Metabolic engineering of Escherichia coli for 1-butanol keto-acid pathways

Metabolic Engineering 10, 312-320 DOI: 10.1016/j.ymben.2008.08.001

Citation Report

#	Article	IF	CITATIONS
1	Production of 2-methyl-1-butanol in engineered Escherichia coli. Applied Microbiology and Biotechnology, 2008, 81, 89-98.	1.7	143
2	Metabolic engineering: Enabling technology for biofuels production. Metabolic Engineering, 2008, 10, 293-294.	3.6	26
3	Engineering of an <i>Escherichia coli</i> Strain for the Production of 3-Methyl-1-Butanol. Applied and Environmental Microbiology, 2008, 74, 5769-5775.	1.4	149
4	Directed Evolution of <i>Methanococcus jannaschii</i> Citramalate Synthase for Biosynthesis of 1-Propanol and 1-Butanol by <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2008, 74, 7802-7808.	1.4	226
5	Acetolactate Synthase from <i>Bacillus subtilis</i> Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2009, 75, 6306-6311.	1.4	92
6	Strain Improvement and Process Development for Biobutanol Production. Recent Patents on Biotechnology, 2009, 3, 202-210.	0.4	27
7	PHA bioplastic: A valueâ€added coproduct for biomass biorefineries. Biofuels, Bioproducts and Biorefining, 2009, 3, 456-467.	1.9	113
8	Engineering metabolic systems for production of advanced fuels. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 471-479.	1.4	93
9	Problems with the microbial production of butanol. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1127-1138.	1.4	244
10	Ensemble modeling for strain development of l-lysine-producing Escherichia coli. Metabolic Engineering, 2009, 11, 221-233.	3.6	63
11	Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11, 262-273.	3.6	350
12	Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 2009, 11, 284-291.	3.6	221
13	Microbial production of advanced transportation fuels in non-natural hosts. Current Opinion in Biotechnology, 2009, 20, 307-315.	3.3	182
14	Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Current Opinion in Biotechnology, 2009, 20, 325-329.	3.3	32
15	Industrial biotechnology: Tools and applications. Biotechnology Journal, 2009, 4, 1725-1739.	1.8	85
16	Advanced biofuel production in microbes. Biotechnology Journal, 2010, 5, 147-162.	1.8	331
17	Systems metabolic engineering: Genomeâ€scale models and beyond. Biotechnology Journal, 2010, 5, 647-659.	1.8	122
18	Microbial 1â€butanol production: Identification of nonâ€native production routes and <i>in silico</i> engineering interventions. Biotechnology Journal, 2010, 5, 716-725.	1.8	41

#	Article	IF	CITATIONS
19	Bioengineering of microorganisms for C ₃ to C ₅ alcohols production. Biotechnology Journal, 2010, 5, 1297-1308.	1.8	35
20	Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Applied Microbiology and Biotechnology, 2010, 85, 651-657.	1.7	270
21	Pentanol isomer synthesis in engineered microorganisms. Applied Microbiology and Biotechnology, 2010, 85, 893-899.	1.7	125
22	3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Applied Microbiology and Biotechnology, 2010, 86, 1155-1164.	1.7	146
23	Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 2010, 86, 419-434.	1.7	220
24	Engineering Corynebacterium glutamicum for isobutanol production. Applied Microbiology and Biotechnology, 2010, 87, 1045-1055.	1.7	304
25	Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiology and Biotechnology, 2010, 87, 1303-1315.	1.7	296
26	The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories, 2010, 9, 3.	1.9	154
27	Metabolic engineering of cobalamin (vitamin B ₁₂) production in <i>Bacillus megaterium</i> . Microbial Biotechnology, 2010, 3, 24-37.	2.0	75
29	Biofuel Combustion Chemistry: From Ethanol to Biodiesel. Angewandte Chemie - International Edition, 2010, 49, 3572-3597.	7.2	587
30	Microbiological aspects of biofuel production: Current status and future directions. Journal of Advanced Research, 2010, 1, 103-111.	4.4	95
31	Ignition control of homogeneous-charge compression ignition (HCCI) combustion through adaptation of the fuel molecular structure by reaction with ozone. Fuel, 2010, 89, 3178-3184.	3.4	37
32	Evolution, genomic analysis, and reconstruction of isobutanol tolerance in <i>Escherichia coli</i> . Molecular Systems Biology, 2010, 6, 449.	3.2	252
33	Synthetic Biology Guides Biofuel Production. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	59
34	The Role of Proteomics in the Development of Cellulosic Biofuels. Current Proteomics, 2010, 7, 121-134.	0.1	5
35	Production of longer-chain alcohols from lignocellulosic biomass: butanol, isopropanol and 2,3-butanediol. , 2010, , 415-460.		16
36	Biofuels in China. Advances in Biochemical Engineering/Biotechnology, 2010, 122, 73-104.	0.6	6
37	Extremophiles in biofuel synthesis. Environmental Technology (United Kingdom), 2010, 31, 871-888.	1.2	130

#	Article	IF	CITATIONS
38	Biofuels: Biomolecular Engineering Fundamentals and Advances. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 19-36.	3.3	61
39	Genetic Engineering of <i>Escherichia coli</i> for Biofuel Production. Annual Review of Genetics, 2010, 44, 53-69.	3.2	119
40	Systems biology approaches for the microbial production of biofuels. Biofuels, 2010, 1, 291-310.	1.4	21
41	Metabolic engineering of <i>Escherichia coli</i> for biofuel production. Biofuels, 2010, 1, 493-504.	1.4	33
42	Experimental and Detailed Kinetic Modeling Study of the Oxidation of 1-Propanol in a Pressurized Jet-Stirred Reactor (JSR) and a Combustion Bomb. Energy & Fuels, 2011, 25, 2013-2021.	2.5	35
43	Engineering microorganisms for biofuel production. Biofuels, 2011, 2, 153-166.	1.4	20
44	Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476, 355-359.	13.7	519
45	2-Keto acids to branched-chain alcohols as biofuels: Application of reaction network analysis and high-level quantum chemical methods to understand thermodynamic landscapes. Computational and Theoretical Chemistry, 2011, 978, 160-165.	1.1	4
46	Biobutanol. Advances in Biochemical Engineering/Biotechnology, 2011, 128, 85-100.	0.6	13
47	Biorefinery Engineering. , 2011, , 815-828.		3
47 48	Biorefinery Engineering. , 2011, , 815-828. Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196.	3.9	3 9
		3.9 3.6	
48	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated		9
48 49	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metabolic Engineering, 2011, 13, 570-577. An evolutionary strategy for isobutanol production strain development in Escherichia coli.	3.6	9 78
48 49 50	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metabolic Engineering, 2011, 13, 570-577. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metabolic Engineering, 2011, 13, 674-681. Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in	3.6 3.6	9 78 105
48 49 50 51	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metabolic Engineering, 2011, 13, 570-577. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metabolic Engineering, 2011, 13, 674-681. Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 2011, 22, 775-783. Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer.	3.6 3.6 3.3	9 78 105 313
48 49 50 51 52	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metabolic Engineering, 2011, 13, 570-577. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metabolic Engineering, 2011, 13, 674-681. Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 2011, 22, 775-783. Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6, 1348-1357. Extension temperature of 60ŰC required for PCR amplification of large DNA fragments (>5Åkb) from a low GC bacterium Clostridium acetobutylicum. World Journal of Microbiology and Biotechnology,	3.6 3.6 3.3 1.8	9 78 105 313 108

#	ARTICLE	IF	Citations
56	High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Applied Microbiology and Biotechnology, 2011, 90, 1681-1690.	1.7	214
57	Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 2011, 102, 4304-4312.	4.8	173
58	Engineering strategy of yeast metabolism for higher alcohol production. Microbial Cell Factories, 2011, 10, 70.	1.9	42
59	Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microbial Cell Factories, 2011, 10, 97.	1.9	39
60	Studies of n-propanol, iso-propanol, and propane flames. Combustion and Flame, 2011, 158, 501-510.	2.8	102
61	Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combustion and Flame, 2011, 158, 809-819.	2.8	149
62	Developments in biobutanol production: New insights. Applied Energy, 2011, 88, 1999-2012.	5.1	421
63	Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering, 2011, 13, 169-176.	3.6	224
64	Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic Engineering, 2011, 13, 345-352.	3.6	257
65	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 2011, 13, 373-382.	3.6	190
66	Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13, 353-363.	3.6	352
67	A Synthetic Iterative Pathway for Ketoacid Elongation. Methods in Enzymology, 2011, 497, 469-481.	0.4	13
68	Metabolic Regulation Analysis and Metabolic Engineering. , 2011, , 407-420.		1
69	Corynebacterium glutamicum Tailored for Efficient Isobutanol Production. Applied and Environmental Microbiology, 2011, 77, 3300-3310.	1.4	290
70	Molecular Breeding of Advanced Microorganisms for Biofuel Production. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	30
71	Production of Photosynthetic Biofuels by Genetically Engineering Cyanobacteria. Current Chemical Biology, 2012, 6, 26-31.	0.2	0
72	Novel Strategies for Production of Medium and High Chain Length Alcohols. , 2012, , 183-211.		3
73	Recent progress in synthetic biology for microbial production of C3–C10 alcohols. Frontiers in Microbiology, 2012, 3, 196.	1.5	51

#	Article	IF	CITATIONS
74	Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical Biology, 2012, 6, 32-41.	0.2	2
75	Mathematical optimization applications in metabolic networks. Metabolic Engineering, 2012, 14, 672-686.	3.6	123
76	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
77	From Fields to Fuels: Recent Advances in the Microbial Production of Biofuels. ACS Synthetic Biology, 2012, 1, 498-513.	1.9	77
78	Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnology Advances, 2012, 30, 989-1000.	6.0	143
79	Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metabolic Engineering, 2012, 14, 579-590.	3.6	104
80	Metabolic engineering of Escherichia coli for the production of 1-propanol. Metabolic Engineering, 2012, 14, 477-486.	3.6	94
81	An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metabolic Engineering, 2012, 14, 687-704.	3.6	102
82	ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6018-6023.	3.3	327
83	A Synthetic Recursive "+1―Pathway for Carbon Chain Elongation. ACS Chemical Biology, 2012, 7, 689-697.	1.6	106
84	Kinetic Modeling and Isotopic Investigation of Isobutanol Fermentation by Two Engineered Escherichia coli Strains. Industrial & Engineering Chemistry Research, 2012, 51, 15855-15863.	1.8	15
85	OPTIMIZATION OF ENZYME PARAMETERS FOR FERMENTATIVE PRODUCTION OF BIORENEWABLE FUELS AND CHEMICALS. Computational and Structural Biotechnology Journal, 2012, 3, e201210005.	1.9	10
86	Butanol production from lignocellulosics. Biotechnology Letters, 2012, 34, 1415-1434.	1.1	98
87	MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics, 2012, 13, 6.	1.2	120
88	Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 2012, 11, 42.	1.9	124
89	Alternative biofuel production in non-natural hosts. Current Opinion in Biotechnology, 2012, 23, 744-750.	3.3	31
90	Microbial Technologies in Advanced Biofuels Production. , 2012, , .		20
91	Analysis of Metabolic Network of Synthetic Escherichia coli Producing Linalool Using Constraint-based Modeling. Procedia Computer Science, 2012, 11, 24-35.	1.2	2

ARTICLE IF CITATIONS # Microbial Stress Tolerance for Biofuels. Microbiology Monographs, 2012, , . 0.3 8 92 Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical 0.2 Biology, 2012, 6, 32-41. Engineering synthetic recursive pathways to generate non-natural small molecules. Nature Chemical 94 3.9 51 Biology, 2012, 8, 518-526. Hydrogen production from oxidative steam-reforming of n-propanol over Ni/Y2O3–ZrO2 catalysts. International Journal of Hydrogen Energy, 2012, 37, 7094-7100. 95 Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2012, 93, 1.7 112 96 273-283. Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystissp. PCC 6803. Biotechnology for Biofuels, 2013, 6, 106. 6.2 A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnology for 98 6.2 85 Biofuels, 2013, 6, 68. Synthetic Biology of Microbial Biofuel Production., 2013, , 207-223. 99 Improving biobutanol production in engineered <i>Saccharomyces cerevisiae</i> by manipulation of 100 1.4 96 acetyl-CoA metabolism. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1051-1056. Biofuels of the Present and the Future., 2013, , 325-370. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with 102 31 1.7 regeneration of nitrogen fertilizers. Applied Microbiology and Biotechnology, 2013, 97, 1397-1406. Butanol fermentation. Environmental Technology (United Kingdom), 2013, 34, 1691-1710. 1.2 Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an 104 3.6 54 evolved lactate-polymerizing enzyme. Metabolic Engineering, 2013, 15, 159-166. Microbial production of lactateâ€containing polyesters. Microbial Biotechnology, 2013, 6, 621-636. 29 Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved 106 1.9 35 conversion of isobutyraldehyde to isobutanol. Journal of Biotechnology, 2013, 164, 188-195. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 140 platform chemicals. Metabolic Engineering, 2013, 16, 42-47. Global Metabolomic and Network analysis of <i>Escherichia coli</i> Responses to Exogenous 108 1.8 53 Biofuels. Journal of Proteome Research, 2013, 12, 5302-5312. 109 Biobutanol: the outlook of an academic and industrialist. RSC Advances, 2013, 3, 24734.

#	Article	IF	CITATIONS
111	Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. Applied Biochemistry and Microbiology, 2013, 49, 723-742.	0.3	23
112	Selective Hydroalkoxylation of 1â€Hexene with 1â€Propanol and 1â€Butanol over Zeolite Beta Catalyst. ChemCatChem, 2013, 5, 576-581.	1.8	9
113	Jet-stirred reactor and flame studies of propanal oxidation. Proceedings of the Combustion Institute, 2013, 34, 599-606.	2.4	41
114	Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. Journal of Proteomics, 2013, 78, 326-345.	1.2	108
115	Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy and Environmental Science, 2013, 6, 2672.	15.6	143
116	Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. Journal of Biotechnology, 2013, 165, 93-98.	1.9	38
117	The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing. Applied Energy, 2013, 108, 248-260.	5.1	79
118	Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnology Advances, 2013, 31, 1200-1223.	6.0	181
120	Development of microbial cell factories for bio-refinery through synthetic bioengineering. Journal of Biotechnology, 2013, 163, 204-216.	1.9	55
121	Computational Tools for Guided Discovery and Engineering of Metabolic Pathways. Methods in Molecular Biology, 2013, 985, 123-147.	0.4	14
122	Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metabolic Engineering, 2013, 16, 1-10.	3.6	107
123	Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Applied Microbiology and Biotechnology, 2013, 97, 4677-4690.	1.7	33
124	Production of advanced biofuels in engineered E. coli. Current Opinion in Chemical Biology, 2013, 17, 472-479.	2.8	49
125	Combinatorial biosynthesis of plant-specific coumarins in bacteria. Metabolic Engineering, 2013, 18, 69-77.	3.6	77
126	Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology, 2013, 135, 339-349.	4.8	171
127	Transcription Factor-Based Screens and Synthetic Selections for Microbial Small-Molecule Biosynthesis. ACS Synthetic Biology, 2013, 2, 47-58.	1.9	176
128	Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. Metabolic Engineering, 2013, 17, 12-22.	3.6	59
129	Strain optimization for efficient isobutanol production using <i>Corynebacterium glutamicum</i> under oxygen deprivation. Biotechnology and Bioengineering, 2013, 110, 2938-2948.	1.7	96

#	Article	IF	Citations
130	A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate. Applied and Environmental Microbiology, 2013, 79, 4024-4030.	1.4	88
131	Metabolic engineering: Use of system-level approaches and application to fuel production in Escherichia coli. Electronic Journal of Biotechnology, 2013, 16, .	1.2	4
132	The Promising Fuel-Biobutanol. , 0, , .		15
133	Biobutanol from Renewable Agricultural and Lignocellulose Resources and Its Perspectives as Alternative of Liquid Fuels. , 0, , .		6
134	2-Butanol and Butanone Production in Saccharomyces cerevisiae through Combination of a B12 Dependent Dehydratase and a Secondary Alcohol Dehydrogenase Using a TEV-Based Expression System. PLoS ONE, 2014, 9, e102774.	1.1	40
136	1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Advances, 2014, 4, 57791-57798.	1.7	25
137	Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metabolic Engineering, 2014, 23, 62-69.	3.6	150
138	Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chemical Reviews, 2014, 114, 1871-1908.	23.0	365
139	Cloning, expression, purification, crystallization and X-ray crystallographic analysis of (S)-3-hydroxybutyryl-CoA dehydrogenase fromClostridium butyricum. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 485-488.	0.4	4
140	Microbial <i>n</i> â€butanol production from <scp>C</scp> lostridia to nonâ€Clostridial hosts. Engineering in Life Sciences, 2014, 14, 16-26.	2.0	37
142	In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products. Metabolic Engineering, 2014, 23, 100-115.	3.6	34
143	Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 2014, 69, 114-122.	4.3	285
144	Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 9499-9515.	1.7	34
145	Alcohol combustion chemistry. Progress in Energy and Combustion Science, 2014, 44, 40-102.	15.8	687
146	Metabolic engineering for higher alcohol production. Metabolic Engineering, 2014, 25, 174-182.	3.6	42
147	Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metabolic Engineering, 2014, 25, 140-158.	3.6	152
149	Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2014, 7, 89.	6.2	34
150	Engineering modular ester fermentative pathways in Escherichia coli. Metabolic Engineering, 2014, 26, 77-88.	3.6	87

			0
#	Article	IF	CITATIONS
151	Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 22, 60-68.	3.6	76
152	An experimental and kinetic modeling study of n-propanol and i-propanol ignition at high temperatures. Combustion and Flame, 2014, 161, 644-656.	2.8	64
153	Protein design for pathway engineering. Journal of Structural Biology, 2014, 185, 234-242.	1.3	60
154	Metabolic engineering for isoprenoid-based biofuel production. Journal of Applied Microbiology, 2015, 119, 605-619.	1.4	66
156	Advances in Pathway Engineering for Natural Product Biosynthesis. ChemCatChem, 2015, 7, 3078-3093.	1.8	16
157	Incorporating Stimuli-Responsive Bacteria in Microfluidic Droplets. , 2015, , .		0
158	Microbial Research in High-Value Biofuels. Microbiology Monographs, 2015, , 105-156.	0.3	3
159	Advanced Biotechnology: Metabolically Engineered Cells for the Bioâ€Based Production of Chemicals and Fuels, Materials, and Healthâ€Care Products. Angewandte Chemie - International Edition, 2015, 54, 3328-3350.	7.2	255
160	Systematically Engineering <i>Escherichia coli</i> for Enhanced Production of 1,2-Propanediol and 1-Propanol. ACS Synthetic Biology, 2015, 4, 746-756.	1.9	52
161	Integration of biocatalyst and process engineering for sustainable and efficient <i>n</i> â€butanol production. Engineering in Life Sciences, 2015, 15, 4-19.	2.0	18
162	Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol. Chemical Engineering and Processing: Process Intensification, 2015, 91, 121-129.	1.8	22
163	Outlook for the Production of Butanol from Cellulolytic Strains of Clostridia. , 2015, , 291-306.		1
164	Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae. Applied Microbiology and Biotechnology, 2015, 99, 2001-2008.	1.7	9
165	Enhanced 1-Butanol Production in EngineeredKlebsiella pneumoniaeby NADH Regeneration. Energy & Fuels, 2015, 29, 1823-1829.	2.5	17
166	Biofuel Productionâ^—â^—This chapter was written with contributions from:Arash Mollahoseini, Biofuel Research Team (BRTeam), Karaj, Iran; Meisam Tabatabaei, Biofuel Research Team (BRTeam), Karaj, Iran and Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran , 2015, , 597-630.		3
167	Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli. Journal of Biotechnology, 2015, 204, 25-32.	1.9	10
168	Synthesis of chemicals by metabolic engineering of microbes. Chemical Society Reviews, 2015, 44, 3760-3785.	18.7	97
169	Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Applied Microbiology and Biotechnology, 2015, 99, 4943-4951.	1.7	25

#	Article	IF	CITATIONS
170	Quantitative analysis of volatile metabolites released <i>in vitro</i> by bacteria of the genus <i>Stenotrophomonas</i> for identification of breath biomarkers of respiratory infection in cystic fibrosis Journal of Breath Research, 2015, 9, 027104.	1.5	39
171	Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metabolic Engineering, 2015, 29, 217-226.	3.6	159
172	Development and application of a novel screening method and experimental use of the mutant bacterial strain Clostridium beijerinckii NCIMB 8052 for production of butanol via fermentation of fresh cassava. RSC Advances, 2015, 5, 12624-12637.	1.7	5
173	Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nature Communications, 2015, 6, 10005.	5.8	77
174	2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 361-373.	1.4	32
175	Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, 2015, 33, 1455-1466.	6.0	94
176	Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 423-436.	1.4	50
177	Detailed Structure–Function Correlations of <i>Bacillus subtilis</i> Acetolactate Synthase. ChemBioChem, 2015, 16, 110-118.	1.3	20
178	Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 2015, 119, 1-9.	1.1	175
179	Pathway and Strain Design for Biofuels Production. , 2016, , 97-116.		2
180	Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum. Bioengineering, 2016, 3, 2.	1.6	11
181	Genetic Engineering In BioButanol Production And Tolerance. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	10
184	Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 2016, 122, 421-426.	1.1	13
185	Central metabolic nodes for diverse biochemical production. Current Opinion in Chemical Biology, 2016, 35, 37-42.	2.8	30
186	New insights in biodiesel production using supercritical 1-propanol. Energy Conversion and Management, 2016, 124, 212-218.	4.4	36
187	Efficient Biosynthesis of (<i>R</i>)â€or (<i>S</i>)â€2â€Hydroxybutyrate from <scp>l</scp> â€Threonine through a Synthetic Biology Approach. Advanced Synthesis and Catalysis, 2016, 358, 2923-2928.	2.1	15
188	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31
189	Future Prospect of the Production of 1,3-Butadiene from Butanediols. Chemistry Letters, 2016, 45, 1036-1047.	0.7	69

#	Article	IF	CITATIONS
190	Production of 2-methyl-1-butanol and 3-methyl-1-butanol in engineered Corynebacterium glutamicum. Metabolic Engineering, 2016, 38, 436-445.	3.6	44
191	Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 25675.	1.6	50
192	Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnology for Biofuels, 2016, 9, 267.	6.2	18
193	Microbial production of propanol. Biotechnology Advances, 2016, 34, 984-996.	6.0	88
194	Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microbial Cell Factories, 2016, 15, 6.	1.9	91
195	n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9, 44.	6.2	63
196	A <i>Pseudomonas putida</i> double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform. FEMS Microbiology Letters, 2016, 363, fnw018.	0.7	16
197	Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Applied Microbiology and Biotechnology, 2016, 100, 2097-2105.	1.7	8
198	Engineering Escherichia coli for Microbial Production of Butanone. Applied and Environmental Microbiology, 2016, 82, 2574-2584.	1.4	26
199	Metabolic assessment of E. coli as a Biofactory for commercial products. Metabolic Engineering, 2016, 35, 64-74.	3.6	48
200	Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiology Letters, 2016, 363, fnw020.	0.7	77
201	Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews, 2016, 60, 84-115.	8.2	470
202	Pervaporation membrane reactors. , 2016, , 331-381.		8
203	Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metabolic Engineering, 2016, 35, 31-37.	3.6	26
204	Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess and Biosystems Engineering, 2016, 39, 95-103.	1.7	37
205	Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 837-848.	1.9	64
206	CRISPRi based system for enhancing 1-butanol production in engineered Klebsiella pneumoniae. Process Biochemistry, 2017, 56, 139-146.	1.8	21
207	Progress and perspectives on improving butanol tolerance. World Journal of Microbiology and Biotechnology, 2017, 33, 51.	1.7	27

#	Article	IF	CITATIONS
208	Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metabolic Engineering, 2017, 40, 148-156.	3.6	73
209	Metabolic engineering of Escherichia coli for higher alcohols production: An environmentally friendly alternative to fossil fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 580-589.	8.2	18
210	Propanol isomers: Investigation of ignition and pyrolysis time scales. Combustion and Flame, 2017, 176, 229-244.	2.8	32
211	<i>De Novo</i> Biosynthesis of Glutarate <i>via</i> α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 1922-1930.	1.9	57
212	High-level De novo biosynthesis of arbutin in engineered Escherichia coli. Metabolic Engineering, 2017, 42, 52-58.	3.6	52
213	Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. Journal of Biotechnology, 2017, 249, 73-81.	1.9	31
214	Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites. Metabolic Engineering, 2017, 41, 144-151.	3.6	4
215	Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. Bioresource Technology, 2017, 235, 140-148.	4.8	5
216	Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metabolic Engineering, 2017, 41, 135-143.	3.6	79
217	Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metabolic Engineering, 2017, 41, 39-45.	3.6	48
218	Sustainable Biofuels Development in India. , 2017, , .		16
219	Technological Advancements in Sustainable Production of Second Generation Ethanol Development: An Appraisal and Future Directions. , 2017, , 299-336.		5
220	Engineering a Thermostable Keto Acid Decarboxylase Using Directed Evolution and Computationally Directed Protein Design. ACS Synthetic Biology, 2017, 6, 610-618.	1.9	24
221	Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Scientific Reports, 2017, 7, 11284.	1.6	26
222	Coupling xylitol dehydrogenase with NADH oxidase improves l -xylulose production in Escherichia coli culture. Enzyme and Microbial Technology, 2017, 106, 106-113.	1.6	13
223	Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels. Critical Reviews in Biotechnology, 2017, 37, 701-722.	5.1	13
224	Biobutanol recovery from model solutions using potassium pyrophosphate. Journal of Chemical Technology and Biotechnology, 2017, 92, 1229-1235.	1.6	18
225	Microbial Propionic Acid Production. Fermentation, 2017, 3, 21.	1.4	185

		CITATION R	EPORT	
# 226	ARTICLE Bioproduction of Fuels: An Introduction. , 2017, , 3-25.		IF	CITATIONS
-	· · · · · · · · · · · · · · · · · · ·			-
227	Biofilm microenvironment induces a widespread adaptive amino-acid fermentation pat strong fitness advantage in Escherichia coli. PLoS Genetics, 2017, 13, e1006800.	hway conferring	1.5	15
228	Principles of Metabolic Engineering. , 2017, , 129-151.			0
229	Enhancement of microalgal growth and biocomponent-based transformations for impr recovery: A review. Bioresource Technology, 2018, 258, 365-375.	oved biofuel	4.8	49
230	Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018, 50,	16-46.	3.6	250
231	Effective utilization of waste plastic oil in a direct injection diesel engine using high car as oxygenated additives for cleaner emissions. Energy Conversion and Management, 2	bon alcohols 018, 166, 81-97.	4.4	123
232	Clycolysis and Its Metabolic Engineering Applications. , 2018, , 1-33.			2
233	Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnology A 2018, 36, 430-442.	Advances,	6.0	66
234	Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metabolic Engineering, 2018, 45, 1-10.		3.6	18
235	Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production Acid. ACS Synthetic Biology, 2018, 7, 24-29.	of Glutaric	1.9	35
236	Steps towards â€~drop-in' biofuels: focusing on metabolic pathways. Current Opin 2018, 53, 26-32.	ion in Biotechnology,	3.3	26
237	A comparative assessment of ternary blends of three bio-alcohols with waste cooking of for optimum emissions and performance in a CI engine using response surface method Conversion and Management, 2018, 156, 337-357.		4.4	88
238	n-Butanol production in S. cerevisiae: co-ordinate use of endogenous and exogenous p Applied Microbiology and Biotechnology, 2018, 102, 9857-9866.	athways.	1.7	29
239	Influence of Multiple Conformations and Paths on Rate Constants and Product Branch Thermal Decomposition of 1-Propanol Radicals. Journal of Physical Chemistry A, 2018,		1.1	37
240	Biobutanol Production Using Recombinant Microorganisms. , 2018, , 47-62.			1
241	Identifying metabolic elements that contribute to productivity of 1-propanol bioproduc metabolomic analysis. Metabolomics, 2018, 14, 96.	ction using	1.4	3
242	Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Biosystems Engineering, 2018, 41, 1195-1204.	Bioprocess and	1.7	20
243	Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery 1 2019, , .	echnologies,	0.1	6

ARTICLE IF CITATIONS Analysis of metabolite profiles of <i>Saccharomyces cerevisiae</i> strains suitable for butanol 244 0.7 3 production. FEMS Microbiology Letters, 2019, 366, . Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking 245 6.2 chaperone SecB. Biotechnology for Biofuels, 2019, 12, 164. 246 Progress in biofuel generation and its application in fuel cell., 2019, , 371-403. 5 Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production. 247 Metabolic Engineering, 2019, 55, 191-200. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. 248 6.2 12 Biotechnology for Biofuels, 2019, 12, 230. Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel, 2019, 242, 673-686. 3.4 Redirecting Metabolic Flux <i>via</i> Combinatorial Multiplex CRISPRi-Mediated Repression for 250 1.9 71 Isopentenol Production in <i>Escherichia coli</i>. ACS Synthetic Biology, 2019, 8, 391-402. Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor 2.8 47 pyrolysis and laminar flame propagation. Combustion and Flame, 2019, 207, 171-185. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative 252 3.6 16 carbon-chain-extension cycle. Metabolic Engineering, 2019, 55, 23-32. Current challenges and advances in butanol production., 2019, 225-256. Proteomic Profiling, Transcription Factor Modeling, and Genomics of Evolved Tolerant Strains 254 1.7 28 Elucidate Mechanisms of Vanillin Toxicity in Escherichia coli. MSystems, 2019, 4, . Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion 15.8 166 Science, 2019, 74, 31-49. Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. Fuel, 2019, 253, 256 3.4 110 637-646. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Reports, 2019, 27, 1597-1606.e2. Biological Conversion of Amino Acids to Higher Alcohols. Trends in Biotechnology, 2019, 37, 855-869. 258 4.9 47 Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends. Energy, 2019, 174, 779-791. 259 Microbes as Bio-Resource for Sustainable Production of Biofuels and Other Bioenergy Products., 260 13 2019, , 205-222. CRISPR/Cas9-mediated engineering of <i>Escherichia coli</i> for <i>n</i>-butanol production from 1.4 xylose in defined medium. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 965-975.

# 262	ARTICLE Biological Production of Alcohols. , 2019, , 83-108.	IF	Citations 8
263	Significant parameters and technological advancements in biodiesel production systems. Fuel, 2019, 250, 27-41.	3.4	55
264	Effects of C3–C5 alcohols on solubility of alcohols/diesel blends. Fuel, 2019, 236, 65-74.	3.4	78
265	Microalgae: An Eco-friendly Tool for the Treatment of Wastewaters for Environmental Safety. , 2020, , 283-304.		2
266	Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Processing Technology, 2020, 197, 106194.	3.7	53
267	Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. , 2020, , 67-125.		20
268	Biotransformation of Carboxylic Acids to Alcohols: Characterization of Thermoanaerobacter Strain AK152 and 1-Propanol Production via Propionate Reduction. Microorganisms, 2020, 8, 945.	1.6	7
269	Metabolic engineering of E. coli for producing phloroglucinol from acetate. Applied Microbiology and Biotechnology, 2020, 104, 7787-7799.	1.7	6
270	Biofuel from Microalgae: Sustainable Pathways. Sustainability, 2020, 12, 8009.	1.6	49
271	Metabolic engineering strategies for butanol production in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 2571-2587.	1.7	17
272	Cell-free styrene biosynthesis at high titers. Metabolic Engineering, 2020, 61, 89-95.	3.6	41
273	Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. World Journal of Microbiology and Biotechnology, 2020, 36, 48.	1.7	23
274	Present status and future prospect of genetic and metabolic engineering for biofuels from lignocellulosic biomass. , 2020, , 37-46.		1
275	Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microbial Cell Factories, 2020, 19, 79.	1.9	30
277	Bio-based production of chemicals through metabolic engineering. , 2020, , 171-202.		1
278	Role of the ClpX from Corynebacterium crenatum involved in stress responses and energy metabolism. Applied Microbiology and Biotechnology, 2020, 104, 5505-5517.	1.7	3
279	Kinetics of isopropanol decomposition and reaction with H atoms from shock tube experiments and rate constant optimization using the method of uncertainty minimization using polynomial chaos expansions (MUMâ€PCE). International Journal of Chemical Kinetics, 2021, 53, 95-126.	1.0	2
280	The role of alcohol biofuels in advanced combustion: An analysis. Fuel, 2021, 283, 118915.	3.4	41

#	Article	IF	CITATIONS
281	Genetic manipulation of nonâ€solventâ€producing microbial species for effective butanol production. Biofuels, Bioproducts and Biorefining, 2021, 15, 119-130.	1.9	5
282	How to outwit nature: Omics insight into butanol tolerance. Biotechnology Advances, 2021, 46, 107658.	6.0	12
283	Isopropanol dehydration reaction rate kinetics measurement using H ₂ O time histories. International Journal of Chemical Kinetics, 2021, 53, 536-547.	1.0	4
284	Identification of Core Regulatory Genes and Metabolic Pathways for the <i>n</i> -Propanol Synthesis in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 1637-1646.	2.4	11
285	Review on the synthesis, performance and trends of butanol: a cleaner fuel additive for gasoline. International Journal of Ambient Energy, 2022, 43, 4207-4223.	1.4	8
286	A High-Efficiency Artificial Synthetic Pathway for 5-Aminovalerate Production From Biobased L-Lysine in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 633028.	2.0	9
287	Control of n-Butanol Induced Lipidome Adaptations in E. coli. Metabolites, 2021, 11, 286.	1.3	2
288	Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations. Food Microbiology, 2021, 95, 103713.	2.1	15
289	Theoretical Study on Reactions of Î \pm -Site Hydroxyethyl and Hydroxypropyl Radicals with O2. Journal of Physical Chemistry A, 2021, 125, 5423-5437.	1.1	1
290	Structure–solubility and solvation energy relationships for propanol in different solvents using structural and empirical scales. Journal of the Chinese Chemical Society, 2021, 68, 1604.	0.8	6
291	Exploring the Tunability and Dynamic Properties of MarR-PmarO Sensor System in <i>Escherichia coli</i> . ACS Synthetic Biology, 2021, 10, 2076-2086.	1.9	9
292	Management of microbial enzymes for biofuels and biogas production by using metagenomic and genome editing approaches. 3 Biotech, 2021, 11, 429.	1.1	3
293	Heterologous Pathway Engineering. , 2016, , 31-52.		4
294	Mechanisms and Applications of Microbial Solvent Tolerance. Microbiology Monographs, 2012, , 177-208.	0.3	3
295	An Introduction to Synthetic Biology. , 2009, , 23-48.		3
296	Bioenergy from Microorganisms: An Overview. Advances in Photosynthesis and Respiration, 2014, , 3-21.	1.0	5
297	A Spotlight on Butanol and Propanol as Next-Generation Synthetic Fuels. , 2020, , 105-126.		7
298	Optimization of a <i>p</i> -Coumaric Acid Biosensor System for Versatile Dynamic Performance. ACS Synthetic Biology, 2021, 10, 132-144.	1.9	20

#	Article	IF	CITATIONS
300	Improving Ethanol Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP). PLoS ONE, 2013, 8, e57628.	1.1	61
301	Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal, 0, , 152-195.	7.2	174
303	EngineeringEscherichia colifor the production of butyl octanoate from endogenous octanoyl-CoA. PeerJ, 2019, 7, e6971.	0.9	11
304	Pineapple processing waste (PPW): bioactive compounds, their extraction, and utilisation: a review. Journal of Food Science and Technology, 2022, 59, 4152-4164.	1.4	17
305	Dynamic metabolic engineering of Escherichia coli improves fermentation for the production of pyruvate and its derivatives. Journal of Bioscience and Bioengineering, 2022, 133, 56-63.	1.1	5
306	The Genome and Gene Resources of Biomass Utilization. , 2010, , 122-150.		0
307	Transcriptional Analysis Responding to Propanol Stress in Escherichia coli. Journal of Life Science, 2012, 22, 417-427.	0.2	8
308	Engineering Central Metabolism for Production of Higher Alcohol-based Biofuels. , 2016, , 1-34.		3
309	Bioproduction of Fuels: An Introduction. , 2016, , 1-23.		0
310	Biofuels from Protein-Rich Lignocellulosic Biomass: New Approach. Biofuel and Biorefinery Technologies, 2019, , 83-92.	0.1	0
311	Buji Ateşlemeli Motorlarda Kullanılan n-Propanol ve izo-Propanol / Benzin Yakıt Karışımlarının Performans ve Emisyonlara Etkisi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2018, 7, 409-416.	0.1	2
313	Biofuel Synthesis by Extremophilic Microorganisms. Biofuel and Biorefinery Technologies, 2020, , 115-138.	0.1	3
314	In vitro metabolic engineering: current status and recent progress. , 2020, , 183-206.		3
315	Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization. Biotechnology for Biofuels, 2021, 14, 212.	6.2	14
317	Fatty acids propyl esters: Synthesis optimization and application properties of their blends with diesel and 1-propanol. Renewable Energy, 2022, 185, 655-664.	4.3	3
318	Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metabolic Engineering, 2022, 70, 67-78.	3.6	16
319	Hydrogen and alcohols production by Serratia sp. from an inorganic carbon source. Journal of CO2 Utilization, 2022, 58, 101914.	3.3	1
320	A Critical Review on the Economically Feasible and Sustainable Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate) Production from Alkyl Alcohols. Polymers, 2022, 14, 670.	2.0	5

 # ARTICLE
 IF
 CITATIONS

 322
 Advances in microbial metabolic engineering for the production of butanol isomers (isobutanol and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

323	Engineering <i>E. coli</i> to synthesize butanol. Biochemical Society Transactions, 2022, 50, 867-876.	1.6	7
324	A quantum chemical investigation of the mechanisms and kinetics of the reactions between methyl radical and n/i-propanol. Computational and Theoretical Chemistry, 2022, 1210, 113638.	1.1	3
325	Metabolomics-Driven Identification of the Rate-Limiting Steps in 1-Propanol Production. Frontiers in Microbiology, 2022, 13, 871624.	1.5	4
328	Bioengineering in microbial production of biobutanol from renewable resources. , 2022, , 307-334.		1
329	Biobutanol from microalgae. , 2022, , 547-569.		1
330	Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Frontiers in Microbiology, 0, 13, .	1.5	20
331	Unlocking the access to oxidized coenzyme A via a single-step green membrane-based purification. Scientific Reports, 2022, 12, .	1.6	2
332	Improving isoprenol production <i>via</i> systematic CRISPRi screening in engineered <i>Escherichia coli</i> . Green Chemistry, 2022, 24, 6955-6964.	4.6	7
333	A novel one-step synthesis of 1-propanol from hydrogenolysis of glycerol using a Ni-HSiW/Al2O3 catalyst – The impact of H2 pressure on catalyst performance. Catalysis Today, 2023, 407, 2-10.	2.2	3
334	An experimental and kinetic modeling study on the effects of molecular structure on oxidation of propanol isomers at engine-relevant condition in a variable pressure laminar flow reactor. Chemical Engineering Science, 2023, 265, 118241.	1.9	3
335	Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes. Metabolic Engineering, 2023, 75, 58-67.	3.6	14
336	Insights into metabolic engineering approaches for enhanced biobutanol production. , 2023, , 329-361.		0
337	Establishing a growth-coupled mechanism for high-yield production of β-arbutin from glycerol in Escherichia coli. Bioresource Technology, 2023, 369, 128491.	4.8	2
338	Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: A review. Bioresource Technology, 2023, 369, 128395.	4.8	12
339	Metabolic Engineering: Methodologies and Applications. Chemical Reviews, 2023, 123, 5521-5570.	23.0	32
340	Advances in biosynthesis of higher alcohols in Escherichia coli. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4
345	Higher alcohols: metabolic pathways and engineering strategies for enhanced production. , 2024, , 19-65.		0

ARTICLE

IF CITATIONS