The pilocarpine model of temporal lobe epilepsy

Journal of Neuroscience Methods 172, 143-157 DOI: 10.1016/j.jneumeth.2008.04.019

Citation Report

#	Article	IF	Citations
1	La souris MTLE: unÂmodèle validé pourÂl'évaluation deÂmolécules anti-épileptiques pourÂleÂtraitemen deÂl'épilepsie mésiotemporale. Epilepsies, 2009, 21, 184-192.	^t o.o	1
2	Does Pilocarpine-Induced Epilepsy in Adult Rats Require Status epilepticus?. PLoS ONE, 2009, 4, e5759.	1.1	51
3	Status epilepticus affects the gigantocellular network of the pontine reticular formation. BMC Neuroscience, 2009, 10, 133.	0.8	4
4	Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage. European Journal of Pharmacology, 2009, 619, 15-24.	1.7	75
5	Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus, 2010, 20, 97-112.	0.9	92
6	Diabetic Hyperglycemia Aggravates Seizures and Status Epilepticus-induced Hippocampal Damage. Neurotoxicity Research, 2009, 15, 71-81.	1.3	29
7	Left hemisphere predominance of pilocarpine-induced rat epileptiform discharges. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 42.	2.4	6
8	Blood–brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy. Epilepsy Research, 2009, 85, 142-149.	0.8	238
9	Intrastrain differences in seizure susceptibility, pharmacological response and basal neurochemistry of Wistar rats. Epilepsy Research, 2009, 87, 234-246.	0.8	33
10	Motor map expansion in the pilocarpine model of temporal lobe epilepsy is dependent on seizure severity and rat strain. Experimental Neurology, 2009, 217, 421-428.	2.0	17
11	In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose–small animal positron emission tomography study. Neuroscience, 2009, 162, 972-979.	1.1	80
12	Age-dependent mortality in the pilocarpine model of status epilepticus. Neuroscience Letters, 2009, 453, 233-237.	1.0	14
13	Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology, 2009, 219, 284-297.	2.0	145
14	Difficulties in Treatment and Management of Epilepsy and Challenges in New Drug Development. Pharmaceuticals, 2010, 3, 2090-2110.	1.7	99
15	Prevention or Modification of Epileptogenesis after Brain Insults: Experimental Approaches and Translational Research. Pharmacological Reviews, 2010, 62, 668-700.	7.1	343
16	Diazoxide Reduces Status Epilepticus Neuron Damage in Diabetes. Neurotoxicity Research, 2010, 17, 305-316.	1.3	19
17	Homocysteine Potentiates Seizures and Cell Loss Induced by Pilocarpine Treatment. NeuroMolecular Medicine, 2010, 12, 248-259.	1.8	31
18	Mitochondrial DNA Damage and the Involvement of Antioxidant Defense and Repair System in Hippocampi of Rats with Chronic Seizures. Cellular and Molecular Neurobiology, 2010, 30, 947-954.	1.7	22

		CITATION REPORT		
#	Article		IF	CITATIONS
19	The emerging role for chemokines in epilepsy. Journal of Neuroimmunology, 2010, 224, 22-2	!7.	1.1	137
20	In vitro ictogenesis and parahippocampal networks in a rodent model of temporal lobe epile Neurobiology of Disease, 2010, 39, 372-380.	DSY.	2.1	36
21	Convulsive status epilepticus duration as determinant for epileptogenesis and interictal disc generation in the rat limbic system. Neurobiology of Disease, 2010, 40, 478-489.	harge	2.1	57
22	Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobic Disease, 2010, 40, 565-572.	logy of	2.1	80
23	Whole transcriptome analysis of the hippocampus: toward a molecular portrait of epileptog BMC Genomics, 2010, 11, 230.	enesis.	1.2	92
24	Development of an in vitro model of neuronal activity induced excitotoxicity using photocor stimulation. Cell Calcium, 2010, 47, 441-448.	iductive	1.1	3
25	Descifrando la fisiopatologÃa de la epilepsia en un modelo animal: el pentilentetrazol induce activación pero no la muerte de las neuronas de la amÃgdala extendida medial. NeurologÃa 148-155.	la , 2010, 25,	0.3	1
26	Development of multi-electrode array screening for anticonvulsants in acute rat brain slices. of Neuroscience Methods, 2010, 185, 246-256.	Journal	1.3	39
27	Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice. Epilepsy Research, 2010, 88, 151-16	, 1.	0.8	24
28	In vivo imaging of dopamine receptors in a model of temporal lobe epilepsy. Epilepsia, 2010,	51, 415-422.	2.6	43
29	Selective changes in inhibition as determinants for limited hyperexcitability in the insular cor epileptic rats. European Journal of Neuroscience, 2010, 31, 2014-2023.	tex of	1.2	5
30	Inhibitory action of antioxidants (ascorbic acid or α-tocopherol) on seizures and brain dama by pilocarpine in rats. Arquivos De Neuro-Psiquiatria, 2010, 68, 355-361.	ge induced	0.3	40
31	Enhancement of GABA _A -current run-down in the hippocampus occurs at the f spontaneous seizure in a model of temporal lobe epilepsy. Proceedings of the National Acad Sciences of the United States of America, 2010, 107, 3180-3185.		3.3	49
32	Understanding the pathophysiology of epilepsy in an animal model: Pentylenetetrazole indu- activation but not death of neurons of the medial extended amygdala. NeurologÃa (English 1 2010, 25, 148-155.	ces Edition),	0.2	0
33	Up-regulation of serum- and glucocorticoid-induced protein kinase 1 in the brain tissue of hu experimental epilepsy. Neurochemistry International, 2010, 57, 899-905.	ıman and	1.9	14
34	Recent advancements in stem cell and gene therapies for neurological disorders and intracta epilepsy. Neuropharmacology, 2010, 58, 855-864.	ble	2.0	47
35	Distinctive hippocampal CA2 subfield of the Amazon rodent Proechimys. Neuroscience, 201 965-973.	0, 169,	1.1	15
36	The sleep–wake cycle in adult rats following pilocarpine-induced temporal lobe epilepsy. E Behavior, 2010, 17, 324-331.	pilepsy and	0.9	26

#	Article	IF	CITATIONS
37	Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist, 2010, 16, 357-373.	2.6	72
38	Brain Infiltration of Leukocytes Contributes to the Pathophysiology of Temporal Lobe Epilepsy. Journal of Neuroscience, 2011, 31, 4037-4050.	1.7	224
39	Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats. Neurochemistry International, 2011, 58, 385-390.	1.9	30
40	Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochemistry International, 2011, 58, 729-738.	1.9	106
41	Coenzyme Q10 enhances the anticonvulsant effect of phenytoin in pilocarpine-induced seizures in rats and ameliorates phenytoin-induced cognitive impairment and oxidative stress. Epilepsy and Behavior, 2011, 22, 671-677.	0.9	45
42	Up-regulation of apelin in brain tissue of patients with epilepsy and an epileptic rat model. Peptides, 2011, 32, 1793-1799.	1.2	29
43	GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Progress in Neurobiology, 2011, 95, 104-132.	2.8	222
44	Sleep, epilepsy and translational research: What can we learn from the laboratory bench?. Progress in Neurobiology, 2011, 95, 396-405.	2.8	26
45	Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience, 2011, 189, 108-122.	1.1	42
46	Impaired mitochondrial biogenesis in hippocampi of rats with chronic seizures. Neuroscience, 2011, 194, 234-240.	1.1	16
47	The Potential Role of ATP-sensitive Potassium Channels in Treating Epileptic Disorders. , 0, , .		2
48	Animal models of intellectual disability: towards a translational approach. Clinics, 2011, 66, 55-63.	0.6	11
49	A cell-free extract from human adipose stem cells protects mice against epilepsy. Epilepsia, 2011, 52, 1617-1626.	2.6	38
50	Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiology of Disease, 2011, 42, 482-495.	2.1	82
51	Beneficial effects of desacyl-ghrelin, hexarelin and EP-80317 in models of status epilepticus. European Journal of Pharmacology, 2011, 670, 130-136.	1.7	29
52	Marked strain and substrain differences in induction of status epilepticus and subsequent development of neurodegeneration, epilepsy, and behavioral alterations in rats. Epilepsy Research, 2011, 96, 207-224.	0.8	52
53	Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Experimental Neurology, 2011, 232, 185-194.	2.0	65
54	Description and computational modeling of the whole course of status epilepticus induced by low dose lithium–pilocarpine in rats. Brain Research, 2011, 1417, 151-162.	1.1	5

#	Article	IF	CITATIONS
55	Metabolic gene expression changes in the hippocampus of obese epileptic male rats in the pilocarpine model of temporal lobe epilepsy. Brain Research, 2011, 1426, 86-95.	1.1	11
56	Role of Signal Transducer and Activator of Transcription-3 in Up-Regulation of GFAP After Epilepsy. Neurochemical Research, 2011, 36, 2208-2215.	1.6	56
57	Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia, 2011, 59, 1706-1718.	2.5	41
58	Perirhinal cortex hyperexcitability in pilocarpineâ€treated epileptic rats. Hippocampus, 2011, 21, 702-713.	0.9	23
59	Morphometry of hilar ectopic granule cells in the rat. Journal of Comparative Neurology, 2011, 519, 1196-1218.	0.9	38
60	The promise of an interneuronâ€based cell therapy for epilepsy. Developmental Neurobiology, 2011, 71, 107-117.	1.5	45
61	Valproate decreases frequency facilitation at mossy fiber—CA3 synapses after status epilepticus. Epilepsy Research, 2011, 93, 192-196.	0.8	2
62	Comparison of Status Epilepticus Models Induced by Pilocarpine and Nerve Agents - A Systematic Review of the Underlying Aetiology and Adopted Therapeutic Approaches. Current Medicinal Chemistry, 2011, 18, 886-899.	1.2	21
63	Histopathological Evaluation of the Nervous System in National Toxicology Program Rodent Studies. Toxicologic Pathology, 2011, 39, 463-470.	0.9	43
64	Enhancement of Asynchronous Release from Fast-Spiking Interneuron in Human and Rat Epileptic Neocortex. PLoS Biology, 2012, 10, e1001324.	2.6	75
65	Seizure-Induced Neuronal Death Is Suppressed in the Absence of the Endogenous Lectin Galectin-1. Journal of Neuroscience, 2012, 32, 15590-15600.	1.7	20
66	Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. Brain, 2012, 135, 869-885.	3.7	57
68	Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons. Nature Neuroscience, 2012, 15, 258-266.	7.1	95
69	Rapid epileptogenesis in the mouse pilocarpine model: Video-EEC, pharmacokinetic and histopathological characterization. Experimental Neurology, 2012, 238, 156-167.	2.0	100
70	Pilocarpine-induced status epilepticus and subsequent spontaneous seizures: lack of effect on the number of gonadotropin-releasing hormone-positive neurons in a mouse model of temporal lobe epilepsy. Neuroscience, 2012, 203, 153-159.	1.1	13
71	Increased perivascular laminin predicts damage to astrocytes in CA3 and piriform cortex following chemoconvulsive treatments. Neuroscience, 2012, 218, 278-294.	1.1	50
72	Glial activation in a pilocarpine rat model for epileptogenesis: A morphometric and quantitative analysis. Neuroscience Letters, 2012, 514, 51-56.	1.0	17
73	Generation and characterization of pilocarpine-sensitive C57BL/6 mice as a model of temporal lobe epilepsy. Behavioural Brain Research, 2012, 230, 182-191.	1.2	38

#	Article	IF	CITATIONS
74	Neuronal degeneration and gliosis time-course in the mouse hippocampal formation after pilocarpine-induced status epilepticus. Brain Research, 2012, 1470, 98-110.	1.1	64
75	Progress of elemental anomalies of hippocampal formation in the pilocarpine model of temporal lobe epilepsy—an X-ray fluorescence microscopy study. Analytical and Bioanalytical Chemistry, 2012, 404, 3071-3080.	1.9	29
76	MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neuroscience, 2012, 13, 115.	0.8	160
77	Chronic Temporal Lobe Epilepsy Is Associated with Enhanced Alzheimer-Like Neuropathology in 3×Tg-AD Mice. PLoS ONE, 2012, 7, e48782.	1.1	50
78	Cannabidivarin is anticonvulsant in mouse and rat. British Journal of Pharmacology, 2012, 167, 1629-1642.	2.7	139
79	A guinea pig model of mesial temporal lobe epilepsy following nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia, 2012, 53, 1917-1927.	2.6	32
80	Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy. Epilepsy Research, 2012, 102, 153-159.	0.8	39
81	Protective activity of α-lactoalbumin (ALAC), a whey protein rich in tryptophan, in rodent models of epileptogenesis. Neuroscience, 2012, 226, 282-288.	1.1	33
82	Mechanisms of physiological and epileptic HFO generation. Progress in Neurobiology, 2012, 98, 250-264.	2.8	258
83	Experimental Models of Seizures and Epilepsies. Progress in Molecular Biology and Translational Science, 2012, 105, 57-82.	0.9	45
84	Time-Dependent Modulation of Mitogen Activated Protein Kinases and AKT in Rat Hippocampus and Cortex in the Pilocarpine Model of Epilepsy. Neurochemical Research, 2012, 37, 1868-1878.	1.6	33
85	Hippocampal Desynchronization of Functional Connectivity Prior to the Onset of Status Epilepticus in Pilocarpine-Treated Rats. PLoS ONE, 2012, 7, e39763.	1.1	6
87	Increased expression of histone deacetylases 2 in temporal lobe epilepsy: A study of epileptic patients and rat models. Synapse, 2012, 66, 151-159.	0.6	36
88	A new trick of INPP4A: Decreased expression of INPP4A in patients with temporal lobe epilepsy and pilocarpineâ€induced rat model. Synapse, 2012, 66, 533-541.	0.6	9
89	Bloodâ€brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia, 2012, 60, 1251-1257.	2.5	210
90	Dynamic Expression of Adenylate Kinase 2 in the Hippocampus of Pilocarpine Model Rats. Journal of Molecular Neuroscience, 2012, 47, 150-157.	1.1	4
91	Inter-individual variation in the anticonvulsant effect of phenobarbital in the pilocarpine rat model of temporal lobe epilepsy. Experimental Neurology, 2012, 234, 70-84.	2.0	36
92	BACE1 elevation is associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Experimental Neurology, 2012, 235, 228-237.	2.0	23

#	Article	IF	Citations
93	The 27-kDa heat shock protein (HSP27) is a reliable hippocampal marker of full development of pilocarpine-induced status epilepticus. Epilepsy Research, 2012, 98, 35-43.	0.8	15
94	The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Research, 2012, 98, 206-215.	0.8	17
95	Preclinical antiepileptic actions of selective serotonin reuptake inhibitors—Implications for clinical trial design. Epilepsia, 2012, 53, 596-605.	2.6	32
96	Changes in glucose metabolism and metabolites during the epileptogenic process in the lithiumâ€pilocarpine model of epilepsy. Epilepsia, 2012, 53, 860-869.	2.6	57
97	Synaptic connections of hilar basal dendrites of dentate granule cells in a neonatal hypoxia model of epilepsy. Epilepsia, 2012, 53, 98-108.	2.6	43
98	Strain differences in seizure-induced cell death following pilocarpine-induced status epilepticus. Neurobiology of Disease, 2012, 45, 297-304.	2.1	72
99	Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiology of Disease, 2012, 48, 20-26.	2.1	57
100	Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety?. Psychopharmacology, 2013, 227, 209-219.	1.5	18
101	Differences in the hippocampal frequency of creatine inclusions between the acute and latent phases of pilocarpine model defined using synchrotron radiation-based FTIR microspectroscopy. Analytical and Bioanalytical Chemistry, 2013, 405, 7337-7345.	1.9	12
102	The Antiepileptic Effect of the Glycolytic Inhibitor 2-Deoxy-d-Glucose is Mediated by Upregulation of KATP Channel Subunits Kir6.1 and Kir6.2. Neurochemical Research, 2013, 38, 677-685.	1.6	32
103	Microdialysis Techniques in Neuroscience. Neuromethods, 2013, , .	0.2	8
104	Neurosteroids and Epileptogenesis. Journal of Neuroendocrinology, 2013, 25, 980-990.	1.2	18
105	Hypoxia Markers are Expressed in Interneurons Exposed to Recurrent Seizures. NeuroMolecular Medicine, 2013, 15, 133-146.	1.8	52
106	One hour of pilocarpine-induced status epilepticus is sufficient to develop chronic epilepsy in mice, and is associated with mossy fiber sprouting but not neuronal death. Neuroscience Bulletin, 2013, 29, 295-302.	1.5	21
107	Antiepileptic activities of the extract and fractions of Mondia whitei (Hook f.) Skeel leaves. Pharmacognosy Journal, 2013, 5, 256-258.	0.3	6
108	The kainic acid model of temporal lobe epilepsy. Neuroscience and Biobehavioral Reviews, 2013, 37, 2887-2899.	2.9	420
109	Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: A histopathological and stereological investigation. Brain Research, 2013, 1522, 76-87.	1.1	36
110	Deconstructing the neural and ionic involvement of seizure-like events in the striatal network. Neurobiology of Disease, 2013, 52, 128-136.	2.1	4

#	Article	IF	CITATIONS
111	Pilocarpine-induced epilepsy in mice alters seizure thresholds and the efficacy of antiepileptic drugs in the 6-Hertz psychomotor seizure model. Epilepsy Research, 2013, 107, 205-216.	0.8	39
112	Effects of modulating M3 muscarinic receptor activity on azoxymethane-induced liver injury in mice. Biochemical Pharmacology, 2013, 86, 329-338.	2.0	17
113	The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease. Bipolar Disorders, 2013, 15, 405-421.	1.1	57
114	Detection of spontaneous temporal lobe epilepsy in rats by means of 1-axis accelerometor signal. , 2013, , .		7
115	Downâ€regulation of gephyrin and <scp>GABA_A</scp> receptor subunits during epileptogenesis in the <scp>CA</scp> 1 region of hippocampus. Epilepsia, 2013, 54, 616-624.	2.6	43
116	Contributions of astrocytes to epileptogenesis following status epilepticus: Opportunities for preventive therapy?. Neurochemistry International, 2013, 63, 660-669.	1.9	36
117	Impaired maturation of serotonergic function in the dentate gyrus associated with epilepsy. Neurobiology of Disease, 2013, 50, 86-95.	2.1	6
118	Early deficits in social behavior and cortical rhythms in pilocarpine-induced mouse model of temporal lobe epilepsy. Experimental Neurology, 2013, 241, 38-44.	2.0	25
119	Expression pattern of sorting nexin 25 in temporal lobe epilepsy: A study on patients and pilocarpine-induced rats. Brain Research, 2013, 1509, 79-85.	1.1	15
120	Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy. Brain Research, 2013, 1532, 1-13.	1.1	30
121	Increased EphA/ephrinA expression in hippocampus of pilocarpine treated mouse. Epilepsy Research, 2013, 105, 20-29.	0.8	27
122	Neuroprotective Strategies in Hippocampal Neurodegeneration Induced by the Neurotoxicant Trimethyltin. Neurochemical Research, 2013, 38, 240-253.	1.6	45
123	AMPA Receptor Properties are Modulated in the Early Stages Following Pilocarpine-induced Status Epilepticus. NeuroMolecular Medicine, 2013, 15, 324-338.	1.8	33
124	Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiology of Disease, 2013, 54, 183-193.	2.1	64
125	The intrahippocampal kainate model of temporal lobe epilepsy revisited: Epileptogenesis, behavioral and cognitive alterations, pharmacological response, and hippoccampal damage in epileptic rats. Epilepsy Research, 2013, 103, 135-152.	0.8	80
126	Coenzyme Q10 Ameliorates Neurodegeneration, Mossy Fiber Sprouting, and Oxidative Stress in Intrahippocampal Kainate Model of Temporal Lobe Epilepsy in Rat. Journal of Molecular Neuroscience, 2013, 49, 194-201.	1.1	36
127	Endothelial Von Willebrand Factor Promotes Blood–Brain Barrier Flexibility and Provides Protection From Hypoxia and Seizures in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2112-2120.	1.1	62
128	Regenerative Medicine for Epilepsy: From Basic Research to Clinical Application. International Journal of Molecular Sciences, 2013, 14, 23390-23401.	1.8	8

#	Article	IF	CITATIONS
129	Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3567-3572.	3.3	159
130	Seizure Initiation and Propagation in the Pilocarpine Rat Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2013, 33, 16409-16411.	1.7	24
131	Tenidap, an agonist of the inwardly rectifying K ⁺ channel Kir2·3, delays the onset of cortical epileptiform activity in a model of chronic temporal lobe epilepsy. Neurological Research, 2013, 35, 561-567.	0.6	15
132	Glyoxalase 1 and its substrate methylglyoxal are novel regulators of seizure susceptibility. Epilepsia, 2013, 54, 649-657.	2.6	29
133	Altered expression of vesicular monoamine transporter 2 in epileptic patients and experimental rats. Synapse, 2013, 67, 415-426.	0.6	10
134	Increased neocortical expression of the <scp>P</scp> 2X7 receptor after status epilepticus and anticonvulsant effect of <scp>P</scp> 2X7 receptor antagonist <scp>A</scp> â€438079. Epilepsia, 2013, 54, 1551-1561.	2.6	130
135	Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17540-17545.	3.3	89
136	A comprehensive behavioral evaluation in the lithium–pilocarpine model in rats: Effects of carisbamate administration during status epilepticus. Epilepsia, 2013, 54, 1203-1213.	2.6	34
137	Anticonvulsant Activity of Acute and Chronic Treatment with a-Asarone from <i>Acorus gramineus</i> in Seizure Models. Biological and Pharmaceutical Bulletin, 2013, 36, 23-30.	0.6	33
138	Antidepressant-like effects of the aqueous macerate of the bulb of Gladiolus dalenii Van Geel (Iridaceae) in a rat model of epilepsy-associated depression. BMC Complementary and Alternative Medicine, 2013, 13, 272.	3.7	16
139	Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine–induced temporal lobe epilepsy model. Frontiers in Cellular Neuroscience, 2013, 7, 104.	1.8	33
140	Optogenetic Delay of Status Epilepticus Onset in an In Vivo Rodent Epilepsy Model. PLoS ONE, 2013, 8, e62013.	1.1	58
141	Pregabalin Attenuates Excitotoxicity in Diabetes. PLoS ONE, 2013, 8, e65154.	1.1	13
142	Validation of Suitable Reference Genes for Expression Studies in Different Pilocarpine-Induced Models of Mesial Temporal Lobe Epilepsy. PLoS ONE, 2013, 8, e71892.	1.1	25
143	Increased Histone H3 Phosphorylation in Neurons in Specific Brain Structures after Induction of Status Epilepticus in Mice. PLoS ONE, 2013, 8, e77710.	1.1	9
144	Gabapentin Administration Reduces Reactive Gliosis and Neurodegeneration after Pilocarpine-Induced Status Epilepticus. PLoS ONE, 2013, 8, e78516.	1.1	49
145	The possible role of GABAA receptors and gephyrin in epileptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 113.	1.8	19
146	Perirhinal cortex and temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 2013, 7, 130.	1.8	25

#	Article	IF	CITATIONS
147	P2X receptors as targets for the treatment of status epilepticus. Frontiers in Cellular Neuroscience, 2013, 7, 237.	1.8	45
148	Pathophysiogenesis of Mesial Temporal Lobe Epilepsy: Is Prevention of Damage Antiepileptogenic?. Current Medicinal Chemistry, 2014, 21, 663-688.	1.2	171
149	Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy. PLoS ONE, 2014, 9, e104092.	1.1	22
150	Evaluation of Anticonvulsant Actions of Dibromophenyl Enaminones Using In Vitro and In Vivo Seizure Models. PLoS ONE, 2014, 9, e99770.	1.1	12
151	The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Frontiers in Neuroanatomy, 2014, 8, 100.	0.9	45
152	Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-12.	1.9	155
153	Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatric Disease and Treatment, 2014, 10, 2139.	1.0	38
154	Association of Mitochondrial Letm1 with Epileptic Seizures. Cerebral Cortex, 2014, 24, 2533-2540.	1.6	40
155	Variable electrobehavioral patterns during focal nonconvulsive status epilepticus induced by unilateral intrahippocampal injection of kainic acid. Epilepsia, 2014, 55, 1978-1985.	2.6	10
156	Morphofunctional changes in field CA1 of the rat hippocampus after pentylenetetrazole and lithium-pilocarpine induced seizures. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 531-538.	0.2	10
157	What Is a Seizure Network? Long-Range Network Consequences of Focal Seizures. Advances in Experimental Medicine and Biology, 2014, 813, 63-70.	0.8	49
158	Spatial memory deficits in juvenile rats with pilocarpine induced temporal lobe epilepsy. Acta Marisiensis - Seria Medica, 2014, 60, 191-195.	0.3	3
159	Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy. Frontiers in Neurology, 2014, 5, 111.	1.1	36
160	TRPC3 mediates hyperexcitability and epileptiform activity in immature cortex and experimental cortical dysplasia. Journal of Neurophysiology, 2014, 111, 1227-1237.	0.9	15
162	Cognitive impairment in temporal lobe epilepsy: Role of online and offline processing of single cell information. Hippocampus, 2014, 24, 1129-1145.	0.9	28
163	Decreased expression of Gab2 in patients with temporal lobe epilepsy and pilocarpine-induced rat model. Synapse, 2014, 68, 168-177.	0.6	5
164	Is Plasticity of CABAergic Mechanisms Relevant to Epileptogenesis?. Advances in Experimental Medicine and Biology, 2014, 813, 133-150.	0.8	36
165	Mapping Epileptic Activity: Sources or Networks for the Clinicians?. Frontiers in Neurology, 2014, 5, 218.	1.1	55

#	Article	IF	CITATIONS
166	The Piriform Cortex and Human Focal Epilepsy. Frontiers in Neurology, 2014, 5, 259.	1.1	88
167	Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2014, 257, 39-49.	2.0	44
168	Nitric oxide synthase inhibition reverts muscarinic receptor down-regulation induced by pilocarpine- and kainic acid-evoked seizures in rat fronto-parietal cortex. Epilepsy Research, 2014, 108, 11-19.	0.8	3
169	MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy. Brain Structure and Function, 2014, 219, 683-706.	1.2	45
170	Neuroprotective Effects of Idebenone Against Pilocarpine-Induced Seizures: Modulation of Antioxidant Status, DNA Damage and Na+, K+-ATPase Activity in Rat Hippocampus. Neurochemical Research, 2014, 39, 394-402.	1.6	19
171	Activation of Group 2 metabotropic glutamate receptors reduces behavioral and electrographic correlates of pilocarpine induced status epilepticus. Epilepsy Research, 2014, 108, 171-181.	0.8	18
172	Effects of oxygen insufflation during pilocarpine-induced status epilepticus on mortality, tissue damage and seizures. Epilepsy Research, 2014, 108, 90-97.	0.8	7
173	hPSC-Derived Maturing GABAergic Interneurons Ameliorate Seizures and Abnormal Behavior in Epileptic Mice. Cell Stem Cell, 2014, 15, 559-573.	5.2	171
174	Hypoxia inducible factor-1α expression is associated with hippocampal apoptosis during epileptogenesis. Brain Research, 2014, 1590, 20-30.	1.1	24
175	Temporally unstructured electrical stimulation to the amygdala suppresses behavioral chronic seizures of the pilocarpine animal model. Epilepsy and Behavior, 2014, 36, 159-164.	0.9	20
176	Long-Term Seizure Suppression and Optogenetic Analyses of Synaptic Connectivity in Epileptic Mice with Hippocampal Grafts of GABAergic Interneurons. Journal of Neuroscience, 2014, 34, 13492-13504.	1.7	78
177	Serotonin modulates fast ripple activity in rats with spontaneous recurrent seizures. Brain Research, 2014, 1583, 211-219.	1.1	12
178	The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival. Molecular and Cellular Neurosciences, 2014, 61, 187-200.	1.0	31
179	Contribution of Aberrant GluK2-Containing Kainate Receptors to Chronic Seizures in Temporal Lobe Epilepsy. Cell Reports, 2014, 8, 347-354.	2.9	58
180	Transient muscarinic and glutamatergic stimulation of neural stem cells triggers acute and persistent changes in differentiation. Neurobiology of Disease, 2014, 70, 252-261.	2.1	10
181	Limbic Networks and Epileptiform Synchronization. International Review of Neurobiology, 2014, 114, 63-87.	0.9	14
182	Dynamics of hippocampal acetylcholine release during lithiumâ€pilocarpineâ€induced status epilepticus in rats. Journal of Neurochemistry, 2014, 131, 42-52.	2.1	49
183	Synchronous alteration pattern between serine-threonine kinase receptor-associated protein and Smad7 in pilocarpine-induced rats of epilepsy. Synapse, 2014, 68, 275-282.	0.6	2

#	Article	IF	CITATIONS
184	Neuroprotective Effect of Vitamin E in a KainateInduced Rat Model of Temporal Lobe Epilepsy. Neurophysiology, 2014, 46, 126-133.	0.2	0
185	Hippocampal CA field neurogenesis after pilocarpine insult: The hippocampal fissure as a neurogenic niche. Journal of Chemical Neuroanatomy, 2014, 56, 45-57.	1.0	10
186	NDEL1 was decreased in the CA3 region but increased in the hippocampal blood vessel network during the spontaneous seizure period after pilocarpine-induced status epilepticus. Neuroscience, 2014, 268, 276-283.	1.1	12
187	The rearrangement of filamentous actin in mossy fiber synapses in pentylenetetrazol-kindled C57BL/6 mice. Epilepsy Research, 2014, 108, 20-28.	0.8	7
188	Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death after pilocarpine-induced status epilepticus. Neurochemistry International, 2014, 73, 152-158.	1.9	11
189	Relation of autonomic and cardiac abnormalities to ventricular fibrillation in a rat model of epilepsy. Epilepsy Research, 2014, 108, 44-56.	0.8	37
190	Reduced hippocampal manganese-enhanced MRI (MEMRI) signal during pilocarpine-induced status epilepticus: Edema or apoptosis?. Epilepsy Research, 2014, 108, 644-652.	0.8	20
191	Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: A multiscale network analysis based on persistent homology. NeuroImage, 2014, 99, 226-236.	2.1	43
192	Selected classical and novel antiepileptic drugs - mechanisms of action, neuroprotection, and effectiveness in epileptic and non-epileptic conditions. Journal of Epileptology, 2014, 22, 37-50.	0.2	3
193	MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Scientific Reports, 2015, 5, 14143.	1.6	101
194	Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clinical Science, 2015, 129, 1207-1223.	1.8	18
195	Effects of TRPV1 on the hippocampal synaptic plasticity in the epileptic rat brain. Synapse, 2015, 69, 375-383.	0.6	32
196	The Role of Inhibition in Epileptic Networks. Journal of Clinical Neurophysiology, 2015, 32, 227-234.	0.9	25
197	Neurotransmitters and Epilepsy. Epilepsy Journal, 2015, 01, .	0.1	0
198	Detrimental effect of post Status Epilepticus treatment with ROCK inhibitor Y-27632 in a pilocarpine model of temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 2015, 9, 413.	1.8	17
199	Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry. PLoS ONE, 2015, 10, e0131705.	1.1	62
200	Des-acyl ghrelin attenuates pilocarpine-induced limbic seizures via the ghrelin receptor and not the orexin pathway. Neuropeptides, 2015, 51, 1-7.	0.9	17
201	The research of Rat's epileptic waves based on optogenetics. , 2015, , .		Ο

#	Article	IF	CITATIONS
202	Effective termination of status epilepticus by rational polypharmacy in the lithium–pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiology of Disease, 2015, 75, 78-90.	2.1	66
203	Muscarinic excitation of parvalbuminâ€positive interneurons contributes to the severity of pilocarpineâ€induced seizures. Epilepsia, 2015, 56, 297-309.	2.6	31
204	PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure. Neurobiology of Disease, 2015, 75, 142-150.	2.1	32
205	ENT1 Inhibition Attenuates Epileptic Seizure Severity Via Regulation of Glutamatergic Neurotransmission. NeuroMolecular Medicine, 2015, 17, 1-11.	1.8	17
206	Early Life Status Epilepticus and Stress Have Distinct and Sexâ€Specific Effects on Learning, Subsequent Seizure Outcomes, Including Anticonvulsant Response to Phenobarbital. CNS Neuroscience and Therapeutics, 2015, 21, 181-192.	1.9	24
207	Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. Journal of Neurochemistry, 2015, 133, 134-143.	2.1	14
208	Rapid Throughput Analysis Demonstrates that Chemicals with Distinct Seizurogenic Mechanisms Differentially Alter Ca ²⁺ Dynamics in Networks Formed by Hippocampal Neurons in Culture. Molecular Pharmacology, 2015, 87, 595-605.	1.0	29
209	Ischemic–hypoxic mechanisms leading to hippocampal dysfunction as a consequence of status epilepticus. Epilepsy and Behavior, 2015, 49, 47-54.	0.9	27
210	Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Research, 2015, 115, 8-16.	0.8	45
211	Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: Study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat. Neuroscience, 2015, 303, 149-159.	1.1	21
212	Isovaline attenuates generalized epileptiform activity in hippocampal and primary sensory cortices and seizure behavior in pilocarpine treated rats. Neuroscience Letters, 2015, 599, 125-128.	1.0	6
213	Gating of hippocampal output by β-adrenergic receptor activation in the pilocarpine model of epilepsy. Neuroscience, 2015, 286, 325-337.	1.1	4
214	Astrocyteâ€neuronal interactions in epileptogenesis. Journal of Neuroscience Research, 2015, 93, 1157-1164.	1.3	16
215	Fish oil provides protection against the oxidative stress in pilocarpine model of epilepsy. Metabolic Brain Disease, 2015, 30, 903-909.	1.4	11
216	Interstrain differences of ionotropic glutamate receptor subunits in the hippocampus and induction of hippocampal sclerosis with pilocarpine in mice. Journal of Chemical Neuroanatomy, 2015, 64-65, 1-11.	1.0	4
217	Evaluation of potential gender-related differences in behavioral and cognitive alterations following pilocarpine-induced status epilepticus in C57BL/6 mice. Physiology and Behavior, 2015, 143, 142-150.	1.0	31
218	Single versus combinatorial therapies in status epilepticus: Novel data from preclinical models. Epilepsy and Behavior, 2015, 49, 20-25.	0.9	49
219	Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Experimental Brain Research, 2015, 233, 1529-1539.	0.7	19

#	Article	IF	CITATIONS
220	Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochemical and Biophysical Research Communications, 2015, 462, 433-440.	1.0	59
221	Pilocarpine-Induced Convulsive Activity Is Limited by Multidrug Transporters at the Rodent Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 351-359.	1.3	13
222	Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam. Brain Research, 2015, 1608, 225-234.	1.1	35
223	Neurosteroidal modulation of in vitro epileptiform activity is enhanced in pilocarpine-treated epileptic rats. Neurobiology of Disease, 2015, 78, 24-34.	2.1	7
224	PI3KÎ ³ deficiency enhances seizures severity and associated outcomes in a mouse model of convulsions induced by intrahippocampal injection of pilocarpine. Experimental Neurology, 2015, 267, 123-134.	2.0	12
225	The enigma of the latent period in the development of symptomatic acquired epilepsy — Traditional view versus new concepts. Epilepsy and Behavior, 2015, 52, 78-92.	0.9	67
226	Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Research, 2015, 1627, 154-164.	1.1	31
227	Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy and Behavior, 2015, 49, 55-60.	0.9	13
228	Elevated Expression of the Delta-Subunit of Epithelial Sodium Channel in Temporal Lobe Epilepsy Patients and Rat Model. Journal of Molecular Neuroscience, 2015, 57, 510-518.	1.1	3
229	A novel method for simultaneous glutamate and extracellular activity measurement in brain slices with high temporal resolution. Talanta, 2015, 144, 1231-1238.	2.9	4
230	Melatonin protects testes against lithium-pilocarpine-induced temporal lobe epilepsy in rats: a time course study. Andrologia, 2015, 47, 343-353.	1.0	10
231	The anticonvulsant actions of carisbamate associate with alterations in astrocyte glutamine metabolism in the lithium–pilocarpine epilepsy model. Journal of Neurochemistry, 2015, 132, 532-545.	2.1	11
232	The systemic kainic acid rat model of temporal lobe epilepsy: Long-term EEG monitoring. Brain Research, 2015, 1627, 1-11.	1.1	51
233	Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Research, 2015, 115, 30-44.	0.8	19
234	Benzodiazepines induce sequelae in immature mice with inflammation-induced status epilepticus. Epilepsy and Behavior, 2015, 52, 180-186.	0.9	6
235	Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology, 2015, 99, 500-509.	2.0	124
236	GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain, 2015, 138, 2875-2890.	3.7	98
237	Impairment of exploratory behavior and spatial memory in adolescent rats in lithium-pilocarpine model of temporal lobe epilepsy. Doklady Biological Sciences, 2015, 463, 175-177.	0.2	19

#	Article	IF	CITATIONS
238	Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithium–pilocarpine model of temporal lobe epilepsy in rats. Epilepsy and Behavior, 2015, 53, 98-107.	0.9	25
239	Degeneration and Regeneration of <scp>GABA</scp> ergic Interneurons in the Dentate Gyrus of Adult Mice in Experimental Models of Epilepsy. CNS Neuroscience and Therapeutics, 2015, 21, 52-60.	1.9	18
240	Anticonvulsant active inhibitor of GABA transporter subtype 1, tiagabine, with activity in mouse models of anxiety, pain and depression. Pharmacological Reports, 2015, 67, 465-472.	1.5	55
241	Optimization of pilocarpine-mediated seizure induction in immunodeficient NodScid mice. Epilepsy Research, 2015, 109, 114-118.	0.8	5
242	Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiology of Disease, 2015, 73, 356-365.	2.1	37
243	Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing. Scientific Reports, 2014, 4, 6930.	1.6	94
244	Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Structure and Function, 2015, 220, 2387-2399.	1.2	101
245	Time-course changes of hippocalcin expression in the mouse hippocampus following pilocarpine-induced status epilepticus. Journal of Veterinary Science, 2016, 17, 137.	0.5	3
246	Modulation of axonal sprouting along rostro-caudal axis of dorsal hippocampus and no neuronal survival in parahippocampal cortices by long-term post-lesion melatonin administration in lithium-pilocarpine model of temporal lobe epilepsy. Anatomy and Cell Biology, 2016, 49, 21.	0.5	9
247	Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model. Frontiers in Neuroanatomy, 2016, 9, 167.	0.9	7
248	Persistent Hyperactivity of Hippocampal Dentate Interneurons After a Silent Period in the Rat Pilocarpine Model of Epilepsy. Frontiers in Cellular Neuroscience, 2016, 10, 94.	1.8	12
249	Progressive Seizure Aggravation in the Repeated 6-Hz Corneal Stimulation Model Is Accompanied by Marked Increase in Hippocampal p-ERK1/2 Immunoreactivity in Neurons. Frontiers in Cellular Neuroscience, 2016, 10, 281.	1.8	26
250	Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors. PLoS ONE, 2016, 11, e0150995.	1.1	8
251	Microglia are less proâ€inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus. Glia, 2016, 64, 1350-1362.	2.5	51
252	Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy. EMBO Reports, 2016, 17, 682-694.	2.0	42
253	Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Scientific Reports, 2016, 6, 20969.	1.6	14
254	Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biology, 2016, 17, 245.	3.8	75
255	Synthesis of N -1′, N -3′-disubstituted spirohydantoins and their anticonvulsant activities in pilocarpine model of temporal lobe epilepsy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2912-2914.	1.0	10

#	Article	IF	CITATIONS
256	Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiology and Behavior, 2016, 166, 22-31.	1.0	47
257	Molecular analysis of acute and chronic reactive astrocytes in the pilocarpine model of temporal lobe epilepsy. Neurobiology of Disease, 2016, 91, 315-325.	2.1	15
258	Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation. Experimental Neurology, 2016, 286, 137-146.	2.0	11
259	Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience, 2016, 337, 355-369.	1.1	28
260	Expression of Glypican-4 in the brains of epileptic patients and epileptic animals and its effects on epileptic seizures. Biochemical and Biophysical Research Communications, 2016, 478, 241-246.	1.0	12
261	Behavioral and genotoxic evaluation of rosmarinic and caffeic acid in acute seizure models induced by pentylenetetrazole and pilocarpine in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 1195-1203.	1.4	16
262	Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats. Epilepsy Research, 2016, 126, 126-133.	0.8	46
263	The effect of early life status epilepticus on ultrasonic vocalizations in mice. Epilepsia, 2016, 57, 1377-1385.	2.6	12
264	Etiology matters – Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy. Scientific Reports, 2016, 6, 25668.	1.6	87
265	Activation of LILRB2 signal pathway in temporal lobe epilepsy patients and in a pilocarpine induced epilepsy model. Experimental Neurology, 2016, 285, 51-60.	2.0	17
266	A decrease of ripples precedes seizure onset in mesial temporal lobe epilepsy. Experimental Neurology, 2016, 284, 29-37.	2.0	11
267	Memantine attenuates cognitive impairments after status epilepticus induced in a lithium–pilocarpine model. Doklady Biological Sciences, 2016, 470, 224-227.	0.2	7
268	Effect of temperature on sleep regulation in an animal epilepsy model. , 2016, 2016, 1644-1647.		4
269	Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy and Behavior, 2016, 64, 83-89.	0.9	19
270	Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis. Human Molecular Genetics, 2016, 25, ddw326.	1.4	15
271	Effects of pharmacological treatments on hippocampal NCAM1 and ERK2 expression in epileptic rats with cognitive dysfunction. Oncology Letters, 2016, 12, 1783-1791.	0.8	3
272	Status epilepticus alters hippocampal long-term synaptic potentiation in a rat lithium-pilocarpine model. NeuroReport, 2016, 27, 1191-1195.	0.6	33
273	Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy and Behavior, 2016, 61, 120-131.	0.9	8

#	Article	IF	CITATIONS
274	Dual mechanisms of rapid expression of anxiety-related behavior in pilocarpine-treated epileptic mice. Epilepsy Research, 2016, 123, 55-67.	0.8	17
275	Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience, 2016, 327, 146-155.	1.1	57
276	Lrp4 in astrocytes modulates glutamatergic transmission. Nature Neuroscience, 2016, 19, 1010-1018.	7.1	91
277	Influence of early life status epilepticus on the developmental expression profile of the GluA2 subunit of AMPA receptors. Experimental Neurology, 2016, 283, 97-109.	2.0	6
278	Regulation of the cell surface expression of chloride transporters during epileptogenesis. Neuroscience Letters, 2016, 628, 213-218.	1.0	10
279	The pilocarpine model of temporal lobe epilepsy: Marked intrastrain differences in female Sprague–Dawley rats and the effect of estrous cycle. Epilepsy and Behavior, 2016, 61, 141-152.	0.9	23
280	Role of CA3 theta-modulated interneurons during the transition to spontaneous seizures. Experimental Neurology, 2016, 283, 341-352.	2.0	29
281	Deep Brain Stimulation of the Ventral Pallidum Attenuates Epileptiform Activity and Seizing Behavior in Pilocarpine-Treated Rats. Brain Stimulation, 2016, 9, 285-295.	0.7	15
282	ATPergic signalling during seizures and epilepsy. Neuropharmacology, 2016, 104, 140-153.	2.0	86
283	Inhibiting HIF-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus. Cellular Physiology and Biochemistry, 2016, 38, 75-82.	1.1	24
284	Does angiogenesis play a role in the establishment of mesial temporal lobe epilepsy?. International Journal of Developmental Neuroscience, 2016, 49, 31-36.	0.7	20
285	N-methyl-d-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model. Epilepsy Research, 2016, 119, 77-85.	0.8	32
286	Pilocarpine-induced epilepsy alters the expression and daily variation of the nuclear receptor RORα in the hippocampus of rats. Epilepsy and Behavior, 2016, 55, 38-46.	0.9	13
287	CRTC1 nuclear localization in the hippocampus of the pilocarpine-induced status epilepticus model of temporal lobe epilepsy. Neuroscience, 2016, 320, 57-68.	1.1	8
288	Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1335-1345.	1.7	25
289	Association of Microtubule Dynamics with Chronic Epilepsy. Molecular Neurobiology, 2016, 53, 5013-5024.	1.9	25
290	Models of drug-induced epileptiform synchronization in vitro. Journal of Neuroscience Methods, 2016, 260, 26-32.	1.3	54
291	Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats. Cognitive Neurodynamics, 2016, 10, 23-30.	2.3	28

#	Article	IF	CITATIONS
292	Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods, 2016, 260, 2-25.	1.3	93
293	Pharmacological evaluation of novel 1-[4-(4-benzo[1,3]dioxol-5-ylmethyl-piperazin-1-yl)-phenyl]-3-phenyl-urea as potent anticonvulsant and antidepressant agent. Pharmacological Reports, 2016, 68, 250-258.	1.5	14
294	Myeloperoxidase Nuclear Imaging for Epileptogenesis. Radiology, 2016, 278, 822-830.	3.6	24
295	A brain slice experimental model to study the generation and the propagation of focally-induced epileptiform activity. Journal of Neuroscience Methods, 2016, 260, 125-131.	1.3	20
296	Computational models of epileptiform activity. Journal of Neuroscience Methods, 2016, 260, 233-251.	1.3	152
297	Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. Journal of Neuroscience Methods, 2016, 260, 45-52.	1.3	201
298	Microglia–Neuron Communication in Epilepsy. Glia, 2017, 65, 5-18.	2.5	204
299	The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Scientific Reports, 2017, 7, 40127.	1.6	92
300	Heightened cortical excitability in aged rodents with memory impairment. Neurobiology of Aging, 2017, 54, 144-151.	1.5	70
301	Depolarizing γâ€∎minobutyric acid contributes to glutamatergic network rewiring in epilepsy. Annals of Neurology, 2017, 81, 251-265.	2.8	49
302	Quantitative SPM Analysis Involving an Adaptive Template May Be Easily Applied to [18F]FDG PET Images of the Rat Brain. Molecular Imaging and Biology, 2017, 19, 731-735.	1.3	4
303	A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiology of Disease, 2017, 102, 1-10.	2.1	19
304	Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1519-1538.	1.8	74
305	Mice with conditional NeuroD1 knockout display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures. Experimental Neurology, 2017, 293, 190-198.	2.0	31
306	Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice. Neurological Research, 2017, 39, 744-757.	0.6	11
307	A novel device for continuous long-term electroencephalogram recording and drug administration in mice with a nice, powerful and sophisticated wired system. Journal of Neuroscience Methods, 2017, 286, 22-30.	1.3	1
308	Up-regulated BAFF and BAFF receptor expression in patients with intractable temporal lobe epilepsy and a pilocarpine-induced epilepsy rat model. Seizure: the Journal of the British Epilepsy Association, 2017, 48, 79-88.	0.9	7
309	The neuroprotective effect of perampanel in lithium-pilocarpine rat seizure model. Epilepsy Research, 2017, 137, 152-158.	0.8	23

#	Article	IF	CITATIONS
310	Inflammation in the developing rat modulates astroglial reactivity to seizures in the mature brain. Journal of Anatomy, 2017, 231, 366-379.	0.9	10
311	Design and Synthesis of γ- and δ-Lactam M ₁ Positive Allosteric Modulators (PAMs): Convulsion and Cholinergic Toxicity of an M ₁ -Selective PAM with Weak Agonist Activity. Journal of Medicinal Chemistry, 2017, 60, 6649-6663.	2.9	41
312	Myeloid differentiation factor 88 is up-regulated in epileptic brain and contributes to experimental seizures in rats. Experimental Neurology, 2017, 295, 23-35.	2.0	12
313	Circadian clustering of spontaneous epileptic seizures emerges after pilocarpineâ€induced status epilepticus. Epilepsia, 2017, 58, 1159-1171.	2.6	46
314	Early-life status epilepticus acutely impacts select quantitative and qualitative features of neonatal vocalization behavior: Spectrographic and temporal characterizations in C57BL/6 mice. Epilepsy and Behavior, 2017, 72, 58-62.	0.9	13
315	Seizure severityâ€dependent selective vulnerability of the granule cell layer and aberrant neurogenesis in the rat hippocampus. Hippocampus, 2017, 27, 1054-1068.	0.9	19
316	Tubulin βâ€ <scp>III</scp> modulates seizure activity in epilepsy. Journal of Pathology, 2017, 242, 297-308.	2.1	21
317	The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury. Frontiers in Biology, 2017, 12, 124-138.	0.7	11
318	Ginkgo biloba L. attenuates spontaneous recurrent seizures and associated neurological conditions in lithium-pilocarpine rat model of temporal lobe epilepsy through inhibition of mammalian target of rapamycin pathway hyperactivation. Journal of Ethnopharmacology, 2017, 204, 8-17.	2.0	28
319	The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurological Research, 2017, 39, 640-648.	0.6	17
320	The Protective Effect of Aucubin from <i>Eucommia ulmoides</i> Against Status Epilepticus by Inducing Autophagy and Inhibiting Necroptosis. The American Journal of Chinese Medicine, 2017, 45, 557-573.	1.5	46
321	Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research, 2017, 42, 1873-1888.	1.6	250
322	Target-specific alterations in the VIP inhibitory drive to hippocampal GABAergic cells after status epilepticus. Experimental Neurology, 2017, 292, 102-112.	2.0	23
323	EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Molecular Medicine Reports, 2017, 15, 37-46.	1.1	9
324	Smad anchor for receptor activation contributes to seizures in temporal lobe epilepsy. Synapse, 2017, 71, e21957.	0.6	7
325	Hippocampal asymmetry: differences in the left and right hippocampus proteome in the rat model of temporal lobe epilepsy. Journal of Proteomics, 2017, 154, 22-29.	1.2	31
326	Involvement of nitrergic system in anticonvulsant effect of zolpidem in lithium-pilocarpine induced status epilepticus: Evaluation of iNOS and COX-2 genes expression. European Journal of Pharmacology, 2017, 815, 454-461.	1.7	10
327	Persistent seizure control in epileptic mice transplanted with gammaâ€aminobutyric acid progenitors. Annals of Neurology, 2017, 82, 530-542.	2.8	43

#	Article	IF	CITATIONS
328	eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Scientific Reports, 2017, 7, 10563.	1.6	14
329	Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus. ASN Neuro, 2017, 9, 175909141772660.	1.5	10
330	Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model. Experimental Neurology, 2017, 296, 89-98.	2.0	13
331	The effect of CXCR2 inhibition on seizure activity in the pilocarpine epilepsy mouse model. Brain Research Bulletin, 2017, 134, 91-98.	1.4	12
332	An alkaloid extract obtained from Phlegmariurus Saururus induces neuroprotection after status epilepticus. Phytomedicine, 2017, 34, 212-218.	2.3	1
333	Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends in Neurosciences, 2017, 40, 555-571.	4.2	140
334	Epileptic pilocarpineâ€ŧreated rats exhibit aberrant hippocampal EPSPâ€spike potentiation but retain longâ€ŧerm potentiation. Physiological Reports, 2017, 5, e13490.	0.7	9
335	Behavioral changes in models of chemoconvulsant-induced epilepsy: A review. Neuroscience and Biobehavioral Reviews, 2017, 83, 373-380.	2.9	17
336	The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy and Behavior, 2017, 73, 214-235.	0.9	54
337	Down-regulated expression of aquaporin-4 in the cerebellum after status epilepticus. Cognitive Neurodynamics, 2017, 11, 183-188.	2.3	6
338	The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach?. Neurochemical Research, 2017, 42, 1926-1938.	1.6	44
339	Altered Expression of CXCL13 and CXCR5 in Intractable Temporal Lobe Epilepsy Patients and Pilocarpine-Induced Epileptic Rats. Neurochemical Research, 2017, 42, 526-540.	1.6	27
340	New model of pharmacoresistant seizures induced by 3-mercaptopropionic acid in mice. Epilepsy Research, 2017, 129, 8-16.	0.8	15
341	Network Models of Epilepsy-Related Pathological Structural and Functional Alterations in the Dentate Gyrus. , 2017, , 485-503.		0
342	Neocortical/Thalamic In Silico Models of Seizures and Epilepsy. , 2017, , 233-246.		4
343	Antiepileptogenic and Neuroprotective Effects of Pergularia daemia on Pilocarpine Model of Epilepsy. Frontiers in Pharmacology, 2017, 8, 440.	1.6	19
344	Involvement of PPARÎ ³ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Frontiers in Pharmacology, 2017, 8, 676.	1.6	33
345	Good Welfare Practice in Modeling Seizures and Epilepsy. , 2017, , 39-46.		0

#	Article	IF	CITATIONS
346	Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives. Molecules, 2017, 22, 1094.	1.7	52
347	Hippocampal Proteome of Rats Subjected to the Li-Pilocarpine Epilepsy Model and the Effect of Carisbamate Treatment. Pharmaceuticals, 2017, 10, 67.	1.7	11
348	Neurochemical Changes and c-Fos Mapping in the Brain after Carisbamate Treatment of Rats Subjected to Lithium–Pilocarpine-Induced Status Epilepticus. Pharmaceuticals, 2017, 10, 85.	1.7	5
349	Early Gabapentin Treatment during the Latency Period Increases Convulsive Threshold, Reduces Microglial Activation and Macrophage Infiltration in the Lithium-Pilocarpine Model of Epilepsy. Pharmaceuticals, 2017, 10, 93.	1.7	11
350	Disease Modifying Effects of the Spider Toxin Parawixin2 in the Experimental Epilepsy Model. Toxins, 2017, 9, 262.	1.5	9
351	The Pilocarpine Model of Acquired Epilepsy. , 2017, , 625-636.		8
352	Alterations in Properties of Glutamatergic Transmission in the Temporal Cortex and Hippocampus Following Pilocarpine-Induced Acute Seizures in Wistar Rats. Frontiers in Cellular Neuroscience, 2017, 11, 264.	1.8	38
353	Early Seizure Detection by Applying Frequency-Based Algorithm Derived from the Principal Component Analysis. Frontiers in Neuroinformatics, 2017, 11, 52.	1.3	14
354	A Standardized Protocol for Stereotaxic Intrahippocampal Administration of Kainic Acid Combined with Electroencephalographic Seizure Monitoring in Mice. Frontiers in Neuroscience, 2017, 11, 160.	1.4	27
355	The Phosphodiesterase 10A Inhibitor PF-2545920 Enhances Hippocampal Excitability and Seizure Activity Involving the Upregulation of GluA1 and NR2A in Post-synaptic Densities. Frontiers in Molecular Neuroscience, 2017, 10, 100.	1.4	15
356	Alleviation of Oxidative Damage and Involvement of Nrf2-ARE Pathway in Mesodopaminergic System and Hippocampus of Status Epilepticus Rats Pretreated by Intranasal Pentoxifylline. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-18.	1.9	11
357	Strain Effects on Expression of Seizures and Epilepsy. , 2017, , 21-38.		3
358	Mitochondrial Liver Toxicity of Valproic Acid and Its Acid Derivatives Is Related to Inhibition of α-Lipoamide Dehydrogenase. International Journal of Molecular Sciences, 2017, 18, 1912.	1.8	25
359	A Long-Term Treatment with Arachidonyl-2′-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy. International Journal of Molecular Sciences, 2017, 18, 900.	1.8	22
360	Structural and Functional Alterations at Pre-Epileptic Stage Are Closely Associated with Epileptogenesis in Pilocarpine-induced Epilepsy Model. Experimental Neurobiology, 2017, 26, 287-294.	0.7	12
361	Focally Applied Chemoconvulsants. , 2017, , 513-527.		0
362	Cx36 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Epilepsy Research, 2018, 141, 64-72.	0.8	11
363	Phase-amplitude coupling and epileptogenesis in an animal model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2018, 114, 111-119.	2.1	42

#	Article	IF	CITATIONS
364	The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments, 2018, , .	0.2	17
365	Different behavioral and pathological changes between epilepsy-associated depression and primary depression models. Epilepsy and Behavior, 2018, 83, 212-218.	0.9	12
366	<scp>I</scp> nhibition of astroglial connexin43 hemichannels with <scp>TAT</scp> â€ <scp>G</scp> ap19 exerts anticonvulsant effects in rodents. Glia, 2018, 66, 1788-1804.	2.5	50
367	First HPLC method for the simultaneous quantification of levetiracetam, zonisamide, lamotrigine, pentylenetetrazole and pilocarpine in rat plasma and brain. Analytical Methods, 2018, 10, 515-525.	1.3	7
368	Effects of dexamethasone on the Li-pilocarpine model of epilepsy: protection against hippocampal inflammation and astrogliosis. Journal of Neuroinflammation, 2018, 15, 68.	3.1	39
369	Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans?. Toxicology and Applied Pharmacology, 2018, 346, 45-57.	1.3	40
370	Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by Status epilepticus. Epilepsy Research, 2018, 142, 45-52.	0.8	38
371	Acute Changes in Electrophysiological Properties of Cortical Regular-Spiking Cells Following Seizures in a Rat Lithium–Pilocarpine Model. Neuroscience, 2018, 379, 202-215.	1.1	8
372	Animal models of status epilepticus and temporal lobe epilepsy: a narrative review. Reviews in the Neurosciences, 2018, 29, 757-770.	1.4	39
373	Folate homeostasis in epileptic rats. Epilepsy Research, 2018, 142, 64-72.	0.8	6
374	RNA Polymerase 1 Is Transiently Regulated by Seizures and Plays a Role in a Pharmacological Kindling Model of Epilepsy. Molecular Neurobiology, 2018, 55, 8374-8387.	1.9	11
375	Na+, K+-ATPase Activating Antibody Displays in vitro and in vivo Beneficial Effects in the Pilocarpine Model of Epilepsy. Neuroscience, 2018, 377, 98-104.	1.1	9
376	Anticonvulsant effect of argan oil on pilocarpine model induced status epilepticus in wistar rats. Nutritional Neuroscience, 2018, 21, 116-122.	1.5	9
377	Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus. Behavioural Brain Research, 2018, 340, 137-146.	1.2	55
378	Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neuroscience and Biobehavioral Reviews, 2018, 85, 160-175.	2.9	26
379	Interictal oscillations and focal epileptic disorders. European Journal of Neuroscience, 2018, 48, 2915-2927.	1.2	31
380	Status epilepticus triggers long-lasting activation of complement C1q-C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiology of Disease, 2018, 109, 163-173.	2.1	51
381	MicroRNAâ€induced silencing in epilepsy: Opportunities and challenges for clinical application. Developmental Dynamics, 2018, 247, 94-110.	0.8	53

#	Article	IF	CITATIONS
382	Microdialysis and its use in behavioural studies: Focus on acetylcholine. Journal of Neuroscience Methods, 2018, 300, 206-215.	1.3	29
383	Subtle improvement of seizure susceptibility by atorvastatin treatment during epileptogenesis. Pharmacological Reports, 2018, 70, 364-371.	1.5	2
384	Anticonvulsant effect of the hydroethanolic leaf extract of Psydrax subcordata (DC.) Bridson in murine models. Journal of Ethnopharmacology, 2018, 213, 384-394.	2.0	7
385	Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy. Reviews in the Neurosciences, 2018, 29, 333-345.	1.4	5
386	Thalidomide protects against acute pentylenetetrazol and pilocarpine-induced seizures in mice. Journal of Toxicological Sciences, 2018, 43, 671-684.	0.7	8
387	Parawixin2 Protects Hippocampal Cells in Experimental Temporal Lobe Epilepsy. Toxins, 2018, 10, 486.	1.5	7
388	Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS ONE, 2018, 13, e0209829.	1.1	20
389	Microdialysis of Excitatory Amino Acids During EEG Recordings in Freely Moving Rats. Journal of Visualized Experiments, 2018, , .	0.2	1
390	Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy. Drug Design, Development and Therapy, 2018, Volume 12, 2945-2958.	2.0	15
391	Pilocarpine/ascorbic acid interaction in the immature brain: Electrophysiological and oxidative effects in well-nourished and malnourished rats. Brain Research Bulletin, 2018, 142, 414-421.	1.4	10
392	Bioelectrical Activity in the Sleep–Waking Cycle in Rats after Pilocarpine-Induced Status Epilepticus. Neuroscience and Behavioral Physiology, 2018, 48, 854-863.	0.2	0
393	The Novel Effect of Immunomodulator-Clatiramer Acetate on Epileptogenesis and Epileptic Seizures. Cellular Physiology and Biochemistry, 2018, 50, 150-168.	1.1	14
394	Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology, 2018, 143, 186-204.	2.0	41
395	The spatiotemporal expression changes of CB2R in the hippocampus of rats following pilocarpine-induced status epilepticus. Epilepsy Research, 2018, 148, 8-16.	0.8	28
396	Carbachol-Induced theta-like oscillations in the rodent brain limbic system: Underlying mechanisms and significance. Neuroscience and Biobehavioral Reviews, 2018, 95, 406-420.	2.9	9
397	Differential expression of synaptic vesicle protein 2A after status epilepticus and during epilepsy in a lithium-pilocarpine model. Epilepsy and Behavior, 2018, 88, 283-294.	0.9	15
398	A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A Report of the <scp>TASK</scp> 3 Pharmacology Working Group of the <scp>ILAE</scp> / <scp>AES</scp> Joint Translational Task Force. Epilepsia Open, 2018, 3, 53-68.	1.3	30
399	Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis. International Journal of Molecular Sciences, 2018, 19, 3087.	1.8	26

#	Article	IF	CITATIONS
400	HIF-1α is Critical for the Activation of Notch Signaling in Neurogenesis During Acute Epilepsy. Neuroscience, 2018, 394, 206-219.	1.1	24
401	Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Experimental Neurology, 2018, 310, 70-83.	2.0	13
402	Changes in the Expression of Genes of the Glutamate Transporter and Subunits of the NMDA and AMPA Receptors in the Rat Amygdala in the Lithium–Pilocarpine Model of Epilepsy. Neurochemical Journal, 2018, 12, 222-227.	0.2	3
403	The Effects of Ginsenoside Compound K Against Epilepsy by Enhancing the γ-Aminobutyric Acid Signaling Pathway. Frontiers in Pharmacology, 2018, 9, 1020.	1.6	29
404	Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochemical Pharmacology, 2018, 156, 431-443.	2.0	35
405	Alterations in mRNA expression of glutamate receptor subunits and excitatory amino acid transporters following pilocarpine-induced seizures in rats. Neuroscience Letters, 2018, 686, 94-100.	1.0	27
406	Dynamic Changes of Astrocytes and Adenosine Signaling in Rat Hippocampus in Post-status EpilepticusÂModel of Epileptogenesis. Cellular and Molecular Neurobiology, 2018, 38, 1227-1234.	1.7	4
407	The Expression Alteration of BC1 RNA and its Interaction with Eukaryotic Translation Initiation Factor eIF4A Post-Status Epilepticus. Neurochemical Research, 2018, 43, 1328-1338.	1.6	5
408	Altered activity and information flow in the default mode network of pilocarpine-induced epilepsy rats. Brain Research, 2018, 1696, 71-80.	1.1	14
409	Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. International Journal of Neuroscience, 2018, 128, 1086-1096.	0.8	68
410	Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy. PLoS ONE, 2018, 13, e0197955.	1.1	29
411	Hippocampal Pathophysiology: Commonality Shared by Temporal Lobe Epilepsy and Psychiatric Disorders. Neuroscience Journal, 2018, 2018, 1-9.	2.3	38
412	Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. Journal of Neurophysiology, 2018, 119, 1818-1835.	0.9	25
413	The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.	2.0	64
414	Induction of Type 2 Iodothyronine Deiodinase After Status Epilepticus Modifies Hippocampal Gene Expression in Male Mice. Endocrinology, 2018, 159, 3090-3104.	1.4	7
415	Neuroprotective effect of lovastatin through down-regulation of pro-apoptotic Mst1 gene expression in rat model pilocarpine epilepsy. Neurological Research, 2018, 40, 874-882.	0.6	5
416	Anxiolytic and Antiepileptic Properties of the Aqueous Extract of Cissus quadrangularis (Vitaceae) in Mice Pilocarpine Model of Epilepsy. Frontiers in Pharmacology, 2018, 9, 751.	1.6	29
417	ZDHHC8 critically regulates seizure susceptibility in epilepsy. Cell Death and Disease, 2018, 9, 795.	2.7	21

#	Article	IF	CITATIONS
418	A Hydroxypyrone-Based Inhibitor of Metalloproteinase-12 Displays Neuroprotective Properties in Both Status Epilepticus and Optic Nerve Crush Animal Models. International Journal of Molecular Sciences, 2018, 19, 2178.	1.8	13
419	Conflicting Effects of Methylglyoxal and Potential Significance of miRNAs for Seizure Treatment. Frontiers in Molecular Neuroscience, 2018, 11, 70.	1.4	4
420	Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca2+ Activity and Impaired Synaptic Plasticity in the Rat Hippocampus. Frontiers in Molecular Neuroscience, 2018, 11, 215.	1.4	73
421	Microglia after Seizures and in Epilepsy. Cells, 2018, 7, 26.	1.8	103
422	Pilocarpine-Induced Status Epilepticus Is Associated with P-Glycoprotein Induction in Cardiomyocytes, Electrocardiographic Changes, and Sudden Death. Pharmaceuticals, 2018, 11, 21.	1.7	25
423	Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy. Neurochemical Research, 2018, 43, 1269-1282.	1.6	29
424	Attenuating Mâ€current suppression in vivo by a mutant <i>Kcnq2</i> gene knockâ€in reduces seizure burden and prevents status epilepticus–induced neuronal death and epileptogenesis. Epilepsia, 2018, 59, 1908-1918.	2.6	22
425	Lithium affects rat hippocampal electrophysiology and epileptic seizures in a dose dependent manner. Epilepsy Research, 2018, 146, 112-120.	0.8	11
426	Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model. PLoS ONE, 2018, 13, e0194552.	1.1	17
427	Anticonvulsive effects of protodioscin against pilocarpine-induced epilepsy. European Journal of Pharmacology, 2018, 833, 237-246.	1.7	8
428	Inverted-U response of lacosamide on pilocarpine-induced status epilepticus and oxidative stress in C57BL/6 mice is independent of hippocampal collapsin response mediator protein-2. Epilepsy Research, 2018, 145, 93-101.	0.8	17
429	Anatomical imaging of the piriform cortex in epilepsy. Experimental Neurology, 2019, 320, 113013.	2.0	25
430	Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model. Brain, Behavior, and Immunity, 2019, 81, 535-544.	2.0	30
431	Reduced Systemic and Brain Exposure with Inhibited Liver Metabolism of Carbamazepine After Its Long-Term Combination Treatment with Piperine for Epilepsy Control in Rats. AAPS Journal, 2019, 21, 90.	2.2	7
432	Hippocampal CA1 and cortical interictal oscillations in the pilocarpine model of epilepsy. Brain Research, 2019, 1722, 146351.	1.1	13
433	Effects of Three Anti-Seizure Drugs on Cholinergic and Metabolic Activity in Experimental Status Epilepticus. Journal of Pharmacy and Pharmaceutical Sciences, 2019, 22, 340-351.	0.9	6
434	Poster Viewing Sessions PB01-B01 to PB03-V09. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 167-523.	2.4	7
435	An Energy Efficient AdaBoost Cascade Method for Long-Term Seizure Detection in Portable Neurostimulators. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2274-2283.	2.7	12

#	Article	IF	CITATIONS
436	Toward evidenceâ€based severity assessment in rat models with repeated seizures: II. Chemical post–status epilepticus model. Epilepsia, 2019, 60, 2114-2127.	2.6	18
437	Effects of Diazepam and Ketamine on Pilocarpine-Induced Status Epilepticus in Mice. Neuroscience, 2019, 421, 112-122.	1.1	7
438	Taurine/Pilocarpine Interaction in the Malnourished Rat Brain: A Behavioral, Electrophysiological, and Immunohistochemical Analysis. Frontiers in Neuroscience, 2019, 13, 981.	1.4	4
439	Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers. Epilepsia, 2019, 60, 2325-2333.	2.6	9
440	Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Current Neuropharmacology, 2019, 17, 830-842.	1.4	6
441	In Vivo Evaluation of a Fully-Passive Wireless Neurosensing System. , 2019, , .		0
442	Detrimental Effects of HMGB-1 Require Microglial-Astroglial Interaction: Implications for the Status Epilepticus -Induced Neuroinflammation. Frontiers in Cellular Neuroscience, 2019, 13, 380.	1.8	40
443	Piriform cortex ictogenicity in vitro. Experimental Neurology, 2019, 321, 113014.	2.0	9
444	A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. , 2019, 10, 915.		26
445	A novel oxazolidinone derivative PH192 demonstrates anticonvulsant activity in vivo in rats and mice. European Journal of Pharmaceutical Sciences, 2019, 130, 21-26.	1.9	7
446	The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. International Journal of Molecular Sciences, 2019, 20, 577.	1.8	27
447	Over-expression of 5-HT6 Receptor and Activated Jab-1/p-c-Jun Play Important Roles in Pilocarpine-Induced Seizures and Learning-Memory Impairment. Journal of Molecular Neuroscience, 2019, 67, 388-399.	1.1	7
448	Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Research, 2019, 1712, 109-123.	1.1	16
449	Long-Term, Targeted Delivery of GDNF from Encapsulated Cells Is Neuroprotective and Reduces Seizures in the Pilocarpine Model of Epilepsy. Journal of Neuroscience, 2019, 39, 2144-2156.	1.7	29
450	Aucubin Alleviates Seizures Activity in Li-Pilocarpine-Induced Epileptic Mice: Involvement of Inhibition of Neuroinflammation and Regulation of Neurotransmission. Neurochemical Research, 2019, 44, 472-484.	1.6	29
451	Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats. Neurobiology of Disease, 2019, 125, 135-145.	2.1	26
452	Effects of enalapril and losartan alone and in combination with sodium valproate on seizures, memory, and cardiac changes in rats. Epilepsy and Behavior, 2019, 92, 345-352.	0.9	9
453	An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. , 2019, 201, 77-93.		102

#	Article	IF	CITATIONS
454	Subchronic cerebrolysin treatment alleviates cognitive impairments and dendritic arborization alterations of granular neurons in the hippocampal dentate gyrus of rats with temporal lobe epilepsy. Epilepsy and Behavior, 2019, 97, 96-104.	0.9	9
455	Impairments in cognitive functions and emotional and social behaviors in a rat lithium-pilocarpine model of temporal lobe epilepsy. Behavioural Brain Research, 2019, 372, 112044.	1.2	33
456	Upregulation of hippocampal synaptophysin, GFAP and mGluR3 in a pilocarpine rat model of epilepsy with history of prolonged febrile seizure. Journal of Chemical Neuroanatomy, 2019, 100, 101659.	1.0	16
457	Transplanting GABAergic Neurons Differentiated from Neural Stem Cells into Hippocampus Inhibits Seizures and Epileptiform Discharges in Pilocarpine-Induced Temporal Lobe Epilepsy Model. World Neurosurgery, 2019, 128, e1-e11.	0.7	9
458	Antimicrobial, cytotoxicity, mutagenicity and anti-epileptic potential of ethanol extracts of a multipurpose medicinal plant Dalbergia sissoo. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101155.	1.5	18
459	Hydrogen Alleviates Necroptosis and Cognitive Deficits in Lithium–Pilocarpine Model of Status Epilepticus. Cellular and Molecular Neurobiology, 2019, 39, 857-869.	1.7	18
460	Assessment of the protective effect of KNâ€93 drug in systemic epilepsy disorders induced by pilocarpine in male rat. Journal of Cellular Biochemistry, 2019, 120, 15906-15914.	1.2	2
461	Dexamethasone ameliorates the damage of hippocampal filamentous actin cytoskeleton but is not sufficient to cease epileptogenesis in pilocarpine induced epileptic mice. Epilepsy Research, 2019, 154, 26-33.	0.8	6
462	Proconvulsant effects of sildenafil citrate on pilocarpine-induced seizures: Involvement of cholinergic, nitrergic and pro-oxidant mechanisms. Brain Research Bulletin, 2019, 149, 60-74.	1.4	7
463	Context-Specific Switch from Anti- to Pro-epileptogenic Function of the P2Y ₁ Receptor in Experimental Epilepsy. Journal of Neuroscience, 2019, 39, 5377-5392.	1.7	37
464	The Anticonvulsant Effects of Baldrinal on Pilocarpine-Induced convulsion in Adult Male Mice. Molecules, 2019, 24, 1617.	1.7	13
465	ALG13 Deficiency Associated with Increased Seizure Susceptibility and Severity. Neuroscience, 2019, 409, 204-221.	1.1	19
466	Proliferation of NG2 cells in the epileptic hippocampus. Epilepsy Research, 2019, 152, 67-72.	0.8	5
467	Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Frontiers in Cellular Neuroscience, 2019, 13, 77.	1.8	59
468	Effect of newer anti-epileptic drugs (AEDs) on the cognitive status in pentylenetetrazol induced seizures in a zebrafish model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 483-493.	2.5	27
469	Role of DNA Methylation and Adenosine in Ketogenic Diet for Pharmacoresistant Epilepsy: Focus on Epileptogenesis and Associated Comorbidities. Frontiers in Neurology, 2019, 10, 119.	1.1	22
470	WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT _{2C} /NMDA/CB ₁ Receptors in the Rat Hippocampus. ACS Chemical Neuroscience, 2019, 10, 3296-3306.	1.7	15
471	Baicalein improves cognitive deficits and hippocampus impairments in temporal lobe epilepsy rats. Brain Research, 2019, 1714, 111-118.	1.1	27

#	Article	IF	CITATIONS
472	From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiology of Disease, 2019, 129, 169-181.	2.1	17
473	Annexin A1-derived peptide Ac2-26 in a pilocarpine-induced status epilepticus model: anti-inflammatory and neuroprotective effects. Journal of Neuroinflammation, 2019, 16, 32.	3.1	21
474	Bumetanide Prevents Brain Trauma-Induced Depressive-Like Behavior. Frontiers in Molecular Neuroscience, 2019, 12, 12.	1.4	23
475	Adult Neurogenesis in Health and Disease. , 2019, , 183-219.		0
476	Kininogen Level in the Cerebrospinal Fluid May Be a Potential Biomarker for Predicting Epileptogenesis. Frontiers in Neurology, 2019, 10, 37.	1.1	0
477	ESLICARBAZEPINE AND MEMORY IMPAIRMENT IN TEMPORAL LOBE EPILEPSY: A STUDY ON THE ATTENUATING EFFECT OF NEFIRACETAM. Asian Journal of Pharmaceutical and Clinical Research, 0, , 63-67.	0.3	1
478	Ameliorative potential of Anacyclus pyrethrum extract in generalized seizures in rat: Possible cholinergic mediated mechanism. Bangladesh Journal of Pharmacology, 2019, 14, 188-195.	0.1	7
479	Recording Critical Epilepsy Indicators using a Fully-Passive Wireless System. , 2019, , .		2
480	Changes in Functional Properties of Rat Hippocampal Neurons Following Pentylenetetrazole-induced Status Epilepticus. Neuroscience, 2019, 399, 103-116.	1.1	20
481	High-frequency oscillations and focal seizures in epileptic rodents. Neurobiology of Disease, 2019, 124, 396-407.	2.1	25
482	Changing effect of GABA B receptor antagonist CGP46381 after status epilepticus in immature rats. Epilepsy Research, 2019, 149, 17-20.	0.8	1
483	Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects in rats after lithium-pilocarpine-induced status epilepticus. Journal of Pharmacy and Pharmacology, 2019, 71, 390-399.	1.2	41
484	Calpain activation and neuronal death during early epileptogenesis. Neurobiology of Disease, 2019, 124, 141-151.	2.1	11
485	Gene Expression Profiling of Two Epilepsy Models Reveals the ECM/Integrin signaling Pathway is Involved in Epiletogenesis. Neuroscience, 2019, 396, 187-199.	1.1	18
486	Intravenously Administered Ganaxolone Blocks Diazepam-Resistant Lithium-Pilocarpine–Induced Status Epilepticus in Rats: Comparison with Allopregnanolone. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 326-337.	1.3	38
487	Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiology of Disease, 2019, 121, 177-186.	2.1	23
488	Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain, Behavior, and Immunity, 2019, 75, 84-93.	2.0	36
489	Pinellia Total Alkaloids Modulate the GABAergic System in Hippocampal Formation on Pilocarpine-Induced Epileptic Rats. Chinese Journal of Integrative Medicine, 2020, 26, 138-145.	0.7	10

#	Article	IF	CITATIONS
490	Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiology of Disease, 2020, 133, 104443.	2.1	39
491	Upregulated SHPâ€2 expression in the epileptogenic zone of temporal lobe epilepsy and various effects of SHP099 treatment on a pilocarpine model. Brain Pathology, 2020, 30, 373-385.	2.1	6
492	Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-typeâ€) K ⁺ currents in neurons. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1256-1273.	2.4	37
493	The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpineâ€induced status epileptics. Journal of Comparative Neurology, 2020, 528, 18-35.	0.9	7
494	Activation of the phagocyte NADPH oxidase/NOX2 and myeloperoxidase in the mouse brain during pilocarpine-induced temporal lobe epilepsy and inhibition by ketamine. Inflammopharmacology, 2020, 28, 487-497.	1.9	12
495	Functional responses of the hippocampus to hyperexcitability depend on directed, neuronâ€specific KCNQ2 K ⁺ channel plasticity. Hippocampus, 2020, 30, 435-455.	0.9	8
496	The polarity and properties of radial gliaâ€like neural stem cells are altered by seizures with status epilepticus: Study using an improved mouse pilocarpine model of epilepsy. Hippocampus, 2020, 30, 250-262.	0.9	5
497	High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochemica, 2020, 122, 151485.	0.9	16
498	Ex vivo multi-electrode analysis reveals spatiotemporal dynamics of ictal behavior at the infiltrated margin of glioma. Neurobiology of Disease, 2020, 134, 104676.	2.1	9
499	Aberrant Connectivity During Pilocarpine-Induced Status Epilepticus. International Journal of Neural Systems, 2020, 30, 1950029.	3.2	14
500	Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nature Neuroscience, 2020, 23, 229-238.	7.1	126
501	Alteration of Gene Associated with Retinoid-interferon-induced Mortality-19-expressing Cell Types in the Mouse Hippocampus Following Pilocarpine-induced Status Epilepticus. Neuroscience, 2020, 425, 49-58.	1.1	2
502	SGK1.1 Reduces Kainic Acid-Induced Seizure Severity and Leads to Rapid Termination of Seizures. Cerebral Cortex, 2020, 30, 3184-3197.	1.6	8
503	Neuroprotective effects and improvement of learning and memory elicited by erythravine and 11α-hydroxy-erythravine against the pilocarpine model of epilepsy. Life Sciences, 2020, 240, 117072.	2.0	4
504	Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network. ACS Nano, 2020, 14, 664-675.	7.3	58
505	High concordance between hippocampal transcriptome of the mouse intraâ€amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia, 2020, 61, 2795-2810.	2.6	17
506	Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. Journal of Neuroscience Methods, 2020, 346, 108911.	1.3	6
507	Spatiotemporal Expression of SphK1 and S1PR2 in the Hippocampus of Pilocarpine Rat Model and the Epileptic Foci of Temporal Lobe Epilepsy. Frontiers in Cell and Developmental Biology, 2020, 8, 800.	1.8	8

#	Article	IF	CITATIONS
508	The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neuroscience and Biobehavioral Reviews, 2020, 119, 422-439.	2.9	16
509	Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mechanisms of Ageing and Development, 2020, 192, 111361.	2.2	7
510	Depression and Anxiety in the Epilepsies: from Bench to Bedside. Current Neurology and Neuroscience Reports, 2020, 20, 41.	2.0	22
511	Enhanced Susceptibility to Chemoconvulsant-Induced Seizures in Ganglioside GM3 Synthase Knockout Mice. ASN Neuro, 2020, 12, 175909142093817.	1.5	7
512	Amygdala Low-Frequency Stimulation Reduces Pathological Phase-Amplitude Coupling in the Pilocarpine Model of Epilepsy. Brain Sciences, 2020, 10, 856.	1.1	10
513	Oxidative stress in epileptogenesis: Febrile seizures, chemoconvulsant pilocarpine, and electrical stimulation. , 2020, , 81-94.		1
514	The study of microtubule dynamics and stability at the postsynaptic density in a rat pilocarpine model of temporal lobe epilepsy. Annals of Translational Medicine, 2020, 8, 863-863.	0.7	7
515	The evolution of the pilocarpine animal model of status epilepticus. Heliyon, 2020, 6, e04557.	1.4	36
516	Microglia depletion exacerbates acute seizures and hippocampal neuronal degeneration in mouse models of epilepsy. American Journal of Physiology - Cell Physiology, 2020, 319, C605-C610.	2.1	31
517	Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy. Brain Structure and Function, 2020, 225, 2799-2813.	1.2	1
518	SP1 activated-IncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis. Epilepsy Research, 2020, 168, 106476.	0.8	15
519	Adenosine and Ketogenic Treatments. Journal of Caffeine and Adenosine Research, 2020, 10, 104-109.	0.8	12
520	Glutamate Transporters (EAAT-1–3) as a Factor in the Pathogenesis and a Potential Therapeutic Target in Epilepsy. Neuroscience and Behavioral Physiology, 2020, 50, 777-786.	0.2	0
521	Lactation in large litters influences anxiety, memory, and spreading depression in adult male rats that were chronically subjected to a non-convulsive pilocarpine dose. Nutritional Neuroscience, 2022, 25, 846-856.	1.5	2
522	Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain, Behavior, & Immunity - Health, 2020, 8, 100132.	1.3	11
523	Lrp4 in hippocampal astrocytes serves as a negative feedback factor in seizures. Cell and Bioscience, 2020, 10, 135.	2.1	3
524	Sensitivity of Rodent Microglia to Kynurenines in Models of Epilepsy and Inflammation In Vivo and In Vitro: Microglia Activation Is Inhibited by Kynurenic Acid and the Synthetic Analogue SZR104. International Journal of Molecular Sciences, 2020, 21, 9333.	1.8	8
525	Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS Journal, 2020, 287, 4822-4837.	2.2	22

ARTICLE IF CITATIONS Neuronal Oscillations of Wakefulness and Sleep., 2020,,. 526 1 Effects of P-gpMAbNano-structured material nanoparticles on epilepsy and expression of SRY-related 0.2 HMG Box 21 in epilepsy. Materials Express, 2020, 10, 585-593. Loss of Protection by Antiepileptic Drugs in Lipopolysaccharide-primed Pilocarpine-induced Status 528 1.1 15 Epilepticus is Mediated via Inflammatory Signalling. Neuroscience, 2020, 442, 1-16. Revisiting the Impact of Neurodegenerative Proteins in Epilepsy: Focus on Alpha-Synuclein, Beta-Amyloid, and Tau. Biology, 2020, 9, 122. A Proline Derivative-Enriched Fraction from Sideroxylon obtusifolium Protects the Hippocampus from Intracerebroventricular Pilocarpine-Induced Injury Associated with Status Epilepticus in Mice. 530 1.8 6 International Journal of Molecular Sciences, 2020, 21, 4188. 2â€Deoxyglucose terminates pilocarpineâ€induced status epilepticus in neonatal rats. Epilepsia, 2020, 61, 1528-1537. 2.6 Increased Oxidative Stress Toxicity and Lowered Antioxidant Defenses in Temporal Lobe Epilepsy and 532 Mesial Temporal Sclerosis: Associations with Psychiatric Comorbidities. Molecular Neurobiology, 1.9 17 2020, 57, 3334-3348. PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A–PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation. International 1.8 Journal of Molecular Sciences, 2020, 21, 2094 The Role of NLRP3 and IL-1Î² in Refractory Epilepsy Brain Injury. Frontiers in Neurology, 2019, 10, 1418. 534 1.1 21 Phenytoin-loaded lipid-core nanocapsules improve the technological properties and in vivo 3.8 performance of fluidised bed granules. Materials Science and Engineering C, 2020, 111, 110753. Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe 536 3.7 11 epilepsy. Brain, 2020, 143, 2139-2153. Neuroinfl ammatory Processes Affect Structural Changes in the Amygdala of Rats in a Lithium-Pilocarpine Model of Epilepsy. Neuroscience and Behavioral Physiology, 2020, 50, 625-632. 537 0.2 The Runx1/Notch1 Signaling Pathway Participates in M1/M2 Microglia Polarization in a Mouse Model of 538 1.6 10 Temporal Lobe Epilepsy and in BV-2 Cells. Neurochemical Research, 2020, 45, 2204-2216. Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a 14 mouse pilocarpine model of status epilepticus. Neuropharmacology, 2020, 176, 108227. The antiepileptic effect of Gastrodiae Rhizoma through modulating overexpression of mTOR and 540 8 1.3 attenuating astrogliosis in pilocarpine mice model. Epilepsia Open, 2020, 5, 50-60. Selective hyperactivation of JNK2 in an animal model of temporal lobe epilepsy. IBRO Reports, 2020, 8, 541 48-55. Ketamine, at low dose, decrease behavioural alterations in epileptic diseases induced by pilocarpine in 542 0.8 3 mice. International Journal of Neuroscience, 2020, 130, 1118-1124. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior 543 49 and mechanisms to clinical insights. Neuroscience and Biobehavioral Reviews, 2020, 111, 166-182.

#	Article	IF	CITATIONS
544	Gliotransmission: A Novel Target for the Development of Antiseizure Drugs. Neuroscientist, 2020, 26, 293-309.	2.6	16
545	Neural Activities in Multiple Rat Brain Regions in Lithium-Pilocarpine-Induced Status Epilepticus Model. Frontiers in Molecular Neuroscience, 2019, 12, 323.	1.4	13
546	Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model. Journal of Neuroinflammation, 2020, 17, 43.	3.1	31
547	Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y1 Antagonism in Mice. Frontiers in Pharmacology, 2019, 10, 1558.	1.6	16
548	NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence. Neuropathology and Applied Neurobiology, 2020, 46, 770-785.	1.8	33
549	Antiepileptic potential of Bacopa monnieri in the rat brain during PTZ-induced epilepsy with reference to cholinergic system and ATPases. Journal of Traditional and Complementary Medicine, 2021, 11, 137-143.	1.5	13
550	Longâ€lasting tagging of neurons activated by seizures or cocaine administration in Egr1â€CreER ^{T2} transgenic mice. European Journal of Neuroscience, 2021, 53, 1450-1472.	1.2	4
551	Deciphering key regulators involved in epilepsyâ€induced cardiac damage through whole transcriptome and proteome analysis in a rat model. Epilepsia, 2021, 62, 504-516.	2.6	17
552	The actin binding protein α-actinin-2 expression is associated with dendritic spine plasticity and migrating granule cells in the rat dentate gyrus following pilocarpine-induced seizures. Experimental Neurology, 2021, 335, 113512.	2.0	5
553	Vascular endothelial growth factor receptorâ€3 regulates astroglial glutamate transporterâ€1 expression via <scp>mTOR</scp> activation in reactive astrocytes following pilocarpineâ€induced status epilepticus. Glia, 2021, 69, 296-309.	2.5	10
554	Limitations of animal epilepsy research models: Can epileptic human tissue provide translational benefit?. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 451-462.	0.9	6
556	Modeling of post-traumatic epilepsy and experimental research aimed at its prevention. Brazilian Journal of Medical and Biological Research, 2021, 54, e10656.	0.7	5
557	Methods for the Screening of New Chemical Entities for Deciphering Neuroinflammatory and Associated Pathways in Seizures: An In Vitro Perspective. Neuromethods, 2021, , 29-53.	0.2	1
558	Methods to Investigate Seizures and Associated Cognitive Decline Using Zebrafish Model. Neuromethods, 2021, , 221-232.	0.2	0
559	Neuroproteomics in Epilepsy: What Do We Know so Far?. Frontiers in Molecular Neuroscience, 2020, 13, 604158.	1.4	19
560	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	4.7	107
561	Seizure activity and brain damage in a model of focal non onvulsive <i>status epilepticus</i> . Neuropathology and Applied Neurobiology, 2021, 47, 679-693.	1.8	9
562	Methods for the Induction of Status Epilepticus and Temporal Lobe Epilepsy in Rodents: The Kainic Acid Model and the Pilocarpine Model. Neuromethods, 2021, , 121-144.	0.2	1

#	Article	IF	CITATIONS
563	Evolution of interictal spiking during the latent period in a mouse model of mesial temporal lobe epilepsy. Current Research in Neurobiology, 2021, 2, 100008.	1.1	7
565	Heat-Shock Induces Granule Cell Dispersion and Microgliosis in Hippocampal Slice Cultures. Frontiers in Cell and Developmental Biology, 2021, 9, 626704.	1.8	5
566	Indoleamine-2,3-Dioxygenase 1 Deficiency Suppresses Seizures in Epilepsy. Frontiers in Cellular Neuroscience, 2021, 15, 638854.	1.8	10
568	The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. International Journal of Molecular Sciences, 2021, 22, 3149.	1.8	11
569	The Kainic Acid Models of Temporal Lobe Epilepsy. ENeuro, 2021, 8, ENEURO.0337-20.2021.	0.9	86
570	Dynamics of longitudinal dentate gyrus axons associated with seizure. Journal of Physiology, 2021, 599, 2273-2281.	1.3	6
571	Absence of RNAâ€binding protein FXR2P prevents prolonged phase of kainateâ€induced seizures. EMBO Reports, 2021, 22, e51404.	2.0	4
572	Mecamylamine inhibits seizure-like activity in CA1-CA3 hippocampus through antagonism to nicotinic receptors. PLoS ONE, 2021, 16, e0240074.	1.1	0
573	Enriched environment ameliorates chronic temporal lobe epilepsyâ€induced behavioral hyperexcitability and restores synaptic plasticity in CA3–CA1 synapses in male Wistar rats. Journal of Neuroscience Research, 2021, 99, 1646-1665.	1.3	9
574	Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals, 2021, 14, 376.	1.7	1
575	Gastrodin alleviates seizure severity and neuronal excitotoxicities in the rat lithium-pilocarpine model of temporal lobe epilepsy via enhancing GABAergic transmission. Journal of Ethnopharmacology, 2021, 269, 113751.	2.0	28
576	Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight, 2021, 6, .	2.3	47
578	Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. International Journal of Molecular Sciences, 2021, 22, 3860.	1.8	18
579	Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules, 2021, 26, 2258.	1.7	23
580	Alkaline brain pH shift in rodent lithium-pilocarpine model of epilepsy with chronic seizures. Brain Research, 2021, 1758, 147345.	1.1	5
581	C-11, a New Antiepileptic Drug Candidate: Evaluation of the Physicochemical Properties and Impact on the Protective Action of Selected Antiepileptic Drugs in the Mouse Maximal Electroshock-Induced Seizure Model. Molecules, 2021, 26, 3144.	1.7	3
582	Evaluation of the anticonvulsant and neuroprotective effect of intracerebral administration of growth hormone in rats. NeurologÃa, 2024, 39, 1-9.	0.3	1
583	Altered Protein Profiles During Epileptogenesis in the Pilocarpine Mouse Model of Temporal Lobe Epilepsy. Frontiers in Neurology, 2021, 12, 654606.	1.1	9

#	Article	IF	CITATIONS
584	Control of Brain State Transitions with a Photoswitchable Muscarinic Agonist. Advanced Science, 2021, 8, e2005027.	5.6	8
585	Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals, 2021, 14, 525.	1.7	10
586	In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy. Micromachines, 2021, 12, 659.	1.4	6
587	Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Reports, 2021, 35, 109229.	2.9	20
588	An inventory of basic research in temporal lobe epilepsy. Revue Neurologique, 2021, 177, 1069-1081.	0.6	4
589	Effects of fish oil supplementation on spatial memory in rats with pilocarpineâ€induced epilepsy assessed using the Morris Water Maze test. Epileptic Disorders, 2021, 23, 476-484.	0.7	1
590	Excitatory synaptic transmission in hippocampal area CA1 is enhanced then reduced as chronic epilepsy progresses. Neurobiology of Disease, 2021, 154, 105343.	2.1	7
591	The Role or NMDA Receptors in Epileptogenesis. Neuroscience and Behavioral Physiology, 2021, 51, 793-806.	0.2	0
592	Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. Journal of Inflammation Research, 2021, Volume 14, 3367-3392.	1.6	16
593	Alterations in mRNA and Protein Expression of Glutamate Receptor Subunits Following Pentylenetetrazole-induced Acute Seizures in Young Rats. Neuroscience, 2021, 468, 1-15.	1.1	9
594	Combination of Matching Responsive Stimulations of Hippocampus and Subiculum for Effective Seizure Suppression in Temporal Lobe Epilepsy. Frontiers in Neurology, 2021, 12, 638795.	1.1	3
595	Longitudinal changes in gray and white matter microstructure during epileptogenesis in pilocarpine-induced epileptic rats. Seizure: the Journal of the British Epilepsy Association, 2021, 90, 130-140.	0.9	9
596	Exercise-linked consequences on epilepsy. Epilepsy and Behavior, 2021, 121, 108079.	0.9	21
597	Brain pathology in focal status epilepticus: evidence from experimental models. Neuroscience and Biobehavioral Reviews, 2021, 131, 834-846.	2.9	6
598	Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Frontiers in Cellular Neuroscience, 2021, 15, 725693.	1.8	14
599	Non-invasive, neurotoxic surgery reduces seizures in a rat model of temporal lobe epilepsy. Experimental Neurology, 2021, 343, 113761.	2.0	6
600	Cellular, molecular, and therapeutic characterization of pilocarpine-induced temporal lobe epilepsy. Scientific Reports, 2021, 11, 19102.	1.6	7
601	Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiology of Disease, 2021, 158, 105446.	2.1	6

#	Article	IF	Citations
602	An aqueous extract of Canarium schweinfurthii attenuates seizures and potentiates sleep in mice: Evidence for involvement of GABA Pathway. Biomedicine and Pharmacotherapy, 2021, 142, 111973.	2.5	9
603	Characterization of metabolic activity induced by kainic acid in adult rat whole brain at the early stage: A 18FDG-PET study. Brain Research, 2021, 1769, 147621.	1.1	0
604	Brain injuries can set up an epileptogenic neuronal network. Neuroscience and Biobehavioral Reviews, 2021, 129, 351-366.	2.9	3
605	Down-regulation of AMPA receptors and long-term potentiation during early epileptogenesis. Epilepsy and Behavior, 2021, 124, 108320.	0.9	7
606	The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neuroscience and Biobehavioral Reviews, 2021, 130, 274-291.	2.9	41
607	Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Research, 2021, 1772, 147668.	1.1	14
608	Translational research—from basic science to an approved therapeutic—an overview. , 2021, , 663-681.		1
610	Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia, 2021, 62, S32-S48.	2.6	7
611	Are Changes in Synaptic Function That Underlie Hyperexcitability Responsible for Seizure Activity?. Advances in Experimental Medicine and Biology, 2014, 813, 185-194.	0.8	5
612	Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118745.	1.9	20
613	Antagomirs targeting miR-142–5p attenuate pilocarpine-induced status epilepticus in mice. Experimental Cell Research, 2020, 393, 112089.	1.2	16
614	Implication of sestrin3 in epilepsy and its comorbidities. Brain Communications, 2021, 3, fcaa130.	1.5	5
615	Knockout of Transient Receptor Potential Melastatin 4 Channel Mitigates Cerebral Edema and Neuronal Injury After Status Epilepticus in Mice. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1354-1364.	0.9	8
616	Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. Journal of Clinical Investigation, 2018, 129, 310-323.	3.9	69
617	Treadmill exercise prevents GABAergic neuronal loss with suppression of neuronal activation in the pilocarpine-induced epileptic rats. Journal of Exercise Rehabilitation, 2015, 11, 80-86.	0.4	20
618	Taenia larvae possess distinct acetylcholinesterase profiles with implications for host cholinergic signalling. PLoS Neglected Tropical Diseases, 2020, 14, e0008966.	1.3	4
619	Acute Alterations of Somatodendritic Action Potential Dynamics in Hippocampal CA1 Pyramidal Cells after Kainate-Induced Status Epilepticus in Mice. PLoS ONE, 2011, 6, e26664.	1.1	7
620	Protective but Not Anticonvulsant Effects of Ghrelin and JMV-1843 in the Pilocarpine Model of Status epilepticus. PLoS ONE, 2013, 8, e72716.	1.1	35

#	Article	IF	CITATIONS
621	STE20/SPS1-Related Proline/Alanine-Rich Kinase Is Involved in Plasticity of GABA Signaling Function in a Mouse Model of Acquired Epilepsy. PLoS ONE, 2013, 8, e74614.	1.1	12
622	Reciprocal Regulation of Epileptiform Neuronal Oscillations and Electrical Synapses in the Rat Hippocampus. PLoS ONE, 2014, 9, e109149.	1.1	12
623	Diurnal Variation Has Effect on Differential Gene Expression Analysis in the Hippocampus of the Pilocarpine-Induced Model of Mesial Temporal Lobe Epilepsy. PLoS ONE, 2015, 10, e0141121.	1.1	14
624	A Low Mortality, High Morbidity Reduced Intensity Status Epilepticus (RISE) Model of Epilepsy and Epileptogenesis in the Rat. PLoS ONE, 2016, 11, e0147265.	1.1	23
625	The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation. PLoS ONE, 2016, 11, e0147293.	1.1	11
626	Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process. PLoS ONE, 2017, 12, e0182765.	1.1	10
627	Role of astroglial Kir4.1 channels in the pathogenesis and treatment of epilepsy. Therapeutic Targets for Neurological Diseases, 0, , .	2.2	7
628	The subiculum and its role in focal epileptic disorders. Reviews in the Neurosciences, 2021, 32, 249-273.	1.4	8
629	Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures. ENeuro, 2017, 4, ENEURO.0130-17.2017.	0.9	10
630	Mechanisms of Epileptiform Synchronization in Cortical Neuronal Networks. Current Medicinal Chemistry, 2014, 21, 653-662.	1.2	28
631	Monocytes as Carriers of Magnetic Nanoparticles for Tracking Inflammation in the Epileptic Rat Brain. Current Drug Delivery, 2019, 16, 637-644.	0.8	12
632	Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Current Neuropharmacology, 2019, 17, 926-946.	1.4	190
633	Spontaneous Recurrent Seizures Mediated Cardiac Dysfunction via mTOR Pathway Upregulation: A Putative Target for SUDEP Management. CNS and Neurological Disorders - Drug Targets, 2019, 18, 555-565.	0.8	10
634	The Repeated Flurothyl Seizure Model in Mice. Bio-protocol, 2017, 7, .	0.2	18
635	Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus. Iranian Biomedical Journal, 2018, 22, 264-74.	0.4	1
636	and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iranian Journal of Basic Medical Sciences, 2017, 20, 538-551.	1.0	42
637	Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus. Iranian Biomedical Journal, 2018, 22, 264-274.	0.4	4
638	2-Arachidonoylglycerol enrichment Reduced Epileptiform Activity of the Rat Hippocampus induced with Pentylenetetrazol. Journal of Advances in Medical and Biomedical Research, 2018, 26, 21-27.	0.1	3

#	Article	IF	CITATIONS
639	CB2R orchestrates neuronal autophagy through regulation of the mTOR signaling pathway in the hippocampus of developing rats with status epilepticus. International Journal of Molecular Medicine, 2020, 45, 475-484.	1.8	7
640	Modulation Effects of α-Asarone on the GABA homeostasis in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. International Journal of Pharmacology, 2012, 9, 24-32.	0.1	3
641	The Role of Gastrodin on Hippocampal Neurons after N-Methyl-D-Aspartate Excitotoxicity and Experimental Temporal Lobe Seizures. Chinese Journal of Physiology, 2016, 59, 156-164.	0.4	14
642	Increased expression of Notch1 in temporal lobe epilepsy: animal models and clinical evidence. Neural Regeneration Research, 2014, 9, 526.	1.6	16
643	The effects of minocycline on hippocampus in lithium-pilocarpine induced status epilepticus in rat: relations with microglial/astrocytic activation and serum s100b level. Turkish Neurosurgery, 2018, 29, 95-105.	0.1	4
644	Antioxidant Treatments: Effect on Behaviour, Histopathological and Oxidative Stress in Epilepsy Model. , 0, , .		1
645	Pericardial Injection of Kainic Acid Induces a Chronic Epileptic State in Larval Zebrafish. Frontiers in Molecular Neuroscience, 2021, 14, 753936.	1.4	10
646	Inhibition of Glutamate Release, but Not of Glutamine Recycling to Glutamate, Is Involved in Delaying the Onset of Initial Lithium-Pilocarpine-Induced Seizures in Young Rats by a Non-Convulsive MSO Dose. International Journal of Molecular Sciences, 2021, 22, 11127.	1.8	3
647	Anticonvulsive and Antioxidant Effects of Pioglitazone on Pilocarpine-induced Seizures in Mice. Iranian Journal of Toxicology, 2021, 15, 271-278.	0.1	4
648	In vitro Oscillation Patterns Throughout the Hippocampal Formation in a Rodent Model of Epilepsy. Neuroscience, 2021, 479, 1-21.	1.1	6
649	Vezatin regulates seizures by controlling AMPAR-mediated synaptic activity. Cell Death and Disease, 2021, 12, 936.	2.7	5
651	Why—and How—Do We Approach Basic Epilepsy Research?. , 2012, , 24-38.		3
652	Intracerebral Microdialysis in the Study of Limbic Seizure Mechanisms and Antiepileptic Drug Action Using Freely Moving Rats. Neuromethods, 2013, , 321-337.	0.2	0
653	Anticonvulsant and in vitro antioxidant activities of Momordica cissoides L. (Cucurbitaceae). Journal of Applied Pharmaceutical Science, 0, , 117-123.	0.7	1
654	Translating regenerative medicine techniques for the treatment of epilepsy. Brain Circulation, 2017, 3, 156.	0.7	1
655	Status Epilepticus - Lessons and Challenges from Animal Models. , 2017, , 3-17.		1
657	Non-genetic in vivo experimental models of epilepsy and vagus nerve stimulation. Translational Medicine, 2018, 5, 36-44.	0.1	1
661	Advances in the use of GABAergic interneurons for the treatment of epilepsy. Journal of Stem Cell Therapy and Transplantation, 2019, 3, 009-022.	0.2	0

#	Article	IF	CITATIONS
664	EXPERIMENTAL MODELS IN THE STUDY OF THE MECHANISMS AND CONSEQUENCES OF EPILEPTIC SEIZURES IN NEONATAL PERIOD OF LIFE. Fiziolohichnyi Zhurnal (Kiev, Ukraine: 1994), 2020, 66, 93-100.	0.1	0
666	Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. Journal of Neuroscience Research, 2022, 100, 413-443.	1.3	6
667	Changes in the expression of endothelial monocyte‑activating polypeptide II in the rat hippocampus following status epilepticus. International Journal of Molecular Medicine, 2020, 47, 699-707.	1.8	7
668	Induction of Temporal Lobe Epilepsy in Mice with Pilocarpine. Bio-protocol, 2020, 10, e3533.	0.2	11
669	Pathological High-Frequency Oscillations in Mesial Temporal Lobe Epilepsy. , 2020, , 99-116.		0
670	Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Experimental Neurology, 2022, 347, 113916.	2.0	10
671	Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study. International Journal of Biological Macromolecules, 2021, 193, 1457-1470.	3.6	10
672	Substantial outcome improvement using a refined pilocarpine mouse model of temporal lobe epilepsy. Neurobiology of Disease, 2021, 161, 105547.	2.1	5
673	Increased expression of Rho-associated protein kinase 2 confers astroglial Stat3 pathway activation during epileptogenesis. Neuroscience Research, 2022, 177, 25-37.	1.0	2
676	The N-Methyl-(2S, 4R)-trans-4-hydroxy-L-proline-Enriched Methanol Fraction from Sideroxylon obtusifolium Shows an Anticonvulsant Activity Associated with its Anti-inflammatory/Antioxidant Actions. Planta Medica International Open, 2020, 07, e158-e169.	0.3	3
678	Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Frontiers in Immunology, 2021, 12, 739452.	2.2	2
679	The Discordance between Network Excitability and Cognitive Performance Following Vigabatrin Treatment during Epileptogenesis. Life, 2021, 11, 1213.	1.1	2
680	Characterizing Hippocampal Oscillatory Signatures Underlying Seizures in Temporal Lobe Epilepsy. Frontiers in Behavioral Neuroscience, 2021, 15, 785328.	1.0	4
681	Ultra‣ow Cost, Facile Fabrication of Transparent Neural Electrode Array for Electrocorticography with Photoelectric Artifactâ€Free Optogenetics. Advanced Functional Materials, 2022, 32, .	7.8	34
682	The Use of Fourier Transform Infrared Microspectroscopy for the Determination of Biochemical Anomalies of the Hippocampal Formation Characteristic for the Kindling Model of Seizures. ACS Chemical Neuroscience, 2021, 12, 4564-4579.	1.7	5
683	Neuroregenerative gene therapy to treat temporal lobe epilepsy in a rat model. Progress in Neurobiology, 2022, 208, 102198.	2.8	26
684	Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis. PLoS ONE, 2021, 16, e0260482.	1.1	2
685	Structural changes in the neocortex as correlates of variations in EEG spectra and seizure susceptibility in rat brains with different degrees of dysplasia. Journal of Comparative Neurology, 2021, , .	0.9	1

#	Article	IF	CITATIONS
686	Cytokine profile in the peripheral blood and the brain in patients with focal drug-resistant epilepsy. SeÄenovskij Vestnik, 2022, 12, 39-50.	0.3	1
687	MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium–Pilocarpine Model of Epilepsy. International Journal of Molecular Sciences, 2022, 23, 497.	1.8	7
688	Modulating Expression of Endogenous Interleukin 1 Beta in the Acute Phase of the Pilocarpine Model of Epilepsy May Change Animal Survival. Cellular and Molecular Neurobiology, 2022, , 1.	1.7	0
689	Anti-excitotoxicity and neuroprotective action of asiaticoside encapsulated polymeric nanoparticles in pilocarpine rodent seizure model. Canadian Journal of Chemistry, 2022, 100, 396-404.	0.6	3
690	Determining the Role of Synchrony Dynamics in Epileptic Brain Networks. , 2022, , 1-28.		0
691	Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy and Behavior, 2022, 128, 108509.	0.9	17
692	Chronic vagus nerve stimulation (VNS) altered IL-6, IL-1β, CXCL-1 and IL-13 levels in the hippocampus of rats with LiCl-pilocarpine-induced epilepsy. Brain Research, 2022, 1780, 147800.	1.1	4
693	Anticonvulsant activity of Nymphaea lotus Linn. extract in mice: The role of GABAergic-glutamatergic neurotransmission and antioxidant defence mechanisms. Epilepsy Research, 2022, 181, 106871.	0.8	3
694	Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. International Journal of Molecular Sciences, 2022, 23, 2380.	1.8	10
695	Adenosine Kinase Isoforms in the Developing Rat Hippocampus after LiCl/Pilocarpine Status Epilepticus. International Journal of Molecular Sciences, 2022, 23, 2510.	1.8	0
696	Brivaracetam Modulates Short-Term Synaptic Activity and Low-Frequency Spontaneous Brain Activity by Delaying Synaptic Vesicle Recycling in Two Distinct Rodent Models of Epileptic Seizures. Journal of Molecular Neuroscience, 2022, 72, 1058.	1.1	0
697	Changes in Metabotropic Glutamate Receptor Gene Expression in Rat Brain in a Lithium–Pilocarpine Model of Temporal Lobe Epilepsy. International Journal of Molecular Sciences, 2022, 23, 2752.	1.8	5
698	Altered hippocampal expression and function of cytosolic phospholipase A2 (cPLA2) in temporal lobe epilepsy (TLE). Neurological Research, 2022, 44, 748-753.	0.6	2
699	Functional Connectivity of the Brain Across Rodents and Humans. Frontiers in Neuroscience, 2022, 16, 816331.	1.4	22
700	Benchmarking the proteomic profile of animal models of mesial temporal epilepsy. Annals of Clinical and Translational Neurology, 2022, 9, 454-467.	1.7	6
701	Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins, 2022, 14, 184.	1.5	9
702	Anti-Epileptic Effect of Crocin on Experimental Temporal Lobe Epilepsy in Mice. Frontiers in Pharmacology, 2022, 13, 757729.	1.6	5
703	Characterization of Cortical Glial Scars in the Diisopropylfluorophosphate (DFP) Rat Model of Epilepsy. Frontiers in Cell and Developmental Biology, 2022, 10, 867949.	1.8	9

#	Article	IF	CITATIONS
704	Differences in Evolution of Epileptic Seizures and Topographical Distribution of Tissue Damage in Selected Limbic Structures Between Male and Female Rats Submitted to the Pilocarpine Model. Frontiers in Neurology, 2022, 13, 802587.	1.1	6
705	Ceiba pentandra (L.) Gaertn hydroethanolic leaf extract exhibits anticonvulsant properties in mouse models. Phytomedicine Plus, 2022, 2, 100263.	0.9	2
706	Beta-caryophyllene attenuates short-term recurrent seizure activity and blood-brain-barrier breakdown after pilocarpine-induced status epilepticus in rats. Brain Research, 2022, 1784, 147883.	1.1	3
707	Impairments of Long-Term Synaptic Plasticity in the Hippocampus of Young Rats during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. International Journal of Molecular Sciences, 2021, 22, 13355.	1.8	16
708	Hippocampal Sclerosis in Pilocarpine Epilepsy: Survival of Peptide-Containing Neurons and Learning and Memory Disturbances in the Adult NMRI Strain Mouse. International Journal of Molecular Sciences, 2022, 23, 204.	1.8	6
709	Prediction of Long-term Survival After Status Epilepticus Using the ACD Score. JAMA Neurology, 2022, 79, 604.	4.5	29
710	Status epilepticus and early development: Neuronal injury, neurodegeneration, and their consequences. Epilepsia Open, 2023, 8, .	1.3	5
711	Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neuroscience and Biobehavioral Reviews, 2022, 137, 104675.	2.9	3
712	What is the Role of Lithium in Epilepsy?. Current Neuropharmacology, 2022, 20, 1850-1864.	1.4	4
721	Dysfunction of the Hippocampal-Lateral Septal Circuit Impairs Risk Assessment in Epileptic Mice. Frontiers in Molecular Neuroscience, 2022, 15, 828891.	1.4	2
722	Effects of Sublethal Organophosphate Toxicity and Anti-cholinergics on Electroencephalogram and Respiratory Mechanics in Mice. Frontiers in Neuroscience, 2022, 16, 866899.	1.4	3
723	Effect of Anakinra on the Gene Expression of Receptors Activated by the Peroxisome Proliferator in the Rat Brain in the Lithium Pilocarpine Model of Epilepsy. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 598-609.	0.2	1
724	A Comparison of Epileptogenic Effect of Status Epilepticus Treated With Diazepam, Midazolam, and Pentobarbital in the Mouse Pilocarpine Model of Epilepsy. Frontiers in Neurology, 2022, 13, .	1.1	3
725	Enriched Environment Rescues Impaired Sleep–Wake Architecture and Abnormal Neural Dynamics in Chronic Epileptic Rats. Neuroscience, 2022, 495, 97-114.	1.1	1
726	Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system. Scientific Reports, 2022, 12, .	1.6	3
728	miRNA-let-7i modulates status epilepticus via the TLR4 pathway. Acta Epileptologica, 2022, 4, .	0.4	0
729	Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. Journal of Molecular Neuroscience, 2022, 72, 1500-1515.	1.1	3
730	Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plasticity, 2022, 2022, 1-12.	1.0	6

#	Article	IF	CITATIONS
731	Pentylenetetrazole preconditioning attenuates severity of status epilepticus induced by lithium-pilocarpine in male rats: evaluation of opioid/NMDA receptors and nitric oxide pathway. Pharmacological Reports, 2022, 74, 602-613.	1.5	6
732	Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS ONE, 2022, 17, e0271995.	1.1	7
733	Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience, 2022, 499, 142-151.	1.1	2
734	Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel. Neural Regeneration Research, 2023, 18, 594.	1.6	3
735	Disruption of layer-specific visual processing in a model of focal neocortical epilepsy. Cerebral Cortex, 2023, 33, 4173-4187.	1.6	0
736	Animal models for epileptic foci localization, seizure detection, and prediction by electrical impedance tomography. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, .	1.4	0
737	Mentha piperita Oil Exerts an Antiepileptic Effect in Pilocarpine and Pentylenetetrazol-Induced Seizures in Mice. Veterinary Medicine International, 2022, 2022, 1-5.	0.6	1
738	Ketogenic Diet Alleviates Hippocampal Neurodegeneration Possibly via ASIC1a and the Mitochondria-Mediated Apoptotic Pathway in a Rat Model of Temporal Lobe Epilepsy. Neuropsychiatric Disease and Treatment, 0, Volume 18, 2181-2198.	1.0	8
740	Hippocampal transplants of fetal GABAergic progenitors regulate adult neurogenesis in mice with temporal lobe epilepsy. Neurobiology of Disease, 2022, 174, 105879.	2.1	10
741	Epilepsy and its neurobehavioral comorbidities: Insights gained from animal models. Epilepsia, 2023, 64, 54-91.	2.6	7
742	Inhibition of connexin hemichannels alleviates neuroinflammation and hyperexcitability in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
743	Protective effect of N-acetyl cysteine on the mitochondrial dynamic imbalance in temporal lobe epilepsy: Possible role of mTOR. Neuropeptides, 2022, 96, 102294.	0.9	5
744	Neuroprotective effect and herbal-drug pharmacokinetic interaction of Gastrodia elata extract on valproic acid. Biomedicine and Pharmacotherapy, 2022, 156, 113938.	2.5	1
745	T-Type Calcium Channels in Epilepsy. , 2022, , 533-552.		0
746	The vasodilator naftidrofuryl attenuates short-term brain glucose hypometabolism in the lithium-pilocarpine rat model of status epilepticus without providing neuroprotection. European Journal of Pharmacology, 2023, 939, 175453.	1.7	0
747	Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural Regeneration Research, 2023, 18, 1277.	1.6	6
748	Revealing the most effective anticonvulsant part of Malvaviscus arboreus Dill. Ex Cav. and its acute and sub-acute toxicity. Journal of Ethnopharmacology, 2023, 303, 115995.	2.0	3
749	Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase. Nature Communications, 2022, 13, .	5.8	19

#	Article	IF	CITATIONS
750	Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines, 2022, 10, 3012.	1.4	0
751	Clinical Neurophysiology of Epileptogenic Networks. , 0, , .		0
752	Geniposide and asperuloside alter the COX-2 and GluN2B receptor expression after pilocarpine-induced seizures in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 951-962.	1.4	2
753	Selective activation of the hypothalamic orexinergic but not melanin-concentrating hormone neurons following pilocarpine-induced seizures in rats. Frontiers in Neuroscience, 0, 16, .	1.4	1
754	Loss of ARHGAP15 affects the directional control of migrating interneurons in the embryonic cortex and increases susceptibility to epilepsy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
755	A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomaterials Research, 2022, 26, .	3.2	4
756	Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-11± pathway. Expert Opinion on Drug Delivery, 2023, 20, 159-174.	2.4	8
757	Photobiomodulation improves the synapses and cognitive function and ameliorates epileptic seizure by inhibiting downregulation of Nlgn3. Cell and Bioscience, 2023, 13, .	2.1	13
758	Glycyrrhizic acid protects against temporal lobe epilepsy in young rats by regulating neuronal ferroptosis through the <scp>miR</scp> â€194â€5p/ <scp>PTGS2</scp> axis. Kaohsiung Journal of Medical Sciences, 2023, 39, 154-165.	0.8	5
759	Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. International Journal of Molecular Sciences, 2023, 24, 2039.	1.8	2
760	Preclinical pharmacokinetics and tolerability of a novel meglumineâ€based parenteral solution of topiramate and topiramate combinations for treatment of status epilepticus. Epilepsia, 2023, 64, 888-899.	2.6	3
761	Expression of fructose-1,6-bisphosphatase 1 is associated with [18F]FDG uptake and prognosis in patients with mesial temporal lobe epilepsy. European Radiology, 0, , .	2.3	0
763	Nicotinic acetylcholine receptors and epilepsy. Pharmacological Research, 2023, 189, 106698.	3.1	7
764	Progressive alterations in electrophysiological and epileptic network properties during the development of temporal lobe epilepsy in rats. Epilepsy and Behavior, 2023, 141, 109120.	0.9	1
765	Protective effect of Nardostachys jatamansi extract against lithium-pilocarpine-induced spontaneous recurrent seizures and associated cardiac irregularities in a rat model. Journal of Ethnopharmacology, 2023, 308, 116280.	2.0	3
766	Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiology of Disease, 2023, 180, 106065.	2.1	2
767	Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2023, 125, 110759.	2.5	0
768	Limbic and olfactory cortical circuits in focal seizures. Neurobiology of Disease, 2023, 178, 106007.	2.1	1

#	Article	IF	CITATIONS
769	lkzf1 as a novel regulator of microglial homeostasis in inflammation and neurodegeneration. Brain, Behavior, and Immunity, 2023, 109, 144-161.	2.0	7
770	Determining the Role of Synchrony Dynamics in Epileptic Brain Networks. , 2023, , 3237-3264.		0
772	A Question of Dose and Context: LSD, Peyote and Chemical Interactions, Human Variation, and Interpretation. , 2022, , 33-133.		0
773	Blockage of STAT3 during epileptogenesis prevents GABAergic loss and imprinting of the epileptic state. Brain, 2023, 146, 3416-3430.	3.7	4
774	In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open, 2023, 8, .	1.3	3
775	Alterations in the Properties of the Rat Hippocampus Glutamatergic System in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Biochemistry (Moscow), 2023, 88, 353-363.	0.7	0
776	Thalidomide Attenuates Epileptogenesis and Seizures by Decreasing Brain Inflammation in Lithium Pilocarpine Rat Model. International Journal of Molecular Sciences, 2023, 24, 6488.	1.8	1
777	Evaluation of the anticonvulsant properties of flurbiprofen in pilocarpine-induced convulsions in mice. Baghdad Journal of Biochemistry and Applied Biological Sciences, 0, , .	0.4	0
778	Hybridization into a Bitopic Ligand Increased Muscarinic Receptor Activation for Isopilocarpine but Not for Pilocarpine Derivatives. Journal of Natural Products, 0, , .	1.5	0
794	Purinergic P2 Receptors in Epilepsy. , 2023, , 259-287.		0
803	Experimental Models for the Study of Drug-Resistant Epilepsy. , 2023, , 19-37.		0
804	Neuronal K+-Cl- cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacologica Sinica, 0, , .	2.8	3