Purification and identification of antioxidant peptides f hydrolysates by consecutive chromatography and elect spectrometry

Food Chemistry 108, 727-736 DOI: 10.1016/j.foodchem.2007.11.010

Citation Report

#	Article	IF	CITATIONS
2	Application of Response Surface Methodology to Optimise the Antioxidant Activity of a Saithe (Pollachius virens) Hydrolysate. Marine Biotechnology, 2009, 11, 445-455.	1.1	28
3	Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. European Food Research and Technology, 2009, 229, 709-719.	1.6	104
4	Hollow-Fiber Ultrafiltration then Centrifugation for LC Analysis of Water-Soluble Sucrose in a Water-Soluble High-Molecular-Mass Gel Matrix. Chromatographia, 2009, 70, 1023-1030.	0.7	12
5	Structural characteristics of peptides extracted from Cantonese sausage during drying and their antioxidant activities. Innovative Food Science and Emerging Technologies, 2009, 10, 558-563.	2.7	57
6	Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. International Journal of Biological Macromolecules, 2009, 45, 146-151.	3.6	155
7	Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase. European Food Research and Technology, 2010, 230, 655-663.	1.6	42
8	Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry, 2010, 119, 226-234.	4.2	175
9	Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 2010, 120, 184-192.	4.2	300
10	Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chemistry, 2010, 123, 1210-1218.	4.2	109
11	Preparation and <i>in vitro</i> antioxidant activity of enzymatic hydrolysates from oyster (<i>Crassostrea talienwhannensis</i>) meat. International Journal of Food Science and Technology, 2010, 45, 978-984.	1.3	34
12	Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates. Czech Journal of Food Sciences, 2010, 28, 475-484.	0.6	6
13	Isolation and Purification of Flavonoids from <i>Ziziphus jujuba</i> by Highâ€Speed Counterâ€Current Chromatography. Journal of the Chinese Chemical Society, 2010, 57, 1071-1076.	0.8	8
14	Effect of Antioxidant Peptide Isolated from Brachionus calyciflorus. Journal of the Korean Society for Applied Biological Chemistry, 2010, 53, 192-197.	0.9	6
15	Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Research International, 2010, 43, 1167-1173.	2.9	190
16	Purification and identification of three novel antioxidant peptides from Cornu Bubali (water buffalo) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf
17	The Antioxidant Properties of Ethanol Extracts and Their Solvent-Partitioned Fractions from Various Green Seaweeds. Journal of Medicinal Food, 2010, 13, 1232-1239.	0.8	59
18	Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 2011, 3, 229-254.	1.6	601

Antioxidant and Antiproliferative Activities of Loach (Misgurnus anguillicaudatus) Peptides Prepared by Papain Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 7948-7953.

ARTICLE

20 Characterization and in vitro antioxidation of papain hydrolysate from black-bone silky fowl (Gallus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

21	Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Research International, 2011, 44, 3250-3258.	2.9	98
22	Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT - Food Science and Technology, 2011, 44, 9-15.	2.5	163
23	Isolation, purification and characterization of antioxidant peptidic fractions from a bovine liver sarcoplasmic protein thermolysin hydrolyzate. Peptides, 2011, 32, 388-400.	1.2	60
24	Effect of extrusion process on antioxidant and ACE inhibition properties from bovine haemoglobin concentrate hydrolysates incorporated into expanded maize products. International Journal of Food Sciences and Nutrition, 2011, 62, 774-780.	1.3	18
25	Identification of active peptides from backbones of <i>Nemipterus japonicus</i> and <i>Exocoetus volitans</i> by electrospray ionisation–mass spectrometry. International Journal of Food Science and Technology, 2011, 46, 1993-1996.	1.3	8
26	Effects of supplementation with grass carp protein versus peptide on swimming endurance in mice. Nutrition, 2011, 27, 789-795.	1.1	38
27	Identification of Low Molecular Weight Peptides in Chinese Rice Wine (Huang Jiu) by UPLC-ESI-MS/MS. Journal of the Institute of Brewing, 2011, 117, 238-250.	0.8	36
28	Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology, 2011, 20, 1075-1085.	1.2	81
29	Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. European Food Research and Technology, 2011, 232, 941-950.	1.6	49
30	Emulsifying properties of the transglutaminase-treated crosslinked product between peanut protein and fish (Decapterus maruadsi) protein hydrolysates. Journal of the Science of Food and Agriculture, 2011, 91, 578-585.	1.7	34
31	Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chemistry, 2011, 124, 1296-1307.	4.2	282
32	Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry, 2011, 129, 1591-1597.	4.2	62
33	Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 2011, 127, 999-1006.	4.2	184
34	Effect of thermal treatment on the characteristic properties of loach peptide. International Journal of Food Science and Technology, 2012, 47, 2574-2581.	1.3	9
35	Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysates of Tilapia (Oreochromis niloticus) Frame Protein. Molecules, 2012, 17, 12836-12850.	1.7	78
36	Optimization of antioxidant hydrolysate production from flying squid muscle protein using response surface methodology. Food and Bioproducts Processing, 2012, 90, 676-682.	1.8	32
37	Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food and Chemical Toxicology, 2012, 50, 3397-3404.	1.8	60

#	Article	IF	CITATIONS
38	Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food and Chemical Toxicology, 2012, 50, 4085-4091.	1.8	47
39	Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle. Food Research International, 2012, 49, 326-333.	2.9	30
40	Isolation and Characterization of an Oxygen Radical Absorbance Activity Peptide from Defatted Peanut Meal Hydrolysate and Its Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 5431-5437.	2.4	97
41	Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Science, 2012, 90, 226-235.	2.7	83
42	Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and Chemical Toxicology, 2012, 50, 2294-2302.	1.8	132
43	Sweet potato protein hydrolysates: antioxidant activity and protective effects on oxidative <scp>DNA</scp> damage. International Journal of Food Science and Technology, 2012, 47, 2304-2310.	1.3	24
44	Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 2012, 135, 3020-3038.	4.2	664
45	The primary structure identification of a corn peptide facilitating alcohol metabolism by HPLC–MS/MS. Peptides, 2012, 37, 138-143.	1.2	39
46	Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides, 2012, 38, 13-21.	1.2	163
47	Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides, 2012, 38, 344-349.	1.2	150
48	A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 2012, 4, 278-286.	1.6	162
50	Comparison of Chromatographic and Titrimetric Methods for the Determination of the a-amino Nitrogen in Standard Solution and Fish Protein Hydrolysates. Journal of Food Research, 2012, 1, 174.	0.1	4
51	Preparation of antioxidant peptide from egg white protein and improvement of its activities assisted by high-intensity pulsed electric field. Journal of the Science of Food and Agriculture, 2012, 92, 1554-1561.	1.7	38
52	Optimisation of hydrolysis of purple sea urchin (<i>Strongylocentrotus nudus</i>) gonad by response surface methodology and evaluation of <i>in vitro</i> antioxidant activity of the hydrolysate. Journal of the Science of Food and Agriculture, 2012, 92, 1694-1701.	1.7	24
53	Isolation and Identification of Cryptic Bioactive Regions in Bovine Achilles Tendon Collagen. Protein Journal, 2012, 31, 374-386.	0.7	22
54	Identification of antioxidative oligopeptides derived from autolysis hydrolysates of sea cucumber (Stichopus japonicus) guts. European Food Research and Technology, 2012, 234, 895-904.	1.6	37
55	<i>In vitro</i> antioxidant activity of papainâ€treated grass carp (<i>Ctenopharyngodon idellus</i>) protein hydrolysate and the preventive effect on fish mince system. International Journal of Food Science and Technology, 2012, 47, 961-967.	1.3	11
56	ANTIOXIDANT AND ACE INHIBITORY PROPERTIES OF POULTRY VISCERA PROTEIN HYDROLYSATE AND ITS PEPTIDE FRACTIONS. Journal of Food Biochemistry, 2012, 36, 494-501.	1.2	34

ARTICLE

In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 57

58	Influence of flavonoids from Phellinus igniarius on sturgeon caviar: Antioxidant effects and sensory characteristics. Food Chemistry, 2012, 131, 206-210.	4.2	29
59	The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 78
60	Antioxidant activities and functional properties of grass carp (<i>Ctenopharyngodon idellus</i>) protein hydrolysates. Journal of the Science of Food and Agriculture, 2012, 92, 292-298.	1.7	63
61	Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties. BMC Research Notes, 2013, 6, 197.	0.6	35
62	Purification and identification of novel antioxidative peptide released from Black-bone silky fowl (Gallus gallus domesticus Brisson). European Food Research and Technology, 2013, 237, 253-263.	1.6	15
63	Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 2013, 138, 1282-1288.	4.2	111
64	Formation mechanism of volatile and non-volatile compounds in peptide–xylose Maillard reaction. Food Research International, 2013, 54, 683-690.	2.9	41
65	Comparison of in vitro digestion characteristics and antioxidant activity of hot- and cold-pressed peanut meals. Food Chemistry, 2013, 141, 4246-4252.	4.2	56
	Antioxidant and Cholinesterase Inhibitory Activity of a New Peptide From <i>Ziziphus jujuba</i> Fruits.	0.0	50

00	American Journal of Alzheimer's Disease and Other Dementias, 2013, 28, 702-709.	0.9	30
67	Evaluation of lanternfish (Benthosema pterotum) hydrolysates as antioxidants against hydrogen peroxide induced oxidative injury. Food Research International, 2013, 54, 1409-1418.	2.9	16

- Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus) Tj ETQq1 1 0.784314 rgBT /Qverlo
- Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and) Tj ETQq0 0 0 rgBT /Overlock 10 Tr 6669

70	Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Research International, 2013, 51, 422-428.	2.9	65
71	Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. Journal of Functional Foods, 2013, 5, 154-162.	1.6	114
73	Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. Journal of Dairy Science, 2013, 96, 4242-4251.	1.4	79
75	Novel Antioxidant Peptide Derived from the Ultrafiltrate of Ovomucin Hydrolysate. Journal of Agricultural and Food Chemistry, 2013, 61, 7294-7300.	2.4	66
76	Proteolysis characteristics of sarcoplasmic, myofibrillar, and stromal proteins separated from grass carp and antioxidant properties of their hydrolysates. Food Science and Biotechnology, 2013, 22, 531-540	1.2	4

#	Article	IF	CITATIONS
77	Isolation and Identification of Antioxidant Peptides from Jinhua Ham. Journal of Agricultural and Food Chemistry, 2013, 61, 1265-1271.	2.4	116
78	Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 2013, 80, 367-373.	0.7	46
79	Effects of Preparation and Drying Methods on the Antioxidant Activity of Enzymatically Hydrolyzed Porcine Placenta Hydrolysates. Drying Technology, 2013, 31, 1600-1610.	1.7	22
80	Antioxidant and Free Radical Scavenging Potential of Peanut Meal Hydrolysate Prepared UsingBacillus SubtilisFermentation. International Journal of Food Properties, 2013, , 141217112201005.	1.3	0
81	In Vitro Antioxidant Activity and In Vivo Anti-fatigue Effects of Oyster (Ostrea plicatula Gmelin) Peptides Prepared Using Neutral Proteinase. Food Science and Technology Research, 2013, 19, 623-631.	0.3	11
82	Prehydrolyzed dietary protein reduces gastrocnemial DNA without impairing physical capacity in the rat. African Journal of Biotechnology, 2013, 12, 2058-2064.	0.3	0
83	Antioxidative Activities and Active Compounds of Extracts from <i>Catalpa</i> Plant Leaves. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	8
84	Antioxidant and Angiotensin 1 Converting Enzyme Inhibitory Functions from Chicken Collagen Hydrolysates. Journal of Nutrition & Food Sciences, 2014, 05, .	1.0	6
85	Hydroxyl Radical Scavenging Activity of Peptide from Fish Intestine Protein by Hydrolysis with Complex Enzyme. Advance Journal of Food Science and Technology, 2014, 6, 126-129.	0.1	1
87	Purification and Identification of Anti-Oxidant Soybean Peptides by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Rejuvenation Research, 2014, 17, 209-211.	0.9	13
88	Emulsifying Properties of Cross-Linking Between Proteins Extracted from Cold/Hot Pressed Peanut Meal and Hydrolysed Fish (<i>Decapterus Maruadsi</i>) Proteins. International Journal of Food Properties, 2014, 17, 1750-1762.	1.3	9
89	Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. Journal of Functional Foods, 2014, 11, 493-499.	1.6	29
90	Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion. Mljekarstvo, 2014, , 287-294.	0.2	33
91	Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chemistry, 2014, 154, 158-163.	4.2	112
92	Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chemistry, 2014, 160, 148-156.	4.2	46
93	Functional significance of bioactive peptides derived from soybean. Peptides, 2014, 54, 171-179.	1.2	411
94	Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Research International, 2014, 55, 222-228.	2.9	91
95	Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. Journal of Functional Foods, 2014, 7, 191-200.	1.6	108

	Сітатіо	n Report	
# 96	ARTICLE Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 2014, 6, 384-394.	IF 1.6	Citations 207
97	Hydrolysis kinetics and radical-scavenging activity of gelatin under simulated gastrointestinal digestion. Food Chemistry, 2014, 163, 1-5.	4.2	20
98	Antiapoptotic effect of a novel synthetic peptide from bovine muscle and MPG peptide on H2O2-induced C2C12 cells. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 630-639.	0.7	4
99	Effects of intragastric administration of five oyster components on endurance exercise performance in mice. Pharmaceutical Biology, 2014, 52, 723-728.	1.3	17
100	Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates. Journal of Functional Foods, 2014, 11, 342-351.	1.6	40
101	Identification of Inherently Antioxidant Regions in Proteins with Radical-Directed Dissociation Mass Spectrometry. Analytical Chemistry, 2014, 86, 3653-3658.	3.2	6
103	Bromelain: an overview of industrial application and purification strategies. Applied Microbiology and Biotechnology, 2014, 98, 7283-7297.	1.7	141
104	Isolation and Identification of Antioxidative Peptides from Frog (Hylarana guentheri) Protein Hydrolysate by Consecutive Chromatography and Electrospray Ionization Mass Spectrometry. Applied Biochemistry and Biotechnology, 2014, 173, 1169-1182.	1.4	12
105	Antioxidant activity of whey protein hydrolysates in milk beverage system. Journal of Food Science and Technology, 2015, 52, 3235-41.	1.4	60
106	Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science and Technology, 2014, 49, 1654-1662.	1.3	37
107	Proteomic identification of antioxidant peptides from 400 to 2500Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 2014, 56, 68-76.	2.9	69
108	Hydrolysed whey protein reduces muscle damage markers in Brazilian elite soccer players compared with whey protein and maltodextrin. A twelve-week in-championship intervention. International Dairy Journal, 2014, 34, 19-24.	1.5	44
109	Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chemistry, 2014, 145, 991-996.	4.2	87
110	Stability of an antioxidant peptide extracted from Jinhua ham. Meat Science, 2014, 96, 783-789.	2.7	102
111	Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound (Mustelus griseus) muscle. Journal of Functional Foods, 2014, 6, 176-185.	1.6	82
112	Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods, 2014, 9, 280-289.	1.6	89
113	Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chemistry, 2014, 161, 148-154.	4.2	68
114	A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates. Scientific Reports, 2015, 5, 10846.	1.6	39

#	Article	IF	CITATIONS
115	Two Novel Antioxidant Nonapeptides from Protein Hydrolysate of Skate (Raja porosa) Muscle. Marine Drugs, 2015, 13, 1993-2009.	2.2	36
116	Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain. Korean Journal for Food Science of Animal Resources, 2015, 35, 360-369.	1.5	14
117	Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of Functional Foods, 2015, 16, 234-242.	1.6	129
118	Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnology Advances, 2015, 33, 80-116.	6.0	145
119	Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chemistry, 2015, 179, 290-295.	4.2	106
120	<i>In Vivo</i> Antioxidant Effects of Hydrolysate Derived from Waste Proteins of <i>Mactra veneriformis</i> . Journal of Aquatic Food Product Technology, 2015, 24, 143-152.	0.6	6
121	Amino acids, peptides, and proteins as antioxidants for food preservation. , 2015, , 105-140.		24
122	Bioactive peptides identified in thornback ray skin's gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics, 2015, 128, 8-17.	1.2	97
123	Influence of <i>In vitro</i> Digestion on Antioxidative Activity of Coconut Meat Protein Hydrolysates. Tropical Journal of Pharmaceutical Research, 2015, 14, 441.	0.2	9
124	Preventive effect of Nile tilapia hydrolysate against oxidative damage of HepG2 cells and DNA mediated by H2O2 and AAPH. Journal of Food Science and Technology, 2015, 52, 6194-6205.	1.4	57
125	Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. Journal of Agricultural and Food Chemistry, 2015, 63, 3437-3444.	2.4	66
126	Isolation and identification of a novel peptide from zein with antioxidant and antihypertensive activities. Food and Function, 2015, 6, 3799-3806.	2.1	41
127	Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus) Tj ETQqO 0 0	rgBT /Ove 1.6	rlock 10 Tf 5(46
128	Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Research International, 2015, 78, 216-223.	2.9	86
129	Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey. Journal of the Science of Food and Agriculture, 2015, 95, 2908-2915.	1.7	51
130	Enzymatic hydrolysis optimization of <i>Paphia undulata</i> and lymphocyte proliferation activity of the isolated peptide fractions. Journal of the Science of Food and Agriculture, 2015, 95, 1544-1553.	1.7	43
131	Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chemistry, 2015, 168, 63-69.	4.2	87
132	Isolation and identification of antioxidative peptides from peptic hydrolysates of half-fin anchovy (Setipinna taty). LWT - Food Science and Technology, 2015, 60, 221-229.	2.5	30

#	Article	IF	CITATIONS
133	Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC–Q-TOF mass spectrometry. Food Chemistry, 2015, 167, 484-489.	4.2	66
134	A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. International Journal of Molecular Sciences, 2016, 17, 950.	1.8	168
135	Seafood Waste-Derived Peptides: Their Antioxidant Activity and Potential as Alternative Preservatives in Fish Products. , 2016, , 315-332.		2
136	Anti-Fatigue Effect by Peptide Fraction from Protein Hydrolysate of Croceine Croaker (Pseudosciaena) Tj ETQq1 1 Drugs, 2016, 14, 221.	0.784314 2.2	rgBT /Overl 57
137	The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules, 2016, 21, 72.	1.7	487
138	Efecto de Temperatura, pH, Concentración de Sustrato y Tipo de Enzima en la Hidrólisis Enzimática de VÃsceras de Tilapia Roja (Oreochromis spp.). Informacion Tecnologica (discontinued), 2016, 27, 63-76.	0.1	8
139	Optimisation of antioxidant hydrolysate production from sweet potato protein and effect of <i>inÂvitro</i> gastrointestinal digestion. International Journal of Food Science and Technology, 2016, 51, 1844-1850.	1.3	16
140	Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues. Journal of Functional Foods, 2016, 21, 485-496.	1.6	140
141	Two new sesquiterpenoid glycosides from the leaves of <i>Lycium barbarum</i> . Journal of Asian Natural Products Research, 2016, 18, 871-877.	0.7	10
142	Peptides from hydrolysate of lantern fish (Benthosema pterotum) proved neuroprotective in vitro and in vivo. Journal of Functional Foods, 2016, 24, 438-449.	1.6	49
143	Cloning, expression and antioxidant activity of a novel collagen from Pelodiscus sinensis. World Journal of Microbiology and Biotechnology, 2016, 32, 100.	1.7	7
144	Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells. International Dairy Journal, 2016, 63, 99-106.	1.5	30
145	Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. Journal of Applied Phycology, 2016, 28, 2979-2990.	1.5	75
146	Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chemistry, 2016, 204, 409-419.	4.2	104
147	Purification, characterisation and stability of an antioxidant peptide derived from sandfish () Tj ETQq0 0 0 rgBT /O	verlock 10 1.6	Tf 50 182 T 114
148	The inhibitory effects of $\hat{1}^3$ -glutamylcysteine derivatives from fresh garlic on glycation radical formation. Food Chemistry, 2016, 194, 538-544.	4.2	12
149	Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 2016, 190, 331-337.	4.2	184
150	Purification and antioxidant ability of peptide from egg in sea cucumber <i>Apostichopus japonicus</i> . International Journal of Food Properties, 2017, 20, 306-317.	1.3	9

#	Article	IF	CITATIONS
151	ACE Inhibitory and Antioxidant Activities of Novel Peptides from Scorpaena notata By-product Protein Hydrolysate. International Journal of Peptide Research and Therapeutics, 2017, 23, 13-23.	0.9	17
152	Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science, 2017, 83, 317-331.	0.7	60
153	Characteristic of antioxidant activity of dry-cured pork loins inoculated with probiotic strains of LAB. CYTA - Journal of Food, 2017, 15, 374-381.	0.9	7
154	Rheological behavior and antioxidant activity of a highly acidic gum from Althaea officinalis flower. Food Hydrocolloids, 2017, 69, 432-439.	5.6	49
155	Relationship between molecular weights and biological properties of alginates extracted under different methods from Colpomenia peregrina. Process Biochemistry, 2017, 58, 289-297.	1.8	44
156	Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. Journal of Functional Foods, 2017, 35, 224-235.	1.6	63
157	Development and characterization of cuttlefish (Sepia officinalis) skin gelatin-protein isolate blend films. International Journal of Biological Macromolecules, 2017, 105, 1491-1500.	3.6	17
158	Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. International Journal of Biological Macromolecules, 2017, 101, 703-711.	3.6	77
150	Improved physicochemical properties and hepatic protection of Maillard reaction products derived	4.2	27
109	from fish protein hydrolysates and ribose. Food Chemistry, 2017, 221, 1979-1988.		
160	Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176.	314 rgBT / 1.2	Overlock 10 T 4
160 161	 Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784. 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. 	314 rgBT / 1.2 0.6	Overlock 10 4 3
160 161 162	 Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. 	314 rgBT / 1.2 0.6 2.7	Overlock 10 T 4 3 69
160 161 162 163	 Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food and Function, 2017, 8, 2783-2791. 	314 rgBT / 1.2 0.6 2.7 2.1	Overlock 10 T 4 3 69 60
160 161 162 163 164	 Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food and Function, 2017, 8, 2783-2791. Identification and natural functions of cyclic lipopeptides from <i>Bacillus amyloliquefaciens</i> 	314 rgBT / 1.2 0.6 2.7 2.1 2.0	Cverlock 10 T 4 3 69 60 15
160 161 162 163 164 165	 Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food and Function, 2017, 8, 2783-2791. Identification and natural functions of cyclic lipopeptides from <i>Bacillus amyloliquefaciens</i> ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 2017, 181, 48-64. 	314 rgBT / 1.2 0.6 2.7 2.1 2.0 1.4	Cverlock 10 T 4 3 69 60 15 64
160 161 162 163 164 165 166	Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food and Function, 2017, 8, 2783-2791. Identification and natural functions of cyclic lipopeptides from <i>Bacillus amyloliquefaciens</i> An6. Engineering in Life Sciences, 2017, 17, 536-544. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 2017, 181, 48-64. Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (<i>Ctenopharyngodon Idella</i>). International Journal of Food Properties, 2017, 20, 1129-1144.	314 rgBT / 1.2 0.6 2.7 2.1 2.0 1.4 1.3	Cverlock 10 T 4 3 69 60 15 64 18
167 160 161 162 163 164 165	Antioxidant and emulsion properties of freshwater carps (Catla catla, Labeo rohita, Cirrhinus) Tj ETQq1 1 0.784: 1169-1176. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. Journal of Aquatic Food Product Technology, 2017, 26, 1070-1082. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science and Emerging Technologies, 2017, 43, 92-101. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food and Function, 2017, 8, 2783-2791. Identification and natural functions of cyclic lipopeptides from <i>Bacillus amyloliquefaciens</i> An6. Engineering in Life Sciences, 2017, 17, 536-544. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 2017, 181, 48-64. Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (<i>Ctenopharyngodon idella</i>). International Journal of Food Properties, 2017, 20, 1129-1144. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. European Food Research and Technology, 2017, 243, 627-637.	314 rgBT / 0.6 2.7 2.1 2.0 1.4 1.3 1.6	Overlock 10 T 3 69 60 15 64 18 20

CITAT	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
169	Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Research International, 2017, 2017, 1-16.	0.9	70
170	Angiotensin Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Hydrolysates of Korean Native Cattle (Hanwoo) Myofibrillar Protein. BioMed Research International, 2017, 2017, 1-9.	0.9	12
171	Comparisons of Processing Stability and Antioxidant Activity of the Silkworm Pupae Protein Hydrolysates by Spray-dry and Freeze-dry. International Journal of Food Engineering, 2018, 14, .	0.7	9
172	A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Research International, 2018, 106, 410-419.	2.9	46
173	Antioxidative and antibacterial peptides derived from bovine milk proteins. Critical Reviews in Food Science and Nutrition, 2018, 58, 726-740.	5.4	56
174	Efficacy of protein rich pearl powder on antioxidant status in a randomized placebo-controlled trial. Journal of Food and Drug Analysis, 2018, 26, 309-317.	0.9	26
175	Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition, 2018, 58, 3097-3129.	5.4	109
176	Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. Journal of Functional Foods, 2018, 49, 333-341.	1.6	66
177	Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria. Journal of Food Science and Technology, 2018, 55, 4782-4791.	1.4	28
178	Production of antioxidant peptide fractions from a by-product of tomato processing: mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of Food Science and Technology, 2018, 55, 3498-3507.	1.4	15
179	Stability of Antiradical Activity of Protein Extracts and Hydrolysates from Dry-Cured Pork Loins with Probiotic Strains of LAB. Nutrients, 2018, 10, 521.	1.7	16
180	Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions. Molecules, 2018, 23, 707.	1.7	35
181	Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. Advances in Food and Nutrition Research, 2018, 84, 145-181.	1.5	17
182	Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment. Food Science and Human Wellness, 2019, 8, 306-314.	2.2	37
183	Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules, 2019, 24, 3004.	1.7	15
184	Bioactivity of Peptides Released During Lactic Fermentation of Amaranth Proteins with Potential Cardiovascular Protective Effect: An <i>In Vitro</i> Study. Journal of Medicinal Food, 2019, 22, 976-981.	0.8	29
185	Proteins From Fish Processing By-Products. , 2019, , 163-191.		11
186	Isolation and characterization of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein (<i>Synechococcus</i> Sp. VDW). Food Biotechnology, 2019, 33, 303-324.	0.6	32

#	Article	IF	CITATIONS
187	Antioxidant Peptides from the Protein Hydrolysate of Spanish Mackerel (Scomberomorous niphonius) Muscle by in Vitro Gastrointestinal Digestion and Their in Vitro Activities. Marine Drugs, 2019, 17, 531.	2.2	27
188	Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in vitro Gastrointestinal Digestion. Marine Drugs, 2019, 17, 78.	2.2	76
189	Separation and Enrichment of Antioxidant Peptides from Whey Protein Isolate Hydrolysate by Aqueous Two-Phase Extraction and Aqueous Two-Phase Flotation. Foods, 2019, 8, 34.	1.9	33
190	Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1039-1051.	5.9	89
191	Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray (Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Marine Drugs, 2019, 17, 263.	2.2	33
192	Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. Advances in Food and Nutrition Research, 2019, 89, 165-207.	1.5	29
193	ACE-inhibitory and antioxidant peptides from coconut cake albumin hydrolysates: purification, identification and synthesis. RSC Advances, 2019, 9, 5925-5936.	1.7	26
194	Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides. Journal of Food Biochemistry, 2019, 43, e12789.	1.2	8
195	Preparation and characterization of polysaccharide based films and evaluation of their healing effects on dermal laser burns in rats. European Polymer Journal, 2019, 115, 147-156.	2.6	13
196	Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. Journal of Supercritical Fluids, 2019, 147, 17-23.	1.6	20
197	Nitric Oxide Synthesis Inhibition and Anti-Inflammatory Effect of Polypeptide Isolated from Chicken Feather Meal in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Food Technology and Biotechnology, 2019, 57, 200-212.	0.9	11
198	Isolation of Novel ACE-Inhibitory and Antioxidant Peptides from Quinoa Bran Albumin Assisted with an In Silico Approach: Characterization, In Vivo Antihypertension, and Molecular Docking. Molecules, 2019, 24, 4562.	1.7	36
199	Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Journal of Dairy Science, 2019, 102, 10711-10723.	1.4	13
200	Characterization of antioxidative peptide purified from black eelpout (Lycodes diapterus) hydrolysate. Fisheries and Aquatic Sciences, 2019, 22, .	0.3	6
201	Fish and fish side streams are valuable sources of high-value components. Food Quality and Safety, 2019, 3, 209-226.	0.6	36
202	Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnology, 2019, 49, 71-76.	2.4	61
203	Enzyme and Bioactive Peptides—A Strategy for Discovery and Identification of Antihypertensive Peptides. , 2019, , 343-367.		4
204	Ultrasoundâ€assisted extraction of sulfated polysaccharide from <i>Nizamuddinia zanardinii</i> : Process optimization, structural characterization, and biological properties. Journal of Food Process Engineering, 2019, 42, e12979.	1.5	27

#	Article	IF	CITATIONS
205	Antioxidant Properties and Arsenic Speciation of Ultrafiltration and Nanofiltration Derived Abalone Viscera Hydrolysate Fraction. Journal of Aquatic Food Product Technology, 2019, 28, 64-73.	0.6	2
206	Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 2019, 56, 535-547.	1.4	255
207	Preparation, Identification, and Activity Evaluation of Eight Antioxidant Peptides from Protein Hydrolysate of Hairtail (Trichiurus japonicas) Muscle. Marine Drugs, 2019, 17, 23.	2.2	49
208	Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods, 2020, 9, 1406.	1.9	17
209	Enzyme-Assisted Aqueous Extraction of Cobia Liver Oil and Protein Hydrolysates with Antioxidant Activity. Catalysts, 2020, 10, 1323.	1.6	12
210	Walnut. , 2020, , 385-422.		1
211	Production of Protein Hydrolysate Containing Antioxidant and Angiotensin -I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus pelamis) Blood. Processes, 2020, 8, 1518.	1.3	17
212	Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of Selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorganic Chemistry, 2020, 105, 104431.	2.0	28
213	Impact of Simulated Gastrointestinal Digestion on the Biological Activity of an Alcalase Hydrolysate of Orange Seed (Siavaraze, Citrus sinensis) by-Products. Foods, 2020, 9, 1217.	1.9	14
214	Identification and enhancement of antioxidant P1-peptide isolated from <i>Ganoderma lucidum</i> hydrolysate. Food Biotechnology, 2020, 34, 338-351.	0.6	15
215	Peptides obtained from edible mushrooms: <i>Hericium erinaceus</i> offers the ability to scavenge free radicals and induce apoptosis in lung cancer cells in humans. Food and Function, 2020, 11, 4927-4939.	2.1	27
216	Isolation of antioxidant peptides from yak casein hydrolysate. RSC Advances, 2020, 10, 19844-19851.	1.7	30
217	Characterization of Proteolytic Activity of Artichoke (Cynara scolymus L.) Flower Extracts on Bovine Casein to Obtain Bioactive Peptides. Animals, 2020, 10, 914.	1.0	15
218	Pearl powder reduces sleep disturbance stress response through regulating proteomics in a rat model of sleep deprivation. Journal of Cellular and Molecular Medicine, 2020, 24, 4956-4966.	1.6	13
219	Isolation and identification of antioxidant peptides from tartary buckwheat albumin (<i>Fagopyrum) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf
220	Biochemical composition of wild and cultured seahorses (<i>Hippocampus kuda</i> Bleeker). Aquaculture Research, 2020, 51, 1542-1550.	0.9	3
221	Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates. Food Chemistry, 2020, 323, 126809.	4.2	48
222	Characterization and identification of a fraction from silver carp (Hypophthalmichthys molitrix) muscle hydrolysates with cryoprotective effects on yeast. LWT - Food Science and Technology, 2021, 137–110388	2.5	9

ARTICLE

Bioactivity of Hydrolysates Obtained from Chicken Egg Ovalbumin Using Artichoke (Cynara scolymus) Tj ETQq0 0 Q rgBT /Overlock 10 T

224	Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (<i>Thunnus albacares</i>) Tj ETQq1 1 Processing and Preservation, 2021, 45, e15319.	0.784314 0.9	FrgBT /Ov∈ 8
225	Selection of Antioxidant Peptides from Gastrointestinal Hydrolysates of Fermented Rice Cake by Combining Peptidomics and Bioinformatics. ACS Food Science & Technology, 2021, 1, 443-452.	1.3	2
226	Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients, 2021, 13, 1410.	1.7	20
227	Defective cuprous oxide as a selective surfaceâ€enhanced Raman scattering sensor of dye adulteration in Chinese herbal medicines. Journal of Raman Spectroscopy, 2021, 52, 1265-1274.	1.2	12
228	Ameliorative effects of functional crude-chalaza hydrolysates on the hepatosteatosis development induced by a high-fat diet. Poultry Science, 2021, 100, 101009.	1.5	4
229	Food-Derived Bioactive Peptides with Antioxidative Capacity, Xanthine Oxidase and Tyrosinase Inhibitory Activity. Processes, 2021, 9, 747.	1.3	22
230	King Boletus mushroomâ€derived bioactive protein hydrolysate: characterisation, antioxidant, ACE inhibitory and cytotoxic activities. International Journal of Food Science and Technology, 2022, 57, 1399-1410.	1.3	11
231	Radioprotective effects of Cryptosporidium parvum lysates on normal cells. International Journal of Biological Macromolecules, 2021, 178, 121-135.	3.6	3
232	Pearl Powder—An Emerging Material for Biomedical Applications: A Review. Materials, 2021, 14, 2797.	1.3	11
233	A comprehensive review of oyster peptides: Preparation, characterisation and bioactivities. Reviews in Aquaculture, 2022, 14, 120-138.	4.6	29
234	Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. International Journal of Biological Macromolecules, 2021, 180, 161-176.	3.6	28
235	An arginine aminopeptidase from marine <i>Bacillus axarquiensis</i> SWJSX8 and its application in improving pumpkin seed protein hydrolysis. International Journal of Food Science and Technology, 2021, 56, 4680-4689.	1.3	2
236	The antioxidant activity of protein fractions from Sacha inchi seeds after a simulated gastrointestinal digestion. LWT - Food Science and Technology, 2021, 145, 111356.	2.5	19
237	Characterization and identification of novel anti-inflammatory peptides from Baijiao sea bass (Lateolabrax maculatus). LWT - Food Science and Technology, 2021, 147, 111521.	2.5	11
238	Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. Food Bioscience, 2021, 42, 101144.	2.0	10
239	Collagen-Based Bioactive Bromelain Hydrolysate from Salt-Cured Cod Skin. Applied Sciences (Switzerland), 2021, 11, 8538.	1.3	13
240	Zwitterionic polymer modified xanthan gum with collagen II-binding capability for lubrication improvement and ROS scavenging. Carbohydrate Polymers, 2021, 274, 118672.	5.1	17

#	Article	IF	CITATIONS
241	Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chemistry, 2022, 366, 130711.	4.2	44
243	Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. International Journal of Peptide Research and Therapeutics, 2021, 27, 219-227.	0.9	22
244	Valorization and IntegralÂUse of SeafoodÂBy-Products. Contemporary Food Engineering, 2013, , 367-412.	0.2	2
246	Effect of Solvents on the Antioxidant Activity of Walnut (<i>Juglans) Tj ETQq1 1 0.784314</i>	rgBT /Ove 0.1	erlock 10 TE 25
247	Free Radical Scavenging Properties and Induction of Apoptotic Effects of FA Fraction Obtained after Proteolysis of Bioactive Peptides from Microalgae Synechococcus sp. VDW. Food Technology and Biotechnology, 2019, 57, 358-368.	0.9	18
248	PROPIEDADES BIOLÓGICAS DE PÉPTIDOS DERIVADOS DEL COLÃGENO DE ORGANISMOS MARINOS. Biotecnia 2015, 15, 34.	^{a,} 0.1	4
249	Antioxidant and Antimicrobial Activity of Protein Hydrolysate Prepared From Tilapia Fish Waste by Enzymatic Treatment. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2891-2899.	0.0	3
250	Antioxidative Peptides: Trends and Perspectives for Future Research. Current Medicinal Chemistry, 2013, 20, 4575-4594.	1.2	40
251	Fermentation Time and Extraction Solvents Influenced in vitro Antioxidant Property of Soluble Extracts of Mao-tofu Fermented with Mucor sp Biotechnology, 2010, 10, 60-69.	0.5	13
252	Preparation of Antioxidative Peptides from Spanish Mackerel (Scomberomorus niphonius) Processing Byproducts by Enzymatic Hydrolysis. Biotechnology, 2015, 14, 188-193.	0.5	7
253	Synthesis, Spectral, Anti-Liver Cancer and Free Radical Scavenging Activity of New Azabicyclic Thienoyl Hydrazone Derivatives. Open Journal of Medicinal Chemistry, 2015, 05, 33-47.	0.7	1
254	Antioxidant Activity of Pepsin Hydrolysate Derived from Edible Hippocampus abdominalis in vitro and in Zebrafish Models. Han'guk Susan Hakhoe Chi = Bulletin of the Korean Fisheries Society, 2016, 49, 445-453.	0.1	4
255	Antioxidant Activity of Porcine Skin Gelatin Hydrolyzed by Pepsin and Pancreatin. Korean Journal for Food Science of Animal Resources, 2013, 33, 493-500.	1.5	11
256	Antioxidant activity of SSeCAHK in HepG2 cells: a selenopeptide identified from selenium-enriched soybean protein hydrolysates. RSC Advances, 2021, 11, 33872-33882.	1.7	5
257	Myocardial glycogen is increased in sedentary rats fed milk whey protein digests when brought to exhaustion. African Journal of Biotechnology, 2012, 11, .	0.3	2
258	Peptides of marine animals as a potential source of natural antioxidants. Izvestiya Tinro, 2017, 189, 192-203.	0.2	1
259	Rice milk fortification using calcium hydroxyl phosphate nanoparticles and hydrolyzed peanut protein fractions. Egyptian Journal of Chemistry, 2019, .	0.1	0
260	Enzymes-dependent antioxidant activity of sweet apricot kernel protein hydrolysates. LWT - Food Science and Technology, 2022, 154, 112825.	2.5	19

#	Article	IF	CITATIONS
261	The Bioactivity Prediction of Peptides from Tuna Skin Collagen Using Integrated Method Combining In Vitro and In Silico. Foods, 2021, 10, 2739.	1.9	9
262	Structure-function relationship of small peptides generated during the ripening of Spanish dry-cured ham: Peptidome, molecular stability and computational modelling. Food Chemistry, 2022, 375, 131673.	4.2	14
263	Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. Journal of Food Science, 2021, 86, 5107-5119.	1.5	2
264	Bioactivity of peptides obtained from poultry by-products: A review. Food Chemistry: X, 2022, 13, 100181.	1.8	20
265	Seafood nutraceuticals: Health benefits and functional properties. , 2022, , 109-139.		1
266	Optimization of Enzymatic Hydrolysis of Perilla Meal Protein for Hydrolysate with High Hydrolysis Degree and Antioxidant Activity. Molecules, 2022, 27, 1079.	1.7	7
267	Effect of willow herb (<i>Epilobium angustifolium</i> L.) extract addition to canned meat with reduced amount of nitrite on the antioxidant and other activities of peptides. Food and Function, 2022, 13, 3526-3539.	2.1	4
268	Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes. Scientific Reports, 2022, 12, 2799.	1.6	11
269	Purification and Characterization of Novel Antioxidative Peptides From Duck Liver Protein Hydrolysate as Well as Their Cytoprotection Against Oxidative Stress in HepG2 Cells. Frontiers in Nutrition, 2022, 9, 848289.	1.6	4
270	Extraction optimization and screening of antioxidant peptides from grass carp meat and synergistic–antagonistic effect. Food Science and Nutrition, 2022, 10, 1481-1493.	1.5	7
271	Health benefits of bioactive peptides produced from muscle proteins: Antioxidant, anti-cancer, and anti-diabetic activities. Process Biochemistry, 2022, 116, 116-125.	1.8	21
272	Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Research International, 2022, 157, 111310.	2.9	16
273	Impacts of pH and Base Substitution during Deaerator Treatments of Herring Milt Hydrolysate on the Odorous Content and the Antioxidant Activity. Foods, 2022, 11, 1829.	1.9	0
274	Bioactive Peptides and Its Alternative Processes: A Review. Biotechnology and Bioprocess Engineering, 2022, 27, 306-335.	1.4	9
275	Development and enhancement of antioxidant peptides from spontaneous plaa-som fermentation co-stimulated with Chiangrai Phulae pineapple enzymatic reaction. , 2022, 29, 406-415.		2
276	Prolyl oligopeptidase inhibition and cellular antioxidant activities of a corn gluten meal hydrolysate. Cereal Chemistry, 0, , .	1.1	1
277	Peptide profiles and antioxidant capacity of extensive hydrolysates of milk protein concentrate. Journal of Dairy Science, 2022, 105, 7972-7985.	1.4	11
278	In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model. Food Hydrocolloids for Health, 2022, 2, 100083.	1.6	12

#	Article	IF	CITATIONS
279	Separation and Purification of Antioxidant Peptide from Fermented Whey Protein by Lactobacillus rhamnosus B2-1. Food Science of Animal Resources, 2023, 43, 10-24.	1.7	3
280	Cellular antioxidant and emulsifying activities of fucoidan extracted from <i>Nizamuddinia zanardinii</i> using different green extraction methods. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
281	Antiradical properties of peptides from hydrobionts. Izvestiya Tinro, 2022, 202, 692-705.	0.2	0
282	ldentification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Marine Drugs, 2023, 21, 90.	2.2	6
283	Marine fish-derived proteins and peptides as potential antioxidants. , 2023, , 221-232.		0
284	Physical and oxidative stability of fish oil-in-water emulsions stabilized with emulsifier peptides derived from seaweed, methanotrophic bacteria and potato proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131069.	2.3	4
287	A review of bioactive peptides as functional food ingredients: mechanisms of action and their applications in active packaging and food quality improvement. Food and Function, 2023, 14, 5835-5857.	2.1	3
291	Conversion of fish processing waste to value-added commodities: a waste to wealth strategies for greening of the environment. , 2023, , 421-466.		0