Temperature decreases in an urban canyon due to green climates

Building and Environment 43, 480-493

DOI: 10.1016/j.buildenv.2006.10.055

Citation Report

#	Article	IF	CITATIONS
1	Urban Heat Island and its Impact on Building Energy Consumption. Advances in Building Energy Research, 2009, 3, 261-270.	1.1	63
2	Theoretical and experimental analysis of the thermal behaviour of a green roof system installed in two residential buildings in Athens, Greece. International Journal of Energy Research, 2009, 33, 1059-1069.	2.2	63
3	Reducing the acoustical façade load from road traffic with green roofs. Building and Environment, 2009, 44, 1081-1087.	3.0	165
4	Analysis of urban heat island effect using an improved CTTC and STTC model. Transactions of Tianjin University, 2009, 15, 201-205.	3.3	0
5	Energy simulation of vertical greenery systems. Energy and Buildings, 2009, 41, 1401-1408.	3.1	198
6	Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 2009, 83, 1211-1223.	2.9	87
7	The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, 2009, 92, 179-186.	3.4	357
8	Urban environments and ecosystem functions. , 2010, , 35-52.		26
9	Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: Findings from a field study in Hyderabad, India. Building and Environment, 2010, 45, 519-536.	3.0	113
10	Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 2010, 45, 663-672.	3.0	436
11	Approaches to study Urban Heat Island – Abilities and limitations. Building and Environment, 2010, 45, 2192-2201.	3.0	533
12	A novel approach to enhance outdoor air quality: Pedestrian ventilation system. Building and Environment, 2010, 45, 1582-1593.	3.0	51
13	Thermal performance of a vegetated cladding system on facade walls. Building and Environment, 2010, 45, 1779-1787.	3.0	190
14	Green roof energy and water related performance in the Mediterranean climate. Building and Environment, 2010, 45, 1890-1904.	3.0	286
15	A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building and Environment, 2010, 45, 2798-2807.	3.0	91
16	Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions. PLoS ONE, 2010, 5, e9677.	1.1	263
17	Advanced building materials and eco-building design. , 2010, , 505-532.		0
18	Perception Studies of Vertical Greenery Systems in Singapore. Journal of the Urban Planning and Development Division, ASCE, 2010, 136, 330-338.	0.8	82

#	Article	IF	CITATIONS
19	Quantifying Thermal Impacts of Green Infrastructure: Review and Gaps. Proceedings of the Water Environment Federation, 2010, 2010, 69-77.	0.0	10
20	The New Water Paradigm, human capabilities and strong sustainability. International Journal of Water, 2010, 5, 429.	0.1	6
21	Scaling of Economic Benefits from Green Roof Implementation in Washington, DC. Environmental Science & Technology, 2010, 44, 4302-4308.	4.6	98
22	Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 2010, 97, 147-155.	3.4	1,784
23	Green roofs for a wide brown land: Opportunities and barriers for rooftop greening in Australia. Urban Forestry and Urban Greening, 2010, 9, 245-251.	2.3	215
24	Is Ivy Good or Bad for Historic Walls?. Journal of Architectural Conservation, 2011, 17, 25-41.	0.1	27
25	The Green Area Ratio: an urban site sustainability metric. Journal of Environmental Planning and Management, 2011, 54, 937-958.	2.4	47
26	The role of Green Roofs on Reducing Heating and Cooling Loads: A Database across Chinese Climates. Procedia Environmental Sciences, 2011, 11, 604-610.	1.3	14
27	Mapping Green Spaces in Bishkek—How Reliable can Spatial Analysis Be?. Remote Sensing, 2011, 3, 1088-1103.	1.8	32
28	Comparative life cycle analysis for green façades and living wall systems. Energy and Buildings, 2011, 43, 3419-3429.	3.1	253
29	Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 2011, 159, 2119-2126.	3.7	537
30	Modeling impacts of roof reflectivity, integrated photovoltaic panels and green roof systems on sensible heat flux into the urban environment. Building and Environment, 2011, 46, 2542-2551.	3.0	166
31	Salt tolerance of common green roof and green wall plants. Urban Ecosystems, 2011, 14, 783-794.	1.1	12
32	A street thermal environment study in summer by the mobile transect technique. Theoretical and Applied Climatology, 2011, 106, 433-442.	1.3	56
33	Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Building and Environment, 2011, 46, 1174-1183.	3.0	96
34	Climate change in urban areas. Part 2, Measures. Environmental Sciences Europe, 2011, 23, .	11.0	20
35	The influence of trees and grass on outdoor thermal comfort in a hotâ€arid environment. International Journal of Climatology, 2011, 31, 1498-1506.	1.5	350
36	In-situ measurements of sound propagating over extensive green roofs. Building and Environment, 2011, 46, 729-738.	3.0	112

#	Article	IF	CITATIONS
37	Estimating heat flux transmission of vertical greenery ecosystem. Ecological Engineering, 2011, 37, 1112-1122.	1.6	100
38	Evaluating thermal effects of internal courtyard in a tropical terrace house by computational simulation. Energy and Buildings, 2011, 43, 887-893.	3.1	87
39	Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy and Buildings, 2011, 43, 1712-1722.	3.1	121
40	Analysis of convective heat and mass transfer at the vertical walls of a street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 424-433.	1.7	24
41	Study on Surface Heat Budget of Various Pavements for Urban Heat Island Mitigation. Advances in Materials Science and Engineering, 2012, 2012, 1-11.	1.0	74
42	The role of green roof technology in urban agriculture. Renewable Agriculture and Food Systems, 2012, 27, 314-322.	0.8	97
43	Numerical simulation of greening effects for idealised roofs with regional climate forcing. Meteorologische Zeitschrift, 2012, 21, 173-181.	0.5	9
44	Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective. Sustainability, 2012, 4, 1309-1328.	1.6	42
45	Evaluating the role of vegetation on the ventilation performance in isolated deep street canyons. International Journal of Environment and Pollution, 2012, 50, 98.	0.2	24
46	The domestic garden – Its contribution to urban green infrastructure. Urban Forestry and Urban Greening, 2012, 11, 129-137.	2.3	411
47	Public versus private incentives to invest in green roofs: A cost benefit analysis for Flanders. Urban Forestry and Urban Greening, 2012, 11, 417-425.	2.3	73
48	Exploring the building energy impacts of green roof design decisions – a modeling study of buildings in four distinct climates. Journal of Building Physics, 2012, 35, 372-391.	1.2	119
49	Economic and Environmental Evaluation Model for Selecting the Optimum Design of Green Roof Systems in Elementary Schools. Environmental Science & Technology, 2012, 46, 8475-8483.	4.6	76
50	Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resources, Conservation and Recycling, 2012, 64, 49-55.	5.3	62
51	Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material. Applied Energy, 2012, 97, 347-354.	5.1	66
52	Effects of building roof greening on air quality in street canyons. Atmospheric Environment, 2012, 61, 48-55.	1.9	126
53	Coupled CFD, radiation and porous media transport model for evaluating evaporative cooling in an urban environment. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106, 455-463.	1.7	48
54	Green Facades as a New Sustainable Approach Towards Climate Change. Energy Procedia, 2012, 18, 507-520.	1.8	103

#	Article	IF	CITATIONS
55	Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecological Engineering, 2012, 49, 270-276.	1.6	120
56	Green roofs as passive system for energy savings when using rubber crumbs as drainage layer. Energy Procedia, 2012, 30, 452-460.	1.8	20
57	Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 2012, 1, 197-228.	1.3	265
58	Energy-efficient envelope design for high-rise residential buildings in Malaysia. Architectural Science Review, 2012, 55, 119-127.	1.1	31
59	The Integration of Vegetation in Architecture, Vertical and Horizontal Greened Surfaces. International Journal of Biology, 2012, 4, .	0.1	20
60	Climate Change on the Urban Scale $\hat{a} \in \mathbb{C}$ Effects and Counter-Measures in Central Europe. , 0, , .		8
61	THE FLORA OF URBAN RIVER WALLSCAPES. River Research and Applications, 2012, 28, 1200-1216.	0.7	14
62	A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 2012, 47, 256-271.	3.0	655
63	Use of rubber crumbs as drainage layer in experimental green roofs. Building and Environment, 2012, 48, 101-106.	3.0	42
64	Acoustic effects of green roof systems on a low-profiled structure at street level. Building and Environment, 2012, 50, 44-55.	3.0	87
65	Characterization of green roof components: Measurements of thermal and hydrological properties. Building and Environment, 2012, 56, 78-85.	3.0	82
66	Indoor thermal condition in urban heat Island – Development of a predictive tool. Building and Environment, 2012, 57, 7-17.	3.0	52
67	A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 2012, 43, 157-164.	4.3	378
68	A review of urban energy system models: Approaches, challenges and opportunities. Renewable and Sustainable Energy Reviews, 2012, 16, 3847-3866.	8.2	456
69	Potential benefits of plant diversity on vegetated roofs: A literature review. Journal of Environmental Management, 2012, 106, 85-92.	3.8	163
70	Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Sustainability Science, 2012, 7, 95-107.	2.5	117
71	From the â€`urban heat island' to the â€`green island'? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat International, 2013, 39, 25-35.	2.3	98
72	Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosystems, 2013, 16, 741-761.	1.1	171

#	Article	IF	CITATIONS
73	A new heat sensitivity index for settlement areas. Urban Climate, 2013, 6, 63-81.	2.4	19
74	Quiet environment: Acoustics of vertical green wall systems of the Islamic urban form. Frontiers of Architectural Research, 2013, 2, 162-177.	1.3	40
75	Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. Journal of Integrative Agriculture, 2013, 12, 1307-1315.	1.7	174
76	Impact of different green roof layering on plant water status and drought survival. Ecological Engineering, 2013, 57, 188-196.	1.6	49
77	Assessing the stability of annual temperatures for different urban functional zones. Building and Environment, 2013, 65, 90-98.	3.0	63
78	Multiparametric model of urban park cooling island. Urban Forestry and Urban Greening, 2013, 12, 220-229.	2.3	79
79	Retrofitting with vegetation recent building heritage applying a design tool—the case study of a school building. Frontiers of Architectural Research, 2013, 2, 267-277.	1.3	17
80	Cost–benefit analysis for green façades and living wall systems. Building and Environment, 2013, 70, 110-121.	3.0	249
81	The potential of building envelope greening to achieve quietness. Building and Environment, 2013, 61, 34-44.	3.0	142
82	Impact of Vertical Greenery System on Internal Building Corridors in the Tropic. Procedia, Social and Behavioral Sciences, 2013, 105, 558-568.	0.5	29
83	An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, 2013, 61, 298-307.	3.1	149
84	Hydrometeorological determinants of green roof performance via a vertically-resolved model for heat and water transport. Building and Environment, 2013, 60, 211-224.	3.0	91
85	Development and application of a building energy performance metric for green roof systems. Energy and Buildings, 2013, 60, 262-269.	3.1	66
86	A review of energy aspects of green roofs. Renewable and Sustainable Energy Reviews, 2013, 23, 155-168.	8.2	227
87	Vertical greening systems, a process tree for green façades and living walls. Urban Ecosystems, 2013, 16, 265-277.	1.1	113
88	Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a Mediterranean coastal climate. Energy and Buildings, 2013, 63, 1-14.	3.1	91
89	REVIEW: Managing urban ecosystems for goods and services. Journal of Applied Ecology, 2013, 50, 830-840.	1.9	135
90	Alternatives to Sedum on green roofs: Can broad leaf perennial plants offer better â€~cooling service'?. Building and Environment, 2013, 59, 99-106.	3.0	129

#	Article	IF	CITATIONS
91	Watering our cities. Progress in Physical Geography, 2013, 37, 2-28.	1.4	297
93	Rethinking urban areas: an example of an integrated blue-green approach. Water Science and Technology: Water Supply, 2013, 13, 1534-1542.	1.0	53
94	Relationship between indoor environmental quality and building envelopes covered by plants: a review of the literature. International Journal of Environment and Sustainable Development, 2013, 12, 361.	0.2	0
95	Visualization-Based Decision Tool for Urban Meteorological Modeling. Environment and Planning B: Planning and Design, 2013, 40, 271-288.	1.7	10
97	CONTRIBUTION OF GREEN ROOFS AND GREEN WALLS TO ECOSYSTEM SERVICES OF URBAN GREEN. Acta Horticulturae, 2013, , 475-480.	0.1	10
98	A Multimethodology Contractor Assessment Model for Facilitating Green Innovation: The View of Energy and Environmental Protection. Scientific World Journal, The, 2013, 2013, 1-14.	0.8	15
99	Investigation of thermal benefits of an extensive green roof in Istanbul climate. Scientific Research and Essays, 2013, 8, 623-632.	0.1	6
100	Second Generation Ethanol from Residual Biomass: Research and Perspectives in Ecuador. , 0, , .		2
101	The Retrofit of Existing Buildings Through the Exploitation of the Green Roofs – A Simulation Study. Energy Procedia, 2014, 62, 52-61.	1.8	33
102	Development of prototype system for monitoring and computing greenhouse gases with Unmanned Aerial Vehicle (UAV) deployment. , 2014, , .		2
103	Simulation Analysis of Building Green Facade Eco-Effect. Applied Mechanics and Materials, 0, 548-549, 1701-1705.	0.2	7
104	Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity. Frontiers in Plant Science, 2014, 5, 517.	1.7	5
105	The Effects of Trees on Micrometeorology in a Medium-Size Mediterranean City: In Situ Experiments and Numerical Simulations. , 2014, , .		1
106	Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Building and Environment, 2014, 77, 61-76.	3.0	52
107	Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning, 2014, 125, 146-155.	3.4	118
108	Plant trait analysis delivers an extensive list of potential green roof species for Mediterranean France. Ecological Engineering, 2014, 67, 48-59.	1.6	59
109	Urban vegetation structure types as a methodological approach for identifying ecosystem services – Application to the analysis of micro-climatic effects. Ecological Indicators, 2014, 42, 58-72.	2.6	126
110	A combined experimental and simulation method for appraising the energy performance of green roofs in Ningbo's Chinese climate. Building Simulation, 2014, 7, 13-20.	3.0	10

#	Article	IF	CITATIONS
111	On the colours and properties of building surface materials to mitigate urban heat islands in highly productive solar regions. Building and Environment, 2014, 72, 162-172.	3.0	52
112	Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy and Buildings, 2014, 68, 25-32.	3.1	88
113	Emergy based evaluation of environmental performances of Living Wall and Grass Wall systems. Energy and Buildings, 2014, 73, 200-211.	3.1	56
114	State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, 2014, 115, 411-428.	5.1	562
115	Support for the integration of green roof constructions within Chinese building energy performance policies. Energy, 2014, 65, 71-79.	4.5	18
116	A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Building and Environment, 2014, 73, 187-197.	3.0	95
117	Comparative assessment of various heat island mitigation measures. Building and Environment, 2014, 73, 162-170.	3.0	64
118	Experimental characterization and implementation of an integrated autoregressive model to predict the the thermal performance of vegetal façades. Energy and Buildings, 2014, 72, 309-321.	3.1	19
119	Environmental performance of recycled rubber as drainage layer in extensive green roofs. A comparative Life Cycle Assessment. Building and Environment, 2014, 74, 22-30.	3.0	72
120	Experimental study on reduced heat gain through green façades in a high heat load climate. Energy and Buildings, 2014, 82, 668-674.	3.1	78
121	Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes. Resources, Conservation and Recycling, 2014, 91, 71-81.	5.3	22
122	Life cycle assessment (LCA) of green fa $ ilde{A}$ sades and living wall systems. , 2014, , 457-483.		12
123	Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 2014, 146, 107-115.	3.8	585
124	Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews, 2014, 39, 139-165.	8.2	291
125	Colonization of green roof plants by mycorrhizal and root endophytic fungi. Ecological Engineering, 2014, 71, 651-659.	1.6	41
126	A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 2014, 40, 450-462.	8.2	136
127	Comfort and energy savings with active green roofs. Energy and Buildings, 2014, 82, 492-504.	3.1	138
128	Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Building and Environment, 2014, 77, 88-100.	3.0	161

#	Article	IF	CITATIONS
129	Green roofs as passive system for energy savings in buildings during the cooling period: use of rubber crumbs as drainage layer. Energy Efficiency, 2014, 7, 841-849.	1.3	34
130	Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landscape and Urban Planning, 2014, 127, 52-64.	3.4	121
131	Lifecycle assessment of living walls: air purification and energy performance. Journal of Cleaner Production, 2014, 69, 91-99.	4.6	104
132	The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Building and Environment, 2014, 76, 113-124.	3.0	103
133	Quantifying the thermal performance of green façades: A critical review. Ecological Engineering, 2014, 63, 102-113.	1.6	182
134	Coupled CFD, radiation and porous media model for evaluating the micro-climate in an urban environment. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128, 1-11.	1.7	37
135	Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry and Urban Greening, 2014, 13, 495-506.	2.3	349
136	The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 2014, 121, 129-140.	3.4	202
137	Effectiveness of an ivy covering at insulating a building against the cold in Manchester, U.K: A preliminary investigation. Building and Environment, 2014, 80, 32-35.	3.0	52
138	Developing resilient green roofs in a dry climate. Science of the Total Environment, 2014, 490, 579-589.	3.9	31
139	Urban vegetation for reducing heat related mortality. Environmental Pollution, 2014, 192, 275-284.	3.7	94
140	Peak Electric Load Relief in Northern Manhattan. SAGE Open, 2014, 4, 215824401454648.	0.8	1
141	Numerical Evaluation of the Local Weather Data Impacts on Cooling Energy Use of Buildings in an Urban Area. Procedia Engineering, 2015, 121, 381-388.	1.2	16
142	A Conceptual Framework for Assessment of Urban Energy Resilience. Energy Procedia, 2015, 75, 2904-2909.	1.8	36
143	Does the spatial arrangement of urban landscape matter? examples of urban warming and cooling in phoenix and las vegas. Ecosystem Health and Sustainability, 2015, 1, 1-15.	1.5	93
144	Evaluation of road traffic noise abatement by vegetation treatment in a 1:10 urban scale model. Journal of the Acoustical Society of America, 2015, 138, 3884-3895.	0.5	38
145	Green Infrastructure. , O, , .		37
146	Characterization of human thermal comfort in urban areas of brazilian semiarid. Revista Brasileira De Meteorologia, 2015, 30, 371-380.	0.2	12

#	Article	IF	CITATIONS
147	Dynamic Simulation of the Green Roofs Impact on Building Energy Performance, Case Study of Antananarivo, Madagascar. Buildings, 2015, 5, 497-520.	1.4	32
148	Evaluation of Different Urban Microclimate Mitigation Strategies through a PMV Analysis. Sustainability, 2015, 7, 9012-9030.	1.6	65
149	Experimental Heat Transfer Study on Green Roofs in a Semiarid Climate during Summer. Journal of Construction Engineering, 2015, 2015, 1-15.	0.9	24
150	Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climates. Modern Applied Science, 2015, 9, 208.	0.4	5
151	Climates and Microclimates: Challenges for Extensive Green Roof Design in Hot Climates. Ecological Studies, 2015, , 63-80.	0.4	11
153	Building neighborhood emerging properties and their impacts on multi-scale modeling of building energy and airflows. Building and Environment, 2015, 91, 246-262.	3.0	77
154	Plant cover and floristic composition effect on thermal behaviour ofÂextensive green roofs. Building and Environment, 2015, 92, 305-316.	3.0	79
155	Biophilic urbanism: contributions to holistic urban greening for urban renewal. Smart and Sustainable Built Environment, 2015, 4, 215-233.	2.2	39
156	Cooling performance of residential greenery in localised urban climates: a case study in Shanghai China. International Journal of Environmental Technology and Management, 2015, 18, 478.	0.1	4
157	Green infrastructure as life support: urban nature and climate change. Transactions of the Royal Society of South Australia, 2015, 139, 97-112.	0.1	46
158	Vertical Greening Systems and Sustainable Cities. Journal of Urban Technology, 2015, 22, 65-85.	2.5	119
159	The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic and Applied Ecology, 2015, 16, 189-201.	1.2	320
160	Greenwall classification and critical design-management assessments. Ecological Engineering, 2015, 77, 348-362.	1.6	53
161	Further Development of the Regional Boundary Layer Model to Study the Impacts of Greenery on the Urban Thermal Environment. Journal of Applied Meteorology and Climatology, 2015, 54, 137-152.	0.6	18
162	Using natural means to reduce surface transport noise during propagation outdoors. Applied Acoustics, 2015, 92, 86-101.	1.7	139
163	Plant Functional Traits Predict Green Roof Ecosystem Services. Environmental Science & Technology, 2015, 49, 2366-2374.	4.6	69
164	Scale-model method for measuring noise reduction in residential buildings by vegetation. Building and Environment, 2015, 86, 81-88.	3.0	43
165	The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 2015, 45, 610-623.	8.2	245

#	Article	IF	CITATIONS
166	Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs. Renewable Energy, 2015, 80, 595-603.	4.3	71
167	Thermal performance of climber greenwalls: Effects of solar irradiance and orientation. Applied Energy, 2015, 154, 631-643.	5.1	87
168	How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 2015, 99, 32-49.	3.1	159
169	Residents' understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landscape and Urban Planning, 2015, 138, 132-143.	3.4	95
170	Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons. International Journal of Low-Carbon Technologies, 2015, 10, 34-44.	1.2	55
171	Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban Ecosystems, 2015, 18, 13-29.	1.1	50
172	Modeling the influence of fountain on urban microclimate. Building Simulation, 2015, 8, 285-295.	3.0	13
173	Local urban warming, possible impacts and a resilience plan to climate change for the historical center of Athens, Greece. Sustainable Cities and Society, 2015, 19, 281-291.	5.1	46
174	Effect of urban neighborhoods on the performance of building cooling systems. Building and Environment, 2015, 90, 15-29.	3.0	65
175	A multi-criteria methodology for comparing the energy and environmental behavior of cool, green and traditional roofs. Building and Environment, 2015, 90, 71-81.	3.0	117
176	Modeling double skin green façades with traditional thermal simulation software. Solar Energy, 2015, 121, 56-67.	2.9	66
177	Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls. Energy, 2015, 90, 926-938.	4.5	15
178	Balancing water demand reduction and rainfall runoff minimisation: modelling green roofs, rainwater harvesting and greywater reuse systems. Water Science and Technology: Water Supply, 2015, 15, 248-255.	1.0	15
179	Green roofs in Mediterranean areas – Survey and maintenance planning. Building and Environment, 2015, 94, 131-143.	3.0	31
180	Detecting Temporal Changes in Riyadh's Urban Heat Island. Papers in Applied Geography, 2015, 1, 312-325.	0.8	13
181	CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Building and Environment, 2015, 83, 11-26.	3.0	157
182	Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment, 2015, 83, 39-49.	3.0	208
183	Living wall systems: evaluating life-cycle energy, water and carbon impacts. Urban Ecosystems, 2015, 18, 1-11.	1.1	29

#	Article	IF	CITATIONS
184	Overview of challenges and achievements in the climate adaptation of cities and in the Climate Proof Cities program. Building and Environment, 2015, 83, 1-10.	3.0	55
186	Numerical study of the impact of vegetation coverings on sound levels and time decays in a canyon street model. Science of the Total Environment, 2015, 502, 22-30.	3.9	20
187	Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, 2015, 41, 863-871.	8.2	380
188	Façade integrated photobioreactors for building energy efficiency. , 2016, , 237-299.		15
189	Diurnal changes in urban boundary layer environment induced by urban greening. Environmental Research Letters, 2016, 11, 114018.	2.2	31
190	Urban Green Infrastructure Impacts on Climate Regulation Services in Sydney, Australia. Sustainability, 2016, 8, 788.	1.6	36
191	The Energy Impact in Buildings of Vegetative Solutions for Extensive Green Roofs in Temperate Climates. Buildings, 2016, 6, 33.	1.4	13
192	Direct and Indirect Impacts of Vegetation on Building Comfort: A Comparative Study of Lawns, Green Walls and Green Roofs. Energies, 2016, 9, 32.	1.6	26
193	Quantifying the City's Green Area Potential Gain Using Remote Sensing Data. Sustainability, 2016, 8, 1247.	1.6	39
194	Enhancing quality of life through the lens of green spaces: A systematic review approach. International Journal of Wellbeing, 2016, 6, 142-163.	1.5	70
195	Impacts of inâ€canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: numerical investigation using a coupled <scp>WRFâ€VUCM</scp> model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2562-2578.	1.0	31
197	Research on Characteristic Analysis of Urban Heat Island in Multi-scales and Urban Planning Strategies. Procedia Engineering, 2016, 169, 175-182.	1.2	3
198	Stormwater performance of a full scale rooftop farm: Runoff water quality. Ecological Engineering, 2016, 91, 195-206.	1.6	29
199	The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings, 2016, 127, 56-65.	3.1	27
200	Principles and criteria for assessing urban energy resilience: A literature review. Renewable and Sustainable Energy Reviews, 2016, 60, 1654-1677.	8.2	323
201	Thermal analysis of a new modular system for green walls. Journal of Building Engineering, 2016, 7, 53-62.	1.6	49
202	Sowing Seeds in the City. , 2016, , .		4
203	Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio, 2016, 45, 442-457.	2.8	70

	Сітатіоі	n Report	
# 204	ARTICLE Sustainable Water Management in Green Roofs. Handbook of Environmental Chemistry, 2016, , 167-207.	IF 0.2	CITATIONS
204	Real-time temperature monitoring for Traditional gravel ballasted and Extensive green roofs: A Lebanese case study. Energy and Buildings, 2016, 133, 197-205.	3.1	1
206	Potential of green infrastructure to restore predevelopment water budget of a semi-arid urban catchment. Journal of Hydrology, 2016, 542, 744-755.	2.3	54
207	Is greening the building envelope economically sustainable? An analysis to evaluate the advantages of economy of scope of vertical greening systems and green roofs. Urban Forestry and Urban Greening, 2016, 20, 328-337.	2.3	60
208	Effects of building–roof cooling on the flow and dispersion of reactive pollutants in an idealized urban street canyon. Building and Environment, 2016, 109, 175-189.	3.0	25
209	Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 2016, 133, 834-842.	3.1	337
210	Behavior and evolution of sustainable organic substrates in a vertical garden. Ecological Engineering, 2016, 93, 129-134.	1.6	9
211	Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustainable Cities and Society, 2016, 26, 318-343.	5.1	244
213	Green roofs: what can we learn from desert plants?. Israel Journal of Ecology and Evolution, 2016, 62, 58-67.	0.2	14
214	Effect of substrate depth and roof layers on green roof temperature and water requirements in a semi-arid climate. Ecological Engineering, 2016, 97, 624-632.	1.6	42
215	Demonstrating the Use of Below-Substrate Water Storage as a Means of Maintaining Green Roofs—Performance Data and a Novel Approach to Achieve Public Understanding. , 2016, , .		6
216	The adoption of green roofs for the retrofitting of existing buildings in the Mediterranean climate. International Journal of Sustainable Building Technology and Urban Development, 2016, 7, 116-129.	1.0	41
217	Is urban green space per capita a valuable target to achieve cities' sustainability goals? Romania as a case study. Ecological Indicators, 2016, 70, 53-66.	2.6	141
218	Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society, 2016, 26, 27-47.	5.1	106
219	The Effect of Green Facades in Landscape Ecology. Procedia Environmental Sciences, 2016, 34, 119-130.	1.3	27
220	Post-positivist microclimatic urban design research: A review. Landscape and Urban Planning, 2016, 153, 111-121.	3.4	30
221	Composition, distribution and habitat effects of vascular plants on the vertical surfaces of an ancient city wall. Urban Ecosystems, 2016, 19, 939-948.	1.1	7
222	Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy and Buildings, 2016, 114, 247-255.	3.1	137

#	Article	IF	Citations
223	Innovation in Climate Change Adaptation. Climate Change Management, 2016, , .	0.6	3
224	The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 2016, 121, 217-229.	3.1	235
225	Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany. Environmental Impact Assessment Review, 2016, 59, 27-42.	4.4	42
226	Traditional and Innovative Materials for Energy Efficiency in Buildings. Key Engineering Materials, 0, 678, 14-34.	0.4	19
227	Influence of ambient air relative humidity and temperature on thermal properties and unsteady thermal response characteristics of laterite wall houses. Building and Environment, 2016, 99, 170-183.	3.0	33
228	Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region. Building and Environment, 2016, 97, 34-39.	3.0	110
229	The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry and Urban Greening, 2016, 15, 89-102.	2.3	142
230	Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 2016, 114, 265-274.	3.1	314
231	Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Building and Environment, 2016, 96, 293-300.	3.0	72
232	Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renewable Energy, 2016, 85, 1106-1115.	4.3	157
233	Daytime and nighttime urban heat islands statistical models for Atlanta. Environment and Planning B: Urban Analytics and City Science, 2017, 44, 308-327.	1.0	26
234	A new model of urban cooling demand and heat island—application to vertical greenery systems (VGS). Energy and Buildings, 2017, 157, 204-217.	3.1	49
235	An investigation for predicting the effect of green roof utilization on temperature decreasing over the roof surface with Gene Expression Programming. Energy and Buildings, 2017, 139, 254-262.	3.1	8
236	Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017, 192, 178-200.	5.1	65
237	Review on the roles and effects of growing media on plant performance in green roofs in world climates. Urban Forestry and Urban Greening, 2017, 23, 13-26.	2.3	58
238	Cooling effect of direct green façades during hot summer days: An observational study in Nanjing, China using TIR and 3DPC data. Building and Environment, 2017, 116, 195-206.	3.0	55
239	The effects of vegetation on indoor thermal comfort: The application of a multi-scale simulation methodology on a residential neighborhood renovation case study. Energy and Buildings, 2017, 146, 1-11.	3.1	37
240	Microclimatic effects of planted hydroponic structures in urban environment: measurements and simulations. International Journal of Biometeorology, 2017, 61, 943-956.	1.3	23

#	Article	IF	CITATIONS
241	Influence of vegetation, substrate, and thermal insulation of an extensive vegetated roof on the thermal performance of retail stores in semiarid and marine climates. Energy and Buildings, 2017, 146, 312-321.	3.1	49
242	A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 2017, 32, 513-522.	5.1	67
243	Investigation on the cooling performance of a green roof with a radiant cooling system. Energy and Buildings, 2017, 149, 26-37.	3.1	21
244	An experimental method to quantitatively analyse the effect of thermal insulation thickness on the summer performance of a vertical green wall. Energy and Buildings, 2017, 150, 132-148.	3.1	33
245	Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern mediterranean climate. Energy and Buildings, 2017, 150, 318-327.	3.1	103
246	Green façades and in situ measurements of outdoor building thermal behaviour. Building and Environment, 2017, 119, 11-19.	3.0	44
247	A hygrothermal green roof model to simulate moisture and energy performance of building components. Energy and Buildings, 2017, 145, 79-91.	3.1	33
248	The climatic dependencies of urban ecosystem services from green roofs: Threshold effects and non-linearity. Ecosystem Services, 2017, 24, 223-233.	2.3	21
249	The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy and Buildings, 2017, 143, 35-42.	3.1	86
250	Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Building and Environment, 2017, 112, 177-189.	3.0	86
251	Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy and Buildings, 2017, 138, 47-59.	3.1	94
252	The influence of small green space type and structure at the street level on urban heat island mitigation. Urban Forestry and Urban Greening, 2017, 21, 203-212.	2.3	159
254	Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia. Applied Geography, 2017, 89, 52-60.	1.7	41
255	Thermal performance of vertical greening system on the building façade: A review. AIP Conference Proceedings, 2017, , .	0.3	3
256	The health benefits of nature-based solutions to urbanization challenges for children and the elderly – A systematic review. Environmental Research, 2017, 159, 362-373.	3.7	238
257	On the green adaptation of urban developments in Egypt; predicting community future energy efficiency using coupled outdoor-indoor simulations. Energy and Buildings, 2017, 153, 241-261.	3.1	41
258	Vertical greening systems – A review on recent technologies and research advancement. Building and Environment, 2017, 125, 227-239.	3.0	136
259	Comparative experimental approach to investigate the thermal behaviour of vertical greened façades of buildings. Ecological Engineering, 2017, 108, 152-161.	1.6	49

#	Article	IF	CITATIONS
260	Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions, 2017, , .	1.9	228
261	Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation. Theory and Practice of Urban Sustainability Transitions, 2017, , 15-27.	1.9	39
262	Assessing the Cooling Effects of Different Vegetation Settings in a Hong Kong Golf Course. Procedia Environmental Sciences, 2017, 37, 626-636.	1.3	18
263	Numerical and experimental study of sensitivity factors on heat island of residence community. Environmental Fluid Mechanics, 2017, 17, 1189-1205.	0.7	3
264	Seasonal variability of temperature profiles of vegetative and traditional gravel-ballasted roofs: A case study for Lebanon. Energy and Buildings, 2017, 151, 358-364.	3.1	10
265	Energy performance analysis of a dormitory building based on different orientations and seasonal variations of leaf area index. Energy Efficiency, 2017, 10, 887-903.	1.3	21
266	Prediction of temperature decreasing on a green roof by using artificial neural network. Applied Thermal Engineering, 2017, 112, 1317-1325.	3.0	25
267	Do green roofs cool the air?. Building and Environment, 2017, 111, 249-255.	3.0	84
268	Thermal behaviour assessment of a novel vertical greenery module system: first results of a long-term monitoring campaign in an outdoor test cell. Energy Efficiency, 2017, 10, 625-638.	1.3	50
269	Thermal regulation impact of green walls: An experimental and numerical investigation. Applied Energy, 2017, 194, 247-254.	5.1	110
270	Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy and Buildings, 2017, 135, 324-337.	3.1	28
271	Thermal performance investigation of a living wall in a dry climate of Australia. Building and Environment, 2017, 112, 45-62.	3.0	45
272	Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 2017, 62, 131-145.	2.7	231
273	Green wall impacts inside and outside buildings: experimental study. Energy Procedia, 2017, 139, 578-583.	1.8	18
274	Simulated study on the potential of building energy saving using the green roof. Procedia Engineering, 2017, 205, 1469-1476.	1.2	9
275	Thermal Comfort Level Assessment in Urban Area of Petrolina-PE County, Brazil. Revista Brasileira De Meteorologia, 2017, 32, 555-563.	0.2	3
276	Deduction of Optimum Surface Design Factors for Enhancement of Outdoor Thermal Environment in a Micro-Scale Unit. Sustainability, 2017, 9, 1381.	1.6	6
277	Applications of SuDS Techniques in Harvesting Stormwater for Landscape Irrigation Purposes: Issues and Considerations. , 2017, , .		2

#	Article	IF	CITATIONS
278	The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea. Sustainability, 2017, 9, 1443.	1.6	7
279	Measurement of Thermal Properties of Growing Media for Green Roofs: Assessment of a Laboratory Procedure and Experimental Results. Buildings, 2017, 7, 99.	1.4	10
280	Techo plantado como dispositivo de climatización pasiva en el trópico. Revista De Arquitectura, 2017, 19, 50-64.	0.1	2
281	Thermal Environment Simulation of an East-West Street in Taipei. International Review for Spatial Planning and Sustainable Development, 2017, 5, 89-100.	0.6	4
282	Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 2018, 24, 94-110.	2.4	146
283	Urban Ecosystems and Biodiversity. , 0, , 257-318.		9
284	Life cycle analysis of a new modular greening system. Science of the Total Environment, 2018, 627, 1146-1153.	3.9	42
285	Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry and Urban Greening, 2018, 29, 212-222.	2.3	105
286	Impact of plants occultation on energy balance: Experimental study. Energy and Buildings, 2018, 162, 208-218.	3.1	16
287	Green walls: a sustainable approach to climate change, a case study of London. Architectural Science Review, 2018, 61, 48-57.	1.1	24
288	Effects of green roofs' variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban Forestry and Urban Greening, 2018, 29, 223-237.	2.3	48
289	Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 2018, 90, 757-773.	8.2	415
290	Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Engineering, 2018, 212, 691-698.	1.2	49
291	Daytime thermal performance of different urban surfaces: a case study in educational institution precinct of Melbourne. Architectural Science Review, 2018, 61, 29-47.	1.1	11
292	Thermal inertia assessment of an experimental extensive green roof in summer conditions. Building and Environment, 2018, 131, 264-276.	3.0	48
293	Green roof ageing or Isolatic Technosol's pedogenesis?. Journal of Soils and Sediments, 2018, 18, 418-425.	1.5	21
294	Role of watering practices in large-scale urban planning strategies to face the heat-wave risk in future climate. Urban Climate, 2018, 23, 287-308.	2.4	50
295	A numerical study of reactive pollutant dispersion in street canyons with green roofs. Building Simulation, 2018, 11, 125-138.	3.0	21

ARTICLE IF CITATIONS # Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, 296 1.3 87 Tanzania. International Journal of Biometeorology, 2018, 62, 373-385. Comparing reduction of building cooling load through green roofs and green walls by EnergyPlus 39 simulations. Building Simulation, 2018, 11, 421-434 Parametric study of the influence of environmental factors and tree properties on the transpirative 298 1.9 79 cooling effect of trees. Agricultural and Forest Meteorology, 2018, 248, 259-274. A Study on the Flow Characteristics and Quality Control of Lightweight Foamed Magnesia Composite Using Śuper Absorbent Polymers as Base Material for Biological Panels. Key Engineering Materials, O, 789, 176-181. Study on the Leaves Densities as Parameter for Effectiveness of Energy Transfer on the Green Facade. 300 1.4 14 Buildings, 2018, 8, 138. Vertical greenery systems: A systematic review of research trends. Building and Environment, 2018, 3.0 146, 226-237. Green roofs and facades: A comprehensive review. Renewable and Sustainable Energy Reviews, 2018, 82, 302 8.2 349 915-939. A Case-Study of Green Roof Monitoring: The Building of Council for Agricultural Research and Economics in Bagheria, (Italy)., 2018, , . A critical review of heat and mass transfer in vegetative roof models used in building energy and 304 5.1 36 urban environment simulation tools. Applied Energy, 2018, 232, 752-764. A Numerical Study of the Temperature Reduction by Water Spray Systems within Urban Street Canyons. 1.6 Sustainability, 2018, 10, 1190 Attenuating heat stress through green roof and green wall retrofit. Building and Environment, 2018, 306 3.061 140, 11-22. Active green wall plant health tolerance to diesel smoke exposure. Environmental Pollution, 2018, 240, 448-456. 308 Green Wall Systems: A Literature Review. Lecture Notes in Civil Engineering, 2018, , 82-96. 0.3 6 Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. 309 3.1 Energy and Buildings, 2018, 173, 150-162. Measuring thermal conductivity of green-walls components in controlled conditions. Journal of 310 22 1.6 Building Engineering, 2018, 19, 258-265. Economic Benefits and Costs of Vertical Greening Systems., 2018,, 291-306. Vertical Greening Systems to Enhance the Thermal Performance of Buildings and Outdoor Comfort., 312 10 2018, , 99-108. Life Cycle Assessment of Vertical Greening Systems., 2018,, 333-340.

#	Article	IF	CITATIONS
314	Effects of Urban Heat Island mitigation in various climate zones in the United States. Sustainable Cities and Society, 2018, 41, 841-852.	5.1	51
315	Introduction to Urban Sustainability Issues. , 2018, , 3-15.		3
316	Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. Journal of Building Engineering, 2018, 20, 277-284.	1.6	56
317	Gardener Well-Being along Social and Biophysical Landscape Gradients. Sustainability, 2018, 10, 96.	1.6	29
318	A holistic approach to assess the exploitation of renewable energy sources for design interventions in the early design phases. Energy and Buildings, 2018, 175, 235-256.	3.1	25
319	Orientation effect on thermal and energy performance of vertical greenery systems. Energy and Buildings, 2018, 175, 102-112.	3.1	37
320	Construction and design requirements of green buildings' roofs in Saudi Arabia depending on thermal conductivity principle. Construction and Building Materials, 2018, 186, 1119-1131.	3.2	28
321	The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban Forestry and Urban Greening, 2018, 34, 1-9.	2.3	66
322	A bibliometric review of green building research 2000–2016. Architectural Science Review, 2019, 62, 74-88.	1.1	196
323	Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban Forestry and Urban Greening, 2019, 44, 126391.	2.3	37
324	Problems and benefits of using green roofs in Poland. IOP Conference Series: Earth and Environmental Science, 2019, 214, 012076.	0.2	6
325	Evidence of the Climate Mitigation Effect of Green Roofs—A 20-Year Weather Study on an Extensive Green Roof (EGR) in Northeast Germany. Buildings, 2019, 9, 157.	1.4	24
326	The impact of greenery systems on building energy: Systematic review. Journal of Building Engineering, 2019, 26, 100887.	1.6	26
327	Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Climate, 2019, 29, 100503.	2.4	20
328	Physical and Non-Physical Benefits of Vertical Greenery Systems: A Review. Journal of Urban Technology, 2019, 26, 53-78.	2.5	30
329	Reviews and syntheses: influences of landscape structure and land uses on local to regional climate and air quality. Biogeosciences, 2019, 16, 2369-2408.	1.3	22
330	Parametric simulation study for green roof retrofit over high performance solar house prototype "EFdeN Signatureâ€: E3S Web of Conferences, 2019, 111, 04012.	0.2	0
331	Multi-criteria and multiscale assessment of building envelope response-ability to rising heat waves. Sustainable Cities and Society, 2019, 51, 101755.	5.1	14

#	Article	IF	CITATIONS
333	Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study. Sustainability, 2019, 11, 4921.	1.6	18
334	Hydro-meteorological risk assessment methods and management by nature-based solutions. Science of the Total Environment, 2019, 696, 133936.	3.9	76
335	Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability, 2019, 11, 4579.	1.6	106
336	Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates. International Journal of Environmental Research and Public Health, 2019, 16, 179.	1.2	47
337	A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 2019, 661, 337-353.	3.9	405
338	Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin. Urban Science, 2019, 3, 57.	1.1	12
339	The Evaluation of Outdoor Thermal Sensation and Outdoor Energy Efficiency of a Commercial Pedestrianized Zone. Energies, 2019, 12, 1324.	1.6	10
340	Green roof retrofitting of a lightweight security booth under subtropical conditions. Urban Forestry and Urban Greening, 2019, 43, 126361.	2.3	1
341	A review of the role of urban agriculture in the sustainable city discourse. Cities, 2019, 93, 104-119.	2.7	119
342	Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Building Simulation, 2019, 12, 973-984.	3.0	40
343	Living concrete: Democratizing living walls. Science of the Total Environment, 2019, 673, 281-295.	3.9	19
344	Design of alkali-activated materials for a modular green wall and green roof system. MATEC Web of Conferences, 2019, 274, 04001.	0.1	0
345	Sound Absorption by Green Walls at Normal Incidence: Physical Analysis and Optimization. Acta Acustica United With Acustica, 2019, 105, 301-312.	0.8	14
346	Green infrastructure optimization to achieve pre-development conditions of a semiarid urban catchment. Environmental Science: Water Research and Technology, 2019, 5, 1157-1171.	1.2	17
347	Effects of vegetation on soundscape of an urban religious precinct: Case study of Myeong-dong cathedral in Seoul. Building and Environment, 2019, 155, 389-398.	3.0	10
348	Suitability of wetland macrophyte in green cooling tower performance. Ecological Engineering, 2019, 127, 487-493.	1.6	3
349	Green Networks as a Key of Urban Planning with Thermal Comfort and Well-being. Cities and Nature, 2019, , 97-109.	0.6	1
350	A Review of Local-Level Land Use Planning and Design Policy for Urban Heat Island Mitigation. Journal of Extreme Events, 2019, 06, 2050002.	1.2	10

#	ARTICLE Nature-Based Solutions in Tourism: A Review of the Literature and Conceptualization. Journal of	IF	CITATIONS
351 352	Hospitality and Tourism Research, 2019, , 109634801989005. Bioclimatic Approach: Thermal Environment. Design Science and Innovation, 2019, , 243-278.	1.8	20
302		0.1	1
353	Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic. Climatic Change, 2019, 152, 487-502.	1.7	31
354	Promoting Citizens' Quality of Life Through Green Urban Planning. Communications in Computer and Information Science, 2019, , 153-175.	0.4	3
355	Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter. Energy and Buildings, 2019, 183, 105-117.	3.1	49
356	The study on outdoor pedestrian thermal comfort in blocks: A case study of the Dao He Old Block in hot-summer and cold-winter area of southern China. Solar Energy, 2019, 179, 210-225.	2.9	35
357	Transitional path to the adoption of nature-based solutions. Land Use Policy, 2019, 80, 406-409.	2.5	93
358	The Role of Green Roofs and Living Walls as WSUD Approaches in a Dry Climate. , 2019, , 409-430.		3
359	Measurement, normalisation and mapping of urban-scale wind environment in Xi'an, China. Indoor and Built Environment, 2019, 28, 1171-1180.	1.5	15
360	Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry and Urban Greening, 2019, 37, 42-55.	2.3	78
361	Building in Hot and Humid Regions. , 2020, , .		3
362	Energy Efficiency and Conservation Consideration for the Design of Buildings for Hot and Humid Regions. , 2020, , 107-135.		0
363	Building envelope integrated green plants for energy saving. Energy Exploration and Exploitation, 2020, 38, 222-234.	1.1	23
364	Post-apartheid ecologies in the City of Cape Town: An examination of plant functional traits in relation to urban gradients. Landscape and Urban Planning, 2020, 193, 103662.	3.4	14
365	Ontology-based knowledge representation of urban heat island mitigation strategies. Sustainable Cities and Society, 2020, 52, 101875.	5.1	32
366	Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 2020, 167, 106424.	3.0	61
367	Social dilemmas, policy instruments, and climate adaptation measures: the case of green roofs. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 625-642.	1.0	6
368	An exploration of green roofs for indoor and exterior temperature regulation in the South African interior. Environment, Development and Sustainability, 2020, 22, 5025-5044.	2.7	4

#	Article	IF	CITATIONS
369	Green Roofs as a Response to a Number of Modern City Problems. Advances in Intelligent Systems and Computing, 2020, , 137-145.	0.5	0
370	The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 2020, 31, 100574.	2.4	40
371	Effects of plant density and cutting-type on rooting and growth of an extensive green roof of Sedum sediforme (Jacq.) Pau in a Mediterranean environment. Scientia Horticulturae, 2020, 262, 109091.	1.7	6
372	A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment, 2020, 711, 134731.	3.9	168
373	Green roof heat and mass transfer mathematical models: A review. Building and Environment, 2020, 170, 106634.	3.0	18
374	Impact of plants obscuration on energy balance: Theoretical and numerical study. Journal of Building Engineering, 2020, 29, 101112.	1.6	5
375	Cooling effects of block-scale facade greening and their relationship with urban form. Building and Environment, 2020, 169, 106552.	3.0	55
376	Evaluating the potential of nature-based solutions to reduce ozone, nitrogen dioxide, and carbon dioxide through a multi-type green infrastructure study in Ontario, Canada. City and Environment Interactions, 2020, 6, 100043.	1.8	30
377	Planning for Older People in a Rapidly Warming and Ageing World: The Role of Urban Greening. Urban Policy and Research, 2020, 38, 199-212.	0.8	12
378	Microclimate and urban morphology effects on building energy demand in different European cities. Energy and Buildings, 2020, 224, 110129.	3.1	47
379	Biophilic streets: a design framework for creating multiple urban benefits. Sustainable Earth, 2020, 3, .	1.3	20
380	Analysis of potential benefits on flood mitigation of a CAM green roof in Mediterranean urban areas. Building and Environment, 2020, 183, 107179.	3.0	24
381	Social Perception of Living Walls in Quito: A Study of Four Vertical Gardens. IOP Conference Series: Earth and Environmental Science, 2020, 503, 012095.	0.2	3
382	Planning for cooler cities: A framework to support the selection of urban heat mitigation techniques. Journal of Cleaner Production, 2020, 275, 122903.	4.6	30
383	Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 2020, 12, 10000.	1.6	28
384	Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water (Switzerland), 2020, 12, 3577.	1.2	51
385	Modern Tropical House: Elevating Traditional Tropical House on Thermal Building Performance Due To Environmental Issue. Journal of Physics: Conference Series, 2020, 1569, 042023.	0.3	0
386	Research on the Influence of Vertical Green of Envelope Structure on Indoor Thermal Environment——A study of Zhengzhou city. IOP Conference Series: Earth and Environmental Science, 2020, 608, 012025.	0.2	1

ARTICLE

IF CITATIONS

A Novel Idea for Improving the Efficiency of Green Walls in Urban Environment (an Innovative Design) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

388	Awareness of urban climate adaptation strategies –an international overview. Urban Climate, 2020, 34, 100705.	2.4	33
389	Improving School Transition Spaces Microclimate to Make Them Liveable in Warm Climates. Applied Sciences (Switzerland), 2020, 10, 7648.	1.3	18
390	Energy savings of block-scale facade greening for different urban forms. Applied Energy, 2020, 279, 115844.	5.1	35
391	Urban Planning and Design for Building Neighborhood Resilience to Climate Change. Land, 2020, 9, 387.	1.2	7
392	Energy-saving potential of 3D printed concrete building with integrated living wall. Energy and Buildings, 2020, 222, 110110.	3.1	70
393	Effects of Extensive Green Roofs on Energy Performance of School Buildings in Four North American Climates. Water (Switzerland), 2020, 12, 6.	1.2	32
394	Passive cooling with a hybrid green roof for extreme climates. Energy and Buildings, 2020, 224, 110243.	3.1	19
395	Knowledge Management for Climate Change Adaptation to Enhance Urban Agriculture Among Selected Organisations in Zimbabwe. Journal of Information and Knowledge Management, 2020, 19, 2050009.	0.8	0
396	Using Chlorophyll a Fluorescence Imaging to Select Desiccation-Tolerant Native Moss Species for Water-Sustainable Green Roofs. Water (Switzerland), 2020, 12, 1748.	1.2	2
397	Reducing the Carbon Footprint of the Bucharest University of Economic Studies through Green Facades in an Economically Efficient Manner. Sustainability, 2020, 12, 3779.	1.6	8
398	Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability, 2020, 12, 150.	1.6	14
399	Green Systems Integrated to the Building Envelope: Strategies and Technical Solution for the Italian Case. Sustainability, 2020, 12, 4615.	1.6	6
400	Experiencing innovative biomaterials for buildings: Potentialities of mosses. Building and Environment, 2020, 172, 106708.	3.0	13
401	Green infrastructure quality and environmental sustainability in residential neighbourhoods in Lagos, Nigeria. International Journal of Urban Sustainable Development, 2020, 12, 267-282.	1.0	16
402	An experimental study of vertical greenery systems for window shading for energy saving in summer. Journal of Cleaner Production, 2020, 259, 120708.	4.6	34
403	Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190120.	1.8	686
404	Urban climate and environmental perception about climate change in Belém, ParÃį, Brazil. Urban Climate, 2020, 31, 100579.	2.4	19

#	Article	IF	CITATIONS
405	Modeling the effects of green alternative on heat island mitigation of a meso level town, West Bengal, India. Advances in Space Research, 2020, 65, 1789-1802.	1.2	27
406	Vertical gardens as a restorative tool in urban spaces of New Cairo. Ain Shams Engineering Journal, 2020, 11, 839-848.	3.5	32
407	Street canyon ventilation: Combined effect of crossâ€section geometry and wall heating. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2347-2367.	1.0	20
408	Urban Warming and Cities' Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies, 2020, 13, 1414.	1.6	45
409	A Survey of Multiple Interactions Between Plants and the Urban Environment. Frontiers in Forests and Global Change, 2020, 3, .	1.0	33
410	Outdoor thermal comfort assessment: A review on thermal comfort research in Australia. Building and Environment, 2020, 177, 106917.	3.0	60
411	Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis. Sustainability, 2020, 12, 2304.	1.6	16
412	Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 2021, 281, 116077.	5.1	40
413	Factors influencing residents' attitude towards urban green infrastructure in Lagos Metropolis, Nigeria. Environment, Development and Sustainability, 2021, 23, 6192-6214.	2.7	6
414	Investigation of single-storey residential green roof contribution to buildings energy demand reduction in different climate zones of Iran. International Journal of Green Energy, 2021, 18, 100-110.	2.1	11
415	Trends and gaps in global research of greenery systems through a bibliometric analysis. Sustainable Cities and Society, 2021, 65, 102608.	5.1	22
416	The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 2021, 274, 115898.	3.7	35
417	Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, 2021, 28, 3672-3693.	2.7	28
418	Greenery Systems for the Mitigation of the Urban Heat Island: A Simulation Experience for Southern Italy. Lecture Notes in Civil Engineering, 2021, , 427-438.	0.3	2
419	Nature-Based-Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-Benefits, and Trade-offs in a Geographical Multi-Scale Perspective. , 2021, , 1-52.		0
420	Green Walls as an Environmental Strategy. Advances in Geospatial Technologies Book Series, 2021, , 294-328.	0.1	1
421	Greening the Building Envelope. PoliTO Springer Series, 2021, , 401-414.	0.3	0
423	Green roofs as passive system to moderate building cooling requirements and UHI effects: Assessments by means of experimental data. , 2021, , 205-245.		1

#	Article	IF	CITATIONS
424	Supporting Climate Adaptation Measures in Small- to Medium-Sized Austrian Cities Using Climate Modelling. Advances in Science, Technology and Innovation, 2021, , 405-413.	0.2	0
425	Harnessing the Four Horsemen of Climate Change: A Framework for Deep Resilience, Decarbonization, and Planetary Health in Ontario, Canada. Sustainability, 2021, 13, 379.	1.6	14
426	Urban life and climate change. , 2021, , 453-462.		1
427	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective. , 2021, , 1-52.		0
428	Improving the Efficiency of Green Roofs Using Atmospheric Water Harvesting Systems (An Innovative) Tj ETQq0 (0 0 <u>rg</u> BT /0	Overlock 101

429	A Review of the Impacts and Opportunities for African Urban Dragonflies. Insects, 2021, 12, 190.	1.0	11
430	Impact of COVID-19-Related Traffic Slowdown on Urban Heat Characteristics. Atmosphere, 2021, 12, 243.	1.0	27
431	Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents. Sustainability, 2021, 13, 2245.	1.6	26
432	The initial study on implementation of vertical greenery in Malaysia. IOP Conference Series: Earth and Environmental Science, 2021, 685, 012017.	0.2	1
433	Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability, 2021, 13, 3138.	1.6	27
434	Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban Forestry and Urban Greening, 2021, 58, 126992.	2.3	87
435	Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Climate, 2021, 36, 100775.	2.4	30
436	Impact of urban heat island formation on energy consumption in Delhi. Urban Climate, 2021, 36, 100763.	2.4	31
437	Nature-based cooling potential: a multi-type green infrastructure evaluation in Toronto, Ontario, Canada. International Journal of Biometeorology, 2022, 66, 397-410.	1.3	15
438	Shady residency: Passive technologies through shading devices for some building styles to fix heat problem causes by climate change in a tropical area. IOP Conference Series: Materials Science and Engineering, 2021, 1098, 022029.	0.3	3
439	The effect of various urban design parameter in alleviating urban heat island and improving thermal health—a case study in a built pedestrianized block of China. Environmental Science and Pollution Research, 2021, 28, 38406-38425.	2.7	8
440	Effects of Different Urban-Vegetation Morphology on the Canopy-level Thermal Comfort and the Cooling Benefits of Shade Trees: Case-study in Philadelphia. Sustainable Cities and Society, 2021, 66, 102684.	5.1	36
441	The impact of vertical vegetation on thermal performance of high-rise office building facades in Mediterranean climate. Energy and Buildings, 2021, 236, 110761.	3.1	16

#	Article	IF	CITATIONS
442	Thermal-irradiant performance of green infrastructure typologies: Field measurement study in a subtropical climate city. Science of the Total Environment, 2021, 764, 144635.	3.9	19
443	Modelling the cooling energy saving potential of facade greening in summer for a set of building typologies in mid-latitudes. Energy and Buildings, 2021, 238, 110816.	3.1	19
444	The utilization of green roofs and walls "ecosystem services―as a strategy to mitigate climate change. IOP Conference Series: Materials Science and Engineering, 2021, 1148, 012003.	0.3	1
445	Unlocking the Residential Retrofitting Potential in a Three-Degree World: A Holistic Approach to Passive Design in Hot Climates. Buildings, 2021, 11, 228.	1.4	6
446	Simulating and Comparing Different Vertical Greenery Systems Grouped into Categories Using EnergyPlus. Applied Sciences (Switzerland), 2021, 11, 4802.	1.3	8
447	Effect of urban tree diversity and condition on surface temperature at the city block scale. Urban Forestry and Urban Greening, 2021, 60, 127069.	2.3	12
448	Evaluation of Thermal Comfort Performance of a Vertical Garden on a Glazed Façade and its Effect on Building and Urban Scale, Case Study: An Office Building in Barcelona. Sustainability, 2021, 13, 6706.	1.6	7
449	The seasonal microclimate trends of a large scale extensive green roof. Building and Environment, 2021, 197, 107792.	3.0	16
450	Perceptions on barriers and opportunities for integrating urban agri-green roofs: A European Mediterranean compact city case. Cities, 2021, 114, 103196.	2.7	18
451	The Perception of Green Facades and its Effects on Public Spaces' Users. Estudos Em Design, 2021, 29, .	0.1	0
452	Examination of vertical green facades and green roofs in terms of ecological criteria and evaluation of energy efficiency. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	0
453	Outdoor thermal performance of green roofs across multiple time scales: A case study in subtropical China. Sustainable Cities and Society, 2021, 70, 102909.	5.1	19
454	Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors. Water (Switzerland), 2021, 13, 1860.	1.2	11
455	The Vertical Greenery Systems Significant Role in Achieving Better Architectural and Urban Thermal Performance. (Dept. A). MEJ - Mansoura Engineering Journal, 2021, 46, 102-115.	0.0	1
456	Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 2021, 12, 1012.	1.0	7
457	Effects of biodiversity in green roofs and walls on the capture of fine particulate matter. Urban Forestry and Urban Greening, 2021, 63, 127229.	2.3	14
458	Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change. Sustainability, 2021, 13, 9053.	1.6	4
459	Deep Learningâ€Based Superâ€Resolution Climate Simulatorâ€Emulator Framework for Urban Heat Studies. Geophysical Research Letters, 2021, 48, e2021GL094737.	1.5	13

#	Article	IF	CITATIONS
460	Cooling ranges for urban heat mitigation: continuous cooling effects along the edges of small greenspaces. Landscape and Ecological Engineering, 0, , 1.	0.7	5
461	Potential Key Factors, Policies, and Barriers for Rooftop Agriculture in EU Cities: Barcelona, Berlin, Bologna, and Paris. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5
462	Modelling of vertical greenery system with selected tropical plants in urban context to appraise plant thermal performance. Ecological Indicators, 2021, 128, 107816.	2.6	7
463	Vertical greenery buffers against stress: Evidence from psychophysiological responses in virtual reality. Landscape and Urban Planning, 2021, 213, 104127.	3.4	29
464	Urban Overheating Impact: A Case Study on Building Energy Performance. Applied Sciences (Switzerland), 2021, 11, 8327.	1.3	4
465	Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 2021, 294, 112968.	3.8	11
466	Quantifying and mapping cooling services of multiple ecosystems. Sustainable Cities and Society, 2021, 73, 103123.	5.1	9
468	Ecosystem-based adaptation in cities: Use of formal and informal planning instruments. Land Use Policy, 2021, 109, 105722.	2.5	6
469	Resilient cooling strategies – A critical review and qualitative assessment. Energy and Buildings, 2021, 251, 111312.	3.1	68
470	A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Building and Environment, 2021, 205, 108190.	3.0	39
471	Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Building and Environment, 2021, 205, 108201.	3.0	17
472	A review on conventional passive cooling methods applicable to arid and warm climates considering economic cost and efficiency analysis in resource-based cities. Energy Reports, 2021, 7, 2784-2820.	2.5	40
473	Influence of green infrastructure on residents' self-perceived health benefits in Lagos metropolis, Nigeria. Cities, 2021, 118, 103378.	2.7	15
474	Toward cool cities and communities: A sensitivity analysis method to identify the key planning and design variables for urban heat mitigation techniques. Sustainable Cities and Society, 2021, 75, 103377.	5.1	25
475	Classification of the influence of urban canyon geometry and reflectance on seasonal solar irradiation in three European cities. Sustainable Cities and Society, 2021, 75, 103379.	5.1	11
476	Pervious Concrete for Green Walls. Journal of Architectural Engineering, 2021, 27, .	0.8	2
477	3D characterization of a Boston Ivy double-skin green building facade using a LiDAR system. Building and Environment, 2021, 206, 108320.	3.0	8
478	In situ experimental evaluation of a novel modular living wall system for industrial symbiosis. Energy and Buildings, 2021, 252, 111405.	3.1	5

		15	Cizizionia
#	ARTICLE Evaluation of the suppressive effects on solar radiation for a building façade covered with green	IF	CITATIONS
479	layers in the Kathmandu valley. Environmental Challenges, 2021, 5, 100246.	2.0	3
480	Compound environmental impact of urban mitigation strategies: Co-benefits, trade-offs, and unintended consequence. Sustainable Cities and Society, 2021, 75, 103284.	5.1	23
481	Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. Journal of Environmental Management, 2022, 301, 113750.	3.8	31
482	Envelopamento Vegetal em Cânions Urbanos. Revista De Morfologia Urbana, 2021, 9, .	0.1	0
483	Form, function, and nomenclature: Deconstructing green infrastructure and its role in a changing climate. , 2021, , 125-144.		3
484	Comparison of blue-green solutions for urban flood mitigation: A multi-city large-scale analysis. PLoS ONE, 2021, 16, e0246429.	1.1	20
485	Assessment of the Green Roofs Thermal Dynamic Behavior for Increasing the Building Energy Efficiencies. Smart Innovation, Systems and Technologies, 2017, , 37-59.	0.5	2
486	Assessing the Potential of Regulating Ecosystem Services as Nature-Based Solutions in Urban Areas. Theory and Practice of Urban Sustainability Transitions, 2017, , 139-158.	1.9	7
487	Sustainability of Living Wall Systems Through An Ecosystem Services Lens. Sustainable Development and Biodiversity, 2018, , 31-51.	1.4	4
488	Up on the Roof: Considerations for Food Production on Rooftops. , 2016, , 325-338.		5
489	Environmental Benefits of Green Roof to the Sustainable Urban Development: A Review. Lecture Notes in Civil Engineering, 2019, , 1525-1541.	0.3	16
490	Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria. Urban Climate, 2020, 31, 100582.	2.4	18
491	Urban heat stress mitigation potential of green walls: A review. Urban Forestry and Urban Greening, 2020, 55, 126843.	2.3	64
492	Caractérisation du fonctionnement thermo-hydrique <i>in situ</i> d'une toiture végétalisée extensive. Houille Blanche, 2013, , 62-69.	0.3	3
493	The Importance of Planning for Green Spaces. Agriculture Forestry and Fisheries, 2015, 4, 1.	0.2	6
494	A Framework for Planning Green Spaces in Rural South Africa. Agriculture Forestry and Fisheries, 2015, 4, 80.	0.2	3
495	Facade Greening: A Way to Attain Sustainable Built Environment. International Journal of Environmental Monitoring and Analysis, 2016, 4, 12.	0.2	3
496	Climate Change, Heat Waves and Thermal Comfort—Reflections on Housing Policy in India. Environment and Urbanization ASIA, 2020, 11, 29-50.	0.9	14

#	Article	IF	CITATIONS
497	Mitigating Urban Heat Island Through Green Roofs. Current World Environment Journal, 2015, 10, 918-927.	0.2	30
498	Conceptual Development of Cost Benefit Analysis based on Regional, Knowledge, and Economic Aspects of Green Building. International Journal of Technology, 2019, 10, 81.	0.4	6
499	Ecological impacts of replacing traditional roofs with green roofs in two urban areas. Cities and the Environment, 2008, 1, 1-17.	0.1	46
500	Architectural and urban design tools for reducing energy consumption in cities. Pollack Periodica, 2013, 8, 151-161.	0.2	5
502	Biodiversidad vegetal y ciudad: aproximaciones desde la ecologÃa urbana. Boletin De La Asociacion De Geografos Espanoles, 2015, , .	0.2	1
503	Acoustic Evaluation Of A New Modular System For Green Roofs And Green Walls. Architecture Civil Engineering Environment, 2017, 10, 99-108.	0.6	3
504	Review of Strategies for the Geometric Creation and Population of Urban Microclimate Models. The Open Urban Studies Journal, 2012, 5, 22-31.	0.2	3
505	Recent Trends and Remaining Limitations in Urban Microclimate Models. Open Urban Studies and Demography Journal, 2015, 1, 1-12.	1.3	10
506	Evaluating the Impact of Vertical Greenery System on Cooling Effect on High Rise Buildings and Surroundings: A Review. Ruas, 2011, 9, 1-9.	0.0	11
507	Thermal Comfort Characteristic of 5 Patterns of a Persian Garden in a Hot-Arid Climate of Shiraz, Iran. Journal of Landscape Ecology(Czech Republic), 2019, 12, 1-33.	0.2	2
508	Designing green façades and living wall systems for sustainable constructions. International Journal of Design and Nature and Ecodynamics, 2014, 9, 31-46.	0.3	15
509	A comprehensive lifecycle evaluation of vertical greenery systems based on systemic indicators. , 2014, , ,		5
510	Whole-building design for a green school building in Al-Ain, United Arab Emirates. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	3
511	ANALYSING THE RELATIONSHIPS BETWEEN LAND USE/LAND COVER AND URBAN LAND SURFACE TEMPERATURE USING REGRESSION TREE IN İZMİR. Lnternational Journal of Geography and Geography Education, 2020, , 280-291.	0.1	4
512	The Impact of Green Roofs on the Parameters of the Environment in Urban Areas—Review. Atmosphere, 2019, 10, 792.	1.0	33
513	A Parsimonious Framework of Evaluating WSUD Features in Urban Flood Mitigation. Journal of Environmental Informatics, 0, , .	6.0	8
514	Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors. IForest, 2018, 11, 140-147.	0.5	20
515	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109

#	Article	IF	CITATIONS
516	Potential Thermal Impacts of Internal Courtyard in Terrace Houses: A Case Study in Tropical Climate. Journal of Applied Sciences, 2008, 8, 2770-2775.	0.1	11
517	Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia. AIMS Environmental Science, 2015, 2, 648-667.	0.7	8
518	Impact of Climbing Plants on Buildings and Their Environment. Advances in Civil and Industrial Engineering Book Series, 2018, , 297-309.	0.2	1
519	Greening the building envelope, facade greening and living wall systems. Open Journal of Ecology, 2011, 01, 1-8.	0.4	116
521	Turning black into green: ecosystem services from treated wastewater. , 0, 91, 198-205.		4
522	A Multifactorial GIS-Based Analytical Method to Determine the Quality of Urban Green Space and Water Bodies. Urbani Izziv, 2015, 26, .	0.2	2
523	A Green Roof Test Bed for Stormwater Management and Reduction of Urban Heat Island Effect in Singapore. British Journal of Environment and Climate Change, 0, , 410-420.	0.3	26
524	Water Sensitive Cities: An Integrated Approach to Enhance Urban Flood Resilience in Parma (Northern) Tj ETQq1 1	0,78431 1.2	4 _d gBT /Ove
525	Simulation of the Urban Space Thermal Environment Based on Computational Fluid Dynamics: A Comprehensive Review. Sensors, 2021, 21, 6898.	2.1	14
526	Procedure for the selection and evaluation of prefabricated housing buildings for the implementation of green roofs in the context of Urban Heat Island mitigation. The example of WrocÅ,aw, Poland. PLoS ONE, 2021, 16, e0258641.	1.1	3
527	Thermal environment analysis of landscape parameters of an urban park in summer - A case study in Suwon, Republic of Korea. Urban Forestry and Urban Greening, 2021, 65, 127377.	2.3	13
528	Green Roofs, Ecological Functions. , 2012, , 4730-4754.		2
529	Improving Air-Conditionersâ \in $^{\mathrm{M}}$ Energy Efficiency Using Green Roof Plants. , O, , .		0
530	Green Roofs, Ecological Functions. , 2013, , 282-306.		3
531	INTERFERĂŠNCIA MICROCLIMĂTICA NA UTILIZAĂ‡ĂƒO DO TELHADO VERDE PARA REGIÕES TROPICAIS: ESTUDO DE CASO EM CUIABÕ MT. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2013, 9, .	0.0	0
532	Horticultural Science's Role in Meeting the Need of Urban Populations. , 2014, , 1047-1086.		2
533	Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons. Atmosphere, 2014, 24, 331-341.	0.3	2
534	Estimation of Annual Carbon Sequestration in Psophocarpus Tetragonobulus used as Biofacade in Tropical Environment. , 2014, , .		Ο

#	Article	IF	CITATIONS
535	Study Advances on Vertical Greenery System. , 2015, , .		0
537	Research on the Modular Living Walls System Based on Microclimate Adjustment in Severe Cold Areas of China. Environment and Ecology Research, 2015, 3, 132-135.	0.1	Ο
538	The CityTree: A Vertical Plant Filter for Enhanced Temperature Management. Climate Change Management, 2016, , 75-85.	0.6	1
539	Numerical Evaluation of the Impact of Green Wall on the Outdoor Thermal Environment. , 2016, , .		1
540	Yeşil çatı sistemlerinin su ve enerji dengesi açısından değerlendirilmesi. İstanbul Üniversitesi Ormar Fakültesi Dergisi, 2016, 66, .	¹ 0.1	2
541	Jardins verticais: modelos e técnicas. PARC: Pesquisa Em Arquitetura E Construção, 2016, 7, 114.	0.3	3
542	Urban Heat Mitigation Effect of Tree on Microscopic Scale. Journal of People Plants and Environment, 2016, 19, 305-315.	0.1	0
543	WPťW WYSOKOŚCI OPADÓW NA WIELKOŚĆ I SZYBKOŚĆ ODPťWU WÓD Z DACHÓW ZIELONYCH. Jo Civil Engineering, Environment and Architecture, 2017, , .	urnal of 0.0	Ο
544	Sustainability of stone materials in the built environment of rural regions: a review. Cadernos Do Laboratorio Xeoloxico De Laxe, 0, 39, 141-163.	0.0	1
545	Estado da arte do comportamento hidrológico de telhados verdes no brasil: uma revisão sistemática. PARC: Pesquisa Em Arquitetura E Construção, 2017, 8, 257-271.	0.3	1
546	Development and Characterization of Modular Ceramic and Metal Elements in Vertical Gardens and Ventilated FaA§ades in Buildings. Lecture Notes in Management and Industrial Engineering, 2019, , 189-202.	0.3	0
547	Raising awareness on environmental protection and improvement through student projects: A case study. Journal of Engineering Management and Competitiveness, 2019, 9, 14-24.	0.6	1
548	A Sustainable Green Façade Retrofit for An Iconic Built Structure: A Case Study at SAINTGITS. Lecture Notes in Civil Engineering, 2020, , 419-432.	0.3	1
549	VERTICAL TURF FOR GREEN FAÇADES: A VERTICAL GREENERY MODULAR SYSTEM INTEGRATED TO THE BUILDING ENVELOPE. Journal of Green Building, 2019, 14, 111-132.	0.4	1
550	Uso de sistemas modulares vegetados para promoção da saúde urbana e atenuação do estresse térmico. Saúde Em Debate, 2019, 43, 109-120.	0.1	1
551	Special issue in honour of Prof. Reto J. StrasserÂ-ÂCan we predict winter survival in plants using chlorophyll a fluorescence?. Photosynthetica, 2020, 58, 433-442.	0.9	1
552	Green Roofs: Ecological Functions of the Fifth Facade. , 2020, , 495-518.		0
553	Green Roofs: Ecological Functions of the Fifth Facade. , 2020, , 1-24.		0

#	Article	IF	CITATIONS
554	Examination of vertical green systems in educational buildings: a field study in Çukurova University. Journal of Design for Resilience in Architecture and Planning:, 2020, 1, 33-56.	0.1	1
555	Evaluation of the effect of land use / land cover and vegetation cover change on land surface temperature: The case of Aydın province. Turkish Journal of Forestry TA¼rkiye Ormancılık Dergisi, 0, , 489-497.	0.1	5
556	The impact of vertical greenery system on building thermal performance in tropical climates. Journal of Building Engineering, 2022, 45, 103429.	1.6	7
557	Analysis of the Realities, Evolution and Prospects of Urban Greening from an International Point of View. Amfiteatru Economic, 2020, 22, 137.	1.0	0
558	OPERATIONAL ENERGY SAVING IN BUILDINGS: A COMPARISON OF GREEN VS CONVENTIONAL WALL. , 2021, , .		0
559	Thermal performance of green façades: Review and analysis of published data. Renewable and Sustainable Energy Reviews, 2022, 155, 111744.	8.2	24
560	Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution. Sustainability, 2021, 13, 13231.	1.6	8
561	Global technological advancement and challenges of glazed window, facade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy and Built Environment, 2023, 4, 206-226.	2.9	39
562	A novel methodology to obtain ambient temperatures using multi-rotor UAV-mounted sensors. Urban Climate, 2022, 41, 101068.	2.4	5
563	Enabling Nature-Based Solutions to Build Back Better—An Environmental Regulatory Impact Analysis of Green Infrastructure in Ontario, Canada. Buildings, 2022, 12, 61.	1.4	9
564	Knowledge mapping of research progress in vertical greenery systems (VGS) from 2000 to 2021 using CiteSpace based scientometric analysis. Energy and Buildings, 2022, 256, 111768.	3.1	17
565	POTENTIAL URBAN DEVELOPMENT PARAMETERS THAT REDUCE ENERGY CONSUMPTION IN RESIDENTIAL AREA. Planning Malaysia, 2016, , .	0.2	2
566	THERMAL PERFORMANCE OF FELT TYPE VEGETATED FACADE SYSTEMS IN A TEMPERATE CLIMATE DURING HEATING AND COOLING PERIODS. Journal of Green Building, 2021, 16, 199-225.	0.4	2
567	Assessing climate risk to support urban forests in a changing climate. Plants People Planet, 2022, 4, 201-213.	1.6	13
568	Energy efficiency and de-carbonization improvements using court-yarded clustered housing with Compressed Earth Blocks' envelope. Energy Reports, 2022, 8, 365-371.	2.5	3
569	Assessing the environmental performance of plastic-based and felt-based green wall systems in a life-cycle perspective. Science of the Total Environment, 2022, 822, 153648.	3.9	7
571	Climate Change Hastening Heatwaves: A Pakistan Scenario. , 2022, , 103-116.		3
572	Outdoor Comfort Analysis in a University Campus During the Warm Season and Parametric Design of Mitigation Strategies for Resilient Urban Environments. Communications in Computer and Information Science, 2022, , 473-493.	0.4	0

#	Article	IF	CITATIONS
573	Influência térmica da fachada verde no ambiente interno. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022005.	0.3	1
574	Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method. Sustainability, 2022, 14, 2077.	1.6	5
575	Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land, 2022, 11, 343.	1.2	6
576	Coupling the TEB and Surfatm Models for Heat Flux Modelling in Urban Area: Comparison With Flux Measurements in Strasbourg (France). Frontiers in Environmental Science, 2022, 10, .	1.5	1
577	Effect of Leaf Area Index on Green Facade Thermal Performance in Buildings. Sustainability, 2022, 14, 2966.	1.6	14
578	Evaluation of smart irrigation systems in hot-arid climates for green roofs and walls: caseÂofÂDoha, Qatar. Smart and Sustainable Built Environment, 2022, 11, 346-367.	2.2	3
579	Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review. Renewable and Sustainable Energy Reviews, 2022, 159, 112100.	8.2	50
580	Perspective of using green walls to achieve better energy efficiency levels. A bibliometric review of the literature. Energy and Buildings, 2022, 264, 112070.	3.1	12
581	Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy, 2021, 11, 2554.	1.3	4
582	Green Roof System: Implementation and Challenge in Commercial Buildings. Community, Environment and Disaster Risk Management, 2022, 26, 195-207.	0.1	0
583	A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 4741.	1.2	26
584	A Literature Review on Facade Greening: How Research Findings May Be Used to Promote Sustainability and Climate Literacy in School. Sustainability, 2022, 14, 4596.	1.6	6
585	A street-scale simulation model for the cooling performance of urban greenery: Evidence from a high-density city. Sustainable Cities and Society, 2022, 82, 103908.	5.1	14
586	Impacts of green walls on the characteristics of thermo-flow and photochemical reaction kinetics within street canyons. Urban Forestry and Urban Greening, 2022, 72, 127568.	2.3	3
587	Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS. Renewable and Sustainable Energy Reviews, 2022, 162, 112414.	8.2	10
588	Planning, Designing, and Managing Green Roofs and Green Walls for Public Health – An Ecosystem Services Approach. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	8
589	Quantifying potential contributions of green facades to environmental justice: a case study of a quarter in Berlin. Urban Ecosystems, 0, , .	1,1	1
590	Professionals' perception studies of vertical greening systems inÂLagos, Nigeria. International Journal of Building Pathology and Adaptation, 2022, ahead-of-print, .	0.7	2

#	Article	IF	Citations
591	Effects of meteorological variables and substrate moisture on evapotranspiration and thermal performance of a green roof in a subtropical climate. Ecological Engineering, 2022, 180, 106663.	1.6	10
592	Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics, 2022, 69, 101671.	2.3	27
593	Greening of roofs as an adaptive measure for climate change. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	1
594	Impacts of urban canyon aspect ratio and roof albedo on heat fluxes and temperatures in four urban centers. Urban Climate, 2022, 44, 101189.	2.4	3
595	Nature-Based Solutions Applied to the Built Environment to Alleviate Climate Change: Benefits, Co-benefits, and Trade-offs in a Geographical Multi-scale Perspective. , 2022, , 2117-2167.		0
596	Growth and development of succulent mixtures for extensive green roofs in a Mediterranean climate. PLoS ONE, 2022, 17, e0269446.	1.1	9
597	Influence of spatial characteristics of green spaces on microclimate in Suzhou Industrial Park of China. Scientific Reports, 2022, 12, .	1.6	9
598	A Decision-Making Framework to Support Urban Heat Mitigation by Local Governments. Resources, Conservation and Recycling, 2022, 184, 106420.	5.3	26
599	Vertical Greenery as Natural Tool for Improving Energy Efficiency of Buildings. Horticulturae, 2022, 8, 526.	1.2	10
600	Plant performance analysis of biofacades in a hot, arid Region of Qatar. Urban Ecosystems, 0, , .	1.1	0
601	Nature-based solution of greenery configuration design by comprehensive benefit evaluation of microclimate environment and carbon sequestration. Energy and Buildings, 2022, 270, 112264.	3.1	19
602	Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban Forestry and Urban Greening, 2022, 74, 127635.	2.3	42
603	MosSkin: A moss-based lightweight building system. Building and Environment, 2022, 221, 109283.	3.0	3
604	Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. Journal of Cleaner Production, 2022, 362, 132561.	4.6	32
606	Lowering the Temperature to Increase Heat Equity: A Multi-Scale Evaluation of Nature-Based Solutions in Toronto, Ontario, Canada. Atmosphere, 2022, 13, 1027.	1.0	11
607	The Influence of Urbanization on the Development of a Convective Storm—A Study for the Belém Metropolitan Region, Brazil. Atmosphere, 2022, 13, 1026.	1.0	1
608	A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land, 2022, 11, 1072.	1.2	9
609	Property managers' awareness of the potential benefits of vertical greenery systems on buildings. International Journal of Construction Management, 2023, 23, 2769-2778.	2.2	1

# 610	ARTICLE Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal Comfort in Melbourne's Central Business District. Sustainability, 2022, 14, 9057.	IF 1.6	Citations
611	Overview of Green Roof Technology as a Prospective Energy Preservation Technique in Arid Regions. Engineering, Technology & Applied Science Research, 2022, 12, 8982-8989.	0.8	3
612	Post-pandemic architecture: a critical review of the expected feasibility of skyscraper-integrated vertical farming (SIVF). Architectural Engineering and Design Management, 2023, 19, 283-304.	1.2	9
613	Sky Gardens, Public Spaces and Urban Sustainability in Dense Cities: Shenzhen, Hong Kong and Singapore. Sustainability, 2022, 14, 9824.	1.6	3
614	Thermal effects of vertical greening with creepers in different life stages on the outdoor environment under a cold climate. Environmental Science and Pollution Research, 0, , .	2.7	0
615	Long-wave infrared radiation properties of vertical green façades in subtropical regions. Building and Environment, 2022, 223, 109518.	3.0	7
617	Investigation of color pigment incorporated roller compacted high performance concrete as a mitigation tool against urban heat island. Case Studies in Construction Materials, 2022, 17, e01479.	0.8	1
618	Back from parcel planning to future heritage of urban courtyard: The 5th generation of Egyptian cities as a sustainable design manifesto for neo-arid neighbourhoods. Sustainable Cities and Society, 2022, 87, 104155.	5.1	4
619	Quantification of the food-water-energy nexus in urban green and blue infrastructure: A synthesis of the literature. Resources, Conservation and Recycling, 2023, 188, 106658.	5.3	13
620	Energy retrofit analysis for an educational building in Mumbai. Sustainable Futures, 2022, 4, 100096.	1.5	3
621	Energy efficiency, carbon emissions, and thermal comfort comparisons between conventional and proposed clustered open courtyard housing using CEB blocks. IOP Conference Series: Earth and Environmental Science, 2022, 1056, 012026.	0.2	0
622	Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 2022, 14, 10829.	1.6	5
623	Urban Design Guidelines for Improvement of Outdoor Thermal Comfort in Tropical Cities. CyberGeo, 0,	0.0	2
624	Influence of Life Green Wall and Roof Shedding on the Internal Thermal Condition of Buildings: Case Study in Malaysia. Lecture Notes in Mechanical Engineering, 2023, , 35-45.	0.3	1
625	A year-assessment of the suitability of a green façade to improve thermal performance of an affordable housing. Ecological Engineering, 2022, 185, 106810.	1.6	4
626	Ensuring the Safety of Buildings by Reducing the Noise Impact through the Use of Green Wall Systems. Energies, 2022, 15, 8097.	1.6	5
627	Do plant traits help to design green walls for urban air pollution control? A short review of scientific evidences and knowledge gaps. Environmental Science and Pollution Research, 2022, 29, 81210-81221.	2.7	4
628	Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability, 2022, 14, 12997.	1.6	7

#	Article	IF	CITATIONS
629	Analytic Hierarchy Processes (AHP) evaluation of green roof- and green wall- based UHI mitigation strategies via ENVI-met simulations. Urban Climate, 2022, 46, 101293.	2.4	25
630	Effects of vertical greenery systems on the spatiotemporal thermal environment in street canyons with different aspect ratios: A scaled experiment study. Science of the Total Environment, 2023, 859, 160408.	3.9	10
631	ENERGY AND LIFE CYCLE COST SAVING POTENTIAL OF BUILDINGS USING GREEN WALLS: A CASE STUDY FROM SRI LANKA. Journal of Green Building, 2022, 17, 179-197.	0.4	1
632	Green Roofs as an Approach to Enhance Urban Sustainability: A Study of Public Perception in Riyadh, Saudi Arabia. Buildings, 2022, 12, 2202.	1.4	8
633	SAR and Multi-Spectral Data Fusion for Local Climate Zone Classification with Multi-Branch Convolutional Neural Network. Remote Sensing, 2023, 15, 434.	1.8	2
634	Analysis of urban form typology using urban heat island indicators: Case study of Ferdous neighborhood of Tabriz. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
635	Optimization Methods of Urban Green Space Layout on Tropical Islands to Control Heat Island Effects. Energies, 2023, 16, 368.	1.6	4
636	Historical vegetation for microclimate amelioration: a case study for The Netherlands. Landscape Research, 2023, 48, 412-426.	0.7	0
637	Changes in urban green spaces in coastal cities and human wellâ€being: The case of Cape Coast Metropolis, Ghana. Geo: Geography and Environment, 2023, 10, .	0.5	1
639	Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy). Land, 2023, 12, 476.	1.2	10
640	Optimisation of Building Green Performances Using Vertical Greening Systems: A Case Study in Changzhou, China. Sustainability, 2023, 15, 4494.	1.6	3
641	Large humidity effects on urban heat exposure and cooling challenges under climate change. Environmental Research Letters, 2023, 18, 044024.	2.2	6
642	Empirical research and proposed planning methodology for the greening of urban buildings to achieve low-carbon effects. Environment and Planning B: Urban Analytics and City Science, 2024, 51, 23-38.	1.0	0
643	Performance of urban climate-responsive design interventions in combining climate adaptation and mitigation. Building and Environment, 2023, 236, 110227.	3.0	1
644	Effect of using construction and demolition waste as substrate on methane and carbon dioxide emissions from green roofs. Ecological Engineering, 2023, 192, 106967.	1.6	0
658	Urban Heat Mitigation Strategies. , 2023, , 21-44.		0
667	Fassadenbegrünung als multifunktionales Anpassungsinstrument gegen Hitze: Ergebnisse des Leipziger Pilotprojekts "Lebendige WÃ ¤ de". , 2024, , 199-213.		0
682	Vertical Greenery Systems: A Review of Thermal Performance. , 2024, 9, 25-44.		0

#	Article	IF	CITATIONS
686	NbS Interventions as Tool for Urban Climate Resilience: A Case Study of Peri-Urban Ecosystem in Noida. Disaster Resilience and Green Growth, 2024, , 341-368.	0.2	0