochemical synthesis of heterocyclic 3a- or 5a-bromoindolines.	O
61	First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell. 18, 979-990	
60	Metal-Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator.	1
59	Electrochemical Cyclization of Alkynyl Enaminones: Controllable Synthesis of Indeno[1,2-c]pyrroles or Indanones. 2022 , 87, 11131-11140	O
58	Electrocarboxylation of Aryl Epoxides with CO 2 for the Facile and Selective Synthesis of Hydroxy Acids.	3
57	Cross-Coupling of CH and NH Bonds: A Hydrogen Evolution Strategy for the Construction of CN Bonds. 2022 , 2022,	1
56	Electrocarboxylation of Aryl Epoxides with CO 2 for the Facile and Selective Synthesis of Hydroxy Acids.	
55	Selenium-Electrocatalytic Cyclization of 2-Vinylanilides towards Indoles of Peptide Labeling.	O
54	Alkoxysulfonyl radical species: acquisition and transformation towards sulfonate esters through electrochemistry.	1
53	Continuous-flow self-supported seATRP using a sonicated microreactor.	1
52	Electricity Promoted Chemoselective Functionalization of Alkenes: Diastereoselective Synthesis of Oxindole Containing Thioethers and Selenoethers. 2022 , 7,	0
51	Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. 4,	1
50	Metal-Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. 2022 , 134,	О
49	Alkyl Radical Generation via Cla Bond Cleavage in 2-Substituted Oxazolidines. 2022 , 12, 12469-12476	1
48	Recent Advances in the Electrochemical Functionalization of Isocyanides.	0
47	Zinc-free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. 12617-12626	3
46	C?H Arylation of Saturated N -Heterocycles. 1-25	О
45	Electrophotocatalytic C?H Bonds Functionalization. 1-25	O

44	Regiodivergent Electrophotocatalytic Aminooxygenation of Aryl Olefins.	О
43	Electrochemical Oxidative C?H Functionalization: A Metal-Free Approach. 1-27	Ο
42	Electrochemical CH/NH cross-coupling of 2-phenylindolizines with phenothiazines to synthesize novel N-aryl phenothiazine derivatives. 2022 , 107935	0
4 ¹	Cobalt-Catalyzed Enantioselective Intramolecular Reductive Cyclization via Electrochemistry.	O
40	Electrochemical Metal-Catalyzed Azidoesterification of Alkenes.	O
39	Anchored ferrocene based heterogeneous electrocatalyst for the synthesis of benzimidazoles. 2022 , 435, 141399	O
38	Preparative scale electrochemical cells for the fast and easy generation of metabolites. 2023,	0
37	Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. 2022, 27, 7721	O
36	Site-Selective Electrochemical C⊞ Carboxylation of Arenes with CO2.	1
35	Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. 2022 , 8,	O
34	Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side-Chain Functionalization.	1
33	Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side-Chain Functionalization.	O
32	Site-Selective Electrochemical C⊞ Carboxylation of Arenes with CO2.	0
31	Recent Advances in the Use of Transition Metal Catalysts in the Electro-Organic Synthesis. 2022 , 169, 115501	O
30	Cu-catalyzed enantioselective decarboxylative cyanation via the synergistic merger of photocatalysis and electrochemistry.	1
29	TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis - Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity.	O
28	Demonstrating the Electron P roton-Transfer Mechanism of Aqueous Phase 4-Nitrophenol Hydrogenation Using Unbiased Electrochemical Cells. 2022 , 12, 15021-15027	1
27	Advances in Selectively Electrocatalytic Hydrogenation of Alkynes to Alkenes.	O

26	Collision Electrochemical Synthesis of Metal Nanoparticles Using Electrons as Green Reducing Agent.	Ο
25	Reactions in single-molecule junctions.	O
24	Recent advances in electrooxidative radical transformations of alkynes.	2
23	Electrophotocatalytic Oxygenation of Multiple Adjacent CH Bonds.	3
22	Electrochemical organic reactions: A tutorial review. 10,	0
21	Electrochemical Oxidative Selenation of 4 H -Pyrido-[1,2- a]-pyrimidin-4-ones with Diorganyldiselenides. 2023 , 8,	O
20	Proton exchange membrane electrolysis of methanol for simultaneously synthesizing formaldehyde and hydrogen.	0
19	Grafting and solubilization of redox-active organic materials for aqueous redox flow batteries.	O
18	Intramolecular Friedellarafts alkylation by electrochemical carbenium ion generation. 2022, 58, 732-736	0
17	An evolution in electrochemical and chemical synthesis applications in prospects of ionic liquids. 2023 , 113-154	O
16	Current-controlled nickel-catalyzed multi-electrophile electroreductive cross-coupling.	1
15	Electrochemical Dehydrogenative Cyclization/Aromatization of Aniline-Tethered Alkylidenecyclopropanes: Facile Access to Benzo[c]carbazoles.	O
14	General Concepts and Recent Advances in the Electrochemical Transformation of Chloro- and Hydrosilanes.	0
13	Contemporary photoelectrochemical strategies and reactions in organic synthesis. 2023, 59, 3487-3506	O
12	Recent Advances in Rhodium-Catalyzed Electrochemical CH Activation.	O
11	Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. 2023 , 14,	O
10	Electrochemical rhodium catalysed alkyne annulation with pyrazoles through anodic oxidation b metal oxidant/additive free methodology. 2023 , 21, 2024-2033	1
9	Electrochemical oxidative C(sp3)日 cross-coupling with hydrogen evolution.	O

8	Electrosynthesis of bridged or fused sulfonamides through complex radical cascade reactions: divergence in medium-sized ring formation. 2023 , 14, 3541-3547	Ο
7	Electrochemical trifluoromethylation of 2-isocyanobiaryls using CF3SO2Na: synthesis of 6-(trifluoromethyl)phenanthridines.	O
6	Electrochemical dual 日,配(sp3)日 functionalization of cyclic N-aryl amines. 2023 , 25, 2681-2689	O
5	Recent Advances on Catalytic Enantioselective Protonation for Construction of ⊞-Tertiary Carbonyl Compounds. 2023 , 43, 961	O
4	Special Collection on Organic Electrocatalysis.	Ο
3	Special Collection on Organic Electrocatalysis. Visible-light-induced chemo-, diastereo- and enantioselective ⊞-C(sp3)⊞ functionalization of alkyl silanes.	0
·	Visible-light-induced chemo-, diastereo- and enantioselective ∃-C(sp3)⊞ functionalization of alkyl	