Development of an artificial neuronal network with poscells by polyethylenimine

Biosensors and Bioelectronics 23, 1221-1228

DOI: 10.1016/j.bios.2007.11.007

Citation Report

#	Article	IF	CITATIONS
1	Modelling small-patterned neuronal networks coupled to microelectrode arrays. Journal of Neural Engineering, 2008, 5, 350-359.	3.5	10
2	Biofouling of dextran-derivative layers investigated by quartz crystal microbalance. Colloids and Surfaces B: Biointerfaces, 2009, 71, 293-299.	5.0	29
3	Generation of Patterned Neuronal Networks on Cellâ€Repellant Poly(oligo(ethylene glycol)) Tj ETQq0 0 0 rgBT /C	verlock 10) Tf 50 662 T
4	Surface strategies for control of neuronal cell adhesion: A review. Surface Science Reports, 2010, 65, 145-173.	7.2	152
6	AFM measurement of the stiffness of layers of agarose gel patterned with polylysine. Microscopy Research and Technique, 2010, 73, 982-990.	2.2	24
7	A neurospheroid network-stamping method for neural transplantation to the brain. Biomaterials, 2010, 31, 8939-8945.	11.4	78
8	Electrically controlling cell adhesion, growth and migration. Colloids and Surfaces B: Biointerfaces, 2010, 79, 365-371.	5.0	17
9	Facile photopatterning of polyfluorene for patterned neuronal networks. Soft Matter, 2011, 7, 10025.	2.7	10
10	Photopatterning of Cell-Adhesive-Modified Poly(ethyleneimine) for Guided Neuronal Growth. Langmuir, 2011, 27, 2717-2722.	3.5	18
11	Atomic force microscopy and its contribution to understanding the development of the nervous system. Current Opinion in Genetics and Development, 2011, 21, 530-537.	3.3	52
12	Implantable microdevice for peripheral nerve regeneration: materials and fabrications. Journal of Materials Science, 2011, 46, 4723-4740.	3.7	21
13	Neural cell–cell and cell–substrate adhesion through N-cadherin, N-CAM and L1. Journal of Neural Engineering, 2011, 8, 046004.	3.5	8
14	Fine neurite patterns from photocrosslinking of cell-repellent benzophenone copolymer. Journal of Neuroscience Methods, 2012, 210, 161-168.	2.5	9
15	Highly Ordered Large-Scale Neuronal Networks of Individual Cells – Toward Single Cell to 3D Nanowire Intracellular Interfaces. ACS Applied Materials & Interfaces, 2012, 4, 3542-3549.	8.0	51
16	Self-assembled chitin nanofiber templates for artificial neural networks. Journal of Materials Chemistry, 2012, 22, 3105.	6.7	47
17	A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates. Biosensors and Bioelectronics, 2013, 48, 172-179.	10.1	27
18	Neuroglial differentiation of adult enteric neuronal progenitor cells as a function of extracellular matrix composition. Biomaterials, 2013, 34, 6649-6658.	11.4	47
19	Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry. RSC Advances, 2015, 5, 39252-39262.	3.6	18

#	Article	IF	CITATIONS
21	Facile real-time evaluation of the stability of surface charge under regular shear stress by pulsed streaming potential measurement. RSC Advances, 2015, 5, 78519-78525.	3.6	5
22	Cell-Type Dependent Effect of Surface-Patterned Microdot Arrays on Neuronal Growth. Frontiers in Neuroscience, 2016, 10, 217.	2.8	4
23	Self-Aligned Functionalization Approach to Order Neuronal Networks at the Single-Cell Level. Langmuir, 2018, 34, 6612-6620.	3.5	11
24	Selective Regulation of Neurons, Glial Cells, and Neural Stem/Precursor Cells by Poly(allylguanidine)-Coated Surfaces. ACS Applied Materials & Enterfaces, 2019, 11, 48381-48392.	8.0	8
25	Microfluidic array chip based on excimer laser processing technology for the construction of in vitro graphical neuronal network. Journal of Bioactive and Compatible Polymers, 2020, 35, 228-239.	2.1	2
26	Growth characteristics of human bone marrow mesenchymal stromal cells at cultivation on synthetic polyelectrolyte nanofilms in vitro. Heliyon, 2021, 7, e06517.	3.2	1
27	Ultrathin polyethyleneimine (PEI) films for culturing of the human mesenchymal stromal cells (hMSCs). Journal of Cardiovascular Medicine and Cardiology, 2020, , 255-261.	0.1	1
28	A Morphologic Study on Creation of Neural Network of Cultured Striatal Neurons in vitro Using Soft Lithography Techniques*. Progress in Biochemistry and Biophysics, 2009, 2009, 787-792.	0.3	0
29	Application of Soft Lithography and Micro-Fabrication on Neurobiology. , 0, , .		0
30	2,3-Diphosphoglycerate and the Protective Effect of Pyruvate Kinase Deficiency against Malaria Infection—Exploring the Role of the Red Blood Cell Membrane. International Journal of Molecular Sciences, 2023, 24, 1336.	4.1	2
31	Real-Time Cell Temperature Fluctuation Monitoring System Using Precision Pt Sensors Coated with Low Thermal Capacity, Low Thermal Resistance, and Self-Assembled Multilayer Films. ACS Sensors, 2023, 8, 141-149.	7.8	5