Low-temperature compaction of Ti–6Al–4V powde with back pressure

Materialsessingce & amp; Engineering A: Structural Materials: F 490, 171-180

DOI: 10.1016/j.msea.2008.01.075

Citation Report

#	Article	IF	CITATIONS
1	The effect of hydrogenation on the ECAP compaction of Ti–6Al–4V powder and the mechanical properties of compacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 513-514, 97-108.	5.6	21
2	A Mg–Al–Nd alloy produced via a powder metallurgical route. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 515, 26-31.	5.6	8
3	Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling. International Journal of Materials Research, 2009, 100, 1727-1738.	0.3	2
4	Influence of ECAP on Densification Behaviour in the PM Aluminium Al-Mg-Si-Cu-Fe Alloy. Journal of Electrical Engineering, 2010, 61, 308-310.	0.7	1
5	Effect of ECAP on the Dimensional and Morphological Characteristics of High Performance Aluminium PM Alloy. Materials Science Forum, 2010, 667-669, 535-540.	0.3	2
6	Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites. Journal of Alloys and Compounds, 2010, 492, 116-121.	5.5	37
7	Consolidation behavior of Mg–10Gd–2Y–0.5Zr chips during solid-state recycling. Journal of Alloys and Compounds, 2010, 503, 253-259.	5.5	22
8	The influence of temporary hydrogenation on ECAP formability and low cycle fatigue life of CP titanium. Journal of Alloys and Compounds, 2011, 509, 2709-2715.	5.5	14
9	An Evaluation of Severe Plastic Deformation on the Densification Behaviour of Powder Metallurgy Aluminium Alloy Al-Mg-Si-Cu-Fe and Al-Zn-Mg-Cu. , 2011, , .		1
10	Full density consolidation of pure aluminium powders by cold hydro-mechanical pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5784-5789.	5.6	11
11	Effect of Severe Plastic Deformation on the Characteristics of a PM Aluminum Alloy. Advanced Materials Research, 0, 189-193, 2838-2841.	0.3	1
12	Ti-6Al-4V Billet Produced by Compaction of BE Powders Using Equal-Channel Angular Pressing. Key Engineering Materials, 0, 520, 301-308.	0.4	1
13	Preparation, Microstructure and Properties of Ti-6Al-4V Rods by Powder Compact Extrusion of Powder Mixture. Key Engineering Materials, 0, 520, 70-75.	0.4	15
14	A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite. Journal of Materials Engineering and Performance, 2012, 21, 1885-1892.	2.5	44
15	Production of Ti–6Al–4V billet through compaction of blended elemental powders by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 263-272.	5.6	35
16	Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature. Powder Technology, 2012, 219, 1-8.	4.2	32
17	Compaction of Ti–6Al–4V powder using high velocity compaction technique. Materials & Design, 2013, 50, 479-483.	5.1	34
18	Improving sinterability of Ti–6Al–4V from blended elemental powders through equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 396-404.	5.6	18

#	Article	IF	CITATIONS
19	Effect of Powder Compact Holding Time on the Microstructure and Properties of Ti-6Al-4V Alloy Produced by Powder Compact Extrusion of a Powder Mixture of HDH Titanium and Al-V Master Alloy. Key Engineering Materials, 0, 551, 67-72.	0.4	8
20	Finite Element Simulation of Aluminum ECAP Material Flow. Applied Mechanics and Materials, 2013, 423-426, 267-270.	0.2	0
21	Compaction of Commercially Pure Titanium Powder by Friction Powder Compaction Process. Materials Transactions, 2013, 54, 127-129.	1.2	1
22	Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying. Jom, 2014, 66, 2021-2029.	1.9	53
23	Preparation of Titanium Alloy Rods by Powder Compact Extrusion. Advanced Materials Research, 0, 1019, 241-247.	0.3	6
24	Multicomponent materials from machining chips compacted by equal-channel angular pressing. Journal of Materials Science, 2014, 49, 1193-1204.	3.7	13
25	Severe plastic deformation of a TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 163-169.	5.6	49
26	CFD 2D simulation of viscous flow during ECAE through a rectangular die with parallel slants. International Journal of Advanced Manufacturing Technology, 2014, 74, 943-962.	3.0	20
27	Cryogenic equal channel angular pressing of commercially pure titanium: microstructure and properties. Journal of Materials Science, 2014, 49, 6803-6812.	3.7	32
28	Refinement and consolidation of pure Al particles by equal channel angular pressing and torsion. Transactions of Nonferrous Metals Society of China, 2014, 24, 1289-1294.	4.2	10
29	Effect of heat treatment on microstructures and mechanical properties of a Ti-6Al-4V alloy rod prepared by powder compact extrusion. International Journal of Modern Physics B, 2015, 29, 1540004.	2.0	6
30	Enhancement of orientation gradients during simple shear deformation by application of simple compression. Journal of Applied Physics, 2015, 117, .	2.5	51
31	Warm compaction of titanium andÂtitanium alloy powders. , 2015, , 183-200.		4
32	Preparation of Titanium Alloy Parts by Powder Compact Extrusion of a Powder Mixture and Scaled up Manufacture. Key Engineering Materials, 0, 704, 75-84.	0.4	1
33	Effect of workpiece viscosity on strain unevenness during equal channel angular extrusion: CFD 2D solution of Navier–Stokes equations for the physical variables â€̃flow velocities—punching pressure'. Materials Research Express, 2016, 3, 115301.	1.6	10
34	Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 205-216.	5.6	58
35	Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties. Acta Materialia, 2016, 107, 239-253.	7.9	71
36	Development of a novel Al–Cu–Ti metallic glass reinforced Al matrix composite consolidated through equal channel angular pressing (ECAP). Journal of Alloys and Compounds, 2016, 673, 17-27.	5.5	24

#	Article	IF	CITATIONS
37	Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti–6Al–4V from machining chips produced by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 248-258.	5.6	31
38	Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation. Materials Science and Engineering C, 2016, 59, 754-765.	7.3	14
39	Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 186-213.	5.6	122
40	Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1249-1263.	2.2	14
41	Assessment of Gas Saturation of Titanium Alloys Synthesized From Powders Using Twist Extrusion. Powder Metallurgy and Metal Ceramics, 2017, 56, 273-282.	0.8	2
42	Effect of ECAP consolidation process on the interfacial characteristics of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. Composite Interfaces, 2018, 25, 669-679.	2.3	8
44	Study of Fabrication Processes and Properties of Al-CNT Composites Reinforced by Carbon Nano tubes - A Review. Materials Today: Proceedings, 2018, 5, 28262-28270.	1.8	17
45	Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1389-1401.	4.9	32
46	Consolidation of commercial pure aluminum particles by hot ECAP. IOP Conference Series: Materials Science and Engineering, 2018, 330, 012031.	0.6	1
47	Modeling the Effect of Primary and Secondary Twinning on Texture Evolution during Severe Plastic Deformation of a Twinning-Induced Plasticity Steel. Materials, 2018, 11, 863.	2.9	9
48	Fast recrystallization and phase transformation in ECAP deformed Ti–6Al–4V alloy induced by pulsed electric current. Journal of Alloys and Compounds, 2019, 786, 733-741.	5.5	50
49	Investigation on Equal-Channel Angular Pressing-Induced Grain Refinement in an Aluminum Matrix Composite Reinforced with Al-Cu-Ti Metallic Glass Particles. Journal of Materials Engineering and Performance, 2019, 28, 3031-3040.	2.5	6
50	The Effect of a Small Copper Addition on the Electrical Conductivity of Aluminum. Advanced Engineering Materials, 2020, 22, 2000058.	3.5	4
51	Equal channel angular pressing at temperatures of 77-575 K of Titanium Grade 2: Microstructure and mechanical properties. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012071.	0.6	1
52	Influence of ECAP-Back Pressure on the Porosity Distribution. Acta Physica Polonica A, 2010, 117, 864-868.	0.5	18
55	Ecap Consolidation and Heat Treatment of Blended Elemental Powders of Iron, Chromium, Nickel and Manganese. Materials Research, 2019, 22, .	1.3	1
56	Cryogenic and Room Temperature ECAP Consolidation of Blended Elemental Powders of Aluminum and Copper. Materials Research, 0, 25, .	1.3	2
57	A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Progress in Materials Science, 2023, 131, 101016.	32.8	52

#	Article	IF	CITATIONS
58	Relationship between Manufacturing and Properties of Vacuum Sintered Ti and Ti-6Al-7Nb. , 2022, 1, 232-242.		3
59	A review on impact route process on AA5083 of back pressure through equal channel angular pressing. Materials Today: Proceedings, 2023, , .	1.8	1
60	Comparing the Cold, Warm, and Hot Deformation Flow Behavior of Selective Laserâ€Melted and Electronâ€Beamâ€Melted Ti–6Al–2Sn–4Zr–2Mo Alloy. Advanced Engineering Materials, 0, , .	3.5	0
61	Influence of thermo-mechanical processing on microstructure and properties of bulk metallic glassy alloys-reinforced Al matrix composites prepared by powder metallurgy. Journal of Materials Research and Technology, 2023, 27, 8197-8208.	5.8	0

CITATION REPORT