A New Zirconium Inorganic Building Brick Forming Me Exceptional Stability

Journal of the American Chemical Society 130, 13850-13851

DOI: 10.1021/ja8057953

Citation Report

#	Article	IF	CITATIONS
57	Guestâ€Driven Luminescence: Lanthanideâ€Based Host–Guest Systems with Bimodal Emissive Properties Based on a Guestâ€Driven Approach. Chemistry - A European Journal, 2009, 15, 10432-10445.	1.7	71
60	Giant Pores in a Chromium 2,6â€Naphthalenedicarboxylate Openâ€Framework Structure with MILâ€101 Topology. Angewandte Chemie - International Edition, 2009, 48, 3791-3794.	7.2	189
61	Metal–Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie - International Edition, 2009, 48, 7502-7513.	7.2	1,732
62	[Al ₄ (OH) ₂ (OCH ₃) ₄ (H ₂ Nâ€bdc) ₃]á A 12â€Connected Porous Metal–Organic Framework with an Unprecedented Aluminumâ€Containing Brick. Angewandte Chemie - International Edition, 2009, 48, 5163-5166.	â‹ <i>x7.2</i>	i> H <sut 260</sut
63	The Effect of Pressure on ZIFâ€8: Increasing Pore Size with Pressure and the Formation of a Highâ€Pressure Phase at 1.47â€GPa. Angewandte Chemie - International Edition, 2009, 48, 7087-7089.	7.2	444
64	Two-Dimensional Networks of Lanthanide Cubane-Shaped Dumbbells. Inorganic Chemistry, 2009, 48, 11748-11754.	1.9	67
65	Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009, 38, 1450.	18.7	7,228
66	Formation of a Thermally Stable, Porous Coordination Network via a Crystalline-to-Amorphous-to-Crystalline Phase Transition. Journal of the American Chemical Society, 2009, 131, 3860-3861.	6.6	82
67	Thermally Resolved in Situ Dynamic Light Scattering Studies of Zirconium(IV) Complex Formation. Crystal Growth and Design, 2009, 9, 5213-5219.	1.4	25
68	A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 2009, 131, 10857-10859.	6.6	1,127
69	Highly Porous and Robust 4,8-Connected Metalâ^'Organic Frameworks for Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 4610-4612.	6.6	185
70	The application of metal-organic frameworks in catalysis (Review). Petroleum Chemistry, 2010, 50, 167-180.	0.4	108
71	Two Thermostable Three-Dimensional Homochiral Metalâ^'Organic Polymers with Quartz Topology. Crystal Growth and Design, 2010, 10, 1307-1311.	1.4	78
72	Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 2010, 132, 7902-7904.	6.6	140
73	Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs. Topics in Catalysis, 2010, 53, 859-868.	1.3	73
74	Structural Investigation of Coordination Polymers Constructed from a Conformational Bisâ€triazole Ligand and Vâ€Shaped Bridging Carboxylate Anions: Hydrothermal Syntheses, Crystal Structures, and Property Studies. European Journal of Inorganic Chemistry, 2010, 2010, 5545-5555.	1.0	46
75	EXAFS as Powerful Analytical Tool for the Investigation of Organic–Inorganic Hybrid Materials. Advanced Functional Materials, 2010, 20, 4026-4047.	7.8	33
76	Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 2010, 16, 11133-11138.	1.7	718

#	Article	IF	Citations
77	Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. Journal of Colloid and Interface Science, 2010, 348, 615-620.	5.0	182
78	Porosity tuning of carborane-based metal–organic frameworks (MOFs) via coordination chemistry and ligand design. Inorganica Chimica Acta, 2010, 364, 266-271.	1.2	64
79	Hydrogen adsorption on metal-organic framework MOF-177. Tsinghua Science and Technology, 2010, 15, 363-376.	4.1	38
80	Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions. International Journal of Molecular Sciences, 2010, 11, 3803-3845.	1.8	113
81	Biphenyl-4,4′-dicarboxylic acidN,N-dimethylformamide monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2209-o2209.	0.2	1
82	Functionalization of UiO-66 Metalâ^'Organic Framework and Highly Cross-Linked Polystyrene with Cr(CO) ₃ : In Situ Formation, Stability, and Photoreactivity. Chemistry of Materials, 2010, 22, 4602-4611.	3.2	120
83	Isoreticular Chiral Metalâ^'Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes. Journal of the American Chemical Society, 2010, 132, 15390-15398.	6.6	635
84	Post-synthetic modification of the metal–organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20, 9848.	6.7	340
85	Three Novel Metal-Organic Frameworks with Different Topologies Based on 3,3′-Dimethoxy-4,4′-biphenyldicarboxylic Acid: Syntheses, Structures, and Properties. Crystal Growth and Design, 2010, 10, 887-894.	1.4	65
86	In Situ XAS and XRPD Parametric Rietveld Refinement To Understand Dealumination of Y Zeolite Catalyst. Journal of the American Chemical Society, 2010, 132, 667-678.	6.6	174
87	A Series of (6,6)-Connected Porous Lanthanideâ^'Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2010, 49, 10001-10006.	1.9	151
88	A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(<scp>iv</scp>) dicarboxylates. Chemical Communications, 2010, 46, 767-769.	2.2	243
89	Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22, 6632-6640.	3.2	1,547
90	Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chemical Society Reviews, 2010, 39, 4951.	18.7	407
91	Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010, 46, 7700.	2.2	707
92	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chemical Society Reviews, 2010, 39, 4885.	18.7	130
93	Photo-Induced Pyridine Substitution in <i>ci>cis</i> -[Ru(bpy) ₂ (py) ₂]Cl ₂ : A Snapshot by Time-Resolved X-ray Solution Scattering. Inorganic Chemistry, 2010, 49, 11240-11248.	1.9	41
94	Stepwise assembly of metal–organic framework based on a metal–organic polyhedron precursor for drug delivery. Chemical Communications, 2011, 47, 7128.	2.2	170

#	Article	IF	CITATIONS
95	New alkali earth metal–organic frameworks with a very high thermal stability: synthesis, crystal structure, and characterization of AE[NC5H3(CO2)2] (AE = Ba or Sr). CrystEngComm, 2011, 13, 4599.	1.3	19
96	Distinct structures of coordination polymers incorporating flexible triazole-based ligand: topological diversities, crystal structures and property studies. Dalton Transactions, 2011, 40, 793-804.	1.6	64
97	From microscopic insights of H2 adsorption to uptake estimations in MOFs. Physical Chemistry Chemical Physics, 2011, 13, 16558.	1.3	19
98	Facile synthesis of metal–organic cobalt hydroxide nanorods exhibiting a reversible structural transition. Chemical Communications, 2011, 47, 11002.	2.2	13
99	Properties of PVA/HfO ₂ Hybrid Electrospun Fibers and Calcined Inorganic HfO ₂ Fibers. Journal of Physical Chemistry C, 2011, 115, 5535-5544.	1.5	23
100	Sr2[C6H3(CO2)3(NO3)]·DMF: One-Dimensional Nano-Channel in a New Non-Centrosymmetric Strontium–Organic Framework with High Thermal Stability. Crystal Growth and Design, 2011, 11, 2698-2701.	1.4	29
101	A Cubic, 12-Connected, Microporous Metalâ^'Organometallic Phosphate Framework Sustained by Truncated Tetrahedral Nodes. Journal of the American Chemical Society, 2011, 133, 1634-1637.	6.6	56
102	Microwave-Assisted Cyanation of an Aryl Bromide Directly on a Metalâ^'Organic Framework. Inorganic Chemistry, 2011, 50, 729-731.	1.9	81
103	Extracting organic contaminants from water using the metal–organic framework CrIII(OH)Å-{O2C–C6H4–CO2}. Physical Chemistry Chemical Physics, 2011, 13, 5587.	1.3	74
104	Metal Alkoxide Functionalization in Metalâ^'Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2011, 115, 2066-2075.	1.5	111
105	Structural diversity of coordination polymers assembled from adamantane dicarboxylates and conformational bis-triazole ligand. CrystEngComm, 2011, 13, 5179.	1.3	24
108	Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 2011, 13, 6388.	1.3	365
110	Porous Metal–Organic Frameworks as New Drug Carriers. , 2011, , 559-573.		4
111	GaN@ZIF-8: Selective Formation of Gallium Nitride Quantum Dots inside a Zinc Methylimidazolate Framework. Journal of the American Chemical Society, 2011, 133, 16370-16373.	6.6	119
112	Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 2011, 40, 4879.	1.6	257
113	Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chemical Communications, 2011, 47, 9603.	2.2	345
114	Series of Porous 3-D Coordination Polymers Based on Iron(III) and Porphyrin Derivatives. Chemistry of Materials, 2011, 23, 4641-4651.	3.2	73
115	Metal-Specific Interactions of H ₂ Adsorbed within Isostructural Metal–Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 20310-20318.	6.6	73

#	Article	IF	CITATIONS
116	Understanding the Thermodynamic and Kinetic Behavior of the CO ₂ /CH ₄ Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach. Journal of Physical Chemistry C, 2011, 115, 13768-13774.	1.5	166
117	Postsynthetic Modification of a Metal–Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake. Inorganic Chemistry, 2011, 50, 6853-6855.	1.9	194
118	Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 2011, 133, 13445-13454.	6.6	1,363
119	Why hybrid porous solids capture greenhouse gases?. Chemical Society Reviews, 2011, 40, 550-562.	18.7	603
120	Heterometal expansion of oxozirconium carboxylate clusters. Dalton Transactions, 2011, 40, 331-333.	1.6	32
121	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. Journal of Physical Chemistry Letters, 2011, 2, 1701-1709.	2.1	125
122	Molecular architecture based on manganese triangles: Monomer, dimer, and one-dimensional polymer. Polyhedron, 2011, 30, 3265-3271.	1.0	12
123	Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity. Journal of Catalysis, 2011, 281, 177-187.	3.1	269
124	Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. Chemical Society Reviews, 2011, 40, 1006.	18.7	351
125	High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2011, 2, 1311.	3.7	496
126	A "click-based―porous organic polymer from tetrahedral building blocks. Journal of Materials Chemistry, 2011, 21, 1700.	6.7	156
127	An Evaluation of UiOâ€66 for Gasâ€Based Applications. Chemistry - an Asian Journal, 2011, 6, 3270-3280.	1.7	192
128	Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011, 23, 1700-1718.	3.2	1,420
129	An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chemical Communications, 2011, 47, 1521-1523.	2.2	392
130	Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 2011, 23, 2565-2572.	3.2	479
131	Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO ₂ . New Journal of Chemistry, 2011, 35, 41-44.	1.4	125
132	Threeâ€Dimensional Heteropolynuclear Zn ₄ <i>Ln</i> 2 Coordination Frameworks: Structure and NIR Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2223-2227.	0.6	1
133	1,4-Phenylenediacetate-Based Ln MOFs - Synthesis, Structures, Luminescence, and Catalytic Activity. European Journal of Inorganic Chemistry, 2011, 2011, 4369-4376.	1.0	48

#	ARTICLE	IF	CITATIONS
136	Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie - International Edition, 2011, 50, 3696-3700.	7.2	232
137	Metal–Organic Framework Regioisomers Based on Bifunctional Ligands. Angewandte Chemie - International Edition, 2011, 50, 12193-12196.	7.2	57
138	Modulated Synthesis of Zrâ€Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 2011, 17, 6643-6651.	1.7	1,320
139	Probing the Dynamics of CO ₂ and CH ₄ within the Porous Zirconium Terephthalate UiOâ€66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations. Chemistry - A European Journal, 2011, 17, 8882-8889.	1.7	137
140	Porous Interpenetrated Zirconium–Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal–Organic Frameworks. Chemistry - A European Journal, 2011, 17, 9320-9325.	1.7	170
141	Synthesis, characterization and hydrogen adsorption on metal-organic frameworks Al, Cr, Fe and Ga-BTB. Chemical Engineering Journal, 2011, 171, 517-525.	6.6	20
142	Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 2011, 139, 67-73.	2.2	257
143	Mesoporous ZrlVand HflVmetal–organic frameworks with reo topology. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s225-s225.	0.3	0
144	From stimuli-responsive organic dye crystals to photoluminescent three-dimensional open framework. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s225-s225.	0.3	0
145	Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66. Journal of Physical Chemistry Letters, 2012, 3, 3702-3706.	2.1	26
146	Synthesis, characterization and CO2 uptake of a chiral Co(ii) metal–organic framework containing a thiazolidine-based spacer. Journal of Materials Chemistry, 2012, 22, 10335.	6.7	38
147	Adjusting the Stability of Metal–Organic Frameworks under Humid Conditions by Ligand Functionalization. Langmuir, 2012, 28, 16874-16880.	1.6	170
148	Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study. Journal of the American Chemical Society, 2012, 134, 19895-19908.	6.6	322
149	Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chemical Communications, 2012, 48, 11656.	2.2	405
150	Controlled modification of the inorganic and organic bricks in an Al-based MOF by direct and post-synthetic synthesis routes. CrystEngComm, 2012, 14, 4126.	1.3	52
151	A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Transactions, 2012, 41, 3620.	1.6	20
152	Spectroscopic and adsorptive studies of a thermally robust pyrazolato-based PCP. Dalton Transactions, 2012, 41, 4012.	1.6	25
153	Two 3D metal–organic frameworks with different topologies, thermal stabilities and magnetic properties. CrystEngComm, 2012, 14, 5905.	1.3	33

#	ARTICLE	IF	Citations
154	CAU-3: A new family of porous MOFs with a novel Al-based brick: $[Al2(OCH3)4(O2C-X-CO2)]$ (X = aryl). Dalton Transactions, 2012, 41, 4164.	1.6	76
155	Two Cadmium-Cluster-Based Metal–Organic Frameworks with Mixed Ligands of 1,2,3-Benzenetriazole (HBTA) and 1,4-Benzenedicarboxylic acid (H2BDC). Crystal Growth and Design, 2012, 12, 1992-1998.	1.4	47
156	Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chemical Science, 2012, 3, 198-204.	3.7	160
157	Probing the Dynamics of the Porous Zr Terephthalate UiO-66 Framework Using ² H NMR and Neutron Scattering. Journal of Physical Chemistry C, 2012, 116, 12131-12136.	1.5	97
158	Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 2012, 43, 63-70.	1.0	38
159	Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 14690-14693.	6.6	351
160	Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 2012, 22, 18139.	6.7	158
161	Highly selective carbon dioxide adsorption in a water-stable indium–organic framework material. Chemical Communications, 2012, 48, 9696.	2.2	148
162	Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 6443-6445.	1.9	763
163	CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chemical Communications, 2012, 48, 9831.	2.2	180
164	Discovery, development, and functionalization of Zr(<scp>iv</scp>)-based metal–organic frameworks. CrystEngComm, 2012, 14, 4096-4104.	1.3	282
165	Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption. CrystEngComm, 2012, 14, 7099.	1.3	174
166	Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale, 2012, 4, 3089.	2.8	87
167	Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 2012, 48, 11275.	2.2	378
168	Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413-414, 48-61.	4.1	335
169	H ₂ storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012, 14, 1614-1626.	1.3	415
170	Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2012, 2, 2630-2640.	5.5	714
174	Zirconiumâ€Metalloporphyrin PCNâ€222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie - International Edition, 2012, 51, 10307-10310.	7.2	1,555

#	ARTICLE	IF	CITATIONS
175	A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 9267-9271.	7.2	407
176	Automated Diffraction Tomography for the Structure Elucidation of Twinned, Subâ€micrometer Crystals of a Highly Porous, Catalytically Active Bismuth Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 10373-10376.	7.2	151
177	Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir, 2012, 28, 15606-15613.	1.6	505
178	Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal–organic frameworks: a combined experimental and molecular simulation study. Physical Chemistry Chemical Physics, 2012, 14, 2317.	1.3	81
179	Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 18082-18088.	6.6	702
180	Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Transactions, 2012, 41, 13791.	1.6	170
181	How Water Fosters a Remarkable 5-Fold Increase in Low-Pressure CO ₂ Uptake within Mesoporous MIL-100(Fe). Journal of the American Chemical Society, 2012, 134, 10174-10181.	6.6	198
182	Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 2012, 41, 14003.	1.6	442
183	Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Communications, 2012, 3, 604.	5.8	356
184	Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66. Langmuir, 2012, 28, 5715-5723.	1.6	112
185	Synthesis, crystal structure and properties of a novel framework aluminium diphosphonate. RSC Advances, 2012, 2, 10291.	1.7	3
186	Rational Tuning of Water Vapor and CO ₂ Adsorption in Highly Stable Zr-Based MOFs. Journal of Physical Chemistry C, 2012, 116, 23526-23532.	1.5	129
187	Oxygen sensing via phosphorescence quenching of doped metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10329.	6.7	89
188	Porous coordination polymers constructed from anisotropic metal–carboxylate–pyridyl clusters. Pure and Applied Chemistry, 2012, 85, 405-416.	0.9	14
189	Enhanced stability and CO2 affinity of a UiO-66 type metal–organic framework decorated with dimethyl groups. Dalton Transactions, 2012, 41, 9283.	1.6	174
190	Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 2012, 134, 18790-18796.	6.6	370
191	Superior Capture of CO ₂ Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon. Chemistry of Materials, 2012, 24, 4725-4734.	3.2	199
192	Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2035-2052.	1.0	35

#	Article	IF	CITATIONS
193	Ultrasensitive Humidity Detection Using Metal–Organic Framework-Coated Microsensors. Analytical Chemistry, 2012, 84, 7043-7051.	3.2	111
194	Insights into Adsorption of NH ₃ on HKUST-1 Metal–Organic Framework: A Multitechnique Approach. Journal of Physical Chemistry C, 2012, 116, 19839-19850.	1.5	176
195	Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation. Journal of Chromatography A, 2012, 1257, 116-124.	1.8	136
196	MCM-41, MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: adsorption equilibria. Adsorption, 2012, 18, 213-227.	1.4	41
197	Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B, 2012, 86, .	1.1	196
198	Advances in Pressure Swing Adsorption for Gas Separation. ISRN Chemical Engineering, 2012, 2012, 1-13.	1.2	146
199	Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chemical Reviews, 2012, 112, 675-702.	23.0	1,942
200	Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 970-1000.	23.0	1,986
201	Highly Porous 4,8-Connected Metal–Organic Frameworks: Synthesis, Characterization, and Hydrogen Uptake. Inorganic Chemistry, 2012, 51, 2503-2508.	1.9	24
202	Single-atom active sites on metal-organic frameworks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1985-1999.	1.0	48
203	Single-Atom Ligand Changes Affect Breathing in an Extended Metal–Organic Framework. Inorganic Chemistry, 2012, 51, 5671-5676.	1.9	61
204	Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112, 933-969.	23.0	3,923
205	Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112, 869-932.	23.0	5,588
206	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
207	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	23.0	5,612
208	Near-UV photo-induced modification in isoreticular metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10188-10194.	6.7	31
209	Pt Nanoparticles@Photoactive Metal–Organic Frameworks: Efficient Hydrogen Evolution via Synergistic Photoexcitation and Electron Injection. Journal of the American Chemical Society, 2012, 134, 7211-7214.	6.6	657
210	Revealing the Structure–Property Relationships of Metal–Organic Frameworks for CO ₂ Capture from Flue Gas. Langmuir, 2012, 28, 12094-12099.	1.6	110

#	Article	IF	CITATIONS
211	Zr(iv) and Hf(iv) based metal–organic frameworks with reo-topology. Chemical Communications, 2012, 48, 8407.	2.2	187
212	Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chemistry of Materials, 2012, 24, 2168-2177.	3.2	200
213	Titration of Zr ₃ (μâ€OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiOâ€67, [Zr ₆ O ₄ (OH) ₄ (biphenyldicarboxylate) ₆], and Their Reaction with [AuMe(PMe ₃)]. European Journal of Inorganic Chemistry, 2012, 2012, 3014-3022.	1.0	66
214	Vanadium Analogues of Nonfunctionalized and Aminoâ€Functionalized MOFs with MILâ€101 Topology – Synthesis, Characterization, and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2012, 2012, 2481-2486.	1.0	48
215	Recent advances in carbon dioxide capture with metalâ€organic frameworks. , 2012, 2, 239-259.		301
216	Thermal post-synthetic modification of Al-MIL-53–COOH: systematic investigation of the decarboxylation and condensation reaction. CrystEngComm, 2012, 14, 4119.	1.3	76
217	Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 2012, 112, 1105-1125.	23.0	6,221
218	Postsynthetic ligand exchange as a route to functionalization of â€~inert' metal–organic frameworks. Chemical Science, 2012, 3, 126-130.	3.7	403
220	Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 4887-4890.	7.2	384
221	Postâ€Synthetic Modification of Zrâ€Metal–Organic Frameworks through Cycloaddition Reactions. Chemistry - A European Journal, 2012, 18, 6979-6985.	1.7	53
222	A Method for Screening the Potential of MOFs as CO ₂ Adsorbents in Pressure Swing Adsorption Processes. ChemSusChem, 2012, 5, 762-776.	3.6	109
223	Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2012, 51, 6513-6519.	1.8	474
224	Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 2012, 112, 1196-1231.	23.0	2,699
225	A 12-connected metal–organic framework constructed from an unprecedented cyclic dodecanuclear copper cluster. Chemical Communications, 2012, 48, 7295.	2.2	26
226	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	2,2	67
227	Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chemical Engineering Journal, 2012, 187, 415-420.	6.6	227
228	Macrocycles based on magnetically functionalized zirconium oxide clusters. Inorganica Chimica Acta, 2012, 380, 72-77.	1.2	9
229	Adsorption of CH4 and CO2 on Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2012, 366, 120-124.	5.0	110

#	Article	IF	CITATIONS
230	Three novel indium MOFs derived from dicarboxylate ligands: Syntheses, structures and photoluminescent properties. Journal of Solid State Chemistry, 2012, 190, 208-215.	1.4	29
231	Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 2012, 152, 64-70.	2.2	334
232	Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2. Microporous and Mesoporous Materials, 2012, 158, 229-234.	2.2	44
233	Synthesis, structure and magnetic property of a new nickel (II) 1,4-benzenedicarboxylate. Journal of Molecular Structure, 2012, 1010, 184-189.	1.8	1
234	A Novel Zrâ€Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker. European Journal of Inorganic Chemistry, 2012, 2012, 790-796.	1.0	84
235	Solvents influence on sizes of channels in three fry topological Mn(ii)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm, 2013, 15, 8125.	1.3	66
236	Two new metal–organic frameworks based on cyclic dodecanuclear copper units. Inorganic Chemistry Communication, 2013, 33, 29-32.	1.8	14
237	Oneâ€Pot Multifunctional Catalysis with NNNâ€Pincer Zrâ€MOF: Zr Base Catalyzed Condensation with Rhâ€Catalyzed Hydrogenation. ChemCatChem, 2013, 5, 3092-3100.	1.8	57
238	Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Transactions, 2013, 42, 15967.	1.6	238
239	Optical metal-organic framework sensor for selective discrimination of some toxic metal ions in water. Analytica Chimica Acta, 2013, 793, 90-98.	2.6	103
240	Au ^I Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites. ChemCatChem, 2013, 5, 692-696.	1.8	43
241	Incorporation of metal–organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chemical Communications, 2013, 49, 7162.	2.2	118
242	Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chemistry of Materials, 2013, 25, 2767-2776.	3.2	412
243	Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135, 11465-11468.	6.6	871
244	Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. RSC Advances, 2013, 3, 14438.	1.7	63
245	Bifunctional pyrazolate–carboxylate ligands for isoreticular cobalt and zinc MOF-5 analogs with magnetic analysis of the {Co4(Î⅓44-O)} node. CrystEngComm, 2013, 15, 9757.	1.3	98
246	The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 2013, 1, 11922.	5.2	466
247	Effects of pelletization pressure on the physical and chemical properties of the metal–organic frameworks Cu3(BTC)2 and UiO-66. Microporous and Mesoporous Materials, 2013, 179, 48-53.	2.2	139

#	Article	IF	CITATIONS
248	Nonporous Titanium–Oxo Molecular Clusters That Reversibly and Selectively Adsorb Carbon Dioxide. Inorganic Chemistry, 2013, 52, 9705-9707.	1.9	66
249	In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67. Topics in Catalysis, 2013, 56, 770-782.	1.3	145
250	Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Dalton Transactions, 2013, 42, 15421.	1.6	116
251	Porous and Robust Lanthanide Metal-Organoboron Frameworks as Water Tolerant Lewis Acid Catalysts. Inorganic Chemistry, 2013, 52, 10286-10291.	1.9	87
252	Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal–Organic Framework Crystals and Hetero Structures in Confined Microdroplets. Journal of the American Chemical Society, 2013, 135, 14619-14626.	6.6	294
253	An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society, 2013, 135, 13934-13938.	6.6	646
254	Two-step crystal engineering of porous nets from [Cr3(Î $\frac{1}{4}$ 3-O)(RCO2)6] and [Cu3(Î $\frac{1}{4}$ 3-Cl)(RNH2)6Cl6] molecular building blocks. Chemical Communications, 2013, 49, 8154.	2.2	40
255	The asc Trinodal Platform: Twoâ€Step Assembly of Triangular, Tetrahedral, and Trigonalâ€Prismatic Molecular Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 2902-2905.	7.2	88
256	Insight into Lewis Acid Catalysis with Alkalineâ€Earth MOFs: The Role of Polyhedral Symmetry Distortions. Chemistry - A European Journal, 2013, 19, 15572-15582.	1.7	23
257	Band Gap Modulations in UiO Metal–Organic Frameworks. Journal of Physical Chemistry C, 2013, 117, 20610-20616.	1.5	100
258	Metal–Organic Frameworks Based on Previously Unknown Zr ₈ /Hf ₈ Cubic Clusters. Inorganic Chemistry, 2013, 52, 12661-12667.	1.9	197
259	Framework Isomerism in Vanadium Metal–Organic Frameworks: MIL-88B(V) and MIL-101(V). Crystal Growth and Design, 2013, 13, 5036-5044.	1.4	100
260	Activation of metal–organic framework materials. CrystEngComm, 2013, 15, 9258.	1.3	239
261	Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chemical Communications, 2013, 49, 9140.	2.2	241
262	Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 2013, 135, 17105-17110.	6.6	880
263	The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341, 1230444.	6.0	12,032
264	Microwave-Assisted Solvothermal Synthesis and Optical Properties of Tagged MIL-140A Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 12878-12880.	1.9	72
265	Ce(III) Doped Zr-Based MOFs as Excellent NO ₂ Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbents at Ambient Conditions. ACS Applied Materials & District Substitution (1988) Adsorbent Su	4.0	165

#	Article	IF	CITATIONS
266	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	6.6	473
267	New Functionalized Metal–Organic Frameworks MIL-47-X (X = â^'Cl, â^'Br, â^'CH ₃ ,) Tj ETQq1 1 0.78	84314 rgB 1.5	T /Overlock 79
207	Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796.	1.0	
268	High CO ₂ /CH ₄ and C2 Hydrocarbons/CH ₄ Selectivity in a Chemically Robust Porous Coordination Polymer. Advanced Functional Materials, 2013, 23, 3525-3530.	7.8	182
270	Synthesis and Crystal Structures of Various Phases of the Microporous Three-Dimensional Coordination Polymer [Zr(OH) ₂ (C ₂ O ₄)] _{<i>n</i>) _{<i>n</i>}<i>n</i>}<i>n</i></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	1.4	12
271	Assembly of a unique octa-nuclear copper cluster-based metal–organic framework with highly selective CO2 adsorption over N2 and CH4. Chemical Communications, 2013, 49, 11433.	2.2	44
272	Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Advances, 2013, 3, 21582.	1.7	67
273	Tuning the Moisture and Thermal Stability of Metal–Organic Frameworks through Incorporation of Pendant Hydrophobic Groups. Crystal Growth and Design, 2013, 13, 4760-4768.	1.4	94
274	A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49, 9449.	2.2	1,340
275	A Family of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagom \tilde{A} © Lattice Sheets. Journal of the American Chemical Society, 2013, 135, 14016-14019.	6.6	93
276	Highly dispersed Au nanoparticles immobilized on Zr-based metal–organic frameworks as heterostructured catalyst for CO oxidation. Journal of Materials Chemistry A, 2013, 1, 14294.	5.2	95
277	Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. CrystEngComm, 2013, 15, 9356.	1.3	62
278	Hetero-metal hydroxide nanostrand assisted synthesis of MIL-110 nanorod arrays on porous substrate. CrystEngComm, 2013, 15, 5591.	1.3	7
279	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie, 2013, 125, 10506-10510.	1.6	66
280	A Multiscale Study of MOFs as Adsorbents in H ₂ PSA Purification. Industrial & amp; Engineering Chemistry Research, 2013, 52, 9946-9957.	1.8	63
281	Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs. CrystEngComm, 2013, 15, 9572.	1.3	196
282	Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi). Dalton Transactions, 2013, 42, 13649.	1.6	373
283	Bifunctional iridium-(2-aminoterephthalate)â€"Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 2013, 299, 137-145.	3.1	167
284	Synthesis and Selfâ€Assembly of Monodispersed Metalâ€Organic Framework Microcrystals. Chemistry - an Asian Journal, 2013, 8, 69-72.	1.7	121

#	Article	IF	CITATIONS
285	Rapid and enhanced activation of microporous coordination polymers by flowing supercritical CO2. Chemical Communications, 2013, 49, 1419.	2.2	63
286	Interactions of NO ₂ with Zr-Based MOF: Effects of the Size of Organic Linkers on NO ₂ Adsorption at Ambient Conditions. Langmuir, 2013, 29, 168-174.	1.6	128
287	Kinetic Water Stability of an Isostructural Family of Zinc-Based Pillared Metal–Organic Frameworks. Langmuir, 2013, 29, 633-642.	1.6	161
288	Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42, 4840.	1.6	81
289	A Water-Stable Metal–Organic Framework with Highly Acidic Pores for Proton-Conducting Applications. Journal of the American Chemical Society, 2013, 135, 1193-1196.	6.6	409
290	The Syntheses, Crystal Structure, and Exceptional Chemical Stability of Three Multinuclear Pb ^{II} Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 438-445.	1.0	12
291	Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Transactions, 2013, 42, 4730.	1.6	171
292	Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 2013, 25, 17-26.	3.2	307
293	A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chemistry, 2013, 5, 203-211.	6.6	556
294	Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal Growth and Design, 2013, 13, 1231-1237.	1.4	262
295	Comparison of commercial and new adsorbent materials for pre-combustion CO2 capture by pressure swing adsorption. Energy Procedia, 2013, 37, 167-174.	1.8	7
296	Effect of metal alkoxide functionalization on hydrogen mobility in metal–organic frameworks. Chemical Physics Letters, 2013, 577, 76-81.	1.2	9
297	Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, 2013, 38, 16710-16715.	3.8	153
298	Threeâ€Dimensional MOFâ€Type Architectures with Tetravalent Uranium Hexanuclear Motifs (U ₆ O ₈). Chemistry - A European Journal, 2013, 19, 5324-5331.	1.7	115
299	From MOFs to zeolites: zirconium sites for epoxide rearrangement. New Journal of Chemistry, 2013, 37, 3496.	1.4	7
300	Design strategies for metal alkoxide functionalized metal–organic frameworks for ambient temperature hydrogen storage. Microporous and Mesoporous Materials, 2013, 171, 103-109.	2.2	21
301	Chain, layer, and self-penetrated copper dipyridylamine coordination polymers with conformationally flexible ring-based dicarboxylate ligands. Inorganica Chimica Acta, 2013, 407, 297-305.	1.2	8
302	On the development of Vacuum Swing adsorption (VSA) technology for post-combustion CO2 capture. Energy Procedia, 2013, 37, 33-39.	1.8	34

#	Article	IF	CITATIONS
303	Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science and Technology, 2013, 3, 1435.	2.1	275
304	Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 2013, 113, 734-777.	23.0	2,588
305	Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. Journal of Materials Chemistry B, 2013, 1, 1101.	2.9	118
306	Experimental Study of CO ₂ , CH ₄ , and Water Vapor Adsorption on a Dimethyl-Functionalized UiO-66 Framework. Journal of Physical Chemistry C, 2013, 117, 7062-7068.	1.5	67
307	Hexane isomers sorption on a functionalized metal–organic framework. Microporous and Mesoporous Materials, 2013, 170, 251-258.	2.2	29
308	Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid. Chinese Journal of Catalysis, 2013, 34, 167-175.	6.9	24
309	A CdSO ₄ -Type 3D Metal–Organic Framework Showing Coordination Dynamics on Cu ²⁺ Axial Sites: Vapochromic Response and Guest Sorption Selectivity. Crystal Growth and Design, 2013, 13, 1518-1525.	1.4	26
310	Exceptional Mechanical Stability of Highly Porous Zirconium Metal–Organic Framework UiO-66 and Its Important Implications. Journal of Physical Chemistry Letters, 2013, 4, 925-930.	2.1	361
311	An Adsorbent Performance Indicator as a First Step Evaluation of Novel Sorbents for Gas Separations: Application to Metal–Organic Frameworks. Langmuir, 2013, 29, 3301-3309.	1.6	131
312	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	23.0	553
313	Coordination assemblies of the CdII–BDC/bpt mixed-ligand system: positional isomeric effect, structural diversification and luminescent properties. CrystEngComm, 2013, 15, 2657.	1.3	40
314	Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods. Dalton Transactions, 2013, 42, 6450.	1.6	27
315	Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2013, 52, 4011-4016.	1.9	209
316	Gyroidal metal–organic frameworks by solvothermal subcomponent self-assembly. Chemical Communications, 2013, 49, 3413.	2.2	43
317	Solid-state NMR: A powerful tool for characterization of metal–organic frameworks. Solid State Nuclear Magnetic Resonance, 2013, 49-50, 1-11.	1.5	90
318	Mixedâ€Linker Hybrid Superpolyhedra for the Production of a Series of Largeâ€Pore Iron(III) Carboxylate Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2013, 52, 5056-5060.	7.2	97
319	Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications, 2013, 49, 3706.	2.2	108
320	Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science, 2013, 4, 2396.	3.7	506

#	Article	IF	CITATIONS
321	A General Strategy for the Synthesis of Functionalised UiOâ€66 Frameworks: Characterisation, Stability and CO ₂ Adsorption Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2154-2160.	1.0	199
322	Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013, 1, 5642.	5.2	578
323	A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chemical Communications, 2013, 49, 3634.	2,2	201
324	MOFâ€Polymer Composite Microcapsules Derived from Pickering Emulsions. Advanced Materials, 2013, 25, 2717-2722.	11.1	198
325	Syntheses, structures and luminescence properties of novel metal–organic frameworks based on zinc(ii), cadmium(ii) or lead(ii) and a 2,2′-dimethoxy-functionalised biphenyl linker. CrystEngComm, 2013, 15, 3874.	1.3	25
326	lonic Conductivity in the Metal–Organic Framework UiOâ€66 by Dehydration and Insertion of Lithium <i>tert</i> â€Butoxide. Chemistry - A European Journal, 2013, 19, 5533-5536.	1.7	182
327	Tunable Rare-Earth fcu-MOFs: A Platform for Systematic Enhancement of CO ₂ Adsorption Energetics and Uptake. Journal of the American Chemical Society, 2013, 135, 7660-7667.	6.6	474
328	Liquid Phase Oxidation of Organic Compounds by Metal-Organic Frameworks. , 2013, , 371-409.		8
329	Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. Journal of the American Chemical Society, 2013, 135, 7795-7798.	6.6	492
330	Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. Dalton Transactions, 2013, 42, 9444.	1.6	37
331	Enhancing Order and Porosity in a Highly Robust Tin(IV) Triphosphonate Framework. Inorganic Chemistry, 2013, 52, 7311-7313.	1.9	30
332	Synthesis and hydrogen storage studies of metalâ^'organic framework UiO-66. International Journal of Hydrogen Energy, 2013, 38, 13104-13109.	3.8	91
333	Unique Coordination-Based Heterometallic Approach for the Stoichiometric Inclusion of High-Valent Metal lons in a Porous Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 5645-5647.	1.9	38
334	Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration. Journal of Physical Chemistry C, 2013, 117, 11694-11704.	1.5	70
335	Construction of four coordination polymers with helical character based on a flexible bis(triazole) derivative and dicarboxylate coligands. Inorganica Chimica Acta, 2013, 405, 318-325.	1.2	8
336	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie - International Edition, 2013, 52, 10316-10320.	7.2	303
337	Composite MOF Foams: The Example of UiO-66/Polyurethane. ACS Applied Materials & Diterfaces, 2013, 5, 2360-2363.	4.0	96
338	A new metal–organic framework with high stability based on zirconium for sensing small molecules. Microporous and Mesoporous Materials, 2013, 171, 118-124.	2.2	68

#	Article	IF	CITATIONS
339	Towards acid MOFs – catalytic performance of sulfonic acid functionalized architectures. Catalysis Science and Technology, 2013, 3, 2311.	2.1	141
340	Mixed Formate-Dicarboxylate Coordination Polymers with Tetravalent Uranium: Occurrence of Tetranuclear {U ₄ 0 ₄ } and Hexanuclear {U _{0₄(OH)₄} Motifs. Crystal Growth and Design, 2013, 13, 3225-3231.}	1.4	58
341	Syntheses, structures, and properties of coordination polymers based on acrylpimaric acid. Inorganica Chimica Acta, 2013, 405, 477-484.	1.2	2
342	Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society, 2013, 135, 10525-10532.	6.6	1,148
343	Synthesis of MOFs. RSC Catalysis Series, 2013, , 9-30.	0.1	7
344	Postâ€synthetic Modification of MOFs. RSC Catalysis Series, 2013, , 31-75.	0.1	13
345	CHAPTER 5. Characterization of MOFs. 2. Long and Local Range Order Structural Determination of MOFs by Combining EXAFS and Diffraction Techniques. RSC Catalysis Series, 0, , 143-208.	0.1	11
346	Characterization of MOFs. 1. Combined Vibrational and Electronic Spectroscopies. RSC Catalysis Series, 2013, , 76-142.	0.1	20
347	CHAPTER 7. Strategies for Creating Active Sites in MOFs. RSC Catalysis Series, 0, , 237-267.	0.1	5
348	Catalysis at the Metallic Nodes of MOFs. RSC Catalysis Series, 2013, , 268-288.	0.1	7
349	CHAPTER 12. Photocatalysis by MOFs. RSC Catalysis Series, 0, , 365-383.	0.1	6
350	Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews, 2013, 113, 8261-8323.	23.0	448
351	Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10294-10297.	6.6	821
352	Highly Hydrophobic Isoreticular Porous Metal–Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angewandte Chemie - International Edition, 2013, 52, 8290-8294.	7.2	264
353	Metal-directed topological diversity of three fluorescent metal–organic frameworks based on a new tetracarboxylate strut. CrystEngComm, 2013, 15, 4606.	1.3	17
354	Understanding Hydrocarbon Adsorption in the UiO-66 Metal–Organic Framework: Separation of (Un)saturated Linear, Branched, Cyclic Adsorbates, Including Stereoisomers. Journal of Physical Chemistry C, 2013, 117, 12567-12578.	1.5	69
355	MOFâ€FF – A flexible firstâ€principles derived force field for metalâ€organic frameworks. Physica Status Solidi (B): Basic Research, 2013, 250, 1128-1141.	0.7	162
356	MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: Breakthrough experiments and process design. Separation and Purification Technology, 2013, 112, 34-48.	3.9	65

#	Article	IF	CITATIONS
357	Studies on Photocatalytic CO ₂ Reduction over NH ₂ â€Uioâ€66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14279-14285.	1.7	553
358	Study of Hydrothermal Stability and Water Sorption Characteristics of 3-Dimensional Zn-Based Trimesate. Journal of Physical Chemistry C, 2013, 117, 14608-14617.	1.5	20
359	Metal-Organic Frameworks for Photocatalysis. Structure and Bonding, 2013, , 89-104.	1.0	11
360	Identification of Nonequivalent Framework Oxygen Species in Metal–Organic Frameworks by ¹⁷ O Solid-State NMR. Journal of Physical Chemistry C, 2013, 117, 16953-16960.	1.5	59
361	Tetradihydrobenzoquinonate and Tetrachloranilate $Zr(IV)$ Complexes: Single-Crystal-to-Single-Crystal Phase Transition and Open-Framework Behavior for K $<$ sub $>$ 4 $<$ /sub $>$ Zr(DBQ) $<$ sub $>$ 4 $<$ /sub $>$ 1. Inorganic Chemistry, 2013, 52, 11237-11243.	1.9	22
362	MOFs for CO ₂ capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chemical Communications, 2013, 49, 653-661.	2.2	564
363	Kinetics study and crystallization process design for scaleâ€up of UiOâ€66â€NH ₂ synthesis. AICHE Journal, 2013, 59, 1255-1262.	1.8	62
364	Combined study of structural properties on metal-organic frameworks with same topology but different linkers or metal. Journal of Physics: Conference Series, 2013, 430, 012134.	0.3	8
365	5. Structural and electronic characterization of nanosized inorganic materials by X-ray absorption spectroscopies. , 0, , .		0
366	A Series of Exceptionally Robust Luminescent Coordination Polymers Based on a Bipyridyldicarboxylate Ligand and Rareâ€Earthâ€Metal Ions. European Journal of Inorganic Chemistry, 2013, 2013, 6111-6118.	1.0	16
369	<i>Ab initio</i> analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. Journal of Chemical Physics, 2013, 139, 164102.	1.2	145
370	Amino-functionalized Zr-MOF nanoparticles for adsorption of CO ₂ and CH ₄ . International Journal of Smart and Nano Materials, 2013, 4, 72-82.	2.0	114
371	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie, 2013, 125, 12265-12268.	1.6	8
372	Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia. Journal of Visualized Experiments, 2013, ,	0.2	7
373	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie - International Edition, 2013, 52, 12043-12046.	7.2	36
374	Surface Modification of Coordination Polymers with Biomolecules for Cellular Uptake. Bulletin of Japan Society of Coordination Chemistry, 2014, 64, 25-28.	0.1	O
375	Increasing the Stability of Metal-Organic Frameworks. Advances in Chemistry, 2014, 2014, 1-8.	1.1	208
376	Simple and Compelling Biomimetic Metal–Organic Framework Catalyst for the Degradation of Nerve Agent Simulants. Angewandte Chemie - International Edition, 2014, 53, 497-501.	7.2	364

#	Article	IF	Citations
377	Crystallography of metal–organic frameworks. IUCrJ, 2014, 1, 563-570.	1.0	62
378	Perspective: Metal-organic frameworksâ€"Opportunities and challenges. APL Materials, 2014, 2, .	2.2	3
380	Selective Host–Guest Interaction between Metal Ions and Metal–Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid tate NMR Spectroscopy. Chemistry - A European Journal, 2014, 20, 16308-16313.	1.7	35
381	Polycatenationâ€Driven Selfâ€Assembly of Nanoporous Frameworks Based on a 1D Ribbon of Rings: Regular Structural Evolution, Interpenetration Transformation, and Photochemical Modification. Chemistry - A European Journal, 2014, 20, 2488-2495.	1.7	27
385	Porous crystals as active catalysts for the synthesis of cyclic carbonates. Journal of Applied Polymer Science, 2014, 131, .	1.3	40
386	Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18442-18447.	3.3	76
388	Structures and properties of gallium-MOFs with MIL-53-topology based on aliphatic linker molecules. Microporous and Mesoporous Materials, 2014, 200, 311-316.	2.2	26
389	Adsorption Behavior of Rhodamine B on UiO-66. Chinese Journal of Chemical Engineering, 2014, 22, 1285-1290.	1.7	55
390	Alkaline earth metal-based metal–organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen–Schmidt reaction. Dalton Transactions, 2014, 43, 13006-13017.	1.6	41
391	Improved CO ₂ Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs. Advanced Functional Materials, 2014, 24, 6130-6135.	7.8	72
392	Zr ^{IV} Coordination Polymers Based on a Naturally Occurring Phenolic Derivative. European Journal of Inorganic Chemistry, 2014, 2014, 6281-6289.	1.0	40
393	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	5.8	332
394	Zirconium Materials from Mixed Dicarboxylate Linkers: Enhancing the Stability for Catalytic Applications. ChemCatChem, 2014, 6, 3426-3433.	1.8	21
395	Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials, 2014, 200, 199-215.	2.2	134
396	Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. Advances in Catalysis, 2014, , 99-318.	0.1	90
397	A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 2014, 136, 17714-17717.	6.6	356
401	Self-assembly of three d10 metal coordination polymers based on a flexible bis(2-methylbenzimidazole) and dicarboxylate co-ligands. Journal of Molecular Structure, 2014, 1070, 58-64.	1.8	15
402	Effect of amine modification on the properties of zirconium–carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. Microporous and Mesoporous Materials, 2014, 188, 149-162.	2.2	46

#	Article	IF	Citations
403	Structural chemistry and magnetic properties of copper pyromellitate coordination polymers containing pyridylnicotinamide ligands. Inorganica Chimica Acta, 2014, 411, 188-198.	1.2	12
404	Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environmental Science and Pollution Research, 2014, 21, 5427-5449.	2.7	171
405	Symmetryâ€Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology. Angewandte Chemie - International Edition, 2014, 53, 815-818.	7.2	197
406	Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coordination Chemistry Reviews, 2014, 277-278, 130-186.	9.5	87
407	Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 2014, 136, 4369-4381.	6.6	2,002
408	Metal–organic framework composites. Chemical Society Reviews, 2014, 43, 5468-5512.	18.7	1,901
409	High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications, 2014, 50, 2304.	2.2	244
410	Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups. Journal of the American Chemical Society, 2014, 136, 2432-2440.	6.6	244
411	Solventâ€Assisted Linker Exchange: An Alternative to the Deâ€Novo Synthesis of Unattainable Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 4530-4540.	7.2	339
412	Unusual chain length dependent adsorption of linear and branched alkanes on UiO-66. Adsorption, 2014, 20, 251-259.	1.4	12
413	Redox and environmentally relevant aspects of actinide(IV) coordination chemistry. Coordination Chemistry Reviews, 2014, 266-267, 171-193.	9.5	81
414	Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts. Catalysis Reviews - Science and Engineering, 2014, 56, 1-56.	5.7	85
415	MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 2014, 5, 2979.	3.7	298
416	Adsorption and separation of n-hexane and cyclohexane on the UiO-66 metal–organic framework. Microporous and Mesoporous Materials, 2014, 183, 143-149.	2.2	50
417	[M ₃ (μ ₃ -O)(O ₂ CR) ₆] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chemical Science, 2014, 5, 1269-1282.	3.7	124
418	Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica. Journal of the American Chemical Society, 2014, 136, 5631-5639.	6.6	157
419	Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol. Applied Catalysis A: General, 2014, 471, 91-97.	2.2	98
420	High Pressure Adsorption of CO ₂ and CH ₄ on Zr-MOFs. Industrial & Engineering Chemistry Research, 2014, 53, 15500-15507.	1.8	63

#	Article	IF	CITATIONS
421	Amino-functionalized Zr(IV) metal–organic framework as bifunctional acid–base catalyst for Knoevenagel condensation. Journal of Molecular Catalysis A, 2014, 390, 198-205.	4.8	154
422	Metal–Organic Frameworks: From Molecules/Metal Ions to Crystals to Superstructures. Chemistry - A European Journal, 2014, 20, 5192-5201.	1.7	61
423	The stability and defluoridation performance of MOFs in fluoride solutions. Microporous and Mesoporous Materials, 2014, 185, 72-78.	2.2	165
424	Metal–Organic Framework@Microporous Organic Network: Hydrophobic Adsorbents with a Crystalline Inner Porosity. Journal of the American Chemical Society, 2014, 136, 6786-6789.	6.6	200
425	Adsorption of xylene isomers in MOF UiO-66 by molecular simulation. Microporous and Mesoporous Materials, 2014, 190, 165-170.	2.2	39
426	Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework. New Journal of Chemistry, 2014, 38, 1477-1483.	1.4	47
427	A robust, catalytic metal–organic framework with open 2,2′-bipyridine sites. Chemical Communications, 2014, 50, 4810-4812.	2.2	199
428	Design of a Bifunctional Ir–Zr Based Metal–Organic Framework Heterogeneous Catalyst for the Nâ€Alkylation of Amines with Alcohols. ChemCatChem, 2014, 6, 1794-1800.	1.8	54
429	Stepwise Synthesis of Robust Metal–Organic Frameworks via Postsynthetic Metathesis and Oxidation of Metal Nodes in a Single-Crystal to Single-Crystal Transformation. Journal of the American Chemical Society, 2014, 136, 7813-7816.	6.6	215
430	Postsynthetic Metalation of Bipyridyl-Containing Metal–Organic Frameworks for Highly Efficient Catalytic Organic Transformations. Journal of the American Chemical Society, 2014, 136, 6566-6569.	6.6	281
431	Cytotoxicity of nanoscaled metal–organic frameworks. Journal of Materials Chemistry B, 2014, 2, 262-271.	2.9	298
432	Metal-organic frameworks in chromatography. Journal of Chromatography A, 2014, 1348, 1-16.	1.8	106
433	Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm, 2014, 16, 4069-4083.	1.3	112
434	Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 2014, 114, 5695-5727.	23.0	825
435	Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement. Journal of the American Chemical Society, 2014, 136, 8269-8276.	6.6	531
436	A highly porous NbO type metal–organic framework constructed from an expanded tetracarboxylate. Chemical Communications, 2014, 50, 1552.	2.2	44
437	Textural properties of a large collection of computationally constructed MOFs and zeolites. Microporous and Mesoporous Materials, 2014, 186, 207-213.	2.2	38
438	Metal Organic Framework Catalysis: <i>Quo vadis</i> ?. ACS Catalysis, 2014, 4, 361-378.	5.5	859

#	Article	IF	CITATIONS
439	Porous Inorganic Membranes for CO ₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492.	23.0	481
440	Porous titanium and zirconium oxo carboxylates at the interface between sol–gel and metal–organic framework structures. Dalton Transactions, 2014, 43, 950-957.	1.6	9
441	Drastic Enhancement of the CO ₂ Adsorption Properties in Sulfone-Functionalized Zr- and Hf-UiO-67 MOFs with Hierarchical Mesopores. Inorganic Chemistry, 2014, 53, 679-681.	1.9	87
442	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2014, , .	0.4	48
443	MIL-53(Al) under reflux in water: Formation of \hat{I}^3 -AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous and Mesoporous Materials, 2014, 183, 156-161.	2.2	51
444	The effect of pore shape on hydrocarbon selectivity on UiO-66(Zr), HKUST-1 and MIL-125(Ti) metal organic frameworks: Insights from molecular simulations and chromatography. Microporous and Mesoporous Materials, 2014, 189, 222-231.	2.2	54
445	Ligand Dynamics of Drug-Loaded Microporous Zirconium Terephthalates-Based Metal–Organic Frameworks: Impact of the Nature and Concentration of the Guest. Journal of Physical Chemistry C, 2014, 118, 1983-1989.	1.5	26
446	Four MOFs with 2,2′-dimethoxy-4,4′-biphenyldicarboxylic acid: syntheses, structures, topologies and properties. CrystEngComm, 2014, 16, 784-796.	1.3	55
447	Metal–Organic Frameworks as Biomimetic Catalysts. ChemCatChem, 2014, 6, 67-75.	1.8	259
448	Functional Metal–Organic Frameworks via Ligand Doping: Influences of Ligand Charge and Steric Demand. Inorganic Chemistry, 2014, 53, 1331-1338.	1.9	32
449	Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. International Journal of Hydrogen Energy, 2014, 39, 890-895.	3.8	126
450	Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 5370-5372.	1.4	306
451	Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. Journal of Chromatography A, 2014, 1370, 121-128.	1.8	64
452	Bismuth tungstate incorporated zirconium metal–organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4, 64977-64984.	1.7	72
453	Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. Structure and Bonding, 2014, , 1-27.	1.0	19
454	Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. Journal of the American Chemical Society, 2014, 136, 16712-16715.	6.6	614
455	Reprogramming Kinetic Phase Control and Tailoring Pore Environments in Co ^{II} and Zn ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 5710-5718.	1.4	11
456	Zeolitic Imidazolate Frameworks: Nextâ€Generation Materials for Energyâ€Efficient Gas Separations. ChemSusChem, 2014, 7, 3202-3240.	3.6	235

#	Article	IF	Citations
457	Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal–organic framework. Catalysis Science and Technology, 2014, 4, 625.	2.1	63
458	Post-functionalized iridium–Zr-MOF as a promising recyclable catalyst for the hydrogenation of aromatics. Green Chemistry, 2014, 16, 3522-3527.	4.6	57
459	Synthesis of Cobalt-, Nickel-, Copper-, and Zinc-Based, Water-Stable, Pillared Metal–Organic Frameworks. Langmuir, 2014, 30, 14300-14307.	1.6	71
460	Computational exploration of a Zr-carboxylate based metal–organic framework as a membrane material for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 1657-1661.	5.2	68
461	A stable, pillar-layer metal–organic framework containing uncoordinated carboxyl groups for separation of transition metal ions. Chemical Communications, 2014, 50, 6406-6408.	2.2	76
462	The first route to highly stable crystalline microporous zirconium phosphonate metal–organic frameworks. Chemical Communications, 2014, 50, 14831-14834.	2.2	96
463	What can pK _a and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks?. Journal of Materials Chemistry A, 2014, 2, 16250-16267.	5.2	63
464	Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts. Nano Letters, 2014, 14, 5979-5983.	4.5	235
465	An alternative UiO-66 synthesis for HCl-sensitive nanoparticle encapsulation. RSC Advances, 2014, 4, 51080-51083.	1.7	38
466	Ferromagnetic interaction and slow magnetic relaxation in a Co3cluster-based three-dimensional framework. Dalton Transactions, 2014, 43, 47-50.	1.6	25
467	A dye-sensitized Pt@UiO-66(Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chemical Communications, 2014, 50, 7063-7066.	2.2	363
468	Integration of accessible secondary metal sites into MOFs for H ₂ S removal. Inorganic Chemistry Frontiers, 2014, 1, 325-330.	3.0	81
469	Mixed-ligand hydroxocopper(ii)/pyridazine clusters embedded into 3D framework lattices. Dalton Transactions, 2014, 43, 8530-8542.	1.6	17
470	Direct photo-hydroxylation of the Zr-based framework UiO-66. Chemical Communications, 2014, 50, 15453-15456.	2.2	19
471	Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. Journal of Physical Chemistry C, 2014, 118, 27470-27482.	1.5	84
472	Solvent-Free and Time Efficient Postsynthetic Modification of Amino-Tagged Metal–Organic Frameworks with Carboxylic Acid Derivatives. Chemistry of Materials, 2014, 26, 6722-6728.	3.2	65
473	Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes. CrystEngComm, 2014, 16, 7037-7042.	1.3	75
474	A molecular porous zirconium–organic material exhibiting highly selective CO2 adsorption, high thermal stability, reversible hydration, facile ligand exchange and exclusive dimerization of phenylacetylene. CrystEngComm, 2014, 16, 5619-5626.	1.3	10

#	Article	IF	CITATIONS
475	Synthesis, characterization, and luminescence modulation of a rare barium-tetracarboxylate framework with I ² O ¹ connectivity. CrystEngComm, 2014, 16, 8706-8709.	1.3	15
476	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. Chemical Communications, 2014, 50, 5737-5740.	2.2	54
477	Unprecedented metal-ion metathesis in a metal–carboxylate chain-based metal–organic framework. CrystEngComm, 2014, 16, 2344.	1.3	17
478	Structure–property relationships of water adsorption in metal–organic frameworks. New Journal of Chemistry, 2014, 38, 3102-3111.	1.4	252
479	A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chemical Communications, 2014, 50, 4711-4713.	2.2	174
480	Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chemical Communications, 2014, 50, 1965.	2.2	208
481	Metal–organic frameworks with improved moisture stability based on a phosphonate monoester: effect of auxiliary N-donor ligands on framework dimensionality. CrystEngComm, 2014, 16, 6635-6644.	1.3	37
482	A highly stable MOF with a rod SBU and a tetracarboxylate linker: unusual topology and CO ₂ adsorption behaviour under ambient conditions. Chemical Communications, 2014, 50, 4047-4049.	2.2	104
483	Water Dynamics in Metal–Organic Frameworks: Effects of Heterogeneous Confinement Predicted by Computational Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 2897-2902.	2.1	43
484	Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 2014, 114, 10575-10612.	23.0	1,951
485	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	11.1	265
486	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191
487	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	1.0	46
488	Synthesis and Characterization of Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. Inorganic Chemistry, 2014, 53, 9509-9515.	1.9	148
489	Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS Catalysis, 2014, 4, 2496-2500.	5.5	206
490	Core–Shell Catalysts of Metal Nanoparticle Core and Metal–Organic Framework Shell. ACS Catalysis, 2014, 4, 4409-4419.	5.5	318
491	Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014, 26, 4068-4071.	3.2	634
492	In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks. Journal of Physical Chemistry B, 2014, 118, 14168-14176.	1.2	22

#	ARTICLE	IF	CITATIONS
493	Nanoscale Metal–Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 2014, 136, 5181-5184.	6.6	759
494	Enhanced water stability of a microporous acylamide-functionalized metal–organic framework via interpenetration and methyl decoration. CrystEngComm, 2014, 16, 9586-9589.	1.3	35
495	A Joint Experimental/Computational Exploration of the Dynamics of Confined Water/Zr-Based MOFs Systems. Journal of Physical Chemistry C, 2014, 118, 14441-14448.	1.5	29
496	An acid-stable Zn(ii) complex: electrodeposition in sulfuric acid and the effect on the zinc–lead dioxide battery. Dalton Transactions, 2014, 43, 17129-17135.	1.6	2
497	In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorganic Chemistry, 2014, 53, 2491-2500.	1.9	157
498	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	1.7	150
499	Electrostatically derived self-assembly of NH ₂ -mediated zirconium MOFs with graphene for photocatalytic reduction of Cr(<scp>vi</scp>). RSC Advances, 2014, 4, 2546-2549.	1.7	119
500	Solvothermal Growth and Photophysical Characterization of a Ruthenium(II) Tris(2,2′-Bipyridine)-Doped Zirconium UiO-67 Metal Organic Framework Thin Film. Journal of Physical Chemistry C, 2014, 118, 14200-14210.	1.5	59
501	Synthesis of zeolite@metal–organic framework core–shell particles as bifunctional catalysts. RSC Advances, 2014, 4, 30673.	1.7	42
502	One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chemical Communications, 2014, 50, 14752-14755.	2.2	84
503	Tuning CO ₂ Selective Adsorption over N ₂ and CH ₄ in UiO-67 Analogues through Ligand Functionalization. Inorganic Chemistry, 2014, 53, 9254-9259.	1.9	239
504	Adsorptive separation on metal–organic frameworks in the liquid phase. Chemical Society Reviews, 2014, 43, 5766-5788.	18.7	772
505	Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic stationary phase for fast and efficient separation. Journal of Chromatography A, 2014, 1366, 45-53.	1.8	77
506	Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 2014, 7, 2392-2410.	3.6	164
507	Fabrication of core–shell MIL-101(Cr)@UiO-66(Zr) nanocrystals for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 14912-14917.	3.8	48
508	Microporous Coordination Polymers as Efficient Sorbents for Air Dehumidification. Langmuir, 2014, 30, 1921-1925.	1.6	36
509	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	18.7	1,449
510	A Combinatorial Approach towards Waterâ€Stable Metal–Organic Frameworks for Highly Efficient Carbon Dioxide Separation. ChemSusChem, 2014, 7, 2791-2795.	3.6	82

#	Article	IF	CITATIONS
511	Metalâ^'organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts. Chemical Science, 2014, 5, 3708-3714.	3.7	225
512	Post-synthetic metalation of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5933-5951.	18.7	529
513	Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chemical Society Reviews, 2014, 43, 5952-5981.	18.7	204
514	Water adsorption in UiO-66: the importance of defects. Chemical Communications, 2014, 50, 11329-11331.	2.2	227
515	Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chemical Communications, 2014, 50, 8779-8782.	2.2	252
516	Computational exploration of newly synthesized zirconium metal–organic frameworks UiO-66, -67, -68 and analogues. Journal of Materials Chemistry C, 2014, 2, 7111-7125.	2.7	89
517	High performance gas adsorption and separation of natural gas in two microporous metal–organic frameworks with ternary building units. Chemical Communications, 2014, 50, 8648-8650.	2.2	109
518	High valence 3p and transition metal based MOFs. Chemical Society Reviews, 2014, 43, 6097-6115.	18.7	437
519	Adsorption of Pyridine over Amino-Functionalized Metal–Organic Frameworks: Attraction via Hydrogen Bonding versus Base–Base Repulsion. Journal of Physical Chemistry C, 2014, 118, 21049-21056.	1.5	92
520	Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Advances, 2014, 4, 24073-24082.	1.7	231
521	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	3.2	66
522	Topotactic Transformations of Metal–Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration. Chemistry of Materials, 2014, 26, 5231-5243.	3.2	107
523	Defining the Proton Topology of the Zr ₆ -Based Metal–Organic Framework NU-1000. Journal of Physical Chemistry Letters, 2014, 5, 3716-3723.	2.1	228
524	Carbon Dioxide Adsorption in Amineâ€Functionalized Mixedâ€Ligand Metal–Organic Frameworks of UiOâ€66 Topology. ChemSusChem, 2014, 7, 3382-3388.	3.6	83
525	Are Zr ₆ -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50, 8944.	2.2	277
526	A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia. Chemistry - A European Journal, 2014, 20, 15611-15617.	1.7	73
527	Metal–Organic Frameworks for Oxygen Storage. Angewandte Chemie - International Edition, 2014, 53, 14092-14095.	7.2	106
528	Spies Within Metal-Organic Frameworks: Investigating Metal Centers Using Solid-State NMR. Journal of Physical Chemistry C, 2014, 118, 23728-23744.	1.5	56

#	Article	IF	CITATIONS
529	Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density. Crystal Growth and Design, 2014, 14, 5397-5407.	1.4	94
530	Straightforward installation of carbon–halogen, carbon–oxygen and carbon–carbon bonds within metal–organic frameworks (MOF) via palladium-catalysed direct C–H functionalization. Chemical Communications, 2014, 50, 13261-13264.	2.2	12
531	Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF. Journal of Chemical Theory and Computation, 2014, 10, 4644-4652.	2.3	93
532	A Metal–Organic Framework Containing Unusual Eightâ€Connected Zr–Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultraâ€sensitive Metal Detection. Chemistry - A European Journal, 2014, 20, 14965-14970.	1.7	58
533	Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 2014, 4, 3490-3497.	5.5	187
534	Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation. Journal of the American Chemical Society, 2014, 136, 6171-6174.	6.6	198
535	Friedel–Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates. Catalysis Letters, 2014, 144, 817-824.	1.4	57
536	A molecular Pd(<scp>ii</scp>) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chemistry, 2014, 16, 3978.	4.6	127
537	Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 2014, 43, 6011-6061.	18.7	2,540
538	Correlated defect nanoregions in a metal–organic framework. Nature Communications, 2014, 5, 4176.	5.8	550
539	Highly dispersed palladium nanoparticles supported on amino functionalized metal-organic frameworks as an efficient and reusable catalyst for Suzuki cross-coupling reaction. Journal of Organometallic Chemistry, 2014, 761, 127-133.	0.8	86
540	Programming MIL-101Cr for selective and enhanced CO ₂ adsorption at low pressure by postsynthetic amine functionalization. Dalton Transactions, 2014, 43, 1338-1347.	1.6	69
541	A supermolecular building approach for the design and construction of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6141-6172.	18.7	708
542	Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(III)–Aqua Complex. Journal of the American Chemical Society, 2014, 136, 5531-5534.	6.6	209
543	Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 2014, 8, 7451-7457.	7.3	660
544	Metal–organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 2014, 43, 6116-6140.	18.7	1,365
545	A zirconium squarate metal–organic framework with modulator-dependent molecular sieving properties. Chemical Communications, 2014, 50, 10055-10058.	2.2	64
546	Catalytic behavior of metal–organic frameworks in the Knoevenagel condensation reaction. Journal of Catalysis, 2014, 316, 251-259.	3.1	118

#	Article	IF	Citations
547	Discovery and introduction of a $(3,18)$ -connected net as an ideal blueprint for the design of metalâ \in organic frameworks. Nature Chemistry, 2014, 6, 673-680.	6.6	396
548	Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. Journal of the American Chemical Society, 2014, 136, 7261-7264.	6.6	406
549	Proton Transport through Robust CPO-27-type Metal Organic Frameworks. Journal of Physical Chemistry C, 2014, 118, 21663-21670.	1.5	7
550	Salicylaldimine-Based Metal–Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts. Journal of the American Chemical Society, 2014, 136, 13182-13185.	6.6	159
551	Engineering UiO-66-NH ₂ for Toxic Gas Removal. Industrial & Engineering Chemistry Research, 2014, 53, 701-707.	1.8	127
552	Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 2014, 53, 7086-7088.	1.9	118
554	Recent advances in the design strategies for porphyrin-based coordination polymers. CrystEngComm, 2014, 16, 7371-7384.	1.3	52
555	Synthesis and Porous Properties of Chromium Azolate Porous Coordination Polymers. Inorganic Chemistry, 2014, 53, 9870-9875.	1.9	23
556	Photophysical Characterization of a Ruthenium(II) Tris(2,2′-bipyridine)-Doped Zirconium UiO-67 Metal–Organic Framework. Journal of Physical Chemistry C, 2014, 118, 8803-8817.	1.5	94
557	Tuning pore size in a zirconium–tricarboxylate metal–organic framework. CrystEngComm, 2014, 16, 6530-6533.	1.3	84
558	Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43, 5982-5993.	18.7	1,879
559	Strong influence of the H2 binding energy on the Maxwell–Stefan diffusivity in NU-100, UiO-68, and IRMOF-16. Microporous and Mesoporous Materials, 2014, 185, 190-196.	2.2	8
560	Chromatographic separation through confinement in nanocages. Microporous and Mesoporous Materials, 2014, 189, 216-221.	2.2	14
561	Enhancing CO ₂ Separation Ability of a Metal–Organic Framework by Postâ€Synthetic Ligand Exchange with Flexible Aliphatic Carboxylates. Chemistry - A European Journal, 2014, 20, 426-434.	1.7	125
562	Fast Multipoint Immobilized MOF Bioreactor. Chemistry - A European Journal, 2014, 20, 8923-8928.	1.7	58
563	A Family of Metalâ€Organic Frameworks Exhibiting Sizeâ€Selective Catalysis with Encapsulated Nobleâ€Metal Nanoparticles. Advanced Materials, 2014, 26, 4056-4060.	11.1	396
564	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	18.7	1,792
565	Microwave-assisted modulated synthesis of zirconium-based metal–organic framework (Zr-MOF) for hydrogen storage applications. International Journal of Materials Research, 2014, 105, 516-519.	0.1	48

#	Article	IF	CITATIONS
566	Privileged Phosphine-Based Metal–Organic Frameworks for Broad-Scope Asymmetric Catalysis. Journal of the American Chemical Society, 2014, 136, 5213-5216.	6.6	249
567	Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, 2014, 43, 5594-5617.	18.7	1,094
568	Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications. Accounts of Chemical Research, 2014, 47, 459-469.	7.6	302
569	Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 2014, 4, 1340-1348.	5.5	367
570	Metal-Organic Frameworks for Photonics Applications. Structure and Bonding, 2014, , .	1.0	26
571	Flexible metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6062-6096.	18.7	1,741
572	Linker Conformation Effects on the Band Gap in Metal–Organic Frameworks. Inorganic Chemistry, 2014, 53, 2569-2572.	1.9	28
573	Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. Journal of Chromatography A, 2014, 1357, 165-171.	1.8	140
574	Divalent metal pyromellitate coordination polymers containing bis(4-pyridylformyl)piperazine: Selection between simple chain and rare fsc network topologies. Inorganica Chimica Acta, 2014, 421, 183-190.	1,2	7
575	Synthesis and Characterization of Functionalized Metal-organic Frameworks. Journal of Visualized Experiments, 2014, , e52094.	0.2	3
577	Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports, 2015, 5, 16613.	1.6	285
579	Design of Zeolitic Imidazolate Framework Derived Nitrogenâ€Doped Nanoporous Carbons Containing Metal Species for Carbon Dioxide Fixation Reactions. ChemSusChem, 2015, 8, 3905-3912.	3.6	53
580	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015, 11, 5551-5555.	5.2	104
584	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	7.2	244
585	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	7.2	169
586	Enhanced Photocatalytic Activity of MILâ€125 by Postâ€Synthetic Modification with Cr ^{III} and Ag Nanoparticles. Chemistry - A European Journal, 2015, 21, 11072-11081.	1.7	94
587	Combination of Optimization and Metalatedâ€Ligand Exchange: An Effective Approach to Functionalize UiOâ€66(Zr) MOFs for CO ₂ Separation. Chemistry - A European Journal, 2015, 21, 17246-17255.	1.7	82
589	A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs. Angewandte Chemie - International Edition, 2015, 54, 13297-13301.	7.2	116

#	Article	IF	CITATIONS
590	Tailoring the Optical Absorption of Waterâ€Stable Zr ^{IV} ―and Hf ^{IV} â€Based Metal–Organic Framework Photocatalysts. Chemistry - an Asian Journal, 2015, 10, 2660-2668.	1.7	62
591	Metal–Organic Frameworkâ€Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small, 2015, 11, 4806-4822.	5.2	375
592	Postsynthesisâ€Treated Ironâ€Based Metal–Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 2015, 8, 3270-3282.	3.6	19
593	Exploiting Largeâ€Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	1.0	27
594	Electrostatic Selfâ€Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal–Organic Framework for Enhanced Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2015, 25, 5360-5367.	7.8	443
597	In Situ Modification of Metal–Organic Frameworks in Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2015, 54, 9029-9032.	7.2	378
598	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (ν ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	7.2	103
599	Surfaceâ€Specific Functionalization of Nanoscale Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14738-14742.	7.2	146
600	Synthesis, Characterization, Stability, and Gas Adsorption Characteristics of a Highly Stable Zirconium Mesaconate Framework Material. European Journal of Inorganic Chemistry, 2015, 2015, 3317-3322.	1.0	19
601	Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MILâ€140 Metal–Organic Frameworks. ChemSusChem, 2015, 8, 3159-3166.	3.6	36
602	Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Macromolecular Rapid Communications, 2015, 36, 1605-1611.	2.0	56
603	Three Silver(I) Coordination Polymers Constructed from Flexible Bis(benzimidazole) and Carboxylates Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 903-910.	0.6	14
604	Hierarchical Pore Development by Plasma Etching of Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18029-18032.	1.7	36
609	Definitive Molecular Level Characterization of Defects in UiOâ€66 Crystals. Angewandte Chemie - International Edition, 2015, 54, 11162-11167.	7.2	376
610	Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (XÂ= –CH3, –NO2,) Tj ETQq 91-97.	0 0 0 rgB1 2.2	Overlock 10 29
611	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	6.6	330
612	Synthesis and photocatalytic activity of N-K ₂ Ti ₄ O ₉ /UiO-66 composites. RSC Advances, 2015, 5, 53198-53206.	1.7	2
613	Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. Journal of Molecular Catalysis A, 2015, 406, 58-64.	4.8	154

#	Article	IF	CITATIONS
614	Flexible Solid Sorbents for CO2 CaptureÂand Separation. , 2015, , 149-176.		2
615	Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes. Journal of the American Chemical Society, 2015, 137, 7391-7396.	6.6	228
616	Effect of the functionalisation route on a Zr-MOF with an Ir–NHC complex for catalysis. Chemical Communications, 2015, 51, 10864-10867.	2.2	46
617	New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous and Mesoporous Materials, 2015, 215, 116-122.	2.2	56
618	Synthesis of zirconium oxycarbide powders using metal–organic framework (MOF) compounds as precursors. RSC Advances, 2015, 5, 51650-51661.	1.7	9
619	Continuous flow production of metal-organic frameworks. Current Opinion in Chemical Engineering, 2015, 8, 55-59.	3.8	65
620	A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. International Journal of Hydrogen Energy, 2015, 40, 4617-4622.	3.8	132
621	Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. Journal of Industrial and Engineering Chemistry, 2015, 28, 1-15.	2.9	129
622	Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 2015, 137, 6999-7002.	6.6	591
623	Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7810-7816.	6.6	278
624	A 2D metal–organic framework composed of a bi-functional ligand with ultra-micropores for post-combustion CO ₂ capture. RSC Advances, 2015, 5, 47384-47389.	1.7	10
625	Selective oxidation of cyclooctene over copper-containing metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 151-160.	2.2	36
626	Metal organic frameworks for photo-catalytic water splitting. Energy and Environmental Science, 2015, 8, 1923-1937.	15.6	277
627	Using neutron powder diffraction and first-principles calculations to understand the working mechanisms of porous coordination polymer sorbents. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 648-660.	0.5	7
628	Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Crystal Growth and Design, 2015, 15, 5827-5833.	1.4	191
629	Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior. Dalton Transactions, 2015, 44, 19687-19692.	1.6	20
630	UiO-66 MOF and Poly(vinyl cinnamate) Nanofiber Composite Membranes Synthesized by a Facile Three-Stage Process. Industrial & Engineering Chemistry Research, 2015, 54, 12386-12392.	1.8	49
631	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28223-28230.	4.0	145

#	Article	IF	CITATIONS
632	Biosafety Evaluation of Nanoscaled Porous Energy Materials. ACS Symposium Series, 2015, , 239-268.	0.5	3
633	Water adsorption properties of a Sc(<scp>iii</scp>) porous coordination polymer for CO ₂ capture applications. Inorganic Chemistry Frontiers, 2015, 2, 1080-1084.	3.0	56
634	Urothermal Syntheses, Crystal Structures, and Luminescent Properties of Two New ZnII Compounds Constructed by the Mixed Ligands of 1,2,4-Triazole and 1,4-Naphthalenedicarboxylic Acid or 2,6-Naphthalenedicarboxylic Acid. Australian Journal of Chemistry, 2015, 68, 1299.	0.5	5
635	Toward a robust porous coordination polymer: the inhibition of mutual movement between interpenetrating sub-networks by introduction of multiple C–Hâ√Ï€ interactions. RSC Advances, 2015, 5, 89052-89055.	1.7	4
636	A single-ligand ultra-microporous MOF for precombustion CO ₂ capture and hydrogen purification. Science Advances, 2015, 1, e1500421.	4.7	127
637	Metalâ^'Organic Frameworks for Methane Storage. ACS Symposium Series, 2015, , 173-191.	0.5	3
638	Structural studies of metal–organic frameworks under high pressure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 587-607.	0.5	82
639	Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36, 2071-2088.	6.9	113
640	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 1042-1056.	3.2	105
641	Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. Journal of Industrial and Engineering Chemistry, 2015, 27, 102-107.	2.9	224
642	One-pot synthesis of UiO-66@SiO ₂ shellâ€"core microspheres as stationary phase for high performance liquid chromatography. RSC Advances, 2015, 5, 1043-1050.	1.7	86
643	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234
644	Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metalâ^'organic framework. Journal of Solid State Chemistry, 2015, 226, 262-272.	1.4	62
645	Unexpected Carbon Dioxide Inclusion in Waterâ€Saturated Pores of Metal–Organic Frameworks with Potential for Highly Selective Capture of CO ₂ . Chemistry - A European Journal, 2015, 21, 1125-1129.	1.7	22
646	A stable zinc-4-carboxypyrazole framework with high uptake and selectivity of light hydrocarbons. Dalton Transactions, 2015, 44, 2893-2896.	1.6	47
647	Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3, 5014-5022.	5.2	283
648	Water Sensitivity in Zn ₄ O-Based MOFs is Structure and History Dependent. Journal of the American Chemical Society, 2015, 137, 2651-2657.	6.6	94
649	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	1.9	177

#	Article	IF	CITATIONS
650	Synthesis of a flower-like Zr-based metal–organic framework and study of its catalytic performance in the Mannich reaction. RSC Advances, 2015, 5, 19273-19278.	1.7	61
651	Promotion of phosphoester hydrolysis by the ZrIV-based metal-organic framework UiO-67. Microporous and Mesoporous Materials, 2015, 208, 21-29.	2.2	36
652	Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chemical Engineering Journal, 2015, 270, 22-27.	6.6	154
653	Thorium Terephthalates Coordination Polymers Synthesized in Solvothermal DMF/H ₂ O System. Inorganic Chemistry, 2015, 54, 2235-2242.	1.9	123
654	Syntheses, Structures and Photoluminescence of Three Cd(II) Coordination Polymers Based on Flexible Bis(Benzimidazole) and Dicarboxylate Ligands. Journal of Chemical Crystallography, 2015, 45, 77-85.	0.5	6
655	Rapidly assessing the activation conditions and porosity of metal–organic frameworks using thermogravimetric analysis. Chemical Communications, 2015, 51, 4985-4988.	2.2	11
656	New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. Journal of the American Chemical Society, 2015, 137, 2235-2238.	6.6	254
657	Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem, 2015, 8, 878-885.	3.6	193
658	The materials genome in action: identifying the performance limits for methane storage. Energy and Environmental Science, 2015, 8, 1190-1199.	15.6	314
659	Pore surface engineering in a zirconium metal–organic framework via thiol-ene reaction. Journal of Solid State Chemistry, 2015, 223, 79-83.	1.4	20
660	Electrochemical Film Deposition of the Zirconium Metal–Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap. Chemistry of Materials, 2015, 27, 1801-1807.	3.2	159
661	Extending the lanthanide–terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties. Journal of Molecular Structure, 2015, 1086, 34-42.	1.8	27
662	Metal–organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent. Journal of Porous Materials, 2015, 22, 247-259.	1.3	69
663	Using Hansen solubility parameters to study the encapsulation of caffeine in MOFs. Organic and Biomolecular Chemistry, 2015, 13, 1724-1731.	1.5	53
664	Predicting and creating 7-connected Zn ₄ O vertices for the construction of an exceptional metal–organic framework with nanoscale cages. CrystEngComm, 2015, 17, 1923-1926.	1.3	6
665	Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation. Journal of the American Chemical Society, 2015, 137, 2665-2673.	6.6	266
666	Encapsulation of Mono―or Bimetal Nanoparticles Inside Metal–Organic Frameworks via In situ Incorporation of Metal Precursors. Small, 2015, 11, 2642-2648.	5.2	85
667	Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Microporous and Mesoporous Materials, 2015, 208, 30-35.	2.2	155

#	Article	IF	CITATIONS
668	Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Advances, 2015, 5, 17601-17605.	1.7	111
669	New challenge of metal–organic frameworks for high-efficient separation of hydrogen chloride toward clean hydrogen energy. Journal of Materials Chemistry A, 2015, 3, 5275-5279.	5.2	21
670	Photocatalytic Carbon Dioxide Reduction with Rhodiumâ€based Catalysts in Solution and Heterogenized within Metal–Organic Frameworks. ChemSusChem, 2015, 8, 603-608.	3.6	177
671	Extraction of palladium from nuclear waste-like acidic solutions by a metal–organic framework with sulfur and alkene functions. Journal of Materials Chemistry A, 2015, 3, 3928-3934.	5.2	85
672	Reconciling order, stability, and porosity in phosphonate metal–organic frameworks via HF-mediated synthesis. Inorganic Chemistry Frontiers, 2015, 2, 273-277.	3.0	19
673	Design of a Humidity-Stable Metal–Organic Framework Using a Phosphonate Monoester Ligand. Inorganic Chemistry, 2015, 54, 1185-1187.	1.9	40
674	A robust luminescent Ba (II) metal–organic framework based on pyridine carboxylate ligand for sensing of small molecules. Inorganic Chemistry Communication, 2015, 53, 42-45.	1.8	22
675	Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 919-925.	6.6	186
676	A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistry, 2015, 39, 2396-2399.	1.4	133
677	pH-Specific Halide-Dependent Materials from ZrIV/Hydroxycarboxylic Acid/Aromatic Chelator Reactivity: Architecture-Lattice Dimensionality and Spectroscopic Fingerprint Relations. European Journal of Inorganic Chemistry, 2015, 2015, 664-679.	1.0	3
678	Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties. Journal of Solid State Chemistry, 2015, 225, 209-215.	1.4	19
679	A binodal tfz-d network constructed from trinuclear Cobalt(II) clusters. Inorganic Chemistry Communication, 2015, 53, 4-6.	1.8	8
680	"Heterogeneity within Order―in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3417-3430.	7.2	465
681	Immobilization of polyoxometalates in the Zr-based metal organic framework UiO-67. Chemical Communications, 2015, 51, 2972-2975.	2.2	96
682	Water Stability and Competition Effects Toward CO ₂ Adsorption on Metal Organic Frameworks. Separation and Purification Reviews, 2015, 44, 19-27.	2.8	51
683	Temperature-dependent polymorphism and magnetic properties of three-dimensional copper pyromellitate coordination polymers containing 4,4′-dipyridylamine. Journal of Solid State Chemistry, 2015, 225, 222-230.	1.4	4
684	Deep desulfurization by oxidation using an active ionic liquidâ€supported Zr metal–organic framework as catalyst. Applied Organometallic Chemistry, 2015, 29, 96-100.	1.7	44
685	Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate. Journal of the American Chemical Society, 2015, 137, 3197-3200.	6.6	374

#	Article	IF	CITATIONS
686	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	3.7	265
687	Synthesis, characterization and adsorption ability of UiO-66-NH _{2} . Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 025004.	0.7	82
688	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	6.6	323
689	Effective Ligand Functionalization of Zirconium-Based Metal–Organic Frameworks for the Adsorption and Separation of Benzene and Toluene: A Multiscale Computational Study. ACS Applied Materials & Diterfaces, 2015, 7, 5775-5787.	4.0	63
690	Photoluminescence and Gas Sorption Properties of a New Zinc(II) Coordination Polymer Constructed from Biphenylâ€3,3′,5,5′â€ŧetracarboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 596-600.	0.6	4
691	Mesoporous carbon–ZrO2 composites prepared using thermolysis of zirconium based metal–organic frameworks and their adsorption properties. Journal of Porous Materials, 2015, 22, 465-471.	1.3	14
692	Au@UiO-66: a base free oxidation catalyst. RSC Advances, 2015, 5, 22334-22342.	1.7	59
693	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	18.7	732
694	Synthesis, Structures, and Catalytic Properties of Three New Metal–Organic Coordination Polymers Constructed from Flexible Benzimidazole-Based and cis-1,2-Cyclohexanedicarboxylate Synthons. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 559-568.	1.9	11
695	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	6.6	329
696	Single-Crystal-to-Single-Crystal Metalation of a Metal–Organic Framework: A Route toward Structurally Well-Defined Catalysts. Inorganic Chemistry, 2015, 54, 2995-3005.	1.9	161
697	Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Transactions, 2015, 44, 15175-15180.	1.6	161
698	A stable luminescent anionic porous metal–organic framework for moderate adsorption of CO ₂ and selective detection of nitro explosives. Journal of Materials Chemistry A, 2015, 3, 7224-7228.	5.2	93
699	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	13.3	790
700	Introduction of Lewis Acidic and Redox-Active Sites into a Porous Framework for Ammonia Capture with Visual Color Response. Inorganic Chemistry, 2015, 54, 3456-3461.	1.9	76
701	In situ one-step synthesis of metal–organic framework encapsulated naked Pt nanoparticles without additional reductants. Journal of Materials Chemistry A, 2015, 3, 8028-8033.	5.2	86
702	Phosphotungstic acid encapsulated in metal-organic framework UiO-66: An effective catalyst for the selective oxidation ofÂcyclopentene to glutaraldehyde. Microporous and Mesoporous Materials, 2015, 211, 73-81.	2.2	64
703	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130

#	ARTICLE Print to the last of the second of	IF	CITATIONS
704	Bifunctionalized Metal Organic Frameworks, UiO-66-NO ₂ -N (N = -NH ₂ ,) Tj ETQq0 0 0 0 CO ₂ and N ₂ . Journal of Chemical & CO ₂	1.0	67
705	New zirconium and zirconium–titanium oxo cluster types by expansion or metal substitution of the octahedral Zr6O8 structural motif. Inorganica Chimica Acta, 2015, 432, 208-212.	1.2	20
706	MOFs-Templated Co@Pd Core–Shell NPs Embedded in N-Doped Carbon Matrix with Superior Hydrogenation Activities. ACS Catalysis, 2015, 5, 5264-5271.	5 . 5	198
707	Tuning the properties of the UiO-66 metal organic framework by Ce substitution. Chemical Communications, 2015, 51, 14458-14461.	2.2	79
708	Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: the effect of pore size on catalyst activity and recycling. Dalton Transactions, 2015, 44, 15976-15983.	1.6	38
709	One Step Backward Is Two Steps Forward: Enhancing the Hydrolysis Rate of UiO-66 by Decreasing [OH ^{â€"}]. ACS Catalysis, 2015, 5, 4637-4642.	5.5	84
710	Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis Science and Technology, 2015, 5, 4444-4451.	2.1	92
711	The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492, 471-477.	4.1	29
712	Hydrostable and Nitryl/Methyl-Functionalized Metal–Organic Framework for Drug Delivery and Highly Selective CO ₂ Adsorption. Inorganic Chemistry, 2015, 54, 6719-6726.	1.9	91
713	Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chemical Communications, 2015, 51, 12474-12477.	2.2	66
714	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	1.3	15
715	One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. Journal of Materials Chemistry A, 2015, 3, 15259-15264.	5.2	78
716	Computational exploration of H2S/CH4 mixture separation using acid-functionalized UiO-66(Zr) membrane and composites. Chinese Journal of Chemical Engineering, 2015, 23, 1291-1299.	1.7	33
717	Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up. Dalton Transactions, 2015, 44, 14019-14026.	1.6	104
718	Single-Crystal to Single-Crystal Mechanical Contraction of Metal–Organic Frameworks through Stereoselective Postsynthetic Bromination. Journal of the American Chemical Society, 2015, 137, 9527-9530.	6.6	110
719	Amorphous metal–organic frameworks for drug delivery. Chemical Communications, 2015, 51, 13878-13881.	2.2	309
720	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	1.3	200
721	Cluster-based metal–organic frameworks as sensitive and selective luminescent probes for sensing nitro explosives. New Journal of Chemistry, 2015, 39, 7858-7862.	1.4	34

#	Article	IF	CITATIONS
722	A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 2015, 137, 10009-10015.	6.6	199
723	Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr). Chemical Communications, 2015, 51, 13818-13821.	2.2	107
724	Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chemistry of Materials, 2015, 27, 5332-5339.	3.2	146
725	A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 2015, 3, 17320-17331.	5.2	211
726	Incorporation of imidazole within the metal–organic framework UiO-67 for enhanced anhydrous proton conductivity. Dalton Transactions, 2015, 44, 12976-12980.	1.6	90
727	Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex. Journal of the American Chemical Society, 2015, 137, 8161-8168.	6.6	120
728	Double-walled pyr topology networks from a novel fluoride-bridged heptanuclear metal cluster. Chemical Science, 2015, 6, 4784-4789.	3.7	38
729	Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6966-6997.	23.0	477
730	Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 4772-4778.	3.2	116
731	Photocatalytic CO ₂ Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 6821-6828.	1.9	293
732	Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications, 2015, 51, 12578-12581.	2.2	377
733	MOF derived composites for cathode protection: coatings of LiCoO ₂ from UiO-66 and MIL-53 as ultra-stable cathodes. Chemical Communications, 2015, 51, 12391-12394.	2.2	20
734	Water stabilization of Zr ₆ -based metalâ€"organic frameworks via solvent-assisted ligand incorporation. Chemical Science, 2015, 6, 5172-5176.	3.7	102
735	Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. Journal of Materials Chemistry B, 2015, 3, 4242-4248.	2.9	63
736	Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Analytical Chemistry, 2015, 87, 3438-3444.	3.2	173
737	High SF6/N2 selectivity in a hydrothermally stable zirconium-based metal–organic framework. Chemical Engineering Journal, 2015, 276, 315-321.	6.6	54
738	Metal Organic Frameworks for Selective Adsorption of <i>t</i> -Butyl Mercaptan from Natural Gas. Energy & Samp; Fuels, 2015, 29, 3312-3321.	2.5	42
739	Multifunctional Metal–Organic Frameworks for Photocatalysis. Small, 2015, 11, 3097-3112.	5.2	538

#	Article	IF	CITATIONS
740	The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorganic Chemistry, 2015, 54, 4591-4593.	1.9	62
741	A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry, 2015, 54, 4862-4868.	1.9	313
742	Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal–organic framework. Physical Chemistry Chemical Physics, 2015, 17, 11586-11592.	1.3	127
743	Ancillary ligand-assisted assembly of C3-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn2+ ions: Syntheses, topological structures, and photoluminescence properties. Journal of Solid State Chemistry, 2015, 227, 155-164.	1.4	14
744	Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6051-6111.	23.0	241
745	In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer. CrystEngComm, 2015, 17, 3422-3425.	1.3	55
746	Improved Synthesis of a Zirconium(IV) Muconate Metal–Organic Framework: Characterization, Stability and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2463-2468.	1.0	11
747	Puncturing cells en masse. Nature Materials, 2015, 14, 470-471.	13.3	3
748	Breaking bad chemicals down. Nature Materials, 2015, 14, 469-470.	13.3	10
749	Insights on the physical adsorption of hydrogen and methane in UiO series of MOFs using molecular simulations. Computational and Theoretical Chemistry, 2015, 1061, 36-45.	1.1	18
750	Unlocking Inter―to Nonâ€Penetrating Frameworks Using Steric Influences on Spacers for CO ₂ Adsorption. Chemistry - an Asian Journal, 2015, 10, 2117-2120.	1.7	10
751	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected ftw -MOFs. Chemical Science, 2015, 6, 4095-4102.	3.7	127
752	Flow-synthesis of carboxylate and phosphonate based metal–organic frameworks under non-solvothermal reaction conditions. Dalton Transactions, 2015, 44, 11235-11240.	1.6	51
753	Oriented design and synthesis of water-stable heterometallic metal–organic frameworks by bridging ligands containing hydrophobic (–CH3) substituents. Inorganic Chemistry Communication, 2015, 61, 27-30.	1.8	4
754	Metal–organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A, 2015, 3, 7445-7452.	5.2	330
755	Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 2015, 5, 32714-32719.	1.7	27
756	Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiOâ€66(Zr)â€Type MOFs. Chemistry - A European Journal, 2015, 21, 7135-7143.	1.7	40
757	Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework. Chemistry of Materials, 2015, 27, 2286-2289.	3.2	206

#	Article	IF	CITATIONS
758	Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 2015, 44, 6804-6849.	18.7	1,190
759	Quasiâ€Polymeric Metal–Organic Framework UiOâ€66/g ₃ N ₄ Heterojunctions for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Interfaces, 2015, 2, 1500037.	1.9	260
760	Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a "Click― Reaction. Inorganic Chemistry, 2015, 54, 5139-5141.	1.9	51
761	Green synthesis of zirconium-MOFs. CrystEngComm, 2015, 17, 4070-4074.	1.3	85
762	Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. RSC Advances, 2015, 5, 39592-39600.	1.7	102
763	Synthesis, structure, and luminescence of a coordination polymer from fumaropimaric acid and a water cluster. Journal of Coordination Chemistry, 2015, 68, 1238-1250.	0.8	1
764	Instantaneous Hydrolysis of Nerveâ€Agent Simulants with a Sixâ€Connected Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 6795-6799.	7.2	338
765	Textile/Metal–Organicâ€Framework Composites as Selfâ€Detoxifying Filters for Chemicalâ€Warfare Agents. Angewandte Chemie - International Edition, 2015, 54, 6790-6794.	7.2	291
766	Synthesis of magnesium ZIF-8 from Mg(BH ₄) ₂ . Dalton Transactions, 2015, 44, 15107-15110.	1.6	31
767	An ultrastable Zr metal–organic framework with a thiophene-type ligand containing methyl groups. CrystEngComm, 2015, 17, 3586-3590.	1.3	59
768	Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chemical Science, 2015, 6, 3466-3470.	3.7	118
769	Enhanced Photocatalytic Activity of the Agl/UiOâ€66(Zr) Composite for Rhodamineâ€B Degradation under Visibleâ€Light Irradiation. ChemPlusChem, 2015, 80, 1321-1328.	1.3	51
770	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	6.6	308
771	Immobilization of Cu Complex into Zr-Based MOF with Bipyridine Units for Heterogeneous Selective Oxidation. Journal of Physical Chemistry C, 2015, 119, 8131-8137.	1.5	89
772	A Zr metal–organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs. Dalton Transactions, 2015, 44, 8049-8061.	1.6	77
773	Incorporation of a [Ru(dcbpy)(bpy) ₂] ²⁺ photosensitizer and a Pt(dcbpy)Cl ₂ catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution. Journal of Materials Chemistry A, 2015, 3, 10386-10394.	5.2	131
774	Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. Journal of the American Chemical Society, 2015, 137, 5421-5430.	6.6	163
775	Pillared-bilayer porous coordination polymers of Zn(<scp>ii</scp>): enhanced hydrophobicity of pore surface by changing the pillar functionality. CrystEngComm, 2015, 17, 3478-3486.	1.3	23

#	Article	IF	Citations
776	Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO ₂ Hydrogenation. ACS Catalysis, 2015, 5, 2921-2928.	5 . 5	137
777	Synthesis, characterisation, adsorption ability and activity of Cu,ZnO@UiO-66 in methanol synthesis. International Journal of Nanotechnology, 2015, 12, 405.	0.1	17
778	Selective CO ₂ adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites. Inorganic Chemistry Frontiers, 2015, 2, 550-557.	3.0	26
779	Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chemical Communications, 2015, 51, 8614-8617.	2.2	163
780	Tailoring the Pore Size and Functionality of UiO-Type Metal–Organic Frameworks for Optimal Nerve Agent Destruction. Inorganic Chemistry, 2015, 54, 9684-9686.	1.9	157
781	An azobenzene-containing metal–organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds. Chemical Communications, 2015, 51, 17132-17135.	2.2	59
782	A highly stable face-extended diamondoid cluster–organic framework incorporating infinite inorganic guests. Chemical Communications, 2015, 51, 17174-17177.	2.2	7
783	A luminescent Zr-based metal–organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH ₄ /C ₂ H ₆ . Journal of Materials Chemistry A, 2015, 3, 23493-23500.	5.2	22
784	Functionalising metal–organic frameworks with metal complexes: the role of structural dynamics. CrystEngComm, 2015, 17, 7632-7635.	1.3	6
785	Screening Lewis Pair Moieties for Catalytic Hydrogenation of CO ₂ in Functionalized UiO-66. ACS Catalysis, 2015, 5, 6219-6229.	5.5	80
786	A luminescent dye@MOF as a dual-emitting platform for sensing explosives. Chemical Communications, 2015, 51, 17521-17524.	2.2	93
787	Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr ₆ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10829-10833.	1.9	132
788	Enhanced Dynamic CO ₂ Adsorption Capacity and CO ₂ /CH ₄ Selectivity on Polyethylenimine-Impregnated UiO-66. Industrial & Engineering Chemistry Research, 2015, 54, 11151-11158.	1.8	93
789	Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light. Journal of Materials Chemistry A, 2015, 3, 24261-24271.	5.2	130
790	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	23.0	410
791	Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6, 8697.	5.8	474
792	De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Transactions, 2015, 44, 19018-19040.	1.6	155
793	Functional shakeup of metal–organic frameworks: the rise of the sidekick. CrystEngComm, 2015, 17, 9254-9263.	1.3	20

#	Article	IF	CITATIONS
794	Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework. Journal of Solid State Chemistry, 2015, 232, 221-227.	1.4	17
795	Insights into the separation performance of MOFs by high-performance liquid chromatography and in-depth modelling. Separation and Purification Technology, 2015, 156, 249-258.	3.9	16
796	Nanoscale UiO-MOF-based luminescent sensors for highly selective detection of cysteine and glutathione and their application in bioimaging. Chemical Communications, 2015, 51, 17672-17675.	2.2	114
797	Tuning Defects to Facilitate Hydrogen Storage in Core-shell MIL-101(Cr)@UiO-66(Zr) Nanocrystals. Materials Today: Proceedings, 2015, 2, 3964-3972.	0.9	18
798	Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. Journal of Physical Chemistry C, 2015, 119, 24238-24247.	1.5	64
799	Modulated UiO-66-Based Mixed-Matrix Membranes for CO ₂ Separation. ACS Applied Materials & Separation.	4.0	221
800	Reversible Tuning Hydroquinone/Quinone Reaction in Metal–Organic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431.	3.2	72
801	Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium. Applied Catalysis A: General, 2015, 506, 77-84.	2.2	61
802	Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal–Organic Framework with Functional Groups. Journal of the American Chemical Society, 2015, 137, 11801-11809.	6.6	83
803	Carbon dioxide capture in the presence of water vapour in InOF-1. Inorganic Chemistry Frontiers, 2015, 2, 898-903.	3.0	46
804	Metal–Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Inorganic Chemistry, 2015, 54, 8396-8400.	1.9	222
805	Computational exploration of metal–organic frameworks: examples of advances in crystal structure predictions and electronic structure tuning. Molecular Simulation, 2015, 41, 1422-1437.	0.9	7
806	Selective removal of transition metal ions from aqueous solution by metal–organic frameworks. RSC Advances, 2015, 5, 72107-72112.	1.7	38
807	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	1.3	133
808	The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 11498-11506.	6.6	178
809	Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 2015, 5, 79355-79360.	1.7	65
810	Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal–organic framework containing tetrakis(carboxyphenyl)porphyrin groups. Chemical Communications, 2015, 51, 16103-16106.	2.2	93
811	Different acidity and additive effects of zirconium metal–organic frameworks as catalysts for cyanosilylation. RSC Advances, 2015, 5, 79216-79223.	1.7	22

#	ARTICLE	IF	Citations
812	Yttria stabilized zirconia derived from metal–organic frameworks. RSC Advances, 2015, 5, 10619-10622.	1.7	8
813	Grafting alkylamine in UiO-66 by charge-assisted coordination bonds for carbon dioxide capture from high-humidity flue gas. Journal of Materials Chemistry A, 2015, 3, 21849-21855.	5.2	83
814	Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation. Electrochimica Acta, 2015, 178, 838-846.	2.6	28
815	Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH 2 metal organic frameworks. Journal of Catalysis, 2015, 331, 1-12.	3.1	88
816	Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions. Journal of the American Chemical Society, 2015, 137, 12241-12248.	6.6	128
817	The preparation of an ultrastable mesoporous Cr(<scp>iii</scp>)-MOF via reductive labilization. Chemical Science, 2015, 6, 7044-7048.	3.7	56
818	170 solid-state NMR studies of oxygen-containing catalysts. Chinese Journal of Catalysis, 2015, 36, 1494-1504.	6.9	20
819	The first chiral diene-based metal–organic frameworks for highly enantioselective carbon–carbon bond formation reactions. Chemical Science, 2015, 6, 7163-7168.	3.7	71
820	Three Metal–Organic Frameworks Based on Binodal Inorganic Building Units and Hetero-O, N Donor Ligand: Solvothermal Syntheses, Structures, and Gas Sorption Properties. Crystal Growth and Design, 2015, 15, 4901-4907.	1.4	55
821	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
822	Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 2015, 54, 10701-10710.	1.9	155
823	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	1.6	123
824	An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6, 8847.	5.8	309
825	Contaminant-resistant MOF–Pd composite for H ₂ separation. RSC Advances, 2015, 5, 89323-89326.	1.7	1
826	Tetrazine functionalized zirconium MOF as an optical sensor for oxidizing gases. Chemical Communications, 2015, 51, 2280-2282.	2.2	105
827	Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51, 2056-2059.	2.2	360
829	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	6.6	352
830	Improving the mechanical stability of zirconium-based metal–organic frameworks by incorporation of acidic modulators. Journal of Materials Chemistry A, 2015, 3, 1737-1742.	5.2	116

#	Article	IF	Citations
831	Effective Adsorption and Enhanced Removal of Organophosphorus Pesticides from Aqueous Solution by Zr-Based MOFs of UiO-67. ACS Applied Materials & Interfaces, 2015, 7, 223-231.	4.0	371
832	Chemical and Structural Stability of Zirconiumâ€based Metal–Organic Frameworks with Large Threeâ€Dimensional Pores by Linker Engineering. Angewandte Chemie - International Edition, 2015, 54, 221-226.	7.2	141
833	Magnetic MOF microreactors for recyclable size-selective biocatalysis. Chemical Science, 2015, 6, 1938-1943.	3.7	162
834	Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry, 2015, 17, 1500-1509.	4.6	263
835	lonized Zr-MOFs for highly efficient post-combustion CO2 capture. Chemical Engineering Science, 2015, 124, 61-69.	1.9	108
836	Synthesis, Culture Medium Stability, and In Vitro and In Vivo Zebrafish Embryo Toxicity of Metal–Organic Framework Nanoparticles. Chemistry - A European Journal, 2015, 21, 2508-2518.	1.7	208
837	Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange. Inorganic Chemistry Communication, 2015, 52, 50-52.	1.8	89
838	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	7.2	258
839	Ab initio investigation of the affinity of novel bipyrazolate-based MOFs towards H ₂ and CO ₂ . CrystEngComm, 2015, 17, 448-455.	1.3	10
840	Coordination polymers of uranium(<scp>iv</scp>) terephthalates. Dalton Transactions, 2015, 44, 2639-2649.	1.6	38
841	A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67. Dalton Transactions, 2015, 44, 2047-2051.	1.6	109
842	The First Oneâ€Pot Synthesis of Metal–Organic Frameworks Functionalised with Two Transitionâ€Metal Complexes. Chemistry - A European Journal, 2015, 21, 861-866.	1.7	29
843	Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166-167, 445-453.	10.8	283
844	Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. Catalysis Today, 2015, 245, 54-60.	2.2	76
845	Synthesis and click modification of an azido-functionalized Zr(<scp>iv</scp>) metal–organic framework and a catalytic study. RSC Advances, 2015, 5, 893-900.	1.7	37
846	The first example of a zirconium-oxide based metal–organic framework constructed from monocarboxylate ligands. Dalton Transactions, 2015, 44, 1516-1519.	1.6	26
847	Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science, 2015, 327, 77-85.	3.1	382
848	Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. Journal of Materials Chemistry A, 2015, 3, 3294-3309.	5.2	174

#	Article	IF	Citations
849	Biomimicry in metal–organic materials. Coordination Chemistry Reviews, 2015, 293-294, 327-356.	9.5	128
850	Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 2015, 124, 52-60.	1.9	230
851	Structural features and applications of metal–organic frameworks containing thiazole- and thiazolidine-based spacers. CrystEngComm, 2015, 17, 218-228.	1.3	16
852	A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 2015, 203, 186-194.	2.2	95
853	How Impurities Affect CO ₂ Capture in Metal–Organic Frameworks Modified with Different Functional Groups. ACS Sustainable Chemistry and Engineering, 2015, 3, 117-124.	3.2	27
854	First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. CrystEngComm, 2015, 17, 331-337.	1.3	44
855	Electronic effects of ligand substitution on metal–organic framework photocatalysts: the case study of UiO-66. Physical Chemistry Chemical Physics, 2015, 17, 117-121.	1.3	233
856	Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chemical Engineering Science, 2015, 124, 118-124.	1.9	194
858	Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm, 2015, 17, 395-406.	1.3	190
859	Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 2015, 257, 213-220.	2.2	127
860	Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups. Journal of Hazardous Materials, 2015, 283, 544-550.	6.5	112
861	Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. International Journal of Energy Research, 2015, 39, 607-620.	2.2	163
862	Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications, 2015, 51, 85-88.	2.2	54
863	Epoxidation of alkenes with molecular oxygen catalyzed by a manganese porphyrin-based metal–organic framework. Catalysis Communications, 2015, 59, 50-54.	1.6	69
864	Incorporation of a dioxomolybdenum(VI) complex in a ZrIV-based Metal–Organic Framework and its application in catalytic olefin epoxidation. Microporous and Mesoporous Materials, 2015, 202, 106-114.	2.2	38
865	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	1.9	112
866	Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks. Scientific Reports, 2014, 4, 5443.	1.6	150
867	Structural stability of metal organic frameworks in aqueous media – Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous and Mesoporous Materials, 2015, 201, 61-90.	2.2	142

#	Article	IF	CITATIONS
868	Water interactions in metal organic frameworks. CrystEngComm, 2015, 17, 247-260.	1.3	148
869	A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake. Journal of Solid State Chemistry, 2015, 223, 104-108.	1.4	44
870	Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 2015, 283, 329-339.	6.5	1,142
871	Catalytic Applications of Metal-Organic Frameworks. , 0, , .		4
872	Metal Organic Frameworks as Emerging Photocatalysts. , 0, , .		5
873	Metal–organic frameworks for hydrogen storage. , 2016, , 163-188.		7
874	Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid. Materials, 2016, 9, 261.	1.3	33
875	Metal-Organic Frameworks as Materials for Fuel Cell Technologies. Nanostructure Science and Technology, 2016, , 367-407.	0.1	1
876	A visible-light responsive zirconium metal–organic framework for living photopolymerization of methacrylates. RSC Advances, 2016, 6, 66444-66450.	1.7	18
877	A Rheniumâ€Functionalized Metal–Organic Framework as a Singleâ€Site Catalyst for Photochemical Reduction of Carbon Dioxide. European Journal of Inorganic Chemistry, 2016, 2016, 4358-4362.	1.0	70
878	"Green―Synthesis of Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4290-4299.	1.0	160
879	A Facile "Green―Route for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. European Journal of Inorganic Chemistry, 2016, 2016, 4490-4498.	1.0	117
880	IR and Raman Spectroscopies Probing MOFs Structure, Defectivity, and Reactivity., 0,, 657-690.		5
881	An In Situ Oneâ€Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie - International Edition, 2016, 55, 6471-6475.	7.2	119
882	Metal–Organic Gel Material Based on UiOâ€66â€NH ₂ Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2016, 11, 2278-2283.	1.7	56
883	Continuousâ€Flow Microwave Synthesis of Metal–Organic Frameworks: A Highly Efficient Method for Largeâ€Scale Production. Chemistry - A European Journal, 2016, 22, 3245-3249.	1.7	132
884	A Breathing Zirconium Metal–Organic Framework with Reversible Loss of Crystallinity by Correlated Nanodomain Formation. Chemistry - A European Journal, 2016, 22, 3264-3267.	1.7	41
885	Highly Stable Mesoporous Zirconium Porphyrinic Frameworks with Distinct Flexibility. Chemistry - A European Journal, 2016, 22, 6268-6276.	1.7	31

#	Article	IF	CITATIONS
886	An In Situ Oneâ€Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie, 2016, 128, 6581-6585.	1.6	26
887	Defectâ€Controlled Preparation of UiOâ€66 Metal–Organic Framework Thin Films with Molecular Sieving Capability. Chemistry - an Asian Journal, 2016, 11, 207-210.	1.7	19
888	Photoresponsive spiropyran-functionalised MOF-808: postsynthetic incorporation and light dependent gas adsorption properties. Journal of Materials Chemistry A, 2016, 4, 10816-10819.	5.2	114
889	Synthesis of Monodisperse Palladium Nanoclusters Using Metal–Organic Frameworks as Sacrificial Templates. ChemNanoMat, 2016, 2, 810-815.	1.5	18
890	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
891	Phosphorous–Nitrogenâ€Codoped Carbon Materials Derived from Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Reduction Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 2100-2105.	1.0	70
892	Extraordinary NO ₂ Removal by the Metal–Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie, 2016, 128, 6343-6346.	1.6	25
893	Nanoparticles. , 0, , 491-521.		2
894	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
895	Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Andersonâ€Type Polyoxometalate Clusters. Angewandte Chemie - International Edition, 2016, 55, 6462-6466.	7.2	150
896	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 7188-7193.	7.2	151
897	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10776-10780.	7.2	179
898	Metal Organic Framework 199- Catalyzed Domino Sulfur-Coupling and Transfer Reactions: The Direct Synthesis of Symmetric Diaryl Disulfides from Aryl Halides. Catalysis Letters, 2016, 146, 1497-1504.	1.4	8
899	Role of Molecular Simulations in the Field of MOFs. , 2016, , 765-794.		1
900	Modulated Synthesis of Metalâ€Organic Frameworks through Tuning of the Initial Oxidation State of the Metal. European Journal of Inorganic Chemistry, 2016, 2016, 4368-4372.	1.0	14
901	Selfâ€Supporting Metal–Organic Layers as Singleâ€Site Solid Catalysts. Angewandte Chemie - International Edition, 2016, 55, 4962-4966.	7.2	303
902	Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology, 2016, , .	0.1	11
903	Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53. Polyhedron, 2016, 120, 103-111.	1.0	92

#	Article	IF	CITATIONS
904	Quantitative 13C Solid-State NMR Spectra by Multiple-Contact Cross-polarization for Drug Delivery: From Active Principles to Excipients and Drug Carriers. Journal of Pharmaceutical Sciences, 2016, 105, 2397-2401.	1.6	16
905	Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal–Organic Framework DUT-67. Inorganic Chemistry, 2016, 55, 7206-7213.	1.9	68
906	Inserting CO ₂ into Aryl Câ^'H Bonds of Metalâ€"Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 5472-5476.	7.2	129
907	Solventâ€Driven Gate Opening in MOFâ€₹6â€Ce: Effect on CO ₂ Adsorption. ChemSusChem, 2016, 9, 713-719.	3.6	49
908	Robust Metalâ€Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 4300-4309.	1.0	59
909	Reticular Chemistry of Metal-Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes., 0,, 41-72.		4
910	Photochemical Reduction of Low Concentrations of CO ₂ in a Porous Coordination Polymer with a Ruthenium(II)–CO Complex. Angewandte Chemie, 2016, 128, 2747-2750.	1.6	43
911	Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 7304-7309.	1.6	38
912	XAS on Rh and Ir metal sites in post synthetically functionalized UiO-67 Zirconium MOFs. Journal of Physics: Conference Series, 2016, 712, 012053.	0.3	4
913	Synthesis, characterizations and Pb(II) sorption properties of cobalt phosphonate materials. Pure and Applied Chemistry, 2016, 88, 979-992.	0.9	17
914	Reaction Mechanism of Nerve-Agent Decomposition with Zr-Based Metal Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 29312-29323.	1.5	84
915	Flower-like Ni3(NO3)2(OH)4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors. Ionics, 2016, 22, 2545-2551.	1.2	22
916	Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. Journal of Chemical Physics, 2016, 144, 194702.	1.2	41
917	Metal–Organic Framework for Selective Gas Scavenging. Journal of Molecular and Engineering Materials, 2016, 04, 1640014.	0.9	1
918	Fe3O4@UiO-66-NH2 core–shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation. Chinese Journal of Catalysis, 2016, 37, 2106-2113.	6.9	33
919	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
920	SO ₃ H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Advances, 2016, 6, 35135-35143.	1.7	35
921	Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications, 2016, 52, 5940-5942.	2.2	145

#	ARTICLE	IF	CITATIONS
922	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie - International Edition, 2016, 55, 5019-5023.	7.2	190
923	Vibrational fingerprint of the absorption properties of UiO-type MOF materials. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	7
924	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrÃ,nsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	3.2	160
925	Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. ACS Applied Materials & Diterfaces, 2016, 8, 9700-9709.	4.0	47
926	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	6.6	84
927	Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions. Chemical Communications, 2016, 52, 6513-6516.	2.2	74
928	A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chemical Communications, 2016, 52, 6665-6668.	2.2	44
929	Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews - Science and Engineering, 2016, 58, 209-307.	5.7	43
930	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2016, 55, 4992-4996.	7.2	41
931	Dynamic adsorption of n-heptane/methylhexane/2,2,4-trimethylpentane and refining of high purity n-heptane on UiO-66. Journal of Porous Materials, 2016, 23, 165-173.	1.3	6
932	Syntheses, structures and properties of group 12 element (Zn, Cd, Hg) coordination polymers with a mixed-functional phosphonate-biphenyl-carboxylate linker. CrystEngComm, 2016, 18, 5209-5223.	1.3	23
933	Toward "metalloMOFzymes― Metal–Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations. Inorganic Chemistry, 2016, 55, 7281-7290.	1.9	96
934	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	1.6	91
935	Mixed-linker approach in designing porous zirconium-based metal–organic frameworks with high hydrogen storage capacity. Chemical Communications, 2016, 52, 7826-7829.	2.2	31
936	Novel Nano-/Micro-Biocatalyst: Soybean Epoxide Hydrolase Immobilized on UiO-66-NH ₂ MOF for Efficient Biosynthesis of Enantiopure (<i>R</i>)-1, 2-Octanediol in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2016, 4, 3586-3595.	3.2	171
937	Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 2016, 52, 7806-7809.	2.2	177
938	3D Reconstruction and Porosity Study of a Hierarchical Porous Monolithic Metal Organic Framework by FIB-SEM Nanotomography. Microscopy and Microanalysis, 2016, 22, 4-5.	0.2	1
939	Metal-Organic Frameworks (MOFs) for Photocatalytic Organic Transformations. Nanostructure Science and Technology, 2016, , 523-535.	0.1	1

#	Article	IF	Citations
940	UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. Optics Letters, 2016, 41, 1696.	1.7	33
941	Atomic-scale modeling of hydrogen storage in the UiO-66 and UiO-67 metal-organic frameworks. Microporous and Mesoporous Materials, 2016, 224, 349-359.	2.2	11
942	Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66. Journal of the American Chemical Society, 2016, 138, 4178-4185.	6.6	108
943	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300
944	Exchange of Coordinated Solvent During Crystallization of a Metal–Organic Framework Observed by In Situ Highâ€Energy Xâ€ray Diffraction. Angewandte Chemie, 2016, 128, 5076-5080.	1.6	14
945	Breaking Down Chemical Weapons by Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 42-44.	7.2	48
946	Stereoselective Halogenation of Integral Unsaturated Câ€C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. Chemistry - A European Journal, 2016, 22, 4870-4877.	1.7	77
948	Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66. Journal of Physical Chemistry C, 2016, 120, 9276-9281.	1.5	46
949	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chemical Communications, 2016, 52, 6411-6414.	2.2	39
950	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks. ACS Catalysis, 2016, 6, 3461-3468.	5.5	152
951	Immobilizing CdS nanoparticles and MoS ₂ /RGO on Zr-based metal–organic framework 12-tungstosilicate@UiO-67 toward enhanced photocatalytic H ₂ evolution. RSC Advances, 2016, 6, 40560-40566.	1.7	33
952	Pore engineering of metal–organic frameworks: introduction of chemically accessible Lewis basic sites inside MOF channels. CrystEngComm, 2016, 18, 3524-3550.	1.3	47
953	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 2016, 138, 6204-6216.	6.6	1,273
954	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH ₂ -UiO-66) nanocrystals for selective tandem catalytic reactions. Chemical Communications, 2016, 52, 6557-6560.	2.2	59
955	An efficient combination of Zr-MOF and microwave irradiation in catalytic Lewis acid Friedel–Crafts benzoylation. Dalton Transactions, 2016, 45, 7875-7880.	1.6	49
956	Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. Journal of the American Chemical Society, 2016, 138, 6636-6642.	6.6	232
957	Tuning the properties of the metal–organic framework UiO-67-bpy via post-synthetic N-quaternization of pyridine sites. Dalton Transactions, 2016, 45, 8614-8621.	1.6	62
958	Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016, 28, 3749-3761.	3.2	933

#	Article	IF	CITATIONS
959	Aldehyde-Tagged Zirconium Metal–Organic Frameworks: a Versatile Platform for Postsynthetic Modification. Inorganic Chemistry, 2016, 55, 4701-4703.	1.9	40
960	Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental, 2016, 193, 198-216.	10.8	516
961	Grasping hydrogen adsorption and dynamics in metal–organic frameworks using ² H solid-state NMR. Chemical Communications, 2016, 52, 7541-7544.	2.2	28
962	Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal–organic frameworks. Catalysis Science and Technology, 2016, 6, 5647-5655.	2.1	15
963	Improving the stability of solar cells using metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 7930-7935.	5.2	18
964	UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513, 155-165.	4.1	284
965	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Journal of the American Chemical Society, 2016, 138, 5678-5684.	6.6	489
966	Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chemical Science, 2016, 7, 5294-5301.	3.7	251
967	Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: Microstructural, thermo-mechanical and viscoelastic effects. Polymer, 2016, 97, 31-43.	1.8	69
968	Rational construction of functional molybdenum (tungsten)â€"copperâ€"sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
969	Governing metal–organic frameworks towards high stability. Chemical Communications, 2016, 52, 8501-8513.	2.2	196
970	Study of the reaction mechanisms involved in the formation of zirconium oxycarbide from Metal-Organic Frameworks (MOFs) precursors. Journal of Alloys and Compounds, 2016, 680, 571-585.	2.8	11
971	Toward Topology Prediction in Zr-Based Microporous Coordination Polymers: The Role of Linker Geometry and Flexibility. Crystal Growth and Design, 2016, 16, 4148-4153.	1.4	65
972	Photochemical Hydrogen Production with Metal–Organic Frameworks. Topics in Catalysis, 2016, 59, 1712-1721.	1.3	34
973	Positive effect of the fluorine moiety on the oxygen storage capacity of UiO-66 metal–organic frameworks. New Journal of Chemistry, 2016, 40, 8220-8224.	1.4	32
974	A Porous Zirconiumâ€Based Metalâ€Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry - A European Journal, 2016, 22, 14988-14997.	1.7	57
975	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
976	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	15.6	231

#	Article	IF	CITATIONS
977	Functionalizing the Defects: Postsynthetic Ligand Exchange in the Metal Organic Framework UiO-66. Chemistry of Materials, 2016, 28, 7190-7193.	3.2	170
978	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	6.6	101
979	Th ₃ [Th ₆ (OH) ₄ O ₄ (H ₂ O) ₆](SO <sub 10098-10101.<="" 2016,="" 55,="" a="" chemistry,="" inorganic="" microporous="" open-framework="" self-assembled="" sulfate.="" td="" thorium=""><td>)>4</td></sub> 1.9)>4) _{12<!--</td-->}
980	UiO-66-Type Metal–Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27394-27402.	4.0	112
981	UiO-66 and its Br-modified derivates for elemental mercury removal. Journal of Hazardous Materials, 2016, 320, 556-563.	6.5	70
982	Stability of metal–organic frameworks under gamma irradiation. Chemical Communications, 2016, 52, 12502-12505.	2.2	67
983	Improving the hydrogen storage properties of metal-organic framework by functionalization. Journal of Molecular Modeling, 2016, 22, 254.	0.8	21
984	Ligand and Metal Effects on the Stability and Adsorption Properties of an Isoreticular Series of MOFs Based on Tâ€ s haped Ligands and Paddleâ€Wheel Secondary Building Units. Chemistry - A European Journal, 2016, 22, 16147-16156.	1.7	43
985	Metal-Organic Frameworks and Related Materials. , 2016, , 33-109.		3
986	Design of Highly Connected Cd-Tetrazolate-Dicarboxylate Frameworks with Enhanced CO ₂ /CH ₄ and C ₂ Hydrocarbons/CH ₄ Separation Performance. Crystal Growth and Design, 2016, 16, 6430-6435.	1.4	19
987	The Impact of Mesopores on the Mechanical Stability of HKUSTâ€1: A Multiscale Investigation. European Journal of Inorganic Chemistry, 2016, 2016, 4517-4523.	1.0	21
988	Understanding the Kinetic and Thermodynamic Origins of Xylene Separation in UiO-66(Zr) via Molecular Simulation. Journal of Physical Chemistry C, 2016, 120, 18651-18658.	1.5	28
989	Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks. CrystEngComm, 2016, 18, 7056-7069.	1.3	58
990	Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 13582-13587.	1.7	74
991	Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study. Fluid Phase Equilibria, 2016, 427, 259-267.	1.4	56
992	A Hydrophobic Metal–Organic Framework Based on Cubaneâ€Type [Co ₄ (μ ₃ 3(μ4 ₃ 6 Co ₄ 9] ₃₊ 9 Clubra Gas Storage and Adsorption Selectivity of Benzene over Cyclohexane. Chemistry - A European Journal. 2016, 22, 11283-11290.	usters 1.7	36
993	Gated Channels and Selectivity Tuning of CO ₂ over N ₂ Sorption by Postâ€Synthetic Modification of a UiOâ€66â€Type Metal–Organic Framework. Chemistry - A European Journal, 2016, 22, 12800-12807.	1.7	46
994	AIE-active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications, 2016, 52, 11284-11287.	2.2	145

#	Article	IF	CITATIONS
995	Metallomacrocycles for the Creation of Non-Noble Metal and Noble Metal Electrocatalysts toward Oxygen Reduction Reactions., 2016, , 179-243.		0
996	Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration. Chemistry of Materials, 2016, 28, 6219-6226.	3.2	59
997	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie, 2016, 128, 10934-10938.	1.6	53
998	Postsynthetic Modification of Zirconium Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4310-4331.	1.0	188
999	Enhanced photodegradation of Rhodamine B by coupling direct solid-state Z-scheme N-K2Ti4O9/g-C3N4 heterojunction with high adsorption capacity of UiO-66. Journal of Environmental Chemical Engineering, 2016, 4, 3364-3373.	3.3	23
1000	Diastereoselective Synthesis of Pyranoquinolines on Zirconiumâ€Containing UiOâ€66 Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4512-4516.	1.0	43
1001	Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically -codeposited PEDOT-GO. ChemistrySelect, 2016, 1, 285-289.	0.7	60
1002	Synthesis and Characterization of Two Distinct 2D Nickel(II) Coordination Polymers From Dicarboxylate and Flexible Bis(imidazole) Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 41-47.	0.6	9
1003	Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth and Design, 2016, 16, 5771-5780.	1.4	11
1004	Porous Coordination Polymers Containing Pyridine-3,5-Bis(5-azabenzimidazole): Exploration of Water Sorption, Selective Dye Adsorption, and Luminescent Properties. Crystal Growth and Design, 2016, 16, 5976-5984.	1.4	42
1005	Double-Solvent Method to Pd Nanoclusters Encapsulated inside the Cavity of NH ₂ –Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction. Journal of Physical Chemistry C, 2016, 120, 19744-19750.	1.5	169
1006	MOF-Derived Tungstated Zirconia as Strong Solid Acids toward High Catalytic Performance for Acetalization. ACS Applied Materials & Interfaces, 2016, 8, 23755-23762.	4.0	39
1007	Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy and Environmental Science, 2016, 9, 3612-3641.	15.6	530
1008	Incorporation of Alkylamine into Metal–Organic Frameworks through a Brønsted Acid–Base Reaction for CO ₂ Capture. ChemSusChem, 2016, 9, 2832-2840.	3.6	77
1009	Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit. Chemical Communications, 2016, 52, 12698-12701.	2.2	56
1010	Construction of Pt complex within Zr-based MOF and its application for hydrogen production under visible-light irradiation. Research on Chemical Intermediates, 2016, 42, 7679-7688.	1.3	32
1011	Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support. Chemistry of Materials, 2016, 28, 6753-6762.	3.2	56
1012	Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2)O2(OH)3}4n and hexanuclear {Th6O4(OH)4} motifs. Journal of Solid State Chemistry, 2016, 243, 50-56.	1.4	10

#	Article	IF	CITATIONS
1013	Porous Materials as a Platform for Highly Uniform Single-Atom Catalysts: Tuning the Electronic Structure for the Low-Temperature Oxidation of Carbon Monoxide. Journal of Physical Chemistry C, 2016, 120, 19686-19697.	1.5	27
1014	Ionothermal synthesis and characterization of two polyoxometalate-based supramolecules. Chemical Research in Chinese Universities, 2016, 32, 527-529.	1.3	4
1015	Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? $\hat{a} \in A$ review. Analytica Chimica Acta, 2016, 939, 26-41.	2.6	171
1016	Metal-organic frameworks based mixed matrix membranes for pervaporation. Microporous and Mesoporous Materials, 2016, 235, 151-159.	2.2	124
1017	High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. Chemical Communications, 2016, 52, 14376-14379.	2.2	43
1018	Chemical principles for electroactive metal–organic frameworks. MRS Bulletin, 2016, 41, 870-876.	1.7	42
1019	All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications, 2016, 7, 13578.	5.8	129
1020	Metal Organic Frameworks as Nanoreactors and Host Matrices for Encapsulation. , 2016, , 305-340.		4
1021	Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Journal of Hazardous Materials, 2016, 320, 513-520.	6.5	83
1022	Structures of Metal–Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535.	23.0	732
1023	Water Adsorption Properties of NOTT-401 and CO ₂ Capture under Humid Conditions. ACS Omega, 2016, 1, 305-310.	1.6	43
1024	A unique (3,10)-connected magnesium/nickel-based metal–organic framework constructed from an unusual kgd supermolecular building layer via mixed linkers and solid solution approach. CrystEngComm, 2016, 18, 8358-8361.	1.3	3
1025	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie, 2016, 128, 13418-13422.	1.6	50
1026	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie - International Edition, 2016, 55, 13224-13228.	7.2	179
1027	Palladium(II)@Zirconiumâ€Based Mixedâ€Linker Metal–Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Crossâ€Coupling Reactions. ChemCatChem, 2016, 8, 3261-3271.	1.8	50
1028	A Seed-mediated Spray-drying Method for Facile Syntheses of Zr-MOF and a Pillared-layer-type MOF. Chemistry Letters, 2016, 45, 1313-1315.	0.7	6
1029	Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol. Journal of Energy Chemistry, 2016, 25, 874-879.	7.1	51
1030	Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. Chemistry of Materials, 2016, 28, 5721-5732.	3.2	97

#	Article	IF	CITATIONS
1031	Hydrated Protonâ€Conductive Metal–Organic Frameworks. ChemPlusChem, 2016, 81, 691-701.	1.3	108
1032	Windmill Co ₄ {Co ₄ (μ ₄ â€O)} with 16 Divergent Branches Forming a Family of Metal–Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism. Chemistry - A European Journal, 2016, 22, 12088-12094.	1.7	34
1033	Mesoporous carbon–zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction. Journal of Chromatography A, 2016, 1460, 33-39.	1.8	27
1034	Aromatic Substituent Effects on the Flexibility of Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 7576-7581.	1.9	22
1035	A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. Reaction Chemistry and Engineering, 2016, 1, 533-539.	1.9	79
1036	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the ⟨i⟩ Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.</i>	1.0	59
1037	Observing the Effects of Shaping on Gas Adsorption in Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4416-4423.	1.0	40
1038	Tailor-Made Stable Zr(IV)-Based Metal–Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides. ACS Applied Materials & Diterfaces, 2016, 8, 20292-20300.	4.0	84
1039	Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions. Journal of the American Chemical Society, 2016, 138, 9783-9786.	6.6	111
1040	Proton-Conducting Phenolate-Based Zr Metal–Organic Framework: A Joint Experimental–Modeling Investigation. Journal of Physical Chemistry C, 2016, 120, 24503-24510.	1.5	28
1041	Endocytosis Mechanism of Nano Metalâ€Organic Frameworks for Drug Delivery. Advanced Healthcare Materials, 2016, 5, 2261-2270.	3.9	80
1042	Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organicâ€Framework Particles for Separations Applications. Advanced Materials, 2016, 28, 7652-7657.	11.1	369
1043	Rigidifying Effect of Metal–Organic Frameworks: Protect the Conformation, Packing Mode, and Blue Fluorescence of a Soft Piezofluorochromic Compound under Pressures up to 8 MPa. Inorganic Chemistry, 2016, 55, 7311-7313.	1.9	37
1044	Applications of water stable metal–organic frameworks. Chemical Society Reviews, 2016, 45, 5107-5134.	18.7	991
1045	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12854-12858.	7.2	331
1046	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	4.2	14
1047	Porous Molybdenum Phosphide Nanoâ€Octahedrons Derived from Confined Phosphorization in UIOâ€66 for Efficient Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13046-13050.	1.6	100
1048	Catalytic hydrogenation of CO ₂ to methanol in a Lewis pair functionalized MOF. Catalysis Science and Technology, 2016, 6, 8392-8405.	2.1	75

#	ARTICLE	IF	CITATIONS
1049	Construction and Gilding of Metal-Organic Frameworks and Microtubule Conjugates. ChemistrySelect, 2016, 1, 5358-5362.	0.7	4
1050	A series of europium-based metal organic frameworks with tuned intrinsic luminescence properties and detection capacities. RSC Advances, 2016, 6, 111934-111941.	1.7	34
1051	A drug-loaded nanoscale metal–organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chemical Communications, 2016, 52, 14113-14116.	2.2	54
1052	Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors. Scientific Reports, 2016, 6, 36657.	1.6	45
1053	Template mediated and solvent-free route to a variety of UiO-66 metal–organic frameworks. RSC Advances, 2016, 6, 102968-102971.	1.7	34
1054	Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Science Advances, 2016, 2, e1600480.	4.7	188
1055	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	1.6	196
1056	Rational design of a flu -type heterometallic cluster-based Zr-MOF. Chemical Communications, 2016, 52, 13671-13674.	2.2	52
1057	Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO ₂ @C Composite for Hydrogen Storage in NaAlH ₄ . Chemistry - an Asian Journal, 2016, 11, 3541-3549.	1.7	18
1058	Influence of functionalization of terephthalate linker on the catalytic activity of UiO-66 for epoxide ring opening. Journal of Molecular Catalysis A, 2016, 425, 332-339.	4.8	58
1059	Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. Journal of Materials Chemistry B, 2016, 4, 7697-7707.	2.9	131
1060	Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr ₆ Nodes of UiO-66 and NU-1000. Journal of the American Chemical Society, 2016, 138, 15189-15196.	6.6	155
1061	Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & (amp; Interfaces, 2016, 8, 30687-30691.	4.0	139
1062	Unusual Colorimetric Change for Alkane Solvents with a Porous Coordination Framework. Inorganic Chemistry, 2016, 55, 11617-11620.	1.9	4
1063	Synthesis and structure of Zr(<scp>iv</scp>)- and Ce(<scp>iv</scp>)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Transactions, 2016, 45, 18822-18826.	1.6	76
1064	Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH 2 metal-organic framework for the detection of nitrite. Electrochimica Acta, 2016, 219, 647-654.	2.6	75
1065	Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker. Sustainable Materials and Technologies, 2016, 10, 10-13.	1.7	18
1066	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	6.6	210

#	Article	IF	CITATIONS
1067	Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes. Nature Communications, 2016, 7, 12610.	5.8	225
1068	Mapping of metal-organic frameworks publications: A bibliometric analysis. Inorganic Chemistry Communication, 2016, 73, 174-182.	1.8	57
1069	Stable Metal–Organic Framework-Supported Niobium Catalysts. Inorganic Chemistry, 2016, 55, 11954-11961.	1.9	85
1070	Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO ₂ Hydrogenation to Methanol. Nano Letters, 2016, 16, 7645-7649.	4. 5	370
1071	Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickelâ€Containing Polyoxometalates for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6521-6526.	1.6	53
1072	Photochemical Reduction of Low Concentrations of CO ₂ in a Porous Coordination Polymer with a Ruthenium(II)–CO Complex. Angewandte Chemie - International Edition, 2016, 55, 2697-2700.	7.2	206
1073	Structural Effects in Visibleâ€Lightâ€Responsive Metal–Organic Frameworks Incorporating <i>ortho</i> â€Fluoroazobenzenes. Chemistry - A European Journal, 2016, 22, 746-752.	1.7	90
1074	Adsorption Methodology. , 0, , 575-605.		1
1075	Group 4 Metals as Secondary Building Units: Ti, Zr, and Hf-based MOFs., 2016, , 137-170.		2
1076	Visible Light Triggered CO ₂ Liberation from Silver Nanocrystals Incorporated Metal–Organic Frameworks. Advanced Functional Materials, 2016, 26, 4815-4821.	7.8	53
1077	Metallâ€organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	1.6	87
1078	Inserting CO ₂ into Aryl Câ^'H Bonds of Metalâ€"Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	1.6	41
1079	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie, 2016, 128, 7505-7509.	1.6	72
1080	Extraordinary NO ₂ Removal by the Metalâ€"Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie - International Edition, 2016, 55, 6235-6238.	7.2	160
1081	Water Purification: Adsorption over Metalâ€Organic Frameworks. Chinese Journal of Chemistry, 2016, 34, 175-185.	2.6	116
1082	On thermal stability and catalytic reactivity of Zr-based metal–organic framework (UiO-67) encapsulated Pt catalysts. Journal of Catalysis, 2016, 340, 85-94.	3.1	53
1083	Coordination Chemistry and Structural Dynamics of a Long and Flexible Piperazine-Derived Ligand. Inorganic Chemistry, 2016, 55, 6692-6702.	1.9	18
1084	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. Journal of the American Chemical Society, 2016, 138, 8912-8919.	6.6	278

#	Article	IF	Citations
1085	Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere, 2016, 160, 30-44.	4.2	212
1086	Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catalysis Today, 2016, 278, 22-29.	2.2	48
1087	A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation. Chemical Communications, 2016, 52, 8869-8872.	2.2	30
1088	Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chemistry, 2016, 18, 4542-4552.	4.6	197
1089	Highly Porous Zirconium Metal–Organic Frameworks with β-UH⟨sub⟩3⟨/sub⟩-like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	6.6	76
1090	Molybdenum Polysulfide Anchored on Porous Zr-Metal Organic Framework To Enhance the Performance of Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 12539-12548.	1.5	80
1091	High-throughput synthesis and characterization of nanocrystalline porphyrinic zirconium metal–organic frameworks. Chemical Communications, 2016, 52, 7854-7857.	2.2	77
1092	Highly stable and ultrasensitive chlorogenic acid sensor based on metal–organic frameworks/titanium dioxide nanocomposites. Analyst, The, 2016, 141, 4647-4653.	1.7	35
1093	Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chemical Society Reviews, 2016, 45, 4127-4170.	18.7	378
1094	Biocompatible Zr-based nanoscale MOFs coated with modified poly($\hat{l}\mu$ -caprolactone) as anticancer drug carriers. International Journal of Pharmaceutics, 2016, 509, 208-218.	2.6	96
1095	Organocatalysis by site-isolated N-heterocyclic carbenes doped into the UIO-67 framework. Polyhedron, 2016, 114, 422-427.	1.0	11
1096	A novel heterometallic BaGa coordination polymer based on the bifunctional ligand 2,5-pyridine dicarboxylic acid. Inorganic Chemistry Communication, 2016, 70, 86-89.	1.8	3
1097	Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Materials Today, 2016, 19, 503-515.	8.3	82
1098	CO ₂ Adsorption Sites in UTSA-16: Multitechnique Approach. Journal of Physical Chemistry C, 2016, 120, 12068-12074.	1.5	23
1099	DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2016, 7, 2322-2327.	2.1	77
1100	Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol. Surface Science, 2016, 653, 11-21.	0.8	5
1101	The dual capture of As ^V and As ^{III} by UiO-66 and analogues. Chemical Science, 2016, 7, 6492-6498.	3.7	181
1102	Orchestrating Molecular Motion with Light – From Single (macro)Molecules to Materials. Macromolecular Chemistry and Physics, 2016, 217, 189-198.	1.1	19

#	Article	IF	CITATIONS
1103	A Computational and Experimental Approach Linking Disorder, Highâ€Pressure Behavior, and Mechanical Properties in UiO Frameworks. Angewandte Chemie, 2016, 128, 2447-2451.	1.6	24
1104	Selfâ€Supporting Metal–Organic Layers as Singleâ€Site Solid Catalysts. Angewandte Chemie, 2016, 128, 5046-5050.	1.6	61
1105	Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Andersonâ€√ype Polyoxometalate Clusters. Angewandte Chemie, 2016, 128, 6572-6576.	1.6	24
1106	A Computational and Experimental Approach Linking Disorder, Highâ€Pressure Behavior, and Mechanical Properties in UiO Frameworks. Angewandte Chemie - International Edition, 2016, 55, 2401-2405.	7.2	103
1107	Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickel ontaining Polyoxometalates for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6411-6416.	7.2	230
1108	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie - International Edition, 2016, 55, 7379-7383.	7.2	260
1109	Singleâ€Molecule Magnet Behavior of Individual Polyoxometalate Molecules Incorporated within Biopolymer or Metal–Organic Framework Matrices. Chemistry - A European Journal, 2016, 22, 6564-6574.	1.7	34
1110	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	1.7	15
1111	Improved Catalytic Activity and Stability of a Palladium Pincer Complex by Incorporation into a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1780-1783.	6.6	141
1112	CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 2016, 138, 2292-2301.	6.6	269
1113	Robust Metal–Organic Framework Containing Benzoselenadiazole for Highly Efficient Aerobic Cross-dehydrogenative Coupling Reactions under Visible Light. Inorganic Chemistry, 2016, 55, 1005-1007.	1.9	71
1114	Enhancing CO 2 adsorption and separation ability of Zr(IV)-based metal–organic frameworks through ligand functionalization under the guidance of the quantitative structure–property relationship model. Chemical Engineering Journal, 2016, 289, 247-253.	6.6	72
1115	Modulated Hydrothermal Synthesis of UiO-66(Hf)-Type Metal–Organic Frameworks for Optimal Carbon Dioxide Separation. Inorganic Chemistry, 2016, 55, 1134-1141.	1.9	161
1116	Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Advances, 2016, 6, 3671-3679.	1.7	161
1117	Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 2016, 4, 1479-1485.	5.2	259
1118	Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 2016, 289, 486-493.	6.6	205
1119	CdSe QDs@UIO-66 composite with enhanced photocatalytic activity towards RhB degradation under visible-light irradiation. RSC Advances, 2016, 6, 5192-5197.	1.7	40
1120	CO ₂ capture under humid conditions in NH ₂ -MIL-53(Al): the influence of the amine functional group. RSC Advances, 2016, 6, 9978-9983.	1.7	40

#	Article	IF	Citations
1121	Metal–organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm, 2016, 18, 3985-3995.	1.3	54
1122	Synthesis of the biocompatible and highly stable MIL-127(Fe): from large scale synthesis to particle size control. CrystEngComm, 2016, 18, 4094-4101.	1.3	74
1123	Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. Journal of Solid State Chemistry, 2016, 235, 145-153.	1.4	28
1124	Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance. Dalton Transactions, 2016, 45, 4132-4135.	1.6	34
1125	Palladium Nanoparticles Supported on Zirconium Metal Organic Framework as an Efficient Heterogeneous Catalyst for the Suzuki–Miyaura Coupling Reaction. Catalysis Letters, 2016, 146, 499-508.	1.4	31
1126	Pd@UiO-66: An Efficient Catalyst for Suzuki–Miyaura Coupling Reaction at Mild Condition. Catalysis Letters, 2016, 146, 117-125.	1.4	49
1127	Photosensitive titanium and zirconium Metal Organic Frameworks: Current research and future possibilities. Materials Letters, 2016, 166, 327-338.	1.3	32
1128	Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry, 2016, 51, 229-239.	1.8	129
1129	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	2.2	33
1130	Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks. Chemical Communications, 2016, 52, 2133-2136.	2.2	256
1131	Coordination polymers of 5-substituted isophthalic acid. CrystEngComm, 2016, 18, 1123-1132.	1.3	6
1132	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
1133	Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH ₂ functionalized versions. Dalton Transactions, 2016, 45, 4283-4288.	1.6	53
1134	Preparation of amine functionalized UiO-66, mixing with aqueous N -Methyldiethanolamine and application on CO 2 solubility. Journal of Natural Gas Science and Engineering, 2016, 28, 651-659.	2.1	43
1135	CO ₂ capture in the presence of water vapour in MIL-53(Al). New Journal of Chemistry, 2016, 40, 68-72.	1.4	31
1136	Controlling embedment and surface chemistry of nanoclusters in metal–organic frameworks. Chemical Communications, 2016, 52, 5175-5178.	2.2	18
1137	BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chemical Communications, 2016, 52, 5402-5405.	2.2	160
1138	Proline Functionalized UiO-67 and UiO-68 Type Metal–Organic Frameworks Showing Reversed Diastereoselectivity in Aldol Addition Reactions. Chemistry of Materials, 2016, 28, 2573-2580.	3.2	148

#	Article	IF	CITATIONS
1139	Zirconium (IV)-based metal organic framework (UIO-67) as efficient sorbent in dispersive solid phase extraction of plant growth regulator from fruits coupled with HPLC fluorescence detection. Talanta, 2016, 154, 23-30.	2.9	63
1140	Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth and Design, 2016, 16, 2295-2301.	1.4	128
1141	Flow-dependent separation selectivity for organic molecules on metal–organic frameworks containing adsorbents. Chemical Communications, 2016, 52, 5301-5304.	2.2	22
1142	Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Materials, 2016, 8, e253-e253.	3.8	114
1143	A thiadiazole-functionalized Zr(<scp>iv</scp>)-based metalâ€"organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm, 2016, 18, 3104-3113.	1.3	141
1144	Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br,) Tj ETQ	q1.1 0.78	43 <u>1</u> 4 rgBT (
1145	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	6.6	104
1146	Controllable Encapsulation of "Clean―Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts. Angewandte Chemie, 2016, 128, 5103-5107.	1.6	42
1147	A Simple and Nonâ€Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 3713-3718.	1.7	28
1148	Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Advances, 2016, 6, 32598-32614.	1.7	169
1149	A pH-responsive phase transformation of a sulfonated metalâ€"organic framework from amorphous to crystalline for efficient CO ₂ capture. CrystEngComm, 2016, 18, 2803-2807.	1.3	34
1150	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	18.7	1,905
1151	Prediction of hydrogen storage properties of Zr-based MOFs. Inorganica Chimica Acta, 2016, 444, 186-192.	1.2	23
1152	Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 3518-3525.	6.6	683
1153	Facile synthesis and vapochromic studies of Co(II) complexes bearing NO and OO donor ligands. Egyptian Journal of Basic and Applied Sciences, 2016, 3, 125-133.	0.2	3
1154	UiO-67-type Metal–Organic Frameworks with Enhanced Water Stability and Methane Adsorption Capacity. Inorganic Chemistry, 2016, 55, 1986-1991.	1.9	117
1155	Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation. Journal of the American Chemical Society, 2016, 138, 3501-3509.	6.6	158
1156	Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 6955-6963.	5.2	137

#	Article	IF	CITATIONS
1157	Bio-inspired stabilization of sulfenyl iodide RS-l in a Zr(<scp>iv</scp>)-based metal–organic framework. Dalton Transactions, 2016, 45, 5334-5338.	1.6	28
1158	Assembling Coordination Frameworks of Tetrakis[<i>meso</i> -(3,5-biscarboxyphenyl)]-Metalloporphyrins with Polynuclear Metallic Nodes: Mechanistic Insights into the Synthesis and Crystallization Process. Crystal Growth and Design, 2016, 16. 1751-1764.	1.4	12
1159	Determining the structural stability of UiO-67 with respect to time: a solid-state NMR investigation. Chemical Communications, 2016, 52, 4971-4974.	2.2	41
1160	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	6.6	328
1161	Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability for removal of hexavalent chromium from industrial waste. Inorganic Chemistry Frontiers, 2016, 3, 635-644.	3.0	97
1162	Defect engineering of UiO-66 for CO ₂ and H ₂ O uptake – a combined experimental and simulation study. Dalton Transactions, 2016, 45, 4496-4500.	1.6	171
1163	Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations. Journal of the American Chemical Society, 2016, 138, 3241-3249.	6.6	212
1164	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH) ₂ Metal–Organic Framework Nanoparticles for Efficient H ₂ /CO ₂ Separation. Industrial & Discrete Research, 2016, 55, 7933-7940.	1.8	44
1165	In situ solvothermal synthesis of metal–organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016, 1436, 1-8.	1.8	91
1166	Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting. Journal of the American Chemical Society, 2016, 138, 2739-2748.	6.6	83
1167	Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water. Green Chemistry, 2016, 18, 2900-2908.	4.6	175
1168	Highly efficient visible-light-driven CO ₂ reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. Journal of Materials Chemistry A, 2016, 4, 2657-2662.	5.2	231
1169	A diiodo-BODIPY postmodified metal–organic framework for efficient heterogeneous organo-photocatalysis. RSC Advances, 2016, 6, 23995-23999.	1.7	26
1170	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	23.3	1,490
1171	Synthesis of indolizines through aldehyde–amine–alkyne couplings using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst. Journal of Catalysis, 2016, 337, 167-176.	3.1	57
1172	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.	1.3	110
1173	Photophysics of GFP-related chromophores imposed by a scaffold design. Dalton Transactions, 2016, 45, 9884-9891.	1.6	17
1174	Preparation and Characterization of a Hydrophobic Metal–Organic Framework Membrane Supported on a Thin Porous Metal Sheet. Industrial & Engineering Chemistry Research, 2016, 55, 3823-3832.	1.8	27

#	Article	IF	CITATIONS
1175	Isoreticular zirconium-based metalâ \in organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	1.3	46
1176	A mercapto functionalized magnetic Zr-MOF by solvent-assisted ligand exchange for Hg ²⁺ removal from water. Journal of Materials Chemistry A, 2016, 4, 5159-5166.	5.2	191
1177	Defects in metal–organic frameworks: a compromise between adsorption and stability?. Dalton Transactions, 2016, 45, 4352-4359.	1.6	140
1178	Functionalized UiO-66 by Single and Binary (OH) < sub>2 < /sub> and NO < sub>2 < /sub> Groups for Uptake of CO < sub>2 < /sub> and CH < sub>4 < /sub>. Industrial & amp; Engineering Chemistry Research, 2016, 55, 7924-7932.	1.8	61
1179	Defects and disorder in metal organic frameworks. Dalton Transactions, 2016, 45, 4113-4126.	1.6	159
1180	[Ln ₄ @Ln ₄] matryoshka tetrahedron: a novel secondary building unit. CrystEngComm, 2016, 18, 863-867.	1.3	10
1181	Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co ₃ O ₄ catalyst for CO oxidation. RSC Advances, 2016, 6, 6915-6920.	1.7	60
1182	Structure–property relationships in metal-organic frameworks for hydrogen storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 77-85.	2.3	31
1183	Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2016, 18, 2192-2201.	1.3	85
1184	Pyrazolate-Based Porphyrinic Metal–Organic Framework with Extraordinary Base-Resistance. Journal of the American Chemical Society, 2016, 138, 914-919.	6.6	303
1185	Role of molecular simulations in the structure exploration of Metal-Organic Frameworks: Illustrations through recent advances in the field. Comptes Rendus Chimie, 2016, 19, 207-215.	0.2	12
1186	Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coordination Chemistry Reviews, 2016, 311, 38-52.	9.5	272
1187	Origin of highly active metal–organic framework catalysts: defects? Defects!. Dalton Transactions, 2016, 45, 4090-4099.	1.6	183
1188	Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal–organic framework. Chemical Science, 2016, 7, 1070-1075.	3.7	76
1189	Parameterizing and grading hydrolytic stability in metal–organic frameworks. Dalton Transactions, 2016, 45, 3668-3678.	1.6	86
1190	Metal–organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production. Chemical Engineering Journal, 2016, 286, 467-475.	6.6	63
1191	Selective capture of hexavalent chromium from an anion-exchange column of metal organic resin–alginic acid composite. Chemical Science, 2016, 7, 2427-2436.	3.7	158
1192	Hydrothermal synthesis and structural characterization of metal–organic frameworks based on new tetradentate ligands. Dalton Transactions, 2016, 45, 1382-1390.	1.6	28

#	Article	IF	CITATIONS
1193	A lead–porphyrin metal–organic framework: gas adsorption properties and electrocatalytic activity for water oxidation. Dalton Transactions, 2016, 45, 61-65.	1.6	73
1194	Tuning Zr ₆ Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 2016, 6, 235-247.	5 . 5	150
1195	Seed-mediated growth of MOF-encapsulated Pd@Ag coreâ€"shell nanoparticles: toward advanced room temperature nanocatalysts. Chemical Science, 2016, 7, 228-233.	3.7	128
1196	Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Materials, 2016, 220, 148-154.	2.2	114
1197	Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 2016, 307, 342-360.	9.5	476
1198	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	3.7	114
1199	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304
1200	Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. Journal of Hazardous Materials, 2016, 302, 57-64.	6.5	134
1201	Stabilization of volatile Ti(BH ₄) ₃ by nano-confinement in a metal–organic framework. Chemical Science, 2016, 7, 666-672.	3.7	26
1202	Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 2016, 307, 1-31.	9.5	222
1203	Eu(III) functionalized Zr-based metal-organic framework as excellent fluorescent probe for Cd2+ detection in aqueous environment. Sensors and Actuators B: Chemical, 2016, 222, 347-353.	4.0	108
1204	Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chemical Engineering Journal, 2016, 284, 1406-1413.	6.6	303
1205	Investigations on post-synthetically modified UiO-66-NH 2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous and Mesoporous Materials, 2016, 221, 238-244.	2.2	314
1206	U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 269-276.	0.7	176
1207	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
1208	Exploring structure and reactivity of Cu sites in functionalized UiO-67 MOFs. Catalysis Today, 2017, 283, 89-103.	2.2	50
1209	Preparation and applications of monolithic structures containing metal–organic frameworks. Journal of Separation Science, 2017, 40, 272-287.	1.3	54
1210	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ capture., 2017, 7, 399-459.		30

#	Article	IF	CITATIONS
1211	Engineering Copper Carboxylate Functionalities on Water Stable Metal–Organic Frameworks for Enhancement of Ammonia Removal Capacities. Journal of Physical Chemistry C, 2017, 121, 3310-3319.	1.5	25
1212	Building Nanoporous Metal–Organic Frameworks "Armor―on Fibers for High-Performance Composite Materials. ACS Applied Materials & Interfaces, 2017, 9, 5590-5599.	4.0	161
1213	A comparative study of manganese–cerium doped metal–organic frameworks prepared via impregnation and in situ methods in the selective catalytic reduction of NO. RSC Advances, 2017, 7, 5928-5936.	1.7	33
1214	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 2453-2457.	1.6	21
1215	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 2413-2417.	7.2	53
1216	Facile Synthesis and Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone. Industrial & Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone. Industrial & Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone.	1.8	31
1217	CO ₂ capture under humid conditions in metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1471-1484.	3.2	92
1218	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
1219	Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017, 29, 1357-1361.	3.2	346
1220	Sorption and photodegradation under visible light irradiation of an organic pollutant by a heterogeneous UiO-67–Ru–Ti MOF obtained by post-synthetic exchange. RSC Advances, 2017, 7, 195-200.	1.7	45
1221	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc < /b>-MOF platform for the operative removal of H < sub > 2 < /sub > S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	5.2	94
1222	Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Separation and Purification Technology, 2017, 177, 249-256.	3.9	40
1223	The Highly Connected MOFs Constructed from Nonanuclear and Trinuclear Lanthanide-Carboxylate Clusters: Selective Gas Adsorption and Luminescent pH Sensing. Inorganic Chemistry, 2017, 56, 2159-2164.	1.9	101
1224	Integration of nanosized ZIF-8 particles onto mesoporous TiO ₂ nanobeads for enhanced photocatalytic activity. RSC Advances, 2017, 7, 8004-8010.	1.7	53
1225	Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. Journal of Colloid and Interface Science, 2017, 494, 282-289.	5.0	31
1226	Uncovering the Rotation and Translational Mobility of Benzene Confined in UiO-66 (Zr) Metal–Organic Framework by the ⟨sup⟩2⟨ sup⟩H NMR–QENS Experimental Toolbox. Journal of Physical Chemistry C, 2017, 121, 2844-2857.	1.5	35
1227	Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19, 4118-4125.	1.3	78
1228	Synthesis Optimization, Shaping, and Heat Reallocation Evaluation of the Hydrophilic Metal–Organic Framework MlLâ€160(Al). ChemSusChem, 2017, 10, 1419-1426.	3.6	122

#	Article	IF	CITATIONS
1229	Comparative Stability and Sorption Study of Two <i>the</i> -type Metal–Organic Frameworks with Different Multiplicate Metal–Ligand Interactions in Secondary Building Units. Crystal Growth and Design, 2017, 17, 418-422.	1.4	7
1230	Postsynthetic N-methylation making a metal–organic framework responsive to alkylamines. Chemical Communications, 2017, 53, 1747-1750.	2.2	91
1231	Fluorescent molecule incorporated metal-organic framework for fluoride sensing in aqueous solution. Applied Surface Science, 2017, 402, 129-135.	3.1	31
1232	South African hydrogen infrastructure (HySA infrastructure) for fuel cells and energy storage: Overview of a projects portfolio. International Journal of Hydrogen Energy, 2017, 42, 13568-13588.	3.8	46
1233	Effective removal of chemical warfare agent simulants using water stable metal–organic frameworks: mechanistic study and structure–property correlation. RSC Advances, 2017, 7, 6691-6696.	1.7	36
1234	Calix[4]arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 206, 426-433.	10.8	117
1235	Mixed-linker strategy for the construction of multifunctional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 4280-4291.	5.2	163
1236	Tuning the stability of bimetallic Ce(<scp>iv</scp>)/Zr(<scp>iv</scp>)-based MOFs with UiO-66 and MOF-808 structures. Dalton Transactions, 2017, 46, 2425-2429.	1.6	139
1237	Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. Journal of Chromatography A, 2017, 1488, 1-9.	1.8	61
1238	Hierarchical structure and porosity in UiO-66 polyMOFs. Chemical Communications, 2017, 53, 3058-3061.	2.2	68
1239	Metal organic frameworks as precursors for the manufacture of advanced catalytic materials. Materials Chemistry Frontiers, 2017, 1, 1709-1745.	3.2	252
1240	Two new porous UiO-66-type zirconium frameworks; open aromatic N-donor sites and their post-synthetic methylation and metallation. Journal of Materials Chemistry A, 2017, 5, 5612-5618.	5.2	45
1241	Catalyst accessibility to chemical reductants in metal–organic frameworks. Chemical Communications, 2017, 53, 3257-3260.	2.2	42
1242	The Remarkable Amphoteric Nature of Defective UiOâ€66 in Catalytic Reactions. ChemCatChem, 2017, 9, 2203-2210.	1.8	46
1243	Using water adsorption measurements to access the chemistry of defects in the metal–organic framework UiO-66. CrystEngComm, 2017, 19, 4137-4141.	1.3	58
1244	Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2034-2040.	1.4	24
1245	A facile synthesis of UiO-66 systems and their hydrothermal stability. Journal of Porous Materials, 2017, 24, 1327-1333.	1.3	40
1246	A Water-Stable Anionic Metal–Organic Framework Constructed from Columnar Zinc-Adeninate Units for Highly Selective Light Hydrocarbon Separation and Efficient Separation of Organic Dyes. Inorganic Chemistry, 2017, 56, 2919-2925.	1.9	7 3

#	Article	IF	CITATIONS
1247	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	3.0	38
1248	Screening the activity of Lewis pairs for hydrogenation of CO ₂ . Molecular Simulation, 2017, 43, 821-827.	0.9	12
1249	Azobenzene Guest Molecules as Light-Switchable CO ₂ Valves in an Ultrathin UiO-67 Membrane. Chemistry of Materials, 2017, 29, 3111-3117.	3.2	103
1250	UiO-66(Zr) coupled with Bi 2 MoO 6 as photocatalyst for visible-light promoted dye degradation. Journal of Colloid and Interface Science, 2017, 497, 126-133.	5.0	230
1251	Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons. CrystEngComm, 2017, 19, 1729-1737.	1.3	28
1252	Green Synthesis of Zr-CAU-28: Structure and Properties of the First Zr-MOF Based on 2,5-Furandicarboxylic Acid. Inorganic Chemistry, 2017, 56, 2270-2277.	1.9	66
1253	Computational Design of Metal–Organic Framework Arrays for Gas Sensing: Influence of Array Size and Composition on Sensor Performance. Journal of Physical Chemistry C, 2017, 121, 6033-6038.	1.5	50
1254	Flexible Zirconium MOF as the Crystalline Sponge for Coordinative Alignment of Dicarboxylates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33408-33412.	4.0	48
1255	Efficient and selective adsorption of nitroaromatic explosives by Zr-MOF. Inorganic Chemistry Communication, 2017, 77, 11-13.	1.8	25
1256	A Multifunctional Zirconiumâ€Based Metal–Organic Framework for the Oneâ€Pot Tandem Photooxidative Passerini Threeâ€Component Reaction of Alcohols. ChemCatChem, 2017, 9, 1992-2000.	1.8	71
1257	Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Advanced Materials, 2017, 29, 1605446.	11.1	275
1258	Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 198-201.	0.6	2
1259	High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 2017, 531, 16-26.	4.1	82
1260	Composite System of Ag Nanoparticles and Metal–Organic Frameworks for the Capture and Conversion of Carbon Dioxide under Mild Conditions. Inorganic Chemistry, 2017, 56, 3414-3420.	1.9	86
1261	Filtration of chlorine and hydrogen chloride gas by engineered UiO-66-NH2 metal-organic framework. Journal of Hazardous Materials, 2017, 332, 162-167.	6.5	28
1262	Thin-Film Nanocomposite (TFN) Membranes Incorporated with Super-Hydrophilic Metal–Organic Framework (MOF) UiO-66: Toward Enhancement of Water Flux and Salt Rejection. ACS Applied Materials & Diterfaces, 2017, 9, 7523-7534.	4.0	285
1263	Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation conditions. Faraday Discussions, 2017, 201, 265-286.	1.6	31
1264	Robust Ti―and Zrâ€Based Metalâ€Organic Frameworks for Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 135-147.	2.6	74

#	Article	IF	CITATIONS
1265	Monitoring instability of linear amine impregnated UiO-66 by in-situ temperature resolved powder X-ray diffraction. Microporous and Mesoporous Materials, 2017, 243, 85-90.	2.2	7
1266	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 6578-6582.	1.6	4
1267	Selective Adsorption of Light Alkanes on a Highly Robust Indium Based Metal–Organic Framework. Industrial & Description of Light Alkanes on a Highly Robust Indium Based Metal–Organic Framework. Industrial & Description of Light Alkanes on a Highly Robust Indium Based Metal–Organic Framework.	1.8	59
1268	Improving the Stability and Gas Adsorption Performance of Acylamide Group Functionalized Zinc Metal–Organic Frameworks through Coordination Group Optimization. Crystal Growth and Design, 2017, 17, 2584-2588.	1.4	15
1269	Improved resolution and simplification of the spin-diffusion-based NMR method for the structural analysis of mixed-linker MOFs. Journal of Magnetic Resonance, 2017, 279, 22-28.	1.2	18
1270	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sensors and Actuators B: Chemical, 2017, 250, 121-131.	4.0	94
1271	Designing metal-contained enzyme mimics for prodrug activation. Advanced Drug Delivery Reviews, 2017, 118, 78-93.	6.6	36
1272	Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19, 4126-4136.	1.3	116
1273	Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 2017, 356, 430-434.	6.0	1,179
1274	Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. CheM, 2017, 2, 561-578.	5.8	266
1275	Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study. Journal of Physical Chemistry C, 2017, 121, 11261-11272.	1.5	120
1276	Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15079-15085.	4.0	127
1277	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	5.2	127
1278	Carbon Promoted ZrO ₂ Catalysts for Aqueous-Phase Ketonization of Acetic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 3509-3516.	3.2	28
1279	Infrared laser writing of MOFs. Chemical Communications, 2017, 53, 5275-5278.	2.2	11
1280	A cobalt metalâ€organic framework with small pore size for adsorptive separation of CO ₂ over N ₂ and CH ₄ . AICHE Journal, 2017, 63, 4532-4540.	1.8	21
1281	Catalytic "MOF-Cloth―Formed via Directed Supramolecular Assembly of UiO-66-NH ₂ Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants. Chemistry of Materials, 2017, 29, 4894-4903.	3.2	177
1282	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176

#	Article	IF	CITATIONS
1283	Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal-organic frameworks: A look toward solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 64-77.	2.0	55
1284	Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal–Organic Framework. ACS Applied Materials & Diterfaces, 2017, 9, 33413-33418.	4.0	183
1285	Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. Journal of the American Chemical Society, 2017, 139, 7522-7532.	6.6	269
1286	First-principles study of elastic mechanical responses to applied deformation of metal-organic frameworks. Journal of Chemical Physics, 2017, 146, .	1.2	17
1287	Gas Uptake and Supercapacitor Performance of a Highly Connected Porous Co-Metal–Organic Framework Induced by Ligand Bulk. Crystal Growth and Design, 2017, 17, 3229-3235.	1.4	40
1288	Guest Hydrogen Bond Dynamics and Interactions in the Metal–Organic Framework MIL-53(Al) Measured with Ultrafast Infrared Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11880-11890.	1.5	21
1289	Single-Site Cobalt Catalysts at New Zr ₁₂ (μ ₃ (ۼ ₃ -OH) ₈ -OH) ₈ -OH)8-OH) Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. Journal of the American Chemical Society, 2017, 139, 7004-7011.	_{6<!--</td--><td>sub> 211</td>}	sub> 211
1290	A Fluorescent Zirconiumâ€Based Metalâ€Organic Framework for Selective Detection of Nitro Explosives and Metal Ions. Chinese Journal of Chemistry, 2017, 35, 1091-1097.	2.6	12
1291	The â€~folklore' and reality of reticular chemistry. Materials Chemistry Frontiers, 2017, 1, 1304-1309.	3.2	47
1292	Alkane–OH Hydrogen Bond Formation and Diffusion Energetics of <i>n</i> lournal of Physical Chemistry C, 2017, 121, 8902-8906.	1.5	32
1293	When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 2017, 343, 1-24.	9.5	226
1294	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	18.7	2,457
1295	Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol. Chemical Engineering Journal, 2017, 323, 74-83.	6.6	77
1296	Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000. Faraday Discussions, 2017, 201, 337-350.	1.6	66
1297	Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications, 2017, 53, 5818-5821.	2.2	90
1298	Enhancement of Oxidative Desulfurization Performance over UiOâ€66(Zr) by Titanium Ion Exchange. ChemPhysChem, 2017, 18, 1903-1908.	1.0	46
1299	Synthesis of functionalized titanium-carboxylate molecular clusters and their catalytic activity. Journal of Industrial and Engineering Chemistry, 2017, 53, 171-176.	2.9	12
1300	Zr-Based MOFs Shielded with Phospholipid Bilayers: Improved Biostability and Cell Uptake for Biological Applications. Chemistry of Materials, 2017, 29, 4580-4589.	3.2	82

#	Article	IF	CITATIONS
1301	One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants. Journal of Colloid and Interface Science, 2017, 490, 685-694.	5.0	116
1302	Coordination polymers with 1,3-bis(1-imidazolyl)-5-(imidazol-1- ylmethyl)benzene and biphenyl-4,4′-dicarboxylate ligands: Selective adsorption of gas and dye molecules. Microporous and Mesoporous Materials, 2017, 241, 192-201.	2.2	32
1303	Crystallization process development of metal–organic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility. CrystEngComm, 2017, 19, 426-441.	1.3	34
1304	Flue-gas and direct-air capture of CO ₂ by porous metal–organic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160025.	1.6	80
1305	The modulator driven polymorphism of Zr(IV) based metal–organic frameworks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160027.	1.6	21
1306	Adsorption and Reactive Desorption on Metal–Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 2017, 10, 643-650.	3.6	17
1307	Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry, 2017, 89, 249-275.	3.2	71
1308	Polar Pore Surface Guided Selective CO ₂ Adsorption in a Prefunctionalized Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3581-3587.	1.4	34
1309	Rare Earth pcu Metal–Organic Framework Platform Based on RE ₄ (î¼ ₃ -OH) ₄ (COO) ₆ ²⁺ Clusters: Rational Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. Journal of the American Chemical Society, 2017, 139, 9333-9340.	6.6	102
1310	Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356, 1193-1196.	6.0	559
1311	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	18.7	1,519
1312	Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction. Chemical Communications, 2017, 53, 7953-7956.	2.2	57
1313	All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr ⁴⁺ MOF. Journal of Materials Chemistry A, 2017, 5, 14707-14719.	5.2	150
1314	A highly stable metalâ€organic framework with optimum aperture size for CO ₂ capture. AICHE Journal, 2017, 63, 4103-4114.	1.8	85
1315	Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1701139.	11.1	522
1316	Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 2017, 7, 5035-5045.	5.5	88
1317	Electrospun metal–organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017, 41, 8748-8753.	1.4	64
1318	Probing the Guest-Mediated Structural Mobility in the UiO-66(Zr) Framework by 2H NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 11593-11600.	1.5	20

#	Article	IF	CITATIONS
1319	A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. Dalton Transactions, 2017, 46, 7821-7832.	1.6	44
1320	Design of salt–metal organic framework composites for seasonal heat storage applications. Journal of Materials Chemistry A, 2017, 5, 12889-12898.	5.2	129
1321	Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie - International Edition, 2017, 56, 9704-9709.	7.2	155
1322	Crystalline Nanochannels with Pendant Azobenzene Groups: Steric or Polar Effects on Gas Adsorption and Diffusion?. Journal of the American Chemical Society, 2017, 139, 8784-8787.	6.6	91
1323	Phenanthroline-based metal–organic frameworks for Fe-catalyzed C _{sp3} –H amination. Faraday Discussions, 2017, 201, 303-315.	1.6	38
1324	Electron Crystallography Reveals Atomic Structures of Metal–Organic Nanoplates with M ₁₂ (μ ₃ -O) ₈ (μ ₃ -OH) ₈ -OH) (M = Zr, Hf) Secondary Building Units. Inorganic Chemistry, 2017, 56, 8128-8134.	< 5.9 b>6 !</td <td>subl2></td>	s ubl2 >
1325	Graphene oxide gas separation membranes intercalated by UiO-66-NH 2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539, 172-177.	4.1	91
1326	Tailoring the Adsorption and Reaction Chemistry of the Metal–Organic Frameworks UiO-66, UiO-66-NH ₂ , and HKUST-1 via the Incorporation of Molecular Guests. ACS Applied Materials & Los Applied & Los Applied Materials & Los Applied & Los Applied Materials & Los Applied Materials & Los Applied & Los Applied Materials & Los Applied & Los Applied Materials & Los Applied Materials & Los Applied Materials & Los Applied & Los Appli	4.0	40
1327	Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy. Chemical Communications, 2017, 53, 7041-7044.	2.2	30
1328	Advances in technologies for pharmaceuticals and personal care products removal. Journal of Materials Chemistry A, 2017, 5, 12001-12014.	5.2	142
1329	Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating. Journal of Materials Chemistry A, 2017, 5, 13565-13572.	5.2	15
1330	Reversible Low-Temperature Metal Node Distortion during Atomic Layer Deposition of Al ₂ O ₃ and TiO ₂ on UiO-66-NH ₂ Metal–Organic Framework Crystal Surfaces. ACS Applied Materials & Distriction of Surfaces.	4.0	76
1331	Development of Hybrid Ultrafiltration Membranes with Improved Water Separation Properties Using Modified Superhydrophilic Metal–Organic Framework Nanoparticles. ACS Applied Materials & Diterials & Interfaces, 2017, 9, 21473-21484.	4.0	189
1332	The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas. Chemical Engineering Journal, 2017, 326, 551-560.	6.6	75
1333	A facile approach to fabricate an immobilized-phosphate zirconium-based metal-organic framework composite (UiO-66-P) and its activity in the adsorption and separation of organic dyes. Journal of Colloid and Interface Science, 2017, 505, 178-185.	5.0	88
1334	Highly Stable and Regenerative Metal–Organic Framework Designed by Multiwalled Divider Installation Strategy for Detection of Co(II) Ions and Organic Aromatics in Water. ACS Applied Materials & Lagrany: Interfaces, 2017, 9, 19881-19893.	4.0	38
1335	New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017, 46, 3453-3480.	18.7	649
1336	Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie, 2017, 129, 9836-9841.	1.6	38

#	Article	IF	CITATIONS
1337	Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 2017, 46, 3431-3452.	18.7	239
1338	Adsorption of a Catalytically Accessible Polyoxometalate in a Mesoporous Channel-type Metal–Organic Framework. Chemistry of Materials, 2017, 29, 5174-5181.	3.2	143
1339	Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. Journal of the American Chemical Society, 2017, 139, 7998-8007.	6.6	158
1340	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	5.8	326
1341	SERS-active metal–organic frameworks with embedded gold nanoparticles. Analyst, The, 2017, 142, 2640-2647.	1.7	69
1342	Uniform distribution of post-synthetic linker exchange in metal–organic frameworks revealed by Rutherford backscattering spectrometry. Chemical Communications, 2017, 53, 6516-6519.	2.2	27
1343	Effective adsorption of Pd(<scp>ii</scp>), Pt(<scp>iv</scp>) and Au(<scp>iii</scp>) by Zr(<scp>iv</scp>)-based metal–organic frameworks from strongly acidic solutions. Journal of Materials Chemistry A, 2017, 5, 13557-13564.	5.2	179
1344	Establishing upper bounds on CO ₂ swing capacity in sub-ambient pressure swing adsorption via molecular simulation of metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 12258-12265.	5.2	44
1345	PVP-assisted synthesis of monodisperse UiO-66 crystals with tunable sizes. Inorganic Chemistry Communication, 2017, 82, 68-71.	1.8	21
1346	Pervaporation dehydration of acetic acid using NH 2 -UiO-66/PEI mixed matrix membranes. Separation and Purification Technology, 2017, 186, 20-27.	3.9	52
1347	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033
1348	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	5.8	366
1349	In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm, 2017, 19, 3206-3214.	1.3	28
1350	Experimental and Computational Investigation of CO 2 Capture on Mix-ligand Metal-organic Framework UiO-66. Energy Procedia, 2017, 105, 4395-4401.	1.8	18
1351	Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sensors and Actuators B: Chemical, 2017, 253, 275-282.	4.0	110
1352	Noble metal-free catalytic decarboxylation of oleic acid to n-heptadecane on nickel-based metal–organic frameworks (MOFs). Catalysis Science and Technology, 2017, 7, 3027-3035.	2.1	22
1353	Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	1.4	123
1354	Selective H ₂ S/CO ₂ Separation by Metal–Organic Frameworks Based on Chemical-Physical Adsorption. Journal of Physical Chemistry C, 2017, 121, 13249-13255.	1.5	131

#	Article	IF	CITATIONS
1355	Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks. Dalton Transactions, 2017, 46, 8204-8218.	1.6	20
1356	UiO-66-(SH) ₂ as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discussions, 2017, 201, 145-161.	1.6	67
1357	Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by mechanochemistry. Materials Letters, 2017, 197, 171-174.	1.3	38
1358	Efficient Removal of Antimony (III, V) from Contaminated Water by Amino Modification of a Zirconium Metal–Organic Framework with Mechanism Study. Journal of Chemical & Engineering Data, 2017, 62, 1519-1529.	1.0	93
1359	Solventâ€Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 6478-6482.	7.2	80
1360	One-step encapsulation of Pt-Co bimetallic nanoparticles within MOFs for advanced room temperature nanocatalysis. Molecular Catalysis, 2017, 433, 77-83.	1.0	31
1361	Insight into the Mechanism of Water Adsorption/Desorption in Hydrophilic Viologen-Carboxylate Based PCP. Crystal Growth and Design, 2017, 17, 2828-2835.	1.4	18
1362	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ –UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	1.5	116
1363	Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chemistry, 2017, 19, 2482-2490.	4.6	97
1364	Robust MOFs of "tsg―Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal to Single Crystal Postsynthetic Metal Exchange and Selective CO ₂ Capture. Chemistry - A European Journal, 2017, 23, 7297-7305.	1.7	26
1365	Modulated synthesis of zirconium metal–organic framework UiO-66 with enhanced dichloromethane adsorption capacity. Materials Letters, 2017, 197, 167-170.	1.3	56
1366	Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 2017, 8, 3939-3948.	3.7	177
1367	The origin of the measured chemical shift of ¹²⁹ Xe in UiO-66 and UiO-67 revealed by DFT investigations. Physical Chemistry Chemical Physics, 2017, 19, 10020-10027.	1.3	23
1368	Metal–Organic Frameworks from Group 4 Metals and 2,5-Dihydroxyterephthalic Acid: Reinvestigation, New Structure, and Challenges Toward Gas Storage and Separation. Crystal Growth and Design, 2017, 17, 2140-2146.	1.4	25
1369	Energy Storage during Compression of Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 4667-4670.	6.6	53
1370	Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 2017, 46, 3134-3184.	18.7	861
1371	Postmetalated Zirconium Metal Organic Frameworks as a Highly Potent Bactericide. Inorganic Chemistry, 2017, 56, 4739-4744.	1.9	43
1372	Continuous synthesis of UiO-66 in microreactor: Pursuing the optimum between intensified production and structural properties. Materials Letters, 2017, 197, 213-216.	1.3	8

#	Article	IF	CITATIONS
1373	Metal Insertion in a Methylamine-Functionalized Zirconium Metal–Organic Framework for Enhanced Carbon Dioxide Capture. Inorganic Chemistry, 2017, 56, 4308-4316.	1.9	11
1374	<i>In Vivo</i> Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal–Organic Frameworks Nanomaterials. ACS Nano, 2017, 11, 4315-4327.	7.3	235
1375	Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. Journal of Physical Chemistry C, 2017, 121, 9312-9324.	1.5	176
1376	Ab Initio Molecular Dynamic Simulations on Pd Clusters Confined in UiO-66-NH ₂ . Journal of Physical Chemistry C, 2017, 121, 8857-8863.	1.5	27
1377	Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. Journal of the American Chemical Society, 2017, 139, 6253-6260.	6.6	78
1378	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	6.6	122
1379	Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. Journal of Colloid and Interface Science, 2017, 500, 88-95.	5.0	198
1380	Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor. ACS Sustainable Chemistry and Engineering, 2017, 5, 4144-4153.	3.2	103
1381	Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Scientific Reports, 2017, 7, 612.	1.6	64
1382	Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 33419-33428.	4.0	104
1383	Synthesis of the homochiral metal–organic framework DUT-129 based on a chiral dicarboxylate linker with 6 stereocenters. CrystEngComm, 2017, 19, 2494-2499.	1.3	17
1384	Stepwise Synthesis of Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 857-865.	7.6	246
1385	ReaxFF Molecular Dynamics Simulations of Water Stability of Interpenetrated Metal–Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 7312-7318.	1.5	15
1386	Metal–OrganicÂFramework (MOF)â€Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 2017, 29, 1606134.	11.1	1,633
1387	Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties. Chemical Engineering Journal, 2017, 321, 40-47.	6.6	61
1388	Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. Journal of Colloid and Interface Science, 2017, 499, 151-158.	5.0	364
1389	Cu(I) 3,5-Diethyl-1,2,4-Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Crystal Growth and Design, 2017, 17, 1441-1449.	1.4	24
1391	Enhancement of Gas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2131-2139.	1.4	35

#	Article	IF	Citations
1392	Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 2017, 29, 3006-3019.	3.2	176
1393	Ethylene oligomerization in metal–organic frameworks bearing nickel(ii) 2,2′-bipyridine complexes. Faraday Discussions, 2017, 201, 351-367.	1.6	35
1394	A dual-functional UiO-66/TiO ₂ composite for water treatment and CO ₂ capture. RSC Advances, 2017, 7, 16232-16237.	1.7	25
1395	CO 2 capture and photocatalytic reduction using bifunctional TiO 2 /MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210, 131-140.	10.8	288
1396	Evaluation of two- and three-dimensional electrode platforms for the electrochemical characterization of organometallic catalysts incorporated in non-conducting metal–organic frameworks. Dalton Transactions, 2017, 46, 4907-4911.	1.6	17
1397	Transition-metal-based (Co 2+, Ni 2+ and Cd 2+) coordination polymers constructed by a polytopic ligand integrating both flexible aliphatic and rigid aromatic carboxylate groups: Aqueous detection of nitroaromatics. Polyhedron, 2017, 128, 18-29.	1.0	10
1398	Metal–Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12878-12885.	4.0	138
1399	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	5. 2	314
1400	Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 2017, 23, 3583-3594.	1.7	31
1401	A Modulator″nduced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie - International Edition, 2017, 56, 563-567.	7.2	486
1402	Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017, 526, 205-211.	4.1	143
1403	Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal–organic frameworks. Chemical Communications, 2017, 53, 1184-1187.	2.2	35
1404	Force-Field Prediction of Materials Properties in Metal-Organic Frameworks. Journal of Physical Chemistry Letters, 2017, 8, 357-363.	2.1	172
1405	The Effect of Nâ€Containing Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiOâ€67. European Journal of Inorganic Chemistry, 2017, 2017, 172-178.	1.0	18
1406	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	1.4	36
1407	Cu ₂ O Mediated Synthesis of Metal–Organic Framework UiO-66 in Nanometer Scale. Crystal Growth and Design, 2017, 17, 685-692.	1.4	15
1408	Expanding the Group of Porous Interpenetrated Zr-Organic Frameworks (PIZOFs) with Linkers of Different Lengths. Inorganic Chemistry, 2017, 56, 748-761.	1.9	53
1409	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	5.5	288

#	Article	IF	CITATIONS
1410	High-Pressure Methane Adsorption in Two Isoreticular Zr-Based Metal–Organic Frameworks Constructed from C3-Symmetrical Tricarboxylates. Crystal Growth and Design, 2017, 17, 248-254.	1.4	6
1411	Metal–Organic Frameworks for Thin-Layer Chromatographic Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2006-2009.	4.0	13
1412	Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to \hat{I}^3 -Valerolactone over Sulfonic Acid-Functionalized UiO-66. ACS Sustainable Chemistry and Engineering, 2017, 5, 1141-1152.	3.2	198
1413	Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal–organic framework materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160334.	1.6	10
1414	Novel Organic-Dehydration Membranes Prepared from Zirconium Metal-Organic Frameworks. Advanced Functional Materials, 2017, 27, 1604311.	7.8	98
1415	Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 2017, 335, 1-27.	9.5	88
1416	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie, 2017, 129, 578-582.	1.6	96
1417	Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy, 2017, 32, 19-27.	8.2	109
1418	Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Research, 2017, 10, 876-889.	5.8	54
1419	Photophysical properties of [Ru(2,2′-bipyridine) 3] 2+ encapsulated within the Uio-66 zirconium based metal organic framework. Journal of Solid State Chemistry, 2017, 247, 77-82.	1.4	21
1420	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	16.0	324
1421	Network polymers derived from the integration of flexible organic polymers and rigid metal–organic frameworks. Polymer Journal, 2017, 49, 345-353.	1.3	21
1422	UiO-66@SiO ₂ core–shell microparticles as stationary phases for the separation of small organic molecules. Analyst, The, 2017, 142, 517-524.	1.7	57
1423	Electrochemical Water Oxidation by a Catalystâ€Modified Metal–Organic Framework Thin Film. ChemSusChem, 2017, 10, 514-522.	3.6	114
1424	Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal–Organic Frameworks: The Window Size Matters. ChemCatChem, 2017, 9, 971-979.	1.8	103
1425	Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 16852-16861.	6.6	107
1426	Control the Structure of Zr-Tetracarboxylate Frameworks through Steric Tuning. Journal of the American Chemical Society, 2017, 139, 16939-16945.	6.6	153
1427	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 16589-16593.	1.6	30

#	Article	IF	CITATIONS
1428	A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13166-13172.	6.6	193
1429	Adsorption Behaviors of Organic Micropollutants on Zirconium Metal–Organic Framework UiO-66: Analysis of Surface Interactions. ACS Applied Materials & Interfaces, 2017, 9, 41043-41054.	4.0	327
1430	Converting Metal–Organic Framework Particles from Hydrophilic to Hydrophobic by an Interfacial Assembling Route. Langmuir, 2017, 33, 12427-12433.	1.6	39
1431	Synthesis of a Zr-Based Metal–Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants. Inorganic Chemistry, 2017, 56, 12098-12101.	1.9	44
1432	Raman Observation of the "Volcano Curve―in the Formation of Carbonized Metal–Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 22939-22947.	1.5	9
1433	<i>>50th Anniversary Perspective</i> : Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 2017, 50, 7809-7843.	2.2	709
1434	Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water. Journal of Materials Chemistry A, 2017, 5, 22305-22315.	5.2	47
1435	Effect of Molecular Guest Binding on the d–d Transitions of Ni ²⁺ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorganic Chemistry, 2017, 56, 14408-14425.	1.9	22
1436	Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2017, 139, 15251-15258.	6.6	112
1437	The chemistry of titanium-based metal–organic frameworks. New Journal of Chemistry, 2017, 41, 14030-14043.	1.4	73
1438	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	5.2	159
1439	Platinum Nanoparticle Encapsulated Metal–Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS Applied Materials & Interfaces, 2017, 9, 40716-40725.	4.0	110
1440	Proton-Coupled Electron Transport in Anthraquinone-Based Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 13741-13747.	1.9	23
1441	Bond breakage under pressure in a metal organic framework. Chemical Science, 2017, 8, 8004-8011.	3.7	77
1442	Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. Journal of Materials Chemistry A, 2017, 5, 22877-22896.	5.2	202
1443	Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing. ACS Applied Materials & Interfaces, 2017, 9, 37848-37855.	4.0	77
1444	Agâ€Nanoparticleâ€Anchored rGOâ€Coated MILâ€88B(Fe) Hybrids as Robust Electrocatalysts for the Highly Efficient Oxygen Evolution Reaction at Neutral pH. ChemElectroChem, 2017, 4, 3110-3118.	1.7	34
1445	Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3. Frontiers of Chemical Science and Engineering, 2017, 11, 594-602.	2.3	25

#	ARTICLE	IF	CITATIONS
1446	An Isoreticular Series of Zinc(II) Metal–Organic Frameworks Derived from Terpyridylcarboxylate Ligands. Inorganic Chemistry, 2017, 56, 12224-12231.	1.9	11
1447	Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chemical Science, 2017, 8, 7765-7771.	3.7	122
1448	Synthesis of Metal-organic Frameworks Based on Zr ⁴⁺ and Benzene 1,3,5-Tricarboxylate Linker as Heterogeneous Catalyst in the Esterification Reaction of Palmitic Acid. IOP Conference Series: Materials Science and Engineering, 2017, 214, 012006.	0.3	5
1449	X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges. Chinese Journal of Catalysis, 2017, 38, 1481-1488.	6.9	32
1450	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
1451	Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA–Metal–Organic Frameworks with Soluble Exoskeleton. Journal of the American Chemical Society, 2017, 139, 15784-15791.	6.6	180
1452	Core–Shell Structures Arise Naturally During Ligand Exchange in Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 14841-14844.	6.6	115
1453	Water-Stable Metal–Organic Framework UiO-66 for Performance Enhancement of Forward Osmosis Membranes. Industrial & Description (Chemistry Research, 2017, 56, 12773-12782.	1.8	65
1454	Tailoring Nanocrystalline Metal–Organic Frameworks as Fluorescent Dye Carriers for Bioimaging. Inorganic Chemistry, 2017, 56, 12859-12865.	1.9	37
1455	Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance. Electrochimica Acta, 2017, 257, 243-249.	2.6	43
1456	Revisiting the Incorporation of Ti(IV) in UiO-type Metal–Organic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. Chemistry of Materials, 2017, 29, 8963-8967.	3.2	64
1457	Dual-Functionalized Magnetic Metal–Organic Framework for Highly Specific Enrichment of Phosphopeptides. ACS Sustainable Chemistry and Engineering, 2017, 5, 11413-11421.	3.2	93
1458	MOFs <i>vs.</i> zeolites: carbonyl activation with M(<scp>iv</scp>) catalytic sites. Catalysis Science and Technology, 2017, 7, 5482-5494.	2.1	29
1459	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
1460	Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO ₂ Capture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38575-38583.	4.0	63
1461	Tetraphenylmethane and tetraphenylsilane as building units of coordination polymers and supramolecular networks – A focus on tetraphosphonates. Inorganic Chemistry Communication, 2017, 86, 172-186.	1.8	25
1462	A multi-purpose reaction cell for the investigation of reactions under solvothermal conditions. Review of Scientific Instruments, 2017, 88, 104102.	0.6	22
1463	A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale, 2017, 9, 17561-17570.	2.8	117

#	Article	IF	CITATIONS
1464	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16371-16375.	7.2	87
1465	Screening of Zirconium-Based Metal–Organic Frameworks for Efficient Simultaneous Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2017, 5, 11496-11503.	3.2	103
1466	Designing new catalytic nanoreactors for the regioselective epoxidation of geraniol by the post-synthetic immobilization of oxovanadium(IV) complexes on a ZrIV-based metal–organic framework. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 961-981.	0.8	13
1467	Effect of countercation on the water stability of an anionic metal–organic framework. CrystEngComm, 2017, 19, 5417-5421.	1.3	13
1468	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
1469	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
1470	Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH ₂ Metal–Organic Framework Composites to Enhance Chemical Warfare Agent Removal. ACS Applied Materials & Longary Interfaces, 2017, 9, 32248-32254.	4.0	93
1471	Mechanical Properties of Microcrystalline Metal–Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 32202-32210.	4.0	46
1472	Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nature Reviews Materials, 2017, 2, .	23.3	191
1473	Boosting the Catalytic Performance of Metal–Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie, 2017, 129, 13487-13491.	1.6	9
1474	Boosting the Catalytic Performance of Metal–Organic Frameworks for Steroid Transformations by Confinement within a Mesoporous Scaffold. Angewandte Chemie - International Edition, 2017, 56, 13302-13306.	7.2	63
1475	Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544, 342-350.	4.1	73
1476	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32446-32451.	4.0	260
1477	Boosting Catalytic Performance of Metal–Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34937-34943.	4.0	100
1478	The duality of UiO-67-Pt MOFs: connecting treatment conditions and encapsulated Pt species by <i>operando </i> /i>XAS. Physical Chemistry Chemical Physics, 2017, 19, 27489-27507.	1.3	28
1479	Tuning the Endocytosis Mechanism of Zr-Based Metal–Organic Frameworks through Linker Functionalization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35516-35525.	4.0	44
1480	Anharmonic Origin of Giant Thermal Displacements in the Metal–Organic Framework UiO-67. Journal of Physical Chemistry C, 2017, 121, 22010-22014.	1.5	3
1481	Diverse coordination polymers from a new bent dipyridyl-type ligand 3,6-di(pyridin-4-yl)-9H-carbazole. CrystEngComm, 2017, 19, 6164-6169.	1.3	5

#	Article	IF	CITATIONS
1482	Photocatalytic Overall Water Splitting over MILâ€125(Ti) upon CoPi and Pt Coâ€catalyst Deposition. ChemistryOpen, 2017, 6, 701-705.	0.9	39
1483	Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications. Crystal Growth and Design, 2017, 17, 5801-5810.	1.4	176
1484	Isoreticular expansion of polyMOFs achieves high surface area materials. Chemical Communications, 2017, 53, 10684-10687.	2.2	52
1485	Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 2017, 53, 10851-10869.	2.2	94
1486	Cascade catalytic hydrogenation–cyclization of methyl levulinate to form γ-valerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. RSC Advances, 2017, 7, 44082-44088.	1.7	43
1487	Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies. Journal of Physical Chemistry C, 2017, 121, 23471-23479.	1.5	73
1488	A zirconium metal–organic framework with an exceptionally high volumetric surface area. Dalton Transactions, 2017, 46, 14270-14276.	1.6	19
1489	In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorganic Chemistry Frontiers, 2017, 4, 1870-1880.	3.0	96
1490	Cs2.5H0.5PW12O40 Encapsulated in Metal–Organic Framework UiO-66 as Heterogeneous Catalysts for Acidolysis of Soybean Oil. Catalysis Letters, 2017, 147, 2772-2782.	1.4	29
1491	Ratiometric Luminescent Detection of Organic Amines Due to the Induced Lactam–Lactim Tautomerization of Organic Linker in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 31352-31356.	4.0	77
1492	Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine. Environmental Science and Pollution Research, 2017, 24, 23694-23703.	2.7	46
1493	Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: a combined experimental and theoretical study. Journal of Materials Chemistry A, 2017, 5, 20398-20406.	5.2	53
1494	Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal–Organic Frameworks for Batch and Flow Reactions. Journal of the American Chemical Society, 2017, 139, 13476-13482.	6.6	110
1495	Computational Screening of Functionalized UiO-66 Materials for Selective Contaminant Removal from Air. Journal of Physical Chemistry C, 2017, 121, 20396-20406.	1.5	28
1496	Incorporation of CuO NPs into modified UiO-66-NH ₂ metal–organic frameworks (MOFs) with melamine for catalytic C–O coupling in the Ullmann condensation. New Journal of Chemistry, 2017, 41, 12014-12027.	1.4	70
1497	Computational Linker Design for Highly Crystalline Metal–Organic Framework NU-1000. Chemistry of Materials, 2017, 29, 8073-8081.	3.2	40
1498	CO ₂ Hydrogenation over Pt-Containing UiO-67 Zr-MOFsâ€"The Base Case. Industrial & Engineering Chemistry Research, 2017, 56, 13206-13218.	1.8	67
1499	General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles. Journal of the American Chemical Society, 2017, 139, 9827-9830.	6.6	245

#	Article	IF	CITATIONS
1500	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	11.1	127
1501	A Copper(II)-Paddlewheel Metal–Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27027-27035.	4.0	109
1502	Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: Catalytic activity and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. Chemical Engineering Journal, 2017, 328, 977-987.	6.6	37
1503	Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 2017, 188, 431-450.	3.9	340
1504	A novel fabricated material with divergent chemical handles based on UiO-66 and used for targeted photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6227-6232.	2.9	27
1505	Explicit treatment of hydrogen bonds in the universal force field: Validation and application for metal-organic frameworks, hydrates, and host-guest complexes. Journal of Chemical Physics, 2017, 147, 161705.	1.2	10
1506	Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Research, 2017, 10, 3826-3835.	5.8	76
1507	Synthesis of Manganese ZIF-8 from [Mn(BH ₄) ₂ ·3THF]·NaBH ₄ . Inorganic Chemistry, 2017, 56, 8744-8747.	1.9	40
1508	Environmentally benign dry-gel conversions of Zr-based UiO metal–organic frameworks with high yield and the possibility of solvent re-use. Dalton Transactions, 2017, 46, 9895-9900.	1.6	36
1509	An anchoring strategy leads to enhanced proton conductivity in a new metal–organic framework. Inorganic Chemistry Frontiers, 2017, 4, 1509-1516.	3.0	67
1510	Thermal Stimuliâ€Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 10215-10221.	1.7	62
1511	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
1512	Coupling Molecular and Nanoparticle Catalysts on Single Metal–Organic Framework Microcrystals for the Tandem Reaction of H ₂ O ₂ Generation and Selective Alkene Oxidation. ACS Catalysis, 2017, 7, 6691-6698.	5.5	34
1513	Trace-doped metal–organic gels with remarkably enhanced luminescence. RSC Advances, 2017, 7, 37194-37199.	1.7	18
1514	Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(<scp>vi</scp>). Journal of Materials Chemistry A, 2017, 5, 17933-17942.	5.2	253
1515	A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide. Journal of Solid State Chemistry, 2017, 255, 97-101.	1.4	38
1516	Through-space Förster-type energy transfer in isostructural zirconium and hafnium-based metal–organic layers. Chemical Communications, 2017, 53, 9356-9359.	2.2	21
1517	Probing nanoscale functionalities of metal–organic framework nanocrystals. Nanoscale, 2017, 9, 12163-12169.	2.8	31

#	Article	IF	CITATIONS
1518	3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. Journal of Membrane Science, 2017, 542, 41-51.	4.1	142
1519	Pre-synthesized secondary building units in the rational synthesis of porous coordination polymers. Mendeleev Communications, 2017, 27, 321-331.	0.6	43
1520	Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chemical Science, 2017, 8, 6799-6803.	3.7	141
1521	A molecular-level superhydrophobic external surface to improve the stability of metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 18770-18776.	5.2	135
1522	Simultaneous Degradation and Removal of Cr ^{VI} from Aqueous Solution with Zrâ€Based Metal–Organic Frameworks Bearing Inherent Reductive Sites. Chemistry - A European Journal, 2017, 23, 15415-15423.	1.7	58
1523	Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces. Solid State Nuclear Magnetic Resonance, 2017, 87, 38-44.	1.5	27
1524	Controlled Growth of Metalâ€Organic Frameworks on Polymer Brushes. Chemistry - A European Journal, 2017, 23, 13337-13341.	1.7	12
1525	Experimental and theoretical study on selenate uptake to zirconium metal–organic frameworks: Effect of defects and ligands. Chemical Engineering Journal, 2017, 330, 1012-1021.	6.6	111
1526	Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal†Organic Frameworks. Crystal Growth and Design, 2017, 17, 5422-5431.	1.4	55
1527	lonic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	5.8	111
1528	Light-triggered 5-fluorouracil delivery via UiO-66 coated optical fiber. Proceedings of SPIE, 2017, , .	0.8	0
1529	Ferrocene particles incorporated into Zr-based metal–organic frameworks for selective phenol hydroxylation to dihydroxybenzenes. RSC Advances, 2017, 7, 38691-38698.	1.7	34
1530	Shaping of porous metal–organic framework granules using mesoporous ϕalumina as a binder. RSC Advances, 2017, 7, 55767-55777.	1.7	81
1531	Rapid and Efficient Removal of Carbamazepine from Water by UiO-67. Industrial & Engineering Chemistry Research, 2017, 56, 15122-15130.	1.8	51
1532	MOF derived mesoporous K-ZrO ₂ with enhanced basic catalytic performance for Knoevenagel condensations. RSC Advances, 2017, 7, 55920-55926.	1.7	13
1533	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	19.8	428
1534	Interfacial assembly and hydrolysis for synthesizing a TiO2/metal–organic framework composite. Soft Matter, 2017, 13, 9174-9178.	1.2	9
1535	A turn-on fluorescent probe for Cd ²⁺ detection in aqueous environments based on an imine functionalized nanoscale metal–organic framework. RSC Advances, 2017, 7, 54892-54897.	1.7	38

#	Article	IF	CITATIONS
1536	Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. Chemistry of Materials, 2017, 29, 10478-10486.	3.2	102
1537	Direct Surface Growth Of UIO-66-NH ₂ on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal. Industrial & Direct Surface Growth Of UIO-66-NH ₂ on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal. Industrial & Direct Surface Growth Of UIO-66-NH ₂	1.8	69
1538	Structural Stability of <i>N</i> -Alkyl-Functionalized Titanium Metal–Organic Frameworks in Aqueous and Humid Environments. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44529-44533.	4.0	33
1539	Ratiometric Fluorescent Chemosensor for Zn ²⁺ lons in Environmental Samples Using Supermicroporous Organicâ€norganic Structures as Potential Platforms. ChemistrySelect, 2017, 2, 11083-11090.	0.7	52
1541	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
1542	All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton Transactions, 2017, 46, 16983-16992.	1.6	45
1543	How Reproducible Are Isotherm Measurements in Metal–Organic Frameworks?. Chemistry of Materials, 2017, 29, 10487-10495.	3.2	136
1544	Molecular Iridium Complexes in Metal–Organic Frameworks Catalyze CO ₂ Hydrogenation via Concerted Proton and Hydride Transfer. Journal of the American Chemical Society, 2017, 139, 17747-17750.	6.6	135
1545	Controlling the Uptake and Regulating the Release of Nitric Oxide in Microporous Solids. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43520-43528.	4.0	15
1546	Surface Functionalization of Metal–Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44641-44648.	4.0	33
1547	Enhancing Higher Hydrocarbons Capture for Natural Gas Upgrading by Tuning van der Waals Interactions in <i>fcu</i> -Type Zr-MOFs. Industrial & Engineering Chemistry Research, 2017, 56, 14633-14641.	1.8	49
1548	Syntheses, structures, and magnetic properties of two unique Cu(<scp>ii</scp>)-based coordination polymers involving a crystal-to-crystal structural transformation from a 1D chain to a 3D network. Dalton Transactions, 2017, 46, 17025-17031.	1.6	14
1549	Specific Recovery and In Situ Reduction of Precious Metals from Waste To Create MOF Composites with Immobilized Nanoclusters. Industrial & Engineering Chemistry Research, 2017, 56, 13975-13982.	1.8	64
1550	Dry-Gel Conversion Synthesis of Zr-Based Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2017, 56, 14155-14163.	1.8	30
1551	Metal–organic frameworks as media for the catalytic degradation of chemical warfare agents. Coordination Chemistry Reviews, 2017, 353, 159-179.	9.5	100
1552	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2–} from Water Using a Zirconium Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	1.9	189
1553	Synthesis, structures and magnetic properties of two chiral mixed-valence iron(<scp>ii</scp> , <scp>iii</scp>) coordination networks. Dalton Transactions, 2017, 46, 16623-16630.	1.6	6
1554	Mixed Membrane Matrices Based on Nafion/UiO-66/SO ₃ H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Conductivity Properties.	4.0	90

#	Article	IF	CITATIONS
1555	Aptamer-Templated Silver Nanoclusters Embedded in Zirconium Metal–Organic Framework for Bifunctional Electrochemical and SPR Aptasensors toward Carcinoembryonic Antigen. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41188-41199.	4.0	156
1556	Zirconium-Based Nanoscale Metal–Organic Framework/Poly(ε-caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Applied Materials & Interfaces, 2017, 9, 41512-41520.	4.0	77
1557	Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals. Nanoscale, 2017, 9, 19209-19215.	2.8	74
1558	Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields. Journal of Physical Chemistry C, 2017, 121, 25309-25322.	1.5	34
1561	Purification of Wastewater Using a Highly Porous Metal-Organic Framework and Graphene-like Materials—A Preliminary Study. Analytical Letters, 2017, 50, 2772-2785.	1.0	2
1562	Selective Adsorption Performances of UiO-67 for Separation of Light Hydrocarbons C1, C2, and C3. Industrial & Engineering Chemistry Research, 2017, 56, 8689-8696.	1.8	63
1563	Postsynthetic modification of a zirconium metal–organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability. Chemical Communications, 2017, 53, 8557-8560.	2.2	40
1564	Synthesis of MOFs: a personal view on rationalisation, application and exploration. Dalton Transactions, 2017, 46, 8339-8349.	1.6	30
1565	Structural-failure resistance of metal–organic frameworks toward multiple-cycle CO2 sorption. Chemical Communications, 2017, 53, 8653-8656.	2.2	24
1566	Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer–Metal Organic Framework Interaction. Crystal Growth and Design, 2017, 17, 4384-4392.	1.4	37
1567	A Flexible Fluorescent Zr Carboxylate Metal–Organic Framework for the Detection of Electron-Rich Molecules in Solution. Inorganic Chemistry, 2017, 56, 8423-8429.	1.9	23
1568	Synthesis and Characterization of Terephthalic Acid Based Cr3+, Sb3+, In3+ and V3+ Metal-Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1333-1341.	1.9	15
1569	Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 2017, 252, 207-213.	2.2	63
1570	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23967-23973.	4.0	100
1571	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	6.6	558
1572	UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. Journal of Membrane Science, 2017, 541, 262-270.	4.1	182
1573	Recent Progress of Synthesis and Application in Au@MOFs Hybrid Materials. Catalysis Surveys From Asia, 2017, 21, 130-142.	1.0	1
1574	Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of Catalysis, 2017, 352, 401-414.	3.1	172

#	Article	IF	Citations
1575	Solvent free utilization and selective coupling of epichlorohydrin with carbon dioxide over zirconium metal-organic frameworks. Microporous and Mesoporous Materials, 2017, 244, 251-257.	2.2	31
1576	Postsynthetic ionization of an imidazole-containing metal–organic framework for the cycloaddition of carbon dioxide and epoxides. Chemical Science, 2017, 8, 1570-1575.	3.7	346
1577	Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal–organic framework thin film. Dalton Transactions, 2017, 46, 1382-1388.	1.6	79
1578	Introduction of Thiourea into Metal–Organic Frameworks by Immersion Technique and Their Phase Transition Characteristics. Chemistry Letters, 2017, 46, 115-117.	0.7	2
1579	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	9.5	331
1580	Facile synthesis of amine-functionalized UiO-66 by microwave method and application for methylene blue adsorption. Journal of Porous Materials, 2017, 24, 647-655.	1.3	30
1581	High‶emperature Hydrogen Storage of Multiple Molecules: Theoretical Insights from Metalated Catechols. ChemPhysChem, 2017, 18, 184-188.	1.0	22
1582	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	9.5	275
1583	Nanoscale Fluorescent Metal–Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging. Chemistry - A European Journal, 2017, 23, 1379-1385.	1.7	49
1584	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4
1585	Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous and Mesoporous Materials, 2017, 239, 209-220.	2.2	24
1586	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry - A European Journal, 2017, 23, 214-218.	1.7	98
1587	A Zirconium Macrocyclic Metal–Organic Framework with Predesigned Shapeâ€Persistent Apertures. Chemistry - A European Journal, 2017, 23, 286-290.	1.7	17
1588	Catalytic synthesis of cyclic carbonates from epoxides and carbon dioxide by magnetic UiOâ€66 under mild conditions. Applied Organometallic Chemistry, 2017, 31, e3656.	1.7	13
1589	Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sensors and Actuators B: Chemical, 2017, 239, 759-767.	4.0	83
1590	MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 2017, 19, 4092-4117.	1.3	166
1591	Computational Chemistry Methods for Nanoporous Materials. Chemistry of Materials, 2017, 29, 199-212.	3.2	69
1592	Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.	2.2	13

#	ARTICLE	IF	CITATIONS
1593	Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies. Crystal Growth and Design, 2017, 17, 1125-1131.	1.4	133
1594	Coordination frameworks containing compounds as catalysts. Inorganic Chemistry Frontiers, 2017, 4, 202-233.	3.0	36
1595	Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe 3+ in water. Journal of Solid State Chemistry, 2017, 245, 160-163.	1.4	58
1596	Plasmon-Enhanced Photocatalytic CO ₂ Conversion within Metal–Organic Frameworks under Visible Light. Journal of the American Chemical Society, 2017, 139, 356-362.	6.6	511
1597	Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2017, 173, 304-313.	3.9	148
1598	Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Research Letters, 2017, 12, 539.	3.1	85
1599	Fabrication of superhydrophobic zirconium surface with a facile electrodeposition process. Surface Innovations, 2017, , 1-10.	1.4	2
1600	Carbon Dioxide Adsorption over Amine-Functionalized MOFs. Energy Procedia, 2017, 142, 2152-2157.	1.8	16
1602	Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water. Materials, 2017, 10, 205.	1.3	56
1603	Thin Film Nanocomposite Membrane Filled with Metal-Organic Frameworks UiO-66 and MIL-125 Nanoparticles for Water Desalination. Membranes, 2017, 7, 31.	1.4	85
1604	Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules, 2017, 22, 144.	1.7	116
1605	Thermal Activation of CuBTC MOF for CO Oxidation: The Effect of Activation Atmosphere. Catalysts, 2017, 7, 106.	1.6	24
1606	Porous Organic Cages. , 2017, , 139-197.		7
1607	Crystal structure of <i>catena</i> -poly[[[aquabis(dimethylformamide-κ <i>O</i>)magnesium(II)]-ι/4 ₃ -(2,2′-bipyriding dimethylformamide monosolvate]. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 971-974.	ne-5,5′- 0.2	digarboxylat
1608	Preparation, characterization, and performance evaluation of UiO-66 analogues as stationary phase in HPLC for the separation of substituted benzenes and polycyclic aromatic hydrocarbons. PLoS ONE, 2017, 12, e0178513.	1.1	18
1609	Synthesis of Coordination Compounds and Coordination Polymers. , 2017, , 189-217.		10
1610	Electronic and Ionic Conductivity of Metal–Organic Frameworks. , 2017, , 399-423.		4
1612	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie - International Edition, 2018, 57, 4657-4662.	7.2	283

#	Article	IF	CITATIONS
1613	Selective Recognition of Hg ²⁺ ion in Water by a Functionalized Metal–Organic Framework (MOF) Based Chemodosimeter. Inorganic Chemistry, 2018, 57, 2360-2364.	1.9	131
1614	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie, 2018, 130, 4747-4752.	1.6	32
1615	Postsynthetic Addition of Ligand Struts in Metal–Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies. Inorganic Chemistry, 2018, 57, 2369-2372.	1.9	4
1616	Role of Structural Defects in the Water Adsorption Properties of MOF-801. Journal of Physical Chemistry C, 2018, 122, 5545-5552.	1.5	68
1617	Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chemical Communications, 2018, 54, 2792-2795.	2.2	90
1618	Electronic metal–organic framework sensors. Inorganic Chemistry Frontiers, 2018, 5, 979-998.	3.0	120
1619	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 5189-5193.	1.6	18
1620	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie, 2018, 130, 3497-3501.	1.6	32
1621	An ultrastable Zr-MOF for fast capture and highly luminescence detection of Cr ₂ O ₇ ^{2â^3} simultaneously in an aqueous phase. Journal of Materials Chemistry A, 2018, 6, 6363-6369.	5.2	121
1622	Highly Efficient Arsenite [As(III)] Adsorption by an [MIL-100(Fe)] Metal–Organic Framework: Structural and Mechanistic Insights. Journal of Physical Chemistry C, 2018, 122, 4859-4869.	1.5	30
1623	Synthesis and hydrogen storage properties of zirconium metal-organic frameworks UIO-66(H2ADC) with 9,10-anthracenedicarboxylic acid as ligand. Journal of Porous Materials, 2018, 25, 1783-1788.	1.3	13
1624	Structure and Dynamics of Zr ₆ O ₈ Metal–Organic Framework Node Surfaces Probed with Ethanol Dehydration as a Catalytic Test Reaction. Journal of the American Chemical Society, 2018, 140, 3751-3759.	6.6	150
1625	The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers. Journal of Materials Chemistry A, 2018, 6, 6130-6154.	5.2	66
1626	Size and surface controllable metal–organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale, 2018, 10, 6205-6211.	2.8	103
1627	Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorganic Chemistry, 2018, 57, 3348-3359.	1.9	23
1628	Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 9332-9341.	4.0	56
1629	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
1630	A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231, 173-181.	10.8	126

#	Article	IF	Citations
1631	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	7.2	136
1632	Fluorocarbon Separation in a Thermally Robust Zirconium Carboxylate Metal–Organic Framework. Chemistry - an Asian Journal, 2018, 13, 977-981.	1.7	16
1633	MOF based fluorescent assay of xanthine oxidase for rapid inhibitor screening with real-time kinetics monitoring. Talanta, 2018, 183, 83-88.	2.9	24
1634	Superactivity of MOF-808 toward Peptide Bond Hydrolysis. Journal of the American Chemical Society, 2018, 140, 6325-6335.	6.6	120
1635	Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nature Communications, 2018, 9, 1647.	5.8	112
1636	Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure. Journal of Materials Chemistry A, 2018, 6, 8507-8513.	5.2	49
1637	A size-matched POM@MOF composite catalyst for highly efficient and recyclable ultra-deep oxidative fuel desulfurization. Inorganic Chemistry Frontiers, 2018, 5, 1563-1569.	3.0	88
1638	Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol Oxidation/Knoevenagel Condensation. ACS Omega, 2018, 3, 4199-4212.	1.6	99
1639	Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64, 478-483.	2.9	62
1640	Exploring Lanthanide Doping in UiO-66: A Combined Experimental and Computational Study of the Electronic Structure. Inorganic Chemistry, 2018, 57, 5463-5474.	1.9	51
1641	Highly efficient highâ€performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUTâ€67(Zr) packed column. Journal of Separation Science, 2018, 41, 2528-2535.	1.3	3
1642	Surface Decorated Porphyrinic Nanoscale Metal–Organic Framework for Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 5420-5428.	1.9	73
1643	Made in Water: A Stable Microporous Cu(I)-carboxylate Framework (CityU-7) for CO ₂ , Water, and Iodine Uptake. Inorganic Chemistry, 2018, 57, 4807-4811.	1.9	18
1644	Continuous Flow Conversion of Biomass-Derived Methyl Levulinate into \hat{I}^3 -Valerolactone Using Functional Metal Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 6746-6752.	3.2	65
1645	In situ growth of Zrâ€based metalâ€organic framework UiOâ€66â€NH ₂ for openâ€tubular capillary electrochromatography. Electrophoresis, 2018, 39, 2619-2625.	1.3	26
1646	Development and application of vortex-assisted membrane extraction based on metal–organic framework mixed-matrix membrane for the analysis of estrogens in human urine. Analytica Chimica Acta, 2018, 1023, 35-43.	2.6	50
1647	Base-Resistant Ionic Metal-Organic Framework as a Porous Ion-Exchange Sorbent. IScience, 2018, 3, 21-30.	1.9	50
1648	Optimisation of synthesis conditions for UiO-66-CO ₂ H towards scale-up and its vapour sorption properties. Reaction Chemistry and Engineering, 2018, 3, 365-370.	1.9	16

#	Article	IF	CITATIONS
1649	Experimental and theoretical investigations on Se(<scp>iv</scp>) and Se(<scp>vi</scp>) adsorption to UiO-66-based metalâ€"organic frameworks. Environmental Science: Nano, 2018, 5, 1441-1453.	2.2	79
1650	Small Titanium-Based MOFs Prepared with the Introduction of Tetraethyl Orthosilicate and Their Potential for Use in Drug Delivery. ACS Applied Materials & Earney; Interfaces, 2018, 10, 13325-13332.	4.0	68
1651	Highly Efficient and Selective Photooxidation of Sulfur Mustard Simulant by a Triazolobenzothiadiazole-Moiety-Functionalized Metal–Organic Framework in Air. Inorganic Chemistry, 2018, 57, 4230-4233.	1.9	50
1652	Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. Journal of Membrane Science, 2018, 556, 146-153.	4.1	53
1653	High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556, 54-65.	4.1	50
1654	Versatile IR Spectroscopy Combined with Synchrotron XAS–XRD: Chemical, Electronic, and Structural Insights during Thermal Treatment of MOF Materials. European Journal of Inorganic Chemistry, 2018, 2018, 1847-1853.	1.0	17
1655	Computational Structure Prediction of (4,4)-Connected Copper Paddle-wheel-based MOFs: Influence of Ligand Functionalization on the Topological Preference. Crystal Growth and Design, 2018, 18, 2699-2706.	1.4	16
1656	PVBA-UiO-66 using a flexible PVBA with multi-coordination groups as mixed ligands and their super adsorption towards methylene blue. Dalton Transactions, 2018, 47, 6538-6548.	1.6	13
1657	Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511.	3.0	129
1658	UiO-66 derived etched carbon/polymer membranes: High-performance supports for the extraction of organic pollutants from water. Chemical Engineering Journal, 2018, 346, 85-93.	6.6	56
1659	Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203, 497-505.	4.2	118
1660	Optimizing information content in MOF sensor arrays for analyzing methane-air mixtures. Sensors and Actuators B: Chemical, 2018, 267, 483-493.	4.0	36
1661	Electroactive Ferrocene at or near the Surface of Metal–Organic Framework UiO-66. Langmuir, 2018, 34, 4707-4714.	1.6	23
1662	A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection. Journal of Materials Chemistry C, 2018, 6, 4396-4399.	2.7	102
1663	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie - International Edition, 2018, 57, 5016-5019.	7.2	53
1664	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie, 2018, 130, 5110-5113.	1.6	14
1665	Incorporation of an intact dimeric Zr ₁₂ oxo cluster from a molecular precursor in a new zirconium metal–organic framework. Chemical Communications, 2018, 54, 2735-2738.	2.2	39
1666	Xenon Gas Separation and Storage Using Metal-Organic Frameworks. CheM, 2018, 4, 466-494.	5. 8	182

#	Article	IF	Citations
1667	A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor. Royal Society Open Science, 2018, 5, 171028.	1.1	11
1668	NMR Crystallography: A tool for the characterization of microporous hybrid solids. Current Opinion in Colloid and Interface Science, 2018, 33, 35-43.	3.4	20
1669	Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchemical Journal, 2018, 139, 24-33.	2.3	74
1670	Unusual and Tunable Negative Linear Compressibility in the Metal–Organic Framework MFM-133(M) (M) Tj E7	[Qq1_1 0.7	784314 rgBT
1671	Design and Construction of Chemically Stable Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 1-35.	0.3	2
1672	Multifunctional Metal–Organic Frameworks Based on Redox-Active Rhenium Octahedral Clusters. Inorganic Chemistry, 2018, 57, 2072-2084.	1.9	53
1673	Engineering a Zirconium MOF through Tandem "Click―Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. Inorganic Chemistry, 2018, 57, 2288-2295.	1.9	28
1674	A dinitro-functionalized metal–organic framework featuring visual and fluorogenic sensing of H ₂ S in living cells, human blood plasma and environmental samples. Analyst, The, 2018, 143, 1482-1491.	1.7	61
1675	Carbon flakes based metal organic frameworks for H2, CH4 and CO2 gas storage: a GCMC simulation study. New Journal of Chemistry, 2018, 42, 4240-4250.	1.4	11
1676	Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 2018, 198, 438-448.	1.5	70
1677	A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. Journal of Power Sources, 2018, 379, 350-361.	4.0	144
1678	Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce(<scp>iii</scp>) doping. Dalton Transactions, 2018, 47, 3913-3920.	1.6	161
1679	Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments. Journal of Materials Chemistry A, 2018, 6, 3038-3045.	5.2	42
1680	On the intrinsic dynamic nature of the rigid UiO-66 metal–organic framework. Chemical Science, 2018, 9, 2723-2732.	3.7	41
1681	Modulatorâ€Controlled Synthesis of Microporous STAâ€26, an Interpenetrated 8,3â€Connected Zirconium MOF with the ⟨i⟩theâ€i⟨i⟩ Topology, and its Reversible Lattice Shift. Chemistry - A European Journal, 2018, 24, 6115-6126.	1.7	23
1682	Robust Bifunctional Lanthanide Cluster Based Metal–Organic Frameworks (MOFs) for Tandem Deacetalization–Knoevenagel Reaction. Inorganic Chemistry, 2018, 57, 2193-2198.	1.9	162
1683	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie - International Edition, 2018, 57, 3439-3443.	7.2	78
1684	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246

#	Article	IF	CITATIONS
1685	New functionalized IRMOF-10 with strong affinity for methanol: A simulation study. Applied Surface Science, 2018, 440, 351-358.	3.1	20
1686	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 2363-2372.	6.6	310
1687	Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science, 2018, 359, 675-679.	6.0	374
1688	Metal–Organic Framework Modified Glass Substrate for Analysis of Highly Volatile Chemical Warfare Agents by Paper Spray Mass Spectrometry. ACS Applied Materials & Spectrometry. ACS	4.0	33
1689	Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. Journal of the American Chemical Society, 2018, 140, 2985-2994.	6.6	113
1690	Charge-Transfer within Zr-Based Metal–Organic Framework: The Role of Polar Node. Journal of the American Chemical Society, 2018, 140, 2756-2760.	6.6	78
1691	Rapid solvothermal synthesis of microporous UiO-66 particles for carbon dioxide capture. Korean Journal of Chemical Engineering, 2018, 35, 764-769.	1.2	27
1692	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740
1693	New Zn/Cd Coordination Polymers Constructed from Mixed Ligands: Crystal Structures and Photocatalytic Performances Toward Organic Dyes Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1565-1573.	1.9	7
1694	Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199, 435-444.	4.2	225
1695	Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516, 274-283.	5.0	88
1696	Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal–Organic Frameworks for Transformation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2018, 57, 2584-2593.	1.9	153
1697	Nanoscale Zrâ€Based MOFs with Tailorable Size and Introduced Mesopore for Protein Delivery. Advanced Functional Materials, 2018, 28, 1707356.	7.8	92
1698	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.4	2
1699	Synthesis and properties of ferrocene confined within UiO-67 MOFs. Microporous and Mesoporous Materials, 2018, 264, 133-138.	2.2	37
1700	Thin film nano-photocatalyts with low band gap energy for gas phase degradation of <i>p</i> -xylene: TiO ₂ doped Cr, UiO66-NH ₂ and LaBO ₃ (B  =〉 Fe, Mn, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 015003.	an ol Co).	4
1701	Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5255-5268.	4.0	84
1702	One-step synthesis of ZnS-N/C nanocomposites derived from Zn-based chiral metal–organic frameworks with highly efficient photocatalytic activity for the selective oxidation of <i>cis</i> ciscyclooctene. Inorganic Chemistry Frontiers, 2018, 5, 723-731.	3.0	9

#	Article	IF	CITATIONS
1703	Novel p–n junction UiO-66/BiOI photocatalysts with efficient visible-light-induced photocatalytic activity. Water Science and Technology, 2018, 77, 1441-1448.	1.2	16
1704	Metal–organic framework@silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. Journal of Materials Chemistry A, 2018, 6, 2742-2751.	5.2	112
1705	Chiral Functionalization of a Zirconium Metal–Organic Framework (DUT-67) as a Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorganic Chemistry, 2018, 57, 1483-1489.	1.9	76
1706	<i>Operando</i> study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. Faraday Discussions, 2018, 208, 287-306.	1.6	46
1707	A fluorescent wearable platform for sweat Cl ^{â^'} analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. Journal of Materials Chemistry C, 2018, 6, 1863-1869.	2.7	71
1708	Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549, 217-226.	4.1	57
1709	Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1077-1078, 92-97.	1.2	49
1710	Modeling of Diffusion in MOFs. , 2018, , 63-97.		2
1711	Porous substrates as platforms for the nanostructuring of molecular magnets. CrystEngComm, 2018, 20, 1011-1030.	1.3	12
1712	A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al ³⁺ detection in aqueous media. Dalton Transactions, 2018, 47, 1674-1681.	1.6	112
1713	Thermal decomposition of energetic MOFs nickel hydrazine nitrate crystals from an ab initio molecular dynamics simulation. Computational Materials Science, 2018, 143, 170-181.	1.4	4
1714	A combination of computationalâ^experimental study on metal-organic frameworks MIL-53(Al) as sorbent for simultaneous determination of estrogens and glucocorticoids in water and urine samples by dispersive micro-solid-phase extraction coupled to UPLC-MS/MS. Talanta, 2018, 180, 358-367.	2.9	49
1715	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 635-641.	4.0	52
1716	Incorporating cuprous-halide clusters and lanthanide clusters to construct Heterometallic cluster organic frameworks with luminescence and gas adsorption properties. CrystEngComm, 2018, 20, 738-745.	1.3	20
1717	Microwave-Activated Mn-Doped Zirconium Metal–Organic Framework Nanocubes for Highly Effective Combination of Microwave Dynamic and Thermal Therapies Against Cancer. ACS Nano, 2018, 12, 2201-2210.	7.3	176
1718	Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Transactions, 2018, 47, 1895-1902.	1.6	112
1719	Evaluation of UiOâ€66 metal organic framework as an effective sorbent for Curcumin's overdose. Applied Organometallic Chemistry, 2018, 32, e4221.	1.7	93
1720	New Metal–Organic Frameworks for Chemical Fixation of CO ₂ . ACS Applied Materials & amp; Interfaces, 2018, 10, 733-744.	4.0	192

#	Article	IF	CITATIONS
1721	Improving stability against desolvation and mercury removal performance of Zr(<scp>iv</scp>)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A, 2018, 6, 1648-1654.	5.2	43
1722	Conventional and New Materials for Selective Catalytic Reduction (SCR) of NO _{<i>x</i>} . ChemCatChem, 2018, 10, 1499-1511.	1.8	83
1723	Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean Journal of Chemical Engineering, 2018, 35, 438-444.	1.2	19
1724	Box-like gel capsules from heterostructures based on a core–shell MOF as a template of crystal crosslinking. Chemical Communications, 2018, 54, 1437-1440.	2.2	36
1725	Boronic Acid Moiety as Functional Defect in UiO-66 and Its Effect on Hydrogen Uptake Capacity and Selective CO ₂ Adsorption: A Comparative Study. ACS Applied Materials & Samp; Interfaces, 2018, 10, 787-795.	4.0	36
1726	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 1348-1357.	6.6	51
1727	Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis. Journal Physics D: Applied Physics, 2018, 51, 025601.	1.3	8
1728	Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts. ACS Catalysis, 2018, 8, 1653-1661.	5.5	50
1729	Aqueous production of spherical Zr-MOF beads <i>via</i> continuous-flow spray-drying. Green Chemistry, 2018, 20, 873-878.	4.6	59
1730	Hybrid BiOBr/UiO-66-NH ₂ composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation. RSC Advances, 2018, 8, 2048-2058.	1.7	90
1731	MOF@SiO 2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous and Mesoporous Materials, 2018, 263, 268-274.	2.2	61
1732	Bifunctional Pyridiniumâ€Based Ionicâ€Liquidâ€Immobilized Diindium Tris(diphenic acid) Bis(1,10â€phenanthroline) for CO ₂ Fixation. ChemSusChem, 2018, 11, 924-932.	3.6	32
1733	Synthesis of UiO-66-OH zirconium metal-organic framework and its application for selective extraction and trace determination of thorium in water samples by spectrophotometry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 76-82.	2.0	80
1735	Insights into the Use of Metal–Organic Framework As High-Performance Anticorrosion Coatings. ACS Applied Materials & Interfaces, 2018, 10, 2259-2263.	4.0	104
1736	Improving mixed-matrix membrane performance <i>via</i> PMMA grafting from functionalized NH ₂ â€"UiO-66. Journal of Materials Chemistry A, 2018, 6, 2775-2791.	5.2	117
1737	Enhancement of visible-light-driven CO ₂ reduction performance using an amine-functionalized zirconium metal–organic framework. Dalton Transactions, 2018, 47, 909-915.	1.6	67
1738	Hierarchical Porous Zrâ€Based MOFs Synthesized by a Facile Monocarboxylic Acid Etching Strategy. Chemistry - A European Journal, 2018, 24, 2962-2970.	1.7	91
1739	Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic Chemistry, 2018, 57, 1040-1047.	1.9	31

#	Article	IF	CITATIONS
1740	Purification of 2,5-Dimethylfuran from <i>n</i> i>-Butanol Using Defect-Engineered Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 7931-7939.	3.2	24
1741	Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework. CrystEngComm, 2018, 20, 5913-5918.	1.3	136
1742	Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy, 2018, 49, 580-587.	8.2	122
1743	Programmable Topology in New Families of Heterobimetallic Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6194-6198.	6.6	78
1744	Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal–Organic Frameworks (MOFs): A General and Scalable Approach. Angewandte Chemie - International Edition, 2018, 57, 7836-7840.	7.2	147
1745	Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558, 64-77.	4.1	126
1746	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H ₂ /CO ₂ separation selectivity. Dalton Transactions, 2018, 47, 7206-7212.	1.6	52
1747	Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel, 2018, 226, 591-597.	3.4	29
1748	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
1749	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	5.8	251
1750	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
1751	Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by Agl/UiO-66 composite under visible light irradiation. Journal of Alloys and Compounds, 2018, 748, 314-322.	2.8	73
1752	Selective Glucoseâ€toâ€Fructose Isomerization over Modified Zirconium UiOâ€66 in Alcohol Media. ChemCatChem, 2018, 10, 2417-2423.	1.8	39
1753	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	3.2	80
1754	Differentiable Detection of Volatile Amines with a Viologen-Derived Metal–Organic Material. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11056-11062.	4.0	132
1755	Ethylene diamine grafted nanoporous UiOâ€66 as an efficient basic catalyst in the multiâ€component synthesis of 2â€aminithiophenes. Applied Organometallic Chemistry, 2018, 32, e4307.	1.7	19
1756	12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. Science China Chemistry, 2018, 61, 402-411.	4.2	46
1757	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	5.3	382

#	Article	IF	CITATIONS
1758	Synthesis, structure and characterization of two solvatochromic metal–organic frameworks for chemical-sensing applications. CrystEngComm, 2018, 20, 2237-2240.	1.3	14
1759	Zr-Based MOFs integrated with a chromophoric ruthenium complex for specific and reversible Hg ²⁺ sensing. Dalton Transactions, 2018, 47, 5570-5574.	1.6	28
1760	Postsynthetic Linker Exchange in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 143-182.	0.3	2
1761	Metal-Organic Frameworks for Heavy Metal Removal. Series on Chemistry, Energy and the Environment, 2018, , 377-410.	0.3	O
1762	Metal-Organic Frameworks as Solid Acid Catalysts for Heterogeneous Catalysis. Series on Chemistry, Energy and the Environment, 2018, , 441-493.	0.3	0
1763	Metal-Organic Frameworks Based Heterogeneous Catalysts for Biomass Conversion. Series on Chemistry, Energy and the Environment, 2018, , 495-518.	0.3	1
1764	Energy Transfer in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 581-654.	0.3	6
1765	Metal-Organic Frameworks as Platforms for the Nanostructuring of Molecular Magnets. Series on Chemistry, Energy and the Environment, 2018, , 687-702.	0.3	0
1768	Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 2018, 364, 33-50.	9.5	105
1769	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	5.2	101
1770	Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media. Applied Surface Science, 2018, 445, 424-436.	3.1	240
1771	NMR Spectroscopy Reveals Adsorbate Binding Sites in the Metal–Organic Framework UiO-66(Zr). Journal of Physical Chemistry C, 2018, 122, 8295-8305.	1.5	33
1772	Topological identification of the first uninodal 8-connected lsz MOF built from $2,2\hat{a}\in^2$ -difluorobiphenyl-4,4 $\hat{a}\in^2$ -dicarboxylate pillars and cadmium(II) $\hat{a}\in$ "triazolate layers. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 256-262.	0.2	8
1773	On-Surface Synthesis of Highly Oriented Thin Metal–Organic Framework Films through Vapor-Assisted Conversion. Journal of the American Chemical Society, 2018, 140, 4812-4819.	6.6	144
1774	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	1.8	72
1775	Immobilization of silver nanoparticles in Zr-based MOFs: induction of apoptosis in cancer cells. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	23
1776	Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy and Environment, 2018, 3, 191-228.	4.7	158
1777	g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Materials Research Bulletin, 2018, 99, 349-358.	2.7	299

#	Article	IF	CITATIONS
1778	Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231, 317-342.	10.8	376
1779	Adsorption of Atrazine from Water in Metal–Organic Framework Materials. Journal of Chemical & Engineering Data, 2018, 63, 2368-2375.	1.0	71
1780	Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 2018, 3, 2994-3003.	1.6	128
1781	Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks. Chemical Society Reviews, 2018, 47, 4729-4756.	18.7	530
1782	New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes. Journal of Materials Chemistry A, 2018, 6, 5485-5506.	5.2	56
1783	Recent applications of metal–organic frameworks in sample pretreatment. Journal of Separation Science, 2018, 41, 180-194.	1.3	89
1784	A stable lanthanide-functionalized nanoscale metal-organic framework as a fluorescent probe for pH. Sensors and Actuators B: Chemical, 2018, 254, 1069-1077.	4.0	67
1785	Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. Journal of Materials Science, 2018, 53, 1862-1873.	1.7	34
1786	Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192, 465-474.	3.9	62
1787	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	10.8	81
1788	Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Journal of Alloys and Compounds, 2018, 733, 8-14.	2.8	113
1789	Aluminum carboxylate-based metal organic frameworks for effective adsorption of anionic azo dyes from aqueous media. Journal of Industrial and Engineering Chemistry, 2018, 59, 149-159.	2.9	51
1790	Dynamic sorption properties of Metal-Organic Frameworks for the capture of methyl iodide. Microporous and Mesoporous Materials, 2018, 259, 244-254.	2.2	48
1791	Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry, 2018, 10, 78-84.	6.6	298
1792	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
1793	Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 918-931.	5.2	151
1794	Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous and Mesoporous Materials, 2018, 260, 45-53.	2.2	167
1795	Understanding the origins of metal–organic framework/polymer compatibility. Chemical Science, 2018, 9, 315-324.	3.7	153

#	ARTICLE	IF	CITATIONS
1796	Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chemical Engineering Journal, 2018, 333, 146-152.	6.6	56
1797	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	4.8	33
1798	Flexible self-supported metal–organic framework mats with exceptionally high porosity for enhanced separation and catalysis. Journal of Materials Chemistry A, 2018, 6, 334-341.	5.2	114
1799	A biomimetic theranostic O 2 -meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials, 2018, 151, 1-12.	5.7	93
1800	Unravelling the Redoxâ€catalytic Behavior of Ce ⁴⁺ Metal–Organic Frameworks by Xâ€ray Absorption Spectroscopy. ChemPhysChem, 2018, 19, 373-378.	1.0	89
1801	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
1802	Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology, 2018, 192, 491-500.	3.9	98
1803	Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach. Inorganic Chemistry Frontiers, 2018, 5, 29-38.	3.0	15
1804	Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy. Talanta, 2018, 179, 28-36.	2.9	44
1805	Emerging materials for sample preparation. Journal of Separation Science, 2018, 41, 262-287.	1.3	33
1806	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	9.5	146
1807	Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chemical Engineering Journal, 2018, 332, 608-618.	6.6	135
1808	Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catalysis Today, 2018, 303, 227-234.	2.2	49
1809	Oxidation reactions catalysed by molybdenum(VI) complexes grafted on UiOâ€66 metal–organic framework as an elegant nanoreactor. Applied Organometallic Chemistry, 2018, 32, e3958.	1.7	18
1810	Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr). Microporous and Mesoporous Materials, 2018, 257, 193-201.	2.2	170
1811	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	9.5	360
1812	Direct synthesis of anion exchange polymer threaded in a metal-organic framework through in situ polymerization of an ionic liquid. Microporous and Mesoporous Materials, 2018, 259, 255-263.	2.2	14
1813	Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Materials Research Bulletin, 2018, 98, 308-313.	2.7	78

#	ARTICLE	IF	CITATIONS
1814	Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties. Dalton Transactions, 2018, 47, $1062-1070$.	1.6	84
1815	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	5.3	204
1816	Rational construction of a stable Zn ₄ O-based MOF for highly efficient CO ₂ capture and conversion. Chemical Communications, 2018, 54, 456-459.	2.2	48
1817	Insight into Metal–Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru(tpy)(dcbpy)(OH ₂)] ²⁺ â€Modified UiOâ€67. ChemSusChem, 2018, 11, 464-471.	3.6	31
1818	Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). Journal of Hazardous Materials, 2018, 351, 301-307.	6.5	70
1819	Enhancing Van der Waals Interactions of Functionalized UiOâ€66 with Nonâ€polar Adsorbates: The Unique Effect of para Hydroxyl Groups. Chemistry - A European Journal, 2018, 24, 1931-1937.	1.7	7
1820	Combined quantum mechanical and molecular mechanical method for metal–organic frameworks: proton topologies of NU-1000. Physical Chemistry Chemical Physics, 2018, 20, 1778-1786.	1.3	16
1821	Stable Zn ^I â€Containing MOFs with Large [Zn ₇₀] Nanocages from Assembly of Zn ^{II} lons and Aromatic [Zn ^I ₈] Clusters. Chemistry - A European Journal, 2018, 24, 3683-3688.	1.7	19
1822	The effect of functional groups in the aqueous-phase selective sensing of Fe(⟨scp⟩iii⟨ scp⟩) ions by thienothiophene-based zirconium metal–organic frameworks and the design of molecular logic gates. Dalton Transactions, 2018, 47, 1159-1170.	1.6	59
1823	Oriented UiO-66 thin films through solution shearing. CrystEngComm, 2018, 20, 294-300.	1.3	21
1824	Influence of a Confined Methanol Solvent on the Reactivity of Active Sites in UiOâ€66. ChemPhysChem, 2018, 19, 420-429.	1.0	17
1825	Controlling interpenetration through linker conformation in the modulated synthesis of Sc metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 1181-1187.	5.2	44
1826	Synthesis, Structure, and Magnetic Properties of a Copper(II) Metalâ€Organic Framework with Biphenylâ€2,2â€2,4,4′â€tetracarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 109-113.	0.6	1
1827	A precursor method for the synthesis of new Ce(<scp>iv</scp>) MOFs with reactive tetracarboxylate linkers. Chemical Communications, 2018, 54, 876-879.	2.2	60
1828	A Monodispersed Spherical Zrâ€Based Metal–Organic Framework Catalyst, Pt/Au@Pd@UIOâ€66, Comprising an Au@Pd Core–Shell Encapsulated in a UIOâ€66 Center and Its Highly Selective CO ₂ Hydrogenation to Produce CO. Small, 2018, 14, 1702812.	5.2	70
1829	Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 177-186.	1.9	129
1830	Selective Conversion of Renewable Furfural with Ethanol to Produce Furan-2-acrolein Mediated by Pt@MOF-5. ACS Sustainable Chemistry and Engineering, 2018, 6, 135-142.	3.2	38
1831	Exceptionally Efficient and Recyclable Heterogeneous Metal–Organic Framework Catalyst for Glucose Isomerization in Water. ChemCatChem, 2018, 10, 706-709.	1.8	65

#	Article	IF	CITATIONS
1832	Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal–Organic Frameworks. Accounts of Chemical Research, 2018, 51, 138-148.	7.6	88
1833	An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative CO ₂ fixation into cyclic carbonate. Chemical Communications, 2018, 54, 342-345.	2.2	142
1834	In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. Journal of Membrane Science, 2018, 548, 429-438.	4.1	156
1835	Catalytic Transfer Hydrogenation of Biomassâ€Derived Carbonyls over Hafniumâ€Based Metal–Organic Frameworks. ChemSusChem, 2018, 11, 432-438.	3.6	117
1836	Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chemical Engineering Journal, 2018, 331, 124-131.	6.6	164
1837	Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chemical Engineering Journal, 2018, 331, 54-63.	6.6	185
1838	Synthesis and catalytic activity of mesoporous Al-MCM-41/UiO-66 for esterification of oleic acid. AIP Conference Proceedings, 2018, , .	0.3	4
1839	Fabricating MOF/Polymer Composites via Freeze Casting for Water Remediation. Ceramics, 2018, 1, 353-363.	1.0	12
1840	Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. Comments on Inorganic Chemistry, 2018, 38, 238-293.	3.0	24
1841	Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH ₂ . RSC Advances, 2018, 8, 41633-41638.	1.7	32
1842	MIL-100Cr with open Cr sites for a record N ₂ O capture. Chemical Communications, 2018, 54, 14061-14064.	2.2	39
1843	A predictive modeling study of the impact of chemical doping on the strength of a Ag/ZnO interface. Journal of Applied Physics, 2018, 124, .	1.1	3
1844	Enhancing porphyrin photostability when locked in metal–organic frameworks. Dalton Transactions, 2018, 47, 15765-15771.	1.6	24
1845	A lithium-modified zirconium-based metal organic framework (UiO-66) for efficient CO ₂ adsorption. New Journal of Chemistry, 2018, 42, 19764-19770.	1.4	25
1846	Hierarchically porous MOF/polymer composites <i>via</i> interfacial nanoassembly and emulsion polymerization. Journal of Materials Chemistry A, 2018, 6, 20473-20479.	5.2	85
1847	Exceptional TcO ₄ ^{â°'} sorption capacity and highly efficient ReO ₄ ^{â°'} luminescence sensing by Zr ⁴⁺ MOFs. Journal of Materials Chemistry A, 2018, 6, 20813-20821.	5.2	54
1848	A functional separator coated with sulfonated metal–organic framework/Nafion hybrids for Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 24971-24978.	5.2	93
1849	Compaction of a zirconium metal–organic framework (UiO-66) for high density hydrogen storage applications. Journal of Materials Chemistry A, 2018, 6, 23569-23577.	5.2	67

#	Article	IF	Citations
1850	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	2.2	49
1851	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
1852	Computational design of tetrazolate-based metal–organic frameworks for CH ₄ storage. Physical Chemistry Chemical Physics, 2018, 20, 30150-30158.	1.3	18
1853	Composite cluster-organic frameworks based on polyoxometalates and copper/cobalt–oxygen clusters. Dalton Transactions, 2018, 47, 16408-16412.	1.6	24
1854	Incorporation of UiO-66 into Graphene Foam for Hydrogen Storage Applications. Materials Today: Proceedings, 2018, 5, 10431-10439.	0.9	2
1855	Guest inclusion of methanol and ethanol in zirconium metal-organic frameworks (Zr-MOFs). Materials Today: Proceedings, 2018, 5, 10415-10423.	0.9	3
1857	Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants. Molecules, 2018, 23, 2869.	1.7	40
1858	Natural Gas Composition. , 2018, , 553-590.		0
1859	Ab Initio Evaluation of Henry Coefficients Using Importance Sampling. Journal of Chemical Theory and Computation, 2018, 14, 6359-6369.	2.3	12
1860	Exceptional Adsorption and Binding of Sulfur Dioxide in a Robust Zirconium-Based Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 15564-15567.	6.6	149
1861	Polymer–MOF Hybrid Composites with High Porosity and Stability through Surface-Selective Ligand Exchange. Chemistry of Materials, 2018, 30, 8639-8649.	3.2	71
1862	Stable Indium-Pyridylcarboxylate Framework: Selective Gas Capture and Sensing of Fe ³⁺ lon in Water. Inorganic Chemistry, 2018, 57, 15262-15269.	1.9	53
1863	Defect and Linker Effects on the Binding of Organophosphorous Compounds in UiO-66 and Rare-Earth MOFs. Journal of Physical Chemistry C, 2018, 122, 26889-26896.	1.5	40
1864	A robust zirconium amino acid metal-organic framework for proton conduction. Nature Communications, 2018, 9, 4937.	5.8	218
1865	Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 2018, 23, 2947.	1.7	69
1866	Advances in Shaping of Metal–Organic Frameworks for CO ₂ Capture: Understanding the Effect of Rubbery and Glassy Polymeric Binders. Industrial & Engineering Chemistry Research, 2018, 57, 16897-16902.	1.8	46
1867	Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to <i>n</i> -Butanol. ACS Catalysis, 2018, 8, 11973-11978.	5.5	89
1868	Water Stable Metal–Organic Framework Based on Phosphono-containing Ligand as Highly Sensitive Luminescent Sensor toward Metal Ions. Crystal Growth and Design, 2018, 18, 7683-7689.	1.4	47

#	Article	IF	CITATIONS
1869	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	1.0	51
1870	Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal–Organic Framework for Suzuki–Miyaura Coupling. ACS Applied Materials & Suzuki–Miyaura Coupling. ACS Applied Materials & Suzuki–Miyaura Coupling. ACS Applied Materials & Suzuki— Miyaura Coupling. ACS Applied Materials & Suzuki⧠Miyaura Coupling. ACS Applied Materials & Suzuki⧠Miyaura Miyaura Miyaur	4.0	45
1871	Investigation of the Kinetic Stabilization of a Ce ⁴⁺ â€based MOF by inâ€situ Powder Xâ€ray Diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1826-1831.	0.6	18
1872	Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal–Organic Framework and Its Application in Live-Cell Imaging. Inorganic Chemistry, 2018, 57, 14574-14581.	1.9	49
1873	Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. Langmuir, 2018, 34, 14546-14551.	1.6	43
1874	Design of a Semi-Continuous Selective Layer Based on Deposition of UiO-66 Nanoparticles for Nanofiltration. Membranes, 2018, 8, 129.	1.4	21
1875	Proton Conductivity of Composite Polyelectrolyte Membranes with Metalâ€Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 2019, 6, 1801146.	1.9	130
1876	Exact Stoichiometry of Ce _{<i>x</i>} Zr _{6–<i>x</i>} Cornerstones in Mixed-Metal UiO-66 Metal–Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 2018, 140, 17379-17383.	6.6	71
1877	Insights into Functionalization of Metal-Organic Frameworks Using In Situ NMR Spectroscopy. Scientific Reports, 2018, 8, 17530.	1.6	6
1878	polyMOF Formation from Kinked Polymer Ligands via ortho â€Substitution. Israel Journal of Chemistry, 2018, 58, 1123-1126.	1.0	12
1879	Solvent-Driven Selectivity Control to Either Anilines or Dicyclohexylamines in Hydrogenation of Nitroarenes over a Bifunctional Pd/MIL-101 Catalyst. ACS Catalysis, 2018, 8, 10641-10648.	5.5	51
1880	Photoluminescent AuNCs@UiO-66 for Ultrasensitive Detection of Mercury in Water Samples. ACS Omega, 2018, 3, 12052-12059.	1.6	28
1881	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	11.1	362
1882	Metal–Organic Frameworks for Water Harvesting from Air. Advanced Materials, 2018, 30, e1704304.	11.1	500
1883	Adsorption equilibrium of xylene isomers and ethylbenzene on MIL-125(Ti)_NH2: the temperature influence on the para-selectivity. Adsorption, 2018, 24, 715-724.	1.4	12
1884	Zr-based metal-organic framework-modified cotton for solid phase micro-extraction of non-steroidal anti-inflammatory drugs. Journal of Chromatography A, 2018, 1576, 19-25.	1.8	34
1885	Exploring Local Disorder within CAU-1 Frameworks Using Hyperpolarized ¹²⁹ Xe NMR Spectroscopy. Langmuir, 2018, 34, 12538-12548.	1.6	17
1886	Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13628-13643.	3.2	267

#	Article	IF	Citations
1887	Hfâ€based Metalâ€Organic Frameworks in Heterogeneous Catalysis. Israel Journal of Chemistry, 2018, 58, 1062-1074.	1.0	21
1888	Investigation of Missing-Cluster Defects in UiO-66 and Ferrocene Deposition into Defect-Induced Cavities. Industrial & Engineering Chemistry Research, 2018, 57, 14233-14241.	1.8	44
1889	The Surprising Stability of Cu ₃ (btc) ₂ Metalâ€"Organic Framework under Steam Flow at High Temperature. Crystal Growth and Design, 2018, 18, 6681-6693.	1.4	25
1890	Modification Effects of B2O3 on The Structure and Catalytic Activity of WO3-UiO-66 Catalyst. Nanomaterials, 2018, 8, 781.	1.9	5
1891	Hierarchically porous UiO-66: facile synthesis, characterization and application. Chemical Communications, 2018, 54, 11817-11820.	2.2	47
1892	Metal–organic framework sorbents for the removal of perfluorinated compounds in an aqueous environment. New Journal of Chemistry, 2018, 42, 17889-17894.	1.4	64
1893	<i>In situ</i> analysis of the adsorption behaviors of CO ₂ on the surface of MIL-91(Al). New Journal of Chemistry, 2018, 42, 16985-16991.	1.4	12
1894	Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs. Inorganic Chemistry, 2018, 57, 12820-12826.	1.9	20
1895	Highly Stable Chiral Zirconium–Metallosalen Frameworks for CO ₂ Conversion and Asymmetric C–H Azidation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36047-36057.	4.0	47
1896	Post-synthetic modification of zirconium metal–organic frameworks by catalyst-free aza-Michael additions. Dalton Transactions, 2018, 47, 14491-14496.	1.6	17
1897	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	1.9	80
1898	A Multifunctional Dual-Luminescent Polyoxometalate@Metal-Organic Framework EuW10@UiO-67 Composite as Chemical Probe and Temperature Sensor. Frontiers in Chemistry, 2018, 6, 425.	1.8	31
1899	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	3.2	120
1900	Control Interlayer Stacking and Chemical Stability of Two-Dimensional Covalent Organic Frameworks via Steric Tuning. Journal of the American Chemical Society, 2018, 140, 16124-16133.	6.6	173
1901	Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 16229-16236.	6.6	132
1902	Synthesis, Structure, and Characterization of Defectâ€free [Hf ₆ (ι⁄4 ₃ á€O) ₄ (ι⁄4 ₃ 6€OH) ₄ (C ₄ 1 (Hfâ€UiOâ€66â€Fum). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1771-1776.	ี่ ∃< ฌb >2<,	ˈsu & >O∢sub
1903	Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. Nanomaterials, 2018, 8, 867.	1.9	18
1904	Postsynthetic Selective Ligand Cleavage by Solid–Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15022-15030.	6.6	91

#	Article	IF	CITATIONS
1905	Enabling Homochirality and Hydrothermal Stability in Zn ₄ O-Based Porous Crystals. Journal of the American Chemical Society, 2018, 140, 13566-13569.	6.6	33
1906	t â€ZrO 2 prepared by a novel zirconium oxalate synthesised solvothermally. Micro and Nano Letters, 2018, 13, 919-922.	0.6	0
1907	Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Inorganic Chemistry, 2018, 57, 14290-14297.	1.9	100
1908	A Photomagnetic Sponge: High-Temperature Light-Induced Ferrimagnet Controlled by Water Sorption. Journal of the American Chemical Society, 2018, 140, 15876-15882.	6.6	43
1909	Mixed-Ligand Metal–Organic Frameworks and Heteroleptic Coordination Cages as Multifunctional Scaffolds—A Comparison. Accounts of Chemical Research, 2018, 51, 3052-3064.	7.6	240
1910	Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis. ACS Catalysis, 2018, 8, 11615-11621.	5.5	262
1911	Construction of Anti-Ultraviolet "Shielding Clothes―on Poly(<i>p</i> pribers: Metal Organic Framework-Mediated Absorption Strategy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43262-43274.	4.0	51
1912	Optimizing H ₂ , D ₂ , and C ₂ H ₂ Sorption Properties by Tuning the Pore Apertures in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13312-13317.	1.9	14
1913	Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Scientific Reports, 2018, 8, 15284.	1.6	113
1914	Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresource Technology, 2018, 270, 377-382.	4.8	82
1915	Metal–Organic Frameworks-Based Catalysts for Biomass Processing. Catalysts, 2018, 8, 368.	1.6	40
1916	Photodynamic Therapy Based on Nanoscale Metal–Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chemistry - an Asian Journal, 2018, 13, 3122-3149.	1.7	71
1917	Facile synthesis of a metal–organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6, 2918-2924.	2.6	37
1918	Effect of particle size distribution of UiO-67 nano/microcrystals on the adsorption of organic dyes from aqueous solution. CrystEngComm, 2018, 20, 5672-5676.	1.3	10
1919	Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nature Reviews Materials, 2018, 3, 431-440.	23.3	314
1920	Combining Linker Design and Linker-Exchange Strategies for the Synthesis of a Stable Large-Pore Zr-Based Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2018, 10, 35462-35468.	4.0	20
1921	Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 4579-4585.	1.0	20
1922	A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(VI). Mikrochimica Acta, 2018, 185, 469.	2.5	53

#	Article	IF	CITATIONS
1923	Synthesis, structural and optical study of Ni-doped Metal-organic framework for adsorption based chemical sensor application. Vacuum, 2018, 158, 249-256.	1.6	32
1924	SuFEx in Metal–Organic Frameworks: Versatile Postsynthetic Modification Tool. ACS Applied Materials & Interfaces, 2018, 10, 33785-33789.	4.0	21
1925	A semiconducting metal-chalcogenide–organic framework with square-planar tetra-coordinated sulfur. Chemical Communications, 2018, 54, 11272-11275.	2.2	17
1926	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	18.7	994
1927	Facile preparation of UiO-66 /PAM monoliths <i>via</i> CO ₂ -in-water HIPEs and their applications. RSC Advances, 2018, 8, 32358-32367.	1.7	31
1928	High-Connectivity Approach to a Hydrolytically Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. Chemistry of Materials, 2018, 30, 6614-6618.	3.2	19
1929	New synthetic strategies to prepare metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 2693-2708.	3.0	235
1930	Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2018, 30, 6867-6876.	3.2	122
1931	Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework <i>via</i> the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Transactions, 2018, 47, 13722-13729.	1.6	16
1932	Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 14554-14560.	3.2	41
1933	Improving the capability of UiO-66 for Cr($<$ scp $>$ vi $<$ /scp $>$) adsorption from aqueous solutions by introducing isonicotinate $<$ i $>$ N $<$ /i $>$ -oxide as the functional group. Dalton Transactions, 2018, 47, 14549-14555.	1.6	45
1934	Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor. Dalton Transactions, 2018, 47, 14426-14430.	1.6	39
1935	Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials, 2018, 8, 676.	1.9	33
1936	A Novel Fluorescent Biosensor for Adenosine Triphosphate Detection Based on a Metal–Organic Framework Coating Polydopamine Layer. Materials, 2018, 11, 1616.	1.3	42
1937	Bromomethylated poly(phenylene oxide) (BPPO)â€assisted fabrication of UiOâ€66â€NH ₂ /BPPO/polyethersulfone mixed matrix membrane for enhanced gas separation. Journal of Applied Polymer Science, 2018, 135, 46759.	1.3	19
1938	Theoretical and experimental investigations of ¹²⁹ Xe NMR chemical shift isotherms in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018, 20, 25039-25043.	1.3	8
1939	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	1.7	49
1940	High Catalytic Activity of C ₆₀ Pd _{<i>n</i>} Encapsulated in Metal–Organic Framework UiOâ€67, for Tandem Hydrogenation Reaction. Chemistry - A European Journal, 2018, 24, 19141-19145.	1.7	14

#	Article	IF	CITATIONS
1941	Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 2018, 566, 268-277.	4.1	143
1942	A room-temperature growth of gold nanoparticles on MOF-199 and its transformation into the [Cu2(OH)(BTC)(H2O)] phase. Polyhedron, 2018, 154, 357-363.	1.0	13
1943	Pore-filling contamination in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018, 20, 23616-23624.	1.3	4
1944	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie, 2018, 130, 14088-14092.	1.6	9
1945	Micropatterned Ultrathin MOF Membranes with Enhanced Molecular Sieving Property. Angewandte Chemie - International Edition, 2018, 57, 13892-13896.	7.2	44
1946	Tuning the Mechanical Response of Metal–Organic Frameworks by Defect Engineering. Journal of the American Chemical Society, 2018, 140, 11581-11584.	6.6	82
1947	Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal–Organic Framework Filters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 20396-20403.	4.0	65
1948	Cerium Metal–Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 7904-7912.	6.6	313
1949	Highly stable and porous porphyrin-based zirconium and hafnium phosphonates – electron crystallography as an important tool for structure elucidation. Chemical Science, 2018, 9, 5467-5478.	3.7	70
1950	A DFT study of RuO ₄ interactions with porous materials: metal–organic frameworks (MOFs) and zeolites. Physical Chemistry Chemical Physics, 2018, 20, 16770-16776.	1.3	22
1951	Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. Journal of Colloid and Interface Science, 2018, 527, 267-279.	5.0	94
1952	Lipophilic Polyelectrolyte Gels and Crystal Crosslinking, New Methods for Supramolecular Control of Swelling and Collapsing of Polymer Gels. Bulletin of the Chemical Society of Japan, 2018, 91, 1282-1292.	2.0	17
1953	Thiol-Functionalized Zr-Based Metal–Organic Framework for Capture of Hg(II) through a Proton Exchange Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8494-8502.	3.2	140
1954	Synthesis, structure and characterization of a new highly porous zirconium-based metal-organic frameworks. Inorganica Chimica Acta, 2018, 480, 173-176.	1.2	2
1955	Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. Inorganic Chemistry, 2018, 57, 6198-6201.	1.9	21
1956	Elucidation of the Formation Mechanism of Metal–Organic Frameworks via in-Situ Raman and FTIR Spectroscopy under Solvothermal Conditions. Journal of Physical Chemistry C, 2018, 122, 12267-12278.	1.5	43
1957	Post-synthetic exchange (PSE) of UiO-67 frameworks with Ru/Rh half-sandwich units for visible-light-driven H ₂ evolution and CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 11337-11345.	5.2	86
1958	Pd/UiO-66(Hf): A highly efficient heterogeneous catalyst for the hydrogenation of 2,3,5-trimethylbenzoquinone. Catalysis Communications, 2018, 113, 23-26.	1.6	20

#	Article	IF	Citations
1959	Metalâ€Organic Frameworks Based on Multicenterâ€Bonded [M ^I] ₈ (M=Mn, Zn) Clusters with Cubic Aromaticity. Chemistry - A European Journal, 2018, 24, 16702-16707.	1.7	14
1960	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
1961	A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithiumâ€"sulfur batteries. RSC Advances, 2018, 8, 18604-18612.	1.7	49
1962	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8678-8681.	7.2	33
1963	The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 8814-8817.	1.6	11
1964	Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. Journal of Physical Chemistry C, 2018, 122, 14582-14589.	1.5	52
1965	Preparation, characterizations and performance evaluations of alumina hollow fiber membrane incorporated with UiO-66 particles for humic acid removal. Journal of Membrane Science, 2018, 563, 162-174.	4.1	47
1966	Adhesive bacterial amyloid nanofiber-mediated growth of metal–organic frameworks on diverse polymeric substrates. Chemical Science, 2018, 9, 5672-5678.	3.7	18
1967	Stable pyrazolate-based metal-organic frameworks for drug delivery. Inorganic Chemistry Communication, 2018, 94, 21-26.	1.8	12
1968	Synthesis and structural characterization of the first neptunium based metal–organic frameworks incorporating {Np6O8} hexanuclear clusters. Chemical Communications, 2018, 54, 6979-6982.	2.2	48
1969	Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. Journal of Materials Science, 2018, 53, 12016-12029.	1.7	72
1970	Photocatalytic water splitting on metal oxide-based semiconductor photocatalysts. , 2018, , 355-399.		12
1971	A regulatable oxidative valorization of furfural with aliphatic alcohols catalyzed by functionalized metal-organic frameworks-supported Au nanoparticles. Journal of Catalysis, 2018, 364, 1-13.	3.1	40
1972	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	11.1	120
1973	Incorporation of Functional Groups Expands the Applications of UiOâ€67 for Adsorption, Catalysis and Thiols Detection. ChemistrySelect, 2018, 3, 7066-7080.	0.7	12
1974	Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Separation and Purification Technology, 2018, 207, 523-534.	3.9	48
1975	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. Journal of Catalysis, 2018, 365, 36-42.	3.1	65
1976	Simple Fabrication Method for Mixed Matrix Membranes with in Situ MOF Growth for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24784-24790.	4.0	77

#	Article	IF	CITATIONS
1977	Allenylphosphine Oxides as Starting Materials for the Synthesis of Conjugated Enynes: Boosting the Catalytic Performance by MOF Encapsulated Palladium Nanoparticles. Advanced Synthesis and Catalysis, 2018, 360, 3518-3525.	2.1	9
1978	Pore Wall-Functionalized Luminescent Cd(II) Framework for Selective CO ₂ Adsorption, Highly Specific 2,4,6-Trinitrophenol Detection, and Colorimetric Sensing of Cu ²⁺ Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 10295-10306.	3.2	102
1979	Anodic dissolution growth of metal–organic framework HKUST-1 monitored <i>via in situ</i> electrochemical atomic force microscopy. CrystEngComm, 2018, 20, 4421-4427.	1.3	15
1980	Realizing the Potential of Acetylenedicarboxylate by Functionalization to Halofumarate in Zr ^{IV} Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 14048-14053.	1.7	24
1981	4.22 Metal–Organic Framework Based Composites. , 2018, , 525-553.		1
1982	Impact of Disordered Guest–Framework Interactions on the Crystallography of Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 8958-8964.	6.6	54
1983	Direct water-based synthesis and characterization of new Zr/Hf-MOFs with dodecanuclear clusters as IBUs. CrystEngComm, 2018, 20, 5108-5111.	1.3	29
1984	Delamination and Photochemical Modification of a Novel Twoâ€Dimensional Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 12848-12855.	1.7	12
1985	Monte Carlo Simulations to Examine the Role of Pore Structure on Ambient Air Separation in Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 9240-9253.	1.8	14
1986	Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane <i>via</i> additive blending. RSC Advances, 2018, 8, 22710-22728.	1.7	97
1987	Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis Science and Technology, 2018, 8, 3610-3616.	2.1	81
1988	Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine. Catalysis Science and Technology, 2018, 8, 4349-4357.	2.1	20
1989	Coordination polymer-based supercapacitors with matched energy levels: enhanced capacity under visible light illumination in the presence of methanol. Dalton Transactions, 2018, 47, 11146-11157.	1.6	1
1990	Twoâ€Dimensional Metalâ€Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDIâ€TOF Matrix and Biomimetic Applications. Chemistry - A European Journal, 2018, 24, 15131-15142.	1.7	65
1991	Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye. Advanced Powder Technology, 2018, 29, 2626-2632.	2.0	102
1992	Electrostatic Purification of Mixed-Phase Metal–Organic Framework Nanoparticles. Chemistry of Materials, 2018, 30, 4877-4881.	3.2	10
1993	Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. Journal of the American Chemical Society, 2018, 140, 11444-11453.	6.6	31
1994	Zigzag Ligands for Transversal Design in Reticular Chemistry: Unveiling New Structural Opportunities for Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 10153-10157.	6.6	60

#	Article	IF	CITATIONS
1995	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815.	2.2	27
1996	A novel sensitive fluorescent probe of S ₂ O ₈ ^{2â^'} and Fe ³⁺ based on covalent post-functionalization of a zirconium(<scp>iv</scp>) metalâ€"organic framework. Dalton Transactions, 2018, 47, 11586-11592.	1.6	63
1997	Magnetic MOF for AO7 Removal and Targeted Delivery. Crystals, 2018, 8, 250.	1.0	23
1998	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	1.4	66
1999	Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs. Coordination Chemistry Reviews, 2018, 376, 20-45.	9.5	121
2000	Zirconium-Formate Macrocycles and Supercage: Molecular Packing versus MOF-like Network for Water Vapor Sorption. Journal of the American Chemical Society, 2018, 140, 10915-10920.	6.6	33
2001	Pdâ€Ni BMNPs Encapsulated in UiOâ€66 as an Efficient Catalyst for the Activation of "Inert―Câ^'O Bonds. ChemCatChem, 2018, 10, 4258-4263.	1.8	7
2002	Cu- and Zr-based metal organic frameworks and their composites with graphene oxide for capture of acid gases at ambient temperature. Journal of Solid State Chemistry, 2018, 266, 233-243.	1.4	64
2003	Excited-State Electronic Properties in Zr-Based Metal–Organic Frameworks as a Function of a Topological Network. Journal of the American Chemical Society, 2018, 140, 10488-10496.	6.6	107
2004	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
2005	Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth and Design, 2018, 18, 5492-5500.	1.4	29
2006	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
2007	New 2D and 3D Coordination Polymers by Dehydration of ¹ _{6~2} [<i>M</i> <lsub>] (<i>M</i>^{<ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N</ti><ti>N<td>rloocks 10 T</td><td>f 50 257 Td</td></ti>}</lsub>	rloocks 10 T	f 5 0 257 Td
2008	Allgemeine Chemie, 2018, 644, 1423-1430. Generating and optimizing the catalytic activity in UiO-66 for aerobic oxidation of alkenes by post-synthetic exchange Ti atoms combined with ligand substitution. Journal of Catalysis, 2018, 365, 450-463.	3.1	29
2009	Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 176-183.	2.7	60
2010	Decoration of Cotton Fibers with a Water-Stable Metal–Organic Framework (UiO-66) for the Decomposition and Enhanced Adsorption of Micropollutants in Water. Bioengineering, 2018, 5, 14.	1.6	54
2011	Solvent Dependent Disorder in M2(BzOip)2(H2O)·Solvate (M = Co or Zn). Crystals, 2018, 8, 6.	1.0	1
2012	Zr-based metal-organic framework with dual BrÃ~nsted acid-base functions. IOP Conference Series: Materials Science and Engineering, 2018, 383, 012011.	0.3	2

#	Article	IF	CITATIONS
2013	Immobilization of a Full Photosystem in the Largeâ€Pore MILâ€101 Metal–Organic Framework for CO ₂ reduction. ChemSusChem, 2018, 11, 3315-3322.	3.6	57
2014	Efficient CO ₂ separation in mixed matrix membranes with a hierarchical pore carbon nanostructure. Journal of the Chinese Chemical Society, 2018, 65, 1347-1355.	0.8	9
2015	UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance. Materials, 2018, 11, 589.	1.3	105
2016	The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals (Basel, Switzerland), 2018, 8, 209.	0.8	34
2017	Co2 and Co3 Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity. Molecules, 2018, 23, 755.	1.7	19
2018	Metalâ€Organic Layers Catalyze Photoreactions without Pore Size and Diffusion Limitations. Chemistry - A European Journal, 2018, 24, 15772-15776.	1.7	25
2019	Postâ€Synthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie - International Edition, 2018, 57, 11706-11710.	7.2	107
2020	A Biocompatible Zinc(II)â€based Metalâ€organic Framework for pH Responsive Drug Delivery and Antiâ€Lung Cancer Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 877-882.	0.6	9
2021	Metal–Organic Frameworks as Efficient Oral Detoxifying Agents. Journal of the American Chemical Society, 2018, 140, 9581-9586.	6.6	74
2022	Suspension Processing of Microporous Metal-Organic Frameworks: A Scalable Route to High-Quality Adsorbents. IScience, 2018, 5, 30-37.	1.9	18
2023	Coordination polymers based on zinc(ii) and manganese(ii) with 1,4-cyclohexanedicarboxylic acid. Russian Chemical Bulletin, 2018, 67, 490-496.	0.4	23
2025	A CuO-functionalized NMOF probe with a tunable excitation wavelength for selective detection and imaging of H ₂ S in living cells. Nanoscale, 2018, 10, 15793-15798.	2.8	18
2026	Understanding the CO Oxidation on Pt Nanoparticles Supported on MOFs by <i>Operando</i> XPS. ChemCatChem, 2018, 10, 4238-4242.	1.8	35
2027	Polymeric Solids Based on [Re12CS14(\hat{l} 4-O)3(OH)6]6 \hat{a} Cluster and Alkaline Earth Metal Cations. Journal of Cluster Science, 2018, 29, 617-624.	1.7	2
2028	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & Detection and Rapid Adsorption of Cr _{10, 16650-16659.}	4.0	219
2029	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	4.0	120
2030	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	8.2	89
2031	Catalytic chemoselective functionalization of methane in a metalâ^'organic framework. Nature Catalysis, 2018, 1, 356-362.	16.1	153

#	Article	IF	CITATIONS
2032	Enhancing the conversion of ethyl levulinate to \hat{I}^3 -valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. RSC Advances, 2018, 8, 16611-16618.	1.7	15
2033	MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Conversion and Management, 2018, 174, 356-363.	4.4	121
2034	Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. Journal of CO2 Utilization, 2018, 27, 272-282.	3.3	55
2035	Zn/Co ZIF family: MW synthesis, characterization and stability upon halogen sorption. Polyhedron, 2018, 154, 457-464.	1.0	44
2036	Hydrolytic stability in hemilabile metal–organic frameworks. Nature Chemistry, 2018, 10, 1096-1102.	6.6	134
2037	The effect of topology in Lewis pair functionalized metal organic frameworks on CO ₂ adsorption and hydrogenation. Catalysis Science and Technology, 2018, 8, 4609-4617.	2.1	14
2038	Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31146-31157.	4.0	121
2039	Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere, 2018, 212, 523-532.	4.2	159
2040	Ligands-Coordinated Zr-Based MOF for Wastewater Treatment. Nanomaterials, 2018, 8, 655.	1.9	33
2041	Formation and Characterization of Zr ⁴⁺ Stabilized by Neutral Tridentate Ligands in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2018, 29, 2327-2332.	1.2	9
2042	Determination of carbamazepine in urine and water samples using amino-functionalized metal–organic framework as sorbent. Chemistry Central Journal, 2018, 12, 77.	2.6	29
2043	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	1.7	85
2044	Role of Pore Chemistry and Topology in the CO ₂ Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chemistry of Materials, 2018, 30, 6325-6337.	3.2	144
2045	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
2046	Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Theranostics, 2018, 8, 4332-4344.	4.6	66
2048	Time modulation of defects in UiO-66 and application in oxidative desulfurization. CrystEngComm, 2018, 20, 5658-5662.	1.3	43
2049	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	6.6	158
2050	The challenges of characterising nanoparticulate catalysts: general discussion. Faraday Discussions, 2018, 208, 339-394.	1.6	5

#	Article	IF	CITATIONS
2051	Computational Screening of Alkali, Alkaline Earth, and Transition Metals Alkoxide-Functionalized Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2018, 122, 19015-19024.	1.5	15
2052	Heterometallic metal–organic framework nanocages of high crystallinity: an elongated channel structure formed <i>in situ</i> through metal-ion (M = W or Mo) doping. Journal of Materials Chemistry A, 2018, 6, 23336-23344.	5.2	33
2053	Postâ€Synthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie, 2018, 130, 11880-11884.	1.6	3
2054	Combined experimental and theoretical investigation on selective removal of mercury ions by metal organic frameworks modified with thiol groups. Chemical Engineering Journal, 2018, 354, 790-801.	6.6	118
2055	Designed Construction of Cluster Organic Frameworks from Lindqvist-type Polyoxovanadate Cluster. Inorganic Chemistry, 2018, 57, 10323-10330.	1.9	52
2056	Highly Effective Removal of Nonsteroidal Anti-inflammatory Pharmaceuticals from Water by Zr(IV)-Based Metal–Organic Framework: Adsorption Performance and Mechanisms. ACS Applied Materials & Diterfaces, 2018, 10, 28076-28085.	4.0	171
2057	CO2 adsorption under humid conditions: Self-regulated water content in CAU-10. Polyhedron, 2018, 155, 163-169.	1.0	25
2058	Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Accounts of Chemical Research, 2018, 51, 2129-2138.	7.6	212
2059	A Nanospherical Metal–Organic Framework UiO-66 for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Chromatographia, 2018, 81, 1053-1061.	0.7	21
2060	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie - International Edition, 2018, 57, 8453-8457.	7.2	72
2061	Postâ€Synthetic Mannich Chemistry on Metalâ€Organic Frameworks: Systemâ€Specific Reactivity and Functionalityâ€Triggered Dissolution. Chemistry - A European Journal, 2018, 24, 11094-11102.	1.7	11
2062	Anchored Aluminum Catalyzed Meerwein–Ponndorf–Verley Reduction at the Metal Nodes of Robust MOFs. Inorganic Chemistry, 2018, 57, 6825-6832.	1.9	12
2063	Benzene, Toluene, and Xylene Transport through UiO-66: Diffusion Rates, Energetics, and the Role of Hydrogen Bonding. Journal of Physical Chemistry C, 2018, 122, 16060-16069.	1.5	60
2064	Study on the Desorption Process of $\langle i \rangle n \langle j \rangle$ -Heptane and Methyl Cyclohexane Using UiO-66 with Hierarchical Pores. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21612-21618.	4.0	16
2065	Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO ₂ hydrogenation to methane at low temperatures. Catalysis Science and Technology, 2018, 8, 3160-3165.	2.1	87
2066	Chemical Engineering of Photoactivity in Heterometallic Titanium–Organic Frameworks by Metal Doping. Angewandte Chemie, 2018, 130, 8589-8593.	1.6	9
2067	Structural Characterization of Pristine and Defective [Zr ₁₂ (μ _{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{6\]. (μ_{7\]. (μ_{9\]. (I¼_{9\]. (I¼_{9\].}}}}}}}}}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	/sub>-OH)	₆
2068	Dual Site Lewisâ€Acid Metalâ€Organic Framework Catalysts for CO ₂ Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem, 2018, 10, 3506-3512.	1.8	55

#	Article	IF	CITATIONS
2069	Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nature Communications, 2018, 9, 2351.	5.8	253
2070	Formal water oxidation turnover frequencies from MIL-101(Cr) anchored Ru(bda) depend on oxidant concentration. Chemical Communications, 2018, 54, 7770-7773.	2.2	18
2071	Aperture-Opening Encapsulation of a Transition Metal Catalyst in a Metalâ€"Organic Framework for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2018, 140, 8082-8085.	6.6	166
2072	Synthesis and Characterization of UiO-66-NH ₂ Metal–Organic Framework Cotton Composite Textiles. Industrial & Engineering Chemistry Research, 2018, 57, 9151-9161.	1.8	65
2073	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	7.8	264
2074	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	11.1	415
2075	Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry, 2018, 20, 3081-3091.	4.6	59
2076	Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal–Organic Frameworks (MOFs): A General and Scalable Approach. Angewandte Chemie, 2018, 130, 7962-7966.	1.6	15
2077	Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition. Scientific Reports, 2018, 8, 8976.	1.6	45
2078	Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. Journal of Solid State Chemistry, 2018, 265, 200-207.	1.4	33
2079	Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation. Microporous and Mesoporous Materials, 2018, 272, 101-108.	2,2	112
2080	Improving the Mechanical Stability of Metal–Organic Frameworks Using Chemical Caryatids. ACS Central Science, 2018, 4, 832-839.	5.3	67
2081	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	1.3	29
2082	A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274, 203-211.	2.2	138
2083	Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous and Mesoporous Materials, 2019, 274, 149-154.	2.2	84
2084	Zirconium metal-organic framework nanocrystal as microwave sensitizer for enhancement of tumor therapy. Chinese Chemical Letters, 2019, 30, 481-484.	4.8	16
2085	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	6.6	15
2086	Hybrid membranes with Cu(II) loaded metal organic frameworks for enhanced desulfurization performance. Separation and Purification Technology, 2019, 210, 258-267.	3.9	31

#	Article	IF	CITATIONS
2087	Patulin removal from apple juice using a novel cysteine-functionalized metal-organic framework adsorbent. Food Chemistry, 2019, 270, 1-9.	4.2	70
2088	Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chemical Communications, 2019, 55, 10669-10672.	2.2	32
2089	Development of microporous Zr-MOF UiO-66 by sol-gel synthesis for CO2 capture from synthetic gas containing CO2 and H2. AIP Conference Proceedings, 2019, , .	0.3	3
2090	The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 2019, 45, 1082-1121.	0.9	74
2091	Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 2019, 9, 658.	1.6	26
2092	Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: The structure and visible-light-driven photocatalytic property study. Applied Catalysis B: Environmental, 2019, 259, 118047.	10.8	60
2093	Resolvation-Based Damage to Metal–Organic Frameworks and Approaches to Mitigation. , 2019, 1, 344-349.		10
2094	Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13654-13663.	6.6	60
2095	A Lowâ€Temperature Approach for the Phaseâ€Pure Synthesis of MILâ€140 Structured Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 13598-13608.	1.7	16
2096	Construction of ternary Ag/AgCl/NH2-UiO-66 hybridized heterojunction for effective photocatalytic hexavalent chromium reduction. Journal of Colloid and Interface Science, 2019, 555, 342-351.	5.0	75
2097	Design, Synthesis, and Characterization of Metal–Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. Journal of Physical Chemistry C, 2019, 123, 19748-19758.	1.5	33
2098	NiFePd/UiO-66 nanocomposites as highly efficient catalysts to accelerate hydrogen evolution from hydrous hydrazine. Inorganic Chemistry Frontiers, 2019, 6, 2727-2735.	3.0	21
2099	Spectroscopically Resolved Binding Sites for the Adsorption of Sarin Gas in a Metal–Organic Framework: Insights beyond Lewis Acidity. Journal of Physical Chemistry Letters, 2019, 10, 5142-5147.	2.1	24
2100	Renal-Clearable Porphyrinic Metal–Organic Framework Nanodots for Enhanced Photodynamic Therapy. ACS Nano, 2019, 13, 9206-9217.	7.3	110
2101	A Comparison of Drug Delivery Systems of Zrâ€Based MOFs and Halloysite Nanotubes: Evaluation of βâ€Estradiol Encapsulation. ChemistrySelect, 2019, 4, 8925-8929.	0.7	2
2102	Metalation and DFT studies of metal organic frameworks UiO-66(Zr) with vanadium chloride as allyl alcohol epoxidation catalyst. Journal of Molecular Structure, 2019, 1198, 126940.	1.8	22
2103	Efficient transformative HCHO capture by defective NH ₂ -UiO-66(Zr) at room temperature. Environmental Science: Nano, 2019, 6, 2931-2936.	2.2	38
2104	Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. Journal of the American Chemical Society, 2019, 141, 14443-14450.	6.6	83

#	Article	IF	CITATIONS
2105	A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chemical Communications, 2019, 55, 11083-11086.	2.2	15
2106	Theoretical Evidence on the Confinement Effect of Pt@UiO-66-NH ₂ for Cinnamaldehyde Hydrogenation. Journal of Physical Chemistry C, 2019, 123, 22114-22122.	1.5	28
2107	Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. Science Bulletin, 2019, 64, 1502-1509.	4.3	48
2108	Design of a Multifunctional Indium–Organic Framework: Fluorescent Sensing of Nitro Compounds, Physical Adsorption, and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry, 2019, 58, 11220-11230.	1.9	71
2109	Preparation of Peelable Coating Films with a Metal Organic Framework (UiO-66) and Self-Crosslinkable Polyurethane for the Decomposition of Methyl Paraoxon. Polymers, 2019, 11, 1298.	2.0	7
2110	Two interpenetrated metal-organic frameworks: The CH4 and CO2 adsorption and in-situ XRD studies. Inorganic Chemistry Communication, 2019, 108, 107503.	1.8	2
2111	Rotors, Motors, and Machines Inside Metal–Organic Frameworks. Trends in Chemistry, 2019, 1, 588-600.	4.4	59
2112	Understanding Reduced CO ₂ Uptake of Ionic Liquid/Metal–Organic Framework (IL/MOF) Composites. ACS Applied Nano Materials, 2019, 2, 6022-6029.	2.4	45
2113	Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112025.	2.0	42
2114	Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous and Mesoporous Materials, 2019, 290, 109674.	2.2	53
2115	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32090-32096.	4.0	44
2116	Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. Environmental Pollution, 2019, 253, 616-624.	3.7	68
2117	Design and synthesis of capped-paddlewheel-based porous coordination cages. Chemical Communications, 2019, 55, 9527-9530.	2.2	19
2118	Recent advances in POM-organic frameworks and POM-organic polyhedra. Coordination Chemistry Reviews, 2019, 397, 220-240.	9.5	172
2119	A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Composites Part B: Engineering, 2019, 176, 107198.	5.9	50
2120	Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 2019, 141, 13124-13133.	6.6	73
2121	Magnesium Exchanged Zirconium Metal–Organic Frameworks with Improved Detoxification Properties of Nerve Agents. Journal of the American Chemical Society, 2019, 141, 11801-11805.	6.6	48
2122	From MOFâ€74â€Zn to Triazolateâ€Directed Nonsymmetric Assembly of Chiral Zn 6 @Zn 6 Clusters. Chemistry - A European Journal, 2019, 25, 10590-10593.	1.7	9

#	Article	IF	CITATIONS
2123	Progress on Catalyst Development for Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Chemistry Africa, 2019, 2, 533-549.	1.2	11
2124	Green deoxygenation of fatty acids to transport fuels over metal-organic frameworks as catalysts and catalytic supports., 2019,, 285-318.		2
2125	Metal-organic frameworks for capture and degradation of organic pollutants., 2019,, 203-229.		6
2126	A Collection of Recent Examples of Catalysis Using Carboxylate-Based Metalâ^'Organic Frameworks. ACS Symposium Series, 2019, , 167-197.	0.5	1
2127	Adsorption of hydrogen arsenate and dihydrogen arsenate ions from neutral water by UiO-66-NH2. Journal of Environmental Management, 2019, 247, 263-268.	3.8	40
2128	Engineering Metal–Organic Framework Catalysts for Câ^'C and Câ^'X Coupling Reactions: Advances in Reticular Approaches from 2014–2018. Chemistry - A European Journal, 2019, 25, 16451-16505.	1.7	25
2129	MFM-300(V) as an active heterogeneous catalyst for deep desulfurization of fuel oil by aerobic oxidation. Applied Catalysis A: General, 2019, 584, 117152.	2.2	36
2130	Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron(<scp>iii</scp>) porphyrin functionalized zirconium MOF: effective promotion on the degradation of organic contaminants. Environmental Science: Nano, 2019, 6, 2652-2661.	2.2	57
2131	A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal–Organic Framework. Nanomaterials, 2019, 9, 976.	1.9	44
2132	Metal-organic frameworks for capture and detoxification of nerve agents. , 2019, , 179-202.		3
2133	Photophysical study of [Ru(2,2′-bipyridine)3]2+ and [Ru(1,10-phenanthroline)3]2+ encapsulated in the Uio-66-NH2 metal organic framework. Polyhedron, 2019, 171, 382-388.	1.0	6
2134	Adsorption of hydrogen sulfide over a novel metal organic framework –metal oxide nanocomposite: TOUO-x (TiO2/UiO-66). Journal of Solid State Chemistry, 2019, 278, 120866.	1.4	22
2135	Controlling the Synthesis of Metal–Organic Framework UiO-67 by Tuning Its Kinetic Driving Force. Crystal Growth and Design, 2019, 19, 4246-4251.	1.4	28
2136	Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111986.	2.0	100
2137	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials, 2019, 31, 6193-6201.	3.2	41
2138	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13841-13848.	6.6	101
2139	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58
2140	Continuous Flow Synthesis of a Zr Magnetic Framework Composite for Postâ€Combustion CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 13184-13188.	1.7	27

#	Article	IF	CITATIONS
2141	Insights into the role of zirconium in proline functionalized metal-organic frameworks attaining high enantio- and diastereoselectivity. Journal of Catalysis, 2019, 377, 41-50.	3.1	33
2142	Facile "Green―Aqueous Synthesis of Mono- and Bimetallic Trimesate Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 4981-4989.	1.4	21
2143	Metal-organic frameworks for the sorption of acetone and isopropanol in exhaled breath of diabetics prior to quantitation by gas chromatography. Mikrochimica Acta, 2019, 186, 588.	2.5	25
2144	Metal–Organic Frameworks for Food Safety. Chemical Reviews, 2019, 119, 10638-10690.	23.0	366
2145	Acetylenedicarboxylate and In Situ Generated Chlorofumarate-Based Hafnium(IV)–Metal–Organic Frameworks: Synthesis, Structure, and Sorption Properties. Inorganic Chemistry, 2019, 58, 10965-10973.	1.9	21
2146	Advances in hydrophilic nanomaterials for glycoproteomics. Chemical Communications, 2019, 55, 10359-10375.	2.2	62
2147	A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26250-26260.	4.0	109
2148	Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coordination Chemistry Reviews, 2019, 397, 1-13.	9.5	79
2149	Preparation of mixed-matrix membranes from metal organic framework (MIL-53) and poly (vinylidene) Tj ETQq0 0 0 performance liquid chromatography. Journal of Colloid and Interface Science, 2019, 553, 834-844.	0 rgBT /Ov 5.0	verlock 10 T 51
2150	Uranium extraction from sulfuric acid media with Zr-Metal-Organic Frameworks. Materials Letters, 2019, 253, 285-288.	1.3	14
2151	Modulating charge transport in MOFs with zirconium oxide nodes and redox-active linkers for lithium sulfur batteries. Polyhedron, 2019, 170, 788-795.	1.0	13
2152	A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO2 to cyclic carbonates. Dalton Transactions, 2019, 48, 15487-15492.	1.6	18
2153	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 11731-11736.	7.2	17
2154	Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chemical Engineering Journal, 2019, 378, 122118.	6.6	86
2155	Ce-based UiO-66 metal-organic frameworks as a new redox catalyst for atomic spectrometric determination of Se(VI) and colorimetric sensing of Hg(II). Microchemical Journal, 2019, 149, 103967.	2.3	43
2156	Postsynthetic functionalization of water stable zirconium metal organic frameworks for high performance copper removal. Analyst, The, 2019, 144, 4552-4558.	1.7	17
2157	Core-Shell Self-Doped Polyaniline Coated Metal-Organic-Framework (SPAN@UIO-66-NH ₂) Screen Printed Electrochemical Sensor for Cd ²⁺ lons. Journal of the Electrochemical Society, 2019, 166, B873-B880.	1.3	38
2158	A facile method to introduce iron secondary metal centers into metal–organic frameworks. Journal of Organometallic Chemistry, 2019, 897, 114-119.	0.8	5

#	Article	IF	CITATIONS
2159	Enhancement of Ethane Selectivity in Ethane–Ethylene Mixtures by Perfluoro Groups in Zr-Based Metal-Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27410-27421.	4.0	69
2160	Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nature Catalysis, 2019, 2, 709-717.	16.1	256
2161	Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design and Engineering, 2019, 4, 1000-1013.	1.7	24
2162	Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123625.	2.3	85
2163	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie, 2019, 131, 11857-11862.	1.6	4
2164	Air-Con Metal–Organic Frameworks in Binder Composites for Water Adsorption Heat Transformation Systems. Industrial & Engineering Chemistry Research, 2019, 58, 21493-21503.	1.8	37
2165	Stability Trend of Metal–Organic Frameworks with Heterometal-Modified Hexanuclear Zr Building Units. Journal of Physical Chemistry C, 2019, 123, 28266-28274.	1.5	19
2166	Layer-by-Layer Fabrication of Core–Shell Fe ₃ O ₄ @UiO-66-NH ₂ with High Catalytic Reactivity toward the Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & Lagrange (2019, 11, 43156-43165).	4.0	62
2167	A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown. CheM, 2019, 5, 2926-2941.	5.8	66
2168	Functionalized Metal–Organic Framework UiO-66-NH-BQB for Selective Detection of Hydrogen Sulfide and Cysteine. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41972-41978.	4.0	37
2169	1,10â€Phenanthroline Carboxylic Acids for Preparation of Functionalized Metalâ€Organic Frameworks. Asian Journal of Organic Chemistry, 2019, 8, 2128-2142.	1.3	8
2170	Multiple Oscillatory Push–Pull Antagonisms Constrain Seizure Propagation. Annals of Neurology, 2019, 86, 683-694.	2.8	23
2171	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie - International Edition, 2019, 58, 17033-17040.	7.2	71
2172	Longâ€Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 17843-17848.	7.2	40
2173	Phytotoxic Diterpenoids from Plants and Microorganisms. Chemistry and Biodiversity, 2019, 16, e1900398.	1.0	6
2174	Role of Two-Electron Defects on the CeO ₂ Surface in CO Preferential Oxidation over CuO/CeO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 18421-18433.	3.2	31
2175	Visibleâ€Light Facilitated Fluorescence "Switchâ€On―Labelling of 5â€Formylpyrimidine RNA. Advanced Synthesis and Catalysis, 2019, 361, 5406-5411.	2.1	11
2176	Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules, 2019, 140, 709-718.	3.6	31

#	Article	IF	CITATIONS
2177	Engineering Structural Dynamics of Zirconium Metal–Organic Frameworks Based on Natural C4 Linkers. Journal of the American Chemical Society, 2019, 141, 17207-17216.	6.6	54
2178	A Facile Method for Preparing UiO-66 Encapsulated Ru Catalyst and its Application in Plasma-Assisted CO2 Methanation. Nanomaterials, 2019, 9, 1432.	1.9	58
2179	Cyclometalated Ir–Zr Metal–Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS Applied Materials & Diterfaces, 2019, 11, 41448-41457.	4.0	64
2180	Devices for promising applications. , 2019, , 247-314.		0
2181	Direct sulfation of a Zr-based metal-organic framework to attain strong acid catalysts. Microporous and Mesoporous Materials, 2019, 290, 109686.	2.2	24
2182	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	1.4	35
2183	A Gyroidal MOF with Unprecedented Interpenetrating utc-c Network Exhibiting Exceptional Thermal Stability and Ultrahigh CO ₂ Affinity. Inorganic Chemistry, 2019, 58, 13766-13770.	1.9	23
2184	Neon Adsorption on HKUST-1 and UiO-66 Metal–Organic Frameworks over Wide Pressure and Temperature Ranges. Journal of Chemical & Engineering Data, 2019, 64, 5407-5414.	1.0	7
2185	Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective. ACS Applied Materials & Simulation Perspective.	4.0	56
2187	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17308-17312.	1.6	3
2188	Selfâ€Generation of Surface Roughness by Lowâ€Surfaceâ€Energy Alkyl Chains for Highly Stable Superhydrophobic/Superoleophilic MOFs with Multiple Functionalities. Angewandte Chemie, 2019, 131, 17189-17196.	1.6	21
2189	Metal–organic framework derived Pd/ZrO ₂ @CN as a stable catalyst for the catalytic hydrogenation of 2,3,5â€trimethylbenzoquinone. Applied Organometallic Chemistry, 2019, 33, e5233.	1.7	13
2190	Metalâ€Organic Frameworks as Platform for Lewisâ€Acidâ€Catalyzed Organic Transformations. Chemistry - an Asian Journal, 2019, 14, 3531-3551.	1.7	32
2191	Shaping of Flexible Metalâ€Organic Frameworks: Combining Macroscopic Stability and Framework Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4700-4709.	1.0	41
2192	FP195Serum levels of joining chain containing IgA1 are not elevated in patients with IgA nephropathy. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
2193	Negative Thermal Expansion Design Strategies in a Diverse Series of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1904669.	7.8	48
2194	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie, 2019, 131, 16217-16222.	1.6	6
2195	Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 2019, 10, 5002.	5.8	139

#	Article	IF	CITATIONS
2196	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17148-17152.	7.2	34
2197	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	1.7	27
2198	Co-delivery of PARP and PI3K inhibitors by nanoscale metal–organic frameworks for enhanced tumor chemoradiation. Nano Research, 2019, 12, 3003-3017.	5.8	24
2199	Diversity-Oriented Metal Decoration on UiO-Type Metal–Organic Frameworks: an Efficient Approach to Increase CO ₂ Uptake and Catalytic Conversion to Cyclic Carbonates. ACS Omega, 2019, 4, 19037-19045.	1.6	26
2200	Solvent-Free Synthetic Route for Cerium(IV) Metal–Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45031-45037.	4.0	58
2202	Post Synthetic Defect Engineering of UiO-66 Metal–Organic Framework with An Iridium(III)-HEDTA Complex and Application in Water Oxidation Catalysis. Inorganics, 2019, 7, 123.	1.2	9
2203	Ordered B-Site Vacancies in an ABX ₃ Formate Perovskite. Journal of the American Chemical Society, 2019, 141, 17978-17982.	6.6	21
2204	Regioselective Construction of Metal-Organic Framework (MoF) Sensing Film on Parylene-Patterned Resonant Microcantilever for Highly Toxic Molecules Detection. , 2019, , .		0
2205	A Simple Step toward Enhancing Hydrothermal Stability of ZIF-8. ACS Omega, 2019, 4, 19905-19912.	1.6	52
2206	Color-Tuning and Near-Sunlight White Emission in Highly Stable Rod-Spacer MOFs with Defective Dicubane Based Lead(II)-Carboxyl Chains. Inorganic Chemistry, 2019, 58, 16171-16179.	1.9	29
2207	In-situ HKUST-1 growth into inner pores of activated carbon granule for CO2 efficient capture. IOP Conference Series: Earth and Environmental Science, 2019, 330, 032107.	0.2	1
2208	Fixing Flexible Arms of Core-Shared Ligands to Enhance the Stability of Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 15909-15916.	1.9	14
2209	Continuous UiO-66-Type Metal–Organic Framework Thin Film on Polymeric Support for Organic Solvent Nanofiltration. ACS Applied Materials & Solvent Nanofiltration. ACS Applied Materials & Solvent Nanofiltration.	4.0	49
2210	Metal-organic framework structures: adsorbents for natural gas storage. Russian Chemical Reviews, 2019, 88, 925-978.	2.5	57
2211	NO _{<i>x</i>} Adsorption and Optical Detection in Rare Earth Metal–Organic Frameworks. ACS Applied Materials & Detection in Rare Earth Metal–Organic Frameworks.	4.0	61
2212	Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44792-44801.	4.0	35
2213	A Series of UiO-66(Zr)-Structured Materials with Defects as Heterogeneous Catalysts for Biodiesel Production. Industrial & Defects as Heterogeneous Catalysts for Biodiesel Production. Industrial & Defects as Heterogeneous Catalysts for Biodiesel Production. Industrial & Defects as Heterogeneous Catalysts for Biodiesel Production.	1.8	29
2214	Functional Metal Organic Framework/SiO2 Nanocomposites: From Versatile Synthesis to Advanced Applications. Polymers, 2019, 11, 1823.	2.0	31

#	Article	IF	Citations
2215	Titanium(IV) Inclusion as a Versatile Route to Photoactivity in Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1900126.	1.3	14
2216	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	1.3	41
2217	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
2218	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. Angewandte Chemie, 2019, 131, 16829-16834.	1.6	5
2219	Longâ€Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 18007-18012.	1.6	14
2220	An Ultrastable Metal Azolate Framework with Binding Pockets for Optimal Carbon Dioxide Capture. Angewandte Chemie - International Edition, 2019, 58, 16071-16076.	7.2	56
2221	PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization. Angewandte Chemie - International Edition, 2019, 58, 16676-16681.	7.2	44
2222	Molybdenum (VI)â€functionalized UiOâ€66 provides an efficient heterogeneous nanocatalyst in oxidation reactions. Applied Organometallic Chemistry, 2019, 33, e5225.	1.7	12
2223	Computational Studies of Photocatalysis with Metal–Organic Frameworks. Energy and Environmental Materials, 2019, 2, 251-263.	7.3	66
2224	Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks. Topics in Current Chemistry, 2019, 377, 32.	3.0	11
2225	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41458-41471.	4.0	55
2226	Mixed Functionalization of Organic Ligands in UiO-66: A Tool to Design Metal–Organic Frameworks for Tailored Microextraction. Molecules, 2019, 24, 3656.	1.7	15
2227	Cross-City Convergence in Urban Green Space Coverage in China. Sustainability, 2019, 11, 4707.	1.6	7
2229	Zirconium-Based Metal-Organic UiO-66, UiO-66-NDC and MOF-801 Frameworks. Influence of the Linker Effect on the Hydrogen Sorption Efficiency. Journal of Surface Investigation, 2019, 13, 787-792.	0.1	13
2230	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	1.7	17
2231	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	5.8	164
2232	Dynamic Interplay between Defective UiOâ€66 and Protic Solvents in Activated Processes. Chemistry - A European Journal, 2019, 25, 15315-15325.	1.7	13
2233	The Application of Biomaterials in the Treatment of Platinumâ€Resistant Ovarian Cancer. ChemMedChem, 2019, 14, 1810-1827.	1.6	5

#	Article	IF	CITATIONS
2234	Enhanced CO ₂ Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes. ChemSusChem, 2019, 12, 4405-4411.	3.6	28
2235	The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. Journal of Materials Chemistry A, 2019, 7, 21004-21035.	5.2	94
2236	Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial & Engineering Chemistry Research, 2019, 58, 17646-17659.	1.8	152
2237	Unraveling the Water Adsorption Mechanism in the Mesoporous MIL-100(Fe) Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 23014-23025.	1.5	51
2238	Salt loading in MOFs: solvent-free and solvent-assisted loading of NH ₄ NO ₃ and LiNO ₃ in UiO-66. Dalton Transactions, 2019, 48, 13483-13490.	1.6	11
2239	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	2.2	96
2240	Effect of linker and metal on photoreduction and cascade reactions of nitroaromatics by M-UiO-66 metal organic frameworks. Inorganica Chimica Acta, 2019, 497, 119076.	1.2	14
2241	Exploiting Microwave Chemistry for Activation of Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 35155-35161.	4.0	43
2242	UiO-66 MOFs as electron transport channel to short circuit dye photosensitizer and NiS2 co-catalyst for increased hydrogen generation. Materials Letters, 2019, 255, 126593.	1.3	9
2243	Tuning the Connectivity, Rigidity, and Functionality of Two-Dimensional Zr-Based Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 12748-12755.	1.9	19
2244	Ligand Exchange in the Synthesis of Metal–Organic Frameworks Occurs Through Acid-Catalyzed Associative Substitution. Inorganic Chemistry, 2019, 58, 14457-14466.	1.9	18
2245	Antigen-enabled facile preparation of MOF nanovaccine to activate the complement system for enhanced antigen-mediated immune response. Biomaterials Science, 2019, 7, 4022-4026.	2.6	16
2246	Synthesis of o-carborane-functionalized metal–organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chemical Communications, 2019, 55, 11844-11847.	2.2	14
2247	The preparation and characterization of UiO-66 metal–organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities. New Journal of Chemistry, 2019, 43, 16033-16040.	1.4	88
2248	NH ₂ -MIL-53(Al) Metal–Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg ²⁺ . Inorganic Chemistry, 2019, 58, 12573-12581.	1.9	128
2249	Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosensors and Bioelectronics, 2019, 143, 111636.	5.3	54
2250	The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene. Journal of Environmental Chemical Engineering, 2019, 7, 103405.	3.3	102
2251	Selective Dye Adsorption by Zeolitic Imidazolate Framework-8 Loaded UiO-66-NH2. Nanomaterials, 2019, 9, 1283.	1.9	49

#	Article	IF	CITATIONS
2252	Metal organic frameworks-derived porous NiCo2S4 nanorods and N-doped carbon for high-performance battery-supercapacitor hybrid device. Journal of Power Sources, 2019, 440, 227146.	4.0	35
2253	Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 2019, 4, 708-725.	23.3	214
2254	Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sensors and Actuators B: Chemical, 2019, 301, 127073.	4.0	51
2255	Controlling Charge-Transport in Metal–Organic Frameworks: Contribution of Topological and Spin-State Variation on the Iron–Porphyrin Centered Redox Hopping Rate. Journal of Physical Chemistry B, 2019, 123, 8814-8822.	1.2	40
2256	Time-controlled synthesis of the 3D coordination polymer $U(1,2,3\text{-Hbtc})2$ followed by the formation of molecular poly-oxo cluster $\{U14\}$ containing hemimellitate uranium(iv). RSC Advances, 2019, 9, 22795-22804.	1.7	13
2257	Stabilizing defects in metal–organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials. Dalton Transactions, 2019, 48, 14696-14704.	1.6	22
2258	Synthesis of an MOF-based Hg ²⁺ -fluorescent probe <i>via</i> stepwise post-synthetic modification in a single-crystal-to-single-crystal fashion and its application in bioimaging. Dalton Transactions, 2019, 48, 16502-16508.	1.6	26
2259	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	9.5	45
2260	Wavelength-Dependent Energy and Charge Transfer in MOF: A Step toward Artificial Porous Light-Harvesting System. Journal of the American Chemical Society, 2019, 141, 16849-16857.	6.6	93
2261	Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal–organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chemical Science, 2019, 10, 10577-10585.	3.7	87
2262	Protons Make Possible Heterolytic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 9699-9704.	5.5	41
2263	Facile Green Synthesis of Zirconium Based Metal-Organic Framework having Carboxylic Anchors. Materials Today: Proceedings, 2019, 9, 522-527.	0.9	6
2264	Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 10174-10191.	5.5	246
2265	Peroxide-Promoted Disassembly Reassembly of Zr-Polyoxocations. Journal of the American Chemical Society, 2019, 141, 16894-16902.	6.6	28
2266	Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal–Organic Frameworks with Non-default Topologies. Journal of the American Chemical Society, 2019, 141, 16517-16538.	6.6	90
2267	Adsorption dynamics and mechanism of Amoxicillin and Sulfachlorpyridazine by ZrOx/porous carbon nanocomposites. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 65-74.	2.7	13
2268	pyGAPS: a Python-based framework for adsorption isotherm processing and material characterisation. Adsorption, 2019, 25, 1533-1542.	1.4	33
2269	Structural study of functional hierarchical porous carbon synthesized from metal-organic framework template. Materials Today Chemistry, 2019, 14, 100188.	1.7	4

#	Article	IF	Citations
2270	Ranking of Metal–Organic Frameworks (MOFs) for Separation of Hexane Isomers by Selective Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 20047-20065.	1.8	22
2271	The performance of UiO-66-NH2/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes. Chemosphere, 2019, 237, 124517.	4.2	45
2272	Diverse 2D and 3D topologies in cobalt cyclohexyldicarboxylate coordination polymers with bis(4-pyridylmethyl)piperazine coligands. Inorganica Chimica Acta, 2019, 498, 119122.	1.2	3
2273	Facile preparation of pH-responsive k-Carrageenan/tramadol loaded UiO-66 bio-nanocomposite hydrogel beads as a nontoxic oral delivery vehicle. Journal of Drug Delivery Science and Technology, 2019, 54, 101311.	1.4	39
2274	Desulfurization of Liquid Hydrocarbon Fuels with Microporous and Mesoporous Materials: Metal-Organic Frameworks, Zeolites, and Mesoporous Silicas. Industrial & Engineering Chemistry Research, 2019, 58, 19322-19352.	1.8	34
2275	Design of robust rod-packing [In(OH)(BDC)] frameworks and their high CO2/C2-hydrocarbons over CH4 separation performance. Journal of Solid State Chemistry, 2019, 279, 120936.	1.4	8
2276	Metal-organic framework as a platform of the enzyme to prepare novel environmentally friendly nanobiocatalyst for degrading pollutant in water. Journal of Industrial and Engineering Chemistry, 2019, 80, 606-613.	2.9	45
2277	Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chemistry, 2019, 21, 54-58.	4.6	66
2278	Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. Journal of Membrane Science, 2019, 576, 78-87.	4.1	75
2279	Metal–Organic Frameworks Grafted by Univariate and Multivariate Heterocycles for Enhancing CO2 Capture: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58, 2195-2205.	1.8	17
2280	Predictions of Hg ⁰ and HgCl ₂ Adsorption Properties in UiO-66 from Flue Gas Using Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 5972-5979.	1.5	18
2281	A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Transactions, 2019, 48, 1332-1343.	1.6	56
2282	A water-stable luminescent metal–organic framework for effective detection of aflatoxin B1 in walnut and almond beverages. RSC Advances, 2019, 9, 620-625.	1.7	39
2283	Post synthetic exchange enables orthogonal click chemistry in a metal organic framework. Dalton Transactions, 2019, 48, 45-49.	1.6	17
2284	Thin supported MOF based mixed matrix membranes of Pebax \hat{A}^{\otimes} 1657 for biogas upgrade. New Journal of Chemistry, 2019, 43, 312-319.	1.4	37
2285	Gd ³⁺ Adsorption over Carboxylic- and Amino-Group Dual-Functionalized UiO-66. Industrial & Description of the Carboxylic and Amino-Group Dual-Functionalized UiO-66.	1.8	41
2286	Space-confined indicator displacement assay inside a metal–organic framework for fluorescence turn-on sensing. Chemical Science, 2019, 10, 3307-3314.	3.7	62
2287	Stable Amide-Functionalized Metal–Organic Framework with Highly Selective CO2 Adsorption. Inorganic Chemistry, 2019, 58, 2729-2735.	1.9	51

#	ARTICLE	IF	CITATIONS
2288	Implementing fluorescent MOFs as down-converting layers in hybrid light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2394-2400.	2.7	23
2289	Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 247, 24-48.	10.8	309
2290	Exploiting π–π Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Company (1997)	4.0	96
2291	Core–Shell Gold Nanorod@Zirconium-Based Metal–Organic Framework Composites as <i>in Situ</i> Size-Selective Raman Probes. Journal of the American Chemical Society, 2019, 141, 3893-3900.	6.6	119
2292	An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. CrystEngComm, 2019, 21, 1407-1415.	1.3	39
2293	A Microporous Zirconium Metalâ€Organic Framework Based on <i>trans</i>)â€Aconitic Acid for Selective Carbon Dioxide Adsorption. European Journal of Inorganic Chemistry, 2019, 2019, 2674-2679.	1.0	12
2294	Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm, 2019, 21, 1358-1362.	1.3	28
2295	Metal–Organic Frameworks with Targetâ€Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie - International Edition, 2019, 58, 6600-6604.	7.2	161
2296	Specific detection of hypochlorite based on the size-selective effect of luminophore integrated MOF-801 synthesized by a one-pot strategy. Dalton Transactions, 2019, 48, 2617-2625.	1.6	30
2297	Dispersive Solid-Phase Extraction Using Microporous Sorbent UiO-66 Coupled to Gas Chromatography–Tandem Mass Spectrometry: A QuEChERS-Type Method for the Determination of Organophosphorus Pesticide Residues in Edible Vegetable Oils without Matrix Interference. Journal of Agricultural and Food Chemistry, 2019, 67, 1760-1770.	2.4	74
2298	Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent. Catalysis Science and Technology, 2019, 9, 327-335.	2.1	40
2299	Seaming the interfaces between topologically distinct metal–organic frameworks using random copolymer glues. Nanoscale, 2019, 11, 2121-2125.	2.8	26
2300	Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. Reaction Chemistry and Engineering, 2019, 4, 207-222.	1.9	96
2301	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	3.7	129
2302	Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal–organic frameworks. Chemical Science, 2019, 10, 16-33.	3.7	224
2303	MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 2653-2659.	5.2	160
2304	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	1,8	22
2305	Efficient adsorption of Levofloxacin from aqueous solution using calcium alginate/metal organic frameworks composite beads. Journal of Sol-Gel Science and Technology, 2019, 91, 353-363.	1.1	68

#	Article	IF	CITATIONS
2306	An amino-functionalized zirconium-based metal–organic framework/graphene oxide nanocomposite for 2,4-dichlorophenoxyacetic acid determination by ion mobility spectrometry. Analytical Methods, 2019, 11, 2929-2936.	1.3	13
2307	Early stages of phase selection in MOF formation observed in molecular Monte Carlo simulations. RSC Advances, 2019, 9, 14382-14390.	1.7	8
2309	Computational Screening of Roles of Defects and Metal Substitution on Reactivity of Different Singlevs Double-Node Metal–Organic Frameworks for Sarin Decomposition. Journal of Physical Chemistry C, 2019, 123, 15157-15165.	1.5	31
2310	Interface construction in microporous metal–organic frameworks from luminescent terbium-based building blocks. Journal of Colloid and Interface Science, 2019, 552, 372-377.	5.0	7
2311	Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. ACS Applied Materials & Digestion. 11, 21109-21116.	4.0	50
2312	Novel Brönsted Acidic Ionic Liquids Confined in UiO-66 Nanocages for the Synthesis of Dihydropyrido[2,3- <i>d</i>)Pyrimidine Derivatives under Solvent-Free Conditions. ACS Omega, 2019, 4, 10548-10557.	1.6	40
2313	How Does the Fluorination of the Linker Affect the Stability of Trimesate-Based Coordination Polymers and Metal–Organic Frameworks?. Inorganic Chemistry, 2019, 58, 8622-8632.	1.9	19
2314	UiO-66: An Advanced Platform for Investigating the Influence of Functionalization in the Adsorption Removal of Pharmaceutical Waste. Inorganic Chemistry, 2019, 58, 8787-8792.	1.9	61
2315	Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with "Structural Memory― Journal of the American Chemical Society, 2019, 141, 11628-11640.	6.6	71
2316	Phosphonium zwitterions for lighter and chemically-robust MOFs: highly reversible H ₂ S capture and solvent-triggered release. Journal of Materials Chemistry A, 2019, 7, 16842-16849.	5.2	22
2317	Metal–Organic Frameworks Toward Electrocatalytic Applications. Applied Sciences (Switzerland), 2019, 9, 2427.	1.3	55
2318	CO2 capture using amine incorporated UiO-66 in atmospheric pressure. Journal of Porous Materials, 2019, 26, 1831-1838.	1.3	13
2319	Optimization of the synthesis of UiO-66(Zr) in ionic liquids. Microporous and Mesoporous Materials, 2019, 288, 109564.	2.2	14
2320	Recovery of polyphenols from water using Zr-based metal-organic frameworks and their nanocomposites with graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 2019, 78, 164-171.	2.9	12
2321	UiO-66 derived N-doped carbon nanoparticles coated by PANI for simultaneous adsorption and reduction of hexavalent chromium from waste water. Chemical Engineering Journal, 2019, 378, 122069.	6.6	97
2322	A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties. Crystal Growth and Design, 2019, 19, 4571-4578.	1.4	26
2323	Homochiral BINAPDA-Zr-MOF for Heterogeneous Asymmetric Cyanosilylation of Aldehydes. Inorganic Chemistry, 2019, 58, 9253-9259.	1.9	29
2324	Hierarchically Porous and Water-Tolerant Metal–Organic Frameworks for Enzyme Encapsulation. Industrial & Engineering Chemistry Research, 2019, 58, 12835-12844.	1.8	32

#	Article	IF	CITATIONS
2325	UiO-68-PT MOF-Based Sensor and Its Mixed Matrix Membrane for Detection of HClO in Water. Inorganic Chemistry, 2019, 58, 9890-9896.	1.9	29
2326	Iodosylbenzene Coordination Chemistry Relevant to Metal–Organic Framework Catalysis. Inorganic Chemistry, 2019, 58, 10543-10553.	1.9	14
2327	Exploring the Potential of Defective UiO-66 as Reverse Osmosis Membranes for Desalination. Journal of Physical Chemistry C, 2019, 123, 16118-16126.	1.5	35
2328	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	6.2	66
2329	Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2019, 256, 117804.	10.8	131
2330	Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coordination Chemistry Reviews, 2019, 395, 25-45.	9.5	184
2331	Modulating Guest Uptake in Core–Shell MOFs with Visible Light. Angewandte Chemie - International Edition, 2019, 58, 12862-12867.	7.2	81
2332	Preparation of metalâ€organic framework UiOâ€66â€incorporated polymer monolith for the extraction of trace levels of fungicides in environmental water and soil samples. Journal of Separation Science, 2019, 42, 2679-2686.	1.3	19
2333	PEG functionalized zirconium dicarboxylate MOFs for docetaxel drug delivery in vitro. Journal of Drug Delivery Science and Technology, 2019, 52, 846-855.	1.4	28
2334	2-Methylimidazole assisted ultrafast synthesis of carboxylate-based metal–organic framework nano-structures in aqueous medium at room temperature. Science Bulletin, 2019, 64, 1103-1109.	4.3	11
2335	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	6.6	172
2336	Electrically Conducting Nanocomposites of Carbon Nanotubes and Metalâ€Organic Frameworks with Strong Interactions between the two Components. ChemNanoMat, 2019, 5, 1159-1169.	1.5	21
2337	The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light. Chemical Engineering Journal, 2019, 375, 121944.	6.6	255
2338	Controlling Size, Defectiveness, and Fluorescence in Nanoparticle UiO-66 through Water and Ligand Modulation. Chemistry of Materials, 2019, 31, 4831-4839.	3.2	41
2339	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nature Communications, 2019, 10, 2490.	5.8	158
2340	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	5.8	180
2341	Toward Metal–Organicâ€Frameworkâ€Based Supercapacitors: Roomâ€Temperature Synthesis of Electrically Conducting MOFâ€Based Nanocomposites Decorated with Redoxâ€Active Manganese. European Journal of Inorganic Chemistry, 2019, 2019, 3036-3044.	1.0	35
2342	Highly Active Ultrasmall Ni Nanoparticle Embedded Inside a Robust Metal–Organic Framework: Remarkably Improved Adsorption, Selectivity, and Solvent-Free Efficient Fixation of CO⟨sub⟩2⟨ sub⟩. Inorganic Chemistry, 2019, 58, 8100-8110.	1.9	67

#	Article	IF	CITATIONS
2343	Ti-Based nanoMOF as an Efficient Oral Therapeutic Agent. ACS Applied Materials & Distribution (11, 22188-22193.	4.0	32
2344	UiO-66-supported Fe catalyst: a vapour deposition preparation method and its superior catalytic performance for removal of organic pollutants in water. Royal Society Open Science, 2019, 6, 182047.	1.1	13
2345	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	3.2	80
2346	Kinetics of Water Adsorption in UiO-66 MOF. Industrial & Engineering Chemistry Research, 2019, 58, 10550-10558.	1.8	35
2347	Metal–Organic Framework Crystal-Assembled Optical Sensors for Chemical Vapors: Effects of Crystal Sizes and Missing-Linker Defects on Sensing Performances. ACS Applied Materials & Diterfaces, 2019, 11, 21010-21017.	4.0	53
2348	Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Applied Materials Today, 2019, 16, 146-168.	2.3	100
2349	Metal–Organic Frameworks as Fuels for Advanced Applications: Evaluating and Modifying the Combustion Energy of Popular MOFs. Chemistry of Materials, 2019, 31, 4882-4888.	3.2	21
2350	Hydrogenâ€Bonded Polyimide/Metalâ€Organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs. Advanced Functional Materials, 2019, 29, 1903243.	7.8	78
2351	Upcycling a plastic cup: one-pot synthesis of lactate containing metal organic frameworks from polylactic acid. Chemical Communications, 2019, 55, 7319-7322.	2.2	31
2352	Metal-organic frameworks for CO2 photoreduction. Frontiers in Energy, 2019, 13, 221-250.	1.2	25
2353	Water- and Thermal-Stable Silver-Based Photoluminescent Metal-Organic Coordination Polymer for Highly Selective Lead Ion Sensing. Bulletin of the Chemical Society of Japan, 2019, 92, 1430-1435.	2.0	15
2354	Modulierung der Gastaufnahme in Core‧hellâ€MOFs mit sichtbarem Licht. Angewandte Chemie, 2019, 131, 12994-12999.	1.6	17
2355	Aqueous Phase Sensing of Fe ³⁺ and Ascorbic Acid by a Metal–Organic Framework and Its Implication in the Construction of Multiple Logic Gates. Chemistry - an Asian Journal, 2019, 14, 2822-2830.	1.7	44
2356	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
2357	Suppressing the Shuttle Effect in Lithium–Sulfur Batteries by a UiO-66-Modified Polypropylene Separator. ACS Omega, 2019, 4, 10328-10335.	1.6	57
2358	A multifunctional Zr(<scp>iv</scp>)-based metal–organic framework for highly efficient elimination of Cr(<scp>vi</scp>) from the aqueous phase. Journal of Materials Chemistry A, 2019, 7, 16833-16841.	5.2	80
2359	Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(VI) from aqueous solutions. Science of the Total Environment, 2019, 682, 118-127.	3.9	77
2360	Metal–organic framework (UiOâ€66)â€dispersed polyurethane composite films for the decontamination of methyl paraoxon. Polymer International, 2019, 68, 1502-1508.	1.6	7

#	Article	IF	CITATIONS
2361	Membranes for dehydration of alcohols via pervaporation. Journal of Environmental Management, 2019, 242, 415-429.	3.8	91
2362	A systematic evaluation of UiO-66 metal organic framework for CO2/N2 separation. Separation and Purification Technology, 2019, 224, 85-94.	3.9	52
2363	Fluorescent Zr(IV) Metal–Organic Frameworks Based on an Excited-State Intramolecular Proton Transfer-Type Ligand. Inorganic Chemistry, 2019, 58, 6918-6926.	1.9	13
2364	Spherical Sandwich Au@Pd@UIO-67/Pt@UIO- <i>n</i> (<i>n</i> = 66, 67, 69) Core–Shell Catalysts: Zr-Based Metal–Organic Frameworks for Effectively Regulating the Reverse Water–Gas Shift Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20291-20297.	4.0	31
2365	A Stable Mesoporous Zr-Based Metal Organic Framework for Highly Efficient CO ₂ Conversion. Inorganic Chemistry, 2019, 58, 7480-7487.	1.9	51
2366	Hybrid MIL-101(Cr)@MIL-53(Al) composite for carbon dioxide capture from biogas. RSC Advances, 2019, 9, 15141-15150.	1.7	9
2367	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	3.7	167
2368	Symmetry-guided syntheses of mixed-linker Zr metal–organic frameworks with precise linker locations. Chemical Science, 2019, 10, 5801-5806.	3.7	22
2369	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 10995-11000.	7.2	31
2370	The first water-based synthesis of Ce(iv)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Transactions, 2019, 48, 8433-8441.	1.6	24
2371	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11111-11116.	1.6	13
2372	Structure-Mechanical Stability Relations of Metal-Organic Frameworks via Machine Learning. Matter, 2019, 1, 219-234.	5.0	170
2373	Porous Metal–Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 4156-4165.	3.2	34
2374	Isoreticular Tp*–W–Cu–S cluster-based one-dimensional coordination polymers with an uncommon [Tp*WS ₃ Cu ₂] + [Cu] combination and their third-order nonlinear optical properties. CrystEngComm, 2019, 21, 3343-3348.	1.3	6
2375	Selective Adsorption-Based Separation of Flue Gas and Natural Gas in Zirconium Metal-Organic Frameworks Nanocrystals. Molecules, 2019, 24, 1822.	1.7	20
2376	Heterogeneous Prolinamide-Catalyzed Atom-Economical Synthesis of \hat{l}^2 -Thioketones from Bio-Based Enones. ACS Omega, 2019, 4, 8588-8597.	1.6	5
2377	Discovery of precise pH-controlled biomimetic catalysts: defective zirconium metal–organic frameworks as alkaline phosphatase mimics. Nanoscale, 2019, 11, 11270-11278.	2.8	29
2378	Greener processes in the preparation of thin film nanocomposite membranes with diverse metal-organic frameworks for organic solvent nanofiltration. Journal of Industrial and Engineering Chemistry, 2019, 77, 344-354.	2.9	48

#	Article	IF	CITATIONS
2379	Zr (IV)-based coordination porous materials for adsorption of Copper(II) from water. Microporous and Mesoporous Materials, 2019, 285, 215-222.	2.2	33
2380	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	6.6	371
2381	Highly stable fullerene-based porous molecular crystals with open metal sites. Nature Materials, 2019, 18, 740-745.	13.3	18
2382	SO3H functionalized UiO-66 nanocrystals in Polysulfone based mixed matrix membranes: Synthesis and application for efficient CO2 capture. Separation and Purification Technology, 2019, 224, 524-533.	3.9	54
2383	Fast Synthesis of Hybrid Zeolitic Imidazolate Frameworks (HZIFs) with Exceptional Acid–Base Stability from ZIF-8 Precursors. Crystal Growth and Design, 2019, 19, 3430-3434.	1.4	14
2384	Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Applied Catalysis B: Environmental, 2019, 253, 323-330.	10.8	80
2385	Metal-organic frameworks for aquatic arsenic removal. Water Research, 2019, 158, 370-382.	5.3	154
2386	Metal–Organic Frameworks as Porous Templates for Enhanced Cobalt Oxide Electrocatalyst Performance. ACS Applied Energy Materials, 2019, 2, 3306-3313.	2.5	7
2387	Controlled Growth of the Noncentrosymmetric Zn(3-ptz)2 and Zn(OH)(3-ptz) Metal–Organic Frameworks. ACS Omega, 2019, 4, 7411-7419.	1.6	9
2388	Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. Journal of the American Chemical Society, 2019, 141, 7789-7796.	6.6	82
2389	Nano-sized ZrO2 derived from metal–organic frameworks and their catalytic performance for aromatic synthesis from syngas. Catalysis Science and Technology, 2019, 9, 2982-2992.	2.1	32
2390	Large-scale computational assembly of ionic liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2019, 7, 12556-12564.	5.2	44
2391	Spillover effect on Pd-embedded metal-organic frameworks based on zirconium(IV) and benzene 1,3,5-tricarboxylate as hydrogen storage materials. Materials Research Express, 2019, 6, 084001.	0.8	7
2392	Novel Heterometallic Uranyl-Transition Metal Materials: Structure, Topology, and Solid State Photoluminescence Properties. Inorganic Chemistry, 2019, 58, 7243-7254.	1.9	38
2393	The Impact of Synthesis Method on the Properties and CO2 Sorption Capacity of UiO-66(Ce). Catalysts, 2019, 9, 309.	1.6	35
2394	Synthesis of flower-like CuS/UiO-66 composites with enhanced visible-light photocatalytic performance. Inorganic Chemistry Communication, 2019, 104, 223-228.	1.8	18
2395	A straightforward route to obtain zirconium based metal-organic gels. Microporous and Mesoporous Materials, 2019, 284, 128-132.	2.2	46
2396	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	1.8	28

#	Article	IF	CITATIONS
2397	<i>p $<$ i>-Xylylenediamine derived ligands as flexible connectors in the design of porous coordination polymers. CrystEngComm, 2019, 21, 3074-3085.	1.3	1
2398	The impact of an isoreticular expansion strategy on the performance of iodine catalysts supported in multivariate zirconium and aluminum metal–organic frameworks. Dalton Transactions, 2019, 48, 6445-6454.	1.6	14
2399	Synthesis of DtBuCH18C6-coated magnetic metal–organic framework Fe3O4@UiO-66-NH2 for strontium adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 103073.	3.3	24
2400	Magnetic zirconium-based metal–organic frameworks for selective phosphate adsorption from water. Journal of Colloid and Interface Science, 2019, 552, 134-141.	5.0	76
2401	Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide. Dalton Transactions, 2019, 48, 8221-8226.	1.6	42
2402	Molecular-Level Insight into CO ₂ Adsorption on the Zirconium-Based Metal–Organic Framework, UiO-66: A Combined Spectroscopic and Computational Approach. Journal of Physical Chemistry C, 2019, 123, 13731-13738.	1.5	34
2403	A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry A, 2019, 7, 13173-13179.	5.2	68
2404	Coupling g-C3N4 nanosheets with metal-organic frameworks as 2D/3D composite for the synergetic removal of uranyl ions from aqueous solution. Journal of Colloid and Interface Science, 2019, 550, 117-127.	5.0	84
2405	Selective decontamination of the reactive air pollutant nitrous acid ⟨i⟩via⟨ i⟩ node-linker cooperativity in a metal–organic framework. Chemical Science, 2019, 10, 5576-5581.	3.7	28
2406	Salting-in species induced self-assembly of stable MOFs. Chemical Science, 2019, 10, 5743-5748.	3.7	36
2407	Cooperative Sieving and Functionalization of Zr Metal–Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22390-22397.	4.0	60
2408	Fabrication of Fe ₃ O ₄ @UiO-66-SO ₃ H coreâ€"shell functional adsorbents for highly selective and efficient removal of organic dyes. New Journal of Chemistry, 2019, 43, 7770-7777.	1.4	37
2409	Green Synthesis of a Functionalized Zirconium-Based Metal–Organic Framework for Water and Ethanol Adsorption. Inorganics, 2019, 7, 56.	1.2	24
2410	Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Journal of Hazardous Materials, 2019, 375, 191-197.	6.5	56
2411	Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to \hat{I}^3 -valerolactone. Molecular Catalysis, 2019, 472, 17-26.	1.0	43
2412	Highly Stable Zr(IV)-Based Metal–Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions. Journal of the American Chemical Society, 2019, 141, 7498-7508.	6.6	118
2413	Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 2019, 253, 253-262.	10.8	137
2414	Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation. Journal of Environmental Chemical Engineering, 2019, 7, 103096.	3.3	93

#	Article	IF	CITATIONS
2415	Adsorption Equilibrium of Carbon Dioxide, Methane, Nitrogen, Carbon Monoxide, and Hydrogen on UiO-66(Zr)_(COOH) ₂ . Journal of Chemical & Engineering Data, 2019, 64, 4724-4732.	1.0	14
2416	Enhancing Permeability of Thin Film Nanocomposite Membranes via Covalent Linking of Polyamide with the Incorporated Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2019, 58, 8772-8783.	1.8	43
2417	Highly Chemically Stable MOFs with Trifluoromethyl Groups: Effect of Position of Trifluoromethyl Groups on Chemical Stability. Inorganic Chemistry, 2019, 58, 5725-5732.	1.9	43
2418	[Zr ₆ O ₄ (OH) ₄ (benzene-1,4-dicarboxylato) ₆] _n : a hexagonal polymorph of UiO-66. Chemical Communications, 2019, 55, 5954-5957.	2.2	24
2419	Magneto-structural correlations of novel kagom \tilde{A} ©-type metal organic frameworks. Journal of Materials Chemistry C, 2019, 7, 6692-6697.	2.7	10
2420	Removal of toxic/radioactive metal ions by metal-organic framework-based materials. Interface Science and Technology, 2019, , 217-279.	1.6	15
2421	Simple fabrication of zirconium and nitrogen co-doped ordered mesoporous carbon for enhanced adsorption performance towards polar pollutants. Analytica Chimica Acta, 2019, 1070, 43-50.	2.6	15
2422	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	2.2	47
2423	Rapid and Low-Cost Electrochemical Synthesis of UiO-66-NH ₂ with Enhanced Fluorescence Detection Performance. Inorganic Chemistry, 2019, 58, 6742-6747.	1.9	71
2424	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
2425	Storage of Hydrogen on Nanoporous Adsorbents. Green Energy and Technology, 2019, , 255-286.	0.4	1
2426	Effective Recovery of Pt(IV) from Acidic Solution by a Defective Metal–Organic Frameworks Using Central Composite Design for Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 7510-7518.	3.2	22
2427	Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal–Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel–Crafts Alkylation. Inorganic Chemistry, 2019, 58, 5163-5172.	1.9	51
2428	A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 2019, 10, 4542-4549.	3.7	112
2429	Chirality in Porous Functional Materials., 0,,.		0
2430	Metal-Organic Frameworks for Nanoarchitectures: Nanoparticle, Composite, Core-Shell, Hierarchical, and Hollow Structures., 2019, , 151-194.		1
2431	Designing UiO-66-Based Superprotonic Conductor with the Highest Metal–Organic Framework Based Proton Conductivity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13423-13432.	4.0	173
2432	Bi-metal–organic frameworks type II heterostructures for enhanced photocatalytic styrene oxidation. Nanoscale, 2019, 11, 7554-7559.	2.8	28

#	ARTICLE	IF	CITATIONS
2433	A Universally Applicable Strategy for Construction of Antiâ€Biofouling Adsorbents for Enhanced Uranium Recovery from Seawater. Advanced Science, 2019, 6, 1900002.	5.6	117
2434	Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF. Catalysis Communications, 2019, 124, 62-66.	1.6	59
2435	Polydopamine-Modified Metal–Organic Framework Membrane with Enhanced Selectivity for Carbon Capture. Environmental Science & Environmental Science	4.6	93
2436	Highly Selective Heterogeneous Ethylene Dimerization with a Scalable and Chemically Robust MOF Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6654-6661.	3.2	62
2437	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
2438	Eu ³⁺ -Postdoped UIO-66-Type Metalâ€"Organic Framework as a Luminescent Sensor for Hg ²⁺ Detection in Aqueous Media. Inorganic Chemistry, 2019, 58, 3910-3915.	1.9	90
2439	Evolution of acid and basic sites in UiO-66 and UiO-66-NH2 metal-organic frameworks: FTIR study by probe molecules. Microporous and Mesoporous Materials, 2019, 281, 110-122.	2.2	115
2440	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	18.7	103
2441	Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. Journal of Membrane Science, 2019, 580, 101-109.	4.1	123
2442	H2S separation from biogas by adsorption on functionalized MIL-47-X (X = â^'OH and â^' OCH3): A simustudy. Applied Surface Science, 2019, 479, 1006-1013.	ulation 3.1	16
2443	A Chemiluminescent Metal–Organic Framework. Chemistry - A European Journal, 2019, 25, 6349-6354.	1.7	27
2444	Phosphotungstic acid immobilized on mixed-ligand-directed UiO-66 for the esterification of 1-butene with acetic acid to produce high-octane gasoline. Fuel, 2019, 245, 226-232.	3.4	17
2445	Continuous Flow Desulfurization of a Model Fuel Catalysed by Titanium Functionalized UiOâ€66. ChemistrySelect, 2019, 4, 2806-2809.	0.7	19
2446	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	1.6	31
2447	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	7.2	103
2448	Heterostructural Ag3PO4/UiO-66 composite for highly efficient visible-light photocatalysts with long-term stability. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 305-315.	2.0	48
2449	Metal–organic frameworks: a universal strategy towards super-elastic hydrogels. Polymer Chemistry, 2019, 10, 2263-2272.	1.9	35
2450	Green and scalable synthesis of nitro- and amino-functionalized UiO-66(Zr) and the effect of functional groups on the oxidative desulfurization performance. Inorganic Chemistry Frontiers, 2019, 6, 1267-1274.	3.0	30

#	ARTICLE	IF	CITATIONS
2451	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
2452	HPW-Anchored UiO-66 Metal–Organic Framework: A Promising Photocatalyst Effective toward Tetracycline Hydrochloride Degradation and H ₂ Evolution via Z-Scheme Charge Dynamics. Inorganic Chemistry, 2019, 58, 4921-4934.	1.9	129
2453	A Critical Review of Solid Materials for Low-Temperature Thermochemical Storage of Solar Energy Based on Solid-Vapour Adsorption in View of Space Heating Uses. Molecules, 2019, 24, 945.	1.7	35
2454	<i>De novo</i> synthesis of mesoporous photoactive titanium(<scp>iv</scp>)–organic frameworks with MIL-100 topology. Chemical Science, 2019, 10, 4313-4321.	3.7	72
2455	Sulfur Chemistry for Stable and Electroactive Metalâ€Organic Frameworks: The Crosslinking Story. Chemistry - A European Journal, 2019, 25, 8654-8662.	1.7	13
2456	Bimetallic Pd/SnO2 Nanoparticles on Metal Organic Framework (MOF)-Derived Carbon as Electrocatalysts for Ethanol Oxidation. Electrocatalysis, 2019, 10, 366-380.	1.5	40
2457	Copper Ion Fluorescent Probe Based on Zr-MOFs Composite Material. Analytical Chemistry, 2019, 91, 4331-4336.	3.2	106
2458	Salen-Co(<scp>iii</scp>) insertion in multivariate cationic metal–organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chemical Communications, 2019, 55, 4063-4066.	2.2	52
2459	Water-induced synthesis of hierarchical Zr-based MOFs with enhanced adsorption capacity and catalytic activity. Microporous and Mesoporous Materials, 2019, 281, 92-100.	2.2	26
2460	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. Chemistry of Materials, 2019, 31, 2286-2295.	3.2	16
2461	Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13029-13037.	4.0	91
2462	Reversible redox switching of magnetic order and electrical conductivity in a 2D manganese benzoquinoid framework. Chemical Science, 2019, 10, 4652-4661.	3.7	61
2463	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
2464	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
2465	Supramolecular concepts and approaches in corrosion and biofouling prevention. Corrosion Reviews, 2019, 37, 187-230.	1.0	33
2466	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2019, 58, 7405-7409.	7.2	60
2467	Green Oxidation of Cyclohexanone to Adipic Acid over Phosphotungstic Acid Encapsulated in UiO-66. Catalysis Letters, 2019, 149, 1504-1512.	1.4	20
2468	The effect of co-adsorbed solvent molecules on H ₂ binding to metal alkoxides. Physical Chemistry Chemical Physics, 2019, 21, 9218-9224.	1.3	2

#	Article	IF	CITATIONS
2469	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of <i>o</i> à€Alkynylanilines. Angewandte Chemie - International Edition, 2019, 58, 7687-7691.	7.2	78
2470	A low-temperature synthesis-induced defect formation strategy for stable hierarchical porous metal–organic frameworks. Chinese Chemical Letters, 2019, 30, 2309-2312.	4.8	13
2471	lodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6, 1571-1595.	6.4	359
2472	A Reusable MOFâ€Supported Singleâ€Site Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o â€Alkynylanilines. Angewandte Chemie, 2019, 131, 7769-7773.	1.6	11
2473	Poreâ€Surface Engineering by Decorating Metalâ€Oxo Nodes with Phenylsilane to Give Versatile Superâ€Hydrophobic Metalâ€"Organic Frameworks (MOFs). Angewandte Chemie, 2019, 131, 7483-7487.	1.6	16
2474	A Thorium Metalâ€Organic Framework with Outstanding Thermal and Chemical Stability. Chemistry - A European Journal, 2019, 25, 7114-7118.	1.7	39
2475	Applications and advances in coordination cages: Metal-Organic Frameworks. Vacuum, 2019, 167, 287-300.	1.6	15
2476	A pyrocarbonate intermediate for CO2 activation and selective conversion in bifunctional metal-organic frameworks. Journal of Catalysis, 2019, 373, 37-47.	3.1	12
2477	Effect of free carboxylic acid groups in UiO-66 analogues on the adsorption of dyes from water: Plausible mechanisms for adsorption and gate-opening behavior. Journal of Molecular Liquids, 2019, 283, 160-166.	2.3	38
2481	Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation. Matter, 2019, 1, 156-167.	5.0	67
2482	Elucidation of flexible metal-organic frameworks: Research progresses and recent developments. Coordination Chemistry Reviews, 2019, 389, 161-188.	9.5	163
2483	Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks. Catalysis Today, 2019, 336, 33-39.	2.2	19
2484	Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chemical Engineering Journal, 2019, 370, 792-799.	6.6	60
2485	5â€'Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. International Journal of Biological Macromolecules, 2019, 132, 506-513.	3.6	106
2486	Polythiophene Doping of the Cu-Based Metal–Organic Framework (MOF) HKUST-1 Using Innate MOF-Initiated Oxidative Polymerization. Inorganic Chemistry, 2019, 58, 5561-5575.	1.9	20
2487	Topology Exploration in Highly Connected Rare-Earth Metal–Organic Frameworks via Continuous Hindrance Control. Journal of the American Chemical Society, 2019, 141, 6967-6975.	6.6	125
2488	Coordinative Reduction of Metal Nodes Enhances the Hydrolytic Stability of a Paddlewheel Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7853-7864.	6.6	76
2489	A hierarchical structured steel mesh decorated with metal organic framework/graphene oxide for high-efficient oil/water separation. Journal of Hazardous Materials, 2019, 373, 725-732.	6.5	120

#	Article	IF	CITATIONS
2490	In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to \hat{I}^3 -valerolactone. Journal of Catalysis, 2019, 373, 161-172.	3.1	109
2491	Self-assembled membrane manufactured by metal–organic framework (UiO-66) coated γ-Al ₂ O ₃ for cleaning oily seawater. RSC Advances, 2019, 9, 10702-10714.	1.7	11
2492	Structural diversity of zinc(<scp>ii</scp>) coordination polymers with octafluorobiphenyl-4,4′-dicarboxylate based on mononuclear, paddle wheel and cuboidal units. CrystEngComm, 2019, 21, 2524-2533.	1.3	14
2493	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	1.0	56
2494	Covalently hooked EOSIN-Y in a Zr(IV) framework as visible-light mediated, heterogeneous photocatalyst for efficient C H functionalization of tertiary amines. Journal of Catalysis, 2019, 371, 298-304.	3.1	42
2495	Active Role of Methanol in Post-Synthetic Linker Exchange in the Metal–Organic Framework UiO-66. Chemistry of Materials, 2019, 31, 1359-1369.	3.2	43
2496	Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr ₁₂ metal–organic frameworks. Dalton Transactions, 2019, 48, 7069-7073.	1.6	29
2497	Ferrocenecarboxylic acid: a functional modulator for UiO-66 synthesis and incorporation of Pd nanoparticles. CrystEngComm, 2019, 21, 1772-1779.	1.3	15
2498	Charge transfer dependence on CO ₂ hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems. Chemical Science, 2019, 10, 3289-3294.	3.7	77
2499	Geometry and energetics of CO adsorption on hydroxylated UiO-66. Physical Chemistry Chemical Physics, 2019, 21, 5078-5085.	1.3	17
2500	Complementary Chromophore Decoration in NUâ€1000 via Solventâ€Assisted Ligands Incorporation: Efficient Energy Transfer within the Metalâ€Organic Frameworks. Bulletin of the Korean Chemical Society, 2019, 40, 128-133.	1.0	14
2501	ZnIn2S4/UiO-66-(SH)2 composites as efficient visible-light photocatalyst for RhB degradation. Inorganic Chemistry Communication, 2019, 102, 25-29.	1.8	22
2502	Tuning the Properties of Zr ₆ O ₈ Nodes in the Metal Organic Framework UiO-66 by Selection of Node-Bound Ligands and Linkers. Chemistry of Materials, 2019, 31, 1655-1663.	3.2	97
2503	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326
2504	Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 2019, 12, 139-165.	1.7	89
2505	Conformationâ€Controlled Molecular Sieving Effects for Membraneâ€Based Propylene/Propane Separation. Advanced Materials, 2019, 31, e1807513.	11.1	117
2506	Zirconium based metal-organic framework in-situ assisted hydrothermal pretreatment and enzymatic hydrolysis of Platanus X acerifolia exfoliating bark for bioethanol production. Bioresource Technology, 2019, 280, 213-221.	4.8	18
2507	Copper-mediated metal-organic framework as efficient photocatalyst for the partial oxidation of aromatic alcohols under visible-light irradiation: Synergism of plasmonic effect and schottky junction. Applied Catalysis B: Environmental, 2019, 248, 380-387.	10.8	175

#	Article	IF	CITATIONS
2508	Metal–Organic Frameworks with Targetâ€Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie, 2019, 131, 6672-6676.	1.6	17
2509	Determination of practical application potential of highly stable UiO-66-AO in Eu(III) elimination investigated by macroscopic and spectroscopic techniques. Chemical Engineering Journal, 2019, 365, 249-258.	6.6	43
2510	Biocompatible MOFs for Storage and Separation of O ₂ : A Molecular Simulation Study. Industrial & Study: Engineering Chemistry Research, 2019, 58, 3225-3237.	1.8	26
2512	Geminal Coordinatively Unsaturated Sites on MOFâ€808 for the Selective Uptake of Phenolics from a Real Bioâ€Oil Mixture. ChemSusChem, 2019, 12, 1256-1266.	3.6	29
2513	Pore-Templated Growth of Catalytically Active Gold Nanoparticles within a Metal–Organic Framework. Chemistry of Materials, 2019, 31, 1485-1490.	3.2	47
2514	Glucose Isomerization and Epimerization over Metalâ€Organic Frameworks with Singleâ€Site Active Centers. ChemCatChem, 2019, 11, 1903-1909.	1.8	21
2515	Pore Size Reduction in Zirconium Metal–Organic Frameworks for Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7118-7126.	3.2	39
2516	Investigating the effect of alumina shaping on the sorption properties of promising metal–organic frameworks. RSC Advances, 2019, 9, 7128-7135.	1.7	14
2517	Single-site metal–organic framework catalysts for the oxidative coupling of arenes <i>via</i> C–H/C–H activation. Chemical Science, 2019, 10, 3616-3622.	3.7	77
2518	Efficient and irreversible capture of strontium ions from aqueous solution using metal–organic frameworks with ion trapping groups. Dalton Transactions, 2019, 48, 3284-3290.	1.6	55
2519	Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiOâ $^{\circ}$ 66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to \hat{I}^{3} -Valerolactone. Frontiers in Chemistry, 2019, 7, 42.	1.8	12
2520	Dual-Emitting EY@Zr-MOF Composite as Self-Calibrating Luminescent Sensor for Selective Detection of Inorganic lons and Nitroaromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 6196-6203.	3.2	96
2521	C-reactive Protein and Glucose Electrochemical Sensors Based on Zr(IV) Organic Framework with 2,5-thiophenedicarboxylate Anion. Journal of the Electrochemical Society, 2019, 166, B193-B199.	1.3	12
2522	A Zn(<scp>ii</scp>) metal–organic framework with dinuclear [Zn ₂ (<i>N</i> -oxide) ₂] secondary building units. Dalton Transactions, 2019, 48, 6314-6318.	1.6	2
2523	Engineering new defective phases of UiO family metal–organic frameworks with water. Journal of Materials Chemistry A, 2019, 7, 7459-7469.	5.2	58
2524	Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant. Carbohydrate Polymers, 2019, 213, 184-191.	5.1	60
2525	Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chemical Physics Letters, 2019, 720, 7-14.	1.2	19
2526	Polyethyleneimine-Modified UiO-66-NH ₂ (Zr) Metal–Organic Frameworks: Preparation and Enhanced CO ₂ Selective Adsorption. ACS Omega, 2019, 4, 3188-3197.	1.6	91

#	Article	IF	CITATIONS
2527	Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.	5.8	247
2528	One-pot solvothermal synthesis and characterization of UiO-66/HKUST-1 composites. IOP Conference Series: Materials Science and Engineering, 2019, 578, 012072.	0.3	6
2529	Large-Scale Structural Refinement and Screening of Zirconium Metal–Organic Frameworks for H ₂ S/CH ₄ Separation. ACS Applied Materials & Interfaces, 2019, 11, 46984-46992.	4.0	22
2530	Microwaveâ€Assisted Synthesis as an Efficient Method to Enhance the Catalytic Activity of Zrâ€Based Metal Organic Framework UiOâ€66 in a Heterocyclization Reaction. Asian Journal of Organic Chemistry, 2019, 8, 2276-2281.	1.3	38
2531	Thermal Modulation of MOF and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Lithium— (Sulfur Batteries) (Sulfur Batter	4.0	21
2532	Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance. ACS Applied Materials & Desalination Performance Performanc	4.0	77
2533	Polymer-Based Shaping Strategy for Zeolite Templated Carbons (ZTC) and Their Metal Organic Framework (MOF) Composites for Improved Hydrogen Storage Properties. Frontiers in Chemistry, 2019, 7, 864.	1.8	24
2534	Cerium-based UiO-66 metal–organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chemical Communications, 2019, 55, 13959-13962.	2.2	72
2535	Structural, thermal and topological characterization of coordination networks containing flexible aminocarboxylate ligands with a central biphenylene scaffold. CrystEngComm, 2019, 21, 6365-6373.	1.3	11
2536	A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Transactions, 2019, 48, 17371-17380.	1.6	40
2537	Insights into the solvent-assisted degradation of organophosphorus compounds by a Zr-based metal–organic framework. Dalton Transactions, 2019, 48, 16153-16157.	1.6	8
2538	Monomolecular VB ₂ -doped MOFs for photocatalytic oxidation with enhanced stability, recyclability and selectivity. Journal of Materials Chemistry A, 2019, 7, 26934-26943.	5.2	18
2539	Photo-induced Charge Separation and Photoredox Catalysis in Cerium-Based Metal–Organic Frameworks. ACS Symposium Series, 2019, , 309-326.	0.5	5
2540	Acetylenedicarboxylate-based cerium(<scp>iv</scp>) metal–organic framework with fcu topology: a potential material for air cleaning from toxic halogen vapors. Dalton Transactions, 2019, 48, 15849-15855.	1.6	19
2541	Creation and stabilisation of tuneable open metal sites in thiocyanato-bridged heterometallic coordination polymers to be used as heterogeneous catalysts. Dalton Transactions, 2019, 48, 17063-17069.	1.6	12
2542	Efficient removal of low-concentration organoarsenic by Zr-based metal–organic frameworks: cooperation of defects and hydrogen bonds. Environmental Science: Nano, 2019, 6, 3590-3600.	2.2	29
2543	Excess adsorption of acetonitrile and water on MIL-100(Fe) and its potential application in mixed-mode chromatography. New Journal of Chemistry, 2019, 43, 16566-16571.	1.4	2
2544	Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system. Journal of Materials Chemistry A, 2019, 7, 25165-25171.	5. 2	76

#	Article	IF	CITATIONS
2545	Directional Engraving within Single Crystalline Metalâ€"Organic Framework Particles via Oxidative Linker Cleaving. Journal of the American Chemical Society, 2019, 141, 20365-20370.	6.6	72
2546	A water-stable cyano-functionalized metal-organic framework as an efficient adsorbent of uranyl ion. Materials Research Express, 2019, 6, 125505.	0.8	5
2547	Dye-Modified Metal–Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution in U	4.0	45
2548	Effect of Functional Groups of Metal–Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47649-47657.	4.0	33
2549	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
2550	Fluorescence Method for the Detection of Protein Kinase Activity by Using a Zirconium-Based Metal–Organic Framework as an Affinity Probe. ACS Applied Bio Materials, 2019, 2, 6021-6028.	2.3	12
2551	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	6.6	73
2552	Introduction of a Novel Brønsted Acidic Ionic Liquid Incorporated in UiOâ€66 Nanocages for the Efficient Synthesis of Pyrimido[4,5â€d]Pyrimidines. ChemistrySelect, 2019, 4, 12920-12927.	0.7	13
2553	Determining Diffusion Coefficients of Chemical Warfare Agents in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7823-7830.	2.1	32
2554	Highly Sensitive and Selective Detection of 2,4-Dinitrophenol by a Fluorescent Amine-Functionalized Carbon Quantum Dot@Metal-Organic Framework. Russian Journal of Physical Chemistry A, 2019, 93, 2452-2457.	0.1	7
2555	Structure of Metal Organic Frameworks and the Periodicity of Their Properties. Russian Journal of Physical Chemistry A, 2019, 93, 2331-2339.	0.1	1
2556	Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers, 2019, 11, 2090.	2.0	46
2557	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	6.6	106
2558	Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: a critical review. RSC Advances, 2019, 9, 34359-34376.	1.7	101
2559	Temperature modulation of defects in NH ₂ -UiO-66(Zr) for photocatalytic CO ₂ reduction. RSC Advances, 2019, 9, 37733-37738.	1.7	47
2560	Highly efficient and rapid removal of arsenic(<scp>iii</scp>) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal–organic framework (UiO-66) Tj ETQq1	1 0.7 8431	'4 3g BT /Ove
2561	Improving MOF stability: approaches and applications. Chemical Science, 2019, 10, 10209-10230.	3.7	855
2562	Mechanical properties of metal–organic frameworks. Chemical Science, 2019, 10, 10666-10679.	3.7	126

#	Article	IF	CITATIONS
2563	A zirconium-based metal-organic framework with encapsulated anionic drug for uncommonly controlled oral drug delivery. Microporous and Mesoporous Materials, 2019, 275, 229-234.	2.2	47
2564	Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 416-423.	2.7	54
2565	Facile synthesis of magnetic macroporous polymer/MOF composites as separable catalysts. Journal of Materials Science, 2019, 54, 370-382.	1.7	28
2566	Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chemical Engineering Journal, 2019, 356, 329-340.	6.6	109
2567	Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 2019, 356, 227-235.	6.6	185
2568	Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Applied Catalysis B: Environmental, 2019, 245, 428-438.	10.8	187
2569	Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539, 223-234.	5.0	213
2570	Tiâ€Based Catalysts and Photocatalysts: Characterization and Modeling. Chemical Record, 2019, 19, 1319-1336.	2.9	4
2571	Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoric acid. Chemical Engineering Journal, 2019, 362, 30-40.	6.6	28
2572	Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium. Journal of Luminescence, 2019, 208, 67-74.	1.5	75
2573	Light-Harvesting in Porous Crystalline Compositions: Where We Stand toward Robust Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 1841-1854.	3.2	43
2574	Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Separation and Purification Technology, 2019, 213, 63-69.	3.9	57
2575	UIOâ€66â€NH ₂ â€Derived Mesoporous Carbon Catalyst Coâ€Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. Small, 2019, 15, e1803520.	5.2	73
2576	Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catalysis Today, 2019, 333, 47-53.	2.2	25
2577	Tailoring the Linear and Second-Order Nonlinear Optical Responses of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization: A First Principles Study. Journal of Physical Chemistry C, 2019, 123, 653-664.	1.5	9
2578	High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. Journal of Membrane Science, 2019, 573, 455-464.	4.1	74
2579	Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air. Journal of Colloid and Interface Science, 2019, 539, 152-160.	5.0	151
2580	Linker Competition within a Metal–Organic Framework for Topological Insights. Inorganic Chemistry, 2019, 58, 1513-1517.	1.9	29

#	Article	IF	CITATIONS
2581	Metal–Organic Frameworks as Electrolyte Additives To Enable Ultrastable Plating/Stripping of Li Anode with Dendrite Inhibition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3869-3879.	4.0	84
2582	Ionicâ€Liquidâ€Functionalized UiOâ€66 Framework: An Experimental and Theoretical Study on the Cycloaddition of CO ₂ and Epoxides. ChemSusChem, 2019, 12, 1033-1042.	3.6	61
2583	Covalent Construction of Sustainable Hybrid UiO-66-NH ₂ @Tb-CP Material for Selective Removal of Dyes and Detection of Metal Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3203-3212.	3.2	93
2584	Removal of Acid Orange 7 from Aqueous Solution by Metal-Organic Frameworks. Crystals, 2019, 9, 17.	1.0	35
2585	Exploring the sandwich antibacterial membranes based on UiO-66/graphene oxide for forward osmosis performance. Carbon, 2019, 144, 321-332.	5.4	73
2586	Energy Efficient Formaldehyde Synthesis by Direct Hydrogenation of Carbon Monoxide in Functionalized Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 2508-2515.	3.2	18
2587	Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO ₂ to methane. Plasma Science and Technology, 2019, 21, 044004.	0.7	20
2588	Lithiated Defect Sites in Zr Metal–Organic Framework for Enhanced Sulfur Utilization in Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 2159-2167.	4.0	61
2589	Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Applied Catalysis A: General, 2019, 570, 31-41.	2.2	36
2590	Solventâ€Free Encapsulation at High Pressure with Carboxylateâ€Based MOFs. European Journal of Inorganic Chemistry, 2019, 2019, 29-36.	1.0	10
2591	The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiOâ€66 MOF Formation. Chemistry - A European Journal, 2019, 25, 2051-2058.	1.7	68
2592	Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS Catalysis, 2019, 9, 130-146.	5.5	229
2593	Metal doping in cerium metal-organic frameworks for visible-response water splitting photocatalysts. Journal of Chemical Physics, 2019, 150, 041701.	1.2	59
2594	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
2595	Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 2019, 380, 330-352.	9.5	447
2596	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	5.0	30
2597	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
2598	Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chemical Engineering Journal, 2019, 360, 89-96.	6.6	19

#	Article	IF	CITATIONS
2599	Water-Based Synthesis and Enhanced CO ₂ Capture Performance of Perfluorinated Cerium-Based Metal–Organic Frameworks with UiO-66 and MIL-140 Topology. ACS Sustainable Chemistry and Engineering, 2019, 7, 394-402.	3.2	75
2600	Nonthermal Plasma Synthesis of Ammonia over Ni-MOF-74. ACS Sustainable Chemistry and Engineering, 2019, 7, 377-383.	3.2	73
2601	Engineering UiOâ€66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019, 11, 899-923.	1.8	182
2602	A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. Journal of Solid State Chemistry, 2019, 270, 317-323.	1.4	41
2603	Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2019, 365, 597-605.	6.5	215
2604	Metal–Organic Frameworkâ€Based Stimuliâ€Responsive Systems for Drug Delivery. Advanced Science, 2019, 6, 1801526.	5.6	491
2605	Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chemical Engineering Journal, 2019, 359, 354-362.	6.6	209
2606	Hollow metal organic frameworks composite prepared via an "escape from the cage―strategy. Materials Letters, 2019, 240, 44-46.	1.3	4
2607	Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catalysis, 2019, 9, 1779-1798.	5.5	622
2608	Design and Synthesis of Ionic Liquid Supported Hierarchically Porous Zr Metal–Organic Framework as a Novel Brnsted–Lewis Acidic Catalyst in Biodiesel Synthesis. Industrial & Engineering Chemistry Research, 2019, 58, 1123-1132.	1.8	60
2609	UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: The application of experimental and molecular simulation method. Microchemical Journal, 2019, 146, 126-133.	2.3	37
2610	Interrogation of the Effect of Polymorphism of a Metalâ€Organic Framework Host on the Structure of Embedded Pd Guest Nanoparticles. ChemPhysChem, 2019, 20, 745-751.	1.0	6
2611	A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. Inorganic Chemistry, 2019, 58, 1462-1468.	1.9	31
2612	Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal–organic frameworks. Cellulose, 2019, 26, 123-137.	2.4	54
2613	Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries. Energy Storage Materials, 2019, 18, 59-67.	9.5	237
2614	Nanostructured Metal–Organic Framework (MOF)â€Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solidâ€5tate Batteries. Small, 2019, 15, e1804413.	5.2	93
2615	Selective hydrogenation of phenol by the porous Carbon/ZrO2 supported Ni Co nanoparticles in subcritical water medium. Journal of Cleaner Production, 2019, 215, 375-381.	4.6	28
2616	Synthesis and characterization of Al@MOF materials. Materials Chemistry and Physics, 2019, 226, 220-225.	2.0	13

#	Article	IF	CITATIONS
2617	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	1.9	42
2618	Multivariate Stratified Metal–Organic Frameworks: Diversification Using Domain Building Blocks. Journal of the American Chemical Society, 2019, 141, 2161-2168.	6.6	91
2619	Water as a structure-driving agent between the UiO-66 and MIL-140A metal–organic frameworks. Chemical Communications, 2019, 55, 901-904.	2.2	38
2620	Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 483-486.	2.7	17
2621	Rational Design and Synthesis of Hexanuclear Rare Earth the - a Metal–Organic Frameworks Platform Based on RE ₆ O ₄ (OH) ₄ (COO) ₈ Clusters. Crystal Growth and Design, 2019, 19, 1509-1513.	1.4	18
2622	Design of the Hybrid Metal–Organic Frameworks as Potential Supramolecular Piezo-/Ferroelectrics. Journal of Physical Chemistry C, 2019, 123, 3122-3129.	1.5	37
2623	Post-synthesizing modification of nanostructured Zr-MOFs to increase the adsorption capacity of heavy metals from an aqueous solution. AIP Conference Proceedings, $2019, , .$	0.3	2
2624	Graphene Aerogel–Metal–Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Analytical Chemistry, 2019, 91, 888-895.	3.2	333
2625	Adjustable pervaporation performance of Zrâ€MOF/poly(vinyl alcohol) mixed matrix membranes. Journal of Chemical Technology and Biotechnology, 2019, 94, 973-981.	1.6	36
2626	Facile synthesis of platinum-embedded zirconia/porous carbons tri-component nanohybrids from metal-organic framework and their application for ultra-sensitively detection of methyl parathion. Journal of Colloid and Interface Science, 2019, 536, 424-430.	5.0	47
2627	Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 2019, 380, 230-259.	9.5	470
2628	Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Materials Science and Engineering C, 2019, 95, 78-85.	3.8	63
2629	Encapsulation and controlled release of fragrances from functionalized porous metal–organic frameworks. AICHE Journal, 2019, 65, 491-499.	1.8	39
2630	Two Stable Zn-Cluster-Based Metal–Organic Frameworks with Breathing Behavior: Synthesis, Structure, and Adsorption Properties. Inorganic Chemistry, 2019, 58, 391-396.	1.9	26
2631	An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases. Chemical Communications, 2019, 55, 349-352.	2.2	83
2632	Exploring the BrÃ,nsted acidity of UiO-66 (Zr, Ce, Hf) metal–organic frameworks for efficient solketal synthesis from glycerol acetalization. Dalton Transactions, 2019, 48, 843-847.	1.6	97
2633	Thin-Film Composite Membrane with Interlayer Decorated Metal–Organic Framework UiO-66 toward Enhanced Forward Osmosis Performance. Industrial & Engineering Chemistry Research, 2019, 58, 195-206.	1.8	73
2634	Pristine Transitionâ€Metalâ€Based Metalâ€Organic Frameworks for Electrocatalysis. ChemElectroChem, 2019, 6, 1273-1299.	1.7	78

#	Article	IF	CITATIONS
2635	Large Pore Isoreticular Strontium-Organic Frameworks: Syntheses, Crystal Structures, and Thermal and Luminescent Properties. Crystal Growth and Design, 2019, 19, 268-274.	1.4	10
2636	lonic Conduction in Metal–Organic Frameworks with Incorporated Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 70-81.	3.2	104
2637	Disclosing the Properties of a New Ce(III)-Based MOF: Ce ₂ (NDC) ₃ (DMF) ₂ . Crystal Growth and Design, 2019, 19, 787-796.	1.4	25
2638	Highly Thermally and Chemically Stable Nickel(II) Coordination Polymers: Tentative Studies on Their Sorption, Catalysis, and Magnetism. Crystal Growth and Design, 2019, 19, 797-807.	1.4	17
2639	Unique T-Shaped Ligand as a New Platform for Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 430-436.	1.4	10
2640	Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework. Journal of Hazardous Materials, 2019, 366, 140-150.	6.5	257
2641	Highly Porous Nanocrystalline UiO-66 Thin Films via Coordination Modulation Controlled Step-by-Step Liquid-Phase Growth. Crystal Growth and Design, 2019, 19, 1738-1747.	1.4	18
2642	Fabrication of agricultural waste supported UiO-66 nanoparticles with high utilization in phosphate removal from water. Chemical Engineering Journal, 2019, 360, 621-630.	6.6	132
2643	Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation. Materials Science in Semiconductor Processing, 2019, 91, 212-221.	1.9	62
2644	TiO ₂ @UiO-68-CIL: A Metal–Organic-Framework-Based Bifunctional Composite Catalyst for a One-Pot Sequential Asymmetric Morita–Baylis–Hillman Reaction. Inorganic Chemistry, 2019, 58, 4722-4730.	1.9	27
2645	Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535, 444-457.	5.0	120
2646	Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chemical Engineering Journal, 2019, 358, 467-479.	6.6	29
2647	Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews, 2019, 378, 500-512.	9.5	428
2648	Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 378, 445-465.	9.5	131
2649	Mass transport through metal organic framework membranes. Science China Materials, 2019, 62, 25-42.	3.5	40
2650	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	11.1	408
2651	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
2652	Zirconium Based Nano Metal–Organic Framework UiO-67-NH2 with High Drug Loading for Controlled Release of Camptothecin. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 573-579.	1.9	11

#	Article	IF	CITATIONS
2653	Highly recyclable cysteamine-modified acid-resistant MOFs for enhancing Hg (II) removal from water. Environmental Technology (United Kingdom), 2020, 41, 3094-3104.	1.2	23
2654	Formation and growth of Pd nanoparticles in UiO-67 MOF by in situ EXAFS. Radiation Physics and Chemistry, 2020, 175, 108144.	1.4	14
2655	Electrochemiluminescence immunosensor of "signal-off―for β-amyloid detection based on dual metal-organic frameworks. Talanta, 2020, 208, 120376.	2.9	27
2656	Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Applied Catalysis B: Environmental, 2020, 260, 118195.	10.8	135
2657	Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater. Microporous and Mesoporous Materials, 2020, 291, 109703.	2.2	46
2658	Corrosion behavior of ion-irradiated SiC in FLiNaK molten salt. Corrosion Science, 2020, 163, 108229.	3.0	13
2659	Metalâ€Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications, 2020, 41, e1900333.	2.0	109
2660	Porous Materials for Catalysis. , 2020, , 115-137.		11
2661	Integration of Fe3O4@UiO-66-NH2@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix. Journal of Hazardous Materials, 2020, 384, 121348.	6.5	59
2662	Shaping of metal-organic framework UiO-66 using alginates: Effect of operation variables. Separation and Purification Technology, 2020, 235, 116182.	3.9	32
2663	A novel UiO-66 encapsulated 12-silicotungstic acid catalyst for dimethyl ether synthesis from syngas. Catalysis Today, 2020, 355, 3-9.	2.2	15
2664	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
2665	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
2666	Metal organic framework UiO-66 and activated carbon composite sorbent for the concurrent adsorption of cationic and anionic metals. Chemosphere, 2020, 238, 124656.	4.2	57
2667	Green Photocatalysts for Energy and Environmental Process. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	8
2668	Dual sensing of copper ion and chromium (VI) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112238.	2.0	20
2669	Hydrogenation of levulinic acid to \hat{I}^3 -valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability. Microporous and Mesoporous Materials, 2020, 294, 109858.	2.2	42
2670	Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. Journal of Materials Science, 2020, 55, 2604-2617.	1.7	13

#	Article	IF	CITATIONS
2671	Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH)2/Znln2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr(VI) reduction. Chemical Engineering Journal, 2020, 384, 123352.	6.6	137
2672	Frequency-specific oscillations synchronization in primary angle-closure glaucoma. Acta Radiologica, 2020, 61, 537-548.	0.5	0
2673	Adsorptive purification of organic contaminants of emerging concern from water with metalâ€"organic frameworks. , 2020, , 47-92.		2
2674	Surface coating of MOF layers on the nanocrystals of other MOFs using nanoparticle mediated nucleation for the efficient removal of formaldehyde. Applied Surface Science, 2020, 505, 144612.	3.1	15
2675	Proton conductive carboxylate-based metal–organic frameworks. Coordination Chemistry Reviews, 2020, 403, 213100.	9.5	222
2676	Hydrophobic strong solid base derived from graphene oxide hybrid zirconium MOFs and its enhanced stability on furfural-MIBK aldol condensation to synthesize branched biofuel precursors. Fuel Processing Technology, 2020, 198, 106250.	3.7	11
2677	Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO ₂ hydrogenation. AICHE Journal, 2020, 66, e16853.	1.8	33
2678	Highly Sensitive and Selective Detection of Pb(II) by NH ₂ â°'SiO ₂ /Ru(bpy) ₃ ²⁺ â°'UiO66 based Solidâ€state ECL Sensor. Electroanalysis, 2020, 32, 462-469.	1.5	15
2679	Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coordination Chemistry Reviews, 2020, 403, 213097.	9.5	233
2680	UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. Journal of Membrane Science, 2020, 595, 117571.	4.1	21
2681	Recent Advances of Supercritical CO2 in Green Synthesis and Activation of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 581-595.	1.9	11
2682	Imparting Multifunctionality by Utilizing Biporosity in a Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 2235-2239.	1.6	5
2683	Imparting Multifunctionality by Utilizing Biporosity in a Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 2215-2219.	7.2	25
2684	Physical and chemical reaction sensing in a mixed aqueous solution via metalâ€organic framework thinâ€film coated optical fiber. Microwave and Optical Technology Letters, 2020, 62, 72-77.	0.9	3
2685	Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chemical Engineering Journal, 2020, 382, 123009.	6.6	55
2686	Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce(III)-doped Zr-based metal–organic framework. Microporous and Mesoporous Materials, 2020, 292, 109764.	2.2	56
2687	Fabrication of Graphene Oxide Supported Acid–Base Bifunctional Metal–Organic Frameworks as Efficient Catalyst for Glucose to 5â€Hydroxymethylfurfural Conversion. Energy Technology, 2020, 8, 1901111.	1.8	20
2688	Hybridization of carboxymethyl chitosan with MOFs to construct recyclable, long-acting and intelligent antibacterial agent carrier. Carbohydrate Polymers, 2020, 233, 115848.	5.1	53

#	Article	IF	Citations
2689	Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 188-215.	2.3	31
2690	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	3.0	89
2691	MOFs-Based Catalysts Supported Chemical Conversion of CO2. Topics in Current Chemistry, 2020, 378, 11.	3.0	38
2692	Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Applied Nano Materials, 2020, 3, 1448-1456.	2.4	21
2693	The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks. Adsorption, 2020, 26, 663-685.	1.4	36
2694	Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications, 2020, 56, 26-45.	2.2	47
2695	Efficient polymerase chain reaction assisted by metal–organic frameworks. Chemical Science, 2020, 11, 797-802.	3.7	15
2696	Water-stable 2-D Zr MOFs with exceptional UO ₂ ²⁺ sorption capability. Journal of Materials Chemistry A, 2020, 8, 1849-1857.	5.2	29
2697	A Stable Broad-Range Fluorescent pH Sensor Based on Eu ³⁺ Post-Synthetic Modification of a Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2020, 59, 1764-1771.	1.8	19
2698	Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water. New Journal of Chemistry, 2020, 44, 1485-1492.	1.4	16
2699	Preparation of a Series of Pd@UIO-66 by a Double-Solvent Method and Its Catalytic Performance for Toluene Oxidation. Materials, 2020, 13, 88.	1.3	7
2700	Facile and reversible digestion and regeneration of zirconium-based metal-organic frameworks. Communications Chemistry, 2020, 3, .	2.0	35
2701	Improved CO2 separation performance and interfacial affinity of mixed matrix membrane by incorporating UiO-66-PEI@[bmim][Tf2N] particles. Separation and Purification Technology, 2020, 239, 116519.	3.9	46
2702	Metal–organic framework tethering pH- and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm, 2020, 22, 1106-1111.	1.3	19
2703	A spectroscopic and computational study of a tough MOF with a fragile linker: Ce-UiO-66-ADC. Dalton Transactions, 2020, 49, 12-16.	1.6	16
2704	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	3.0	14
2705	Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorganic Chemistry Frontiers, 2020, 7, 12-27.	3.0	60
2706	Methane-trapping metal–organic frameworks with an aliphatic ligand for efficient CH ₄ /N ₂ separation. Sustainable Energy and Fuels, 2020, 4, 138-142.	2.5	50

#	Article	IF	CITATIONS
2707	A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. Journal of Materials Chemistry A, 2020, 8, 1904-1910.	5.2	89
2708	Tetrazine-Based Metal-Organic Frameworks as Scaffolds for Post-Synthetic Modification by the Click Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 461-466.	1.0	17
2709	Artificial water-soluble systems inspired by [FeFe]-hydrogenases for electro- and photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 4305-4327.	3.8	32
2710	Zirconium metal-organic framework assisted miniaturized solid phase extraction of phenylurea herbicides in natural products by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020. 180. 113071.	1.4	23
2711	Covalent cross-linking for interface engineering of high flux UiO-66-TMS/PDMS pervaporation membranes. Journal of Membrane Science, 2020, 598, 117791.	4.1	26
2712	Concurrent Manipulation of Out-of-Plane and Regional In-Plane Orientations of NH ₂ -UiO-66 Membranes with Significantly Reduced Anisotropic Grain Boundary and Superior H ₂ /CO ₂ Separation Performance. ACS Applied Materials & Amp; Interfaces. 2020. 12. 4494-4500.	4.0	50
2713	Does repeat synthesis in materials chemistry obey a power law?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 877-882.	3.3	38
2714	Improving the performance of sulfonated polymer membrane by using sulfonic acid functionalized heteroâ€metallic metalâ€organic framework for DMFC applications. International Journal of Energy Research, 2020, 44, 1673-1684.	2.2	23
2715	Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, kinetics and thermodynamics studies. Journal of Environmental Chemical Engineering, 2020, 8, 103642.	3.3	56
2716	Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230, 119619.	5.7	378
2717	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	5.8	528
2718	Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chemical Engineering Journal, 2020, 385, 123400.	6.6	143
2719	Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 49-54.	1.4	42
2720	UiO-66 as an efficient catalyst for N-formylation of amines with CO2 and dimethylamine borane as a reducing agent. Inorganica Chimica Acta, 2020, 501, 119274.	1.2	12
2721	A moisture-stable organosulfonate-based metal–organic framework with intrinsic self-trapped white-light emission. Chemical Communications, 2020, 56, 1325-1328.	2.2	12
2722	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	3.0	429
2723	Selfâ€Recovery of Photochemical H 2 Evolution with a Molecular Diiron Catalyst Incorporated in a UiOâ€66 Metal–Organic Framework. ChemPhotoChem, 2020, 4, 287-290.	1.5	7
2724	Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation. Journal of Catalysis, 2020, 382, 165-172.	3.1	23

#	Article	IF	Citations
2725	Methyl functionalized Zr-Fum MOF with enhanced Xenon adsorption and separation. Separation and Purification Technology, 2020, 239, 116514.	3.9	34
2727	Ligand-Functionalization-Controlled Activity of Metal–Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. Nano Letters, 2020, 20, 426-432.	4.5	30
2728	Creation of Redoxâ€Active PdS <i></i> Nanoparticles Inside the Defect Pores of MOF UiOâ€66 with Unique Semihydrogenation Catalytic Properties. Advanced Functional Materials, 2020, 30, 1908519.	7.8	24
2729	RhBâ€Embedded Zirconium–Naphthaleneâ€Based Metal–Organic Framework Composite as a Luminescent Selfâ€Calibrating Platform for the Selective Detection of Inorganic Ions. Chemistry - A European Journal, 2020, 26, 1661-1667.	1.7	46
2730	Thinâ€film nanocomposite forward osmosis membranes modified with Zrâ€based metal–organic framework to improve desalination performance. Applied Organometallic Chemistry, 2020, 34, e5339.	1.7	16
2731	Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 216-232.	2.3	67
2732	Fabrication of (4, 10) and (4, 12)-Connected Multifunctional Zirconium Metal–Organic Frameworks for the Targeted Adsorption of a Guest Molecule. Inorganic Chemistry, 2020, 59, 695-704.	1.9	15
2733	Computer-assisted design for stable and porous metal-organic framework (MOF) as a carrier for curcumin delivery. LWT - Food Science and Technology, 2020, 120, 108949.	2.5	16
2734	Synthesis of core-shell UiO-66-poly(m-phenylenediamine) composites for removal of hexavalent chromium. Environmental Science and Pollution Research, 2020, 27, 4115-4126.	2.7	16
2735	TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chemical Engineering Journal, 2020, 385, 123814.	6.6	107
2736	Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties. Chemistry of Materials, 2020, 32, 97-104.	3.2	37
2737	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 3650-3657.	7.2	94
2738	Hierarchical Bayesian estimation for adsorption isotherm parameter determination. Chemical Engineering Science, 2020, 214, 115435.	1.9	20
2739	Selective and sensitive recognition of Fe3+ ion by a Lewis basic functionalized chemically stable metal-organic framework (MOF). Inorganica Chimica Acta, 2020, 502, 119359.	1.2	22
2740	A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 1347-1362.	1.4	306
2741	Zirconium Oxide Sulfate-Carbon (ZrOSO ₄ @C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS Applied Materials & Dimethyl Ether	4.0	63
2742	Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coordination Chemistry Reviews, 2020, 405, 213128.	9.5	71
2743	Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 3679-3686.	1.6	15

#	Article	IF	CITATIONS
2744	UiO-66 derived zirconia/porous carbon nanocomposites for efficient removal of carbamazepine and adsorption mechanism. Applied Surface Science, 2020, 507, 145054.	3.1	48
2745	Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Threeâ€Dimensional Structure in Mercury Imidazolate. Chemistry - A European Journal, 2020, 26, 1811-1818.	1.7	25
2746	Defectous UiO-66 MOF Nanocomposites as Reactive Media of Superior Protection against Toxic Vapors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14678-14689.	4.0	44
2747	Polyamide Membranes with Net-Like Nanostructures Induced by Different Charged MOFs for Elevated Nanofiltration. ACS Applied Polymer Materials, 2020, 2, 585-593.	2.0	38
2748	Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. Journal of Hazardous Materials, 2020, 388, 121752.	6.5	115
2749	Boosting Ethylene/Ethane Separation within Copper(I)â€Chelated Metal–Organic Frameworks through Tailorâ€Made Aperture and Specific Ï€â€Complexation. Advanced Science, 2020, 7, 1901918.	5.6	86
2750	CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66. Catalysts, 2020, 10, 39.	1.6	32
2751	A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH2) for solid-phase extraction of RNA. Mikrochimica Acta, 2020, 187, 58.	2.5	25
2752	Investigation of UiO-66 as Flame Retardant and Its Application in Improving Fire Safety of Polystyrene. Macromolecular Research, 2020, 28, 42-50.	1.0	22
2753	Analysis of electrocatalytic metal-organic frameworks. Coordination Chemistry Reviews, 2020, 406, 213137.	9.5	77
2754	Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem, 2020, 2, 100025.	10.1	326
2755	Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability, 2020, 7, 1.	1.3	31
2756	Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes, 2020, 8, 1172.	1.3	6
2757	A comparative study of the physical and chemical properties of pelletized HKUST-1, ZIF-8, ZIF-67 and UiO-66 powders. Heliyon, 2020, 6, e04883.	1.4	18
2758	Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. CheM, 2020, 6, 2902-2923.	5.8	91
2759	Zirconium Metal–Organic Frameworks Containing a Biselenophene Linker: Synthesis, Characterization, and Luminescent Properties. Inorganic Chemistry, 2020, 59, 15832-15841.	1.9	8
2760	Unraveling the Reaction Mechanism and Active Sites of Metal–Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies. ACS Sustainable Chemistry and Engineering, 2020, 8, 16143-16155.	3.2	19
2761	Twinning in Zr-Based Metal-Organic Framework Crystals. Chemistry, 2020, 2, 777-786.	0.9	4

#	Article	IF	CITATIONS
2762	Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. Catalysts, 2020, 10, 1111.	1.6	35
2763	Porous framework materials for singlet oxygen generation. Coordination Chemistry Reviews, 2020, 425, 213541.	9.5	50
2764	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	5.8	96
2765	Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity. Journal of Membrane Science, 2020, 615, 118608.	4.1	57
2766	Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114766.	1.7	108
2767	Metal–organic frameworks for chemical conversion of carbon dioxide. MRS Energy & Sustainability, 2020, 7, 1.	1.3	13
2768	Metal-organic frameworks for virus detection. Biosensors and Bioelectronics, 2020, 169, 112604.	5.3	71
2769	Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 49971-49981.	4.0	10
2770	Theoretical Investigations on the Effect of the Functional Group of Pd@UiO-66 for Formic Acid Dehydrogenation. Journal of Physical Chemistry C, 2020, 124, 23738-23744.	1.5	6
2771	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	1.6	76
2772	Cr ₂ O ₇ ^{2â°'} inside Zr/Hf-based metal–organic frameworks: highly sensitive and selective detection and crystallographic evidence. Journal of Materials Chemistry C, 2020, 8, 16974-16983.	2.7	26
2773	A polythiophene/UiO-66 composite coating for extraction of volatile organic compounds migrated from ion-exchange resins prior to their determination by gas chromatography. Journal of Chromatography A, 2020, 1633, 461627.	1.8	12
2774	Atomic Layer Deposition-Derived Nanomaterials: Oxides, Transition Metal Dichalcogenides, and Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 9056-9077.	3.2	25
2775	Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review. Applied Materials Today, 2020, 21, 100796.	2.3	34
2776	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	4.4	14
2777	Testing Metal–Organic Framework Catalysts in a Microreactor for Ethyl Paraoxon Hydrolysis. Catalysts, 2020, 10, 1159.	1.6	5
2778	Synthesis Methods and Crystallization of MOFs., 0,,.		12
2779	Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168.	3.2	14

#	Article	IF	CITATIONS
2780	Destruction of Metal–Organic Frameworks: Positive and Negative Aspects of Stability and Lability. Chemical Reviews, 2020, 120, 13087-13133.	23.0	294
2781	Metal-organic frameworks as advanced adsorbents for pharmaceutical and personal care products. Coordination Chemistry Reviews, 2020, 425, 213526.	9.5	84
2782	Integrated nano-architectured photocatalysts for photochemical CO ₂ reduction. Nanoscale, 2020, 12, 23301-23332.	2.8	59
2783	H ₂ /CO ₂ separations in multicomponent metal-adeninate MOFs with multiple chemically distinct pore environments. Chemical Science, 2020, 11, 12807-12815.	3.7	18
2784	Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity. Desalination, 2020, 493, 114661.	4.0	45
2785	Fabrication of heterostructured UIO-66-NH2 /CNTs with enhanced activity and selectivity over photocatalytic CO2 reduction. International Journal of Hydrogen Energy, 2020, 45, 30634-30646.	3.8	30
2786	Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2020, 8, 104363.	3.3	9
2787	Applications of multifunctional zirconium-based metal-organic frameworks in analytical chemistry: Overview and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 131, 116015.	5.8	35
2788	Facilitating Lithium-Ion Conduction in Gel Polymer Electrolyte by Metal-Organic Frameworks. , 2020, 2, 1435-1441.		48
2789	Inclusion and release of ant alarm pheromones from metal–organic frameworks. Dalton Transactions, 2020, 49, 10334-10338.	1.6	10
2790	Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chemical Science, 2020, 11, 8350-8372.	3.7	45
2791	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13491-13499.	6.6	97
2792	Highly Active Gas Phase Organometallic Catalysis Supported Within Metal–Organic Framework Pores. Journal of the American Chemical Society, 2020, 142, 13533-13543.	6.6	43
2793	Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews, 2020, 49, 7949-7977.	18.7	244
2794	A simple electrochemical method for Cd(II) determination in real samples based on carbon nanotubes and metal-organic frameworks. International Journal of Environmental Analytical Chemistry, 2022, 102, 4757-4767.	1.8	9
2795	Microorganism@UiO-66-NH ₂ Composites for the Detection of Multiple Colorectal Cancer-Related microRNAs with Flow Cytometry. Analytical Chemistry, 2020, 92, 12338-12346.	3.2	21
2796	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
2797	Bonding of crown ethers to α-zirconium phosphate—Novel layered adsorbent for radioactive strontium separation. Separation and Purification Technology, 2020, 240, 116658.	3.9	28

#	Article	IF	CITATIONS
2798	NH2-UiO-66 with heterogeneous pores assists zinc indium sulfide in accelerating the photocatalytic H2 evolution under visible-light irradiation. Solar Energy, 2020, 207, 599-608.	2.9	19
2799	Ensuring high selectivity for preconcentration and detection of ultra-trace cadmium using a phage-functionalized metal–organic framework. Analyst, The, 2020, 145, 5280-5288.	1.7	10
2800	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie, 2020, 132, 18234-18242.	1.6	8
2801	Effective toluene adsorption over defective UiO-66-NH2: An experimental and computational exploration. Journal of Molecular Liquids, 2020, 316, 113812.	2.3	152
2802	Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 2020, 278, 119345.	10.8	104
2803	Nucleophilic versus Electrophilic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 10634-10649.	1.9	30
2804	Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review. Crystals, 2020, 10, 1006.	1.0	14
2805	Reduction of Nitroarenes via Catalytic Transfer Hydrogenation Using Formic Acid as Hydrogen Source: A Comprehensive Review. ChemistrySelect, 2020, 5, 13054-13075.	0.7	33
2806	Synthesis of Nitrogenâ€Doped CNTâ€Based MOF Hybrids for Adsorptive Desulfurization of the Gas Stream. ChemistrySelect, 2020, 5, 13530-13536.	0.7	8
2807	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal–Organic Frameworks: Zr-sod-ZMOFs as a Case Study. Journal of the American Chemical Society, 2020, 142, 20547-20553.	6.6	31
2808	Role of Spin–Orbit Coupling in Long Range Energy Transfer in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20434-20443.	6.6	32
2809	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20
2810	Metal-Organic Frameworks History and Structural Features. Series on Chemical Engineering, 2020, , 1-29.	0.2	5
2811	Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring InÂVitro Drug Delivery from MOFs in Real Time. Cell Reports Physical Science, 2020, 1, 100254.	2.8	19
2812	Selective Positioning of Nanosized Metal–Organic Framework Particles at Patterned Substrate Surfaces. Chemistry of Materials, 2020, 32, 9954-9963.	3.2	10
2813	Functional metal-organic frameworks for metal removal from aqueous solutions. Separation and Purification Reviews, 2022, 51, 78-99.	2.8	21
2814	Zrâ∈Based Metalâ€Organic Framework Films Grown on Bioâ€Template for Photoelectrocatalysis. ChemistrySelect, 2020, 5, 13855-13861.	0.7	6
2815	Tailoring the Surface Properties of Co-based Metal–Organic Frameworks for Highly Efficient and Selective Enrichment of Immunoglobulin G. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55453-55459.	4.0	21

#	Article	IF	CITATIONS
2816	Modulation of crystal growth and structure within cerium-based metal–organic frameworks. CrystEngComm, 2020, 22, 8182-8188.	1.3	17
2817	Orderly MOF-Assembled Hybrid Monolithic Stationary Phases for Nano-Flow HPLC. Analytical Chemistry, 2020, 92, 15757-15765.	3.2	18
2818	A Stable 2D Zr(IV)-Based Metal–Organic Framework (USTS-7) for Selective Sensing of Cr ₂ O ₇ ^{2–} in Aqueous Solution. Inorganic Chemistry, 2020, 59, 17884-17888.	1.9	15
2819	MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bioâ€Based Furfural: A Miniâ€Review. ChemistrySelect, 2020, 5, 13681-13689.	0.7	10
2820	Self-assembly of zirconocene-based metal–organic capsules: the structure, luminescence sensing of Fe ³⁺ and iodine capture. New Journal of Chemistry, 2020, 44, 21255-21260.	1.4	7
2821	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	6.6	103
2822	Nanoporous catalysts for biomass conversion. , 2020, , 387-440.		2
2823	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Diterfaces, 2020, 12, 52588-52594.	4.0	3
2824	Topology-Dependent Alkane Diffusion in Zirconium Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 56049-56059.	4.0	18
2825	Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous UiO-Type Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 20962-20967.	6.6	67
2826	Two-Dimensional COF–Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H ₂ /CO ₂ Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 52899-52907.	4.0	59
2827	Extensive Screening of Green Solvents for Safe and Sustainable UiO-66 Synthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 17154-17164.	3.2	41
2828	Doping copper ions in a metal-organic framework (UiO-66-NH2): Location effect examined by ultrafast spectroscopy. Chinese Journal of Chemical Physics, 2020, 33, 394-400.	0.6	9
2829	A robust indium(III)â^'potassium(I) MOF with high CO2/C2- hydrocarbons over CH4 separation performance. Journal of Solid State Chemistry, 2020, 292, 121726.	1.4	7
2830	Sulfonic Acids Supported on UiO-66 as Heterogeneous Catalysts for the Esterification of Fatty Acids for Biodiesel Production. Catalysts, 2020, 10, 1271.	1.6	14
2831	A green approach for enhancing the hydrophobicity of UiO-66(Zr) catalysts for biodiesel production at 298 K. RSC Advances, 2020, 10, 41283-41295.	1.7	14
2832	Cu/UiO-66: a novel nanocatalyst obtained by a microwave-assisted protocol in DMF-free media for the efficient phenol removal via catalytic wet peroxide oxidation. Journal of Environmental Chemical Engineering, 2020, 8, 104332.	3.3	19
2833	Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. Journal of Industrial and Engineering Chemistry, 2020, 90, 178-189.	2.9	53

#	Article	IF	CITATIONS
2834	The Surface Chemistry of Metal Oxide Clusters: From Metal–Organic Frameworks to Minerals. ACS Central Science, 2020, 6, 1523-1533.	5.3	46
2835	Bioinspired dopamine modulating graphene oxide nanocomposite membrane interposed by super-hydrophilic UiO-66 with enhanced water permeability. Separation and Purification Technology, 2020, 253, 117552.	3.9	50
2836	Study of the Dye Adsorption Kinetics of <scp>Metal–Organic</scp> Frameworks in Aqueous Media. Bulletin of the Korean Chemical Society, 2020, 41, 843-850.	1.0	39
2837	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	9.5	138
2838	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
2839	Ce-MIL-140: expanding the synthesis routes for cerium(<scp>iv</scp>) metal–organic frameworks. Dalton Transactions, 2020, 49, 11396-11402.	1.6	20
2840	A comparative study of perfluorinated and non-fluorinated UiO-67 in gas adsorption. Journal of Porous Materials, 2020, 27, 1773-1782.	1.3	9
2841	Single-Atom Ru-Implanted Metal–Organic Framework/MnO ₂ for the Highly Selective Oxidation of NO _{<i>x</i>} by Plasma Activation. ACS Catalysis, 2020, 10, 10185-10196.	5 . 5	58
2842	Postmodified Dual Functional UiO Sensor for Selective Detection of Ozone and Tandemly Derived Sensing of Al ³⁺ . Analytical Chemistry, 2020, 92, 11600-11606.	3.2	22
2844	Synthesis and development of metal–organic frameworks. , 2020, , 3-43.		7
2845	Anchoring Zn-phthalocyanines in the pore matrices of UiO-67 to improve highly the photocatalytic oxidation efficiency. Applied Catalysis B: Environmental, 2020, 279, 119350.	10.8	21
2846	Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chimica Acta, 2020, 513, 119926.	1.2	15
2847	Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study. Journal of Molecular Modeling, 2020, 26, 212.	0.8	2
2848	The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications. Environmental Science and Pollution Research, 2020, 27, 40618-40632.	2.7	23
2849	Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases. Separation and Purification Technology, 2020, 251, 117406.	3.9	11
2850	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts, 2020, 10, 761.	1.6	7
2851	Optimizing zirconium metal–organic frameworks through steric tuning for efficient removal of Cr ₂ O ₇ ^{2â^3} . Chemical Communications, 2020, 56, 10513-10516.	2.2	8
2852	Ultrasensitive detection of Cr(VI) (Cr2O72â^'/CrO42â^') ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots. Analytica Chimica Acta, 2020, 1131, 68-79.	2.6	59

#	Article	IF	CITATIONS
2853	Pore Engineering of Covalently Connected Metal–Organic Framework Nanoparticle–Mixed-Matrix Membrane Composites for Molecular Separation. ACS Applied Nano Materials, 2020, 3, 9356-9362.	2.4	16
2854	Higher Magnetic Fields, Finer MOF Structural Information: ¹⁷ O Solid-State NMR at 35.2 T. Journal of the American Chemical Society, 2020, 142, 14877-14889.	6.6	47
2855	Rapid switch-on fluorescent detection of nanomolar-level hydrazine in water by a diacetoxy-functionalized MOF: application in paper strips and environmental samples. Dalton Transactions, 2020, 49, 12565-12573.	1.6	21
2856	Single-Crystal Synthesis and Diverse Topologies of Hexanuclear Ce ^{IV} -Based Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 11233-11237.	1.9	15
2857	Isolated zirconium centres captured from aqueous solution: the structure of zirconium mandelate revealed from NMR crystallography. Chemical Communications, 2020, 56, 10159-10162.	2.2	0
2858	Cluster/cage-based coordination polymers with tetrazole derivatives. Coordination Chemistry Reviews, 2020, 422, 213424.	9.5	39
2859	Nanomaterials in the advancement of hydrogen energy storage. Heliyon, 2020, 6, e04487.	1.4	68
2860	Fabrication of perylene imide-modified NH2-UiO-66 for enhanced visible-light photocatalytic degradation of tetracycline. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112795.	2.0	33
2861	Enhanced Sulfur Dioxide Adsorption in UiO-66 Through Crystal Engineering and Chalcogen Bonding. Crystal Growth and Design, 2020, 20, 6139-6146.	1.4	18
2862	UiO-66 as a catalyst for hydrogen production <i>via</i> the hydrolysis of sodium borohydride. Dalton Transactions, 2020, 49, 10851-10857.	1.6	64
2863	Adsorption of arsenite by core–shell K-OMS-2@UiO-66 microspheres: performance and mechanism. New Journal of Chemistry, 2020, 44, 14389-14400.	1.4	7
2864	Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water. ACS Applied Nano Materials, 2020, 3, 8997-9008.	2.4	96
2865	Nanoporous Zn-Based Metal–Organic Framework Nanoparticles for Fluorescent pH Sensing and Thermochromism. ACS Applied Nano Materials, 2020, 3, 9480-9486.	2.4	26
2866	Aptamer-functionalized Fe3O4@MOF nanocarrier for targeted drug delivery and fluorescence imaging of the triple-negative MDA-MB-231 breast cancer cells. Journal of Solid State Chemistry, 2020, 292, 121680.	1.4	62
2867	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	1.7	53
2868	Proton conductive Zr-based MOFs. Inorganic Chemistry Frontiers, 2020, 7, 3765-3784.	3.0	80
2869	2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Materials Today, 2020, 41, 270-303.	8.3	214
2870	Enhancing the gas adsorption capacities of UiO-66 by nanographite addition. Microporous and Mesoporous Materials, 2020, 309, 110571.	2.2	11

#	Article	IF	CITATIONS
2871	Preparation of Metal–Organic Framework/Polyvinylidene Fluoride Mixed Matrix Membranes for Water Treatment. Industrial & Engineering Chemistry Research, 2020, 59, 19689-19697.	1.8	14
2872	Exceptionally High Gravimetric Methane Storage in Aerogel-Derived Carbons. Industrial & Engineering Chemistry Research, 2020, 59, 19383-19391.	1.8	2
2873	Relaxing under pressure with a rigid niccolite formate framework. Journal of Materials Chemistry C, 2020, 8, 16736-16741.	2.7	7
2874	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
2875	Molecular Spheres Inspired Self-Assembly of Hydrolytically Stable Mesoporous Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 8015-8020.	1.4	4
2876	Carbon capture using nanoporous adsorbents. , 2020, , 265-303.		0
2877	Photoactive Molecules within MOFs. Structure and Bonding, 2020, , 105-153.	1.0	2
2878	Anthracene-Tagged UiO-67-MOF as Highly Selective Aqueous Sensor for Nanoscale Detection of Arginine Amino Acid. Inorganic Chemistry, 2020, 59, 13091-13097.	1.9	25
2879	Generalized Approach for Rapid Aqueous MOF Synthesis by Controlling Solution pH. Crystal Growth and Design, 2020, 20, 6787-6795.	1.4	26
2880	Efficient C ₂ H <i>_n</i> Hydrocarbons and VOC Adsorption and Separation in an MOF with Lewis Basic and Acidic Decorated Active Sites. ACS Applied Materials & Decorated Active Sites. ACS Active Sites	4.0	64
2881	Structural features of proton-conducting metal organic and covalent organic frameworks. CrystEngComm, 2020, 22, 6425-6443.	1.3	23
2882	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	18.7	367
2883	Microwave-Assisted Solvothermal Synthesis of UiO-66-NH2 and Its Catalytic Performance toward the Hydrolysis of a Nerve Agent Simulant. Catalysts, 2020, 10, 1086.	1.6	21
2884	DNAzyme–Metal–Organic Framework Two-Photon Nanoprobe for In situ Monitoring of Apoptosis-Associated Zn ²⁺ in Living Cells and Tissues. ACS Sensors, 2020, 5, 3150-3157.	4.0	44
2885	Enhancing nanofiltration performance by incorporating tannic acid modified metal-organic frameworks into thin-film nanocomposite membrane. Environmental Research, 2020, 191, 110215.	3.7	31
2886	Synthesis of novel and engineered UiO-66/graphene oxide nanocomposite with enhanced H2S adsorption capacity. Journal of Environmental Chemical Engineering, 2020, 8, 104351.	3.3	28
2887	Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends in Food Science and Technology, 2020, 104, 102-116.	7.8	111
2888	Crystallinity after decarboxylation of a metal–carboxylate framework: indestructible porosity for catalysis. Dalton Transactions, 2020, 49, 11902-11910.	1.6	10

#	Article	IF	CITATIONS
2889	Hydrogen Sulfide (H2S) Removal via MOFs. Materials, 2020, 13, 3640.	1.3	43
2890	Defect-engineering a metal–organic framework for CO ₂ fixation in the synthesis of bioactive oxazolidinones. Inorganic Chemistry Frontiers, 2020, 7, 3571-3577.	3.0	33
2891	A low symmetry cluster meets a low symmetry ligand to sharply boost MOF thermal stability. Chemical Communications, 2020, 56, 11985-11988.	2.2	19
2892	Regulating the Topologies of Zirconium–Organic Frameworks for a Crystal Sponge Applicable to Inorganic Matter. Inorganic Chemistry, 2020, 59, 11940-11944.	1.9	8
2893	Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal–Organic Framework. Langmuir, 2020, 36, 10853-10859.	1.6	18
2894	Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Frontiers in Chemistry, 2020, 8, 694.	1.8	36
2895	Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. Journal of Physical Chemistry C, 2020, 124, 20854-20863.	1.5	18
2896	A new route to porous metal–organic framework crystal–glass composites. Chemical Science, 2020, 11, 9910-9918.	3.7	21
2897	Formation and Antibacterial Performance of Metal–Organic Framework Films ⟨i⟩via⟨ i⟩ Dopamine-Mediated Fast Assembly under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 15834-15842.	3.2	22
2898	Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal–Organic Framework Single Crystals. Nano Letters, 2020, 20, 7446-7454.	4.5	25
2899	Metal–Organic Frameworks Based on Group 3 and 4 Metals. Advanced Materials, 2020, 32, e2004414.	11.1	69
2900	Influence of Defects and H ₂ O on the Hydrogenation of CO ₂ to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 17105-17118.	6.6	68
2901	Organic synthesis of high added value molecules with MOF catalysts. Organic and Biomolecular Chemistry, 2020, 18, 8058-8073.	1.5	29
2902	Charge Separation and Charge Carrier Mobility in Photocatalytic Metalâ€Organic Frameworks. Advanced Functional Materials, 2020, 30, 2003792.	7.8	64
2903	Metal–organic frameworks: advanced tools for multicomponent reactions. Green Chemistry, 2020, 22, 7265-7300.	4.6	76
2904	Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66. RSC Advances, 2020, 10, 28180-28185.	1.7	15
2905	Highly stable and efficient visible-light-driven carbon dioxide reduction by zirconium–metalloporphyrin PCN-222 via dual catalytic routes. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 397-408.	0.8	12
2906	Hydrothermal Synthesis of Zrâ€Amino Terephthalate and its Composite with MWCNTs as a Novel Electrode Material in Nitrite Quantification. Electroanalysis, 2020, 32, 2493-2502.	1.5	4

#	Article	IF	CITATIONS
2907	Porphyrin Grafting on a Mercapto-Equipped Zr(IV)-Carboxylate Framework Enhances Photocatalytic Hydrogen Production. Inorganic Chemistry, 2020, 59, 12643-12649.	1.9	18
2908	Probing Nonuniform Adsorption in Multicomponent Metal–Organic Frameworks via Segmental Dynamics by Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2020, 11, 7167-7176.	2.1	7
2909	Synthesis and Exfoliation of a New Layered Mesoporous Zr-MOF Comprising Hexa- and Dodecanuclear Clusters as Well as a Small Organic Linker Molecule. Journal of the American Chemical Society, 2020, 142, 15995-16000.	6.6	33
2910	Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale, 2020, 12, 19383-19389.	2.8	45
2911	Mixed matrix membranes containing polymerâ€embedded metalâ€organic framework microspheres. AICHE Journal, 2020, 66, e17028.	1.8	14
2912	Aqueous Stability and Ligand Substitution of a Layered Cu(I)/Isocyanide-Based Organometallic Network Material with a Well-Defined Channel Structure. Inorganic Chemistry, 2020, 59, 11868-11878.	1.9	8
2913	Stabilities and Electronic Structures of Transition Metal (Cu, Ag, Au, Ni, Pd, Pt) Cluster-Confined UiO-66. Journal of Physical Chemistry C, 2020, 124, 28123-28131.	1.5	9
2914	Pyridinyl Conjugate of UiO-66-NH2 as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media. Chemosensors, 2020, 8, 122.	1.8	17
2915	Modeling of Diffusion of Acetone in UiO-66. Journal of Physical Chemistry C, 2020, 124, 28469-28478.	1.5	23
2916	Screening of metal–organic frameworks for water adsorption heat transformation using structure–property relationships. RSC Advances, 2020, 10, 34621-34631.	1.7	8
2917	Recent Advances in the Application of Metal–Organic Frameworks for Polymerization and Oligomerization Reactions. Catalysts, 2020, 10, 1441.	1.6	6
2918	Conformal Functionalization of Cotton Fibers via Isoreticular Expansion of UiO-66 Metal-Organic Frameworks. Coatings, 2020, 10, 1172.	1.2	6
2919	Dual-Emission Zr-MOF-Based Composite Material as a Fluorescence Turn-On Sensor for the Ultrasensitive Detection of Al ³⁺ . Inorganic Chemistry, 2020, 59, 18205-18213.	1.9	68
2920	Environmentally Benign Oneâ€pot Synthesis of Benzoâ€Fused Sevenâ€Membered Heterocyclic Compounds Using UiOâ€66 Metalâ€Organic Framework as Efficient and Reusable Catalyst. ChemistrySelect, 2020, 5, 14554-14558.	0.7	3
2921	Stable Forward Osmosis Nanocomposite Membrane Doped with Sulfonated Graphene Oxide@Metal–Organic Frameworks for Heavy Metal Removal. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57102-57116.	4.0	59
2922	Catalytic Transfer Hydrogenation of the Câ•O Bond in Unsaturated Aldehydes over Pt Nanoparticles Embedded in Porous UiO-66 Nanoparticles. ACS Applied Nano Materials, 2020, 3, 12260-12268.	2.4	25
2923	Electrochemical Aptasensors Based on Hybrid Metal-Organic Frameworks. Sensors, 2020, 20, 6963.	2.1	19
2924	Reticular Chemistry for Ionic Liquid-Functionalized Metal–Organic Frameworks with High Selectivity for CO ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 18558-18567.	3.2	16

#	Article	IF	CITATIONS
2925	Bimetallic AgPd/UiO-66 Hybrid Catalysts for Propylene Glycol Oxidation into Lactic Acid. Materials, 2020, 13, 5471.	1.3	10
2926	Preparation of UiOâ€66/DMBPTB and UiOâ€66â€NH ₂ /DMBPTB Nanocomposite Membranes with Enhanced CO ₂ /CH ₄ Selectivity for Gas Separation. ChemistrySelect, 2020, 5, 14251-14260.	0.7	2
2927	Metal organic frameworks as water harvester from air: Hydrolytic stability and adsorption isotherms. Inorganic Chemistry Communication, 2020, 122, 108279.	1.8	48
2928	UiO-66 derivatives and their composite membranes for effective proton conduction. Dalton Transactions, 2020, 49, 17130-17139.	1.6	32
2929	Crystallography Under High Pressures. Structure and Bonding, 2020, , 141-198.	1.0	6
2930	Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts, 2020, 10, 464.	1.6	30
2931	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	0.4	6
2932	Effect of intermolecular interactions on the performance of UiO-66-laden solid composite polymer electrolytes. Journal of Alloys and Compounds, 2020, 845, 155179.	2.8	12
2933	MOF water harvesters. Nature Nanotechnology, 2020, 15, 348-355.	15.6	400
2934	The Fluorescence Property of Zirconium-Based MOFs Adsorbed Sulforhodamine B. Journal of Fluorescence, 2020, 30, 427-435.	1.3	15
2935	A Pyridyltriazol Functionalized Zirconium Metal–Organic Framework for Selective and Highly Efficient Adsorption of Palladium. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25221-25232.	4.0	107
2936	Biocatalytic Metal–Organic Frameworks: Prospects Beyond Bioprotective Porous Matrices. Advanced Functional Materials, 2020, 30, 2001648.	7.8	57
2937	Polycrystalline rare-earth metal-organic framework membranes with in-situ healing ability for efficient alcohol dehydration. Journal of Membrane Science, 2020, 610, 118239.	4.1	28
2938	Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks. Matter, 2020, 2, 1651-1666.	5.0	43
2939	Advances in the green chemistry of coordination polymer materials. Green Chemistry, 2020, 22, 3693-3715.	4.6	67
2940	Postsynthetic Oxidation of the Coordination Site in a Heterometallic Metal–Organic Framework: Tuning Catalytic Behaviors. Chemistry of Materials, 2020, 32, 5192-5199.	3.2	20
2941	A novel integrated Cr(<scp>vi</scp>) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020, 8, 9629-9637.	5.2	64
2942	Opportunities and critical factors of porous metal–organic frameworks for industrial light olefins separation. Materials Chemistry Frontiers, 2020, 4, 1954-1984.	3.2	48

#	Article	IF	CITATIONS
2943	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	1.6	12
2944	Metal–organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. Physical Chemistry Chemical Physics, 2020, 22, 14404-14414.	1.3	43
2945	Photocatalytic Degradation of Organic Micropollutants in Water by Zr-MOF/GO Composites. Journal of Composites Science, 2020, 4, 54.	1.4	19
2946	Experimental Demonstration of Dynamic Temperature-Dependent Behavior of UiO-66 Metal–Organic Framework: Compaction of Hydroxylated and Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage. ACS Applied Materials & Dehydroxylated Forms of UiO-66 for High-Pressure Hydrogen Storage.	4.0	32
2947	Formation of Local Defects and Mesopores in a Structure of UiO-66-NDC Metal-Organic Framework. Journal of Surface Investigation, 2020, 14, 318-323.	0.1	4
2948	A Bioinspired Multicomponent Catalytic System for Converting Carbon Dioxide into Methanol Autocatalytically. CheM, 2020, 6, 1742-1754.	5.8	40
2949	Catalytic studies of cyclometalated gold(III) complexes and their related UiO-67 MOF. Molecular Catalysis, 2020, 492, 111009.	1.0	11
2950	Salt nanoconfinement in zirconium-based metal–organic frameworks leads to pore-size and loading-dependent ionic conductivity enhancement. Chemical Communications, 2020, 56, 7245-7248.	2.2	8
2951	Two-dimensional, conductive niobium and molybdenum metal–organic frameworks. Chemical Science, 2020, 11, 6690-6700.	3.7	16
2952	<i>Ab Initio</i> Prediction of Metal-Organic Framework Structures. Chemistry of Materials, 2020, 32, 5835-5844.	3.2	11
2953	Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2020, 89, 104-110.	2.9	47
2954	Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8416-8467.	23.0	382
2955	Understanding the Linear and Second-Order Nonlinear Optical Properties of UiO-66-Derived Metal–Organic Frameworks: A Comprehensive DFT Study. Journal of Physical Chemistry C, 2020, 124, 11595-11608.	1.5	22
2956	Cubes on a string: a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkers. Nanoscale, 2020, 12, 11601-11611.	2.8	6
2957	Hydrothermal Catalytic Conversion of Glucose into Lactic Acid with Acidic MIL-101(Fe). Journal of Chemistry, 2020, 2020, 1-7.	0.9	2
2958	Phosphonateâ€Modified UiOâ€66 Brønsted Acid Catalyst and Its Use in Dehydraâ€Decyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie - International Edition, 2020, 59, 13260-13266.	7.2	21
2959	Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks. Applied Catalysis B: Environmental, 2020, 273, 119087.	10.8	62
2960	Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chemical Engineering Journal, 2020, 399, 125346.	6.6	305

#	Article	IF	Citations
2961	Water and Metal–Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 2020, 120, 8303-8377.	23.0	303
2962	Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH) ₂ (DMF) ₂]Cl. Inorganic Chemistry, 2020, 59, 7860-7868.	1.9	29
2963	A Single-Atomic Noble Metal Enclosed Defective MOF via Cryogenic UV Photoreduction for CO Oxidation with Ultrahigh Efficiency and Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26068-26075.	4.0	34
2964	Phosphonateâ€Modified UiOâ€66 Brønsted Acid Catalyst and Its Use in Dehydraâ€Decyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie, 2020, 132, 13362-13368.	1.6	4
2965	Metalâ€Addenda Substitution in Plenary Polyoxometalates and in Their Modular Transition Metal Analogues. European Journal of Inorganic Chemistry, 2020, 2020, 2559-2572.	1.0	11
2966	Size-Tunable Synthesis of Palladium Nanoparticles Confined within Topologically Distinct Metal–Organic Frameworks for Catalytic Dehydrogenation of Methanol. Journal of Physical Chemistry C, 2020, 124, 12521-12530.	1.5	22
2967	Solvent-assisted linker exchange as a tool for the design of mixed-linker MIL-140D structured MOFs for highly selective detection of gaseous H ₂ S. RSC Advances, 2020, 10, 12334-12338.	1.7	3
2968	Incorporation of a dioxo-molybdenum (VI) complex into a titanium-functionalized Zr(IV)-Based metal-organic framework. Microporous and Mesoporous Materials, 2020, 305, 110359.	2.2	12
2969	Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy, 2020, 75, 105009.	8.2	33
2970	Efficient Production of Biodiesel from Esterification of Lauric Acid Catalyzed by Ammonium and Silver Co-Doped Phosphotungstic Acid Embedded in a Zirconium Metal–Organic Framework Nanocomposite. ACS Omega, 2020, 5, 12760-12767.	1.6	31
2971	Luminescent thin films of Eu-bearing UiO-66 metal organic framework prepared by ALD/MLD. Applied Surface Science, 2020, 527, 146603.	3.1	19
2972	Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by <i>In Situ</i> ¹²⁹ Xe NMR Spectroscopy. Chemistry of Materials, 2020, 32, 4641-4650.	3.2	31
2973	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie, 2020, 132, 19801-19806.	1.6	13
2974	Application of zirconium-based metal–organic frameworks for micro-extraction by packed sorbent of urinary trans, trans-muconic acid. Journal of the Iranian Chemical Society, 2020, 17, 2345-2358.	1.2	14
2975	Three-dimensional macroporous Carbon/Zr-2,5-dimercaptoterephthalic acid metal-organic frameworks nanocomposites for removal and detection of Hg(II). Sensors and Actuators B: Chemical, 2020, 320, 128447.	4.0	40
2976	Ligand-Based Phase Control in Porous Zirconium Coordination Cages. Chemistry of Materials, 2020, 32, 5872-5878.	3.2	37
2977	Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal–Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS Applied Materials & Interfaces, 2020, 12, 28885-28893.	4.0	48
2978	Engineering the pore environment of metal–organic framework membranes <i>via</i> modification of the secondary building unit for improved gas separation. Journal of Materials Chemistry A, 2020, 8, 13132-13141.	5.2	32

#	Article	IF	CITATIONS
2979	Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395, 125057.	6.6	36
2980	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	7 5
2981	Facile synthesis of zirconium-organic frameworks@biomass-derived porous graphitic nanocomposites: Arsenic adsorption performance and mechanism. Journal of Molecular Liquids, 2020, 314, 113552.	2.3	19
2982	Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol–Ene Click Chemistry. ACS Applied Materials & Distriction (12, 28576-28585).	4.0	26
2983	Enabling Access to Reduced Open-Metal Sites in Metal-Organic Framework Materials through Choice of Anion Identity: The Case of MIL-100(Cr)., 2020, 2, 838-844.		15
2984	Metalâ€Organic Frameworkâ€Based Catalysts for Oxidative Desulfurization. ChemCatChem, 2020, 12, 4721-4731.	1.8	40
2985	A robust Th-azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture. Nature Communications, 2020, 11, 3163.	5.8	192
2986	Engineering zirconium-based UiO-66 for effective chemical conversion of <scp>d</scp> -xylose to lactic acid in aqueous condition. Chemical Communications, 2020, 56, 8019-8022.	2.2	33
2987	Zirconium Metal–Organic Framework Materials for Efficient Ion Adsorption and Sieving. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 12907-12923.	1.8	60
2988	Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Applied Catalysis A: General, 2020, 602, 117719.	2.2	57
2989	Efficient removal of two anionic dyes by a highly robust zirconium based metal organic framework from aqueous medium: Experimental findings with molecular docking study. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100340.	1.7	6
2990	Air-thermal processing of hierarchically porous metal–organic frameworks. Nanoscale, 2020, 12, 14171-14179.	2.8	7
2991	Scandium Metal–Organic Frameworks Containing Tetracarboxylate Linker Molecules: Synthesis, Structural Relationships, and Properties. Crystal Growth and Design, 2020, 20, 4686-4694.	1.4	18
2992	Effect of the Incorporation of Functionalized Cellulose Nanocrystals into UiOâ€66 on Composite Porosity and Surface Heterogeneity Alterations. Advanced Materials Interfaces, 2020, 7, 1902098.	1.9	15
2993	Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide <i>via</i> dual emission. Dalton Transactions, 2020, 49, 8684-8692.	1.6	32
2994	Photodegradation of seven bisphenol analogues by Bi5O7I/UiO-67 heterojunction: Relationship between the chemical structures and removal efficiency. Applied Catalysis B: Environmental, 2020, 277, 119222.	10.8	66
2995	UiO-67 metal–organic gel material deposited on photonic crystal matrix for photoelectrocatalytic hydrogen production. RSC Advances, 2020, 10, 14778-14784.	1.7	13
2996	Zr-MOF modified cotton fiber for pipette tip solid-phase extraction of four phenoxy herbicides in complex samples. Ecotoxicology and Environmental Safety, 2020, 201, 110764.	2.9	40

#	Article	IF	CITATIONS
2997	Metalâ^'Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis, 2020, 32, 1885-1895.	1.5	103
2998	Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr(VI) and dyes based on filtration. Desalination, 2020, 491, 114558.	4.0	77
2999	Modulation of driving forces fo UiO-66 analog adsorbents by decoration with amino functional groups: Superior adsorption of hazardous dyes. Journal of Molecular Structure, 2020, 1220, 128716.	1.8	15
3000	Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater. Materials Chemistry and Physics, 2020, 253, 123246.	2.0	56
3001	Isolating the Role of the Node-Linker Bond in the Compression of UiO-66 Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 5864-5871.	3.2	24
3002	Tuning the Wettability of Metal–Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation. ACS Applied Materials & Separation.	4.0	41
3003	Ligand Functionalization in Zirconiumâ€Based Metalâ€Organic Frameworks for Enhanced Carbon Dioxide Fixation. Advanced Sustainable Systems, 2020, 4, 2000098.	2.7	9
3004	Tunable LiCl@UiO-66 composites for water sorption-based heat transformation applications. Journal of Materials Chemistry A, 2020, 8, 13364-13375.	5.2	59
3005	Improved methane/nitrogen separation properties of zirconium-based metal–organic framework by incorporating highly polarizable bromine atoms. Chemical Engineering Journal, 2020, 399, 125717.	6.6	51
3006	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
3007	Polymer/metal-organic frameworks membranes and pervaporation. , 2020, , 329-354.		4
3008	Advances in luminescent metal-organic framework sensors based on post-synthetic modification. TrAC - Trends in Analytical Chemistry, 2020, 129, 115939.	5.8	80
3009	Scalable Continuous Flow Metal–Organic Framework (MOF) Synthesis Using Supercritical CO ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 9680-9689.	3.2	34
3010	The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 419, 213388.	9.5	197
3011	Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Advanced Materials, 2020, 32, e2000041.	11.1	151
3012	Room temperature aqueous synthesis of UiO-66 derivatives <i>via</i> postsynthetic exchange. Dalton Transactions, 2020, 49, 8841-8845.	1.6	19
3013	Octafluorobiphenyl-4,4′-dicarboxylate as a ligand for metal-organic frameworks: progress and perspectives. Pure and Applied Chemistry, 2020, 92, 1081-1092.	0.9	2
3014	Adsorption of Fluorocarbons and Chlorocarbons by Highly Porous and Robust Fluorinated Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2020, 59, 4167-4171.	1.9	23

#	Article	IF	CITATIONS
3015	Systematic Regulation of C ₂ H ₂ /CO ₂ Separation by 3p-Block Open Metal Sites in a Robust Metal–Organic Framework Platform. Inorganic Chemistry, 2020, 59, 4825-4834.	1.9	39
3016	Nanocable catalysts MTe (M = Pt, PtCu)@UIO-67 for CO2 conversion. Science China Materials, 2020, 63, 769-778.	3.5	12
3017	Discrete Hf ₁₈ Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€6pecific Proteolysis. Angewandte Chemie - International Edition, 2020, 59, 9094-9101.	7.2	31
3018	Hierarchy in Metal–Organic Frameworks. ACS Central Science, 2020, 6, 359-367.	5.3	130
3019	Facile In Situ Hydrothermal Synthesis of Layered Zirconium Phenylphosphonate Molecular Sieve Membranes with Optimized Microstructure and Superb H ₂ /CO ₂ Selectivity. ACS Applied Materials & Sieve (12, 15320-15327).	4.0	9
3020	General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chemical Science, 2020, 11, 3644-3655.	3.7	205
3021	Discrete Hf 18 Metalâ€oxo Cluster as a Heterogeneous Nanozyme for Siteâ€Specific Proteolysis. Angewandte Chemie, 2020, 132, 9179-9186.	1.6	7
3022	Significantly enhanced CO oxidation activity induced by a change in the CO adsorption site on Pd nanoparticles covered with metal–organic frameworks. Chemical Communications, 2020, 56, 3839-3842.	2.2	7
3023	Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Applied Catalysis B: Environmental, 2020, 270, 118856.	10.8	103
3024	Octahedral core–shell bimetallic catalysts M@UIO-67 (M = Pt–Pd nanoparticles, Pt–Pd nanocages): Metallic nanocages that enhanced CO2 conversion. Applied Materials Today, 2020, 19, 100609.	2.3	16
3025	Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sensors and Actuators B: Chemical, 2020, 312, 127952.	4.0	37
3026	Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature Materials, 2020, 19, 767-774.	13.3	275
3027	Secondary building units of MOFs. , 2020, , 11-44.		7
3028	Metal-organic frameworks for drug delivery: Degradation mechanism and in vivo fate. , 2020, , 467-489.		11
3029	<i>In situ</i> construction of hydrazone-linked COF-based core–shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7724-7732.	5.2	108
3030	Liquid-Phase Applications of Metal–Organic Framework Mixed-Matrix Membranes Prepared from Poly(ethylene- <i>co</i> -vinyl acetate). ACS Applied Polymer Materials, 2020, 2, 2063-2069.	2.0	11
3031	PANI@UiO-66 and PANI@UiO-66-NH ₂ Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials. ACS Omega, 2020, 5, 6395-6404.	1.6	43
3032	The role of leached Zr in the photocatalytic reduction of CO ₂ to formate by derivatives of UiO-66 metal organic frameworks. Dalton Transactions, 2020, 49, 4751-4757.	1.6	18

#	Article	IF	CITATIONS
3033	Two Robust In(III)-Based Metal–Organic Frameworks with Higher Gas Separation, Efficient Carbon Dioxide Conversion, and Rapid Detection of Antibiotics. Inorganic Chemistry, 2020, 59, 5231-5239.	1.9	31
3034	A Single-Ion Conducting UiO-66 Metal–Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 4007-4013.	2.5	83
3035	Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49, 6553-6556.	1.6	11
3036	A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 414, 213295.	9.5	84
3037	Eosin Y-Embedded Zirconium-Based Metal–Organic Framework as a Dual-Emitting Built-In Self-Calibrating Platform for Pesticide Detection. Inorganic Chemistry, 2020, 59, 5386-5393.	1.9	62
3038	Charting the Metal-Dependent High-Pressure Stability of Bimetallic UiO-66 Materials. , 2020, 2, 438-445.		21
3039	Strongly visible light-absorbing metal–organic frameworks functionalized by cyclometalated ruthenium(<scp>ii</scp>) complexes. RSC Advances, 2020, 10, 9052-9062.	1.7	6
3040	Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. Journal of Solid State Chemistry, 2020, 287, 121323.	1.4	30
3041	Low-Temperature Rapid Synthesis and Performance of the MIL-100(Fe) Monolithic Adsorbent for Dehumidification. Industrial & Dehumidification. Industrial & Dehumidification. Industrial & Dehumidification. Industrial & Dehumidification.	1.8	7
3042	Building Conjugated Donor–Acceptor Cross-Links into Metal–Organic Frameworks for Photo- and Electroactivity. ACS Applied Materials & Description (12, 19201-19209).	4.0	9
3043	An Exceptionally Stable Metal–Organic Framework Constructed from Chelate-Based Metal–Organic Polyhedra. Journal of the American Chemical Society, 2020, 142, 6907-6912.	6.6	58
3044	Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 2020, 120, 8468-8535.	23.0	1,001
3045	Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm, 2020, 22, 4511-4525.	1.3	127
3046	Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8, 7569-7587.	5.2	126
3047	Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environmental Science: Nano, 2020, 7, 1319-1347.	2.2	79
3048	Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 2020, 49, 2751-2798.	18.7	449
3049	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	11.1	255
3050	Rapid Generation of Hierarchically Porous Metal–Organic Frameworks through Laser Photolysis. Angewandte Chemie - International Edition, 2020, 59, 11349-11354.	7.2	54

#	Article	IF	CITATIONS
3051	Interpenetrated Metal–Organic Frameworks with ftw Topology and Versatile Functions. ACS Applied Materials & Diterfaces, 2020, 12, 18715-18722.	4.0	17
3052	Tuning Catalytic Sites on Zr ₆ O ₈ Metal–Organic Framework Nodes via Ligand and Defect Chemistry Probed with ⟨i>tert⟨ i>-Butyl Alcohol Dehydration to Isobutylene. Journal of the American Chemical Society, 2020, 142, 8044-8056.	6.6	83
3053	Rapid Generation of Hierarchically Porous Metal–Organic Frameworks through Laser Photolysis. Angewandte Chemie, 2020, 132, 11445-11450.	1.6	16
3054	Propane-selective design of zirconium-based MOFs for propylene purification. Chemical Engineering Science, 2020, 219, 115604.	1.9	20
3055	Zr-based metal–organic frameworks drived Rh–Mn catalysts for highly selective CO hydrogenation to C2 oxygenates. Journal of Industrial and Engineering Chemistry, 2020, 86, 220-231.	2.9	18
3056	Stereoregular cyclicÂp-tolyl-containing siloxanes as promising reagents for synthesizing functionalized organosiloxanes. Journal of Organometallic Chemistry, 2020, 914, 121223.	0.8	5
3057	Recent advances and applications of magnetic nanomaterials in environmental sample analysis. TrAC - Trends in Analytical Chemistry, 2020, 126, 115864.	5.8	75
3058	Heterometallic Titanium–Organic Frameworks by Metal-Induced Dynamic Topological Transformations. Journal of the American Chemical Society, 2020, 142, 6638-6648.	6.6	40
3059	A CD44-targeted Cu(<scp>ii</scp>) delivery 2D nanoplatform for sensitized disulfiram chemotherapy to triple-negative breast cancer. Nanoscale, 2020, 12, 8139-8146.	2.8	24
3060	Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 Utilization. Energies, 2020, 13, 521.	1.6	22
3061	Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 2020, 36, 40-47.	8.3	180
3062	Preparation of Covalent-Ionically Cross-Linked UiO-66-NH2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Frontiers in Chemistry, 2020, 8, 56.	1.8	17
3063	Dynamic Coordination Chemistry of Fluorinated Zrâ€MOFs: Synthetic Control and Reassembly/Disassembly Beyond de Novo Synthesis to Tune the Structure and Property. Chemistry - A European Journal, 2020, 26, 8254-8261.	1.7	16
3064	Metal–Organic Frameworks as Multifunctional Solid Catalysts. Trends in Chemistry, 2020, 2, 454-466.	4.4	120
3065	Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. Journal of Materials Chemistry A, 2020, 8, 6661-6669.	5.2	28
3066	In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal–Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural. ACS Omega, 2020, 5, 16183-16188.	1.6	13
3067	Computational screening of heterocycle decorations in metal-organic frameworks for efficient C2/C1 adsorption and separation. Fuel, 2020, 279, 118431.	3.4	6
3068	Towards complete elucidation of structural factors controlling thermal stability of IL/MOF composites: effects of ligand functionalization on MOFs. Journal of Physics Condensed Matter, 2020, 32, 484001.	0.7	8

#	Article	IF	CITATIONS
3069	Engineering Electrical Conductivity in Stable Zirconium-Based PCN-222 MOFs with Permanent Mesoporosity. Chemistry of Materials, 2020, 32, 6137-6149.	3.2	34
3070	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Diterfaces, 2020, 12, 34423-34431.	4.0	26
3071	Building [U IV 70 (OH) 36 (O) 64] 4â^ Oxocluster Frameworks with Sulfate, Transition Metals, and U V. Chemistry - A European Journal, 2020, 26, 12481-12488.	1.7	8
3072	Exploring the Effect of Morphologies of Fe(III) Metalâ€Organic Framework MILâ€88A(Fe) on the Photocatalytic Degradation of Rhodamine B. ChemistrySelect, 2020, 5, 7534-7542.	0.7	28
3073	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Central Science, 2020, 6, 1046-1057.	5.3	285
3074	A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO ₄ ^{2â°'} . New Journal of Chemistry, 2020, 44, 12646-12653.	1.4	11
3075	Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. Microporous and Mesoporous Materials, 2020, 306, 110405.	2.2	55
3076	Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science, 2020, 81, 100870.	15.8	156
3077	Metal Organic Frameworks-Based Optical Thin Films. , 2020, , .		3
3078	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie - International Edition, 2020, 59, 18078-18086.	7.2	86
3079	A Green Selective Water-Etching Approach to MOF@Mesoporous SiO2 Yolk-Shell Nanoreactors with Enhanced Catalytic Stabilities. Matter, 2020, 3, 498-508.	5.0	75
3080	Post-Synthetic Modification of Zirconium Metal–Organic Frameworks for Adsorption and Separation of Light Hydrocarbons. Crystal Growth and Design, 2020, 20, 4882-4885.	1.4	12
3081	Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination, 2020, 491, 114452.	4.0	96
3082	Single-Site Cobalt-Catalyst Ligated with Pyridylimine-Functionalized Metal–Organic Frameworks for Arene and Benzylic Borylation. Inorganic Chemistry, 2020, 59, 10473-10481.	1.9	31
3083	What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 2020, 1, 1575-1601.	2.6	126
3084	Enhanced catalytic performance of UiO-66 via a sulfuric acid post-synthetic modification strategy with partial etching. Applied Catalysis A: General, 2020, 602, 117733.	2.2	5
3085	Preparation of a novel sustained-release system for pyrethroids by using metal-organic frameworks (MOFs) nanoparticle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125266.	2.3	39
3086	Hydrothermally synthesized N2-UiO-66 for enhanced and selective adsorption of cationic dyes. Environmental Technology and Innovation, 2020, 19, 101021.	3.0	13

#	ARTICLE	IF	CITATIONS
3087	Direct Imaging of Correlated Defect Nanodomains in a Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13081-13089.	6.6	65
3088	Integrating the Mechanical Bond into Metal-Organic Frameworks. CheM, 2020, 6, 1604-1612.	5.8	51
3089	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	5.8	62
3090	Fast motion of molecular rotors in metal–organic framework struts at very low temperatures. Nature Chemistry, 2020, 12, 845-851.	6.6	79
3091	Cooperative acid–base bifunctional ordered porous solids in sequential multi-step reactions: MOF <i>vs.</i> mesoporous silica. Catalysis Science and Technology, 2020, 10, 1796-1802.	2.1	11
3092	Substantial Turnover Frequency Enhancement of MOF Catalysts by Crystallite Downsizing Combined with Surface Anchoring. ACS Catalysis, 2020, 10, 3203-3211.	5.5	41
3093	One-Step Encapsulation of Bimetallic Pd–Co Nanoparticles Within UiO-66 for Selective Conversion of Furfural to Cyclopentanone. Catalysis Letters, 2020, 150, 2158-2166.	1.4	16
3094	Modulator-Induced Zr-MOFs Diversification and Investigation of Their Properties in Gas Sorption and Fe3+ Ion Sensing. Inorganic Chemistry, 2020, 59, 2961-2968.	1.9	22
3095	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	3.2	89
3096	Organometallic chemistry in aqua regia: metal and ligand based oxidations of (NHC)AuCl complexes. Dalton Transactions, 2020, 49, 3473-3479.	1.6	11
3097	Recent advances in applications of metal–organic frameworks for sample preparation in pharmaceutical analysis. Coordination Chemistry Reviews, 2020, 411, 213235.	9.5	65
3098	Visible-light-induced controlled radical polymerization of methacrylates mediated by zirconium-porphryinic metal–organic frameworks. New Journal of Chemistry, 2020, 44, 5235-5242.	1.4	12
3099	Synthesis, structure, and luminescence of a new 3D Cd-MOF based on three mixed organic linkers. Inorganic and Nano-Metal Chemistry, 2020, 50, 699-704.	0.9	2
3100	Transition Metal Oxodiperoxo Complex Modified Metal-Organic Frameworks as Catalysts for the Selective Oxidation of Cyclohexane. Materials, 2020, 13, 829.	1.3	11
3101	Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. Journal of Hazardous Materials, 2020, 393, 122332.	6.5	60
3102	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	6.6	69
3103	Liquidâ€Phase Quasiâ€Epitaxial Growth of Highly Stable, Monolithic UiOâ€66â€NH ₂ MOF thin Films on Solid Substrates. ChemistryOpen, 2020, 9, 524-527.	0.9	20
3104	In Situ Synthesis of Defect-Engineered MOFs as a Photoregenerable Catalytic Adsorbent: Understanding the Effect of LML, Adsorption Behavior, and Photoreaction Process. ACS Applied Materials & Defect-Engineered MOFs as a Photoregenerable Catalytic Adsorbent:	4.0	51

#	Article	IF	Citations
3105	Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 2070-2103.	2.4	196
3106	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
3107	Influence of oxophilic behavior of UiOâ€66(Ce) metal–organic framework with superior catalytic performance in Friedelâ€Crafts alkylation reaction. Applied Organometallic Chemistry, 2020, 34, e5578.	1.7	20
3108	A diamino functionalized metal-organic framework for fluorometric recognition of free chlorine in environmental water samples. Microporous and Mesoporous Materials, 2020, 299, 110116.	2.2	21
3109	Selective Photocatalytic Oxidation of Thioanisole on DUT-67(Zr) Mediated by Surface Coordination. Langmuir, 2020, 36, 2199-2208.	1.6	30
3110	A Luminescent Mg-Metal–Organic Framework for Sustained Release of 5-Fluorouracil: Appropriate Host–Guest Interaction and Satisfied Acid–Base Resistance. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 14914-14923.	4.0	37
3111	Synthesis and Characterization of a Layered Scandium MOF Containing a Sulfoneâ€Functionalized Vâ€Shaped Linker Molecule. European Journal of Inorganic Chemistry, 2020, 2020, 1147-1152.	1.0	7
3112	Preparation of hybrid membranes by incorporating hydrophilic UiO-66 nanoparticles for high-performance pervaporation dehydration of aprotic solvents. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	9
3113	Thorium–Organic Framework Constructed with a Semirigid Triazine Hexacarboxylic Acid Ligand: Unique Structure with Thorium Oxide Wheel Clusters and Iodine Adsorption Behavior. Inorganic Chemistry, 2020, 59, 3964-3973.	1.9	52
3114	Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. Journal of Chromatography A, 2020, 1619, 460949.	1.8	26
3115	MOF-mimetic molecules: carboxylate-based supramolecular complexes as molecular metal–organic framework analogues. Journal of Materials Chemistry A, 2020, 8, 4217-4229.	5.2	28
3116	Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts, 2020, 10, 195.	1.6	35
3117	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	6.6	65
3118	C2–H Arylation of Indoles Catalyzed by Palladiumâ€Containing Metalâ€Organicâ€Framework in γâ€Valerolactone. ChemSusChem, 2020, 13, 2786-2791.	3.6	29
3119	Tuning the Catalytic Activity of UiOâ€66 via Modulated Synthesis: Esterification of Levulinic Acid as a Test Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 833-840.	1.0	12
3120	Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples. Talanta, 2020, 211, 120713.	2.9	35
3121	MOF Materials for the Capture of Highly Toxic H ₂ S and SO ₂ . Organometallics, 2020, 39, 883-915.	1.1	122
3122	Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. Chemosphere, 2020, 247, 125882.	4.2	56

#	Article	IF	CITATIONS
3123	Microwave synthesis and phase transition in UiO-66/MIL-140A system. Microporous and Mesoporous Materials, 2020, 296, 109998.	2.2	20
3124	Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation. Frontiers in Chemistry, 2019, 7, 897.	1.8	59
3125	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
3126	Recent Advances in Selective Hydrogenation of Cinnamaldehyde over Supported Metal-Based Catalysts. ACS Catalysis, 2020, 10, 2395-2412.	5 . 5	128
3127	Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. Journal of the American Chemical Society, 2020, 142, 3002-3012.	6.6	44
3128	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- Brønsted Acidity: The Role of the Hemilabile Linker. Journal of the American Chemical Society, 2020, 142, 3174-3183.	6.6	156
3129	Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020, 8, 4464-4472.	5.2	66
3130	A novel spitball-like Co3(NO3)2(OH)4@Zr-MOF@RGO anode material for sodium-ion storage. Journal of Alloys and Compounds, 2020, 822, 153624.	2.8	16
3131	Multivariate Modulation of the Zr MOF UiOâ€66 for Defect ontrolled Combination Anticancer Drug Delivery. Angewandte Chemie, 2020, 132, 5249-5255.	1.6	52
3132	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie, 2020, 132, 4415-4420.	1.6	10
3133	Multivariate Modulation of the Zr MOF UiOâ€66 for Defect ontrolled Combination Anticancer Drug Delivery. Angewandte Chemie - International Edition, 2020, 59, 5211-5217.	7.2	205
3134	Zirconium-Based Metal–Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14702-14720.	4.0	175
3135	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	3.1	47
3136	Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. Journal of Solid State Chemistry, 2020, 284, 121200.	1.4	70
3137	UiO-66-NDC (1,4-naphthalenedicarboxilic acid) as a novel fluorescent probe for the selective detection of Fe3+. Journal of Solid State Chemistry, 2020, 285, 121206.	1.4	19
3138	Quantification of Open-Metal Sites in Metal–Organic Frameworks Using Irreversible Water Adsorption. Langmuir, 2020, 36, 1345-1356.	1.6	16
3139	Metal–organic frameworks with different spatial dimensions for supercapacitors. New Journal of Chemistry, 2020, 44, 3147-3167.	1.4	46
3140	Single wavelength excited multi-channel nanoMOF sensor for simultaneous and ratiometric imaging of intracellular pH and O ₂ . Journal of Materials Chemistry C, 2020, 8, 3904-3913.	2.7	17

#	Article	IF	CITATIONS
3141	Metal–Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents. ACS Applied Materials & Destruction of Chemical Warfare Agents & Destruction of	4.0	46
3142	Tuning Zr ₁₂ O ₂₂ Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis, 2020, 10, 2906-2914.	5 . 5	90
3143	<scp>Poreâ€Environment</scp> Engineering in Multifunctional <scp>Metalâ€Organic</scp> Frameworks. Chinese Journal of Chemistry, 2020, 38, 509-524.	2.6	28
3144	Efficient SF6/N2 separation at high pressures using a zirconium-based mesoporous metal–organic framework. Journal of Industrial and Engineering Chemistry, 2020, 84, 179-184.	2.9	31
3145	Metal–Organic Framework-Based Sustainable Nanocatalysts for CO Oxidation. Nanomaterials, 2020, 10, 165.	1.9	11
3146	Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science, 2020, 7, 1901758.	5 . 6	136
3147	UiOâ€66 microcrystals catalyzed direct arylation of enol acetates and heteroarenes with aryl diazonium salts in water. Applied Organometallic Chemistry, 2020, 34, e5482.	1.7	7
3148	Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: A systematic and comparative study on dehydration of natural gas. Separation and Purification Technology, 2020, 239, 116512.	3.9	24
3149	A Comparison of Two Isoreticular Metal–Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 4385-4390.	7.2	56
3150	Influence of Hydrogen Bond Donating Sites in UiOâ€66 Metalâ€Organic Framework for Highly Regioselective Methanolysis of Epoxides. ChemCatChem, 2020, 12, 1789-1798.	1.8	27
3151	Triazine Functionalized Porous Three-Dimensional Uranyl–Organic Framework: Extraction of Uranium(VI) and Adsorption of Cationic Dyes in Aqueous Solution. Crystal Growth and Design, 2020, 20, 1838-1848.	1.4	24
3152	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
3153	Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 2020, 250, 126133.	4.2	68
3154	High-Throughput Computational Screening of 12,351 Real Metal–Organic Framework Structures for Separation of Hexane Isomers: A Quest for a Yet Better Adsorbent. Journal of Physical Chemistry C, 2020, 124, 4582-4594.	1.5	6
3155	Circumventing Wear and Tear of Adaptive Porous Materials. Advanced Functional Materials, 2020, 30, 1908547.	7.8	16
3156	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	3.6	36
3157	Ice-templated porous polymer/UiO-66 monolith for Congo Red adsorptive removal. Arabian Journal of Chemistry, 2020, 13, 5669-5678.	2.3	26
3158	Improving the Cd2+ detection capability of a new anionic rare earth metal–organic framework based on a [RE6(μ3-OH)8]10+ secondary building unit: an ion-exchange approach towards more efficient sensors. Molecular Systems Design and Engineering, 2020, 5, 1077-1087.	1.7	8

#	Article	IF	CITATIONS
3159	A Bumper Crop of Boiling-Water-Stable Metal–Organic Frameworks from Controlled Linker Sulfuration. Inorganic Chemistry, 2020, 59, 7097-7102.	1.9	12
3160	Efficient Gating of Ion Transport in Threeâ€Dimensional Metal–Organic Framework Subâ€Nanochannels with Confined Lightâ€Responsive Azobenzene Molecules. Angewandte Chemie, 2020, 132, 13151-13156.	1.6	7
3161	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
3162	Net-Clipping: An Approach to Deduce the Topology of Metal–Organic Frameworks Built with Zigzag Ligands. Journal of the American Chemical Society, 2020, 142, 9135-9140.	6.6	27
3163	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	1.8	16
3164	Topology-Based Functionalization of Robust Chiral Zr-Based Metal–Organic Frameworks for Catalytic Enantioselective Hydrogenation. Journal of the American Chemical Society, 2020, 142, 9642-9652.	6.6	48
3165	Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. Journal of Environmental Chemical Engineering, 2020, 8, 103898.	3.3	28
3166	Fe ₃ O ₄ @MOF Magnetic Nanocomposites: Synthesis and Applications. European Journal of Inorganic Chemistry, 2020, 2020, 1916-1937.	1.0	65
3167	The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis. Environmental Science and Pollution Research, 2020, 27, 19265-19284.	2.7	20
3168	Water-based routes for synthesis of metal-organic frameworks: A review. Science China Materials, 2020, 63, 667-685.	3.5	131
3169	High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms. Applied Surface Science, 2020, 518, 146226.	3.1	175
3170	Modification of Au nanoparticles electronic state by MOFs defect engineering to realize highly active photocatalytic oxidative esterification of benzyl alcohol with methanol. Catalysis Communications, 2020, 140, 106002.	1.6	23
3171	Kinetic modeling of oleic acid esterification with UiO-66: from intrinsic experimental data to kinetics via elementary reaction steps. Chemical Engineering Journal, 2020, 394, 124816.	6.6	18
3172	Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination. Journal of Hazardous Materials, 2020, 394, 122556.	6.5	81
3173	Interface engineering of zeolite imidazolate frameworkâ "8 on two-dimensional Alâ "metalâ" organic framework nanoplates enhancing performance for simultaneous capture and sensing tetracyclines. Journal of Hazardous Materials, 2020, 395, 122615.	6.5	92
3174	UiO-66 and UiO-66-NH2 based sensors: Dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 2020, 302, 110227.	2.2	52
3175	Metal-organic frameworks for QCM-based gas sensors: A review. Sensors and Actuators A: Physical, 2020, 307, 111984.	2.0	108
3176	Enhanced Synergistic Antibacterial Activity through a Smart Platform Based on UiO-66 Combined with Photodynamic Therapy and Chemotherapy. Langmuir, 2020, 36, 4025-4032.	1.6	33

#	Article	IF	CITATIONS
3177	Highly Selective Separation of C ₃ H ₈ and C ₂ H ₂ from CH ₄ within Two Water-Stable Zn ₅ Cluster-Based Metal–Organic Frameworks. ACS Applied Materials & Distriction (12, 18642-18649).	4.0	49
3178	Hypervalent organoiodine(v) metal–organic frameworks: syntheses, thermal studies and stoichiometric oxidants. Dalton Transactions, 2020, 49, 5167-5174.	1.6	6
3179	Zr-Based MOFs as new photocatalysts for the rapid reduction of Cr(<scp>vi</scp>) in water. New Journal of Chemistry, 2020, 44, 7218-7225.	1.4	31
3180	Modulated self-assembly of metal–organic frameworks. Chemical Science, 2020, 11, 4546-4562.	3.7	155
3181	Two Co-based MOFs assembled from an amine-functionalized pyridinecarboxylate ligand: inorganic acid-directed structural variety and gas adsorption properties. CrystEngComm, 2020, 22, 3424-3431.	1.3	14
3182	Bimetallic hexanuclear clusters in Ce/Zr-UiO-66 MOFs: <i>in situ</i> FTIR spectroscopy and modelling insights. Dalton Transactions, 2020, 49, 5794-5797.	1.6	14
3183	Improved Predictive Tools for Structural Properties of Metal–Organic Frameworks. Molecules, 2020, 25, 1552.	1.7	7
3184	Extraordinarily Persistent Zero Linear Compressibility in Metal-Organic Framework MIL-122(In). , 2020, 2, 519-523.		14
3185	Dielectric Spectroscopy of Water Dynamics in Functionalized UiO-66 Metal-Organic Frameworks. Molecules, 2020, 25, 1962.	1.7	8
3186	Facile preparation of stainless steel microextraction fiber via in situ growth of metal–organic framework UiOâ€66 and its application to sensitive analysis of polycyclic musks. Journal of Separation Science, 2020, 43, 2240-2246.	1.3	7
3187	Metal–Organic Framework-Enhanced Solid-Phase Microextraction Mass Spectrometry for the Direct and Rapid Detection of Perfluorooctanoic Acid in Environmental Water Samples. Analytical Chemistry, 2020, 92, 6900-6908.	3.2	41
3188	Template-Assisted, Seed-Mediated Synthesis of Hierarchically Mesoporous Core–Shell UiO-66: Enhancing Adsorption Capacity and Catalytic Activity through Iterative Growth. Chemistry of Materials, 2020, 32, 4292-4302.	3.2	19
3189	Advancement of Actinide Metal–Organic Framework Chemistry via Synthesis of Pu-UiO-66. Journal of the American Chemical Society, 2020, 142, 9363-9371.	6.6	38
3190	Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. Journal of Colloid and Interface Science, 2020, 571, 38-47.	5.0	125
3191	Exploring the Parameter Space of <i>p</i> -Cresyl Sulfate Adsorption in Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22572-22580.	4.0	18
3192	Efficient Gating of Ion Transport in Threeâ€Dimensional Metal–Organic Framework Subâ€Nanochannels with Confined Lightâ€Responsive Azobenzene Molecules. Angewandte Chemie - International Edition, 2020, 59, 13051-13056.	7.2	70
3193	Search for the shortest intermetallic TlTl contacts: Synthesis and characterization of Thallium(I) coordination polymers with several mono- and bis-cyanoximes. Inorganica Chimica Acta, 2020, 508, 119597.	1.2	2
3194	An Anionicâ€MOFâ€Based Bifunctional Separator for Regulating Lithium Deposition and Suppressing Polysulfides Shuttle in Li–S Batteries. Small Methods, 2020, 4, 2000082.	4.6	110

#	Article	IF	CITATIONS
3195	Synthesis and Application of Zirconium Metal–Organic Framework in Microbial Fuel Cells as a Cost-Effective Oxygen Reduction Catalyst with Competitive Performance. ACS Applied Energy Materials, 2020, 3, 3512-3520.	2.5	63
3196	Heterometallic Cluster Coordination Polymers Assembled from Cuprous-Halide Clusters and Organotin–Oxygen Pyridinecarboxylate Clusters. Crystal Growth and Design, 2020, 20, 3795-3800.	1.4	8
3197	Supramolecular Assembly of $U(IV)$ Clusters and Superatoms with Unconventional Countercations. Journal of the American Chemical Society, 2020, 142, 9039-9047.	6.6	34
3198	Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage. Journal of the American Chemical Society, 2020, 142, 8541-8549.	6.6	182
3199	Assessing Crystallisation Kinetics of Zr Metal–Organic Frameworks through Turbidity Measurements to Inform Rapid Microwaveâ€Assisted Synthesis. Chemistry - A European Journal, 2020, 26, 6910-6918.	1.7	21
3200	An aluminaâ€coated <scp>UiO</scp> â€66 nanocrystalline solid superacid with high acid density as a catalyst for ethyl levulinate synthesis. Journal of Chemical Technology and Biotechnology, 2020, 95, 2930-2942.	1.6	13
3201	Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 2020, 395, 125080.	6.6	93
3202	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived </i> and <i>Related </i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
3203	Water Oxidation Catalyst <i>cis-</i> [Ru(bpy)(5,5′-dcbpy)(H ₂ O) ₂] ²⁺ and Its Stabilization in Metal–Organic Framework. ACS Catalysis, 2020, 10, 5299-5308.	5.5	24
3204	Assorted functionality-appended UiO-66-NH ₂ for highly efficient uranium(<scp>vi</scp>) sorption at acidic/neutral/basic pH. RSC Advances, 2020, 10, 14650-14661.	1.7	34
3205	Tuning the morphology of segmented block copolymers with Zr-MOF nanoparticles for durable and efficient hydrocarbon separation membranes. Journal of Materials Chemistry A, 2020, 8, 9382-9391.	5.2	16
3206	Benzothiazolium-functionalized NU-1000: a versatile material for carbon dioxide adsorption and cyanide luminescence sensing. Journal of Materials Chemistry C, 2020, 8, 7492-7500.	2.7	22
3207	Time-Resolved <i>in Situ</i> Polymorphic Transformation from One 12-Connected Zr-MOF to Another. , 2020, 2, 499-504.		16
3208	Recent advancements in metal–organic frameworks for green applications. Green Energy and Environment, 2021, 6, 33-49.	4.7	111
3209	Crystal melting and vitrification behaviors of a three-dimensional nitrile-based metal–organic framework. Faraday Discussions, 2021, 225, 403-413.	1.6	21
3210	Exploring the dynamics of Zr-based metal–organic frameworks containing mechanically interlocked molecular shuttles. Faraday Discussions, 2021, 225, 358-370.	1.6	24
3211	Co-catalyst free ethene dimerization over Zr-based metal-organic framework (UiO-67) functionalized with Ni and bipyridine. Catalysis Today, 2021, 369, 193-202.	2.2	19
3212	Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Research, 2021, 14, 392-397.	5.8	9

#	Article	IF	Citations
3213	Using MOF-808 as a Promising Support to Immobilize Ru for Selective Hydrogenation of Levulinic Acid to \hat{I}^3 -Valerolactone. Catalysis Letters, 2021, 151, 86-94.	1.4	12
3214	Synchrotron Methods., 2021, , 160-182.		1
3215	Porphyrinâ€basierte Metallâ€organische Gerüste für biomedizinische Anwendungen. Angewandte Chemie, 2021, 133, 5064-5091.	1.6	19
3216	Porphyrinâ€Based Metal–Organic Frameworks for Biomedical Applications. Angewandte Chemie - International Edition, 2021, 60, 5010-5035.	7.2	311
3217	The micromechanical model to computationally investigate cooperative and correlated phenomena in metal–organic frameworks. Faraday Discussions, 2021, 225, 271-285.	1.6	12
3218	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	1.6	16
3219	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	7.2	80
3220	UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicology and Environmental Safety, 2021, 208, 111577.	2.9	119
3221	A novel core-shell upconversion nanoparticles@zirconium-based metal organic framework fluorescent nanoprobe for efficient continuous detection of trace methylene blue and ferrous ions. Talanta, 2021, 224, 121853.	2.9	21
3222	Modular Assembly of Red Blood Cell Superstructures from Metal–Organic Framework Nanoparticleâ€Based Building Blocks. Advanced Functional Materials, 2021, 31, 2005935.	7.8	28
3223	A quantitation method for gaseous formaldehyde based on gas chromatography with metal–organic framework cold-trap sorbent as an effective alternative for HPLC-based standard protocol. Microchemical Journal, 2021, 160, 105624.	2.3	12
3224	Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Materials Chemistry and Physics, 2021, 258, 123924.	2.0	53
3225	Advanced applications of Zr-based MOFs in the removal of water pollutants. Chemosphere, 2021, 267, 128863.	4.2	88
3226	The rise of metal–organic polyhedra. Chemical Society Reviews, 2021, 50, 528-555.	18.7	133
3227	MOFâ€Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angewandte Chemie, 2021, 133, 1310-1317.	1.6	4
3228	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
3229	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
3230	MOF based engineered materials in water remediation: Recent trends. Journal of Hazardous Materials, 2021, 403, 123605.	6.5	226

#	Article	IF	CITATIONS
3231	Eosin Y bidentately bridged on UiO-66-NH2 by solvothermal treatment towards enhanced visible-light-driven photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 280, 119385.	10.8	92
3232	Cu (II) decorated thiol-functionalized MOF as an efficient transfer medium of charge carriers promoting photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126533.	6.6	80
3233	Construction and Mechanism of Ag3PO4/UiO-66-NH2 Z-Scheme Heterojunction with Enhanced Photocatalytic Activity. Catalysis Letters, 2021, 151, 734-747.	1.4	7
3234	Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. Chinese Journal of Catalysis, 2021, 42, 356-366.	6.9	30
3235	Functional metal–organic framework-based nanocarriers for accurate magnetic resonance imaging and effective eradication of breast tumor and lung metastasis. Journal of Colloid and Interface Science, 2021, 581, 31-43.	5.0	43
3236	A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets. Chemical Engineering Journal, 2021, 403, 126281.	6.6	130
3237	Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis. Chinese Chemical Letters, 2021, 32, 787-790.	4.8	10
3238	Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews, 2021, 426, 213542.	9.5	158
3239	Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. Catalysis Communications, 2021, 148, 106178.	1.6	37
3240	Efficient heterogeneous acid synthesis and stability enhancement of UiO-66 impregnated with ammonium sulfate for biodiesel production. Chemical Engineering Journal, 2021, 408, 127277.	6.6	51
3241	Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chemical Engineering Journal, 2021, 405, 127004.	6.6	147
3242	MOFâ€Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angewandte Chemie - International Edition, 2021, 60, 1290-1297.	7.2	110
3243	Polymorphism in the metal–organic hybrid (PhCH2NEt3)2[CoBr4]: Synthesis, crystal structures and physico-chemical characterizations. Inorganica Chimica Acta, 2021, 514, 119997.	1.2	12
3244	2-Methylimidazole-modulated UiO-66 as an effective photocatalyst to degrade Rhodamine B under visible light. Journal of Materials Science, 2021, 56, 1577-1589.	1.7	7
3245	Effective adsorption of mercury by Zr(IV)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution. Environmental Science and Pollution Research, 2021, 28, 7068-7075.	2.7	46
3246	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	9.5	140
3247	Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal-organic framework (MOF): Experimental and DFT-D theoretical explorations. Chemical Engineering Journal, 2021, 408, 127366.	6.6	62
3248	Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydrate Polymers, 2021, 253, 117305.	5.1	80

#	Article	IF	CITATIONS
3249	Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413, 127388.	6.6	24
3250	Effect of modification of UiO-66 for CO2 adsorption and separation of CO2/CH4. Journal of Molecular Structure, 2021, 1227, 129506.	1.8	24
3251	Implanting polyethylene glycol into MIL-101(Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. Chemical Engineering Journal, 2021, 404, 126562.	6.6	55
3252	Development of an active/barrier bi-functional anti-corrosion system based on the epoxy nanocomposite loaded with highly-coordinated functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF). Chemical Engineering Journal, 2021, 408, 127361.	6.6	89
3253	Adsorptive removal of pharmaceuticals from water using metal-organic frameworks: A review. Journal of Environmental Management, 2021, 277, 111389.	3.8	82
3254	Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Research, 2021, 14, 444-449.	5.8	36
3255	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
3256	Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications. Coordination Chemistry Reviews, 2021, 429, 213618.	9.5	94
3257	Study on adsorption of U(VI) from MOF-derived phosphorylated porous carbons. Journal of Solid State Chemistry, 2021, 293, 121792.	1.4	22
3258	Adsorption performance of UiO-66 towards organic dyes: Effect of activation conditions. Journal of Molecular Liquids, 2021, 321, 114487.	2.3	42
3259	Enhancing CO ₂ Electrocatalysis on 2D Porphyrinâ€Based Metal–Organic Framework Nanosheets Coupled with Visibleâ€Light. Small Methods, 2021, 5, e2000991.	4.6	50
3260	Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants. Materials Today Energy, 2021, 19, 100589.	2.5	75
3261	Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	11.1	121
3262	Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution. Journal of Molecular Liquids, 2021, 322, 114910.	2.3	97
3263	A methylation-inspired mesoporous coordination polymer for identification and removal of organic pollutants in aqueous solutions. Journal of Materials Chemistry B, 2021, 9, 638-647.	2.9	9
3264	A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. Energy Storage Materials, 2021, 35, 687-694.	9.5	35
3265	Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables. Food Chemistry, 2021, 345, 128807.	4.2	67
3266	A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. Journal of CO2 Utilization, 2021, 43, 101381.	3.3	135

#	ARTICLE	IF	CITATIONS
3267	Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation. Microporous and Mesoporous Materials, 2021, 313, 110823.	2.2	17
3268	Metal–organic frameworks <i>vs.</i> buffers: case study of UiO-66 stability. Inorganic Chemistry Frontiers, 2021, 8, 720-734.	3.0	65
3269	UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. Molecular Catalysis, 2021, 499, 111277.	1.0	22
3270	Oneâ€Step Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metalâ€"Organic Frameworks. Angewandte Chemie, 2021, 133, 4328-4334.	1.6	13
3271	Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903.	6.9	73
3272	Conjugated crosslinks boost the conductivity and stability of a single crystalline metal–organic framework. Chemical Communications, 2021, 57, 187-190.	2.2	10
3273	Zirconium(â£)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Food Chemistry, 2021, 344, 128650.	4.2	32
3274	Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): A periodic density functional theory (DFT) study of fluorination and adsorption. International Journal of Hydrogen Energy, 2021, 46, 4222-4228.	3.8	33
3275	Efficient Lithium Growth Control from Ordered Nitrogenâ€Chelated Lithiumâ€ion for High Performance Lithium Metal Batteries. Advanced Science, 2021, 8, 2002144.	5.6	9
3276	Differentiation of Ptâ^'Fe and Ptâ^'Ni ₃ Surface Catalytic Mechanisms towards Contrasting Products in Chemoselective Hydrogenation of α,βâ€Unsaturated Aldehydes. ChemCatChem, 2021, 13, 704-711.	1.8	14
3277	Oneâ€Step Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metalâ€"Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4282-4288.	7.2	73
3278	Diversified strategies based on nanoscale metal-organic frameworks for cancer therapy: The leap from monofunctional to versatile. Coordination Chemistry Reviews, 2021, 431, 213676.	9.5	24
3279	Straightforward synthesis of a porous chromium-based porphyrinic metal-organic framework for visible-light triggered selective aerobic oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis A: General, 2021, 611, 117965.	2.2	27
3280	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
3281	1Â+Â1Â>Â2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 2021, 417, 128022.	6.6	73
3282	Insights into metal-organic frameworks-integrated membranes for desalination process: A review. Desalination, 2021, 500, 114867.	4.0	70
3283	Exploring UiO-66(Zr) frameworks as nanotraps for highly efficient removal of EDTA-complexed heavy metals from water. Journal of Environmental Chemical Engineering, 2021, 9, 104932.	3.3	21
3284	Ratiometric fluorescence detection of melamine in milk by a zirconium-based metal-organic frameworks composite. Microchemical Journal, 2021, 162, 105837.	2.3	17

#	Article	IF	CITATIONS
3285	Study on thermodynamics, dynamics and reverse shape separation selectivity of mesoporous UiO-66 for nHEP/MCH. Microporous and Mesoporous Materials, 2021, 314, 110819.	2.2	3
3286	Bioresponsive metal–organic frameworks: Rational design and function. Coordination Chemistry Reviews, 2021, 431, 213682.	9.5	17
3287	Heterocyclic reaction inducted by Brønsted–Lewis dual acidic Hf-MOF under microwave irradiation. Molecular Catalysis, 2021, 499, 111291.	1.0	13
3288	Application of Metalâ€Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - an Asian Journal, 2021, 16, 185-196.	1.7	31
3289	Photoswitchable Metal–Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. Langmuir, 2021, 37, 2-15.	1.6	29
3290	An active and stable multifunctional catalyst with defective UiO-66 as a support for Pd over the continuous catalytic conversion of acetone and hydrogen. RSC Advances, 2021, 11, 48-56.	1.7	6
3291	Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chemical Engineering Journal, 2021, 417, 128112.	6.6	38
3292	Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chemical Reviews, 2021, 121, 1286-1424.	23.0	349
3293	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography. Journal of the American Chemical Society, 2021, 143, 390-398.	6.6	103
3294	Chemistry and applications of s-block metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 3828-3854.	5.2	31
3295	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	2.1	7
3296	Nitrogen reduction through confined electro-catalysis with carbon nanotube inserted metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 1480-1486.	5.2	27
3297	Fischer–Tropsch synthesis over a novel cobalt catalyst supported on UiO-66. Journal of the Iranian Chemical Society, 2021, 18, 1043-1050.	1.2	8
3298	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	9.5	28
3299	Gas Storage in Porous Molecular Materials. Chemistry - A European Journal, 2021, 27, 4531-4547.	1.7	30
3300	Graphene quantum dots incorporated UiO-66-NH2 as a promising photocatalyst for degradation of long-chain oleic acid. Chemical Physics Letters, 2021, 762, 138129.	1.2	26
3301	Phosphomolybdic acid niched in the metal-organic framework UiO-66 with defects: An efficient and stable catalyst for oxidative desulfurization. Fuel Processing Technology, 2021, 212, 106629.	3.7	67
3302	Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coordination Chemistry Reviews, 2021, 426, 213479.	9.5	145

#	ARTICLE	IF	Citations
3303	E.Âcoli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal. Chemosphere, 2021, 270, 128672.	4.2	9
3304	The Role of Metal–Organic Frameworks in Electronic Sensors. Angewandte Chemie, 2021, 133, 15320-15340.	1.6	26
3305	A computational study of water in <scp>UiO</scp> â€66 <scp>Zrâ€MOFs</scp> : Diffusion, hydrogen bonding network, and confinement effect. AICHE Journal, 2021, 67, e17035.	1.8	16
3306	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	15.6	61
3307	Functionalization of zirconium-based metal–organic frameworks for gas sensing applications. Journal of Hazardous Materials, 2021, 403, 124104.	6.5	42
3308	Recent Advances on Metalâ€Organic Frameworks in the Conversion of Carbon Dioxide. Chinese Journal of Chemistry, 2021, 39, 440-462.	2.6	51
3309	PtRu bimetallic nanoparticles embedded in MOF-derived porous carbons for efficiently electrochemical sensing of uranium. Journal of Solid State Electrochemistry, 2021, 25, 425-433.	1.2	8
3310	The Role of Metal–Organic Frameworks in Electronic Sensors. Angewandte Chemie - International Edition, 2021, 60, 15192-15212.	7.2	62
3311	Monodentate AlEgen Anchored on Metalâ€Organic Framework for Fast Fluorescence Sensing of Phosphate. Chinese Journal of Chemistry, 2021, 39, 99-105.	2.6	21
3312	Micro Solid Phase Extraction Using Novel Adsorbents. Critical Reviews in Analytical Chemistry, 2021, 51, 103-114.	1.8	28
3313	Conductive Porous Coordination Polymers: Electron, Ion, and Proton Conduction., 2021,, 393-409.		1
3314	Methods and Diversity in the Synthesis of Metal-Organic Frameworks. , 2021, , 976-1020.		1
3315	Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: large drug-loading capacity and high-sensitivity fluorescence detection. Dalton Transactions, 2021, 50, 10524-10532.	1.6	17
3316	Indium metal–organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Transactions, 2021, 50, 5713-5723.	1.6	9
3317	Photocatalytic treatment of pollutants in aqueous media. Interface Science and Technology, 2021, 32, 725-759.	1.6	7
3318	Chiral and robust Zr(<scp>iv</scp>)-based metalâ€"organic frameworks built from spiro skeletons. Faraday Discussions, 2021, 231, 168-180.	1.6	13
3319	Probing the Interface between Encapsulated Nanoparticles and Metal–Organic Frameworks for Catalytic Selectivity Control. Chemistry of Materials, 2021, 33, 1946-1953.	3.2	19
3320	Precise Spatial Arrangement and Interaction between Two Different Mobile Components in a Metal-Organic Framework. CheM, 2021, 7, 202-211.	5.8	30

#	Article	IF	CITATIONS
3321	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. CrystEngComm, 2021, 23, 2764-2772.	1.3	11
3322	Reverse synthesis of yolk–shell metal–organic frameworks. Chemical Communications, 2021, 57, 3415-3418.	2.2	7
3323	Nano/Micro MOF-Based Materials. , 2021, , 1-40.		0
3324	Efficient and Selective Visible-Light-Driven Oxidative Coupling of Amines to Imines in Air over CdS@Zr-MOFs. ACS Applied Materials & Diterfaces, 2021, 13, 2779-2787.	4.0	66
3325	Translational dynamics of a non-degenerate molecular shuttle imbedded in a zirconium metal–organic framework. Chemical Science, 2021, 12, 3944-3951.	3.7	25
3326	One-pot synthesis of sulfonic acid functionalized Zr-MOFs for rapid and specific removal of radioactive Ba ²⁺ . Chemical Communications, 2021, 57, 5822-5825.	2.2	7
3327	Effects of ligand functionalization on the band gaps and luminescent properties of a Zr12 oxo-cluster based metal–organic framework. CrystEngComm, 2021, 23, 2961-2967.	1.3	10
3328	A Bioconjugated Chlorin-Based Metal–Organic Framework for Targeted Photodynamic Therapy of Triple Negative Breast and Pancreatic Cancers. ACS Applied Bio Materials, 2021, 4, 1432-1440.	2.3	19
3329	â€~Eye' of the molecule—a viewpoint. Faraday Discussions, 2021, 231, 145-149.	1.6	1
3330	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.2	0
3331	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	6.6	28
3332	Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chemical Society Reviews, 2021, 50, 6152-6220.	18.7	164
3333	Enhanced Guest@MOF Interaction via Stepwise Thermal Annealing: TCNQ@Cu ₃ (BTC) ₂ . Crystal Growth and Design, 2021, 21, 817-828.	1.4	5
3334	Fine-tuning the pore structure of metal–organic frameworks by linker substitution for enhanced hydrogen storage and gas separation. CrystEngComm, 2021, 23, 3026-3032.	1.3	15
3335	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3166-3174.	4.0	48
3336	In Situ Nuclear Magnetic Resonance Investigation of Molecular Adsorption and Kinetics in Metal–Organic Framework UiO-66. Journal of Physical Chemistry Letters, 2021, 12, 892-899.	2.1	10
3337	Metal-organic framework photocatalysts for carbon dioxide reduction., 2021,, 389-420.		0
3338	Uncommon thioether-modified metal–organic frameworks with unique selective CO ₂ sorption and efficient catalytic conversion. CrystEngComm, 2021, 23, 1447-1454.	1.3	1

#	Article	IF	CITATIONS
3339	Synthetic approaches for accessing rare-earth analogues of UiO-66. Chemical Communications, 2021, 57, 6121-6124.	2.2	18
3340	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.	18.7	333
3341	A new 2D lanthanum based microporous MOF for efficient synthesis of cyclic carbonates through CO ₂ fixation. New Journal of Chemistry, 2021, 45, 9189-9196.	1.4	12
3342	Raman spectroscopy-based sensitive, fast and reversible vapour phase detection of explosives adsorbed on metal–organic frameworks UiO-67. New Journal of Chemistry, 2021, 45, 7145-7153.	1.4	16
3343	Fluorogenic naked eye "turn-on―sensing of hypochlorous acid by a Zr-based metal organic framework. New Journal of Chemistry, 2021, 45, 14211-14217.	1.4	3
3344	Metal–organic and Covalent Organic Frameworks Incorporating Ru Species. , 2021, , 389-427.		1
3345	Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water. Faraday Discussions, 2021, 231, 356-370.	1.6	9
3346	The Coordination Chemistry of Metal-Organic Frameworks: Metalation, Catalysis and Beyond. , 2021, , 99-117.		1
3347	Defective Zr-Fumarate MOFs Enable High-Efficiency Adsorption Heat Allocations. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 1723-1734.	4.0	29
3348	Catalytic Nanoparticles in Metal–Organic Frameworks. Monographs in Supramolecular Chemistry, 2021, , 396-427.	0.2	0
3349	Luminescent metal–organic frameworks as chemical sensors based on "mechanism–response― a review. Dalton Transactions, 2021, 50, 3429-3449.	1.6	68
3350	Correlated disorder in metal–organic frameworks. CrystEngComm, 2021, 23, 2915-2922.	1.3	15
3351	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	1.6	8
3352	Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chemical Science, 2021, 12, 9176-9188.	3.7	20
3353	Ultrathin porous amine-based solid adsorbent incorporated zeolitic imidazolate framework-8 membrane for gas separation. RSC Advances, 2021, 11, 28863-28875.	1.7	6
3354	The key role of metal nanoparticle in metal organic frameworks of UiO family (MOFs) for the application of CO2 capture and heterogeneous catalysis., 2021,, 369-404.		1
3355	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.3	0
3356	Robust and Environmentally Friendly MOFs. , 2021, , 1-31.		0

#	Article	IF	CITATIONS
3357	Solid Acid-Catalyzed Esterification of Levulinic Acid for Production of Value-Added Chemicals. , 2021, , 345-382.		3
3358	Structural similarity, synthesis, and adsorption properties of aluminum-based metal-organic frameworks. Adsorption, 2021, 27, 227-236.	1.4	8
3359	Metal-organic framework-based processes for water desalination: Current development and future prospects., 2021,, 491-532.		0
3360	Improved continuous synthesis of UiO-66 enabling outstanding production rates. Reaction Chemistry and Engineering, 2021, 6, 679-684.	1.9	2
3361	Synthesis, characterization, and polymerization of capped paddlewheel porous cages. Dalton Transactions, 2021, 50, 3127-3131.	1.6	6
3362	Adsorption properties of acetylene, ethylene and ethane in UiO-66 with linker defects and NO2 functionalization. Materials Advances, 2021, 2, 426-433.	2.6	3
3363	Metal-Organic Frameworks for Catalytic Applications. , 2021, , 228-259.		2
3364	Porous Coordination Polymers/Metal-Organic Frameworks. , 2021, , 314-327.		0
3365	Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects. , 2021, , 1021-1054.		0
3366	Strategically improving the intrinsic proton conductivity of UiO-66-NH ₂ by post-synthesis modification. Dalton Transactions, 2021, 50, 5943-5950.	1.6	7
3367	Influence of Metal Defects on the Mechanical Properties of ABX ₃ Perovskite-Type Metal-formate Frameworks. Journal of Physical Chemistry C, 2021, 125, 1467-1471.	1.5	12
3368	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1
3369	Water-stable metal–organic framework for environmental remediation. , 2021, , 585-621.		3
3370	Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-65.	1.6	12
3371	Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small, 2021, 17, e2005064.	5 . 2	65
3372	Metal–organic frameworks for the removal of the emerging contaminant atenolol under real conditions. Dalton Transactions, 2021, 50, 2493-2500.	1.6	11
3373	Surface organometallic and coordination chemistry approach to formation of single site heterogeneous catalysts., 2021,,.		0
3374	Metal-Organic Framework (MOF) in Fuel Cells. , 2021, , 306-306.		1

#	Article	IF	CITATIONS
3375	A Series of Metal–Organic Framework Isomers Based on Pyridinedicarboxylate Ligands: Diversified Selective Gas Adsorption and the Positional Effect of Methyl Functionality. Inorganic Chemistry, 2021, 60, 2704-2715.	1.9	24
3376	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12
3377	Reticular design and crystal structure determination of covalent organic frameworks. Chemical Science, 2021, 12, 8632-8647.	3.7	41
3378	Catalysis in Confined Space: Relationship Between Metal–Organic Frameworks and Discrete Coordination Cages. Monographs in Supramolecular Chemistry, 2021, , 247-281.	0.2	3
3379	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58
3380	Modulated synthesis of thiol-functionalized fcu and hcp UiO-66(Zr) for the removal of silver(<scp>i</scp>) ions from water. Materials Advances, 2021, 2, 804-812.	2.6	20
3381	Esterification catalyzed by an efficient solid acid synthesized from PTSA and UiO-66(Zr) for biodiesel production. Faraday Discussions, 2021, 231, 342-355.	1.6	12
3382	Ultrafast and nanomolar level detection of H ₂ S in aqueous medium using a functionalized UiO-66 metal–organic framework based fluorescent chemosensor. Dalton Transactions, 2021, 50, 11631-11639.	1.6	11
3383	Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. Dalton Transactions, 2021, 50, 11291-11299.	1.6	8
3384	Impact of defects on the decomposition of chemical warfare agent simulants in Zrâ€based metal organic frameworks. AICHE Journal, 2021, 67, e17156.	1.8	5
3385	Strategies in Metal– <scp>Organic Frameworkâ€based</scp> Catalysts for the Aerobic Oxidation of Alcohols and Recent Progress. Bulletin of the Korean Chemical Society, 2021, 42, 359-368.	1.0	25
3386	Enhanced photocatalytic performance of UiO-66-NH2/TiO2 composite for dye degradation. Environmental Science and Pollution Research, 2021, 28, 25552-25565.	2.7	30
3387	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
3388	High-Throughput Computational Screening of Metal–Organic Frameworks for the Separation of Methane from Ethane and Propane. Journal of Physical Chemistry C, 2021, 125, 1839-1854.	1.5	16
3389	Metal-Organic Frameworks for Drug Delivery Applications. Advances in Chemical and Materials Engineering Book Series, 2021, , 139-170.	0.2	0
3390	A defect-driven atomically dispersed Fe–N–C electrocatalyst for bifunctional oxygen electrocatalytic activity in Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 5556-5565.	5.2	54
3391	Advances in cellulose-metal organic framework composites: preparation and applications. Journal of Materials Chemistry A, 2021, 9, 23353-23363.	5.2	49
3392	Photocatalytic Hydrogen Evolution Based on Cobalt–Organic Framework with High Water Vapor Adsorption. Inorganic Chemistry, 2021, 60, 1922-1929.	1.9	10

#	Article	IF	CITATIONS
3393	From metal–organic framework powders to shaped solids: recent developments and challenges. Materials Advances, 2021, 2, 7139-7186.	2.6	50
3394	Synthesis of C ₂ oxygenates from syngas over UiO-66 supported Rh–Mn catalysts: the effect of functional groups. New Journal of Chemistry, 2021, 45, 696-704.	1.4	0
3395	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	1.6	13
3396	Highly Specific Coordination-Driven Self-Assembly of 2D Heterometallic Metal–Organic Frameworks with Unprecedented Johnson-type (⟨i⟩J⟨ i⟩⟨sub⟩51⟨ sub⟩) Nonanuclear Zr-Oxocarboxylate Clusters. Journal of the American Chemical Society, 2021, 143, 657-663.	6.6	20
3397	Zeolitic Imidazolate Framework Membranes with a High H2 Permeance Fabricated on a Macroporous Support with Novel Spherical Porous Hybrid Materials. Industrial & Engineering Chemistry Research, 2021, 60, 1387-1395.	1.8	8
3398	Modulation of the Bifunctional CrVI to CrIII Photoreduction and Adsorption Capacity in ZrIV and TilV Benchmark Metal-Organic Frameworks. Catalysts, 2021, 11, 51.	1.6	14
3399	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	1.6	34
3400	Pebaxâ€based mixed matrix membranes loaded with graphene oxide/core shell <scp>ZIF</scp> â€8@ <scp>ZIF</scp> â€67 nanocomposites improved <scp>CO₂</scp> permeability and selectivity. Journal of Applied Polymer Science, 2021, 138, 50553.	1.3	24
3401	Ionic liquid-loaded metal-organic framework system for nanoionic device applications. Japanese Journal of Applied Physics, 2021, 60, SBBK10.	0.8	4
3402	Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. Russian Journal of Inorganic Chemistry, 2021, 66, 193-201.	0.3	8
3403	Defectâ€Assisted Loading and Docking Conformations of Pharmaceuticals in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 7798-7806.	1.6	6
3404	Synthesis of NiFe ₂ O ₄ @AC/UiOâ€66(Zr) for Enhancement of the Photocatalytic Performance of Alizarin Yellow R Under Visibleâ€light. ChemistrySelect, 2021, 6, 995-1007.	0.7	10
3405	Strain Engineering for Tuning the Photocatalytic Activity of Metal-Organic Frameworks-Theoretical Study of the UiO-66 Case. Catalysts, 2021, 11, 264.	1.6	3
3406	High-Performance, Free-Standing Symmetric Hybrid Membranes for Osmotic Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8967-8975.	4.0	7
3407	Modulation of the Thermochemical Stability and Adsorptive Properties of MOF-808 by the Selection of Non-structural Ligands. Chemistry of Materials, 2021, 33, 1471-1476.	3.2	26
3408	Fabrication of inâ€situ polymerized <scp>UiO</scp> â€66/ <scp>PVDF</scp> supramolecular membranes with high antiâ€fouling performance. Journal of Applied Polymer Science, 2021, 138, 50519.	1.3	8
3409	Responses of Defect-Rich Zr-Based Metal–Organic Frameworks toward NH ₃ Adsorption. Journal of the American Chemical Society, 2021, 143, 3205-3218.	6.6	47
3410	Recent advances on thermal energy storage using metal-organic frameworks (MOFs). Journal of Energy Storage, 2021, 34, 102179.	3.9	53

#	Article	IF	CITATIONS
3411	Metal–Organic Frameworkâ€Based Ionâ€Selective Membranes. Advanced Materials Technologies, 2021, 6, 2000790.	3.0	28
3412	A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products. Foods, 2021, 10, 419.	1.9	5
3413	Hybrid Perovskites, Metal–Organic Frameworks, and Beyond: Unconventional Degrees of Freedom in Molecular Frameworks. Accounts of Chemical Research, 2021, 54, 1288-1297.	7.6	29
3414	Straightforward activation of metal-organic framework UiO-66 for oxidative desulfurization processes. Catalysis Today, 2021, 362, 28-34.	2.2	34
3415	Adsorptive Behavior of Prepared Metal-Organic Framework Composites on Phosphates in Aqueous Solutions. Adsorption Science and Technology, 2021, 2021, 1-10.	1.5	5
3416	Modification of UiO-66 for removal of uranyl ion from aqueous solution by immobilization of tributyl phosphate. Journal of Chemical Sciences, 2021, 133, 1.	0.7	11
3418	Hf-MOF catalyzed Meerweinâ^'Ponndorfâ^'Verley (MPV) reduction reaction: Insight into reaction mechanism. Molecular Catalysis, 2021, 502, 111405.	1.0	15
3419	Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Design Perspectiv	4.0	435
3420	Multifunctional MOFâ€Based Separator Materials for Advanced Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2001941.	1.9	27
3421	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	3.2	56
3422	Advances in Postâ€Combustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	3.6	75
3423	Computational Insights into As(V) Removal from Water by the UiO-66 Metal–Organic Framework. Journal of Physical Chemistry C, 2021, 125, 3157-3168.	1.5	17
3424	Defectâ€Assisted Loading and Docking Conformations of Pharmaceuticals in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 7719-7727.	7.2	25
3425	Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. CheM, 2021, 7, 450-462.	5.8	12
3426	Polymer-Coated NH ₂ -UiO-66 for the Codelivery of DOX/pCRISPR. ACS Applied Materials & Lorentz &	4.0	80
3427	Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review. Energy Conversion and Management, 2021, 229, 113760.	4.4	85
3428	Investigation of cellulose acetate/gammaâ€eyclodextrin MOF based mixed matrix membranes for CO ₂ /CH ₄ gas separation. , 2021, 11, 313-330.		23
3429	Ce ^{IV} ₇₀ Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity**. Angewandte Chemie - International Edition, 2021, 60, 7308-7315.	7.2	37

#	Article	IF	CITATIONS
3430	Ce IV 70 Oxosulfate Rings, Frameworks, Supramolecular Assembly, and Redox Activity**. Angewandte Chemie, 2021, 133, 7384-7391.	1.6	8
3431	Metal–Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills. ACS Applied Materials & The Facile Removal of Oil Spills.	4.0	78
3432	Single-Crystalline Ultrathin 2D Porous Nanosheets of Chiral Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 3509-3518.	6.6	80
3433	Laponite-Incorporated UiO-66-NH ₂ -Polyethylene Oxide Composite Membranes for Protection against Chemical Warfare Agent Simulants. ACS Applied Materials & Diterfaces, 2021, 13, 10500-10512.	4.0	11
3434	Metal-organic frameworks for environmental applications. Cell Reports Physical Science, 2021, 2, 100348.	2.8	44
3435	Effective CH ₄ /N ₂ separation using NU-1000 at high pressures. Journal of Coordination Chemistry, 2021, 74, 216-225.	0.8	12
3436	Successive degradation of organophosphate nerve agent by integrating the merits of artificial enzyme and metal nanoparticle catalyst. Colloids and Interface Science Communications, 2021, 41, 100382.	2.0	5
3437	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	4.2	16
3438	Photocatalytic Reduction of CO2 to Methanol Using a Copper-Zirconia Imidazolate Framework. Catalysts, 2021, 11, 346.	1.6	5
3439	Understanding the Incorporation and Release of Salicylic Acid in Metalâ€Organic Frameworks for Topical Administration. European Journal of Inorganic Chemistry, 2021, 2021, 1325-1331.	1.0	6
3440	Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16300-16308.	4.0	74
3441	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	23.3	166
3443	Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosensors and Bioelectronics, 2021, 176, 112947.	5.3	161
3444	Incorporation of Al ³⁺ Sites on Brønsted Acid Metal–Organic Frameworks for Glucoseâ€toâ€Hydroxylmethylfurfural Transformation. Small, 2021, 17, e2006541.	5.2	17
3445	Mono-substituted polyoxometalate clusters@Zr-MOFs: Reactivity, kinetics, and catalysis for cycloolefins-H2O2 biphase reactions. Molecular Catalysis, 2021, 504, 111465.	1.0	7
3446	Spatially Organized Functional Bioreactors in Nanoscale Mesoporous MOFs for Cascade Scavenging of Intracellular ROS. Chemistry of Materials, 2021, 33, 2198-2205.	3.2	26
3447	A novel sodium-fluorescent crystal. Royal Society Open Science, 2021, 8, 201987.	1.1	0
3448	Adsorption and separation of hexane isomers in metal-organic frameworks (MOFs): A computational study. Computational and Theoretical Chemistry, 2021, 1197, 113164.	1.1	5

#	Article	IF	Citations
3449	Effects of functional groups of $\hat{a} \in \text{``NH2}$ and $\hat{a} \in \text{``NO2}$ on water adsorption ability of Zr-based MOFs (UiO-66). Chemical Physics, 2021, 543, 111093.	0.9	25
3450	An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 2021, 488, 229444.	4.0	126
3451	Metal Organic Framework in Membrane Separation for Wastewater Treatment: Potential and Way Forward. Arabian Journal for Science and Engineering, 2021, 46, 6109-6130.	1.7	10
3452	Weak Coordination Bond of Chloromethane: A Unique Way to Activate Metal Node Within an Unstable Metal–Organic Framework <scp>DUT</scp> â€34. Bulletin of the Korean Chemical Society, 2021, 42, 658-666.	1.0	22
3453	Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag ₃ Sb Nanodots. Inorganic Chemistry, 2021, 60, 5757-5763.	1.9	4
3454	Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Frontiers of Chemical Science and Engineering, 2021, 15, 1158-1168.	2.3	14
3455	Amino Acidâ€Functionalized Metalâ€Organic Frameworks for Asymmetric Base–Metal Catalysis. Angewandte Chemie, 2021, 133, 11059-11065.	1.6	1
3456	Tuning the Properties of MOFâ€808 via Defect Engineering and Metal Nanoparticle Encapsulation. Chemistry - A European Journal, 2021, 27, 6804-6814.	1.7	46
3457	A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. Reactive and Functional Polymers, 2021, 160, 104825.	2.0	13
3458	Study on energy storage properties of Metal-organic frameworks nanofluids (UIO-67/Water and) Tj ETQq1 1 0.78 10008-10017.	34314 rgB7 1.7	「/Overlock 3
3459	Efficient CO2 to X Transformation with Metal Organic Framework Catalysts. Ceramist, 2021, 24, 67-95.	0.0	0
3460	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14239-14247.	4.0	73
3461	Manipulating solvent and solubility in the synthesis, activation, and modification of permanently porous coordination cages. Coordination Chemistry Reviews, 2021, 430, 213679.	9.5	20
3462	Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Industrial & Engineering Chemistry Research, 2021, 60, 4218-4239.	1.8	36
3463	Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. Journal of Molecular Liquids, 2021, 325, 115228.	2.3	21
3464	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	23.3	128
3465	Amino Acidâ€Functionalized Metalâ€Organic Frameworks for Asymmetric Base–Metal Catalysis. Angewandte Chemie - International Edition, 2021, 60, 10964-10970.	7.2	53
3466	Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Industrial & Engineering Chemistry Research, 2021, 60, 4086-4096.	1.8	15

#	Article	IF	CITATIONS
3467	Proton conductive metal sulfonate frameworks. Coordination Chemistry Reviews, 2021, 431, 213747.	9.5	63
3468	Nonbonded Zr ⁴⁺ and Hf ⁴⁺ Models for Simulations of Condensed Phase Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 6471-6478.	1.5	5
3470	Novel UiOâ€66â€NH ₂ /Gly/GO Nanocomposite Adsorbent for Ultraâ€trace Analyzing of Chlorpyrifos Pesticide by Ion Mobility Spectrometry. ChemistrySelect, 2021, 6, 3370-3377.	0.7	7
3471	Controlled Metal Oxide and Porous Carbon Templation Using Metal-Organic Frameworks. Crystal Growth and Design, 2021, 21, 4249-4258.	1.4	3
3472	Evaluating the Robustness of Metal–Organic Frameworks for Synthetic Chemistry. ACS Applied Materials & Chemistry. ACS	4.0	35
3473	From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO ₂ over Cerium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8497-8507.	1.5	41
3474	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Diterfaces, 2021, 13, 20081-20093.	4.0	36
3475	PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant. Applied Catalysis B: Environmental, 2021, 283, 119582.	10.8	118
3476	Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal–Organic Frameworks. Accounts of Chemical Research, 2021, 54, 1982-1991.	7.6	29
3480	Surface-functionalized nanoMOFs in oil for friction and wear reduction and antioxidation. Chemical Engineering Journal, 2021, 410, 128306.	6.6	57
3481	UiO-66 Metal–Organic Framework as an Anode for a Potassium-Ion Battery: Quantum Mechanical Analysis. Journal of Physical Chemistry C, 2021, 125, 9679-9687.	1.5	21
3482	Plasmonic Nanoparticle-Metal–Organic Framework (NP–MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. , 2021, 3, 557-573.		45
3484	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie - International Edition, 2021, 60, 13081-13088.	7.2	70
3485	Methane adsorption on the Zr-BDC metal-organic framework structure at supercritical temperatures and pressures. Russian Chemical Bulletin, 2021, 70, 665-671.	0.4	5
3486	Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. Chemistry Letters, 2021, 50, 697-710.	0.7	7
3487	Novel bimodal microâ€mesoporous Ni50Co50-LDH/UiO-66-NH2 nanocomposite for Tl(I) adsorption. Arabian Journal of Chemistry, 2021, 14, 103058.	2.3	24
3488	Bimetallic Ce/Zr UiO-66 Metal–Organic Framework Nanostructures as Peptidase and Oxidase Nanozymes. ACS Applied Nano Materials, 2021, 4, 5748-5757.	2.4	25
3489	Performanceâ€Enhanced and Washable Triboelectric Air Filter Based on Polyvinylidene Fluoride/UiOâ€66 Composite Nanofiber Membrane. Macromolecular Materials and Engineering, 2021, 306, 2100128.	1.7	28

#	Article	IF	CITATIONS
3490	Deliberate Construction of Polyoxoniobates Exploiting the Carbonate Ligand. Angewandte Chemie, 2021, 133, 12569-12574.	1.6	6
3491	Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH ₂ : Optimization of Metal–Organic Framework Carriers and Evaluation of Host–Guest Interactions. Inorganic Chemistry, 2021, 60, 5694-5703.	1.9	18
3492	Structural Evolution from Noninterpenetrated to Interpenetrated Thorium–Organic Frameworks Exhibiting High Propyne Storage. Inorganic Chemistry, 2021, 60, 6472-6479.	1.9	16
3493	Metal–Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2021, 143, 5727-5736.	6.6	157
3494	Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: A review. International Journal of Hydrogen Energy, 2021, 46, 14148-14189.	3.8	85
3495	Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. Journal of Membrane Science, 2021, 624, 119047.	4.1	39
3496	Anion binding in metal-organic frameworks. Coordination Chemistry Reviews, 2021, 432, 213708.	9.5	29
3497	MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO ₂ /CH ₄ Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18380-18388.	4.0	26
3498	Solvent-directed assembly of Zr-based metal-organic cages for dye adsorption from aqueous solution. Journal of Solid State Chemistry, 2021, 296, 121998.	1.4	9
3499	A Computational Study of Isopropyl Alcohol Adsorption and Diffusion in UiO-66 Metal–Organic Framework: The Role of Missing Linker Defect. Journal of Physical Chemistry B, 2021, 125, 3690-3699.	1.2	9
3500	Support Effect of Metal–Organic Frameworks on Ethanol Production through Acetic Acid Hydrogenation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19992-20001.	4.0	12
3501	Uniting Form and Function, Stability and Reactivity in Open Framework Materials. Chemistry Letters, 2021, 50, 627-631.	0.7	4
3502	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie, 2021, 133, 13191-13198.	1.6	20
3503	Defect Termination in the UiO-66 Family of Metal–Organic Frameworks: The Role of Water and Modulator. Journal of the American Chemical Society, 2021, 143, 6328-6332.	6.6	74
3504	Deliberate Construction of Polyoxoniobates Exploiting the Carbonate Ligand. Angewandte Chemie - International Edition, 2021, 60, 12461-12466.	7.2	22
3505	Using a simple method to prepare <scp>UiOâ€66â€NH₂</scp> /chitosan composite membranes for oil–water separation. Journal of Applied Polymer Science, 2021, 138, 50765.	1.3	14
3506	The performance and mechanism of U(VI) removal from aqueous solutions by a metal–organic framework (DUT-69). Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 181-194.	0.7	4
3507	The Impact of Structural Defects on Iodine Adsorption in UiO-66. Chemistry, 2021, 3, 525-531.	0.9	15

#	Article	IF	CITATIONS
3508	Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Research, 2021, 14, 2981-3009.	5.8	26
3509	Amorphous mesoporous matrix from metal-organic framework UiO-66 template with strong nucleophile substitution. Chemosphere, 2021, 268, 129155.	4.2	2
3510	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3276-3285.	3.2	79
3511	State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochimica Acta, 2021, 188, 168.	2.5	21
3512	Metal–Organic Frameworks as Versatile Platforms for Organometallic Chemistry. Inorganics, 2021, 9, 27.	1.2	12
3513	Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. Journal of Membrane Science, 2021, 623, 118986.	4.1	30
3515	A conductive chlorine ion-imprinted polymer threaded in metal-organic frameworks for electrochemically selective separation of chloride ions. Chemical Engineering Journal, 2021, 412, 128576.	6.6	33
3516	Dual-Selective Catalysis in Dephosphorylation Tuned by Hf ₆ -Containing Metal–Organic Frameworks Mimicking Phosphatase. ACS Central Science, 2021, 7, 831-840.	5.3	17
3517	Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nature Communications, 2021, 12, 2682.	5.8	154
3518	Functionalized metal–organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural. Chinese Journal of Chemical Engineering, 2021, 33, 167-174.	1.7	35
3519	A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. Materials Science and Engineering C, 2021, 124, 112053.	3.8	10
3520	Dimensional Reduction of Lewis Acidic Metal–Organic Frameworks for Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 8184-8192.	6.6	59
3521	Understanding disorder and linker deficiency in porphyrinic zirconium-based metal–organic frameworks by resolving the Zr8O6 cluster conundrum in PCN-221. Nature Communications, 2021, 12, 3099.	5.8	41
3522	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie, 2021, 133, 14257-14264.	1.6	14
3523	Zirconium Metal–Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS Applied Materials & Distribution (1988)	4.0	27
3524	Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coordination Chemistry Reviews, 2021, 434, 213784.	9.5	72
3525	Metal–Organic Frameworks and Metal–Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. Advanced Materials, 2021, 33, e2008023.	11.1	60
3526	Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66(NH2)-EDTA for highly efficient methanol isolation. Separation and Purification Technology, 2021, 263, 118370.	3.9	24

#	Article	IF	CITATIONS
3528	Immobilization of cellulase on monolith supported with Zr(IV)-based metal-organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Mikrochimica Acta, 2021, 188, 186.	2.5	20
3529	Study on the Stability, Evolution of Physicochemical Properties, and Postsynthesis of Metal–Organic Frameworks in Bubbled Aqueous Ozone Solution. ACS Applied Materials & 1, 13, 26264-26277.	4.0	16
3530	Tuning Surface Functionalization and Pore Structure of UiO-66 Metal–Organic Framework Nanoparticles for Organic Pollutant Elimination. ACS Applied Nano Materials, 2021, 4, 5486-5495.	2.4	27
3531	Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications. Coordination Chemistry Reviews, 2021, 434, 213780.	9.5	50
3532	Role of Zr ₆ Metal Nodes in Zr-Based Metal–Organic Frameworks for Catalytic Detoxification of Pesticides. Inorganic Chemistry, 2021, 60, 10249-10256.	1.9	8
3533	Benchtop <i>In Situ</i> Measurement of Full Adsorption Isotherms by NMR. Journal of the American Chemical Society, 2021, 143, 8249-8254.	6.6	18
3534	A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126359.	2.3	26
3535	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51
3536	High ion selectivity Aquivion-based hybrid membranes for all vanadium redox flow battery. Advanced Composites and Hybrid Materials, 2021, 4, 451-458.	9.9	17
3537	Systematic Modification of UiOâ€66 Metalâ€Organic Frameworks for Glucose Conversion into 5â€Hydroxymethyl Furfural in Water. ChemCatChem, 2021, 13, 2517-2529.	1.8	26
3538	Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. Journal of Colloid and Interface Science, 2021, 590, 495-505.	5.0	111
3539	A dual stimuli-responsive and safer controlled release platform of pesticide through constructing UiO-66-based alginate hydrogel. Polymer Testing, 2021, 97, 107152.	2.3	15
3540	Recent progress on water vapor adsorption equilibrium by metal-organic frameworks for heat transformation applications. International Communications in Heat and Mass Transfer, 2021, 124, 105242.	2.9	33
3541	Ionic Salts@Metal–Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS Applied Materials & Diterfaces, 2021, 13, 23092-23102.	4.0	10
3542	UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. International Journal of Hydrogen Energy, 2021, 46, 19106-19115.	3.8	26
3543	Designing Oxide Aerogels With Enhanced Sorptive and Degradative Activity for Acute Chemical Threats. Frontiers in Materials, 2021, 8, .	1.2	7
3544	Highâ€Quality Thin Films of UiOâ€66â€NH ₂ by Coordination Modulated Layerâ€byâ€Layer Liquid Ph Epitaxy. Chemistry - A European Journal, 2021, 27, 8509-8516.	așe 1.7	12
3545	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie - International Edition, 2021, 60, 14138-14145.	7.2	48

#	Article	IF	CITATIONS
3546	High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities. Journal of Membrane Science, 2021, 625, 119175.	4.1	27
3547	An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries. Journal of Membrane Science, 2021, 626, 119190.	4.1	22
3548	A fluorescent biosensor based on graphene quantum dots/zirconium-based metal-organic framework nanocomposite as a peroxidase mimic for cholesterol monitoring in human serum. Microchemical Journal, 2021, 164, 106001.	2.3	22
3549	Synthesis of Highly Dispersed CuPd@UiO-66-NH ₂ for Nonenzymatic Hydrazine Sensing. Journal of the Electrochemical Society, 2021, 168, 057526.	1.3	4
3550	Hydrophobic/Hydrophilic Interplay in 1,2,4â€Triazoleâ€or Carboxylateâ€Based Molybdenum(VI) Oxide Hybrids: A Step Toward Development of Reactionâ€Induced Selfâ€Separating Catalysts. ChemCatChem, 2021, 13, 3090-3098.	1.8	4
3551	Trends and Prospects in UiOâ€66 Metalâ€Organic Framework for CO ₂ Capture, Separation, and Conversion. Chemical Record, 2021, 21, 1771-1791.	2.9	48
3552	Nearâ€Linear Controllable Synthesis of Mesoporosity in Hierarchical UiOâ€66 by Templateâ€Free Nucleationâ€Competition. Advanced Functional Materials, 2021, 31, 2102868.	7.8	21
3553	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	23.0	194
3554	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
3555	Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 31021-31030.	4.0	20
3556	Insights into the Enhancement of MOF/Polymer Adhesion in Mixed-Matrix Membranes <i>via</i> Polymer Functionalization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29041-29047.	4.0	32
3557	Core–Shell MOFâ€inâ€MOF Nanopore Bifunctional Host of Electrolyte for Highâ€Performance Solidâ€State Lithium Batteries. Small Methods, 2021, 5, e2100508.	4.6	43
3558	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconiumâ€Based MOF Materials. Chemistry - A European Journal, 2021, 27, 9967-9987.	1.7	33
3559	Oneâ€Step Chemoâ€, Regio―and Stereoselective Reduction of Ketosteroids to Hydroxysteroids over Zrâ€Containing MOFâ€808 Metalâ€Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10766-10775	1.7	5
3560	Evolution of 14-Connected Zr ₆ Secondary Building Units through Postsynthetic Linker Incorporation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51945-51953.	4.0	15
3561	UiO-66-NH2 and Zeolite-Templated Carbon Composites for the Degradation and Adsorption of Nerve Agents. Molecules, 2021, 26, 3837.	1.7	8
3562	C-AFM study on multi - resistive switching modes observed in metal–organic frameworks thin films. Organic Electronics, 2021, 93, 106136.	1.4	18
3563	Construction of UiO-66@MoS2 flower-like hybrids through electrostatically induced self-assembly with enhanced photodegradation activity towards lomefloxacin. Separation and Purification Technology, 2021, 265, 118486.	3.9	35

#	Article	IF	CITATIONS
3564	High performance functionalized UiO metal organic frameworks for the efficient and selective adsorption of Pb (II) ions in concentrated multi-ion systems. Journal of Environmental Chemical Engineering, 2021, 9, 105191.	3.3	35
3565	Recent advances in porous nanostructures for cancer theranostics. Nano Today, 2021, 38, 101146.	6.2	24
3566	Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Separation and Purification Technology, 2021, 264, 118315.	3.9	23
3567	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	1.8	21
3568	Merging <i>N</i> àêHydroxyphthalimide into Metalâ€Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation. Chemistry - A European Journal, 2021, 27, 9674-9685.	1.7	15
3569	Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews, 2021, 436, 213827.	9.5	105
3570	Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science. Nano Energy, 2021, 84, 105946.	8.2	110
3571	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	1.6	43
3572	Synthesis of nickel-metal organic framework nanoplates with pyridine modulation and application to supercapacitors. Journal of Energy Storage, 2021, 38, 102528.	3.9	18
3573	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
3574	Snapshots of Ce ₇₀ Toroid Assembly from Solids and Solution. Journal of the American Chemical Society, 2021, 143, 9612-9621.	6.6	23
3575	Mechanochemistry as a Reconstruction Tool of Decomposed Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 11825-11829.	1.9	11
3576	1D, 2D, and 3D Coordination Polymers based on 2,3â€Pyrazinedithiolate and d 10 Metal lons (Ag + , Zn 2+). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1721-1728.	0.6	2
3577	ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Separation and Purification Technology, 2021, 264, 118431.	3.9	40
3578	Collagen fiber membrane-derived chemically and mechanically durable superhydrophobic membrane for high-performance emulsion separation. Journal of Leather Science and Engineering, 2021, 3, .	2.7	33
3579	Synthesis and characterization of defective UiO-66 for efficient co-immobilization of arsenate and fluoride from single/binary solutions. Environmental Pollution, 2021, 278, 116841.	3.7	33
3580	Naphthalimide Derivative-Functionalized Metal–Organic Framework for Highly Sensitive and Selective Determination of Aldehyde by Space Confinement-Induced Sensitivity Enhancement Effect. Analytical Chemistry, 2021, 93, 8219-8227.	3.2	29
3581	Mechanochemistry: Toward green synthesis of metal–organic frameworks. Materials Today, 2021, 46, 109-124.	8.3	143

#	Article	IF	CITATIONS
3582	High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal–Organic Framework via "Click―Reaction. Inorganic Chemistry, 2021, 60, 10089-10094.	1.9	17
3583	NH ₂ -UiO-66 Coated with Two-Dimensional Covalent Organic Frameworks: High Stability and Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29916-29925.	4.0	68
3584	Using Helium Pycnometry to Study the Apparent Densities of Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51925-51932.	4.0	5
3585	CRYSTAL STRUCTURE OF DENSE METAL-ORGANIC FRAMEWORKS BASED ON Sc(III) AND TWO TYPES OF LIGANDS. Journal of Structural Chemistry, 2021, 62, 897-904.	0.3	5
3586	Screening Metal–Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules, 2021, 26, 3481.	1.7	3
3587	Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Letters, 2021, 13, 135.	14.4	182
3588	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
3589	Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27, 434-449.	3.3	18
3590	An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible <i>trans–cis</i> Photoisomerization. Inorganic Chemistry, 2021, 60, 8519-8529.	1.9	18
3591	Multi-applications of new trinuclear Zr-SMI complex. Journal of Molecular Structure, 2021, 1234, 129991.	1.8	0
3592	Smartphone-based ratiometric fluorescent definable system for phosphate by merged metalâ^'organic frameworks. Science of the Total Environment, 2021, 772, 144952.	3.9	46
3593	Wirtâ€Gastâ€Wechselwirkungen in einer Serie isoretikuläer Metallâ€organischer GerÃ⅓ststrukturen fÃ⅓r molekulare photokatalytische CO ₂ â€Reduktion. Angewandte Chemie, 2021, 133, 17998-18004.	1.6	13
3594	Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coordination Chemistry Reviews, 2021, 437, 213757.	9.5	88
3595	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	9.5	10
3596	Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries. Nature Communications, 2021, 12, 3395.	5.8	42
3597	Cisplatin uptake and release in pH sensitive zeolitic imidazole frameworks. Journal of Chemical Physics, 2021, 154, 244703.	1.2	7
3598	En Route to a Heterogeneous Catalytic Direct Peptide Bond Formation by Zr-Based Metal–Organic Framework Catalysts. ACS Catalysis, 2021, 11, 7647-7658.	5.5	31
3599	Mixed Dimensional Nanostructure (UiOâ€66â€Decorated MWCNT) as a Nanofiller in Mixedâ€Matrix Membranes for Enhanced CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2021, 27, 11132-11140.	1.7	9

#	Article	IF	CITATIONS
3600	Positive Cooperative Protonation of a Metal–Organic Framework: pH-Responsive Fluorescence and Proton Conduction. Journal of the American Chemical Society, 2021, 143, 8838-8848.	6.6	116
3601	Boosting molecular recognition of acetylene in UiO-66 framework through pore environment functionalization. Chemical Engineering Science, 2021, 237, 116572.	1.9	14
3602	Neighboring Zn–Zr Sites in a Metal–Organic Framework for CO ₂ Hydrogenation. Journal of the American Chemical Society, 2021, 143, 8829-8837.	6.6	82
3603	Host–Guest Interactions in a Metal–Organic Framework Isoreticular Series for Molecular Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17854-17860.	7.2	69
3604	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	7.2	148
3605	A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. Journal of Porous Materials, 2021, 28, 1837-1865.	1.3	36
3606	Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. Chinese Chemical Letters, 2022, 33, 903-906.	4.8	36
3607	New Structure Mass Tag based on Zrâ€NMOF for Multiparameter and Sensitive Singleâ€Cell Interrogating in Mass Cytometry. Advanced Materials, 2021, 33, e2008297.	11.1	12
3608	Dynamics and Treatability of Heavy Metals in Pig Farm Effluent Wastewater by Using UiO-66 and UiO-66-NH2 Nanomaterials as Adsorbents. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	7
3609	Energy related ion transports in coordination polymers. Nano Select, 0, , .	1.9	6
3610	Effect of hydrogen-bonding networks in water on the proton conductivity properties of metal–organic frameworks. Journal of Science: Advanced Materials and Devices, 2021, 6, 509-515.	1.5	7
3611	Metal Organic Frameworks as Biosensing Materials for COVID-19. Cellular and Molecular Bioengineering, 2021, 14, 535-553.	1.0	24
3612	Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Materials Today, 2021, 47, 170-186.	8.3	69
3613	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	1.6	18
3614	25 Jahre retikulÃ r e Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
3615	Adsorptive removal of different pollutants using metal-organic framework adsorbents. Journal of Molecular Liquids, 2021, 333, 115593.	2.3	85
3616	Controlling the Structural Robustness of Zirconium-Based Metal Organic Frameworks for Efficient Adsorption on Tetracycline Antibiotics. Water (Switzerland), 2021, 13, 1869.	1.2	13
3617	Stable Crystalline Organic–Inorganic Hybrid Indium Phosphate with Dye Removal and Ractopamine Detection Applications. Inorganic Chemistry, 2021, 60, 11655-11660.	1.9	10

#	Article	IF	CITATIONS
3618	Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film. Journal of Hazardous Materials, 2021, 414, 125509.	6.5	107
3619	Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Frontiers in Energy, 2021, 15, 656-666.	1.2	18
3620	Efficient CO ₂ Separation Using a PIMâ€Plâ€Functionalized UiOâ€66 MOF Incorporated Mixed Matrix Membrane in a PIMâ€Plâ€1 Polymer. Macromolecular Materials and Engineering, 2021, 306, 2100298.	1.7	28
3621	Molecular Dye-Sensitized Photocatalysis with Metal-Organic Framework and Metal Oxide Colloids for Fuel Production. Energies, 2021, 14, 4260.	1.6	11
3622	UIO-66 as Nucleating Agent on the Crystallization Behavior and Properties of Poly(Ethylene) Tj ETQq0 0 0 rgBT/C	Overlock 10	O Tf 50 582
3623	Linker Exchange via Migration along the Backbone in Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 10541-10546.	6.6	15
3624	Rational tuning of thorium-organic frameworks by reticular chemistry for boosting radionuclide sequestration. Nano Research, 2022, 15, 1472-1478.	5.8	24
3625	Metalâ^'organic frameworks as recyclable catalysts for efficient esterification to synthesize traditional plasticizers. Applied Catalysis A: General, 2021, 622, 118212.	2.2	7
3626	The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal–Organic Frameworks. Accounts of Chemical Research, 2021, 54, 3298-3312.	7.6	62
3627	Comprehensive investigation of dynamic CO2 capture performance using Mg/DOBDC as precursor to fabricate a composite of metallic organic framework and graphene oxide. Chemical Engineering Journal, 2021, 415, 128859.	6.6	16
3628	Symmetry Breaking and Autocatalytic Amplification in Soai Reaction Confined within UiOâ€MOFs under Heterogenous Conditions Chemistry - an Asian Journal, 2021, 16, 2361-2369.	1.7	4
3629	Sequential Oriented Growth of Zr-fcu-MOFs on Different Crystal Facets of MIL-96(Al). Crystal Growth and Design, 2021, 21, 4571-4578.	1.4	4
3630	Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. Accounts of Chemical Research, 2021, 54, 3083-3094.	7.6	167
3631	Characterization of a Metal–Organic Framework Zr ₆ O ₈ Node-Supported Atomically Dispersed Iridium Catalyst for Ethylene Hydrogenation by X-ray Absorption Near-Edge Structure and Infrared Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 16995-17007.	1.5	5
3632	The MIL-125 Metal–Organic Framework Structure for Adsorption-Based Accumulation of Methane and Hydrogen. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 672-679.	0.3	3
3633	Metal–Organic Framework UiO-68 and Its Derivatives with Sufficiently Good Properties and Performance Show Promising Prospects in Potential Industrial Applications. Crystal Growth and Design, 2021, 21, 4780-4804.	1.4	19
3634	Influence of Defects and Linker Exchange on Removal of Phosphate Using MOFs with the Node Structure $\langle i\rangle M\langle i\rangle \langle sub\rangle \langle (OH)\langle sub\rangle \langle (sub\rangle \langle (O)\langle sub\rangle \langle (sub\rangle \langle (sub\rangle \langle (i)\rangle \rangle)$ For $\langle i\rangle M\langle i\rangle = Hf$, Zr, or Ce. Chemistry of Materials, 2021, 33, 5730-5737.	3.2	10
3635	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coordination Chemistry Reviews, 2021, 438, 213907.	9.5	21

#	Article	IF	Citations
3636	Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS Applied Materials & Separation. Separation. ACS Applied Materials & Separation. Separation. Separation.	4.0	50
3637	Construction of Highly Proton-Conductive Zr(IV)-Based Metal–Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. Inorganic Chemistry, 2021, 60, 12129-12135.	1.9	4
3638	Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework. Chemical Engineering Journal, 2021, 415, 129014.	6.6	105
3639	Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opinion on Drug Delivery, 2021, 18, 1473-1500.	2.4	8
3640	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
3641	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
3642	Synthesis of two new Hfâ€MOFs with UiOâ€66 and CAUâ€22 structure employing 2,5â€pyrazinedicarboxylic acid as linker molecule Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2029-2034.	0.6	1
3643	Amino-functionalized UiO-66 as a Novel Adsorbent for Removal of Perfluorooctane Sulfonate from Aqueous Solution. Chemistry Letters, 2021, 50, 1592-1596.	0.7	11
3644	Stability and radioactive gaseous iodine-131 retention capacity of binderless UiO-66-NH2 granules under severe nuclear accidental conditions. Journal of Hazardous Materials, 2021, 416, 125890.	6.5	33
3645	Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous and Mesoporous Materials, 2021, 323, 111133.	2.2	19
3646	A novel electrochemical sensor via Zr-based metal organic framework–graphene for pesticide detection. Journal of Materials Science, 2021, 56, 19060-19074.	1.7	30
3647	Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution. Materials Today Chemistry, 2021, 21, 100533.	1.7	14
3648	Metal–Organic Frameworks Featuring 18-Connected Nonanuclear Rare-Earth Oxygen Clusters and Cavities for Efficient C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2021, 60, 13471-13478.	1.9	11
3649	Metalâ€Organicâ€Framework Based Functional Materials for Uranium Recovery: Performance Optimization and Structure/Functionalityâ€Activity Relationships. ChemPlusChem, 2021, 86, 1177-1192.	1.3	25
3650	Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. Journal of Hazardous Materials, 2021, 416, 125941.	6.5	168
3651	Metal–organic frameworks as catalysts for fructose conversion into 5â€hydroxymethylfurfural: Catalyst screening and parametric study. Applied Organometallic Chemistry, 2021, 35, e6419.	1.7	11
3652	Large-Scale Production of Hierarchically Porous Metal–Organic Frameworks by a Reflux-Assisted Post-Synthetic Ligand Substitution Strategy. ACS Central Science, 2021, 7, 1434-1440.	5.3	50
3653	A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. Journal of Coordination Chemistry, 2021, 74, 2111-2127.	0.8	15

#	ARTICLE	IF	CITATIONS
3654	Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Industrial & Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Industrial & Dioxide Methanation (2021, 60, 13149-13179).	1.8	34
3655	Enhancing toxic gas uptake performance of Zr-based MOF through uncoordinated carboxylate and copper insertion; ammonia adsorption. Journal of Hazardous Materials, 2021, 416, 125933.	6.5	31
3656	Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 2362-2395.	5.7	197
3657	A functionalized UiO-66 MOF acting as a luminescent chemosensor for selective and sensitive turn-on detection of superoxide and acetylacetone. Microporous and Mesoporous Materials, 2021, 323, 111251.	2.2	26
3658	Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal–Organic Frameworks. Advanced Materials, 2021, 33, e2104249.	11.1	18
3659	Recent Improvement Strategies on Metal-Organic Frameworks as Adsorbent, Catalyst, and Membrane for Wastewater Treatment. Molecules, 2021, 26, 5261.	1.7	18
3660	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. Materials Today Chemistry, 2021, 21, 100534.	1.7	8
3661	Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for Efficient Heterogeneous Peptide Bond Hydrolysis. Chemistry of Materials, 2021, 33, 7057-7066.	3.2	51
3662	Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: General, 2021, 623, 118287.	2.2	17
3663	Single-step Synthesis and Characterization of Zr-MOF onto Wool Fabric: Preparation of Antibacterial Wound Dressing with High Absorption Capacity. Fibers and Polymers, 2022, 23, 404-412.	1.1	23
3664	Biomedical Applicable Cellulose Fabric Modified with Zirconiumâ€Based Metalâ€Organic Frameworks (Zrâ€MOFs). Starch/Staerke, 2021, 73, 2100120.	1.1	14
3665	Recent Progress in Metal–Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules, 2021, 26, 4948.	1.7	21
3666	A dithiocarbamate-functionalized Zr4+ MOF with exceptional capability for sorption of Pb2+ in aqueous media. Journal of Environmental Chemical Engineering, 2021, 9, 105474.	3.3	13
3667	Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. Journal of Chromatography A, 2021, 1652, 462349.	1.8	11
3668	Facile Synthesis of Metal–Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40863-40871.	4.0	12
3669	Postsynthetic ion exchange and characterization of alkali metal ions ordered in the pores of anionic Zr metal–organic framework. Bulletin of the Korean Chemical Society, 2021, 42, 1357-1363.	1.0	3
3670	Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coordination Chemistry Reviews, 2021, 441, 213985.	9.5	180
3671	Amino Group Functionalized Hfâ€Based Metalâ€Organic Framework for Knoevenagelâ€Doebner Condensation. European Journal of Inorganic Chemistry, 2021, 2021, 3396-3403.	1.0	8

#	Article	IF	Citations
3672	Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. Chemosensors, 2021, 9, 226.	1.8	18
3673	MOF-Encapsulating Metal–Acid Interfaces for Efficient Catalytic Hydrogenolysis of Biomass-Derived Aromatic Aldehydes. ACS Sustainable Chemistry and Engineering, 2021, 9, 11127-11136.	3.2	27
3674	Defects Engineering of Lightweight Metal–Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 13803-13813.	7.3	62
3675	Efficient Proton Transport in Stable Functionalized Channels of Zirconium Metal–Organic Frameworks. ACS Applied Energy Materials, 2021, 4, 8303-8310.	2.5	16
3676	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
3677	Synthesis and application of [Zr-UiO-66-PDC-SO3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Scientific Reports, 2021, 11, 16817.	1.6	34
3678	Lithium Extraction by Emerging Metal–Organic Frameworkâ€Based Membranes. Advanced Functional Materials, 2021, 31, 2105991.	7.8	79
3679	Impact of hydrofluoric acid treatment on the composition, electrical conductivity, and structure of carbonized metal–organic frameworks. Journal of the Chinese Chemical Society, 0, , .	0.8	0
3680	Synergistic effect of MOF-Directed acid-base pairs for enhanced proton conduction. Microporous and Mesoporous Materials, 2021, 323, 111199.	2.2	15
3681	Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269, 118719.	3.9	37
3682	NH ₂ -UiO-66 Metal–Organic Framework Nanoparticles for Hydroxide Ion Conductive Photoswitches. ACS Applied Nano Materials, 2021, 4, 8352-8359.	2.4	12
3683	SAPO-34 Zeolite Nanocrystals Coated with ZrO ₂ as Catalysts for Methanol-to-Olefin Conversion. ACS Applied Nano Materials, 2021, 4, 8321-8327.	2.4	6
3684	State of the art and prospects of chemically and thermally aggressive membrane gas separations: Insights from polymer science. Polymer, 2021, 229, 123988.	1.8	18
3685	Chiral Iron(II)-Catalysts within Valinol-Grafted Metal–Organic Frameworks for Enantioselective Reduction of Ketones. ACS Catalysis, 2021, 11, 10450-10459.	5 . 5	29
3686	Porous Oxyhydroxide Derived from Metal–Organic Frameworks as Efficient Triphosphatase-like Nanozyme for Chromium(III) Ion Colorimetric Sensing. ACS Applied Bio Materials, 2021, 4, 6962-6973.	2.3	14
3687	Ultrastable High-Connected Chromium Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 14470-14474.	6.6	57
3688	Extra-framework zirconium clusters in metal organic framework DUT-67 controlled by the choice of the metal precursor. Microporous and Mesoporous Materials, 2021, 324, 111293.	2.2	5
3689	Nanoscale Metal–Organic Layers for Biomedical Applications. Accounts of Materials Research, 2021, 2, 944-953.	5.9	14

#	Article	IF	CITATIONS
3690	Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization. Journal of Hazardous Materials, 2021, 418, 126247.	6.5	66
3691	Effect of Micropores of a Porous Coordination Polymer on the Product Selectivity in Ru ^{II} Complexâ€catalyzed CO ₂ Reduction. Chemistry - an Asian Journal, 2021, 16, 3341-3344.	1.7	4
3692	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
3693	Carbon Dioxide Capture Enhanced by Preâ€Adsorption of Water and Methanol in UiOâ€66. Chemistry - A European Journal, 2021, 27, 14653-14659.	1.7	17
3694	Multifunctional Two-Dimensional Metal–Organic Frameworks for Radionuclide Sequestration and Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45696-45707.	4.0	6
3695	Highâ€Throughput Discovery of a Rhombohedral Twelveâ€Connected Zirconiumâ€Based Metalâ€Organic Framework with Ordered Terephthalate and Fumarate Linkers. Angewandte Chemie - International Edition, 2021, 60, 26939-26946.	7.2	10
3696	Hydrophobicity: a key factor en route to applications of metal–organic frameworks. Trends in Chemistry, 2021, 3, 911-925.	4.4	14
3697	Room temperature synthesis of high-quality Ce(IV)-based MOFs in water. Microporous and Mesoporous Materials, 2021, 324, 111303.	2.2	29
3698	Multifunctional approach to improve water oxidation performance with MOF-based photoelectrodes. Applied Materials Today, 2021, 24, 101159.	2.3	4
3699	Fast and efficient removal of mercury ions using zirconium-based metal–organic framework filter membranes. Inorganic Chemistry Communication, 2021, 131, 108796.	1.8	5
3700	Research Progress of Metal Organic Frameworks/Carbonâ€Based Composites for Microwave Absorption. Advanced Engineering Materials, 2022, 24, 2100964.	1.6	13
3701	Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion. Chemical Engineering Journal, 2021, 419, 129459.	6.6	78
3702	Hydrogenative Ring-Rearrangement of Furfural to Cyclopentanone over Pd/UiO-66-NO2 with Tunable Missing-Linker Defects. Molecules, 2021, 26, 5736.	1.7	10
3703	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie, 2021, 133, 22457-22462.	1.6	4
3704	Oxygen-vacancy-mediated energy transfer for singlet oxygen generation by diketone-anchored MIL-125. Applied Catalysis B: Environmental, 2021, 292, 120197.	10.8	99
3705	A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes, 2021, $11,693$.	1.4	15
3706	Visible-Light-Induced Selective Oxidation of Amines into Imines over UiO-66-NH ₂ @Au@COF Core–Shell Photocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 12623-12633.	3.2	45
3707	Highâ€throughput discovery of a rhombohedral twelveâ€connected zirconiumâ€based metalâ€organic framework with ordered terephthalate and fumarate linkers. Angewandte Chemie, 0, , .	1.6	2

#	ARTICLE	IF	CITATIONS
3708	BiOBr@UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine b under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115297.	1.7	17
3709	Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK. Journal of Catalysis, 2021, 401, 27-39.	3.1	19
3710	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	2.4	8
3711	Metal–Organic Framework Modified MoS ₂ Nanozyme for Synergetic Combating Drugâ€Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidaseâ€Mimic Activity. Advanced Healthcare Materials, 2022, 11, e2101698.	3.9	42
3712	Hydrophobic polymer tethered magnetic zirconium-based metal-organic framework as advance and recyclable adsorbent for microwave-assisted extraction of polycyclic aromatic hydrocarbons from environmental water samples. Microchemical Journal, 2021, 168, 106361.	2.3	4
3713	Single-Atom Metal Oxide Sites as Traps for Charge Separation in the Zirconium-Based Metal–Organic Framework NDC–NU-1000. Energy & Fuels, 0, , .	2.5	8
3714	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO ₂ Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22283-22288.	7.2	29
3715	Water-stable zirconium and iron-based metal-organic frameworks (MOFs) as fluoride scavengers in aqueous medium. Separation and Purification Technology, 2021, 270, 118645.	3.9	29
3716	Simultaneous voltammetric determination of ascorbic acid and acetaminophen in pharmaceutical formulations with UiO-66-modified glassy carbon electrode. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	5
3717	Hydrogen Separation Performance of UiO-66-NH2 Membranes Grown via Liquid-Phase Epitaxy Layer-by-Layer Deposition and One-Pot Synthesis. Membranes, 2021, 11, 735.	1.4	9
3718	Holmium-based metal-organic frameworks using the BDC linker. Polyhedron, 2021, 205, 115283.	1.0	7
3719	Construction of a nanotheranostic system Zr-MOF@PPa/AF@PEG for improved photodynamic therapy effects based on the PDTâ€'oxygen consumption and hypoxia sensitive chemotherapeutic drug. Journal of Photochemistry and Photobiology B: Biology, 2021, 222, 112274.	1.7	19
3720	A novel luminescent sensor based on Tb@UiO-66 for highly detecting Sm3+ and teflubenzuron. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 173-181.	2.7	26
3721	MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069.	1.9	27
3722	In-situ one-step deposition of highly dispersed palladium nanoparticles into zirconium metal–organic framework for selective hydrogenation of furfural. Molecular Catalysis, 2021, 514, 111859.	1.0	4
3723	Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 2021, 292, 120167.	10.8	64
3724	A joint mechanism for singlet oxygen generation by diketone-anchored MIL-101: Exciton-mediated energy transfer and photosensitization. Applied Catalysis A: General, 2021, 626, 118360.	2.2	7
3725	Hygroscopic salt-modulated UiO-66: Synthesis and its open adsorption performance. Journal of Solid State Chemistry, 2021, 301, 122304.	1.4	13

#	Article	IF	CITATIONS
3726	Coordination Polymers of Scandium(III) and Thiophenedicarboxylic Acid. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 593-600.	0.3	1
3727	Promotion of sulfameter degradation by coupling persulfate and photocatalytic advanced oxidation processes with Fe-doped MOFs. Separation and Purification Technology, 2022, 282, 119632.	3.9	26
3728	A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. Journal of CO2 Utilization, 2021, 51, 101616.	3.3	35
3729	Catalysis in Single Crystalline Materials: From Discrete Molecules to Metalâ€Organic Frameworks. Chemistry - an Asian Journal, 2021, 16, 3544-3557.	1.7	O
3730	Integrating Two Highly Active Components into One for Decontaminating Sulfur Mustard and Sarin. Industrial & Engineering Chemistry Research, 2021, 60, 14193-14202.	1.8	4
3731	Decorating S-doped Cu-La bimetallic oxides with UIO-66 to increase the As(III) adsorption capacity via synchronous oxidation and adsorption. Journal of Hazardous Materials, 2021, 418, 126238.	6.5	11
3732	Specific Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Substrate Sensing Platform Based on Hierarchical MOFs with Tunable Mesopore Size. Journal of the American Chemical Society, 2021, 143, 15145-15151.	6.6	48
3733	Dual Metal UiO-Type Metal–Organic Frameworks for Solar-Driven Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 20320-20330.	1.5	9
3734	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
3735	From Molecules to Frameworks to Superframework Crystals. Advanced Materials, 2021, 33, e2103808.	11.1	26
3736	Metal-Organic Frameworks: From Ambient Green Synthesis to Applications. Bulletin of the Chemical Society of Japan, 2021, 94, 2623-2636.	2.0	26
3737	Molecular transition metal corrole as an efficient electrocatalyst for the heterogeneous CO2 electroreduction: A theory study. International Journal of Hydrogen Energy, 2021, 46, 33120-33131.	3.8	8
3738	Development of a highly porous Fe-based MOF using symmetrically incompatible building blocks: Selective oxidation of benzyl alcohols. Applied Materials Today, 2021, 24, 101157.	2.3	6
3739	"Shake  n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	1.9	20
3740	Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 2021, 421, 129688.	6.6	92
3741	Improving ammonia uptake performance of zirconium-based metal-organic frameworks through open metal site insertion strategy. Chemical Engineering Journal, 2021, 421, 129655.	6.6	29
3742	The structural design and valence state control of cerium-based metal-organic frameworks for their highly efficient phosphate removal. Journal of Cleaner Production, 2021, 321, 128778.	4.6	36
3743	An Eu-doped Zr-metal-organic framework for simultaneous detection and removal of antibiotic tetracycline. Journal of Environmental Chemical Engineering, 2021, 9, 106012.	3.3	23

#	Article	IF	CITATIONS
3744	Microwave-assisted synthesis of Zr-based metal–organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chemical Physics Letters, 2021, 780, 138906.	1.2	27
3745	Synergic coordination and precipitation effects induced by free carboxyl for separation of iron(III) and nickel(II) in zirconium-metal-organic framework. Journal of Solid State Chemistry, 2021, 302, 122460.	1.4	19
3746	Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group. Journal of Environmental Chemical Engineering, 2021, 9, 106216.	3.3	51
3747	Adsorptive recovery of precious metals from aqueous solution using nanomaterials – A critical review. Coordination Chemistry Reviews, 2021, 445, 214072.	9.5	62
3748	Synergistic degradation of NO and ethyl acetate by plasma activated "pseudo photocatalysis―on Ce/ZnGa2O4/NH2-UiO-66 catalyst: Restrictive relation and reaction pathways exploration. Chemical Engineering Journal, 2021, 421, 129725.	6.6	10
3749	Spray-deposited thin-film composite MOFs membranes for dyes removal. Journal of Membrane Science, 2021, 635, 119475.	4.1	30
3750	Robust Cr(VI) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: Performances and mechanism insight with or without tartaric acid. Environmental Research, 2021, 201, 111596.	3.7	52
3751	Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. Applied Catalysis B: Environmental, 2021, 295, 120282.	10.8	40
3752	Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. Journal of Membrane Science, 2021, 635, 119339.	4.1	52
3753	A review of methods for extraction, removal, and stimulated degradation of microplastics. Journal of Water Process Engineering, 2021, 43, 102209.	2.6	22
3754	Efficient mercury removal at low temperature in flue gas with metal-organic frameworks modified by iodine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126983.	2.3	4
3755	Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: Insight into the contribution of defects. Chemosphere, 2021, 281, 130997.	4.2	35
3756	Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. International Journal of Biological Macromolecules, 2021, 188, 811-819.	3.6	40
3757	Preparation and characterization of small-size amorphous MOF mixed matrix membrane. Separation and Purification Technology, 2021, 272, 118860.	3.9	21
3758	Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coordination Chemistry Reviews, 2021, 445, 214050.	9.5	57
3759	The effect of cavity size on ruthenium (II) tris-(2,2-bipyridine) photophysics encapsulated within zirconium based metal organic frameworks. Inorganica Chimica Acta, 2021, 526, 120537.	1.2	2
3760	Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration. Science of the Total Environment, 2021, 790, 148211.	3.9	24
3761	Hydrophobic modification of UiO-66 by naphthyl ligand substitution for efficient toluene adsorption in a humid environment. Microporous and Mesoporous Materials, 2021, 326, 111357.	2.2	13

#	Article	IF	CITATIONS
3762	Cooperative defect tailoring: A promising protocol for exceeding performance limits of state-of-the-art MOF membranes. Journal of Membrane Science, 2021, 635, 119515.	4.1	28
3763	Metal–organic framework-based sorbents in analytical sample preparation. Coordination Chemistry Reviews, 2021, 445, 214107.	9.5	138
3764	Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. Journal of Chromatography A, 2021, 1655, 462491.	1.8	23
3765	Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. TrAC - Trends in Analytical Chemistry, 2021, 143, 116417.	5.8	43
3766	Simultaneous detection and removal of fluoride from water using smart metal-organic framework-based adsorbents. Coordination Chemistry Reviews, 2021, 445, 214037.	9.5	76
3767	A new strategy to fabricate multifunctional luminescent MOFs, extending their application range from pH sensing to amino acid information coding. Journal of Colloid and Interface Science, 2021, 601, 427-436.	5.0	17
3768	A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO. Journal of Molecular Liquids, 2021, 342, 117520.	2.3	36
3769	High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. Journal of Environmental Radioactivity, 2021, 238-239, 106710.	0.9	12
3770	Tailoring Zirconium-based metal organic frameworks for enhancing Hydrophilic/Hydrophobic Characteristics: Simulation and experimental investigation. Journal of Molecular Liquids, 2021, 341, 117381.	2.3	7
3771	Photocatalytic oxidation 5-Hydroxymethylfurfural to 2, 5-diformylfuran under air condition over porous TiO2@MOF. Journal of Solid State Chemistry, 2021, 303, 122510.	1.4	8
3772	Customized H-bonding acceptor and aperture chemistry within a metal-organic framework for efficient C3H6/C3H8 separation. Chemical Engineering Journal, 2021, 426, 131302.	6.6	18
3773	Ultra-deep removal of Pb by functionality tuned UiO-66 framework: A combined experimental, theoretical and HSAB approach. Chemosphere, 2021, 284, 131305.	4.2	29
3774	Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere, 2021, 285, 131432.	4.2	111
3775	Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100568.	1.7	12
3776	Engineering NSAIDs imprinted UiO-66s for markedly enhanced adsorption of coexisting diclofenac sodium and Cu(II) and their synergistic adsorption mechanism. Chemical Engineering Journal, 2021, 426, 131440.	6.6	32
3777	Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples. Talanta, 2021, 235, 122818.	2.9	23
3778	Composite PVDF ultrafiltration membrane tailored by sandwich-like GO@UiO-66 nanoparticles for breaking the trade-off between permeability and selectivity. Separation and Purification Technology, 2021, 276, 119308.	3.9	29
3779	Facile synthesis of Zr-based metal-organic gel (Zr-MOG) using "green―sol-gel approach. Surfaces and Interfaces, 2021, 27, 101469.	1.5	3

#	Article	IF	Citations
3780	High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)2. Separation and Purification Technology, 2021, 277, 119438.	3.9	19
3781	Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 2021, 291, 118076.	3.7	304
3782	Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. Coordination Chemistry Reviews, 2021, 448, 214177.	9.5	109
3783	Fluorite-like hydrolyzed hexanuclear coordination clusters of Zr(IV) and Hf(IV) with syn-syn bridging N,N,N-trimethylglycine in soft crystal structures exhibiting cold-crystallization. Inorganica Chimica Acta, 2021, 528, 120622.	1.2	4
3784	Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. Journal of Membrane Science, 2021, 640, 119802.	4.1	48
3785	Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation. Chemical Engineering Journal, 2022, 427, 131604.	6.6	42
3786	MOF-based membranes for pervaporation. Separation and Purification Technology, 2021, 278, 119233.	3.9	40
3787	Compensating the impurities on the Cu surface by MOFs for enhanced hydrocarbon production in the electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2022, 66, 68-73.	7.1	7
3788	Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like "expressway― channels with anion pillared hybrid ultramicroporous materials. Chemical Engineering Journal, 2022, 427, 130845.	6.6	9
3789	Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. Chemical Engineering Journal, 2022, 427, 131573.	6.6	91
3790	Magnetic solid-phase extraction based on zirconium-based metal–organic frameworks for simultaneous enantiomeric determination of eight chiral pesticides in water and fruit juices. Food Chemistry, 2022, 370, 131056.	4.2	23
3791	Construction of a sandwich-like UiO-66-NH2@Pt@mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. Journal of Colloid and Interface Science, 2022, 606, 1524-1533.	5.0	7
3792	Metal Organic Frameworks for Removal of Heavy Metal Cations and Emerging Organic Pollutants. Energy, Environment, and Sustainability, 2021, , 257-274.	0.6	1
3793	Applications of porous frameworks in solidâ€phase microextraction. Journal of Separation Science, 2021, 44, 1231-1263.	1.3	14
3794	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	2.0	8
3795	Computational Investigation of Adsorptive Removal of Pb2+ from Water by the UiO-66 Metal–Organic Framework: Comparison of Adsorption Sites on Defects and Functionalised Linkers. Australian Journal of Chemistry, 2021, , .	0.5	1
3796	Preparation of hollow metal–organic frameworks <i>via</i> epitaxial protection and selective etching. Faraday Discussions, 2021, 231, 181-193.	1.6	3
3797	Topology of Infinite Networks. , 2021, , 368-388.		0

#	Article	IF	CITATIONS
3798	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	2.1	1
3799	Nanoscale metal–organic frameworks for tumor phototherapy. Journal of Materials Chemistry B, 2021, 9, 3756-3777.	2.9	36
3800	Selective dual adsorption performance of hexagonal porous metal–organic framework rods towards CO2 gas and organic dye. New Journal of Chemistry, 2021, 45, 15280-15284.	1.4	5
3801	Differentiating Zr/Hf ^{IV} Aqueous Polyoxocation Chemistry with Peroxide Ligation. Inorganic Chemistry, 2021, 60, 1631-1640.	1.9	13
3802	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	6.6	143
3803	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
3804	Accelerated and scalable synthesis of UiO-66(Zr) with the assistance of inorganic salts under solvent-free conditions. New Journal of Chemistry, 2021, 45, 9591-9597.	1.4	8
3805	Fabrication and application of a novel electrochemical biosensor based on a mesoporous carbon sphere@UiO-66-NH ₂ /Lac complex enzyme for tetracycline detection. Analyst, The, 2021, 146, 2825-2833.	1.7	11
3806	The development and application of metal-organic frameworks in the field of photocatalysis. Research on Chemical Intermediates, 2021, 47, 325-343.	1.3	25
3807	Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	10
3808	Hf-Based UiO-66 as Adsorptive Compound and Oxidative Catalyst for Denitrogenation Processes. Compounds, 2021, 1, 3-14.	1.0	8
3809	Solar-light-triggered regenerative adsorption removal of styrene by silver nanoparticles incorporated in metal–organic frameworks. Environmental Science: Nano, 2021, 8, 543-553.	2.2	16
3810	Synthesis and characterization of CdS/UiO-66/Ag3PO4 nanocomposite for photocatalytic degradation of methyl orange under visible light irradiation. Bulletin of the Chemical Society of Ethiopia, 2021, 34, 571-588.	0.5	4
3811	Expanding the Limits of Photodynamic Therapy: The Design of Organelles and Hypoxia-Targeting Nanomaterials for Enhanced Photokilling of Cancer. ACS Applied Bio Materials, 2021, 4, 195-228.	2.3	23
3812	Metal organic framework-based photocatalysts for hydrogen production. , 2021, , 275-295.		1
3813	A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO ₂ transformation. Dalton Transactions, 2021, 50, 3848-3853.	1.6	6
3814	The potential use of metal–organic framework/ammonia working pairs in adsorption chillers. Journal of Materials Chemistry A, 2021, 9, 6188-6195.	5.2	16
3815	Continuous-flow synthesis of MIL-53(Cr) with a polar linker: probing the nanoscale piezoelectric effect. Journal of Materials Chemistry C, 2021, 9, 7568-7574.	2.7	11

#	Article	IF	CITATIONS
3816	Crystal engineering of coordination networks: then and now. , 2021, , 17-60.		0
3817	Preparation and characterization of nanofibrous metal–organic frameworks as efficient catalysts for the synthesis of cyclic carbonates in solvent-free conditions. Dalton Transactions, 2021, 50, 10567-10579.	1.6	13
3818	UIO-66-NH ₂ -derived mesoporous carbon used as a high-performance anode for the potassium-ion battery. RSC Advances, 2021, 11, 1039-1049.	1.7	10
3819	Effect of linker functionalisation on the catalytic properties of Cu nanoclusters embedded in MOFs in direct CO and CO ₂ reduction by H ₂ . Faraday Discussions, 2021, 231, 371-383.	1.6	2
3820	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
3821	Amino-group and space-confinement assisted synthesis of small and well-defined Rh nanoparticles as efficient catalysts toward ammonia borane hydrolysis. International Journal of Hydrogen Energy, 2021, 46, 2204-2212.	3.8	24
3822	Effect of Linker Distribution in the Photocatalytic Activity of Multivariate Mesoporous Crystals. Journal of the American Chemical Society, 2021, 143, 1798-1806.	6.6	45
3823	Water-Stable Metal-Organic Frameworks for Water Adsorption. , 2021, , 387-416.		3
3824	Nickel(<scp>ii</scp>) di-aqua complex containing a water cluster: synthesis, X-ray structure and catecholase activity. New Journal of Chemistry, 2021, 45, 2221-2227.	1.4	6
3825	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	16.1	132
3826	Rapid recognition of fatal cyanide in water in a wide pH range by a trifluoroacetamido based metal–organic framework. New Journal of Chemistry, 2021, 45, 20193-20200.	1.4	14
3827	The <i>in situ</i> fabrication of ZIF-67 on titania-coated magnetic nanoparticles: a new platform for the immobilization of Pd(<scp>ii</scp>) with enhanced catalytic activity for organic transformations. New Journal of Chemistry, 2021, 45, 20309-20322.	1.4	6
3828	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	11.1	184
3829	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	7.2	49
3830	Enhanced CO ₂ selectivity of polyimide membranes through dispersion of polyethyleneimine decorated UiOâ€66 particles. Journal of Applied Polymer Science, 2020, 137, 49068.	1.3	16
3831	Solvent Impact on the Properties of Benchmark Metal–Organic Frameworks: Acetonitrileâ€Based Synthesis of CAUâ€10, Ceâ€UiOâ€66, and Alâ€MILâ€53. Chemistry - A European Journal, 2020, 26, 3877-3883.	1.7	35
3832	Highly Active Bisamino Functionalized Zr(IV)â€UiOâ€67 Metalâ€Organic Framework for Cascade Catalysis. European Journal of Inorganic Chemistry, 2020, 2020, 2830-2834.	1.0	15
3833	A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metalâ€Organic Framework Materials. European Journal of Inorganic Chemistry, 2020, 2020, 4284-4294.	1.0	29

#	Article	IF	CITATIONS
3834	MB-UiO-66-NH ₂ Metal-Organic Framework as Chromogenic and Fluorogenic Sensor for Hydrazine Hydrate in Aqueous Solution. ChemistrySelect, 2017, 2, 7630-7636.	0.7	23
3835	CO2 Capture Using Solid Sorbents. , 2015, , 1-56.		2
3837	Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach. Environmental Chemistry for A Sustainable World, 2020, , 141-186.	0.3	6
3838	Role of Metal–Organic Framework (MOF) for Pesticide Sensing. , 2019, , 75-99.		5
3839	Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 19.	3.0	11
3840	Sensitive detection of streptomycin in milk using a hybrid signal enhancement strategy of MOF-based bio-bar code and target recycling. Analytica Chimica Acta, 2020, 1125, 1-7.	2.6	38
3841	Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Composites Part B: Engineering, 2020, 197, 108064.	5.9	53
3842	Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework. Inorganic Chemistry Communication, 2019, 101, 160-163.	1.8	28
3843	Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth. Journal of Membrane Science, 2020, 610, 118275.	4.1	41
3844	Surface polarity estimation of metal-organic frameworks using liquid-phase mixture adsorption. Microporous and Mesoporous Materials, 2017, 251, 129-134.	2.2	6
3845	High CO 2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018, 256, 25-31.	2.2	81
3846	UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. Microporous and Mesoporous Materials, 2020, 305, 110324.	2.2	33
3847	Co-Fe-layered double hydroxide decorated amino-functionalized zirconium terephthalate metal-organic framework for removal of organic dyes from water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 234, 118270.	2.0	27
3848	Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sciences, 2017, 69, 13-21.	1.5	68
3849	Synthesis of UiO-66 in Supercritical CO ₂ and Its Application in Dye Adsorption. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 771-780.	1.8	14
3850	AgNPs-Containing Metal–Organic Frameworks for the Effective Adsorption and Immobilization of Radioactive Iodine. Journal of Chemical & Engineering Data, 2020, 65, 1986-1992.	1.0	26
3851	Tracking and Visualization of Functional Domains in Stratified Metal–Organic Frameworks Using Gold Nanoparticles. ACS Central Science, 2020, 6, 247-253.	5.3	13
3852	Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal–Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. ACS Omega, 2020, 5, 12202-12209.	1.6	9

#	Article	IF	CITATIONS
3853	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.5	1
3854	Metal–Organic Frameworks (MOFs) as Potential Hybrid Ferroelectric Materials. RSC Smart Materials, 2019, , 197-244.	0.1	2
3855	Application of Metal–Organic Frameworks in CO2 Capture and Conversion. RSC Catalysis Series, 2019, , 455-478.	0.1	1
3856	Unexpected linker-dependent Brønsted acidity in the (Zr)UiO-66 metal organic framework and application to biomass valorization. Catalysis Science and Technology, 2020, 10, 4002-4009.	2.1	25
3857	<i>In situ</i> growth of benzothiadiazole functionalized UiO-66-NH ₂ on carboxyl modified g-C ₃ N ₄ for enhanced photocatalytic degradation of sulfamethoxazole under visible light. Catalysis Science and Technology, 2020, 10, 4703-4711.	2.1	30
3858	Chitosan modified metal–organic frameworks as a promising carrier for oral drug delivery. RSC Advances, 2020, 10, 45130-45138.	1.7	30
3859	Interplay between structural parameters and reactivity of Zr ₆ -based MOFs as artificial proteases. Chemical Science, 2020, 11, 6662-6669.	3.7	38
3860	A multifunctional double walled zirconium metal–organic framework: high performance for CO ₂ adsorption and separation and detecting explosives in the aqueous phase. Journal of Materials Chemistry A, 2020, 8, 17106-17112.	5.2	23
3861	Preparation of functionalised UiOâ€66Âmetal–organic frameworks (MOFs) nanoparticles using deep eutectic solvents as a benign medium. Micro and Nano Letters, 2020, 15, 1075-1078.	0.6	15
3862	Adsorption of Ni2+ and Cu2+ from Aqueous Solution by Polyethylenimine Impregnation of Metal–Organic Frameworks. Nano, 2020, 15, 2050029.	0.5	4
3863	Synthesis of UiO-66 Using Solvothermal Method at High Temperature. IPTEK Journal of Proceedings Series, 2014, .	0.0	8
3864	An Overview of Metal-organic Frameworks-based Acid/Base Catalysts for Biofuel Synthesis. Current Organic Chemistry, 2020, 24, 1876-1891.	0.9	12
3865	POM@MOF Hybrids: Synthesis and Applications. Catalysts, 2020, 10, 578.	1.6	56
3866	A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules, 2020, 25, 4396.	1.7	14
3867	Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery. Pharmaceutics, 2020, 12, 98.	2.0	17
3868	Facile Synthesis of the Magnetic Metal Organic Framework Fe3O4@UiO-66-NH2 for Separation of Strontium. Biomedical and Environmental Sciences, 2018, 31, 483-488.	0.2	19
3869	Coordination Chemistry in the Structural and Functional Exploration of Actinide-Based Metal-Organic Frameworks. Bulletin of Japan Society of Coordination Chemistry, 2020, 75, 3-12.	0.1	1
3870	Stability of Zirconium Metal Organic Frameworks with 9,10- Dicarboxylic Acid Anthracene as Ligand. Journal of the Korean Ceramic Society, 2016, 53, 200-205.	1.1	2

#	Article	IF	CITATIONS
3871	Zr-Fumarate MOF a Novel CO2-Adsorbing Material: Synthesis and Characterization. Aerosol and Air Quality Research, 2014, 14, 1605-1612.	0.9	37
3872	Sonochemical Synthesis of UiO-66 for CO ₂ Adsorption and Xylene Isomer Separation. Korean Chemical Engineering Research, 2013, 51, 470-475.	0.2	10
3873	Enhanced water stability and high CO ₂ storage capacity of a Lewis basic sites-containing zirconium metal–organic framework. Dalton Transactions, 2021, 50, 16587-16592.	1.6	8
3874	Coumarin-embedded MOF UiO-66 as a selective and sensitive fluorescent sensor for the recognition and detection of Fe ³⁺ ions. Journal of Materials Chemistry C, 2021, 9, 16978-16984.	2.7	32
3875	Supramolecular metal-based molecules and materials for biomedical applications. , 2021, , .		1
3876	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4767-4779.	3.0	8
3877	Two Zr-based heterometal–organic frameworks for efficient CO ₂ reduction under visible light. CrystEngComm, 2021, 23, 8115-8120.	1.3	1
3878	Thiol-functionalized UiO-66 anchored atomically dispersed metal ions for the photocatalytic selective oxidation of benzyl alcohol. Chemical Communications, 2021, 57, 12151-12154.	2.2	9
3879	Thiol-Functionalized Zr Metal–Organic Frameworks for Efficient Removal of Fe ³⁺ From Water. SSRN Electronic Journal, 0, , .	0.4	0
3880	UiO-66-NH ₂ as an effective solid support for quinazoline derivatives for antibacterial agents against Gram-negative bacteria. New Journal of Chemistry, 2021, 45, 20386-20395.	1.4	9
3881	Large MOFs: synthesis strategies and applications where size matters. Journal of Materials Chemistry A, 2021, 9, 25258-25271.	5.2	20
3882	Recent advances of metal–organic frameworks in corrosion protection: From synthesis to applications. Chemical Engineering Journal, 2022, 430, 132823.	6.6	61
3883	Low-field 1H NMR relaxometry of water molecules confined in microporous UiO-66. Functional Materials Letters, 0, , .	0.7	1
3884	A Novel Synergistic Flame Retardant of Hexaphenoxycyclotriphosphazene for Epoxy Resin. Polymers, 2021, 13, 3648.	2.0	12
3885	Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water. Environmental Science & Environmental	4.6	31
3886	Metalâ€"Organic Frameworks Constructed from Ironâ€Series Elements for Supercapacitors. Small Structures, 2022, 3, 2100115.	6.9	73
3887	Synthetic Strategy for Incorporating Carboxylate Ligands into Coordination Polymers under a Solvent-Free Reaction. Crystal Growth and Design, 2021, 21, 6031-6036.	1.4	3
3888	A 3D-Coordination Polymer Assembled from Copper Propionate Paddlewheels and Potassium Propionate 1D-Polymeric Rods Possessing a Temperature-Driven Single-Crystal-to-Single-Crystal Phase Transition. Crystal Growth and Design, 2021, 21, 6183-6194.	1.4	7

#	Article	IF	CITATIONS
3889	Probing Molecular Motions in Metal–Organic Frameworks by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2021, 143, 17947-17952.	6.6	12
3890	State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials, 2022, 424, 127558.	6.5	71
3891	Conversion of levulinic acid to \hat{l}^3 -valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Br \tilde{A} ,nsted acid sites. Molecular Catalysis, 2021, 515, 111925.	1.0	10
3892	Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment. Scientific Reports, 2021, 11, 19808.	1.6	19
3893	Interrogating Light-initiated Dynamics in Metal–Organic Frameworks with Time-resolved Spectroscopy. Chemical Reviews, 2022, 122, 132-166.	23.0	22
3894	Structural Elucidation, Aggregation, and Dynamic Behaviour of ⟨i⟩N,N,N,N⟨li>â€Copper(l) Schiff Base Complexes in Solid and in Solution: A Combined NMR, Xâ€ray Spectroscopic and Crystallographic Investigation. European Journal of Inorganic Chemistry, 2021, 2021, 4762-4775.	1.0	8
3895	Reticular frameworks and their derived materials for CO2 conversion by thermoâ^catalysis. EnergyChem, 2021, 3, 100064.	10.1	52
3896	Mechanochemistry of Group 4 Element-Based Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16079-16084.	1.9	9
3897	Adsorption desalination: Advances in porous adsorbents. Chinese Journal of Chemical Engineering, 2022, 42, 151-169.	1.7	17
3898	Aqueous Stability of Zirconium Clusters, Including the Zr(IV) Hexanuclear Hydrolysis Complex [Zr ₆ O ₄ (OH) ₄ (H ₂ O) ₂₄] ¹²⁺ , from Density Functional Theory. Inorganic Chemistry, 2021, 60, 15456-15466.	1.9	5
3899	Flexible side arms of ditopic linker as effective tools to boost proton conductivity of Ni8-pyrazolate metal-organic framework. Chinese Chemical Letters, 2022, 33, 3227-3230.	4.8	7
3900	Fluoro-Bridged Clusters in Rare-Earth Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 17995-18000.	6.6	37
3901	Fe3O4@UiO-66 as solid-phase extraction sorbent coupled with Nano-ESI-MS for the analysis of androgens in serum. Microchemical Journal, 2022, 172, 106916.	2.3	4
3902	2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. Advanced Science, 2021, 8, e2102493.	5. 6	29
3903	Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorganic Chemistry, 2021, 60, 16378-16387.	1.9	16
3904	A Hydrolytically Stable Cu(II)-Based Metalâ^'Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49509-49518.	4.0	18
3905	Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron, 2021, 210, 115515.	1.0	37
3906	Dual removal and selective recovery of phosphate and an organophosphorus pesticide from water by a Zr-based metal-organic framework. Materials Today Chemistry, 2021, 22, 100596.	1.7	9

#	Article	IF	CITATIONS
3907	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
3908	Multi-component ppm level adsorption of VOCs on the ZIF-8 and UiO-66 MOFs: Breakthrough analysis with selected ion flow tube mass spectrometry. Journal of Environmental Chemical Engineering, 2021, 9, 106568.	3.3	16
3909	New Catalyst Design Concepts Utilizing Porous Coordination Polymers. Journal of Smart Processing, 2013, 2, 287-292.	0.0	0
3910	ADSORPTION OF XYLENE ISOMERS IN METAL ORGANIC FRAMEWORK UiO-66 BY MOLECULAR SIMULATIONS. , 0, , .		0
3911	CO2 Capture Using Solid Sorbents., 2017,, 2349-2404.		0
3912	Hydrothermally Synthesized NanobioMOFs, Evaluated by Photocatalytic Hydrogen Generation. Modern Research in Catalysis, 2017, 06, 80-99.	1.2	1
3913	SÃNTESE DE ESTRUTURAS METALORGÃ,NICAS (MOFS) E SUA APLICAÃ \ddagger Ã f O NO PROCESSO DE CAPTURA E ARMAZENAMENTO DE GASES. , 0, , .		0
3914	DSA Preparation of Fe ₃ O ₄ NPs@MIL-53 and atalytic Performance. Hans Journal of Chemical Engineering and Technology, 2018, 08, 216-222.	0.0	0
3915	Preparation, Characterization and Catalytic Performance of WO ₃ /UiO-66 Catalyst. Journal of Advances in Physical Chemistry, 2018, 07, 78-85.	0.1	0
3916	MOF-Coated Optical Fiber Sensor for Detection of 4-Aminopyridine in Water., 2018,,.		0
3917	Exotic Functions of Flexible Coordination Polymer Crystals. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 30-38.	0.1	0
3918	Advancements in MOF characterization for enhanced MALDI sensing. , 2018, , .		0
3920	Metal-Organic Frameworks for Carbon Dioxide Capture. Sustainable Agriculture Reviews, 2019, , 169-191.	0.6	1
3923	Adsorption of Pd(II) onto Zr(IV) Based Metal-Organic Framework UIO-66-NH ₂ from Hydrochloric Acid Solution. Journal of Korean Institute of Metals and Materials, 2019, 57, 589-595.	0.4	1
3924	Uji Drug Loading Ibuprofen Pada Material UiO-66 (Zr-Metal Organic Framework). Jurnal Kimia Riset, 2019, 4, 161.	0.1	0
3925	Metal organic framework mixed-matrix membrane for arsenic removal. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 359-362.	0.4	6
3926	Metal–Organic Framework (MOF)â€Based Ultrasoundâ€Responsive Dualâ€Sonosensitizer Nanoplatform for Hypoxic Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101946.	3.9	43
3927	Impact of Zr ₆ Node in a Metal–Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorganic Chemistry, 2021, 60, 16966-16976.	1.9	13

#	Article	IF	CITATIONS
3928	Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors, 2021, 9, 306.	1.8	29
3929	Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal–Organic Frameworks. Environmental Science & Environmental	4.6	73
3930	Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@UiO-66 via acetic acid. Journal of Environmental Chemical Engineering, 2021, 9, 106675.	3.3	54
3931	Synchronous Construction of the Hierarchical Pores and High Hydrophobicity of Stable Metal–Organic Frameworks through a Dual Coordination-Competitive Strategy. Langmuir, 2021, 37, 13116-13124.	1.6	2
3932	Identifying UiOâ€67 Metalâ€Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem, 2022, 15, .	3.6	6
3933	Metal-Organic Frameworks Characterization via Inverse Pulse Gas Chromatography. Applied Sciences (Switzerland), 2021, 11, 10243.	1.3	8
3934	Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy. Materials Science and Engineering C, 2021, 131, 112514.	3.8	38
3935	Study of polymerization dynamics in micropores of metal-organic framework. AIP Conference Proceedings, 2020, , .	0.3	2
3936	The Effects of Functional Groups and Missing Linkers on the Adsorption Capacity of Aromatic Hydrocarbons in UiO-66 Thin Films. Inorganics, 2021, 9, 1.	1.2	14
3937	Metall-organiske rammeverk: Supermaterialer som kan gjøre verden til et tryggere sted. Naturen, 2020, 144, 226-233.	0.0	0
3938	Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, , 105-146.	0.3	0
3939	Interplay between Intrinsic Thermal Stability and Expansion Properties of Functionalized UiO-67 Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 910-920.	3.2	17
3940	Encapsulating Kegginâ€H ₃ PW ₁₂ O ₄₀ into UIOâ€66(Zr) for manufacturing the biodiesel. Micro and Nano Letters, 2021, 16, 90-96.	0.6	3
3941	UiOâ€66 and hcp UiOâ€66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. ChemistryOpen, 2021, 10, 233-242.	0.9	7
3942	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	9.5	70
3943	Design and enhancement of photocatalytic activity of porphyrin functionalized UiO-66 and Keggin unit co-doped titanium dioxide heterojunction. Applied Surface Science, 2022, 572, 151512.	3.1	9
3944	Energy efficient green synthesized MOF-801 for adsorption cooling applications. Journal of Molecular Liquids, 2022, 345, 117760.	2.3	26
3945	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66

#	Article	IF	CITATIONS
3946	Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordination Chemistry Reviews, 2022, 451, 214262.	9.5	253
3947	One-step preparation of Ag0-MOF composites for effective removal of iodide from water. Journal of Solid State Chemistry, 2022, 305, 122680.	1.4	10
3948	Synthesis of HKUST-1 embedded in SBA-15 functionalized with carboxyl groups as a catalyst for 4-nitrophenol to 4-aminophenol. Applied Surface Science, 2022, 573, 151558.	3.1	10
3949	Mn decorated UIO-66 catalyst for gaseous toluene removal: Synergistic effect of enhanced hydroxyl from H2O2. Fuel, 2022, 309, 122229.	3.4	10
3950	Solvent-dependent textural properties of defective UiO-66 after acidic and basic treatment. Inorganic Chemistry Frontiers, 2021, 9, 70-77.	3.0	3
3951	Catalysis by Metal Nanoparticles Encapsulated Within Metal–Organic Frameworks. Molecular Catalysis, 2020, , 221-247.	1.3	0
3954	Former research and recent advances of metal-organic frameworks(MOF) for anti-cancer drug delivery. Journal of Physics: Conference Series, 2021, 2021, 012021.	0.3	2
3955	Structural Chemistry of Metal–Organic Frameworks under Hydrostatic Pressures. , 2021, 3, 1635-1651.		16
3956	Fabrication of amidoxime-appended UiO-66 for the efficient and rapid removal of U(VI) from aqueous solution. Microporous and Mesoporous Materials, 2022, 329, 111511.	2.2	7
3957	Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption. Chinese Journal of Chemical Engineering, 2023, 54, 36-43.	1.7	5
3958	Sulfonate-Grafted Metal–Organic Frameworks for Reductive Functionalization of CO ₂ to Benzimidazoles and <i>N</i> -Formamides. ACS Catalysis, 2021, 11, 13983-13999.	5.5	26
3959	Visible Light Response Photocatalytic Performance of Z-Scheme Ag ₃ PO ₄ /GO/UiO–66–NH ₂ Photocatalysts for the Levofloxacin Hydrochloride. Langmuir, 2021, 37, 13309-13321.	1.6	49
3960	Metal organic frameworks for electrochemical sensor applications: A review. Environmental Research, 2022, 204, 112320.	3.7	102
3961	A functionalized UiO-66 metal-organic framework acting as a fluorescent based selective sensor of hydrazine in aqueous medium. Microporous and Mesoporous Materials, 2022, 329, 111552.	2.2	6
3962	Bimetallic Cd/Zr-UiO-66 material as a turn-on/off probe for As5+/Fe3+ in organic media. Chemosphere, 2022, 291, 132827.	4.2	7
3963	A Ferrocene Metal–Organic Framework Solid for Fe-Loaded Carbon Matrices and Nanotubes: High-Yield Synthesis and Oxygen Reduction Electrocatalysis. Inorganic Chemistry, 2021, 60, 17315-17324.	1.9	4
3964	Applications of copper based metal organic frameworks. Materials Today: Proceedings, 2021, 50, 1906-1906.	0.9	4
3965	Zr-Based Metal–Organic Nanoporous Adsorbents of High Density for Methane Storage. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 1114-1121.	0.3	7

#	Article	IF	CITATIONS
3966	Dye Adsorption on UiO-66: the Importance of Electrostatic Attraction Mechanism. Journal of Water Chemistry and Technology, 2020, 42, 441-449.	0.2	7
3967	Bis-isonicotinoyl linkers containing polyaromatic scaffolds: synthesis, structure and spectroscopic properties. Physical Chemistry Chemical Physics, 2022, 24, 1191-1201.	1.3	1
3968	Novel nanomaterials for environmental remediation of toxic metal ions and radionuclides. , 2022, , $1-47$.		2
3969	UiO-67-derived bithiophene and bithiazole MIXMOFs for luminescence sensing and removal of contaminants of emerging concern in wastewater. Inorganic Chemistry Frontiers, 2021, 9, 90-102.	3.0	3
3970	Water-stable metal–organic framework–based nanomaterials for removal of heavy metal ions and radionuclides. , 2022, , 49-126.		1
3971	Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coordination Chemistry Reviews, 2022, 452, 214304.	9.5	91
3972	Silver nanoparticles on UiO-66 (Zr) metal-organic frameworks for water disinfection application. Food Science and Human Wellness, 2022, 11, 269-276.	2.2	9
3973	UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for Efficient Extraction of Uranium from Seawater. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57831-57840.	4.0	40
3974	Linker Contribution toward Stability of Metal–Organic Frameworks under Ionizing Radiation. Chemistry of Materials, 2021, 33, 9285-9294.	3.2	16
3975	Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2021, 13, 55358-55366.	4.0	23
3976	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie, 2022, 134, .	1.6	5
3977	Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance. Journal of Hazardous Materials, 2022, 425, 127810.	6.5	88
3978	Tailoring Defect Density in UiO-66 Frameworks for Enhanced Pb(II) Adsorption. Langmuir, 2021, 37, 13602-13609.	1.6	19
3979	Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, , 259-317.	0.3	2
3980	Remarkable Uptake of Deoxynivalenol in Stable Metal–Organic Frameworks. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 58019-58026.	4.0	13
3981	Heterogeneous Metal-Organic Framework Catalysts for Suzuki-Miyaura Cross Coupling in the Pharma Industry. Chimia, 2021, 75, 972.	0.3	6
3982	Organophosphorus-Functionalized Zirconium-Based Metal–Organic Framework Nanostructures for Improved Mechanical and Flame Retardant Polymer Nanocomposites. ACS Applied Nano Materials, 2021, 4, 13027-13040.	2.4	21
3983	Site Densities, Rates, and Mechanism of Stable Ni/UiO-66 Ethylene Oligomerization Catalysts. Journal of the American Chemical Society, 2021, 143, 20274-20280.	6.6	21

#	ARTICLE	IF	CITATIONS
3984	Influence of the framework on the catalytic performance of Rh-supported Zr-MOFs in the hydroformylation of n-alkenes. Molecular Catalysis, 2022, 517, 112005.	1.0	8
3985	Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sensors and Actuators B: Chemical, 2022, 353, 131032.	4.0	17
3986	Aqueous zirconiumâ \in MOF syntheses assisted by Î \pm â \in cyclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	1.0	3
3987	Epoxidation catalysts prepared by encapsulation of molybdenum hexacarbonyl in UiO-66(Zr/Hf)-type metal-organic frameworks. Microporous and Mesoporous Materials, 2022, 330, 111603.	2.2	6
3988	Phase engineering of metalâ€organic frameworks. Aggregate, 2022, 3, e145.	5. 2	15
3989	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
3990	Control of Local Electronic Structure of Pd Single Atom Catalyst by Adsorbate Induction. Small, 2022, 18, e2103852.	5. 2	16
3991	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
3992	The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 2022, 10, 106883.	3.3	21
3993	Water adsorption in ideal and defective UiO-66 structures. Microporous and Mesoporous Materials, 2022, 330, 111555.	2.2	28
3994	Exploring the Role of Cluster Formation in UiO Family Hf Metal–Organic Frameworks with ⟨i⟩in Situ⟨/i⟩ X-ray Pair Distribution Function Analysis. Journal of the American Chemical Society, 2021, 143, 19668-19683.	6.6	24
3995	The synthesis of a new aromatic polycarboxylic acid and its property as fluorescence-colorimetric chemosensor. Journal of Molecular Structure, 2022, 1251, 132042.	1.8	2
3996	Unveiling the nature of boric acid adsorption by metal-organic frameworks with hexanuclear clusters. Chemical Engineering Journal, 2022, 433, 133543.	6.6	7
3997	Coordinatively Unsaturated Hf-MOF-808 Prepared via Hydrothermal Synthesis as a Bifunctional Catalyst for the Tandem $\langle i \rangle N \langle i \rangle$ -Alkylation of Amines with Benzyl Alcohol. ACS Sustainable Chemistry and Engineering, 2021, 9, 15793-15806.	3.2	23
3998	Sustainable synthesis of semicrystalline Zr-BDC MOF and heterostructural Ag3PO4/Zr-BDC/g-C3N4 composite for photocatalytic dye degradation. Catalysis Today, 2022, 390-391, 162-175.	2.2	21
3999	Microscopic techniques for fabrication of polyethersulfone thinâ€film nanocomposite membranes intercalated with UiOâ€66â€SO 3 H for heavy metal ions removal from water. Microscopy Research and Technique, 2021, , .	1.2	4
4000	Facile preparation of UiO-66@PPy nanostructures for rapid and efficient adsorption of fluoride: Adsorption characteristics and mechanisms. Chemosphere, 2022, 289, 133164.	4.2	21
4001	Stability and Degradation of Metal–Organicâ€Framework Films under Ambient Air Explored by Uptake and Diffusion Experiments. Advanced Materials Interfaces, 2022, 9, 2101947.	1.9	12

#	Article	IF	CITATIONS
4002	Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. Ecotoxicology and Environmental Safety, 2021, 228, 112990.	2.9	23
4003	Two-step preparation of Keggin-PW ₁₂ @UIO-66 composite showing high-activity and long-life conversion of soybean oil into biodiesel. RSC Advances, 2021, 11, 38016-38025.	1.7	9
4004	Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Advances, 2021, 11, 38849-38855.	1.7	20
4005	Chapter 2. Inorganic Materials in Drug Delivery. Inorganic Materials Series, 2021, , 14-126.	0.5	0
4006	Low-dose electron microscopy of nanoporous materials., 2021,,.		0
4007	Cr-doped UiO-66 with enhanced water adsorption for adsorption heat transformation. Microporous and Mesoporous Materials, 2022, 331, 111642.	2.2	13
4008	A confinement of N-heterocyclic molecules in a metal–organic framework for enhancing significant proton conductivity. RSC Advances, 2021, 12, 355-364.	1.7	2
4009	Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Transactions, 2022, 51, 2992-3003.	1.6	15
4010	A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(<scp>ii</scp>) and nitroantibiotics. Inorganic Chemistry Frontiers, 2022, 9, 859-869.	3.0	30
4011	Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma. Catalysts, 2022, 12, 66.	1.6	16
4012	Metal organic framework UiO-66 incorporated ultrafiltration membranes for simultaneous natural organic matter and heavy metal ions removal. Environmental Research, 2022, 208, 112651.	3.7	40
4013	Stepwise synthesis of Zr-based metal–organic frameworks: incorporating a trinuclear zirconocene-based metallo-pyridine ligand. CrystEngComm, 2022, 24, 475-478.	1.3	0
4014	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
4015	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
4016	Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Separation and Purification Technology, 2022, 284, 120258.	3.9	62
4017	MOF@COF functionalized cotton fiber as a platform for high performance extraction and removal of bisphenols from water samples. Journal of Environmental Chemical Engineering, 2022, 10, 107072.	3.3	11
4018	Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. Journal of Environmental Chemical Engineering, 2022, 10, 106991.	3.3	51
4019	Combination of heteropolyacid and UiO-67 (Zr) to generate heterogeneous nanocomposite catalyst for efficient oxidative desulfurization system. Inorganic Chemistry Communication, 2022, 136, 109143.	1.8	8

#	Article	IF	CITATIONS
4020	Recent progress on the metal-organic frameworks decorated graphene oxide (MOFs-GO) nano-building application for epoxy coating mechanical-thermal/flame-retardant and anti-corrosion features improvement. Progress in Organic Coatings, 2022, 163, 106645.	1.9	27
4021	Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production. Renewable Energy, 2022, 185, 970-977.	4.3	26
4022	Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. Science of the Total Environment, 2022, 810, 152279.	3.9	28
4023	Zirconium-based Metal-Organic Frameworks for highly efficient solar light-driven photoelectrocatalytic disinfection. Separation and Purification Technology, 2022, 285, 120351.	3.9	5
4024	Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Materials Today Chemistry, 2022, 23, 100670.	1.7	43
4025	Facile fabrication of flower-like NH2-UIO-66/BiOCl Z-scheme heterojunctions with largely improved photocatalytic performance for removal of tetracycline under solar irradiation. Journal of Alloys and Compounds, 2022, 899, 163324.	2.8	21
4026	Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample. Talanta, 2022, 240, 123211.	2.9	43
4027	Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 2022, 31, e00378.	1.7	43
4028	Efficient visible light initiated one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd@NH2-UiO-66(Zr). Applied Catalysis B: Environmental, 2022, 305, 121031.	10.8	20
4029	Pesticide elimination through adsorption by metal-organic framework and their modified forms. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100638.	1.7	3
4030	Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chemical Engineering Journal, 2022, 433, 134510.	6.6	97
4031	Synthesis and DFT study of binding models of histidine in [VO(His)2]complex and immobilization on UiO-66-NH2 as epoxidation catalyst of allyl alcohols. Journal of Molecular Structure, 2022, 1253, 132248.	1.8	2
4032	Supersensitive Detection of Chloramphenicol with an EIS Method Based on Molecularly Imprinted Polypyrrole at UiO-66 and CDS Modified Electrode. SSRN Electronic Journal, 0, , .	0.4	0
4033	Advanced metal–organic framework-based membranes with ion selectivity for boosting electrochemical energy storage and conversion. Journal of Materials Chemistry A, 2021, 9, 25325-25340.	5.2	13
4034	Adsorptive Desulfurization Using Cu ⁺ Modified UiO-66(Zr) Via Vapor Ethanol Reduction. SSRN Electronic Journal, 0, , .	0.4	0
4035	Organometallic Functionalized MOFs - Reactivity and Catalysis. , 2021, , .		1
4036	In-Situ Grown Bilayer MOF from Robust Wood Aerogel with Aligned Microchannel Arrays Toward Selective Extraction of Uranium from Seawater. SSRN Electronic Journal, 0, , .	0.4	1
4037	Aqueous Medium Fluoride Anion Sensing by Fluorophore Encapsulated UiO-66 Type Zirconium Metal–Organic Framework. , 2021, 5, .		1

#	Article	IF	CITATIONS
4038	Postâ€synthesis metalâ€organic framework for turnâ€on ratiometric fluorescence sensing of UO ₂ ²⁺ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	5
4039	A Microporous Metal–Organic Framework Incorporating Both Primary and Secondary Building Units for Splitting Alkane Isomers. Journal of the American Chemical Society, 2022, 144, 3766-3770.	6.6	36
4040	Synthetic Mechanism of UiOâ€66â€NH ₂ /BiVO ₄ /BiOBr Spherical and Lamellar Dual Zâ€scheme Heterojunction and Efficient Photocatalytic Degradation of Tetracycline Under Visible Light. ChemistrySelect, 2022, 7, .	0.7	3
4041	Synthesis, supramolecular isomerism, and photoluminescence of scandium(<scp>iii</scp>) complexes with a tetrafluoroterephthalate ligand. CrystEngComm, 2022, 24, 2057-2071.	1.3	0
4042	Performance enhancement strategies for surface plasmon resonance sensors in direct glucose detection using pristine and modified UiO-66: effects of morphology, immobilization technique, and signal amplification. Journal of Materials Chemistry A, 2022, 10, 6662-6678.	5.2	19
4043	Assembling Ag/UiO-66-NH2 Composites for Photocatalytic Dye Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1896-1901.	1.9	6
4044	Two-dimensional Zr/Hf-hydroxamate metal–organic frameworks. Chemical Communications, 2022, 58, 3601-3604.	2.2	12
4045	Water Sorption Evolution Enabled by Reticular Construction of Zirconium Metal–Organic Frameworks Based on a Unique [2.2]Paracyclophane Scaffold. Journal of the American Chemical Society, 2022, 144, 1826-1834.	6.6	42
4046	Templated synthesis of zirconium(<scp>iv</scp>)-based metal–organic layers (MOLs) with accessible chelating sites. Chemical Communications, 2022, 58, 957-960.	2.2	6
4047	Development of a Metal–Organic Framework/Textile Composite for the Rapid Degradation and Sensitive Detection of the Nerve Agent VX. Chemistry of Materials, 2022, 34, 1269-1277.	3.2	22
4048	Defective UiOâ€66 toward boosted electrochemical nitrogen reduction to ammonia. Electrochimica Acta, 2022, 409, 139988.	2.6	17
4049	Metal-hydrogen-pi-bonded organic frameworks. Dalton Transactions, 2022, 51, 1927-1935.	1.6	12
4050	Mass transfer of toluene in a series of metal–organic frameworks: molecular clusters inside the nanopores cause slow and step-like release. Physical Chemistry Chemical Physics, 2022, 24, 3994-4001.	1.3	8
4051	Simple Design Concept for Dual-Channel Detection of Ochratoxin A Based on Bifunctional Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, 14, 5615-5623.	4.0	33
4052	Hetero‣attice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
4053	Recent advances in the application of metal organic frameworks using in advanced oxidation progresses for pollutants degradation. Chinese Chemical Letters, 2022, 33, 5013-5022.	4.8	32
4054	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie, 2022, 134, e202117244.	1.6	6
4055	Cellulose-based foaming materials. , 2022, , 207-242.		0

#	Article	IF	Citations
4056	Exploring the effect of acid modulators on MIL-101 (Cr) metal–organic framework catalysed olefin-aldehyde condensation: a sustainable approach for the selective synthesis of nopol. New Journal of Chemistry, 2022, 46, 726-738.	1.4	7
4057	Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications, 2022, 13, 172.	5.8	83
4058	Vacancies in Metalâ^'Organic Frameworks: Formation, Arrangement, and Functions. Small Structures, 2022, 3, .	6.9	9
4059	Metal–Organic Frameworks for NO <i></i> >>Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. Small, 2022, 18, e2105484.	5. 2	29
4060	Ionic Liquid Grafted NH ₂ -UiO-66 as Heterogeneous Solid Acid Catalyst for Biodiesel Production. SSRN Electronic Journal, 0, , .	0.4	0
4061	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
4062	Vapor-assisted crystallization of <i>in situ</i> glycine-modified UiO-66 with enhanced CO ₂ adsorption. New Journal of Chemistry, 2022, 46, 1779-1784.	1.4	6
4063	Machineâ€Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
4064	Stable Quasiâ€Solidâ€State Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	11.1	19
4065	Heteroâ€Lattice Intergrown and Robust MOF Membranes for Polyol Upgrading. Angewandte Chemie, 2022, 134, .	1.6	3
4066	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5.2	33
4067	Metal–organic framework-assisted synthesis of Zr-modified SAPO-34 zeolites with hierarchical porous structure for the catalytic transformation of methanol to olefins. Catalysis Science and Technology, 2022, 12, 894-905.	2.1	3
4068	Metal–organic frameworks for active food packaging. A review. Environmental Chemistry Letters, 2022, 20, 1479-1495.	8.3	31
4069	Surface-Seal Encapsulation of a Homogeneous Catalyst in a Mesoporous Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 685-689.	6.6	32
4070	Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Research, 2023, 16, 4901-4907.	5.8	4
4071	Amorphization of hybrid framework materials. , 2022, , .		0
4072	Photo- and Electrocatalytic Reduction of CO ₂ over Metal–Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure. Inorganic Chemistry, 2022, 61, 2476-2489.	1.9	31
4073	Merging the chemistry of metal–organic and polyoxometalate clusters to form enhanced photocatalytic materials. Inorganic Chemistry Frontiers, 2022, 9, 935-940.	3.0	8

#	Article	IF	CITATIONS
4074	ZrBDC-Based Functional Adsorbents for Small-Scale Methane Storage Systems. Adsorption Science and Technology, 2022, 2022, .	1.5	2
4075	High Proton Conductivity of MOF-808 Promotes Methane Production in Anaerobic Digestion. ACS Sustainable Chemistry and Engineering, 2022, 10, 1419-1429.	3.2	14
4076	Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks. Nano Materials Science, 2022, 4, 351-365.	3.9	29
4077	Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection. Green Chemistry, 2022, 24, 585-613.	4.6	19
4078	Creating Cu(I)-decorated defective UiO-66(Zr) framework with high CO adsorption capacity and selectivity. Separation and Purification Technology, 2022, 283, 120237.	3.9	22
4079	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	12
4080	Superhydrophobic MOFs decorated on hierarchically micro/nanofibrous membranes for high-performance emulsified oily wastewater separation and cationic dyes adsorption. Journal of Materials Chemistry A, 2022, 10, 829-845.	5.2	24
4081	A facile and sustainable one-pot approach to the aqueous and low-temperature PET-to-UiO-66(Zr) upcycling. Chemical Communications, 2022, 58, 1330-1333.	2.2	12
4082	Machineâ€Learning Prediction of Metal–Organic Framework Guest Accessibility from Linker and Metal Chemistry. Angewandte Chemie, 2022, 134, .	1.6	2
4083	Research Progress of UiO-66-Based Electrochemical Biosensors. Frontiers in Chemistry, 2022, 10, 842894.	1.8	10
4084	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	6.6	127
4085	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	7.6	145
4086	Identification of Cooperative Reaction Sites in Metalâ^'Organic Framework Catalysts for High Yielding Lactic Acid Production from d â€Xylose. ChemSusChem, 2022, , .	3.6	4
4087	Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal–Organic Polyhedron (MOP). Inorganic Chemistry, 2022, 61, 2813-2823.	1.9	24
4088	Surface thermodynamics and Lewis acid-base properties of metal-organic framework Crystals by Inverse gas chromatography at infinite dilution. Journal of Chromatography A, 2022, 1666, 462849.	1.8	10
4089	Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology, 2022, 286, 120467.	3.9	58
4090	Therapeutic and protective effect of two luminescent 3D Cd(II) compounds on heart failure via high-intensity focused ultrasound. Journal of Molecular Structure, 2022, 1254, 132411.	1.8	0
4091	Electrochemical sensor based on UiO-66-NH2/COCl-MWCNT/CB for simultaneous detection of dihydroxybenzene isomers in different water samples. Microchemical Journal, 2022, 175, 107139.	2.3	13

#	Article	IF	CITATIONS
4092	In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance. Chemical Engineering Journal, 2022, 435, 134804.	6.6	13
4093	Ceramic hollow fiber NF membrane incorporating UiO-66 for the chlorinated hydrocarbons removal. Chemical Engineering Journal, 2022, 435, 134789.	6.6	12
4094	Metal–organic frameworks with ftw -type connectivity: design, pore structure engineering, and potential applications. CrystEngComm, 2022, 24, 2189-2200.	1.3	5
4095	Capture of Gaseous Iodine in Isoreticular Zirconiumâ€Based UiOâ€n Metalâ€Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chemistry - A European Journal, 2022, 28, e202104437.	1.7	23
4096	Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7949-7961.	4.0	15
4097	Delta Chem: A New Geometric Approach of Porosity for Symmetric Porous Materials. Journal of Chemical Information and Modeling, 2022, , .	2.5	0
4098	Construction of multifunctional NH2-UiO-66 metal organic framework: sensing and photocatalytic degradation of ketorolac tromethamine and tetracycline in aqueous medium. Environmental Science and Pollution Research, 2023, 30, 8464-8484.	2.7	16
4099	Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 2022, 34, e2110079.	11.1	106
4100	Development of Metal-Organic Framework-Based Dual Antibody Nanoparticles for the Highly Specific Capture and Gradual Release of Circulating Tumor Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 806238.	2.0	0
4101	Nb ₂ O ₅ , LiNbO ₃ , and (Na, K)NbO ₃ Thin Films from High-Concentration Aqueous Nb-Polyoxometalates. Inorganic Chemistry, 2022, 61, 3586-3597.	1.9	5
4102	A highly atom-efficient and stable copper catalyst loaded on amorphous UiO-66-NH2 for HCl oxidation to chlorine. Applied Catalysis A: General, 2022, 634, 118532.	2.2	5
4103	Oxo-Cluster-Based Zr/Hf ^{IV} Separation: Shedding Light on a 70-Year-Old Process. Journal of the American Chemical Society, 2022, 144, 2816-2824.	6.6	13
4104	Hollow zirconium-porphyrin-based metal-organic framework for efficient solid-phase microextraction of naphthols. Analytica Chimica Acta, 2022, 1200, 339586.	2.6	7
4105	Coloration in Supraparticles Assembled from Polyhedral Metalâ€Organic Framework Particles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
4106	Coloration in Supraparticles Assembled from Polyhedral Metalâ€Organic Framework Particles. Angewandte Chemie, 2022, 134, .	1.6	2
4107	Metal–organic frameworks properties from hybrid density functional approximations. Journal of Chemical Physics, 2022, 156, 094706.	1.2	10
4108	A novel Zr-MOF modified by 4,6-Diamino-2-mercaptopyrimidine for exceptional Hg (II) removal. Journal of Water Process Engineering, 2022, 46, 102606.	2.6	7
4109	In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater. Chemical Engineering Journal, 2022, 433, 134346.	6.6	25

#	Article	IF	CITATIONS
4110	Synthesis and characterization of nano-sized magnesium 1,4-benzenedicarboxylate metal organic framework via electrochemical method. Journal of Solid State Chemistry, 2022, 309, 122970.	1.4	1
4111	Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coordination Chemistry Reviews, 2022, 458, 214428.	9.5	107
4112	Enhanced adsorption and visible-light photocatalytic degradation of toluene by CQDs/UiO-66 MOG with hierarchical pores. Chemical Engineering Journal, 2022, 435, 135033.	6.6	50
4113	Effect of organic linker substituent on catalytic activity of UiO-66 metal-organic framework in selective oxidation of propylene glycol: homolytic versus heterolytic activation of hydrogen peroxide. Materials Today Chemistry, 2022, 24, 100776.	1.7	2
4114	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2021, 374, 1464-1469.	6.0	308
4115	Crystalline Ionic Liquid: New Type of Solid Electrolyte for High Na ⁺ Conductivity. SSRN Electronic Journal, 0, , .	0.4	O
4116	Surface Thermodynamics and Lewis Acid-Base Properties of UiO-66 Crystals by Inverse Gas Chromatography at Infinite Dilution. SSRN Electronic Journal, 0, , .	0.4	1
4117	PreparationÂofÂhierarchicallyÂporousÂUiO-66ÂbyÂcalcinedÂhemilabileÂ2-nitroterephthalicÂacidÂforÂefficientÂbis SSRN Electronic Journal, 0, , .	sphenolÂ⁄	kĝadsorptio
4118	Synergistic Effect between Boron Containing Metal-Organic Frameworks and Light Leading to Enhanced Co2 Cycloaddition with Epoxides. SSRN Electronic Journal, 0, , .	0.4	0
4119	In-Situ Growth of Uio-66-Nh2 in Porous Polymeric Substrates at Room Temperature for Fabrication of Mixed Matrix Membranes with Fast Molecular Separation Performance. SSRN Electronic Journal, 0, , .	0.4	О
4120	One-Step Synthesis of Transition Metal Modified Uio-66-Ce Metal-Organic Framework: Catalytic Oxidation of Toluene and Investigation of the Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
4121	Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chemical Communications, 2022, 58, 3429-3460.	2.2	35
4122	Recent Progress in the Synthesis and Electrocatalytic Application of Metal–Organic Frameworks Encapsulated Nanoparticle Composites. , 2022, , 731-764.		7
4123	Rational Design of Zr-Mofs Pyrolyzed to Pinpoint Rate-Directing Stage and Catalytic Functions of Surface Acidic Species in Homolytic H2o2 Scission. SSRN Electronic Journal, 0, , .	0.4	О
4124	Angstrom-scale ion channels towards single-ion selectivity. Chemical Society Reviews, 2022, 51, 2224-2254.	18.7	116
4125	Synthesis of core–shell magnetic metal organic framework composite for the efficient removal of uranium(<scp>vi</scp>). New Journal of Chemistry, 2022, 46, 7503-7511.	1.4	8
4126	General pore features for one-step C ₂ H ₄ production from a C2 hydrocarbon mixture. Chemical Communications, 2022, 58, 4954-4957.	2.2	8
4127	Ethylene oxide functionalization enhances the ionic conductivity of a MOF. Chemical Communications, 2022, 58, 5355-5358.	2.2	2

#	Article	IF	CITATIONS
4128	Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. Materials Advances, 2022, 3, 4227-4234.	2.6	3
4129	An efficient modulated synthesis of zirconium metal–organic framework UiO-66. RSC Advances, 2022, 12, 6083-6092.	1.7	13
4131	Amyloid fibril-UiO-66-NH ₂ aerogels for environmental remediation. Chemical Communications, 2022, 58, 5104-5107.	2.2	7
4132	A luminescent 2,1,3-benzoxadiazole-decorated zirconium-organic framework as an exceptionally sensitive turn-on sensor for ammonia and aliphatic amines in water. Journal of Materials Chemistry C, 2022, 10, 5567-5575.	2.7	12
4133	Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells. Green Chemistry Letters and Reviews, 2022, 15, 253-275.	2.1	9
4134	Application of novel metal–organic framework [Zr-UiO-66-PDC-SO ₃ H]FeCl ₄ in the synthesis of dihydrobenzo[<i>g</i>)pyrimido[4,5- <i>b</i>)quinoline derivatives. RSC Advances, 2022, 12, 9058-9068.	1.7	10
4135	Metal–Organic Frameworks (MOFs) as Versatile Detoxifiers for Chemical Warfare Agents (CWAs). , 2022, , 453-489.		1
4136	Computational Approach Toward Identification and Catalytic Degradation of Chemical Warfare Agents Using MOFs., 2022,, 431-451.		3
4137	Understanding the structure–activity relationships of different double atom catalysts from density functional calculations: three general rules for efficient CO oxidation. Journal of Materials Chemistry A, 2022, 10, 9025-9036.	5.2	11
4138	Zirconium Based MOFs and Their Potential Use in Water Remediation: Current Achievements and Possibilities. Air, Soil and Water Research, 2022, 15, 117862212210801.	1.2	1
4139	Thermal Stability Criteria and Crystallization Kinetic Acceleration of Pet/Uio-66 Nanocomposite Under Non-Isothermal Conditions. SSRN Electronic Journal, 0, , .	0.4	0
4140	Hydrazon Modified Nanoscale Metal-Organic Frameworks as Ph Responsive Nanoparticles for Cancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
4141	The Effect of Zeolitic Imidazole Framework-8@Graphene Oxide on the Performance of Polymeric Membranes Used for Wasterwater Treatment. Springer Series in Materials Science, 2022, , 225-252.	0.4	0
4142	IL-functionalized Mn(<scp>ii</scp>)-doped core–shell Fe ₃ O ₄ @Zr-MOF nanomaterials for the removal of MB from wastewater based on dual adsorption/Fenton catalysis. New Journal of Chemistry, 2022, 46, 8534-8544.	1.4	9
4143	An efficient and recyclable Cu@UiO-67-BPY catalyst for the selective oxidation of alcohols and the epoxidation of olefins. New Journal of Chemistry, 2022, 46, 5839-5847.	1.4	3
4144	Defect-engineered MOF-801 for cycloaddition of CO ₂ with epoxides. Journal of Materials Chemistry A, 2022, 10, 10051-10061.	5.2	42
4145	Microwave-Assisted Synthesis of 2d Zr-Mof Nanosheets Supported Gold Nanocomposites as Efficient Catalysts for the Reduction of 4-Nitrophenol. SSRN Electronic Journal, 0, , .	0.4	0
4146	MOF-supported crystalline ionic liquid: new type of solid electrolyte for enhanced and high ionic conductivity. Dalton Transactions, 2022, 51, 6086-6094.	1.6	6

#	Article	IF	CITATIONS
4147	Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 9855-9865.	1.3	5
4149	Poly(Ionic Liquids)-Impregnated Uio-66 Composites for Efficient Sequestration of Dichromate. SSRN Electronic Journal, 0, , .	0.4	0
4150	A fluorescence nanoplatform for the determination of hydrogen peroxide and adenosine triphosphate via tuning of the peroxidase-like activity of CuO nanoparticle decorated UiO-66. Mikrochimica Acta, 2022, 189, 119.	2.5	5
4151	The effect of organic ligand modification on protein corona formation of nanoscale metal organic frameworks. Chinese Chemical Letters, 2022, 33, 4185-4190.	4.8	12
4152	Extrusion-Spheronization of UiO-66 and UiO-66_NH ₂ into Robust-Shaped Solids and Their Use for Gaseous Molecular Iodine, Xenon, and Krypton Adsorption. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10669-10680.	4.0	18
4153	Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Inorganic Chemistry, 2022, 61, 3406-3411.	1.9	19
4154	Rational Functionalization of UiO-66 with Pd Nanoparticles: Synthesis and In Situ Fourier-Transform Infrared Monitoring. Inorganic Chemistry, 2022, 61, 3875-3885.	1.9	8
4155	Fine-tuning the dye adsorption capacity of UiO-66 by a mixed-ligand approach. Heliyon, 2022, 8, e08961.	1.4	14
4156	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nature Communications, 2022, 13, 928.	5.8	23
4157	Tröger's Base Polyimide Hybrid Membranes by Incorporating UiO-66-NH ₂ Nanoparticles for Gas Separation. Industrial & Engineering Chemistry Research, 2022, 61, 3418-3427.	1.8	10
4158	Harnessing Adsorption–Catalysis Synergy: Efficient Oxidative Removal of Gaseous Formaldehyde by a Manganese Dioxide/Metal–Organic Framework Nanocomposite at Room Temperature. Advanced Functional Materials, 2022, 32, .	7.8	15
4159	Structural Dynamics by NMR in the Solid State: II. The MOMD Perspective of the Dynamic Structure of Metalâ€"Organic Frameworks Comprising Several Mobile Components. Journal of Physical Chemistry B, 2022, 126, 2452-2465.	1.2	4
4160	Esterification of Levulinic Acid to Methyl Levulinate over Zr-MOFs Catalysts. ChemEngineering, 2022, 6, 26.	1.0	4
4161	Exploration of Hierarchical Metal–Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. Journal of the American Chemical Society, 2022, 144, 4393-4402.	6.6	21
4162	An effective combination of reusable Pd@MOF catalyst and deep eutectic solvents for high-performance C–C coupling reaction. Journal of Industrial and Engineering Chemistry, 2022, 111, 111-120.	2.9	16
4163	Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nature Communications, 2022, 13, 1249.	5.8	42
4164	A Structure–Activity Study of Aromatic Acid Modulators for the Synthesis of Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 3383-3394.	3.2	24
4165	Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water**. Chemistry - A European Journal, 2022, 28, .	1.7	13

#	Article	IF	CITATIONS
4166	Life History of the Metal–Organic Framework UiO-66 Catalyzing Methanol Dehydration: Synthesis, Activation, Deactivation, and Demise. Chemistry of Materials, 2022, 34, 3395-3408.	3.2	11
4167	Different Topologies of Hg(II)â€Bispidine 1D Coordination Polymers: Dynamic Behavior in Solvent Adsorption and Exchange Processes. Chemistry - A European Journal, 2022, , .	1.7	1
4168	Computational Mechanism of Methyl Levulinate Conversion to \hat{I}^3 -Valerolactone on UiO-66 Metal Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2022, 10, 3567-3573.	3.2	8
4169	Thiol-functionalized Zr metal-organic frameworks for efficient removal of Fe3+ from water. Cell Reports Physical Science, 2022, 3, 100783.	2.8	12
4170	Best Practices in the Characterization of MOF@MSN Composites. Inorganic Chemistry, 2022, 61, 4219-4234.	1.9	7
4171	Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues. Journal of Catalysis, 2022, 407, 333-341.	3.1	6
4172	Preparation of CeO2/UiO-66-NH2 Heterojunction and Study on a Photocatalytic Degradation Mechanism. Materials, 2022, 15, 2564.	1.3	4
4173	UiO-66-derived porous-carbon adsorbents: synthesis, characterization and tetracycline adsorption performance. Carbon Letters, 2022, 32, 875-884.	3.3	17
4174	Hafnium-Based Metal–Organic Framework Nanoparticles as a Radiosensitizer to Improve Radiotherapy Efficacy in Esophageal Cancer. ACS Omega, 2022, 7, 12021-12029.	1.6	25
4175	Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catalysis Today, 2022, 402, 52-59.	2.2	12
4176	Manufacture of Carbon Materials with High Nitrogen Content. Materials, 2022, 15, 2415.	1.3	12
4177	The Versatile and Tunable Metal-Organic Framework MOF for Condensate Decontamination. , 2022, , .		0
4178	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
4179	Role of Molecular Simulations in the Design of Metal–Organic Frameworks for Gas-Phase Thermocatalysis: A Perspective. Journal of Physical Chemistry C, 2022, 126, 6111-6118.	1.5	2
4180	Tuning Adsorption-Induced Responsiveness of a Flexible Metal–Organic Framework JUK-8 by Linker Halogenation. Chemistry of Materials, 2022, 34, 3430-3439.	3.2	6
4181	Adsorption of Indium(III) lons from an Acidic Solution by Using UiO-66. Metals, 2022, 12, 579.	1.0	11
4183	Metal-organic framework coated planar polymer optical waveguide for carbon dioxide detection and sensing. , 2022, , .		2
4184	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	4

#	Article	IF	CITATIONS
4185	Visualizing Pore Packing and Topology in MOFs. Journal of Chemical Education, 2022, 99, 1998-2004.	1.1	11
4186	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
4188	Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nature Communications, 2022, 13, 1879.	5.8	45
4189	Sustainable metal-lignosulfonate catalyst for efficient catalytic transfer hydrogenation of levulinic acid to Î ³ -valerolactone. Applied Catalysis A: General, 2022, 635, 118556.	2.2	10
4190	12-Tungstophosphoric acid-encapsulated metal-organic framework UiO-66: A promising catalyst for the esterification of acetic acid with n-butanol. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104277.	2.7	14
4191	Investigation of H2S Solubility in Aqueous N- Methyldiethanolamine + Amine Functionalized UiO-66 as a nano solvent. Main Group Chemistry, 2022, 21, 85-99.	0.4	1
4192	Seignette salt induced defects in Zr-MOFs for boosted Pb(â¡) adsorption: universal strategy and mechanism insight. Chemical Engineering Journal, 2022, 442, 136276.	6.6	82
4193	Immobilization Horseradish Peroxidase onto UiO-66-NH2 for Biodegradation of Organic Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2901-2909.	1.9	7
4194	Magnetic UiO-66 functionalized with $4,4\hat{a}\in^2$ -diamino- $2,2\hat{a}\in^2$ -stilbenedisulfonic as a highly recoverable acid catalyst for the synthesis of 4H-chromenes in green solvent. Scientific Reports, 2022, 12, 5531.	1.6	4
4195	Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorganic Chemistry Communication, 2022, 140, 109436.	1.8	24
4196	Butane isomers mobility and framework dynamics in UiO-66 (Zr) MOF: Impact of the hydroxyl groups in zirconia cluster. Solid State Nuclear Magnetic Resonance, 2022, 118, 101784.	1.5	4
4197	Thermocatalytic Hydrogenation of CO2 to Methanol Using Cu-ZnO Bimetallic Catalysts Supported on Metal–Organic Frameworks. Catalysts, 2022, 12, 401.	1.6	8
4198	A Combined Theoretical and Experimental Characterization of a Zirconium MOF with Potential Application to Supercapacitors. Applied Magnetic Resonance, $0, 1$.	0.6	2
4199	Amorphous metal-organic framework UiO-66-NO2 for removal of oxyanion pollutants: Towards improved performance and effective reusability. Separation and Purification Technology, 2022, 295, 121014.	3.9	7
4200	The Influence of UiOâ€66 Metal–Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers. Chemistry - A European Journal, 2022, , .	1.7	2
4201	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	6.9	64
4202	Iridiumâ€Functionalized Metalâ€Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem, 2022, 14, .	1.8	5
4203	A Rare Flexible Metal–Organic Framework Based on a Tailorable Mn ₈ â€Cluster Showing Smart Responsiveness to Aromatic Guests and Capacity for Gas Separation. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	CITATIONS
4204	Advances in the adsorption/enrichment of proteins/peptides by metal–organic frameworks-affinity adsorbents. TrAC - Trends in Analytical Chemistry, 2022, 153, 116627.	5.8	18
4205	Supersensitive detection of chloramphenicol with an EIS method based on molecularly imprinted polypyrrole at UiO-66 and CDs modified electrode. Microchemical Journal, 2022, 179, 107459.	2.3	16
4206	Microwave-induced ultrafast crosslinking of Poly (vinyl alcohol) blended with nanoparticles as wave absorber for pervaporation desalination., 2022, 2, 100021.		5
4207	Two-dimensional assembly made up of ZIF-8 particles for the high-efficient capture of the iodine and dyes. Journal of Hazardous Materials, 2022, 430, 128501.	6.5	31
4208	Zr-MOFs–catalyzed transfer hydrogenation of furfural to furfuryl alcohol: Unveiled performance of DUT-52. Molecular Catalysis, 2022, 524, 112265.	1.0	4
4209	Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling. Separation and Purification Technology, 2022, 288, 120700.	3.9	15
4210	New insights into the selective adsorption mechanism of cationic and anionic dyes using MIL-101(Fe) metal-organic framework: Modeling and interpretation of physicochemical parameters. Journal of Contaminant Hydrology, 2022, 247, 103977.	1.6	18
4211	Hydrazone modified nanoscale metal-organic frameworks as pH responsive nanoplatforms for cancer therapy. Journal of Solid State Chemistry, 2022, 310, 123029.	1.4	3
4212	Cobalt-doped UiO-66 nanoparticle as a photo-assisted Fenton-like catalyst for the degradation of rhodamine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128734.	2.3	8
4213	Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. Chemical Engineering Journal, 2022, 437, 135363.	6.6	16
4214	Poly(ionic liquids)-Impregnated UiO-66 composites for efficient sequestration of dichromate. Journal of Solid State Chemistry, 2022, 310, 123091.	1.4	4
4215	Facile fabrication formyl-tagged Zr-MOF and functionalized for Fe3+ fluorescence detection. Materials Letters, 2022, 317, 132117.	1.3	2
4216	Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework. Journal of Environmental Chemical Engineering, 2022, 10, 107535.	3.3	39
4217	A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. Journal of Molecular Graphics and Modelling, 2022, 113, 108147.	1.3	15
4218	DNA-functionalized metal-organic framework ratiometric nanoprobe for MicroRNA detection and imaging in live cells. Sensors and Actuators B: Chemical, 2022, 361, 131676.	4.0	26
4219	Magnetic metal-organic frameworks for efficient removal of cadmium(II), and lead(II) from aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 107467.	3.3	50
4220	Designing functional terminals and vacancies into crystalline porous materials for iodine capture. Chemical Engineering Journal, 2022, 437, 135432.	6.6	8
4221	Sandwich-like photocatalyst MIL-101@TiO2@PDVB with water resistance for efficient oxidation of toluene. Chemosphere, 2022, 296, 133921.	4.2	8

#	Article	IF	CITATIONS
4222	Fe–O–Zr in MOF for effective photo-Fenton Bisphenol A degradation: Boosting mechanism of electronic transmission. Chemosphere, 2022, 299, 134481.	4.2	20
4223	Post-modification of Uio-66-NH2 based on Schiff-base reaction for removal of Hg2+ from aqueous solution: Synthesis, adsorption performance and mechanism. Fuel, 2022, 319, 123816.	3.4	20
4224	Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coordination Chemistry Reviews, 2022, 463, 214521.	9.5	45
4225	Room-temperature synthesis of defect-engineered Zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source. Journal of Membrane Science, 2022, 653, 120496.	4.1	34
4226	UiO-66-NH2 as a novel ultrahigh-selective adsorbent superior to molecularly imprinted polymers for the adsorption of artesunate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128830.	2.3	5
4227	Unveiling structure–property relationships of Fe-promoted Rh-Mn/UiO-66-drived catalysts for C2 oxygenates formation from syngas. Fuel, 2022, 319, 123737.	3.4	2
4228	A novel (Ti/Ce)UiO-X MOFs@TiO2 heterojunction for enhanced photocatalytic performance: Boosting via Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators. Applied Catalysis B: Environmental, 2022, 310, 121349.	10.8	28
4229	Synthesis of defected UIOâ€66 with boosting the catalytic performance via rapid crystallization. Applied Organometallic Chemistry, 2022, 36, .	1.7	7
4230	Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66. Journal of the American Chemical Society, 2021, 143, 21511-21518.	6.6	40
4231	UiO-66 Selective Enrichment Integrated with Thermal Desorption GC-MS for Detection of Benzene Homologues in Ambient Air. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	0.7	2
4232	Transformation of a Cluster-Based Metal–Organic Framework to a Rod Metal–Organic Framework. Chemistry of Materials, 2022, 34, 273-278.	3.2	14
4233	Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chemical Research in Chinese Universities, 2022, 38, 31-44.	1.3	4
4234	Proton Conductivity of Porous Zirconiumâ€Organic Frameworks Filled with Protic Ionic Liquid. Chemie-Ingenieur-Technik, 2022, 94, 128-134.	0.4	0
4235	Lowâ€Symmetry MOFâ€Based Patchy Colloids and Their Precise Linking via Siteâ€Selective Liquid Bridging to Form Supraâ€Colloidal and Supraâ€Framework Architectures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
4236	Recent Progress on the Applications of Carbonaceous and Metal-Organic Framework Nanomaterials for Supercapacitors. Frontiers in Materials, 2021, 8, .	1,2	13
4237	Advances in Oxidative Desulfurization of Fuel Oils over MOFs-Based Heterogeneous Catalysts. Catalysts, 2021, 11, 1557.	1.6	19
4238	A Synthetic Route to MoS ₂ Catalysts Supported on a Metal–Organic Framework for Electrochemical Hydrogen Evolution Reaction Utilizing Chemical Vapor Deposition. Energy & Deposition. Ene	2.5	4
4239	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60715-60735.	4.0	86

#	Article	IF	CITATIONS
4240	Bimetallic Ordered Large-Pore MesoMOFs for Simultaneous Enrichment and Dephosphorylation of Phosphopeptides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60173-60181.	4.0	16
4241	Zâ€Scheme In ₂ S ₃ /NUâ€1000 Heterojunction for Boosting Photoâ€Oxidation of Sulfide into Sulfoxide under Ambient Conditions. Chemistry - A European Journal, 2022, 28, .	1.7	6
4242	Flexible-on-rigid heteroepitaxial metal-organic frameworks induced by template lattice change. Nano Research, 2022, 15, 4693-4699.	5.8	6
4243	Lowâ€Symmetry MOFâ€Based Patchy Colloids and Their Precise Linking via Siteâ€Selective Liquid Bridging to Form Supraâ€Colloidal and Supraâ€Framework Architectures. Angewandte Chemie, 2022, 134, .	1.6	7
4244	Dense Dithiolene Units on Metal–Organic Frameworks for Mercury Removal and Superprotonic Conduction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1070-1076.	4.0	17
4245	Applications of Metalâ€Organic Frameworks in Water Treatment: A Review. Small, 2022, 18, e2105715.	5.2	94
4246	Microporous Volumes from Nitrogen Adsorption at 77 K: When to Use a Different Standard Isotherm?. Catalysts, 2021, 11, 1544.	1.6	6
4247	Metal–organic frameworkâ€based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. Journal of Chemical Technology and Biotechnology, 2022, 97, 2675-2693.	1.6	23
4248	Preconcentration of Hemoglobin by a Nickel-Based Metal–Organic Framework (MOF) with Biphenyl Ligands. Analytical Letters, 0, , 1-12.	1.0	0
4249	Enhancement in the CO2 uptake of UiO-66 by a simple exposure to ultraviolet light. Materials Today Communications, 2022, , 103540.	0.9	2
4250	Multivariate Functionalization of UiOâ€66 for Photocatalytic Water Remediation. Advanced Sustainable Systems, 2022, 6, .	2.7	10
4251	The instability of a stable metal-organic framework in amino acid solutions. Nano Research, 2022, 15, 6607-6612.	5.8	4
4252	A zirconium(IV)-based metalâ \in organic framework modified with ruthenium and palladium nanoparticles: synthesis and catalytic performance for selective hydrogenation of furfural to furfuryl alcohol. Chemical Papers, 0, , 1.	1.0	3
4253	Single metal-organic framework–embedded nanopit arrays: A new way to control neural stem cell differentiation. Science Advances, 2022, 8, eabj7736.	4.7	28
4254	Thermal analysis and non-isothermal crystallization kinetic of PET/UiO-66 nanocomposite. Journal of Materials Research and Technology, 2022, 18, 3492-3501.	2.6	11
4255	Molybdenum active sites implanted defective UiO-66(Zr) for cyclohexene epoxidation: Activity and kinetics investigation. Molecular Catalysis, 2022, 524, 112312.	1.0	1
4256	Gel-to-crystal route towards MOF-mixed MOF-matrix membranes. Materials Today Chemistry, 2022, 24, 100867.	1.7	5
4257	Peroxymonosulfate-activated molecularly imprinted bimetallic MOFs for targeted removal of PAHs and recovery of biosurfactants from soil washing effluents. Chemical Engineering Journal, 2022, 443, 136412.	6.6	19

#	Article	IF	Citations
4258	Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable and Sustainable Energy Reviews, 2022, 162, 112441.	8.2	35
4259	Effective defluoridation of water using nanosized UiO-66-NH2 encapsulated within macroreticular polystyrene anion exchanger. Chemosphere, 2022, 300, 134584.	4.2	5
4260	Magnetic porous coordination networks for preconcentration of various metal ions from environmental water followed by inductively coupled plasma mass spectrometry detection. Talanta, 2022, 245, 123470.	2.9	23
4261	An experimental strategy for evaluating the energy performance of metal–organic framework-based carbon dioxide adsorbents. Chemical Engineering Journal, 2022, 442, 136210.	6.6	8
4262	CHAPTER 8. Photocatalysis: Past Achievements and Future Trends. RSC Green Chemistry, 0, , 227-269.	0.0	0
4265	Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chemical Reviews, 2022, 122, 10538-10572.	23.0	20
4266	Single-Atom Cu Catalyst in a Zirconium-Based Metal-Organic Framework for Levulinic Acid Hydrogenation to \hat{l} '-Valerolactone. SSRN Electronic Journal, 0, , .	0.4	0
4267	Defect-Engineered Mof-808 with Highly Exposed Zr Sites as Highly Efficient Catalysts for Catalytic Transfer Hydrogenation of Furfural. SSRN Electronic Journal, 0, , .	0.4	0
4268	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	1.6	22
4269	Harvesting mechanical energy for hydrogen generation by piezoelectric metal–organic frameworks. Materials Horizons, 2022, 9, 1978-1983.	6.4	20
4270	Mechanism Adsorptionâ€"Reduction into the Incorporation of Microbial Fuel Cellâ€"Metal Organic Framework and Overview of Hydrodynamics Effects for Enhanced Reduction of Cr(Vi). SSRN Electronic Journal, 0, ,	0.4	0
4271	cárboxylic acid derivatives: [C ₅ H ₄ N(<i>p</i> -CO ₂)] ₂ [Bu ₂ Sn] _{4<td>)>(<i>μ<</i></td><td>/i>) Tj ETQq1</td>})>(<i>μ<</i>	/i>) Tj ETQq1

#	Article	IF	CITATIONS
4278	Insights into the Solid-State Synthesis of Defect-Rich Zr–UiO-66. Inorganic Chemistry, 2022, 61, 6829-6836.	1.9	3
4279	Thermal Stability of Metal–Organic Frameworks (MOFs): Concept, Determination, and Model Prediction Using Computational Chemistry and Machine Learning. Industrial & Engineering Chemistry Research, 2022, 61, 5853-5862.	1.8	21
4280	Revisiting the environment effect on mass transfer for heterogenized Ru6Pd8 metalâ€organic cage photocatalyst confined within 3D matrix. Chemistry - A European Journal, 2022, , .	1.7	4
4281	Seed-aided green synthesis of metal-organic frameworks in water. Green Chemical Engineering, 2023, 4, 64-72.	3.3	6
4282	Water-stable metal–organic framework (UiO-66) supported on zirconia nanofibers membrane for the dynamic removal of tetracycline and arsenic from water. Applied Surface Science, 2022, 596, 153559.	3.1	19
4283	Self-sacrifice MOFs for heterogeneous catalysis: Synthesis mechanisms and future perspectives. Materials Today, 2022, 55, 137-169.	8.3	70
4284	Metal–Organic Frameworks (MOFs) Containing Adsorbents for Carbon Capture. Energies, 2022, 15, 3473.	1.6	9
4285	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	1.9	13
4286	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	1.7	8
4287	Acid Regulation of Defective Sulfonic-Acid-Functionalized UiO-66 in the Esterification of Cyclohexene with Formic Acid. Catalysis Letters, 2023, 153, 836-849.	1.4	3
4289	Converting CO ₂ Hydrogenation Products from Paraffins to Olefins: Modification of Zeolite Surface Properties by a UIO- <i>n</i> Membrane. ACS Catalysis, 2022, 12, 5894-5902.	5.5	10
4290	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
4291	A metastable-state photoacid-based metal organic framework with multi-stimuli-responsive chromism. Dyes and Pigments, 2022, 203, 110365.	2.0	7
4292	Heterobilayer membranes from isostructural metal-organic frameworks for efficient CO2 separation. Microporous and Mesoporous Materials, 2022, 338, 111950.	2.2	4
4293	Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coordination Chemistry Reviews, 2022, 464, 214562.	9.5	76
4294	Effects of microsize on the biocompatibility of UiO67 from protein-adsorption behavior, hemocompatibility, and histological toxicity. Journal of Hazardous Materials, 2022, 435, 129042.	6.5	5
4295	Interfacial and build-in electric fields rooting in gradient polyelectrolyte hydrogel boosted heavy metal removal. Chemical Engineering Journal, 2022, 444, 136541.	6.6	14
4296	A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere, 2022, 302, 134845.	4.2	69

#	Article	IF	CITATIONS
4297	Computational study of BrÃ,nsted acidity in the metal–organic framework UiO-66. Chemical Physics Letters, 2022, 800, 139658.	1.2	2
4298	Surfactant regulated synthesis of ZIF-8 crystals as carbonic anhydrase-mimicking nanozyme. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129103.	2.3	7
4299	Enhanced adsorption desulfurization performance of Cu+-exchanged UiO-66(Zr) with hierarchical porous structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129191.	2.3	6
4300	Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles [※] . Acta Chimica Sinica, 2022, 80, 467.	0.5	3
4301	Metal–organic framework functionalized poly-cyclodextrin membranes confining polyaniline for charge storage. Chemical Communications, 2022, 58, 6590-6593.	2.2	4
4302	Dynamic Surface Modification of Metal–Organic Framework Nanoparticles via Alkoxyamine Functional Groups. Langmuir, 2022, 38, 6531-6538.	1.6	4
4303	Synthesis, Characterization, and Evaluation of Metal–Organic Frameworks for Water Decontamination: An Integrated Experiment. Journal of Chemical Education, 2022, 99, 2392-2398.	1.1	9
4304	Ru(N^N) ₃ â€Metalloligand Pillared Zr ₆ â€Organic Layers for Aerobic Photooxidation. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
4305	Porous Colloidal Nanoparticles as Injectable Multimodal Contrast Agents for Enhanced Geophysical Sensing. ACS Applied Materials & Sensing. ACS Applied Materials & Sensing. 14, 23420-23425.	4.0	1
4306	Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coordination Chemistry Reviews, 2022, 467, 214598.	9.5	17
4307	Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo ₁₂ O ₃₂ (OH) ₂ (4-N ₃ C ₂ H ₂ -C <suand ,="" .<="" 2022,="" a="" chemistry,="" copper(ii)-mediated="" formation="" framework.="" inorganic="" metal–organic="" of="" td=""><td>ıbı.6<td>>ld_{4<!--</td-->}</td></td></suand>	ıb ı.6 <td>>ld_{4<!--</td-->}</td>	> ld _{4<!--</td-->}
4308	Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24351-24362.	4.0	4
4309	Mixed membrane matrices (MMMs) based on Nafion® pristine/defected-UiO-66(Zr) MOFs: assessment of the effects of dopants on cluster morphology. Molecular Systems Design and Engineering, 2022, 7, 969-985.	1.7	4
4310	One pot synthesis of UiO-66@IL composite for fabrication of CO2 selective mixed matrix membranes. Chemosphere, 2022, 303, 135122.	4.2	21
4311	Dendrite suppression with zirconium (IV) based metal–organic frameworks modified glass microfiber separator for ultralong-life rechargeable zinc-ion batteries. Journal of Science: Advanced Materials and Devices, 2022, 7, 100467.	1.5	6
4312	Installing a molecular truss beam stabilizes MOF structures. Npj Computational Materials, 2022, 8, .	3.5	3
4313	Investigation of Molecular Mean Free Path, Molecular Kinetic Energy, and Molecular Polarity Affecting Knudsen Diffusivity along Pore Channels. Separations, 2022, 9, 130.	1.1	3
4314	lonic liquid grafted NH2-UiO-66 as heterogeneous solid acid catalyst for biodiesel production. Fuel, 2022, 324, 124537.	3.4	29

#	Article	IF	CITATIONS
4315	Facile membrane preparation from colloidally stable metal-organic framework-polymer nanoparticles. Journal of Membrane Science, 2022, 657, 120669.	4.1	4
4316	Embedding Cs2AgBiBr6 QDs into Ce-UiO-66-H to in situ construct a novel bifunctional material for capturing and photocatalytic reduction of CO2. Chemical Engineering Journal, 2022, 446, 137102.	6.6	33
4317	One Step Synthesis of Transition Metal Modified Uio-66-Ce Metal-Organic Framework: Catalytic Oxidation of Toluene and Investigation of the Mechanism. SSRN Electronic Journal, 0, , .	0.4	1
4318	è°få^¶é‡'属有机框架èŠ,ç,¹æ‹"扑构型用于ä¿f进苯èfºé«~æ•^å,¬åŒ–氧化. Scientia Sinica Cl	him i æa, 20	220,.
4319	Modulation of Z-Scheme Heterojunction Interface between Ultrathin C ₃ N ₅ Nanosheets and Metal–Organic Framework for Boosting Photocatalysis. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 26742-26751.	4.0	54
4320	Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr ₆ O ₈ Metal-Organic Framework Nodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27040-27047.	4.0	7
4321	In situ Growth of UiO-66 with Its Particle Size Reduced by 90% into Porous Polyacrylate: Experiments and Applications. Industrial & Engineering Chemistry Research, 0, , .	1.8	3
4322	Construction of metal-organic frameworks-nucleic acids composites and their application in fluorescent biomedical sensing. Scientia Sinica Chimica, 2022, , .	0.2	0
4323	Controlling size and stabilization of silver nanoparticles for use in optimized chitosan-dialdehyde xylan wound dressings. Cellulose, 2022, 29, 5833-5851.	2.4	2
4324	Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. Journal of Physical Chemistry C, 2022, 126, 9185-9194.	1.5	6
4325	Exploring the Photophysical Properties of UiO-67 MOF Doped with Rhenium Carbonyl Complexes. Journal of Photochemistry and Photobiology, 2022, , 100127.	1.1	1
4326	Pt–Ni alloy nanobead chains catalysts embedded in UiO-67 membrane for enhanced CO2 conversion to CO. Materials Today Energy, 2022, 28, 101051.	2.5	1
4327	Facile Synthesis of Various ZrO2 Phases and ZrO2-MO2 (M = Ti, Hf) by Thermal Decomposition of a Single UiO-66 Precursor for Photodegradation of Methyl Orange. Catalysts, 2022, 12, 609.	1.6	3
4328	In situ encapsulation of ZrQ in UiOâ€66 (Zrâ€BDC) for pore size control to enhance detection of a nerve agent simulant dimethyl methyl phosphonate. Applied Organometallic Chemistry, 2022, 36, .	1.7	7
4329	Preparation and application of a nanocomposite of dopamine modified zirconium metal organic framework and polythiophene for solid-phase microextraction/gas chromatography of phenols released from polycarbonate materials. Journal of Chromatography A, 2022, 1676, 463187.	1.8	2
4330	Zirconium Metal–Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment. ACS Applied Materials & Interfaces, 2022, 14, 26501-26506.	4.0	9
4331	Recent progresses of metal-organic framework-based materials in electrochemical energy storage. Materials Today Sustainability, 2022, 19, 100174.	1.9	4
4332	Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Journal of Chemical Theory and Computation, 2022, 18, 3593-3606.	2.3	19

#	Article	IF	CITATIONS
4333	Flame-resistant bifunctional MOF-based sponges for effective separation of oil/water mixtures and enzyme-like degradation of organic pollutants. Chemical Engineering Research and Design, 2022, 163, 636-644.	2.7	6
4334	Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO2 hydrogenation to methanol. Fuel, 2022, 324, 124694.	3.4	16
4335	Mixed-linker strategy toward enhanced photoreduction-assisted uranium recovery from wastewater and seawater. Chemical Engineering Journal, 2022, 446, 137264.	6.6	28
4336	The amino-functionalized Ce doped UiO-66 presents high potential in nuclear energy wastewater treatment. Energy Reports, 2022, 8, 341-346.	2.5	2
4337	Zr-based metal–organic framework incorporated polystyrene nanocomposite as a novel sorbent for ultrasound assisted-thin film microextraction of organophosphorus pesticides from complex samples. Food Chemistry, 2022, 393, 133343.	4.2	11
4338	Recent Advances and Challenges in Selective Environmental Applications of Metalâ^'Organic Frameworks. ACS Symposium Series, 0, , 223-245.	0.5	1
4339	Metalâ^'Organic Frameworks for Photoreduction of CO ₂ . ACS Symposium Series, 0, , 173-202.	0.5	0
4340	Metalâ^'Organic Frameworks as Photocatalysts for Hydrogen Evolution. ACS Symposium Series, 0, , 499-511.	0.5	0
4341	Metalâ^'Organic Frameworks as Sensors of Biomolecules. ACS Symposium Series, 0, , 1-31.	0.5	4
4342	An Archetype of The Electrons-Unobstructed Core-Shell Composite with Inherent Selectivity: Conductive Metal-Organic Frameworks Encapsulated with Metal Nanoparticles. Nanoscale, 0, , .	2.8	1
4343	Ultrafast and Selective Extraction of Pharmaceuticals from Natural Wastewater by Precisely Designed Mofs with Missing Linker Defects. SSRN Electronic Journal, 0, , .	0.4	0
4344	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
4345	Controllable sensitization of Zr-MOFs by using CdS and its application for photoelectrochemical detection of alkaline phosphatase. Chemical Communications, 2022, 58, 7960-7963.	2.2	11
4346	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
4347	Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane., 2022, 2, 100032.		26
4348	Carbon-efficient conversion of natural gas and natural-gas condensates to chemical products and intermediate feedstocks <i>via</i> catalytic metal–organic framework (MOF) chemistry. Energy and Environmental Science, 2022, 15, 2819-2842.	15.6	6
4349	2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorganic Chemistry Frontiers, 2022, 9, 4850-4863.	3.0	7
4350	Introducing porosity into metal–organic framework glasses. Journal of Materials Chemistry A, 2022, 10, 19552-19559.	5.2	10

#	Article	IF	CITATIONS
4351	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	0.3	35
4352	Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS. Environmental Science and Pollution Research, 2022, 29, 76833-76846.	2.7	2
4353	Progress in the Application of MOFs in the Field of Atmospheric Environment. Key Engineering Materials, 0, 922, 237-247.	0.4	0
4354	Zirconium-Based Metal–Organic Frameworks as Acriflavine Cargos in the Battle against Coronaviruses─A Theoretical and Experimental Approach. ACS Applied Materials & Interfaces, 2022, 14, 28615-28627.	4.0	12
4355	Visible-Light-Responsive UiO-66(Zr) with Defects Efficiently Promoting Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 28977-28984.	4.0	33
4356	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
4357	Water adsorption performance of UiO-66 modified by MgCl ₂ for heat transformation applications. Chinese Physics B, 2022, 31, 118101.	0.7	3
4358	2D MOF with Compact Catalytic Sites for the Oneâ€pot Synthesis of 2,5â€Dimethylfuran from Saccharides via Tandem Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
4359	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	6
4360	Structural and Dynamic Analysis of Sulphur Dioxide Adsorption in a Series of Zirconiumâ€Based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
4361	Engineering Metal–Organic Framework Hybrid AlEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Applied Materials & Depletion ROS Therapy. ACS Applied Mater	4.0	18
4362	2D MOF with Compact Catalytic Sites for the Oneâ€pot Synthesis of 2,5â€Dimethylfuran from Saccharides via Tandem Catalysis. Angewandte Chemie, 2022, 134, .	1.6	7
4363	Constructing a Highly Sensitivity SERS Sensor Based on a Magnetic Metal–Organic Framework (MOF) to Detect the Trace of Thiabendazole in Fruit Juice. ACS Sustainable Chemistry and Engineering, 2022, 10, 8400-8410.	3.2	31
4364	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie, 0, , .	1.6	3
4365	Synthesis and properties of a new vanadium benzeneâ€1,3â€diphosphonate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
4366	Metalâ€Organic Frameworks (MOFs) and their Applications in CO ₂ Adsorption and Conversion. ChemistrySelect, 2022, 7, .	0.7	23
4367	Defective UiO-66-NH ₂ Functionalized with Stable Superoxide Radicals toward Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26571-26586.	4.0	15
4368	A facile approach for preparing Zr-BDC and Zr-BDC-NH ₂ MOFs using solvothermal method. Journal of Physics: Conference Series, 2022, 2243, 012055.	0.3	1

#	Article	IF	CITATIONS
4369	Improvement of anti-corrosion performance of an epoxy coating using hybrid UiO-66-NH2/carbon nanotubes nanocomposite. Scientific Reports, 2022, 12, .	1.6	12
4370	Optimized synthesis of molecularly imprinted polymers coated magnetic UIO-66 MOFs for simultaneous specific removal and determination of multi types of macrolide antibiotics in water. Journal of Environmental Chemical Engineering, 2022, 10, 108094.	3.3	11
4371	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metalâ€"Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
4372	Doxorubicin-Loaded Core–Shell UiO-66@SiO2 Metal–Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics, 2022, 14, 1325.	2.0	26
4373	Structural and dynamic analysis of adsorption of sulphur dioxide in a series of Zrâ€based metalâ€organic frameworks. Angewandte Chemie, 0, , .	1.6	0
4374	Probing adsorption of water and DMF in UiO-66(Zr) using solid-state NMR. Solid State Nuclear Magnetic Resonance, 2022, 120, 101797.	1.5	3
4375	Metal-organic frameworks marry carbon: Booster for electrochemical energy storage. Journal of Energy Storage, 2022, 53, 105104.	3.9	12
4376	Polymeric membranes and their derivatives for H2/CH4 separation: State of the art. Separation and Purification Technology, 2022, 297, 121504.	3.9	22
4377	Effect of Ag cocatalyst on highly selective photocatalytic CO2 reduction to HCOOH over CuO/Ag/UiO-66 Z-scheme heterojunction. Journal of Catalysis, 2022, 413, 31-47.	3.1	24
4378	Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coordination Chemistry Reviews, 2022, 468, 214639.	9.5	45
4379	Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere, 2022, 304, 135261.	4.2	34
4380	Clusters with a Zr6O8 core. Coordination Chemistry Reviews, 2022, 469, 214686.	9.5	14
4381	The chemistry of metal–organic frameworks with face-centered cubic topology. Coordination Chemistry Reviews, 2022, 468, 214644.	9.5	14
4382	Ultrasmall bimetallic Ru-Co alloy nanoclusters immobilized in amino-functionalized UiO-66 and N-doped carbonaceous zirconium oxide nanocomposite for hydrogen generation. Journal of Alloys and Compounds, 2022, 920, 165893.	2.8	12
4383	Disclosing the role of defective UiO-66 over Sb(V) removal: A joint experimental and theoretical study. Chemical Engineering Journal, 2022, 448, 137612.	6.6	16
4384	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749.	15.6	107
4385	Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. CrystEngComm, 2022, 24, 5135-5140.	1.3	4
4386	Pore-confined cobalt sulphide nanoparticles in a metal–organic framework as a catalyst for the colorimetric detection of hydrogen peroxide. Materials Advances, 2022, 3, 6364-6372.	2.6	1

#	Article	IF	CITATIONS
4387	Highly efficient lithium adsorption and stable isotope separation by metal–organic frameworks. Chemical Communications, 2022, 58, 8866-8869.	2.2	4
4388	Design of Hierarchically Porous Zr-Mofs with Reo Topology Confining Pma for Ultra-Efficient Oxidation Desulfurization. SSRN Electronic Journal, 0, , .	0.4	O
4389	Dual-emissive EY/UiO-66-NH (sub) 2 (sub) as a ratiometric probe for turn-on sensing and cell imaging of hypochlorite. Analyst, The, 2022, 147, 3867-3875.	1.7	6
4390	Fluorescence analysis for characterizing the alkali stability of metal–organic frameworks: an informative complement to X-ray diffraction. Inorganic Chemistry Frontiers, 2022, 9, 4394-4401.	3.0	2
4391	Tailoring defect-type and ligand-vacancies in Zr(<scp>iv</scp>) frameworks for CO ₂ photoreduction. Journal of Materials Chemistry A, 2022, 10, 16396-16402.	5 . 2	25
4392	Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chemical Communications, 2022, 58, 8900-8933.	2.2	10
4393	Graphene Oxide and Metal–Organic Framework-Based Breathable Barrier Membranes for Toxic Vapors. ACS Applied Materials & Diterfaces, 2022, 14, 31321-31331.	4.0	12
4394	Metal–Organic Frameworks as a Subnanometer Platform for Ion–Ion Selectivity. Accounts of Materials Research, 2022, 3, 735-747.	5.9	9
4395	Recent Development of Atmospheric Water Harvesting Materials: A Review. ACS Materials Au, 2022, 2, 576-595.	2.6	19
4396	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal of Chemistry, 2022, 38, 490-516.	0.1	3
4397	An electrochemical DNA sensor based on an integrated and automated DNA walker. Bioelectrochemistry, 2022, 147, 108198.	2.4	3
4398	lodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29916-29933.	4.0	34
4399	Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy. Nature Communications, 2022, 13, .	5.8	36
4400	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie, 2022, 134, .	1.6	6
4401	Post Synthetic Modification of NH2-(Zr-MOF) via Rapid Microwave-promoted Synthesis for Effective Adsorption of Pb(II) and Cd(II). Arabian Journal of Chemistry, 2023, 16, 104122.	2.3	17
4402	Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. Journal of the American Chemical Society, 2022, 144, 14322-14329.	6.6	56
4403	Synthesis of Hierarchicalâ€Porous Fluorinated Metal–Organic Frameworks with Superior Toluene Adsorption Properties. ChemSusChem, 2022, 15, .	3.6	3
4404	Micropore filling and temperature dependent electrical transport aspects of PEDOT polymerised Zr― based metal organic framework (MOF). Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	O

#	Article	IF	CITATIONS
4405	A Ceâ€UiOâ€66 Metal–Organic Frameworkâ€Based Grapheneâ€Embedded Photocatalyst with Controllable Activation for Solar Ammonia Fertilizer Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
4406	Hydroxylation of UiO-66 Metal–Organic Frameworks for High Arsenic(III) Removal Efficiency. Inorganic Chemistry, 2022, 61, 11342-11348.	1.9	9
4407	Metalâ€Organic Frameworks Functionalized Separators for Lithiumâ€Sulfur Batteries. Chemical Record, 2022, 22, .	2.9	6
4408	Microenvironment Regulation of {Co ₄ ^{II} O ₄ } Cubane for Syngas Photosynthesis. Inorganic Chemistry, 2022, 61, 13058-13066.	1.9	3
4409	CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Frontiers in Chemistry, 0, 10 , .	1.8	4
4410	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
4411	A deep insight of the photoluminescence property changes of Cd(II)-based metal-organic framework induced by an aeolotropic structure transition under high pressure. Microporous and Mesoporous Materials, 2022, 341, 112095.	2.2	0
4412	Synthesis and uranium adsorption studies of UiO-66 (Ce) based metal organic frameworks from aqueous solutions. Microporous and Mesoporous Materials, 2022, 341, 112108.	2.2	16
4413	Efficiently catalytic transfer hydrogenation and fast separation of unsaturated alkene compounds over Pd/UiO-66 under green conditions. Applied Catalysis A: General, 2022, 643, 118755.	2.2	5
4414	Effective adsorption of Ultra-dilute CO2 over Polyethyleneimine-based adsorbent for H2 purification. Separation and Purification Technology, 2022, 299, 121686.	3.9	3
4415	Isomerous Al-BDC-NH2 metal-organic frameworks for metronidazole removal: Effect of topology structure. Journal of Solid State Chemistry, 2022, 314, 123376.	1.4	8
4416	Defect-engineered MOF-808 with highly exposed Zr sites as highly efficient catalysts for catalytic transfer hydrogenation of furfural. Fuel, 2022, 327, 125085.	3.4	26
4417	A contemporary report on explications of flexible metal-organic frameworks with regards to structural simulation, dynamics and material applications. Polyhedron, 2022, 225, 116041.	1.0	2
4418	The role of cobalt to control the synthesis of nanoscale Co/UiOâ€66 composite for photocatalysis. Journal of the American Ceramic Society, 2022, 105, 7043-7052.	1.9	4
4419	Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129749.	2.3	17
4420	Structural Variety of Niobium(V) Polyoxo Clusters Obtained from the Reaction with Aromatic Monocarboxylic Acids: Isolation of {Nb ₂ O}, {Nb ₄ O ₄ } and {Nb ₈ O ₁₂ } Cores. Chemistry - A European Journal, 2022, 28, .	1.7	6
4421	pH-Stable Luminescent Metal–Organic Frameworks for the Selective Detection of Aqueous-Phase Fe ^{III} and Cr ^{VI} lons. Inorganic Chemistry, 2022, 61, 12396-12405.	1.9	41
4422	Catalytic CO Oxidation by Cu Single Atoms on the UiO-66 Metal–Organic Framework: The Role of the Oxidation State. Journal of Physical Chemistry C, 2022, 126, 12507-12518.	1.5	4

#	Article	IF	Citations
4423	Controllable design of high-efficiency triboelectric materials by functionalized metal—organic frameworks with a large electron-withdrawing functional group. Nano Research, 2022, 15, 9386-9391.	5.8	22
4424	Zr-Based Metal–Organic Framework Nanocrystals for Water Remediation. ACS Applied Nano Materials, 2022, 5, 10795-10808.	2.4	18
4425	New insights into the removal of nitric oxide using UiO-66-NH2: Synergistic photooxidation and subsequent adsorption. Journal of Environmental Chemical Engineering, 2022, 10, 108294.	3.3	13
4426	The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chemical Engineering Journal, 2022, 450, 138215.	6.6	39
4427	Synergistic compounding of carbon nanotubes and metal–organic frameworks for oxygen-evolving electrocatalysis. Materials Advances, 2022, 3, 7212-7218.	2.6	2
4428	Absorbing Stress via Molecular Crumple Zones: Strain Engineering Flexibility Into the Rigid UiO-66 Material. SSRN Electronic Journal, 0, , .	0.4	0
4429	Insights into dual-functional modification for water stability enhancement of mesoporous zirconium metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 17307-17316.	5.2	7
4430	Superhydrophilic Molybdenum Phosphide Quantum Dots on Porous Carbon Matrix for Boosting Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	O
4431	Metal–Organic Framework (UiO-66)-Based Temperature-Responsive Pesticide Delivery System for Controlled Release and Enhanced Insecticidal Performance against <i>Spodoptera frugiperda</i> ACS Applied Bio Materials, 2022, 5, 4020-4027.	2.3	12
4432	Coordination Adaptable Networks: Zirconium(IV) Carboxylates. Chemistry - A European Journal, 2022, 28, .	1.7	5
4433	Vacuum-Arc Synthesis of Metal-Organic Framework Structures Based on ZrO2. Inorganic Materials: Applied Research, 2022, 13, 924-928.	0.1	0
4434	Efficient and green oneâ€pot synthesis of Knoevenagel condensation catalyzed nano Metal–Organic Frameworks in water. Applied Organometallic Chemistry, 0, , .	1.7	2
4435	Ultrastable Photoluminescence Enabled by 1D Rare-Earth Metal–Organic Frameworks Based on Double Thiacalix[4]arene-Capped Nodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37894-37903.	4.0	7
4436	Controlling the Mobility of Ionic Liquids in the Nanopores of MOFs by Adjusting the Pore Size: From Conduction Collapse by Mutual Pore Blocking to Unhindered Ion Transport. Small, 2022, 18, .	5.2	4
4437	Direct Location of Organic Molecules in Framework Materials by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2022, 144, 15165-15174.	6.6	9
4438	Metal–Organic Framework Aerogel for Full pH Range Operation and Trace Adsorption of Arsenic in Water. ACS Applied Materials & Samp; Interfaces, 2022, 14, 40005-40013.	4.0	6
4439	A <scp>2D</scp> metalâ€organic framework with dualâ€acidic sites for the valorization of saccharides to 5â€hydroxymethylfurfural. AICHE Journal, O, , .	1.8	1
4440	Catechol redox couple functionalized metal-organic framework UiO-66-NH2 as an efficient catalyst for chromium ion sensor in water samples. Journal of Cleaner Production, 2022, 374, 133731.	4.6	6

#	Article	IF	CITATIONS
4441	Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules, 2022, 27, 5426.	1.7	15
4442	Chemically Modulated Synthesis of UiOâ€66(X) for Catalytic Transfer Hydrogenation of Cinnamaldehyde. ChemistrySelect, 2022, 7, .	0.7	0
4443	Microporous metal–organic frameworks: Synthesis and applications. Journal of Industrial and Engineering Chemistry, 2022, 115, 1-11.	2.9	20
4444	Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability. Journal of Environmental Sciences, 2023, 128, 213-223.	3.2	12
4445	Metalâ€Organic Framework Confined Solvent Ionic Liquid Enables Long Cycling Life Quasiâ€Solidâ€State Lithium Battery in Wide Temperature Range. Small, 2022, 18, .	5.2	13
4446	Material Design and Reticular Chemistry: Unveiling New Topologies through Face Decoration of Edge Nets. Industrial & Engineering Chemistry Research, 2022, 61, 12641-12648.	1.8	3
4447	Exploring the Defect Sites in UiO-66 by Decorating Platinum Nanoparticles for an Efficient Hydrogen Evolution Reaction. Inorganic Chemistry, 2022, 61, 13271-13275.	1.9	1
4448	A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites. Chemosphere, 2022, 308, 136107.	4.2	20
4449	Facile Synthesis of Polyaniline@UiO-66 Nanohybrids for Efficient and Rapid Adsorption of Methyl Orange from Aqueous Media. Industrial & Engineering Chemistry Research, 2022, 61, 11735-11746.	1.8	22
4450	Effect of Missing-Linker Defects on CO ₂ Hydrogenation to Methanol by Cu Nanoparticles in UiO-66. Journal of Physical Chemistry C, 2022, 126, 13157-13167.	1.5	9
4451	Metal-based nano-delivery platform for treating bone disease and regeneration. Frontiers in Chemistry, 0, 10 , .	1.8	2
4452	Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Critical Reviews in Analytical Chemistry, 0, , 1-17.	1.8	4
4453	Selectively Confined Poly(3,4-Ethylenedioxythiophene) in the Nanopores of a Metal–Organic Framework for Electrochemical Nitrite Detection with Reduced Limit of Detection. ACS Applied Nano Materials, 2022, 5, 12980-12990.	2.4	11
4454	Anion-induced morphology control of Al-fumarate MOFs via synergetic coordination and hydrogen bond effects for graded dehumidification. Microporous and Mesoporous Materials, 2022, 343, 112168.	2.2	3
4455	Metal-organic frameworks in separations: A review. Analytica Chimica Acta, 2022, 1234, 340208.	2.6	20
4456	Base-functionalized metalâ^'organic frameworks for highly efficient removal of organic acid pollutants from water. Microporous and Mesoporous Materials, 2022, 343, 112164.	2,2	1
4457	Fluorescence ratiometric assay for discriminating GSH and Cys based on the composites of UiO-66-NH2 and Cu nanoclusters. Biosensors and Bioelectronics, 2022, 215, 114582.	5.3	21
4458	Fabrication of Uio-66-NH2 with 4,6-Diamino-2-mercaptopyrimidine facilitate the removal of Pb2+ in aqueous medium: Nitrogen and sulfur act as the main adsorption sites. Fuel Processing Technology, 2022, 236, 107431.	3.7	6

#	ARTICLE	IF	CITATIONS
4459	Recent progress of metal organic frameworks-derived composites in adsorptive removal of pharmaceuticals. Polyhedron, 2022, 226, 116082.	1.0	12
4460	Efficient adsorption separation of xylene isomers on Cu-BTC@Fe3O4 by appropriate activation methods. Journal of Solid State Chemistry, 2022, 315, 123466.	1.4	2
4461	A smart-sensing coating based on dual-emission fluorescent Zr-MOF composite for autonomous warning of coating damage and aluminum corrosion. Progress in Organic Coatings, 2022, 172, 107150.	1.9	4
4462	Green synthesis of heterogeneous polymeric bio-based acid decorated with hydrophobic regulator for efficient catalytic production of biodiesel at low temperatures. Fuel, 2022, 329, 125467.	3.4	20
4463	Dispersive solid phase extraction of several pesticides from fruit juices using a hydrophobic metal organic framework prior to HPLC-MS/MS determination. Journal of Food Composition and Analysis, 2022, 114, 104788.	1.9	7
4464	Unraveling photocatalytic electron transfer mechanism in polyoxometalate-encapsulated metal-organic frameworks for high-efficient CO2 reduction reaction. Applied Catalysis B: Environmental, 2022, 318, 121812.	10.8	25
4465	Solid-phase extraction and separation of indium with P2O4-UiO-66-MOFs (di-2-ethylhexyl phosphoric) Tj ETQq0 0	0 rgBT /C	verlock 10 1
4466	Efficient adsorption of naproxen and ibuprofen by gelatin/zirconium-based metal–organic framework/sepiolite aerogels via synergistic mechanisms. Chemical Engineering Journal, 2023, 452, 139426.	6.6	35
4467	Investigation of catalytic activity of vanadyl sulphate immobilized on prepared UiO-66 modified with urea and melamine as allyl alcohol epoxidation catalysts. Journal of the Iranian Chemical Society, 0, , .	1.2	1
4468	Preparation of Ni-Zn-doped porous carbon materials (Ni@C) as electrochemical sensor for hydroquinone detection. International Journal of Electrochemical Science, 2022, 17, 221029.	0.5	1
4469	Mechanism adsorption–reduction into the incorporation of microbial fuel cell–metal organic framework and overview of hydrodynamics effects for enhanced reduction of Cr(VI). Journal of Water Process Engineering, 2022, 49, 103095.	2.6	6
4470	Bioinspired photothermal sponge for simultaneous solar-driven evaporation and solar-assisted wastewater purification. Separation and Purification Technology, 2022, 301, 122010.	3.9	10
4471	Metal-organic frameworks for pharmaceutical and biomedical applications. Journal of Pharmaceutical and Biomedical Analysis, 2022, 221, 115026.	1.4	13
4472	A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance. Inorganic Chemistry Communication, 2022, 145, 109970.	1.8	4
4473	Ammonia as an alternative fuel for vehicular applications: Paving the way for adsorbed ammonia and direct ammonia fuel cells. Journal of Cleaner Production, 2022, 376, 133960.	4.6	25
4474	Formaldehyde-modified NH2-UiO-66 for specific sensing and simultaneous removal of mercury ions. Sensors and Actuators Reports, 2022, 4, 100120.	2.3	3
4475	Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. Journal of Membrane Science, 2022, 661, 120959.	4.1	15
4476	A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron, 2022, 227, 116124.	1.0	39

#	Article	IF	CITATIONS
4477	Adsorptive desulfurization using Cu+ modified UiO-66(Zr) via ethanol vapor reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108578.	3.3	7
4478	A metal-organic framework surrounded with conjugate acid-base pairs for the efficient capture of Cr(VI) via hydrogen bonding over a wide pH range. Journal of Hazardous Materials, 2023, 441, 129945.	6.5	12
4479	Visual detection of vitamin C in fruits and vegetables using UiO-66 loaded Ce-MnO2 mimetic oxidase. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121900.	2.0	3
4480	Metal–organic-framework composite-based rapid self-detoxifying smart textile filters for chemical warfare agents., 2023,, 33-79.		0
4481	Selective krypton uptake through trap confinement, formation of Kr2 dimer, and light response in a photochromic and radiation-resistant thorium-diarylethene-framework. Chemical Engineering Journal, 2023, 451, 139004.	6.6	6
4482	Aptamer-functionalised metal-organic frameworks as an †on†off†on†fluorescent sensor for bisphenol S detection. Talanta, 2023, 253, 123942.	2.9	7
4483	Synthesis of UiO-66 loaded-caffeic acid and study of its antibacterial mechanism. Food Chemistry, 2023, 402, 134248.	4.2	5
4484	Visible-light-driven photocatalytic CO ₂ reduction to formate over a zirconium-porphyrin metal–organic framework with <i>shp-a</i> topology. New Journal of Chemistry, 2022, 46, 16297-16302.	1.4	5
4485	UiO-66 metal organic frameworks with high contents of flexible adipic acid co-linkers. Chemical Communications, 2022, 58, 11402-11405.	2.2	4
4486	Enhanced transformation of CO ₂ over microporous Ce-doped Zr metal–organic frameworks. RSC Advances, 2022, 12, 26307-26318.	1.7	6
4487	Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chemical Society Reviews, 2022, 51, 6824-6863.	18.7	108
4488	Hydroxide ion-conducting metal–organic frameworks for anion-exchange membrane applications. Materials Advances, 2022, 3, 8815-8829.	2.6	3
4489	Synthesis of a UiO-66/g-C ₃ N ₄ composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon. RSC Advances, 2022, 12, 22367-22376.	1.7	16
4490	Imidazole encapsulated in core–shell MOF@COFs with a high anhydrous proton conductivity. Materials Advances, 2022, 3, 8647-8655.	2.6	3
4491	Vibrational spectroscopy investigation of defects in Zr- and Hf-UiO-66. RSC Advances, 2022, 12, 22440-22447.	1.7	5
4492	Multi-stepwise electron transfer <i>via</i> MOF-based nanocomposites for photocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 5540-5548.	2.1	5
4493	Heterogenization of molecular cobalt catalysts in robust metal–organic frameworks for efficient photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 5418-5424.	2.1	3
4494	In-Situ Growth of 2d Magnesium Hydroxide on Zirconium-Based Metal Organic Frameworks for Phosphate Removal: An Experimental and Theoretical Exploration of Adsorption Behavior. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
4495	Advances in metal–organic framework-based membranes. Chemical Society Reviews, 2022, 51, 8300-8350.	18.7	98
4496	Ionic encapsulation of a methanol carbonylation catalyst in a microporous metal–organic framework. Chemical Communications, 2022, 58, 11252-11255.	2.2	3
4497	Naphthalene-Grafted Mof as a Unique Fluorescent Sensor for "Turn-Off―Detection for Fe3+ and "Turn-On―Detection for Clo4- in Different Solvents with High Selectivity and Sensitivity. SSRN Electronic Journal, 0, , .	0.4	0
4498	Hypersensitive Detection of Dopamine Based on Molecularly Imprinted Polypyrrole at Zro2@C and Npg Modified Electrode. SSRN Electronic Journal, 0, , .	0.4	O
4499	Designing optimal core–shell MOFs for direct air capture. Nanoscale, 2022, 14, 16085-16096.	2.8	10
4500	MOF and its application in electrochemistry. , 2022, , 219-253.		0
4501	Zirconia-based nanomaterials: recent developments in synthesis and applications. Nanoscale Advances, 2022, 4, 4210-4236.	2.2	23
4502	A diamantane-4,9-dicarboxylate based UiO-66 analogue: challenging larger hydrocarbon cage platforms. CrystEngComm, 2022, 24, 7530-7534.	1.3	3
4503	Functionalized Zr-MOF as an Efficient Adsorbent for Indole Removal: The Experimental and First-Principles Modeling. SSRN Electronic Journal, 0, , .	0.4	0
4504	Structural engineering of metal-organic frameworks. , 2022, , 159-177.		0
4505	A novel three-dimensional molecularly imprinted polypyrrole electrochemical sensor based on MOF derived porous carbon and nitrogen doped graphene for ultrasensitive determination of dopamine. Analyst, The, 2022, 147, 5194-5202.	1.7	7
4506	Nanoparticle/metal–organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications, 2022, 58, 10757-10767.	2.2	18
4507	A stable lanthanum hydroxamate metal–organic framework with radical character and electrical conductivity. Dalton Transactions, 2022, 51, 15946-15953.	1.6	5
4508	Detection of nitrophenols with a fluorescent Zr(<scp>iv</scp>) metal–organic framework functionalized with benzylamino groups. Journal of Materials Chemistry C, 2022, 10, 12307-12315.	2.7	14
4509	Hydrolytically stable mixed ditopic linker based zirconium metal organic framework as a robust photocatalyst towards Tetracycline Hydrochloride degradation and hydrogen evolution. Journal of Colloid and Interface Science, 2023, 629, 705-718.	5.0	14
4510	Cadmium(II)-Organic Frameworks Containing the 1,3-Bis(2-methylimidazolyl)propane Ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 504-509.	0.3	5
4511	Increased CO ₂ Affinity and Adsorption Selectivity in MOF-801 Fluorinated Analogues. ACS Applied Materials & Samp; Interfaces, 2022, 14, 40801-40811.	4.0	11
4512	Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nature Communications, 2022, 13, .	5.8	19

#	Article	IF	CITATIONS
4513	Melt-Quenched Glass Films of Coordination Polymers as Impermeable Barrier Layers and Protective Anticorrosion Coatings. Chemistry of Materials, 2022, 34, 7878-7885.	3.2	9
4514	Combining Ti ₄ (embonate) ₆ cages and [Pb ₄ (OH) ₄] ⁴⁺ clusters for enhanced third-order nonlinear optical property., 2022, 1, 9140002.		14
4515	Metal–Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol. ACS Catalysis, 2022, 12, 11159-11168.	5.5	12
4516	SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. Journal of Structural Chemistry, 2022, 63, 1453-1483.	0.3	1
4517	Calculation and Measurement of Salt Loading in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 16090-16099.	1.5	0
4518	Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas. Nano Research, 2023, 16, 3287-3293.	5.8	13
4519	Metal–Organic Framework Materials for Electrochemical Supercapacitors. Nano-Micro Letters, 2022, 14, .	14.4	61
4520	A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today, 2022, 60, 227-270.	8.3	13
4521	Water-Based Synthesis of Zr ₆ -Based Metal–Organic Framework Nanocrystals with Sulfonate Functions: Structural Features and Application to Fructose Dehydration. ACS Applied Nano Materials, 2022, 5, 14561-14571.	2.4	2
4522	Functionalized UiO-66-NH2 by trimellitic acid for highly selective adsorption of basic blue 3 from aqueous solutions. Frontiers in Chemistry, 0, 10 , .	1.8	0
4523	Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect, 2022, 7, .	0.7	10
4524	Morphology Genetic Metal–Organic Frameworks-Based Biocomposites for Efficient Photocatalytic Hydrogen Evolution. Langmuir, 2022, 38, 11590-11599.	1.6	1
4525	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	3.0	1
4526	The use of metal-organic frameworks as heterogeneous catalysts. Reviews in Inorganic Chemistry, 2023, 43, 437-463.	1.8	2
4527	Metal–Organic Frameworks@Calcite Composite Crystals. Inorganic Chemistry, 2022, 61, 16203-16210.	1.9	7
4528	A review on graphitic carbon nitride (g-C3N4) – metal organic framework (MOF) heterostructured photocatalyst materials for photo(electro)chemical hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 36784-36813.	3.8	23
4529	Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks. Polymers, 2022, 14, 3826.	2.0	5
4530	Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) – Delivered Phycocyanobilin. Journal of Pharmaceutical Sciences, 2022, , .	1.6	3

#	Article	IF	CITATIONS
4531	Crystalline Molecular Assemblies of Complexes Showing Eightfold Coordinated Niobium(IV) Dodecahedral Geometry in the Pyridine-Dicarboxylic Acid System. Inorganic Chemistry, 2022, 61, 15346-15358.	1.9	1
4532	Ligand-Directed Dimensionality Control over Zr-Based Metal–Organic Materials: From an Extended Framework to a Discrete Metal–Organic Cage and Macrocycle. Crystal Growth and Design, 2022, 22, 6384-6389.	1.4	3
4533	Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nature Communications, $2022,13,.$	5.8	18
4534	Mechanistic Principles for Engineering Hierarchical Porous Metal–Organic Frameworks. ACS Nano, 2022, 16, 13573-13594.	7.3	9
4535	Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Science China Chemistry, 2022, 65, 2205-2213.	4.2	20
4536	Smart Multifunctional UiO-66 Metal–Organic Framework Nanoparticles with Outstanding Drug-Loading/Release Potential for the Targeted Delivery of Quercetin. Inorganic Chemistry, 2022, 61, 14528-14543.	1.9	23
4537	Unique Fluorescence Turn-On and Turn-Off–On Responses to Acids by a Carbazole-Based Metal–Organic Framework and Theoretical Studies. Journal of the American Chemical Society, 2022, 144, 17054-17063.	6.6	36
4538	Achievements and Perspectives in Metal–Organic Framework-Based Materials for Photocatalytic Nitrogen Reduction. Catalysts, 2022, 12, 1005.	1.6	11
4539	Two-Dimensional Metal–Organic Framework Superstructures from Ice-Templated Self-Assembly. Journal of the American Chemical Society, 2022, 144, 17457-17467.	6.6	47
4540	Comparative Study on Ethanol-based Oxygenate Synthesis via Syngas over Rh–Mn Bimetallic Catalysts Supported on Different UiO MOFs. Energy & Catalysts 2022, 36, 11940-11949.	2.5	2
4541	Role of Metal Selection in the Radiation Stability of Isostructural M-UiO-66 Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 8403-8417.	3.2	20
4542	Removal of Hg2+ in wastewater by grafting nitrogen/sulfur-containing molecule onto Uio-66-NH2: from synthesis to adsorption studies. Environmental Science and Pollution Research, 2023, 30, 15464-15479.	2.7	4
4543	ZrIV metal–organic framework based on terephthalic acid and 1,10-phenanthroline as an adsorbent for solid phase extraction of tetracycline antibiotics. Mendeleev Communications, 2022, 32, 661-663.	0.6	10
4544	Characterization of Spun PMMA/UiO-66-NH ₂ @PMMA Thin Films and Their SPR Sensing Response to Haloalkane Vapors. IEEE Sensors Journal, 2022, 22, 18287-18294.	2.4	2
4545	Highly effective removal of methylene blue from wastewater by modified hydroxyl groups materials: Adsorption performance and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130290.	2.3	18
4546	Metal-organic frameworks as platforms for the removal of per- and polyfluoroalkyl substances from contaminated waters. Matter, 2022, 5, 3161-3193.	5.0	13
4547	Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). Journal of Hazardous Materials, 2023, 442, 130127.	6.5	63
4548	Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Science Advances, 2022, 8, .	4.7	24

#	Article	IF	CITATIONS
4549	In-situ growth of 2D magnesium hydroxide on zirconium-based metal organic frameworks for phosphate removal: An experimental and theoretical exploration of adsorption behavior. Separation and Purification Technology, 2023, 304, 122289.	3.9	7
4550	Silver Nanoparticle-Incorporated Defect-Engineered Zr-based Metal–Organic Framework for Efficient Multicomponent Catalytic Reactions. Inorganic Chemistry, 2022, 61, 16441-16447.	1.9	6
4551	Templateâ€assisted Preparation of Selfâ€standing 2Dâ€MOF Membranes for Application in Cascade Reactions. ChemCatChem, 2022, 14, .	1.8	3
4552	Determination of nitroimidazole antibiotics based on dispersive solidâ€phase extraction combined with capillary electrophoresis. Electrophoresis, 2023, 44, 634-645.	1.3	7
4553	Defect-induced tuning of polarity-dependent adsorption in hydrophobic–hydrophilic UiO-66. Communications Chemistry, 2022, 5, .	2.0	7
4554	Surface Charge-Directed Efficient and Selective Catalytic Activities of Porous M@UiO-66 Composites (M = Pt or Ag) for Reduction of Organic Pollutants. Inorganic Chemistry, 2022, 61, 16501-16508.	1.9	2
4555	Highly Stable and Endâ€group Tuneable Metal–Organic Framework/Polymer Composite for Superior Triboelectric Nanogenerator Application. Advanced Materials Interfaces, 2022, 9, .	1.9	10
4556	Purification of borneol from its isomeric mixture by using metal–organic frameworks. Separation and Purification Technology, 2023, 304, 122213.	3.9	3
4557	DOTP versus DOTA as Ligands for Lanthanide Cations: Novel Structurally Characterized Ce ^{IV} and Ce ^{III} Cyclenâ€Based Complexes and Clusters in Aqueous Solutions. Chemistry - A European Journal, 2022, 28, .	1.7	2
4558	One-step synthesis of transition metal modified UiO-66-Ce metal-organic framework: Catalytic oxidation of toluene and investigation of the mechanism. Microporous and Mesoporous Materials, 2022, 345, 112214.	2.2	11
4559	Thiodiacetic acid-functionalized Zr-MOFs as a robust adsorbent for efficient removal of Hg(II) and Pb(II) from aqueous solution. Microporous and Mesoporous Materials, 2022, 345, 112251.	2,2	13
4560	Functionalization of metal organic frameworks by [BMIM] [CH3COO] ionic liquid for toluene capture. Environmental Research, 2022, 215, 114341.	3.7	7
4561	Phosphoric acid functionalized superhydrophilic and underwater superoleophobic UiO-66/polyester fabric composite membrane for efficient oil/water separation and Gd(III) recovery. Desalination, 2022, 544, 116141.	4.0	10
4562	Stabilizing large pores in a flexible metal–organic framework <i>via</i> chemical cross-linking. Chemical Communications, 2022, 58, 12361-12364.	2.2	1
4563	Hydrophobicity and dielectric properties across an isostructural family of MOFs: a duet or a duel?. Chemical Communications, 0, , .	2,2	2
4564	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
4565	One-step rapid fabrication of MOF@polymer core–shell particles through non-solvent induced surface deposition. Journal of Materials Chemistry A, 2022, 10, 24676-24684.	5 . 2	4
4566	A MOF chemosensor for highly sensitive and ultrafast detection of folic acid in biofriendly medium, paper strips and real samples. Inorganic Chemistry Frontiers, 2022, 9, 6288-6298.	3.0	17

#	Article	IF	CITATIONS
4567	A cationic fcu -lanthanide MOF enhances the uptake of iodine vapour at room temperature. Chemical Communications, 2022, 58, 12700-12703.	2.2	6
4568	An efficient photocatalyst based on H ₅ PMo ₁₀ V ₂ O ₄₀ /UiO-66-NH ₂ for direct hydroxylation of benzene to phenol by H ₂ O ₂ . RSC Advances, 2022, 12, 29433-29439.	1.7	4
4569	Dynamic environment at the $\begin{align*} \begin{align*} $	2.1	5
4570	Fabrication and testing of mixed matrix membranes of <scp>UiOâ€66â€NH₂</scp> in cellulose acetate for <scp>CO₂</scp> separation from model biogas. Journal of Applied Polymer Science, 2023, 140, .	1.3	5
4571	Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal–Organic Frameworks. Advanced Materials, 2022, 34, .	11.1	13
4572	Fast Assembly of Metal Organic Framework UiO-66 in Acid-Base Tunable Deep Eutectic Solvent for the Acetalization of Benzaldehyde and Methanol. Molecules, 2022, 27, 7246.	1.7	2
4573	Direct Probing of Vibrational Interactions in UiO-66 Polycrystalline Membranes with Femtosecond Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 9793-9800.	2.1	0
4574	Creating hierarchical pores in metal–organic frameworks via postsynthetic reactions. Nature Protocols, 2023, 18, 604-625.	5. 5	25
4575	Metal–Organic Framework Seeding to Drive Phase Selection and Overcome Synthesis Limitations. Crystal Growth and Design, 2022, 22, 6379-6383.	1.4	4
4576	Creating High-Number Defect Sites through a Bimetal Approach in Metal–Organic Frameworks for Boosting Trace SO ₂ Removal. Inorganic Chemistry, 2022, 61, 16986-16991.	1.9	3
4577	Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. Small Science, 2022, 2, .	5.8	4
4578	Light Harvesting Antenna Properties of Framework Solids. Accounts of Materials Research, 2022, 3, 1149-1159.	5.9	2
4579	A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	5
4580	On the HKUST-1/GO and HKUST-1/rGO Composites: The Impact of Synthesis Method on Physicochemical Properties. Molecules, 2022, 27, 7082.	1.7	8
4581	Boosted Activity of g-C3N4/UiO-66-NH2 Heterostructures for the Photocatalytic Degradation of Contaminants in Water. International Journal of Molecular Sciences, 2022, 23, 12871.	1.8	10
4582	Fine Tuning the Pore Surface in Zirconium Metal–Organic Frameworks for Selective Ethane/Ethylene Separation. , 2023, 1, 334-340.		0
4583	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	1.5	7
4584	Synthesis and Biomedical Applications of Highly Porous Metal–Organic Frameworks. Molecules, 2022, 27, 6585.	1.7	4

#	ARTICLE	IF	Citations
4585	Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation. Nature Communications, 2022, 13, .	5.8	17
4586	Influence of Polymer Characteristics on the Self-Assembly of Polymer-Grafted Metal–Organic Framework Particles. ACS Nano, 2022, 16, 18168-18177.	7.3	10
4587	Enzyme Immobilization on Metal Organic Frameworks: the Effect of Buffer on the Stability of the Support. Langmuir, 2022, 38, 13382-13391.	1.6	10
4588	Toxinâ€Blocking Textiles: Rapid, Benign, Rollâ€toâ€Roll Production of Robust MOFâ€Fabric Composites for Organophosphate Separation and Hydrolysis. ChemSusChem, 2023, 16, .	3.6	3
4589	Visible-light-induced photocatalytic CO2 reduction over zirconium metal organic frameworks modified with different functional groups. Journal of Environmental Sciences, 2023, 132, 22-30.	3.2	9
4590	The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3614.	1.9	5
4591	A new antifouling metal-organic framework based UF membrane for oil-water separation: A comparative study on the effect of MOF (UiO-66-NH2) ligand modification. Korean Journal of Chemical Engineering, 2022, 39, 3092-3101.	1,2	8
4592	Electrochemical Sensor for Ascorbic Acid, Acetaminophen and Nitrite Based on Organoclay/Zrâ€MOF Film Modified Glassy Carbon Electrode. ChemistrySelect, 2022, 7, .	0.7	7
4593	Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes with low DS by incorporating acid-base bi-functionalized metal organic frameworks. International Journal of Hydrogen Energy, 2023, 48, 2001-2012.	3.8	13
4594	Functionalized Zirconium Organic Frameworks as Fluorescent Probes for the Detection of Tetracyclines in Water and Pork. Inorganic Chemistry, 2022, 61, 17322-17329.	1.9	12
4595	Engineering of Metal–Organic Frameworks/Gelatin Hydrogel Composites Mediated by the Coacervation Process for the Capture of Acetic Acid. Chemistry of Materials, 2022, 34, 9760-9774.	3.2	6
4596	Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chemical Engineering Journal, 2023, 454, 140105.	6.6	8
4597	Adsorption and Degradation of Volatile Organic Compounds by Metal–Organic Frameworks (MOFs): A Review. Materials, 2022, 15, 7727.	1.3	18
4598	Enhanced Water Adsorption Performance of UiO-66 Modulated with <i>p</i> -Nitrobenzoic or <ipp< i="">-Hydroxybenzoic Acid: Introduced Defects and Functional Groups. Inorganic Chemistry, 2022, 61, 17943-17950.</ipp<>	1.9	3
4599	Enhanced water permeance and EDCs rejection using a UiO-66-NH2-predeposited polyamide membrane. Chemosphere, 2023, 312, 137114.	4.2	3
4600	Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalination. Cellulose, 2023, 30, 413-426.	2.4	12
4601	UiO-66(Zr/Ti) for catalytic PET polycondensation. Molecular Catalysis, 2022, 532, 112741.	1.0	5
4602	Synthesis and application of Zr-metal–organic framework for simultaneous detection and rapid adsorption of p-nitrophenol from water. International Journal of Environmental Science and Technology, 0, , .	1.8	0

#	Article	IF	CITATIONS
4603	Strategy for improving H2O2 selectivity during direct H2O2 synthesis: Using palladium catalyst supported on UiO-66 functionalized with hydrophobic linker. Molecular Catalysis, 2022, 533, 112740.	1.0	0
4604	A quest for cytocompatible metal organic frameworks in non-viral gene therapy: Relevance of zeolitic imidazolate framework-8. Biomaterials and Biosystems, 2022, 8, 100065.	1.0	5
4605	Crack growth in zirconium single crystal under cyclic loading: A molecular dynamics simulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 455, 128506.	0.9	3
4606	Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. Journal of Environmental Chemical Engineering, 2022, 10, 108836.	3.3	23
4607	Efficient As(V) and Hg($\hat{a}{i}$) removal from acidic wastewater by a sulphydryl functionalized UIO-66-NH2. Inorganic Chemistry Communication, 2022, 146, 110069.	1.8	2
4608	Friedlander condensation reaction catalysed by hafnium-based metal-organic framework. Molecular Catalysis, 2022, 533, 112748.	1.0	5
4609	Enhanced regenerability of metal-organic frameworks adsorbents: Influence factors and improved methods. Journal of Environmental Chemical Engineering, 2022, 10, 108737.	3.3	4
4610	Naphthalene-grafted MOF as a unique fluorescent sensor for "turn-off―detection for Fe3+ and "turn-on―detection for ClO4- in different solvents with high selectivity and sensitivity. Sensors and Actuators B: Chemical, 2023, 374, 132837.	4.0	12
4611	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
4612	Onion-Like nanoparticles of the metal–organic framework UiO-66 synthesized by sequential spike crystal growth. Journal of Crystal Growth, 2023, 601, 126911.	0.7	1
4613	A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere, 2023, 311, 136933.	4.2	19
4614	Anchoring polydentate N/O-ligands in metal phosphite/phosphate/phosphonate (MPO) for functional hybrid materials. Coordination Chemistry Reviews, 2023, 475, 214892.	9.5	37
4615	Rational design of a novel Silica-Based material with abundant open micropores for efficient VOC removal. Chemical Engineering Journal, 2023, 454, 140077.	6.6	5
4616	Biogas upgrading to natural gas pipeline quality using pressure swing adsorption for CO2 separation over UiO-66: Experimental and dynamic modelling assessment. Chemical Engineering Journal, 2023, 453, 139774.	6.6	22
4617	Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	3.4	27
4618	Atomically dispersed Pt inside MOFs for highly efficient photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 0, , .	1.3	O
4619	Latest trends in the large-scale production of MOFs in accordance with the principles of green chemistry. Green Chemistry, 2022, 24, 9402-9427.	4.6	18
4620	Weak hydrogen bonds on CF enhancing interfacial strength and toughness for CFRPs. Composites Science and Technology, 2023, 231, 109826.	3.8	7

#	Article	IF	CITATIONS
4621	Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. Journal of Colloid and Interface Science, 2023, 631, 154-163.	5.0	15
4622	Colorimetric aptasensor for fumonisin B1 detection based on the DNA tetrahedra-functionalized magnetic beads and DNA hydrogel-coated bimetallic MOFzyme. Journal of Hazardous Materials, 2023, 443, 130252.	6.5	3
4623	Single-atom Cu catalyst in a zirconium-based metal–organic framework for biomass conversion. Chemical Engineering Journal, 2023, 454, 140156.	6.6	16
4624	Relationship between wet coating thickness and nanoparticle loadings based on the performance of mixed matrix composite membranes. Journal of Membrane Science, 2023, 667, 121167.	4.1	3
4625	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
4626	Controlling the Adsorption and Release of Ocular Drugs in Metal–Organic Frameworks: Effect of Polar Functional Groups. Inorganic Chemistry, 2022, 61, 18861-18872.	1.9	3
4627	Structure and function tailored metal-organic frameworks for heterogeneous catalysis. Chem Catalysis, 2022, 2, 3304-3319.	2.9	10
4628	Sensitive colorimetric aptasensor based on peroxidase-like activity of ZrPr-MOF to detect Salmonella Typhimurium in water and milk. Food Control, 2023, 146, 109500.	2.8	21
4629	In situ recombination for durable photoelectrocatalytic degradation of organic dye in wastewater. Chemosphere, 2023, 312, 137237.	4.2	3
4630	Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Encapsulated in Porous Materials & Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Encapsulated in Porous & Encapsulated in P	4.0	1
4631	trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. Journal of Solid State Chemistry, 2023, 317, 123721.	1.4	2
4632	Decontamination of neutral aqueous systems containing organophosphate esters by zirconium-based metal organic frameworks with or without amino groups. Journal of Environmental Chemical Engineering, 2022, 10, 108945.	3.3	0
4633	Ultrafast and selective adsorption of pharmaceuticals from wastewater by precisely designed metal organic framework with missing linker defects. Journal of Cleaner Production, 2022, 380, 135060.	4.6	5
4634	Particulate toxicity of metal-organic framework UiO-66 to white rot fungus Phanerochaete chrysosporium. Ecotoxicology and Environmental Safety, 2022, 247, 114275.	2.9	6
4635	The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application. Journal of Energy Storage, 2022, 56, 105700.	3.9	13
4636	Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering, 2022, 9, 700.	1.6	8
4637	Metal organic frameworks derived functional materials for energy and environment related sustainable applications. Chemosphere, 2023, 313, 137330.	4.2	6
4638	New enzymatic reactor designs: From enzymatic batch to 3D microreactors and monoliths. , 2023, , 291-315.		0

#	Article	IF	CITATIONS
4639	Hollow fiber membrane supported metal organic framework-based packed bed for gas/vapor adsorption. Chemical Engineering Journal, 2023, 454, 140228.	6.6	1
4640	Highly efficient triiodide ion adsorption from water by ionic liquid hybrid metal–organic frameworks. Journal of Molecular Liquids, 2023, 370, 121009.	2.3	5
4641	Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescence detection of nitrite. Molecular Systems Design and Engineering, 2023, 8, 330-340.	1.7	5
4642	Enhancing the stability of metal–organic framework <i>via</i> ligand modification: scalable synthesis and high selectivity of CO ₂ sorption property. CrystEngComm, 2023, 25, 467-472.	1.3	2
4643	Altering the solubility of metal–organic polyhedra <i>via</i> pendant functionalization of Cp ₃ Zr ₃ O(OH) ₃ nodes. Dalton Transactions, 2023, 52, 338-346.	1.6	2
4644	Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. Journal of Materials Chemistry A, 2023, 11, 1246-1255.	5.2	17
4645	MOF catalysis meets biochemistry: molecular insights from the hydrolytic activity of MOFs towards biomolecules. Molecular Systems Design and Engineering, 2023, 8, 270-288.	1.7	10
4646	Pore-expanded UiO-66 pellets for efficient bisphenol A adsorption. Chemical Engineering Journal, 2023, 455, 140843.	6.6	29
4647	Equipping carbon dots in a defect-containing MOF <i>via</i> self-carbonization for explosive sensing. Journal of Materials Chemistry C, 2022, 11, 321-328.	2.7	8
4648	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
4649	Metal-organic framework-derived ZrO2 on N/S-doped porous carbons for mechanistic and kinetic inspection of catalytic H2O2 homolysis. Carbon, 2023, 203, 630-649.	5 . 4	10
4650	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	9.5	77
4651	Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chemical Science, 2023, 14, 573-585.	3.7	8
4652	Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review. Inorganica Chimica Acta, 2023, 546, 121304.	1.2	7
4653	Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. Journal of CO2 Utilization, 2023, 68, 102352.	3.3	12
4654	Simple preparation of UiO-66-NH2-modified microsphere layer/nanofibrous membrane by coaxial spinning for purification of complex wastewater. Journal of Membrane Science, 2023, 669, 121291.	4.1	4
4655	Site-selective photocoupled electrocatalytic CO2 reduction over efficient Al-oxo chain based-porphyrin framework. Applied Catalysis B: Environmental, 2023, 325, 122315.	10.8	5
4656	Fluorine extraction from organofluorine molecules to make fluorinated clusters in yttrium MOFs. Chemical Science, 2022, 13, 14285-14291.	3.7	8

#	Article	IF	CITATIONS
4657	Solvothermal and hydrothermal methods for preparative solid-state chemistry., 2023,, 40-110.		0
4658	Tunable ion transport through ultimately small channels. , 2022, 2, 100043.		2
4659	Preparation of nano metal–organic frameworks supported 1,3-alternate calix[4]arene functional materials for selective adsorption of cesium. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 5893-5903.	0.7	1
4660	Phosphorus-Functionalized Organic Linkers Promote Polysulfide Retention in MOF-Based Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 15302-15309.	2.5	3
4661	Adsorption of different anionic and cationic dyes by hybrid nanocomposites of carbon nanotube and graphene materials over UiO-66. Scientific Reports, 2022, 12, .	1.6	28
4662	Construction of the π-complexation desulfurization adsorbent containing Cu+ at defective sites of UiO-66. Journal of Industrial and Engineering Chemistry, 2023, 119, 226-235.	2.9	5
4663	Solid-Phase Extraction of Organic Dyes on Mixed-Ligand Zr(IV) Metal–Organic Framework. Applied Sciences (Switzerland), 2022, 12, 12219.	1.3	1
4664	Reactive Chlorine Capture by Dichlorination of Alkene Linkers in Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2022, 14, 53928-53935.	4.0	3
4665	Enhancement of visible-light-driven oxidative amine coupling under aerobic and anaerobic conditions by photocatalyst with spatial separation of photoinduced charge carriers. Nano Research, 2023, 16, 4715-4722.	5.8	5
4666	Seeding Layer Approach for the Synthesis of Co-ZIF-90 Thin Films of Optical Quality. Crystal Growth and Design, 2022, 22, 7008-7020.	1.4	2
4667	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	6.6	17
4668	Visible-Light-Initiated Acceptor-Less Dehydrogenation of Alcohols to Vicinal Diols over UiO-66(Zr): Surface Complexation and Role of Bridging Hydroxyl. ACS Catalysis, 2022, 12, 15282-15287.	5.5	2
4669	Band-gap assessment from X-ray powder diffraction using artificial intelligence. Journal of Applied Crystallography, 2022, 55, 1538-1548.	1.9	2
4670	Metal–Organic Frameworks–Based Memristors: Materials, Devices, and Applications. Molecules, 2022, 27, 8888.	1.7	3
4671	Metal–Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega, 2022, 7, 45910-45934.	1.6	12
4672	Recent Advances in Metal–Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics, 2022, 14, 2790.	2.0	13
4673	Substituent Engineering-Enabled Structural Rigidification and Performance Improvement for C ₂ /CO ₂ Separation in Three Isoreticular Coordination Frameworks. Inorganic Chemistry, 2022, 61, 21076-21086.	1.9	4
4674	Fe ₃ O ₄ @uio66 core-shell composite for detection of electrolyte leakage from lithium-ion batteries. Nanotechnology, 2023, 34, 135501.	1.3	2

#	Article	IF	CITATIONS
4675	Production of Levulinic Esters by Heterogeneous Catalysis with Zr Metal–Organic Frameworks in Pressure Reactors. Industrial & Engineering Chemistry Research, 2022, 61, 17821-17832.	1.8	3
4676	Tröger's Base Chemistry in Solution and in Zr(IV)-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 22574-22581.	6.6	5
4677	Mechanochemistry Milling of Waste Poly(Ethylene Terephthalate) into Metal–Organic Frameworks. ChemSusChem, 2023, 16, .	3.6	19
4678	Novel synthesis strategy for Z-scheme BiOCl/UiO-66 photocatalyst: Enhanced surface area and improved Cr(VI) removal efficiency. Chemical Engineering Journal, 2023, 457, 141087.	6.6	3
4679	Superior fatigue and mechanical properties of ethylene-propylene diene monomer rubber incorporated with Zr-based metal–organic framework. Journal of Polymer Research, 2023, 30, .	1.2	3
4680	New Type of Nanocomposite CsH2PO4-UiO-66 Electrolyte with High Proton Conductivity. Molecules, 2022, 27, 8387.	1.7	4
4681	Waterâ€Harvesting Metal–Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
4682	Using Metal–Organic Frameworks to Confine Liquid Samples for Nanoscale NV-NMR. Nano Letters, 2022, 22, 9876-9882.	4.5	3
4683	Crystal Structures of Ce(IV) Nitrates with Bis(2-pyrrolidone) Linker Molecules Deposited from Aqueous Solutions with Different HNO ₃ Concentrations. Inorganic Chemistry, 0, , .	1.9	1
4684	Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. Reviews in Inorganic Chemistry, 2022, .	1.8	1
4685	Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue. Nano Research, 2023, 16, 6160-6166.	5.8	4
4686	Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 56938-56947.	4.0	10
4687	Beyond Pristine Metal–Organic Frameworks: Preparation of Hollow MOFs and Their Composites for Catalysis, Sensing, and Adsorption Removal Applications. Molecules, 2023, 28, 144.	1.7	15
4688	Waterâ∈Harvesting Metalâ∈"Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie, 2023, 135, .	1.6	0
4689	MOF-Based Sorbents Used for the Removal of Hg2+ from Aqueous Solutions via a Sorption-Assisted Microfiltration. Membranes, 2022, 12, 1280.	1.4	0
4690	Magnetic Nanocomposites of Coated Ferrites/MOF as Pesticide Adsorbents. Molecules, 2023, 28, 39.	1.7	5
4691	Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 2022, 7, 44507-44531.	1.6	79
4692	Crystal Growth Blocking Strategy Enabling Efficient Solvent-Free Synthesis of Hierarchical UiO-66 for Large-Molecule Catalysis. Crystal Growth and Design, 2023, 23, 1205-1210.	1.4	1

#	Article	IF	CITATIONS
4693	The Properties of Microwave-Assisted Synthesis of Metal–Organic Frameworks and Their Applications. Nanomaterials, 2023, 13, 352.	1.9	28
4694	The Impact of Functionality and Porous System of Nanostructured Carriers Based on Metal–Organic Frameworks of UiO-66-Type on Catalytic Performance of Embedded Au Nanoparticles in Hydroamination Reaction. Catalysts, 2023, 13, 133.	1.6	2
4695	Synthesis of unsymmetrical NH-pyrroles from biomass feedstock in the confined space of metal–organic frameworks. Green Chemistry, 2023, 25, 915-921.	4.6	3
4696	Recent progress of metal–organic frameworks as sensors in (bio)analytical fields: towards real-world applications. Analytical and Bioanalytical Chemistry, 2023, 415, 2005-2023.	1.9	17
4697	Adsorption and photocatalytic desorption toward Cr(<scp>vi</scp>) over defect-induced hierarchically porous UiO-66-(OH) ₂ : a sustainable approach. Environmental Science: Nano, 2023, 10, 672-682.	2.2	21
4698	Rhodium-Based MOF-on-MOF Difunctional Core–Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS Applied Materials & Interfaces, 2023, 15, 3442-3454.	4.0	9
4699	Zr- and Ti-based metal–organic frameworks: synthesis, structures and catalytic applications. Chemical Communications, 2023, 59, 2541-2559.	2.2	16
4700	Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
4701	Bioelectrocatalysis for CO2 reduction: recent advances and challenges to develop a sustainable system for CO2 utilization. Biotechnology Advances, 2023, 63, 108098.	6.0	14
4702	Mixed matrix metal–organic framework membranes for efficient <scp>CO₂</scp> / <scp>N₂</scp> separation under humid conditions. AICHE Journal, 2023, 69, .	1.8	10
4703	Enhanced oneâ€step purification of <scp>C₂H₄</scp> from <scp>C₂H₄</scp> /cscp>C ₂ /cscp>C ₂ H _{/cscp>C₂H_{/cscp>/cscp>C₂H_{/cscp>/cscp>/cscp>C₂H_{/cscp>/cscp>/cscp>C₂H_{/cscp>/cscp>/cscp>/cscp>C₂/sub>/cscp>/csc}}}}}	>H 1.s ub>6	
4704	Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & December 2014) for Removal of Dyes and Antibiotics from Wastewater: A Review. Catalysts, 2023, 13, 155.	1.6	25
4705	Porous framework materials for energy & Environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
4706	Efficient and Strategical Installations of Quaternary Ammonium Groups in Metal-Organic Frameworks for Hydroxide Conductivity. Molecular Systems Design and Engineering, 0, , .	1.7	0
4707	Covalent post-synthetic modified metal-organic framework UIO-66-NH2-HNA for selective and sensitive turn-on detection of acetylacetone, S2â^', and PO43â^'. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114539.	2.0	1
4708	A simple and efficient method for determining the pyrethroid pesticide residues in freshly squeezed fruit juices using a water stable metal–organic framework. Microchemical Journal, 2023, 187, 108392.	2.3	4
4709	Plasma Meets MOFs: Synthesis, Modifications, and Functionalities. Chemical Record, 2023, 23, .	2.9	4
4710	An Indium metal-organic framework with a two-fold-interpenetrating structure for the efficient conversion of CO2. Journal of Solid State Chemistry, 2023, 320, 123849.	1.4	0

#	Article	IF	CITATIONS
4711	A Straightforward Method to Prepare MOF-Based Membranes via Direct Seeding of MOF-Polymer Hybrid Nanoparticles. Membranes, 2023, 13, 65.	1.4	4
4712	Unraveling the reversible formation of defective Ce3+ sites in the UiO-66(Ce) material: a multi-technique study. Materials Today Chemistry, 2023, 27, 101337.	1.7	3
4713	Enhancing Dynamic Spectral Diffusion in Metal–Organic Frameworks through Defect Engineering. Journal of the American Chemical Society, 2023, 145, 1072-1082.	6.6	16
4714	Electron beam irradiation grafting of metal–organic frameworks onto cotton to prepare antimicrobial textiles. RSC Advances, 2023, 13, 1853-1861.	1.7	5
4715	Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal-organic frameworks. Nature Communications, 2023, 14, .	5.8	17
4716	Turn-on fluorescence detection of specific inorganic anions by Zr(IV)-MOF with amino-functional group. Tungsten, 2023, 5, 217-224.	2.0	6
4717	Metal-organic frameworks for food contaminant adsorption and detection. Frontiers in Chemistry, 0, 11 , .	1.8	5
4718	Principles of Design and Synthesis of Metal Derivatives from MOFs. Advanced Materials, 2023, 35, .	11.1	24
4719	Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. Journal of Materials Chemistry A, 2023, 11, 3315-3363.	5.2	28
4720	Influence of 1-Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes. Journal of the American Chemical Society, 2023, 145, 1407-1422.	6.6	9
4721	Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke. Materials, 2023, 16, 684.	1.3	1
4722	Uniform Siâ€Infused UiOâ€66 as a Robust Catalyst Host for Efficient CO ₂ Hydrogenation to Methanol. Advanced Functional Materials, 2023, 33, .	7.8	9
4723	Modulated synthesis of S-functionalized magnetic metal organic frameworks-808 for Hg (II) removal. Journal of Cleaner Production, 2023, 387, 135859.	4.6	3
4724	Precisely introducing active sites into NU-1000 through linker incorporation for degrading sulfamethoxazole under visible-light photo-Fenton process. Separation and Purification Technology, 2023, 309, 123013.	3.9	1
4725	Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. Journal of Colloid and Interface Science, 2023, 636, 55-72.	5.0	92
4726	Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews, 2023, 480, 215011.	9.5	15
4727	Metal-Organic Framework Materials for Oil/Water Separation. ACS Symposium Series, 0, , 245-282.	0.5	2
4728	Conversion of bipolar resistive switching and threshold switching by controlling conductivity behavior and porous volumes of UiO-66 thin films. Journal of Science: Advanced Materials and Devices, 2023, 8, 100528.	1.5	1

#	Article	IF	CITATIONS
4729	A review of metal-organic framework protective coatings for light metals. Surface Engineering, 2022, 38, 807-829.	1.1	1
4730	Fe3O4 supported UiO-66 (Zr) metal–organic framework for removal of drug contaminants from water: fuzzy logic modeling approach. Environmental Science and Pollution Research, 0, , .	2.7	0
4731	A Heterocatalytic Metal–Organic Framework to Stimulate Dispersal and Macrophage Combat with Infectious Biofilms. ACS Nano, 2023, 17, 2328-2340.	7.3	5
4732	Lignin and metal–organic frameworks: mutual partners on the road to sustainability. Journal of Materials Chemistry A, 2023, 11, 2595-2617.	5.2	8
4733	Adsorptive removal of iodate oxyanions from water using a Zr-based metal–organic framework. Chemical Communications, 2023, 59, 3071-3074.	2.2	5
4734	Tuning the optical properties of the metal–organic framework UiO-66 <i>via</i> ligand functionalization. Physical Chemistry Chemical Physics, 2023, 25, 6333-6341.	1.3	5
4735	Nanosilver-loaded metal–organic framework UiO-66 with strong fungicidal activity. Molecular Systems Design and Engineering, 0, , .	1.7	0
4736	MOFs and Their Composites as Catalysts for Organic Reactions. , 2023, , 130-183.		0
4737	A siderophore-inspired two-dimensional Fe–hydroxamate metal–organic framework. CrystEngComm, 2023, 25, 1462-1466.	1.3	2
4738	Synthesis of zirconium-based metal–organic frameworks with iron(<scp>ii</scp>) clathrochelate ligands. CrystEngComm, 2023, 25, 1550-1555.	1.3	5
4739	A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science, 2023, 379, 283-287.	6.0	37
4740	Preparation of cerium-based UiO-66 metal-organic framework (MOF) without addition of solvent for developing its sustainable synthesis. IOP Conference Series: Earth and Environmental Science, 2023, 1135, 012047.	0.2	0
4741	Metal Node Control of BrÃ,nsted Acidity in Heterobimetallic Titanium–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 3855-3860.	6.6	8
4742	Membranes for Osmotic Power Generation by Reverse Electrodialysis. Membranes, 2023, 13, 164.	1.4	3
4743	Machine learning potentials for metal-organic frameworks using an incremental learning approach. Npj Computational Materials, 2023, 9, .	3.5	29
4744	An investigation on the influence of highly acidic media on the microstructural stability and dye adsorption performance of UiO-66. Applied Surface Science, 2023, 618, 156531.	3.1	32
4745	Polyoxometalate-based host–guest framework materials. , 2023, , 353-431.		0
4746	A functionalized Hf(⟨scp⟩iv⟨ scp⟩)–organic framework introducing an efficient, recyclable, and size-selective heterogeneous catalyst for MPV reduction. New Journal of Chemistry, 2023, 47, 5347-5355.	1.4	0

#	Article	IF	CITATIONS
4747	Removal of industrial dyes from aqueous medium by uio-66 metal organic frameworks (MOFs): A correlative analysis of adsorption behavior. AIP Conference Proceedings, 2023, , .	0.3	0
4748	Solid ionic liquids with macro–microporous structure for efficient heterogeneous catalysis of biodiesel. New Journal of Chemistry, 2023, 47, 7701-7707.	1.4	2
4749	An ultrastable La-MOF for catalytic hydrogen transfer of furfural: <i>in situ</i> activation of the surface. Nanoscale, 2023, 15, 6645-6654.	2.8	3
4750	Engineering pore nanospaces by introducing aromatic effects in UiO-66 for efficient separation of light hydrocarbons. Journal of Materials Chemistry A, 2023, 11, 12902-12909.	5.2	2
4751	A robust and porous titanium metal–organic framework for gas adsorption, CO ₂ capture and conversion. Dalton Transactions, 2023, 52, 3896-3906.	1.6	3
4752	Extraction of Gold Based on Ionic Liquid Immobilized in UiO-66: An Efficient and Reusable Way to Avoid IL Loss Caused by Ion Exchange in Solvent Extraction. Molecules, 2023, 28, 2165.	1.7	3
4753	Synthesis, Crystal Structure, and Photocatalytic Properties of Two Isoreticular Ce(IV)-MOFs with an Infinite Rod-Shaped Inorganic Building Unit. Inorganic Chemistry, 2023, 62, 5176-5185.	1.9	3
4754	Novel isoreticular UiO-66-NH2 frameworks by N-cycloalkyl functionalization of the 2-aminoterephtalate linker with enhanced solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2023, 461, 141889.	6.6	8
4755	Highly Efficient Catalysts for CO ₂ Fixation using Guanidiniumâ€Functionalized Zrâ€MOFs. ChemCatChem, 2023, 15, .	1.8	3
4756	Alanine boronic acid functionalized <scp>UiO</scp> â€66 <scp>MOF</scp> as a nanoreactor for the conversion of <scp>CO₂</scp> into formic acid. Journal of Computational Chemistry, 2023, 44, 1624-1633.	1.5	1
4757	Theoretical and Experimental Study for Cross-Coupling Aldol Condensation over Mono- and Bimetallic UiO-66 Nanocatalysts. ACS Applied Nano Materials, 2023, 6, 5422-5433.	2.4	2
4758	Recent advances in Metal-Organic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113266.	2.5	11
4759	Remote substituent effects on catalytic activity of metal-organic frameworks: a linker orbital energy model. Npj Computational Materials, 2023, 9, .	3.5	4
4760	Coordination environment dependent stability of Cu-based MOFs towards selective adsorption desulfurization. Chemical Engineering Journal, 2023, 464, 142670.	6.6	4
4761	From crystal phase mixture to pure metal-organic frameworks – Tuning pore and structure properties. Ultrasonics Sonochemistry, 2023, 95, 106377.	3.8	5
4762	Boosting solar-driven volatile organic compounds desorption via the synergy of NH2-UiO-66 with hollow polypyrrole nanotube. Chemical Engineering Journal, 2023, 464, 142503.	6.6	8
4763	A mesoporous graphene @ zirconium-based metal–organic frameworks as a matrix and an adsorbent for steroid detection using surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Chromatography A, 2023, 1696, 463963.	1.8	1
4764	Exploring the recent advancements in metal-organic framework-based photocatalysts for hydrogen production. Materials Today Sustainability, 2023, 22, 100337.	1.9	2

#	Article	IF	Citations
4765	The study of electrochemical hydrogen storage behavior of the UiO-66 framework on the metal/reduced graphene oxide substrate. Fuel, 2023, 341, 127624.	3.4	6
4766	Adsorption of La3+ onto trifluoroacetic acid modified UiO-66-COOH: Adsorption mechanism and application. Materials Chemistry and Physics, 2023, 301, 127535.	2.0	4
4767	Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption. Separation and Purification Technology, 2023, 314, 123526.	3.9	20
4768	Preparation of Fe3O4@UiO-66(Zr)@Ag NPs core-shell-satellite structured SERS substrate for trace detection of organophosphorus pesticides residues. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122548.	2.0	12
4769	Si protected by metal-organic segments as anodes in Si-air batteries. Surfaces and Interfaces, 2023, 38, 102777.	1.5	2
4770	Metronidazole photodegradation under solar light with UiO-66-NH2 photocatalyst: Mechanisms, pathway, and toxicity assessment. Journal of Environmental Chemical Engineering, 2023, 11, 109744.	3.3	0
4771	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
4772	Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coordination Chemistry Reviews, 2023, 484, 215111.	9.5	20
4773	N-formylation of amines with CO2 by using Zr-based metal-organic frameworks: Contribution of defect sites of MOFs to N-formylation. Applied Catalysis A: General, 2023, 659, 119170.	2.2	6
4774	Zr-MOF/NiS2 hybrids on nickel foam as advanced electrocatalysts for efficient hydrogen evolution. Journal of Colloid and Interface Science, 2023, 640, 820-828.	5.0	14
4775	Cu atoms on UiO-66-NH2/Znln2S4 nanosheets enhance photocatalytic performance for recovering hydrogen energy from organic wastewater treatment. Applied Catalysis B: Environmental, 2023, 330, 122572.	10.8	20
4776	The effects of UiO-66 ultrafine particles on the rapid detection of sulfonamides in milk: Adsorption performance and mechanism. Food Chemistry, 2023, 417, 135878.	4.2	6
4777	Photocatalytic hydrogen energy recovery from sulfide-containing wastewater using thiol-UiO-66 modified Mn0.5Cd0.5S nanocomposites. Separation and Purification Technology, 2023, 316, 123772.	3.9	5
4778	Acid promoted activity of UiO-66 as an efficient adsorbent for boron removal from aqueous solution. Separation and Purification Technology, 2023, 317, 123855.	3.9	3
4779	MOF based composites with engineering aspects and morphological developments for photocatalytic CO2 reduction and hydrogen production: A comprehensive review. Journal of Environmental Chemical Engineering, 2023, 11, 109408.	3.3	23
4780	A cellulose-based material as a fluorescent sensor for Cr(VI) detection and investigation of antimicrobial properties of its encapsulated form in two different MOFs. International Journal of Biological Macromolecules, 2023, 240, 124426.	3.6	6
4781	Advanced hybrid polybenzimidazole membrane enabled by a "linker―of metal-organic framework for high-performance vanadium flow battery. Chemical Engineering Journal, 2023, 461, 142032.	6.6	3
4782	Dye-embedded NanoMOF as a turn-on fluorescent sensor for selective and sensitive detection of hydrogen sulfide. Microporous and Mesoporous Materials, 2023, 356, 112594.	2.2	3

#	Article	IF	Citations
4783	Multifunctional asymmetric electrolyte membrane encouraging durable lithium-metal batteries in wide temperature variations. Journal of Membrane Science, 2023, 677, 121636.	4.1	6
4784	Flexible 3,5-bis(3,4-dicarboxyphenoxy) benzoic acid based coordination polymers as photocatalysts for the sensitive photodegradation of methylene blue. Polyhedron, 2023, 237, 116393.	1.0	2
4785	Immobilization of uranium by S-NZVI and UiO-66-NO2 composite through combined adsorption and reduction. Journal of Cleaner Production, 2023, 390, 136149.	4.6	6
4786	Metal-organic frameworks as promising solid-phase sorbents for the isolation of third-generation synthetic cannabinoids in biological samples. Analytica Chimica Acta, 2023, 1246, 340887.	2.6	7
4787	Covalent Organic Frameworks: The Risingâ€Star Platforms for the Design of CO ₂ Separation Membranes. Small, 2023, 19, .	5.2	21
4788	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	4.6	6
4789	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries., 2023, 2, e9120052.		30
4790	Understanding lead and mercury adsorption by post-synthetically modified linkers in UiO-66 MOF. A computational theoretical study. Molecular Simulation, 2023, 49, 481-488.	0.9	1
4791	Preparation, characterization, and application of supported phosphate acid on the UiO-66-NH2 as an efficient and bifunctional catalyst for the synthesis of acridines. Research on Chemical Intermediates, 2023, 49, 1545-1561.	1.3	1
4792	Metal-Organic Framework in Pharmaceutical Drug Delivery. Current Topics in Medicinal Chemistry, 2023, 23, 1155-1170.	1.0	5
4793	Boosting Activity and Selectivity of UiOâ€66 through Acidity/Alkalinity Functionalization in Dimethyl Carbonate Catalysis. Small, 2023, 19, .	5.2	7
4794	A Single Aptamer-Dependent Sandwich-Type Biosensor for the Colorimetric Detection of Cancer Cells via Direct Coordinately Binding of Bare Bimetallic Metal–Organic Framework-Based Nanozymes. Biosensors, 2023, 13, 225.	2.3	2
4795	Synthesis and Postâ€Processing of Chemically Homogeneous Nanothreads from 2,5â€Furandicarboxylic Acid**. Angewandte Chemie, 2023, 135, .	1.6	0
4796	A Bimetal Sulfide Nanocomposites Displaying Photocatalytic Performance Based on a MOFs Template Method. Russian Journal of General Chemistry, 2022, 92, 2763-2769.	0.3	2
4797	Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorganic Chemistry, 2023, 62, 3036-3046.	1.9	15
4798	Preparation of core–shell catalyst for the tandem reaction of amino compounds with aldehydes. RSC Advances, 2023, 13, 5186-5196.	1.7	0
4799	Synthesis and Postâ€Processing of Chemically Homogeneous Nanothreads from 2,5â€Furandicarboxylic Acid**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
4800	Rational construction of noble metal-free Cu(I) anchored Zr-MOF for efficient fixation of CO2 from dilute gas at ambient conditions. Microporous and Mesoporous Materials, 2023, 351, 112494.	2.2	7

#	ARTICLE	IF	CITATIONS
4801	A novel (Zr/Ce)UiO-66(NH2)@g-C3N4 Z-scheme heterojunction for boosted tetracycline photodegradation via effective electron transfer. Chemical Engineering Journal, 2023, 460, 141884.	6.6	12
4802	Advanced porous adsorbents for radionuclides elimination. EnergyChem, 2023, 5, 100101.	10.1	84
4803	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
4804	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
4805	Design of hierarchically porous Zr-MOFs with reo topology and confined PMA for ultra-efficient oxidation desulfurization. Molecular Catalysis, 2023, 538, 113007.	1.0	3
4806	A UiO-66-NH ₂ MOF derived N doped porous carbon and ZrO ₂ composite cathode for zinc-ion hybrid supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 2115-2124.	3.0	5
4807	Interaction between Single Metal Atoms and UiO-66 Framework Revealed by Low-Dose Imaging. Nano Letters, 2023, 23, 1787-1793.	4.5	5
4808	Single-atom electrocatalyst and gel polymer electrolyte boost the energy density and life of aluminum-sulfur batteries. Journal of Materials Science and Technology, 2023, 152, 86-93.	5 . 6	3
4809	Surface Modification of UiO-66 on Hollow Fibre Membrane for Membrane Distillation. Membranes, 2023, 13, 253.	1.4	4
4810	Defective Metal–Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing. ACS Applied Nano Materials, 2023, 6, 3675-3684.	2.4	10
4811	Recent developments in transition metal-based MOFs for electrocatalytic water splitting emphasizing fundamental and structural aspects. Materials Chemistry Frontiers, 2023, 7, 2120-2152.	3.2	12
4812	Radiolytic Water Splitting Sensitized by Nanoscale Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 5578-5588.	6.6	8
4813	Self-enhanced peroxidase-like activity in a wide pH range enabled by heterostructured Au/MOF nanozymes for multiple ascorbic acid-related bioenzyme analyses. Analyst, The, 2023, 148, 1579-1586.	1.7	2
4814	Real-Space Imaging of the Molecular Changes in Metal–Organic Frameworks under Electron Irradiation. ACS Nano, 2023, 17, 4740-4747.	7.3	5
4815	Immobilization of UiO-66/Brown-rot fungi (BRF) in PVA-SA matrix and its performance for methylene blue decolorization. Materials Today Chemistry, 2023, 29, 101411.	1.7	3
4816	Spontaneously super-hygroscopic MOF-gel microreactors for efficient detoxification of nerve agent simulant in atmospheric environments. Applied Catalysis B: Environmental, 2023, 328, 122516.	10.8	7
4817	Fluorinated metal–organic frameworks for enhanced stability and iodine adsorption selectivity under humid conditions. Chemical Engineering Journal, 2023, 461, 142058.	6.6	11
4818	In Situ Rapid Electrochemical Fabrication of Porphyrin-Based Covalent Organic Frameworks: Novel Fibers for Electro-Enhanced Solid-Phase Microextraction. ACS Applied Materials & Samp; Interfaces, 2023, 15, 12453-12461.	4.0	8

#	Article	IF	CITATIONS
4819	Stability improvements of metal halide perovskite nanocrystals and their optoelectrical applications. Materials Chemistry Frontiers, 2023, 7, 2175-2207.	3.2	5
4820	Room temperature design of Ce(<scp>iv</scp>)-MOFs: from photocatalytic HER and OER to overall water splitting under simulated sunlight irradiation. Chemical Science, 2023, 14, 3451-3461.	3.7	13
4821	Enabling dendrite-free and high-rate lithium anode with a self-standing anionic-MOF separator. Journal of Materials Chemistry A, 2023, 11, 8131-8140.	5.2	8
4822	Static and Time-Dependent Plasticity of Monolithic Metal–Organic Frameworks. Journal of Physical Chemistry C, 2023, 127, 4749-4758.	1.5	3
4823	Raman Mapping as a Tool for Evaluating I ₂ and I ₃ [–] Diffusion Over Single-Crystal UiO-67_NH ₂ (M) (M = Zr, Zr/Hf, or Hf). Journal of Physical Chemistry C, 2023, 127, 4618-4635.	1.5	7
4824	Quasi-Solid Electrolyte Interphase Boosting Charge and Mass Transfer for Dendrite-Free Zinc Battery. Nano-Micro Letters, 2023, 15, .	14.4	24
4825	Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023, 5, 100866.	0.9	9
4826	Synthesis of Fluoro-Bridged Ho ³⁺ and Gd ³⁺ 1,3,5-Tris(4-carboxyphenyl)benzene Metal–Organic Frameworks from Perfluoroalkyl Substances. Inorganic Chemistry, 2023, 62, 4314-4321.	1.9	5
4827	Research Progress of Synthesis Methods for Crystalline Porous Materials. Acta Chimica Sinica, 2023, 81, 146.	0.5	3
4828	MOFs Preparation and Synthetic Approaches. Engineering Materials, 2023, , 31-44.	0.3	0
4829	MOFs-alginate/polyacrylic acid/poly (ethylene imine) heparin-mimicking beads as a novel hemoadsorbent for bilirubin removal in vitro and vivo models. International Journal of Biological Macromolecules, 2023, 235, 123868.	3.6	2
4830	Nâ€Containing Carbons Derived from Microporous Coordination Polymers for Use in Postâ€Combustion Flue Gas Capture. Advanced Functional Materials, 2023, 33, .	7.8	2
4831	Fast Dynamic Synthesis of MIL-68(In) Thin Films in High Optical Quality for Optical Cavity Sensing. ACS Nano, 2023, 17, 6121-6130.	7.3	7
4832	Bismuth Coordination Polymers with Fluorinated Linkers: Aqueous Stability, Bivolatility, and Adsorptive Behavior. ACS Omega, 2023, 8, 10476-10486.	1.6	1
4833	Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker. CrystEngComm, 2023, 25, 2119-2124.	1.3	1
4834	Pebax2533 Gas Separation Membrane for CO2 Capture Applications: Incorporation and Assessment of New Configured UiO-66 Metal-organic Frameworks. Polymer Science - Series A, 2022, 64, 781-793.	0.4	0
4835	Metal–Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sensors, 2023, 8, 1033-1053.	4.0	14
4836	Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. Journal of the American Chemical Society, 2023, 145, 6156-6165.	6.6	11

#	Article	IF	CITATIONS
4837	A metal–organic framework modulated to site-isolate Cl˙ pendants <i>via</i> radical inter-conversion for degrading hard-to-ionize aqueous organic wastes. Journal of Materials Chemistry A, 2023, 11, 9436-9454.	5.2	2
4838	Low pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption. Plasma Science and Technology, 0, , .	0.7	1
4839	Absorbing stress via molecular crumple zones: Strain engineering flexibility into the rigid UiO-66 material. Matter, 2023, 6, 1435-1462.	5.0	2
4840	Bodipy-Based Metal–Organic Frameworks Transformed in Solid States from 1D Chains to 2D Layer Structures as Efficient Visible Light Heterogeneous Photocatalysts for Forging C–B and C–C Bonds. Journal of the American Chemical Society, 2023, 145, 6123-6134.	6.6	14
4841	Study of dual Filler Mixed Matrix Membranes with acid-functionalized MWCNTs and Metal-Organic Framework (UiO-66-NH2) in Cellulose Acetate for CO2 Separation. Journal of Polymers and the Environment, 2023, 31, 3404-3417.	2.4	5
4842	GIWAXS Characterization of Metal–Organic Framework Thin Films and Heterostructures: Quantifying Structure and Orientation. Advanced Materials Interfaces, 2023, 10, .	1.9	4
4843	MicMec: Developing the Micromechanical Model to Investigate the Mechanics of Correlated Node Defects in UiO-66. Journal of Physical Chemistry C, 2023, 127, 6060-6070.	1.5	1
4844	Hg2+ removal from wastewater by anchoring nitrogen/sulfur active center onto metal-organic framework via Schiff-base reaction: Synthesis, characterization, and experiment. Materials Today Chemistry, 2023, 29, 101471.	1.7	2
4845	Metal–Organic Framework (UiO-66)-Based Pesticide Delivery System for Effective Deltamethrin Loading and Sustained Pesticide Release. , 2023, 1, 1079-1085.		5
4846	Host–Guest Interactions of Zirconium-Based Metal–Organic Framework with Ionic Liquid. Molecules, 2023, 28, 2833.	1.7	1
4847	Recent advances in metal–organic framework-based photoelectrochemical and electrochemiluminescence biosensors. Analyst, The, 2023, 148, 2200-2213.	1.7	16
4848	Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today, 2023, 65, 207-226.	8.3	18
4849	Methotrexate drug uptake through dimethyl ethylenediamine post-modified metal–organic framework as a carrier: optimization using RSM. Journal of Porous Materials, 0, , .	1.3	0
4850	Structure, Properties, and Reactivity of Polyoxocationic Zirconium and Hafnium Clusters: A Computational Investigation. Inorganic Chemistry, 2023, 62, 5081-5087.	1.9	2
4851	High-pressure Mechanical Behaviour Under Hydrostatic Compression. , 2023, , 205-266.		0
4852	Computational Modelling of MOF Mechanics: From Elastic Behaviour to Phase Transformations. , 2023, , 113-204.		0
4853	Vapor-Like Water in the NU-1000 Zr-MOF: A Molecular Level Understanding of Balanced Hydrophobicity in Humid Conditions. Journal of Physical Chemistry C, 2023, 127, 6503-6514.	1.5	3
4854	Metal-organic frameworks: Synthetic methods for industrial production. Nano Research, 2023, 16, 7906-7925.	5.8	14

#	Article	IF	CITATIONS
4855	Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF ₄]/MOF Composites for CO ₂ /N ₂ Separation. ACS Applied Materials & Design and Synthesis of Machine Learning Molecular Synthesis of Materials & Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Synthesis of Machine Learning Guides in the Design and Machine Learning Gui	4.0	10
4856	Bismuth-Polyoxocation Coordination Networks: Controlling Nuclearity and Dimension-Dependent Photocatalysis. ACS Applied Materials & Interfaces, 2023, 15, 18087-18100.	4.0	3
4857	The revelation of glucose adsorption mechanisms on hierarchical metal–organic frameworks using a surface plasmon resonance sensor. Journal of Materials Chemistry B, 2023, 11, 4428-4444.	2.9	9
4858	2D titanium catecholate metalâ \in organic frameworks with tunable gas adsorption and ionic conductivity. Journal of Materials Chemistry A, 0, , .	5.2	0
4859	A supported pyridylimine–cobalt catalyst for <i>N</i> formylation of amines using CO ₂ . Dalton Transactions, 0, , .	1.6	1
4860	Silver Nanoparticle-Decorated Defective Zr-Based Metal–Organic Frameworks for Efficient Electrocatalytic Carbon Dioxide Reduction with Ultrahigh Mass Activity. ACS Applied Energy Materials, 2023, 6, 4072-4078.	2.5	7
4861	Facile Synthesis of Oriented Zr–MOF Membrane under Complete Room-Temperature Condition with Superb Selectivity for Carbon Capture. Industrial & Engineering Chemistry Research, 2023, 62, 5973-5983.	1.8	4
4862	Establishing gas transport highways in MOF-based mixed matrix membranes. Science Advances, 2023, 9, .	4.7	12
4863	Metalâ€Organic Framework Based Polymer Fibers: Review on Synthesis and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	2
4864	Understanding the Role of Synthetic Parameters in the Defect Engineering of UiO-66: A Review and Meta-analysis. Chemistry of Materials, 2023, 35, 3057-3072.	3.2	7
4865	Evolution of Zr nodes in metal–organic frameworks. Trends in Chemistry, 2023, 5, 339-352.	4.4	4
4866	Harnessing Hafniumâ€Based Nanomaterials for Cancer Diagnosis and Therapy. Small, 2023, 19, .	5.2	11
4867	Nano‧Hâ€MOF@Selfâ€Assembling Hollow Spherical g ₃ N ₄ Heterojunction for Visibleâ€Light Photocatalytic Nitrogen Fixation. ChemCatChem, 2023, 15, .	1.8	7
4868	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
4869	Prolonged cytostatic effect of nanosized NH2-UiO-66 doped with doxorubicin. Russian Chemical Bulletin, 2023, 72, 574-581.	0.4	0
4870	MOF based CO2 capture: Adsorption and membrane separation. Inorganic Chemistry Communication, 2023, 152, 110722.	1.8	8
4871	Stirâ€bar sorptive extraction based on hydroxylâ€functionalized zirconiumâ€metalâ€organic framework for the detection of three quinolones in actual samples. Journal of Separation Science, 0, , .	1.3	0
4872	A Simple Method for Teaching Bragg's Law in an Undergraduate Teaching Laboratory with the Use of Metal–Organic Frameworks. Journal of Chemical Education, 2023, 100, 1990-1996.	1.1	3

#	Article	IF	CITATIONS
4873	Polyamide Membrane Tailored by Codeposition of a UiO-66 Metal–Organic Framework Nanostructure-Based Interlayer for Forward Osmosis. ACS Applied Nano Materials, 2023, 6, 6901-6910.	2.4	5
4874	Unveiling the CO Oxidation Mechanism over a Molecularly Defined Copper Singleâ€Atom Catalyst Supported on a Metalâ€Organic Framework. Angewandte Chemie, 0, , .	1.6	1
4875	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
4876	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	1.6	0
4877	Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. Journal of the American Chemical Society, 2023, 145, 10227-10235.	6.6	5
4878	Unveiling the CO Oxidation Mechanism over a Molecularly Defined Copper Singleâ€Atom Catalyst Supported on a Metal–Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
4879	Selective adsorption of anionic and cationic dyes on mesoporous UiO-66 synthesized using a template-free sonochemistry method: kinetic, isotherm and thermodynamic studies. RSC Advances, 2023, 13, 12320-12343.	1.7	11
4880	Synergetic modulation of molecular oxygen activation and surface acidity/basicity on defective M/UiO-66m (M = Pt, Pd) for advanced oxidation of gaseous formaldehyde at room temperature. Applied Catalysis B: Environmental, 2023, 333, 122789.	10.8	10
4881	High Mg ²⁺ Conduction in Three Dimensional Pores of a Metal–Organic Framework under Organic Vapors. Dalton Transactions, 0, , .	1.6	0
4882	Linker Vacancy Engineering of a Robust ftwâ€type Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie, 2023, 135, .	1.6	1
4883	Linker Vacancy Engineering of a Robust ftwâ€type Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
4884	Heterogenization of molybdenum complexes: Techniques and catalytic applications. Applied Catalysis A: General, 2023, 661, 119227.	2.2	2
4896	Metal-organic frameworks as photocatalysts for aerobic oxidation reactions. Science China Chemistry, 2023, 66, 1634-1653.	4.2	12
4911	X-Ray Absorption Spectroscopy (XAS) Combined with Other Spectroscopic Techniques. Springer Handbooks, 2023, , 739-753.	0.3	0
4918	Tuning the functionality of metal–organic frameworks (MOFs) for fuel cells and hydrogen storage applications. Journal of Materials Science, 2023, 58, 8637-8677.	1.7	3
4921	A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker. Chemical Communications, 2023, 59, 7803-7806.	2.2	2
4924	Development and characterization of nano-MOFs., 2023,, 107-138.		0
4927	Functionalized metal–organic frameworks for heavy metal ion removal from water. Nanoscale, 2023, 15, 10189-10205.	2.8	7

#	Article	IF	CITATIONS
4932	Zr-MOF membranes with ultra-fast water-selective permeation towards intensification of esterification reaction. Chemical Communications, 2023, 59, 8075-8078.	2.2	3
4944	Adsorption Properties of Dyes on UiO–66 and UiO–66-NH2. Environmental Science and Engineering, 2023, , 253-260.	0.1	0
4962	Historical and contemporary perspectives on metal–organic frameworks for gas sensing applications: a review. , 2023, 1, 1125-1149.		2
4967	Perspective on the Use of Ultrasonic Monitoring for In Situ Diagnostics of Zeolite and MOF Crystallization. Crystal Growth and Design, 2023, 23, 5355-5367.	1.4	1
4971	Photocatalysis., 2023,, 387-415.		0
4990	Optimization Strategies of the Design and Preparation of Metal–Organic Framework Nanostructures for Water Sorption: A Review. ACS Applied Nano Materials, 2023, 6, 10903-10924.	2.4	4
4993	Zeolites and metal–organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chemical Society Reviews, 2023, 52, 4586-4602.	18.7	21
5012	An electroanalytical overview of metal–organic frameworks (MOFs). , 2023, , 468-503.		0
5013	Metal–organic frameworks for the photocatalytic oxygen reduction reaction to hydrogen peroxide. Materials Chemistry Frontiers, 2023, 7, 5120-5139.	3.2	3
5039	Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572.	3.0	1
5055	Metal-Organic Frameworks on Versatile Substrates. Journal of Materials Chemistry A, 0, , .	5 . 2	1
5078	Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	18.7	7
5087	Chemistry of Metal–Organic Frameworks. , 2023, , 45-79.		1
5094	A review on metal-organic framework hybrid-based flexible electrodes for solid-state supercapacitors. lonics, 0, , .	1.2	0
5125	Direct CO ₂ to methanol reduction on Zr ₆ -MOF based composite catalysts: a critical review. Materials Advances, 2023, 4, 5479-5495.	2.6	1
5133	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	18.7	8
5134	Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. Nanoscale, 2023, 15, 17270-17312.	2.8	1
5137	Metal–organic frameworks for wastewater treatment. , 2024, , 257-302.		0

#	Article	IF	CITATIONS
5156	Development of UiO-66-NH2 and RuO2 composite-modified carbon fiber for highly sensitive sensing of ferulic acid. Rare Metals, 2023, 42, 3630-3637.	3.6	1
5162	Recent advances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Transactions, 2023, 52, 16085-16102.	1.6	1
5189	Design, synthesis and applications of functional zirconium-based metal-organic frameworks. Science China Chemistry, 2023, 66, 3383-3397.	4.2	1
5202	Creating glassy states of dicarboxylate-bridged coordination polymers. Chemical Communications, 2023, 59, 14317-14320.	2.2	3
5203	Thiol and thioether-based metal–organic frameworks: synthesis, structure, and multifaceted applications. Dalton Transactions, 2023, 52, 17623-17655.	1.6	2
5205	Pore engineering of metal–organic frameworks for boosting low-pressure CO ₂ capture. Journal of Materials Chemistry A, 2023, 11, 25784-25802.	5.2	0
5213	Theoretical Foundations of Photocatalysis. Green Chemistry and Sustainable Technology, 2024, , 61-95.	0.4	0
5214	Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Transactions, 2023, 52, 17679-17683.	1.6	0
5222	Recent advances in multifunctional metal-organic frameworks for lithium metal batteries. Science China Chemistry, 2024, 67, 759-773.	4.2	1
5233	Recent advances and prospects of metal–organic frameworks in cancer therapies. Dalton Transactions, 2023, 52, 17601-17622.	1.6	3
5237	A review on zirconium-based metal–organic frameworks: synthetic approaches and biomedical applications. Materials Advances, 2024, 5, 51-67.	2.6	1
5266	Zirconium based metal organic framework as sorbent for oil spill cleaning: Characteristics, synthesis routes, and tuneable properties. AIP Conference Proceedings, 2023, , .	0.3	0
5272	MOF: A New Age Smart Material as Nano Carriers for Fertilizers and Pesticides. , 2023, , 135-148.		0
5281	Metal-organic frameworks-based platform for implantation applications: Recent advances and challenges. Journal of Materials Chemistry B, 0, , .	2.9	0
5285	Advances in Gas Sensors. , 2024, , 1-41.		0
5321	Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 2297-2309.	2.4	1
5324	Two highly stable isoreticular M ₈ -pyrazolate (M = Co, Ni) metal–organic frameworks for CO ₂ conversion. Chemical Communications, 2024, 60, 1293-1296.	2.2	0
5337	Adsorption: a reliable solution for emerging contaminants removal. , 2024, , 1-120.		0

#	Article	IF	Citations
5341	New metal–organic frameworks and other porous filler–based hybrid membranes for gas separation and wastewater treatment. , 2024, , 139-186.		0
5362	Fundamentals and mechanism of adsorption. , 2024, , 29-62.		0
5374	Recent development in metal-organic frameworks and their derivatives for supercapacitors. , 2024, , 303-329.		0
5375	Metal-organic frameworks and their derivatives: emerging materials for energy conversion and storage., 2024,, 1-17.		0
5411	MOF magic: zirconium-based frameworks in theranostic and bio-imaging applications. Journal of Materials Chemistry B, 2024, 12, 2691-2710.	2.9	0
5454	Sustainable Metal-Organic Frameworks from Plastic Wastes Using Microwave Technique for Heavy Metal Decontamination. , 2024, , .		0
5459	Metal–Organic Frameworks as Emerging Materials for Desalination. Advances in Science, Technology and Innovation, 2024, , 57-68.	0.2	0