Isolation of the sweet components from Siraitia grosver

Food Chemistry 107, 1022-1028

DOI: 10.1016/j.foodchem.2007.09.014

Citation Report

#	Article	IF	CITATIONS
1	Current awareness in flavour and fragrance. Flavour and Fragrance Journal, 2008, 23, 202-211.	2.6	0
2	Subcritical water extraction of mannitol from olive leaves. Journal of Food Engineering, 2009, 93, 474-481.	5.2	70
3	Isolation and Purification of Kaempferol-3,7-O- \hat{l}_{\pm} -L-Dirhamnopyranoside from Siraitia grosvenori Leaves by High-Speed Counter-Current Chromatograph and Its Free Radical Scavenging Activity. Separation Science and Technology, 2011, 46, 1528-1533.	2.5	9
4	Development of a Process for Separation of Mogroside V from Siraitia grosvenorii by Macroporous Resins. Molecules, 2011, 16, 7288-7301.	3.8	12
5	An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics, 2011, 12, 343.	2.8	151
7	Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angewandte Chemie - International Edition, 2011, 50, 2220-2242.	13.8	146
8	A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 2011, 172, 1-17.	12.7	269
9	Supercritical fluid extraction from vegetable materials. Reviews in Chemical Engineering, 2011, 27, .	4.4	80
10	Optimization of Extraction Conditions of Active Constituents from Siraitia Grosvenorii. Advanced Materials Research, 0, 291-294, 2523-2528.	0.3	3
11	Extraction of Mogroside and Limonin with Different Extraction Methods and its Modeling. International Journal of Food Engineering, 2012, 8, .	1.5	6
12	Processing of Siraitia grosvenori' leaves: Extraction of antioxidant substances. Biomass and Bioenergy, 2012, 36, 419-426.	5.7	7
13	Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Food Composition and Analysis, 2012, 25, 142-148.	3.9	32
14	Sweeteners from plantsâ€"with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry, 2013, 405, 4397-4407.	3.7	121
15	Analysis of Mogroside V in <i>Siraitia grosvenorii</i> with Micelleâ€mediated Cloudâ€Point Extraction. Phytochemical Analysis, 2013, 24, 381-385.	2.4	9
16	Cucurbitane Glycosides Derived from Mogroside IIE: Structure-Taste Relationships, Antioxidant Activity, and Acute Toxicity. Molecules, 2014, 19, 12676-12689.	3.8	22
17	Biotechnological production of natural zero-calorie sweeteners. Current Opinion in Biotechnology, 2014, 26, 155-161.	6.6	84
18	Additional New Minor Cucurbitane Glycosides from Siraitia grosvenorii. Molecules, 2014, 19, 3669-3680.	3.8	14
19	Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant and Cell Physiology, 2015, 56, 1172-1182.	3.1	76

#	ARTICLE	IF	CITATIONS
20	Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 418-430.	2.8	52
21	Analysis of Volatile Compounds from Siraitia grosvenorii by Headspace Solid-Phase Microextraction and Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Journal of Chromatographic Science, 2015, 53, 1-7.	1.4	8
22	Effect of YH0618 soup on chemotherapy-induced toxicity in patients with cancer who have completed chemotherapy: study protocol for a randomized controlled trial. Trials, 2016, 17, 354.	1.6	4
23	Liquid chromatography with tandem mass spectrometry method for the simultaneous determination of multiple sweet mogrosides in the fruits of <i>Siraitia grosvenorii </i> Journal of Separation Science, 2016, 39, 4124-4135.	2.5	18
24	In vitro AMPK activating effect and in vivo pharmacokinetics of mogroside V, a cucurbitane-type triterpenoid from Siraitia grosvenorii fruits. RSC Advances, 2016, 6, 7034-7041.	3.6	22
25	Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from <i>Siraitia grosvenorii </i> . Plant and Cell Physiology, 2016, 57, 1000-1007.	3.1	42
26	Systematic identification of flavonols, flavonol glycosides, triterpene and siraitic acid glycosides from Siraitia grosvenorii using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with a screening strategy. Journal of Pharmaceutical and Biomedical Analysis, 2017, 138, 240-248.	2.8	44
27	Cucurbitane Glucosides from the Crude Extract of <i>Siraitia grosvenorii</i> with Moderate Effects on PGC-1α Promoter Activity. Journal of Natural Products, 2017, 80, 1428-1435.	3.0	17
28	Development and Validation of a Sensitive LC–MS-MS Method for Quantification of Mogrol in Rat Plasma and Application to Pharmacokinetic Study. Journal of Chromatographic Science, 2017, 55, 284-290.	1.4	4
29	Developmental, chemical and transcriptional characteristics of artificially pollinated and hormone-induced parthenocarpic fruits of Siraitia grosvenorii. RSC Advances, 2017, 7, 12419-12428.	3.6	11
30	Chemical and antioxidant properties of functional compounds extracted from Siraitia grosvenorii by subcritical water. Acta Alimentaria, 2017, 46, 162-171.	0.7	3
31	Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes. Frontiers in Plant Science, 2017, 8, 1886.	3.6	103
32	Environment-Friendly Techniques for Extraction of Bioactive Compounds From Fruits., 2017,, 21-47.		2
33	Biotransformation of Mogrosides. Reference Series in Phytochemistry, 2018, , 153-165.	0.4	2
34	The complete chloroplast genome of Siraitia grosvenorii. Mitochondrial DNA Part B: Resources, 2019, 4, 1718-1719.	0.4	0
35	Identification of a Novel Specific Cucurbitadienol Synthase Allele in Siraitia grosvenorii Correlates with High Catalytic Efficiency. Molecules, 2019, 24, 627.	3.8	8
36	Effects of Forchlorfenuron on the Morphology, Metabolite Accumulation, and Transcriptional Responses of Siraitia grosvenorii Fruit. Molecules, 2019, 24, 4076.	3.8	7
37	Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in < i> Saccharomyces cerevisiae < /i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 147-157.	3.0	14

3

#	Article	IF	CITATIONS
38	Biosynthesis of Triterpenoid Natural Products. , 2020, , 577-612.		8
39	Ultrasound-assisted extraction for simultaneous quantitation of potential sweetening compounds from Derris reticulata aqueous extracts: a response surface methodology approach. Journal of Food Measurement and Characterization, 2021, 15, 2251-2263.	3. 2	2
40	Introduction, adaptation and characterization of monk fruit (Siraitia grosvenorii): a non-caloric new natural sweetener. Scientific Reports, 2021, 11, 6205.	3.3	14
41	Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases. Phytochemistry, 2021, 189, 112824.	2.9	6
42	Modulation of Gut Microbiota Composition and Short-Chain Fatty Acid Synthesis by Mogroside V in an <i>In Vitro</i> Incubation System. ACS Omega, 2021, 6, 25486-25496.	3 . 5	7
43	Mogroside V protects porcine oocytes from in vitro ageing by reducing oxidative stress through SIRT1 upregulation. Aging, 2019, 11, 8362-8373.	3.1	32
44	Biotransformation of Mogrosides. Reference Series in Phytochemistry, 2017, , 1-13.	0.4	0
45	Research progress on extraction technology and biomedical function of natural sugar substitutes. Frontiers in Nutrition, 0, 9, .	3.7	6
46	Phylogeographic analysis of <i>Siraitia grosvenorii</i> in subtropical China provides insights into the origin of cultivated monk fruit and conservation of genetic resources. Ecology and Evolution, 2023, 13, .	1.9	2
47	A review of the state of sweeteners science: the natural <i>versus</i> artificial non-caloric sweeteners debate. <i>Stevia rebaudiana</i> and <i>Siraitia grosvenorii</i> into the spotlight. Critical Reviews in Biotechnology, 0, , 1-23.	9.0	0
48	Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. Journal of Agricultural and Food Chemistry, 0, , .	5. 2	0