Beach Wizard: Nearshore bathymetry estimation throu computations and remote observations

Coastal Engineering 55, 1016-1027 DOI: 10.1016/j.coastaleng.2008.04.011

Citation Report

#	Article	IF	CITATIONS
1	Variational data assimilation for parameter estimation: application to a simple morphodynamic model. Ocean Dynamics, 2009, 59, 697-708.	0.9	23
2	Remote sensing of wave roller lengths in the laboratory. Journal of Geophysical Research, 2009, 114, .	3.3	25
3	Integrated monitoring of the hydro-morphodynamics of a beach protected by low crested detached breakwaters. Coastal Engineering, 2010, 57, 879-891.	1.7	32
4	An investigation of the performance of a data-driven model on sand and shingle beaches. Marine Geology, 2010, 274, 120-134.	0.9	24
5	Assessing the Suitability of Video Imaging for Studying the Dynamics of Nearshore Sandbars in Tideless Beaches. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 2482-2497.	2.7	27
6	Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model. Journal of Geophysical Research, 2010, 115, .	3.3	50
7	Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements. Journal of Geophysical Research, 2010, 115, .	3.3	51
8	Temporal observations of rip current circulation on a macro-tidal beach. Continental Shelf Research, 2010, 30, 1149-1165.	0.9	100
9	Modeling formation and subsequent nonlinear evolution of rip channels: Time-varying versus time-invariant wave forcing. Journal of Geophysical Research, 2011, 116, .	3.3	48
10	Rip Currents. Annual Review of Fluid Mechanics, 2011, 43, 551-581.	10.8	164
11	Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dynamics, 2011, 61, 1521-1540.	0.9	55
12	A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling. Computers and Fluids, 2011, 46, 436-441.	1.3	18
13	Prediction and assimilation of surf-zone processes using a Bayesian network. Coastal Engineering, 2011, 58, 119-130.	1.7	51
14	Assimilation of Airborne Imagery with a Wave Model for Bathymetric Estimation. Journal of Coastal Research, 2011, 62, 40-49.	0.1	2
15	Numerical Simulations of Wave Setup over Barred Beach Profiles: Implications for Predictability. Journal of Waterway, Port, Coastal and Ocean Engineering, 2011, 137, 175-181.	0.5	25
16	Radar Inlet Observing System (RIOS): Continuous remote sensing of waves, currents, and bathymetry at tidal inlets. , 2012, , .		1
17	Thermal Radiation and Energy Closure Assessment in Evapotranspiration Estimation for Remote		0

#	Article	IF	Citations
19	An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Computers and Geosciences, 2012, 46, 196-207.	2.0	29
20	Integration of a 3D variational data assimilation scheme with a coastal area morphodynamic model of Morecambe Bay. Coastal Engineering, 2012, 69, 82-96.	1.7	13
21	COSMOS: A lightweight coastal video monitoring system. Computers and Geosciences, 2012, 49, 248-255.	2.0	52
22	Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands. Geomorphology, 2012, 179, 152-167.	1.1	83
23	A new breaking wave height direct estimator from video imagery. Coastal Engineering, 2012, 61, 42-48.	1.7	43
24	Remote Sensing of the Nearshore. Annual Review of Marine Science, 2013, 5, 95-113.	5.1	126
25	cBathy: A robust algorithm for estimating nearshore bathymetry. Journal of Geophysical Research: Oceans, 2013, 118, 2595-2609.	1.0	166
26	Towards a data assimilation system for morphodynamic modeling: bathymetric data assimilation for wave property estimation. Ocean Dynamics, 2013, 63, 489-505.	0.9	3
27	Improvement of morphodynamic modeling of tidal channel migration by nudging. Coastal Engineering, 2013, 77, 1-13.	1.7	17
28	On a data-model assimilation method to inverse wave-dominated beach bathymetry using heterogeneous video-derived observations. Ocean Engineering, 2013, 73, 126-138.	1.9	10
29	Observations and conceptual modelling of morphological coupling in a double sandbar system. Earth Surface Processes and Landforms, 2013, 38, 477-489.	1.2	21
30	Coupled sandbar patterns and obliquely incident waves. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1677-1692.	1.0	14
31	A Variational Assimilation System for Nearshore Wave Modeling. Journal of Atmospheric and Oceanic Technology, 2013, 30, 953-970.	0.5	18
32	Bathymetry correction using an adjoint component of a coupled nearshore waveâ€circulation model: Tests with synthetic velocity data. Journal of Geophysical Research: Oceans, 2013, 118, 4673-4688.	1.0	9
33	Can recreational echosounder-chartplotter systems be used to perform accurate nearshore bathymetric surveys?. Ocean Dynamics, 2014, 64, 1555-1567.	0.9	16
34	Assessment of the decadal morphodynamic evolution of a mixed energy inlet using ocean color remote sensing. Ocean Dynamics, 2014, 64, 1517-1530.	0.9	14
35	Assessment of a Measure for Water Exchange Strengthening of Artificial Headland Bays Based on Shoreline Change and Flushing Time. Journal of Coastal Research, 2014, 30, 615.	0.1	6
36	Improving the time resolution of surfzone bathymetry using in situ altimeters. Ocean Dynamics, 2014, 64, 755-770.	0.9	14

#	Article	IF	CITATIONS
37	The role of combined laser scanning and video techniques in monitoring wave-by-wave swash zone processes. Coastal Engineering, 2014, 83, 150-165.	1.7	55
38	Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations. Journal of Geophysical Research: Oceans, 2014, 119, 1993-2016.	1.0	41
39	Microwave backscattering from surf zone waves. Journal of Geophysical Research: Oceans, 2014, 119, 3098-3120.	1.0	18
40	Nearshore bathymetry from video and the application to rip current predictions for the Dutch Coast. Journal of Coastal Research, 2014, 70, 354-359.	0.1	10
41	Multipurpose line for mapping coastal information using a data model: the Andalusian coast (Spain). Journal of Coastal Conservation, 2015, 19, 461-474.	0.7	11
42	Spatial Prediction of Coastal Bathymetry Based on Multispectral Satellite Imagery and Multibeam Data. Remote Sensing, 2015, 7, 13782-13806.	1.8	66
43	Surfzone Monitoring Using Rotary Wing Unmanned Aerial Vehicles. Journal of Atmospheric and Oceanic Technology, 2015, 32, 855-863.	0.5	25
44	An automated method for semantic classification of regions in coastal images. Coastal Engineering, 2015, 105, 1-12.	1.7	31
45	Comparison of three empirical methods for water depth mapping with case study of Pratas Island. Proceedings of SPIE, 2015, , .	0.8	1
46	Data Assimilation for Bathymetry Estimation at a Tidal Inlet. Journal of Atmospheric and Oceanic Technology, 2016, 33, 2145-2163.	0.5	8
47	A Chebyshev polynomial radial basis function neural network for automated shoreline extraction from coastal imagery. Integrated Computer-Aided Engineering, 2016, 23, 141-160.	2.5	24
48	Video-based nearshore bathymetry estimation in macro-tidal environments. Marine Geology, 2016, 374, 31-41.	0.9	46
49	Determining shoreline response to sea level rise. Coastal Engineering, 2016, 114, 1-8.	1.7	85
50	Morphological impact of a storm can be predicted three days ahead. Computers and Geosciences, 2016, 90, 17-23.	2.0	12
51	Numerical Investigation of Wind Waves in the Persian Gulf: Bathymetry Effects. Journal of Atmospheric and Oceanic Technology, 2016, 33, 17-31.	0.5	12
52	New algorithms for shoreline monitoring from coastal video systems. Earth Science Informatics, 2017, 10, 495-506.	1.6	37
53	A comparative study of models to predict storm impact on beaches. Natural Hazards, 2017, 87, 843-865.	1.6	17
54	Accuracy of Nearshore Bathymetry Inverted From \${X}\$ -Band Radar and Optical Video Data. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1106-1116.	2.7	42

#	Article	IF	CITATIONS
55	Wavelet-Based Optical Flow Estimation of Instant Surface Currents From Shore-Based and UAV Videos. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 5790-5797.	2.7	37
57	Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coastal Engineering, 2018, 136, 147-160.	1.7	46
58	Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry. Coastal Engineering, 2018, 135, 66-76.	1.7	14
59	Surfzone State Estimation, with Applications to Quadcopter-Based Remote Sensing Data. Journal of Atmospheric and Oceanic Technology, 2018, 35, 1881-1896.	0.5	9
60	Video-based depth inversion techniques, a method comparison with synthetic cases. Coastal Engineering, 2018, 138, 199-209.	1.7	38
61	A comparison of the performance of submerged and detached artificial headlands in a beach nourishment project. Ocean Engineering, 2018, 159, 295-304.	1.9	7
62	WebCAT: Piloting the Development of a Web Camera Coastal Observing Network for Diverse Applications. Frontiers in Marine Science, 2019, 6, .	1.2	13
63	Simultaneous Mapping of Coastal Topography and Bathymetry From a Lightweight Multicamera UAS. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6844-6864.	2.7	41
64	Novel Data Assimilation Algorithm for Nearshore Bathymetry. Journal of Atmospheric and Oceanic Technology, 2019, 36, 699-715.	0.5	7
65	High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coastal Engineering, 2019, 149, 39-48.	1.7	29
66	A novel machine learning algorithm for tracking remotely sensed waves in the surf zone. Coastal Engineering, 2019, 147, 149-158.	1.7	36
67	Numerical Study of Remote Sensed Dredging Impacts on the Suspended Sediment Transport in China's Largest Freshwater Lake. Water (Switzerland), 2019, 11, 2449.	1.2	12
68	UBathy: A New Approach for Bathymetric Inversion from Video Imagery. Remote Sensing, 2019, 11, 2722.	1.8	28
69	Applying dynamically updated nearshore bathymetry estimates to operational nearshore wave modeling. Coastal Engineering, 2019, 145, 53-64.	1.7	7
70	A synthetic review of remote sensing applications to detect nearshore bars. Marine Geology, 2019, 408, 144-153.	0.9	33
71	A Simple and Efficient Image Stabilization Method for Coastal Monitoring Video Systems. Remote Sensing, 2020, 12, 70.	1.8	22
72	CIRN Quantitative Coastal Imaging Toolbox. SoftwareX, 2020, 12, 100582.	1.2	19
73	Bathymetric Inversion and Uncertainty Estimation from Synthetic Surf-Zone Imagery with Machine Learning. Remote Sensing, 2020, 12, 3364.	1.8	18

#	Article	IF	Citations
74	The application of a radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta. Coastal Engineering, 2020, 159, 103716.	1.7	10
75	Combined longshore and cross-shore shoreline model for closed embayed beaches. Coastal Engineering, 2020, 158, 103692.	1.7	17
76	Deep learning video analysis as measurement technique in physical models. Coastal Engineering, 2020, 158, 103689.	1.7	24
77	Structure-from-Motion on shallow reefs and beaches: potential and limitations of consumer-grade drones to reconstruct topography and bathymetry. Coral Reefs, 2021, 40, 835-851.	0.9	28
78	Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In?. Annual Review of Marine Science, 2022, 14, 457-492.	5.1	38
79	Validation and analysis of a 1-D variational assimilation scheme for bathymetry inversion. Coastal Engineering, 2021, 167, 103895.	1.7	2
80	On the use of Sentinel-2 satellites and lidar surveys for the change detection of shallow bathymetry: The case study of North Carolina inlets. Coastal Engineering, 2021, 169, 103936.	1.7	23
81	The Influence of Camera Calibration on Nearshore Bathymetry Estimation from UAV Videos. Remote Sensing, 2021, 13, 150.	1.8	10
82	Recent Developments in Bottom Topography Mapping Using Inverse Methods. , 2017, , 241-258.		2
83	Simulating storm impacts and coastal flooding along The Netherlands coast. , 2012, , .		5
85	Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems. Remote Sensing, 2020, 12, 204.	1.8	20
86	Application of Shore-Based Video and Unmanned Aerial Vehicles (Drones): Complementary Tools for Beach Studies. Remote Sensing, 2020, 12, 394.	1.8	30
87	Emerging crescentic patterns in modelled double sandbar systems under normally incident waves. Earth Surface Dynamics, 2020, 8, 323-334.	1.0	19
88	AN EARLY WARNING SYSTEM FOR THE ON-LINE PREDICTION OF COASTAL STORM RISK ON THE ITALIAN COASTLINE. Coastal Engineering Proceedings, 2012, 1, 77.	0.1	8
89	LONG-TERM NEARSHORE BATHYMETRY EVOLUTION FROM VIDEO IMAGERY: A CASE STUDY IN THE MIYAZAKI COAST. Coastal Engineering Proceedings, 2012, 1, 60.	0.1	12
90	REMOTE SENSING AND DATA ASSIMILATION FOR SURF ZONE BATHYMETRIC INVERSION. Coastal Engineering Proceedings, 2012, 1, 44.	0.1	1
91	Updates to and Performance of the cBathy Algorithm for Estimating Nearshore Bathymetry from Remote Sensing Imagery. Remote Sensing, 2021, 13, 3996.	1.8	16
93	Rip currents and rip channel morphodynamics under quasi-steady conditions. , 2009, , .		0

6

#	Article	lF	CITATIONS
95	Nearshore evolution at Noordwijk (NL) in response to nourishments, as inferred from Argus video imagery. , 0, , .		1
97	Sediment Transport Models. , 2014, , 1-7.		3
98	MORPHODYNAMIC DATA ASSIMILATION USED TO UNDERSTAND CHANGING COASTS. , 2015, , .		0
99	Sediment Transport Models. Encyclopedia of Earth Sciences Series, 2016, , 764-767.	0.1	0
100	Geomorphometric analysis of nearshore sedimentary bedforms from high-resolution multi-temporal satellite-derived bathymetry. Geocarto International, 0, , 1-18.	1.7	4
101	A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video. Remote Sensing, 2021, 13, 4742.	1.8	9
102	Estimating runup with limited bathymetry. Coastal Engineering, 2021, 172, 104055.	1.7	6
103	Optimization of Bathymetry for Long Waves with Small Amplitude. SIAM Journal on Control and Optimization, 2021, 59, 4429-4456.	1.1	2
104	The Coastal Imaging Research Network (CIRN). Remote Sensing, 2022, 14, 453.	1.8	13
105	Development of a Fully Convolutional Neural Network to Derive Surf-Zone Bathymetry from Close-Range Imagery of Waves in Duck, NC. Remote Sensing, 2021, 13, 4907.	1.8	8
106	Using free satellite imagery to study the long-term evolution of intertidal bar systems. Coastal Engineering, 2022, 174, 104123.	1.7	1
107	Laboratory Heat Flux Estimates of Seawater Foam for Low Wind Speeds. Remote Sensing, 2022, 14, 1925.	1.8	0
108	Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video. Remote Sensing, 2022, 14, 1847.	1.8	2
109	Integration of Photogrammetric and Spectral Techniques for Advanced Drone-Based Bathymetry Retrieval Using a Deep Learning Approach. Remote Sensing, 2022, 14, 4160.	1.8	3
110	Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events. Remote Sensing, 2022, 14, 3850.	1.8	4
111	Monitoring Short-Term Morphobathymetric Change of Nearshore Seafloor Using Drone-Based Multispectral Imagery. Remote Sensing, 2022, 14, 6035.	1.8	2