RLIP76 in Defense of Radiation Poisoning

International Journal of Radiation Oncology Biology Physics 72, 553-561

DOI: 10.1016/j.ijrobp.2008.06.1497

Citation Report

#	Article	IF	CITATIONS
1	The determination of glutathione-4-hydroxynonenal (GSHNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Analytical and Bioanalytical Chemistry, 2008, 392, 1325-1333.	3.7	27
2	Diminished drug transport and augmented radiation sensitivity caused by loss of RLIP76. FEBS Letters, 2008, 582, 3408-3414.	2.8	22
3	RLIP76: A Target for Kidney Cancer Therapy. Cancer Research, 2009, 69, 4244-4251.	0.9	62
4	Physiological and Pharmacological Significance of Glutathione-Conjugate Transport. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2009, 12, 540-551.	6.5	27
5	RLIP76: A novel glutathione-conjugate and multi-drug transporter. Biochemical Pharmacology, 2009, 77, 761-769.	4.4	53
6	Regression of prostate cancer xenografts by RLIP76 depletion. Biochemical Pharmacology, 2009, 77, 1074-1083.	4.4	55
7	Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. International Journal of Cancer, 2010, 126, 1327-1338.	5.1	53
8	Role of RLIP76 in doxorubicin resistance in lung cancer (Review). International Journal of Oncology, 2009, 34, 1505-11.	3.3	36
9	Chemistry and biochemistry of lipid peroxidation products. Free Radical Research, 2010, 44, 1098-1124.	3.3	425
10	RLIP76: A versatile transporter and an emerging target for cancer therapy. Biochemical Pharmacology, 2010, 79, 1699-1705.	4.4	44
11	A Central Role of RLIP76 in Regulation of Glycemic Control. Diabetes, 2010, 59, 714-725.	0.6	31
12	Stereoselective Effects of 4-Hydroxynonenal in Cultured Mouse Hepatocytes. Chemical Research in Toxicology, 2010, 23, 1601-1607.	3.3	5
13	Interactions of glutathione transferases with 4-hydroxynonenal. Drug Metabolism Reviews, 2011, 43, 165-178.	3.6	86
14	RLIP76, a Glutathione-Conjugate Transporter, Plays a Major Role in the Pathogenesis of Metabolic Syndrome. PLoS ONE, 2011, 6, e24688.	2.5	44
15	Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochemical Pharmacology, 2011, 82, 1100-1109.	4.4	97
16	2'-Hydroxyflavanone inhibits proliferation, tumor vascularization and promotes normal differentiation in VHL-mutant renal cell carcinoma. Carcinogenesis, 2011, 32, 568-575.	2.8	34
17	Glutathione-Conjugate Transport by RLIP76 Is Required for Clathrin-Dependent Endocytosis and Chemical Carcinogenesis. Molecular Cancer Therapeutics, 2011, 10, 16-28.	4.1	54
18	Didymin Induces Apoptosis by Inhibiting N-Myc and Upregulating RKIP in Neuroblastoma. Cancer Prevention Research, 2012, 5, 473-483.	1.5	41

CITATION REPORT

#	Article	IF	CITATIONS
19	Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. ISRN Oncology, 2012, 2012, 1-21.	2.1	464
20	1,3-Bis(3,5-dichlorophenyl) urea compound â€~COH-SR4' inhibits proliferation and activates apoptosis in melanoma. Biochemical Pharmacology, 2012, 84, 1419-1427.	4.4	17
21	Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease. Redox Biology, 2013, 1, 319-331.	9.0	159
22	Novel compound 1,3-bis (3,5-dichlorophenyl) urea inhibits lung cancer progression. Biochemical Pharmacology, 2013, 86, 1664-1672.	4.4	10
23	RLIP76 Protein Knockdown Attenuates Obesity Due to a High-fat Diet. Journal of Biological Chemistry, 2013, 288, 23394-23406.	3.4	22
24	RLIP76 Targeted Therapy for Kidney Cancer. Pharmaceutical Research, 2015, 32, 3123-3136.	3.5	12
25	Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling. Toxicology and Applied Pharmacology, 2015, 289, 361-370.	2.8	152
26	Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 167-175.	7.4	22
27	RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma. Pharmaceutical Research, 2017, 34, 1673-1682.	3.5	8
28	Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity. Free Radical Biology and Medicine, 2017, 111, 235-243.	2.9	45
29	Metastasis of breast tumor cells to brain is suppressed by targeting RLIP alone and in combination with 2′-Hydroxyflavanone. Cancer Letters, 2018, 438, 144-153.	7.2	13
30	2′â€Hydroxyflavanone inhibits in vitro and in vivo growth of breast cancer cells by targeting RLIP76. Molecular Carcinogenesis, 2018, 57, 1751-1762.	2.7	22
31	Topical 2′-Hydroxyflavanone for Cutaneous Melanoma. Cancers, 2019, 11, 1556.	3.7	13
32	RLIP: An existential requirement for breast carcinogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 281-288.	7.4	9
33	Glutathione: subcellular distribution and membrane transport. Biochemistry and Cell Biology, 2019, 97, 270-289.	2.0	75
34	RLIP controls receptor-ligand signaling by regulating clathrin-dependent endocytosis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188337.	7.4	6
35	Rlip Depletion Suppresses Growth of Breast Cancer. Cancers, 2020, 12, 1446.	3.7	7
36	In Vitro Aging of Human Skin Fibroblasts: Age-Dependent Changes in 4-Hydroxynonenal Metabolism. Antioxidants, 2020, 9, 150.	5.1	4

	CITATION R	CITATION REPORT		
#	Article	IF	CITATIONS	
37	Targeting RLIP with CRISPR/Cas9 controls tumor growth. Carcinogenesis, 2021, 42, 48-57.	2.8	15	
38	Prevention of mammary carcinogenesis in MMTV―neu mice by targeting RLIP. Molecular Carcinogenesis, 2021, 60, 213-223.	2.7	2	
39	RLIP depletion induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells. Carcinogenesis, 2021, 42, 742-752.	2.8	2	
40	Activating p53 function by targeting RLIP. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188512.	7.4	2	
42	Targeting the mercapturic acid pathway for the treatment of melanoma. Cancer Letters, 2021, 518, 10-22.	7.2	5	
43	2'-Hydroxyflavanone: A novel strategy for targeting breast cancer. Oncotarget, 2017, 8, 75025-75037.	1.8	35	
44	Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget, 2018, 9, 36202-36219.	1.8	22	
45	Research Progress of RLIP76 in Targeted Therapy of Tumor. Advances in Clinical Medicine, 2019, 09, 978-985.	0.0	0	
46	RALBP1 in Oxidative Stress and Mitochondrial Dysfunction in Alzheimer's Disease. Cells, 2021, 10, 3113.	4.1	12	
47	Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers, 2021, 13, 6377.	3.7	6	
48	RLIP: A necessary transporter protein for translating oxidative stress into pro-obesity and pro-carcinogenic signaling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188803.	7.4	2	
49	The Framingham Study on Cardiovascular Disease Risk and Stress-Defenses: A Historical Review. , 2023, 2, 122-164.		1	
50	Regression of ovarian cancer xenografts by depleting or inhibiting RLIP. Biochemical Pharmacology, 2023, 217, 115847.	4.4	0	