Full color and monochrome passive-matrix polymer light displays made with solution processes

Organic Electronics 9, 95-100 DOI: 10.1016/j.orgel.2007.10.001

Citation Report

#	Article	IF	Citations
1	Transparent ITO Substrate of Seeded silver Nanoparticles and Formation of Photo-Induced Gratings. , 2008, , .		0
2	Conjugated Triphenylene Polymers for Blue OLED Devices. Macromolecular Rapid Communications, 2009, 30, 1279-1283.	3.9	36
3	Control of inkjet printed profiles by solvent-vapor annealing. Displays, 2010, 31, 164-167.	3.7	8
4	Patterning of Light-Emitting YVO4:Eu3+ Thin Films via Inkjet Printing. Journal of Physical Chemistry C, 2010, 114, 9883-9888.	3.1	42
5	High efficiency double-layer white polymer light-emitting diode. , 2010, , .		0
6	Stabilizing the Dynamic pâ^iâ^'n Junction in Polymer Light-Emitting Electrochemical Cells. Journal of Physical Chemistry Letters, 2011, 2, 367-372.	4.6	84
7	Highly efficient blue organic light-emitting diode with an oligomeric host having high triplet-energy and high electron mobility. Journal of Materials Chemistry, 2011, 21, 9546.	6.7	46
8	Traps Investigation in Polymer Light-Emitting Structures with Spray-Deposited Layers. International Journal of Polymer Analysis and Characterization, 2011, 16, 79-85.	1.9	1
9	Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12, 703-709.	2.6	63
10	Enhancement of efficiency of multilayer polymer light-emitting diodes by inserting blocking layers. Journal of Luminescence, 2011, 131, 801-807.	3.1	3
11	Color tuning and improved performance of poly[2-methoxy-5-(2 ^{â€2} -ethyl-hexyloxy)-1, 4-phenylenevinylene]-based polymer light emitting diode using cadmium selenide/zinc sulphide core shell uncapped quantum dots as dopants. Journal of Nanophotonics, 2011, 5, 053518.	1.0	8
12	Light-Emitting Devices with Conjugated Polymers. International Journal of Molecular Sciences, 2011, 12, 1575-1594.	4.1	64
13	Detection of Physical Defects in Full Color Passive-Matrix OLED Display by Image Driving Techniques. Journal of Display Technology, 2012, 8, 154-161.	1.2	11
14	High-efficiency conjugated-polymer-hosted blue phosphorescent light-emitting diodes. Science Bulletin, 2012, 57, 3639-3643.	1.7	7
15	Laser Induced Microrelief Superstructure of Ag/ITO Seed-Mediated Nanocomposites. Journal of Nano Research, 2012, 21, 139-143.	0.8	0
16	Printed passive matrix addressed electrochromic displays. Organic Electronics, 2013, 14, 3371-3378.	2.6	81
17	Novel cyclometalated platinum (II) complex containing carrier-transporting groups: Synthesis, luminescence and application in single dopant white PLEDs. Dyes and Pigments, 2013, 96, 732-737.	3.7	19
18	All-solution processed polymer light-emitting diode displays. Nature Communications, 2013, 4, 1971.	12.8	287

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Thickness Uniformity Adjustment of Inkjet Printed Lightâ€emitting Polymer Films by Solvent Mixture. Chinese Journal of Chemistry, 2013, 31, 1449-1454.	4.9	14
20	Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties. Chemical Society Reviews, 2014, 43, 7099-7131.	38.1	146
21	High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale, 2015, 7, 13410-13415.	5.6	122
22	Trap-level-engineered common red layer for fabricating red, green, and blue subpixels of full-color organic light-emitting diode displays. Optics Express, 2015, 23, 11424.	3.4	14
23	Coffee-Ring-Free Quantum Dot Thin Film Using Inkjet Printing from a Mixed-Solvent System on Modified ZnO Transport Layer for Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 26162-26168.	8.0	219
24	Fabricating large-area white OLED lighting panels via dip-coating. Organic Electronics, 2016, 37, 458-464.	2.6	32
25	Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science, 2016, 465, 106-111.	9.4	56
26	Inkjet printed polystyrene sulfuric acid-doped poly(3,4-ethylenedioxythiophene) (PEDOT) uniform thickness films in confined grooves through decreasing the surface tension of PEDOT inks. RSC Advances, 2017, 7, 7725-7733.	3.6	15
27	In situ patterning of microgrooves via inkjet etching for a solution-processed OLED display. Journal of Materials Chemistry C, 2017, 5, 5005-5009.	5.5	29
28	Amphiphilic conjugated molecules with multifunctional properties as efficient blue emitters and cathode interlayers for inkjet printed organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7075-7083.	5.5	19
29	Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing Technique. ACS Applied Materials & Interfaces, 2017, 9, 25506-25512.	8.0	155
30	Inkjet printing of viscoelastic polymer inks. Chinese Chemical Letters, 2018, 29, 399-404.	9.0	35
31	Multilayer Light-Emitting Diodes Based on Organic Semiconductor Polymers. Russian Physics Journal, 2018, 61, 1541-1546.	0.4	2
32	High-Uniformity Planar Mini-Chip-Scale Packaged LEDs with Quantum Dot Converter for White Light Source. Nanoscale Research Letters, 2019, 14, 182.	5.7	13
33	Improving the Performances of Perovskite Solar Cells via Modification of Electron Transport Layer. Polymers, 2019, 11, 147.	4.5	31
34	Solution-processed organic light-emitting diode in high-resolution line patterns by scalable wetting modification. Organic Electronics, 2019, 73, 332-336.	2.6	9
35	Inkjet-printed pixelated light-emitting electrochemical cells based on cationic Ir(III) complexes. Organic Electronics, 2019, 69, 336-342.	2.6	13
36	Inkjetâ€Printed Highâ€Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Smallâ€Molecule Hole Transport Material. Small, 2019, 15, e1900111.	10.0	50

CITATION REPORT

#	Article	IF	CITATIONS
37	Micronâ€Scale Patterning of High Quantum Yield Quantum Dot LEDs. Advanced Materials Technologies, 2019, 4, 1800727.	5.8	33
38	Enhanced Device Performances of Blueâ€Emitting PLEDs Coupled with Silverâ€Nanoicosahedrons. Particle and Particle Systems Characterization, 2019, 36, 1800376.	2.3	7
39	To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force. Chinese Chemical Letters, 2019, 30, 135-138.	9.0	42
40	Photocross-Linkable Hole Transport Materials for Inkjet-Printed High-Efficient Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 58369-58377.	8.0	21
42	Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Optical Materials, 2020, 101, 109755.	3.6	28
43	Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices. Journal of Science: Advanced Materials and Devices, 2022, 7, 100394.	3.1	15
44	Effect of spin-coating process on the performance of passive-matrix organic light-emitting display. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 087805.	0.5	7
45	Inkjet printed organic light-emitting diodes employing organometal-halide perovskite as hole transport layer. Journal Physics D: Applied Physics, 2022, 55, 105101.	2.8	1
46	Inkjet printing of organic light-emitting diodes. , 2024, , 57-82.		0

Inkjet printing of organic light-emitting diodes. , 2024, , 57-82. 46