Biocompatible polymer materials: Role of protein–su

Progress in Polymer Science 33, 1059-1087

DOI: 10.1016/j.progpolymsci.2008.07.006

Citation Report

#	Article	IF	Citations
1	Physico-chemical material properties and analysis techniques relevant in high-throughput biomaterials research., 0,, 13-30.		0
2	Scaffolds Decorated by In Vivo Environment Improve Cell Proliferation and Wound Healing., 2009,,.		2
3	Grading the commercial optical biosensor literature—Class of 2008: â€The Mighty Binders'. Journal of Molecular Recognition, 2010, 23, 1-64.	2.1	137
4	A Facile Approach to Modify Polyurethane Surfaces for Biomaterial Applications. Macromolecular Bioscience, 2009, 9, 1165-1168.	4.1	51
5	The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2009, 71, 275-281.	5.0	76
6	Phenomenon of "contact guidance" on the surface with nano-micro-groove-like pattern and cell physiological effects. Science Bulletin, 2009, 54, 3200-3205.	1.7	32
7	Biomacromolecular affinity: Interactions between lysozyme and regioselectively sulfated chitosan. Colloids and Surfaces B: Biointerfaces, 2009, 73, 346-350.	5.0	27
8	Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis. Acta Biomaterialia, 2009, 5, 1864-1871.	8.3	107
9	Protein Adsorption on Poly(<i>N</i> -vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009, 25, 2900-2906.	3.5	135
10	Synthesis and Electropolymerization of Phosphorylcholine-Containing Pyrroles and Their Hemocompatible Properties. Analytical Sciences, 2010, 26, 539-543.	1.6	1
11	An Integrated Approach to the Study of the Interaction between Proteins and Nanoparticles. Langmuir, 2010, 26, 8336-8346.	3.5	110
12	Controlled gene-eluting metal stent fabricated by bio-inspired surface modification with hyaluronic acid and deposition of DNA/PEI polyplexes. International Journal of Pharmaceutics, 2010, 384, 181-188.	5.2	46
13	Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation. Colloids and Surfaces B: Biointerfaces, 2010, 79, 452-459.	5.0	28
14	Surface modification of biomaterials by photochemical immobilization and photograft polymerization to improve hemocompatibility. Frontiers of Chemical Engineering in China, 2010, 4, 372-381.	0.6	21
15	Immobilization of type-I collagen and basic fibroblast growth factor (bFGF) onto poly (HEMA-co-MMA) hydrogel surface and its cytotoxicity study. Journal of Materials Science: Materials in Medicine, 2010, 21, 2425-2433.	3.6	13
16	<i>Antheraea assama</i> Silk Fibroinâ€Based Functional Scaffold with Enhanced Blood Compatibility for Tissue Engineering Applications. Advanced Engineering Materials, 2010, 12, B139.	3.5	25
17	Photooxidation of Nanopatterned Poly(chloromethylstyrene): Direct Formation of Crosslinked Aldehydeâ€Functionalized Films for Chemical Functionalization and Bioconjugation. Macromolecular Rapid Communications, 2010, 31, 910-914.	3.9	10
18	Thermoresponsive surfaces for cell culture and enzyme-free cell detachment. Progress in Polymer Science, 2010, 35, 1311-1324.	24.7	109

#	ARTICLE	IF	CITATIONS
19	Preparation and characterization of silk/silica hybrid biomaterials by sol–gel crosslinking process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 167, 124-128.	3.5	28
20	General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials, 2010, 31, 2535-2541.	11.4	617
21	Self-organization of dipeptide-grafted polymeric nanoparticles film: A novel method for surface modification. European Polymer Journal, 2010, 46, 1824-1832.	5.4	5
22	The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials, 2010, 31, 8921-8930.	11.4	88
23	Fabrication of cell pattern on poly(dimethylsiloxane) by vacuum ultraviolet lithography. Colloids and Surfaces B: Biointerfaces, 2010, 76, 381-385.	5.0	19
24	Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: Effects of grafted layer thickness and protein size. Colloids and Surfaces B: Biointerfaces, 2010, 76, 468-474.	5.0	91
25	Protein adsorption and cell adhesion on polyurethane/Pluronic \hat{A}^{\otimes} surface with lotus leaf-like topography. Colloids and Surfaces B: Biointerfaces, 2010, 77, 234-239.	5.0	54
26	Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2010, 79, 357-364.	5.0	79
27	Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Colloids and Surfaces B: Biointerfaces, 2010, 81, 350-357.	5.0	88
28	Assessing protein–surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and F¶rster Energy Resonance Transfer. Biophysical Chemistry, 2010, 152, 55-64.	2.8	11
29	Cell-Protein-Material Interaction in Tissue Engineering. , 0, , .		6
30	Essential Factors to Make Excellent Biocompatibility of Phospholipid Polymer Materials. Advances in Science and Technology, 0, , .	0.2	4
31	Supramolecular Surfaces Modulating Cellular Response. Advances in Science and Technology, 0, , .	0.2	5
32	Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery. Biomedical Materials (Bristol), 2010, 5, 065014.	3.3	53
33	Molecular Dynamics Simulation of Protein Adsorption at Fluid Interfaces: A Comparison of All-Atom and Coarse-Grained Models. Biomacromolecules, 2010, 11, 2781-2787.	5.4	28
34	Conformational behavior of fibrinogen on topographically modified polymer surfaces. Physical Chemistry Chemical Physics, 2010, 12, 10301.	2.8	22
35	Methodological Aspects on Microdialysis Protein Sampling and Quantification in Biological Fluids: An In Vitro Study on Human Ventricular CSF. Analytical Chemistry, 2010, 82, 4376-4385.	6.5	55
36	Structure of Phenylalanine Adsorbed on Polystyrene from Nonlinear Vibrational Spectroscopy Measurements and Electronic Structure Calculations. Journal of Physical Chemistry C, 2010, 114, 9748-9757.	3.1	29

#	Article	IF	CITATIONS
37	Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 2010, 4, 347-363.	3.0	261
38	Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab on A Chip, 2010, 10, 556.	6.0	42
39	Quick and simple modification of a poly(dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Matter, 2011, 7, 2968.	2.7	39
40	Step-wise control of protein adsorption and bacterial attachment on a nanowire array surface: tuning surface wettability by salt concentration. Journal of Materials Chemistry, 2011, 21, 13920.	6.7	48
41	Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. Advances in Polymer Science, 2011, , 213-239.	0.8	52
42	Structure of Leucine Adsorbed on Polystyrene from Nonlinear Vibrational Spectroscopy Measurements, Molecular Dynamics Simulations, and Electronic Structure Calculations. Journal of Physical Chemistry C, 2011, 115, 11216-11225.	3.1	27
43	Engineered Alginate Hydrogels for Effective Microfluidic Capture and Release of Endothelial Progenitor Cells from Whole Blood. Langmuir, 2011, 27, 4257-4264.	3.5	76
44	Novel materials to enhance corneal epithelial cell migration on keratoprosthesis. British Journal of Ophthalmology, 2011, 95, 405-409.	3.9	17
45	Covalent Attachment of Multilayers on Poly(tetrafluoroethylene) Surfaces. Langmuir, 2011, 27, 11106-11110.	3.5	13
46	Synthesis, characterization, fluorescence labeling and cellular internalization of novel amine-functionalized poly(ethylene glycol)-block-poly($\hat{l}\mu$ -caprolactone) amphiphilic block copolymers. Polymer Chemistry, 2011, 2, 1331.	3.9	32
47	The synergistic effects of stimuli-responsive polymers with nano- structured surfaces: wettability and protein adsorption. RSC Advances, 2011, 1, 262.	3.6	31
48	Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid. Applied Surface Science, 2011, 258, 425-430.	6.1	39
49	Creation of Biofunctionalized Micropatterns on Poly(methyl methacrylate) by Single-Step Phase Separation Method. ACS Applied Materials & Separation Method. ACS Applied Method. ACS Applied Method. ACS ACS Applied Method. ACS	8.0	6
50	Impact of surface chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 917-924.	7.1	198
51	Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials. Materials Science and Engineering C, 2011, 31, 1741-1747.	7.3	31
52	Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. European Polymer Journal, 2011, 47, 1795-1803.	5.4	13
53	Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. Biofouling, 2011, 27, 589-602.	2.2	86
54	How the Surface Nanostructure of Polyethylene Affects Protein Assembly and Orientation. ACS Nano, 2011, 5, 3120-3131.	14.6	37

#	ARTICLE	IF	CITATIONS
55	Surface modification with polyethylene glycolâ€"corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces. Acta Biomaterialia, 2011, 7, 4177-4186.	8.3	21
56	Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Advanced Drug Delivery Reviews, 2011, 63, 1186-1209.	13.7	148
57	Fabrication and biocompatibility of cell outer membrane mimetic surfaces. Chinese Journal of Polymer Science (English Edition), 2011, 29, 53-64.	3.8	14
58	Protein adsorption of radiation functionalized LDPE sheets. Polymer Bulletin, 2011, 67, 1837-1848.	3.3	3
59	Bioinert surface to protein adsorption with higher generation of dendrimer SAMs. Colloids and Surfaces B: Biointerfaces, 2011, 84, 280-284.	5.0	12
60	Mimicking the fibrinolytic system on material surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 86, 1-6.	5.0	50
61	Plasma Polymerized Pyrrole Films for Biological Applications: Correlation Between Protein Adsorption Properties and Characteristics. Plasma Processes and Polymers, 2011, 8, 923-931.	3.0	8
62	Effect of oxidized silicon (SiO _x) surfaces functionalization on realâ€time PCR by Labâ€onâ€aâ€chip microdevices. Surface and Interface Analysis, 2011, 43, 1498-1508.	1.8	2
63	Surface Modification to Control Protein/Surface Interactions. Macromolecular Bioscience, 2011, 11, 1031-1040.	4.1	73
64	Chiral Design for Polymeric Biointerface: The Influence of Surface Chirality on Protein Adsorption. Advanced Functional Materials, 2011, 21, 3276-3281.	14.9	99
65	Conformational Changes of Protein Adsorbed on Tailored Flat Substrates with Different Chemistries. ChemPhysChem, 2011, 12, 3642-3646.	2.1	8
66	Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122, 1084-1091.	2.6	22
67	Surface modification of POSSâ€nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications. Biotechnology and Applied Biochemistry, 2011, 58, 147-161.	3.1	39
68	Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science, 2011, 162, 87-106.	14.7	1,289
69	Amphiphilic gold nanoparticles: Synthesis, characterization and adsorption to PEGylated polymer surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 13-21.	4.7	20
70	Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: Effect of graft molecular weight. Colloids and Surfaces B: Biointerfaces, 2011, 85, 26-31.	5.0	40
71	Fabrication and hemocompatibility of cell outer membrane mimetic surfaces on chitosan by layer by layer assembly with polyanion bearing phosphorylcholine groups. Colloids and Surfaces B: Biointerfaces, 2011, 85, 48-55.	5.0	41
72	Polymeric nanocapsules ultra stable in complex biological media. Colloids and Surfaces B: Biointerfaces, 2011, 83, 376-381.	5.0	39

#	Article	IF	CITATIONS
73	Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 85, 241-247.	5.0	44
74	Lysine–poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity. Acta Biomaterialia, 2011, 7, 954-958.	8. 3	54
75	Anti-fouling bioactive surfaces. Acta Biomaterialia, 2011, 7, 1550-1557.	8.3	280
76	Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomaterialia, 2011, 7, 2015-2028.	8.3	254
77	Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science, 2011, 369, 5-12.	8.2	182
78	Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. Journal of Colloid and Interface Science, 2011, 353, 61-68.	9.4	50
79	Adhesion force of proteins against hydrophilic polymer brush surfaces. Reactive and Functional Polymers, 2011, 71, 350-355.	4.1	48
80	Measurements of water sorption enthalpy on polymer surfaces and its effect on protein adsorption. Surface Science, 2011, 605, 419-423.	1.9	13
81	Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter, 2011, 1, 3-56.	2.6	139
82	Platelet Adhesion and Fibrinogen Accretion on a Family of Elastin-Like Polypeptides. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 41-57.	3.5	21
83	Application of MS-Based Proteomics to Study Serum Protein Adsorption/Absorption and Complement C3 Activation on Poly(ethylene glycol) Hydrogels. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1343-1362.	3. 5	24
84	Movable Polyrotaxane Surfaces for Modulating Cellular Adhesion via Specific RGD-Integrin Binding. Advances in Science and Technology, 0, , .	0.2	O
85	Combined PEG Immobilization on Polystyrene Microspheres: Ability of Protein Resistance. Advanced Materials Research, 0, 550-553, 1214-1217.	0.3	0
86	3D polylactide-based scaffolds for studying human hepatocarcinoma processes (i>in vitro (i>. Science and Technology of Advanced Materials, 2012, 13, 045003.	6.1	25
87	Controlled loop and graft formations of water-soluble polymers on SAMs for the design of biomaterials surfaces. Polymer Journal, 2012, 44, 286-293.	2.7	8
88	Calcium Orthophosphate-Based Biocomposites and Hybrid Biomaterials Nomenclature., 2012,, 579-760.		0
89	Proteomic Approaches To Characterize Surface-Bound Proteins and Material-Mediated Cellular Proteins. ACS Symposium Series, 2012, , 809-837.	0.5	0
90	Clarification of Protein Adsorption at Polymer Brush Surfaces Based on Water Structure Surrounding the Surface. ACS Symposium Series, 2012, , 605-620.	0.5	1

#	Article	IF	CITATIONS
91	Regulation of Protein/Surface Interactions by Surface Chemical Modification and Topographic Design. ACS Symposium Series, 2012, , 301-319.	0.5	0
92	Study on crystal process and isothermal crystallization kinetics of UHMWPE/CAâ€MMT composites. Polymer Composites, 2012, 33, 1987-1992.	4.6	20
93	Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases, 2012, 7, 46.	1.6	103
94	Facile and universal immobilization of l-lysine inspired by mussels. Journal of Materials Chemistry, 2012, 22, 10035.	6.7	19
95	Chiral biointerface materials. Chemical Society Reviews, 2012, 41, 1972-1984.	38.1	181
96	Designing dynamic surfaces for regulation of biological responses. Soft Matter, 2012, 8, 5477.	2.7	57
97	Dendritic polyglycerolamine as a functional antifouling coating of gold surfaces. Journal of Materials Chemistry, 2012, 22, 19488.	6.7	30
98	Cytocompatible Performance of Thermosensitive Poly(N-Isopropylacrylamide) Nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1569-1578.	3.5	8
99	Reusable Solid-Phase Microextraction Coating for Direct Immersion Whole-Blood Analysis and Extracted Blood Spot Sampling Coupled with Liquid Chromatography–Tandem Mass Spectrometry and Direct Analysis in Real Time–Tandem Mass Spectrometry. Analytical Chemistry, 2012, 84, 8301-8309.	6.5	105
100	Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study. Journal of the American Chemical Society, 2012, 134, 2120-2126.	13.7	47
101	Surface Modification of Silicone for Biomedical Applications Requiring Long-Term Antibacterial, Antifouling, and Hemocompatible Properties. Langmuir, 2012, 28, 16408-16422.	3.5	139
102	Hyperbranched Glycopolymers for Blood Biocompatibility. Bioconjugate Chemistry, 2012, 23, 1050-1058.	3.6	67
103	Synthesis and self-assembly of biomimetic phosphorylcholine-bound chitosan derivatives. Reactive and Functional Polymers, 2012, 72, 745-751.	4.1	17
104	Surfaces Resistant to Fouling from Biological Fluids: Towards Bioactive Surfaces for Real Applications. Macromolecular Bioscience, 2012, 12, 1413-1422.	4.1	85
105	Selective adsorption of protein on micropatterned flexible poly(ethylene terephthalate) surfaces modified by vacuum ultraviolet lithography. Applied Surface Science, 2012, 258, 4222-4227.	6.1	9
106	Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique. Applied Surface Science, 2012, 258, 9711-9717.	6.1	35
107	Controllable electrochemical synthesis of ZnO nanorod arrays on flexible ITO/PET substrate and their structural and optical properties. Applied Surface Science, 2012, 259, 99-104.	6.1	32
108	Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloids and Surfaces B: Biointerfaces, 2012, 100, 116-125.	5.0	107

#	Article	IF	CITATIONS
109	Glycopolymer Brushes for the Affinity Adsorption of RCA ₁₂₀ : Effects of Thickness, Grafting Density, and Epitope Density. Langmuir, 2012, 28, 13616-13623.	3.5	41
110	Enhancing Specific Binding of L929 Fibroblasts: Effects of Multiâ€Scale Topography of GRGDY Peptide Modified Surfaces. Macromolecular Bioscience, 2012, 12, 1391-1400.	4.1	21
111	Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry, 2012, 3, 2920.	3.9	33
112	The influence of nanostructured materials on biointerfacial interactions. Advanced Drug Delivery Reviews, 2012, 64, 1820-1839.	13.7	108
113	Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes. Journal of Colloid and Interface Science, 2012, 386, 135-140.	9.4	6
114	An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. Biosensors and Bioelectronics, 2012, 38, 132-137.	10.1	40
115	Modulating Cell Behaviors on Chiral Polymer Brush Films with Different Hydrophobic Side Groups. Langmuir, 2012, 28, 2791-2798.	3.5	67
116	Polystyrene surface modification using excimer laser and radio-frequency plasma: blood compatibility evaluations. Progress in Biomaterials, 2012, 1, 4.	4.5	12
117	Effect of Substrate on the Mechanical Response and Adhesion of PEGylated Surfaces: Insights from All-Atom Simulations. Langmuir, 2012, 28, 17263-17272.	3.5	10
118	Modification of Polyurethane with Polyethylene Glycol–Corn Trypsin Inhibitor for Inhibition of Factor Xlla in Blood Contact. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1981-1993.	3.5	12
119	Biomimetic Strategies for Bone Repair and Regeneration. Journal of Functional Biomaterials, 2012, 3, 688-705.	4.4	41
120	Effects of dynamics of water molecules at hydrophilic polymer brush surfaces on protein adsorption behavior. Transactions of the Materials Research Society of Japan, 2012, 37, 333-336.	0.2	3
121	Ammonia Plasma Functionalized Polycarbonate Surfaces Improve Cell Migration Inside an Artificial 3D Cell Culture Module. Plasma Processes and Polymers, 2012, 9, 261-272.	3.0	21
122	Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 272-279.	2.7	14
123	Biocompatible polypropylene prepared by a combination of melt grafting and surface restructuring. Journal of Applied Polymer Science, 2012, 126, 929-938.	2.6	4
124	Protein adsorption and cytocompatibility of poly(<scp>L</scp> â€lactic acid) surfaces modified with biomacromolecules. Journal of Applied Polymer Science, 2012, 125, E501.	2.6	15
125	Photoswitched Protein Adsorption on Electrostatically Selfâ€Assembled Azobenzene Films. ChemPhysChem, 2012, 13, 2671-2675.	2.1	17
126	Precise Pattern Replication of Polymer Blends into Nonuniform Geometries via Reducing Interfacial Tension between Two Polymers. Langmuir, 2012, 28, 10238-10245.	3.5	7

#	Article	IF	CITATIONS
127	Surface characteristics and blood compatibility of PVDF/PMMA membranes. Journal of Materials Science, 2012, 47, 5030-5040.	3.7	22
128	Preparation and performance evaluation of poly (ether-imide) incorporated polysulfone hemodialysis membranes. Journal of Polymer Research, 2012, 19, 1.	2.4	19
129	Cell adhesion on chiral surface: The role of protein adsorption. Colloids and Surfaces B: Biointerfaces, 2012, 90, 97-101.	5.0	40
130	Functionalized magnetic composites based on block copolymers poly(succinimide)-b-poly(ethylene) Tj ETQq1 1 926-932.	0.784314 12.0	rgBT /Overlo
131	Thermoresponsive biotinylated star amphiphilic block copolymer: Synthesis, self-assembly, and specific target recognition. Polymer, 2012, 53, 1684-1693.	3.8	29
132	Proteinâ€Resistant and Fibrinolytic Polyurethane Surfaces. Macromolecular Bioscience, 2012, 12, 126-131.	4.1	20
133	Femtosecond laser fabrication and characterization of microchannels and waveguides in methacrylate-based polymers. Microsystem Technologies, 2012, 18, 183-190.	2.0	15
134	Controlling the surface wettability of poly(sulfone) films by UVâ€essisted treatment: benefits in relation to plasma treatment. Polymer International, 2013, 62, 310-318.	3.1	30
136	Tethered PEG Crowdedness Determining Shape and Blood Circulation Profile of Polyplex Micelle Gene Carriers. Macromolecules, 2013, 46, 6585-6592.	4.8	97
137	Three-dimensional porous HPMA-co-DMAEM hydrogels for biomedical application. Colloid and Polymer Science, 2013, 291, 1121-1133.	2.1	10
138	Surface modification of polysulfone based hemodialysis membranes with layer by layer self assembly of polyethyleneimine/alginate-heparin: a simple polyelectrolyte blend approach for heparin immobilization. Journal of Materials Science: Materials in Medicine, 2013, 24, 533-546.	3.6	30
139	Cell membrane mimetic films immobilized by synergistic grafting and crosslinking. Soft Matter, 2013, 9, 4501.	2.7	34
140	Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. Chemical Communications, 2013, 49, 8683.	4.1	66
141	Protein adhesion on water stable atmospheric plasma deposited acrylic acid coatings. Surface and Coatings Technology, 2013, 234, 53-59.	4.8	26
142	Protein-resistant hyperbranched polyethyleneimine brush surfaces. Journal of Colloid and Interface Science, 2013, 396, 307-315.	9.4	46
143	AFM imaging and analysis of local mechanical properties for detection of surface pattern of functional groups. Materials Science and Engineering C, 2013, 33, 1963-1968.	7.3	23
144	Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Colloids and Surfaces B: Biointerfaces, 2013, 111, 333-341.	5.0	22
145	Immobilization of Heparin on the Surface of Polypropylene Non-Woven Fabric for Improvement of the Hydrophilicity and Blood Compatibility. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 15-30.	3.5	11

#	Article	IF	CITATIONS
146	Fractional statistics description applied to protein adsorption: Effects of excluded surface area on adsorption equilibria. Chemical Physics Letters, 2013, 585, 189-192.	2.6	3
147	The effect of elastomer chain flexibility on protein adsorption. Biomaterials, 2013, 34, 9287-9294.	11.4	20
148	Improvement of biofouling resistance on bacterial cellulose membranes. Biochemical Engineering Journal, 2013, 78, 138-145.	3.6	15
149	Fibroblast Compatibility on Scaffold Hydrogels Prepared from Agave Tequilana Weber Bagasse for Tissue Regeneration. Industrial & Description (2013, 52, 11607-11613).	3.7	50
150	Siloxane photopolymer to replace polydimethylsiloxane in microfluidic devices for polymerase chain reaction. Polymers for Advanced Technologies, 2013, 24, 1068-1074.	3.2	7
151	Identifying Specific Protein Residues That Guide Surface Interactions and Orientation on Silica Nanoparticles. Langmuir, 2013, 29, 10841-10849.	3.5	28
152	Gold Nanoparticle-Conjugated Anti-Oxidized Low-Density Lipoprotein Antibodies for Targeted Lipidomics of Oxidative Stress Biomarkers. Analytical Chemistry, 2013, 85, 8376-8384.	6.5	41
153	Biological Properties of Chitosan/Collagen Composites. Key Engineering Materials, 0, 587, 205-210.	0.4	13
154	Preparation, Characterization, and Performance Evaluation of Poly(Ether-imide) Incorporated Cellulose Acetate Ultrafiltration Membrane for Hemodialysis. Separation Science and Technology, 2013, 48, 66-75.	2.5	15
155	Effects of plasma surface treatments of diamond-like carbon and polymeric substrata on the cellular behavior of human fibroblasts. Journal of Biomaterials Applications, 2013, 27, 669-683.	2.4	11
156	A novel antithrombotic coronary stent: lysine-poly(HEMA)-modified cobaltâ€"chromium stent with fibrinolytic activity. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 684-695.	3.5	10
157	Regulation of fibrinolytic protein adsorption on polyurethane surfaces by modification with lysine-containing copolymers. Polymer Chemistry, 2013, 4, 5597.	3.9	31
158	Bioresponsive Hydrogels. Advanced Healthcare Materials, 2013, 2, 520-532.	7.6	45
159	Vinyl-monomer with lysine side chains for preparing copolymer surfaces with fibrinolytic activity. Polymer Chemistry, 2013, 4, 1583-1589.	3.9	20
160	Surface properties of carbon structures evaporated on polytetrafluoroethylene. Journal of Materials Science, 2013, 48, 819-824.	3.7	0
161	Temperature dependence of serum protein adsorption in PEGylated PNIPAm microgels. Colloids and Surfaces B: Biointerfaces, 2013, 103, 244-252.	5.0	37
162	Oneâ€pot synthesized poly(vinyl pyrrolidoneâ€ <i>co</i> â€methyl methacrylateâ€ <i>co</i> â€acrylic acid) blende with poly(ether sulfone) to prepare bloodâ€compatible membranes. Journal of Applied Polymer Science, 2013, 130, 4284-4298.	ed 2.6	5
163	Characterization of the semi-interpenetrated network based on collagen and poly(N-isopropyl) Tj ETQq1 1 0.7843	314 rgBT / 5.2	Oygrlock 10

#	Article	IF	CITATIONS
164	Adsorption state of fibronectin on poly(dimethylsiloxane) surfaces with varied stiffness can dominate adhesion density of fibroblasts. Acta Biomaterialia, 2013, 9, 5493-5501.	8.3	68
165	Inverting adherent cells for visualizing ECM interactions at the basal cell side. Ultramicroscopy, 2013, 128, 1-9.	1.9	10
166	The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials, 2013, 34, 3206-3214.	11.4	52
167	Emerging protein array technologies for proteomics. Expert Review of Proteomics, 2013, 10, 65-75.	3.0	52
169	Cooperative Adsorption of Lipoprotein Phospholipids, Triglycerides, and Cholesteryl Esters Are a Key Factor in Nonspecific Adsorption from Blood Plasma to Antifouling Polymer Surfaces. Journal of the American Chemical Society, 2013, 135, 7047-7052.	13.7	88
170	Antibacterial and Hemocompatibility Switchable Polypropylene Nonwoven Fabric Membrane Surface. ACS Applied Materials & Diterfaces, 2013, 5, 5260-5268.	8.0	84
171	Biocompatibility and separation performance of carboxylated poly (ether–imide) incorporated polyacrylonitrile membranes. Separation and Purification Technology, 2013, 107, 297-309.	7.9	31
172	Plasma Proteins Adsorption Mechanism on Polyethylene-Grafted Poly(ethylene glycol) Surface by Quartz Crystal Microbalance with Dissipation. Langmuir, 2013, 29, 6624-6633.	3.5	60
173	Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Advanced Materials, 2013, 25, 3566-3570.	21.0	198
174	Block Copolymer Modified Surfaces for Conjugation of Biomacromolecules with Control of Quantity and Activity. Langmuir, 2013, 29, 1122-1128.	3.5	40
175	Unidirectional migration of single smooth muscle cells under the synergetic effects of gradient swelling cue and parallel groove patterns. Colloids and Surfaces B: Biointerfaces, 2013, 111, 1-6.	5.0	23
176	Linear and hyperbranched phosphorylcholine based homopolymers for blood biocompatibility. Polymer Chemistry, 2013, 4, 3140.	3.9	25
177	Thermally responsive silicon nanowire arrays for native/denatured-protein separation. Nanotechnology, 2013, 24, 105101.	2.6	9
178	Temperature-Sensitive Transitions below LCST in Amphiphilic Dendritic Assemblies: Host–Guest Implications. Journal of the American Chemical Society, 2013, 135, 8947-8954.	13.7	47
179	Lotus-Leaf-Like Topography Predominates over Adsorbed ECM Proteins in Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Surface/Cell Interactions. ACS Applied Materials & Description (1988) ACS Applied Materials & Description (1988) ACS Applied (1988) ACS A	8.0	16
180	The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials, 2013, 34, 55-63.	11.4	47
181	Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids and Surfaces B: Biointerfaces, 2013, 101, 376-383.	5.0	23
182	Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid. Colloids and Surfaces B: Biointerfaces, 2013, 102, 210-217.	5.0	37

#	Article	IF	CITATIONS
183	Biomimetic coatings for biomaterial surfaces. , 2013, , 91-126.		0
184	Rapid and Sensitive Polarization Measurement for Characterizing Protein Adsorption at the Solid–Liquid Interface. Journal of Physical Chemistry C, 2013, 117, 1796-1803.	3.1	8
185	Antifouling performances of macro- to micro- to nano-copper materials for the inhibition of biofouling in its early stages. Journal of Materials Chemistry B, 2013, 1, 6194.	5 . 8	48
186	Specificity and Regenerability of Short Peptide Ligands Supported on Polymer Layers for Immunoglobulin G Binding and Detection. ACS Applied Materials & Enterfaces, 2013, 5, 8030-8037.	8.0	25
187	Biomimetic Polymer Brushes Containing Tethered Acetylcholine Analogs for Protein and Hippocampal Neuronal Cell Patterning. Biomacromolecules, 2013, 14, 529-537.	5.4	45
188	Synthesis and optimization of soy protein fiber based graft copolymer through response surface methodology for removal of oil spillage. Polymer Bulletin, 2013, 70, 3155-3169.	3.3	13
189	Low-Fouling, Biospecific Films Prepared by the Continuous Assembly of Polymers. Biomacromolecules, 2013, 14, 2477-2483.	5 . 4	17
190	Cytocompatibility of Plasma and Thermally Treated Biopolymers. Journal of Nanomaterials, 2013, 2013, 1-10.	2.7	6
191	Protein Adhesion on Atmospheric Plasma Deposited Quaternary Ammonium Salt Coatings. Plasma Processes and Polymers, 2013, 10, 526-534.	3.0	4
192	Zwitterionic Moieties from the Huisgen Reaction: A Case Study with Amphiphilic Dendritic Assemblies. Chemistry - A European Journal, 2013, 19, 16374-16381.	3.3	11
193	Wettability Effect of PECVD-SiO _x Films on Poly(lactic acid) Induced by Oxygen Plasma on Protein Adsorption and Cell Attachment. Journal of Physics: Conference Series, 2013, 423, 012042.	0.4	12
194	Biomimetic materials for controlling bone cell responses. Frontiers in Bioscience - Scholar, 2013, S5, 369-395.	2.1	12
195	Effects of Nonâ€specific and Specific Solvation on Adsorption of BPTI on Au Surface: Insight from Molecular Dynamics Simulation. Chinese Journal of Chemical Physics, 2013, 26, 558-568.	1.3	0
196	Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts. International Journal of Nanomedicine, 2014, 9, 1185.	6.7	39
198	Nano-scale Molecular Interaction Force Measurement for Analysis of Protein Adsorption on the Surfaces. Transactions of the Materials Research Society of Japan, 2014, 39, 185-188.	0.2	0
199	Nucleic Acid Aptamers for Biomaterials Development. , 2014, , 287-299.		7
200	Compressive Strength and Bioactivity Properties of Photopolymerizable Hybrid Composite Hydrogels for Bone Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 641-650.	3.4	25
201	Evaluation of the cytocompatibility hemocompatibility (i>in vivo (i>bone tissue regenerating capability of different PCL blends. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 487-503.	3.5	39

#	Article	IF	CITATIONS
203	Biocompatible Coating., 2014,, 425-447.		5
204	Morphology Transformations of Platelets on Plasma Activated Surfaces. Plasma Processes and Polymers, 2014, 11, 596-605.	3.0	15
205	Fabrication of biocompatible monolithic microchannels with high pressureâ€resistance using direct polymerization of PEGâ€modified PMMA. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
206	Multivalent anchored and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium oxide surfaces. Colloids and Surfaces B: Biointerfaces, 2014, 122, 684-692.	5.0	39
207	Interactions of serum proteins and alkaline phosphatase with poly(styrene/l±â€ <i>tert</i> å€butoxyâ€ï‰â€vinylbenzylâ€polyglycidol) microspheres with various surface concentrations of polyglycidol. Polymers for Advanced Technologies, 2014, 25, 1264-1272.	3.2	9
209	Platelet Repellent Properties of Hydrogel Coatings on Polyurethane-Coated Glass Surfaces. ASAIO Journal, 2014, 60, 587-593.	1.6	18
210	Smart Biomaterials. NIMS Monographs, 2014, , .	0.3	57
211	A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers, 2014, 6, 2309-2331.	4.5	71
212	Anti-fouling properties of polylactic acid film modified by pegylated phosphorylcholine derivatives. Materials Chemistry and Physics, 2014, 143, 929-938.	4.0	13
213	Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays. Applied Surface Science, 2014, 310, 3-10.	6.1	87
214	Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. Journal of Colloid and Interface Science, 2014, 419, 86-94.	9.4	22
215	Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry, 2014, 5, 14-24.	3.9	74
216	Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate andÂsodium alginate. Food Hydrocolloids, 2014, 35, 129-136.	10.7	86
217	Molecular-Level Understanding of Protein Adsorption at the Interface between Water and a Strongly Interacting Uncharged Solid Surface. Journal of the American Chemical Society, 2014, 136, 5323-5331.	13.7	139
218	Chiral polymer-based biointerface materials. Science China Chemistry, 2014, 57, 540-551.	8.2	17
219	Strategies to improve chitosan hemocompatibility: A review. European Polymer Journal, 2014, 53, 171-188.	5.4	193
220	Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Progress in Polymer Science, 2014, 39, 1312-1347.	24.7	57
221	Adhesion behaviors on superhydrophobic surfaces. Chemical Communications, 2014, 50, 3900.	4.1	202

#	Article	IF	Citations
222	Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. Journal of Membrane Science, 2014, 452, 29-36.	8.2	63
223	Surface reconstruction and hemocompatibility improvement of a phosphorylcholine endâ€capped poly(butylene succinate) coating. Journal of Biomedical Materials Research - Part A, 2014, 102, 2972-2981.	4.0	22
224	Synthesis, characterization and swelling properties of copolymers of N(-1,1-dimethyll-3-oxobutyl)acrylamide with methyl methacrylate. Designed Monomers and Polymers, 2014, 17, 438-444.	1.6	9
225	A facile preparation of poly(ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 34-42.	4.7	31
226	Use of pooled blood plasmas in the assessment of fouling resistance. RSC Advances, 2014, 4, 2318-2321.	3.6	48
227	Protein-Resistant Cross-Linked Poly(vinyl alcohol) Micropatterns via Photolithography Using Removable Polyoxometalate Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17463-17473.	8.0	14
228	Surface Modification of Poly(ether sulfone) Membrane with a Synthesized Negatively Charged Copolymer. Langmuir, 2014, 30, 13622-13630.	3.5	18
229	Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 124, 80-86.	5.0	128
230	Engineering biomaterials surfaces to modulate the host response. Colloids and Surfaces B: Biointerfaces, 2014, 124, 69-79.	5.0	49
231	The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	4.0	45
232	Controlling the biointerface of electrospun mats for clot lysis: an engineered tissue plasminogen activator link to a lysine-functionalized surface. Journal of Materials Chemistry B, 2014, 2, 4272.	5.8	10
233	Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. Journal of Materials Chemistry B, 2014, 2, 363-375.	5.8	162
234	Integrating a thermoresponsive copolymer with host–guest interactions for fabricating molecular recognition surfaces. Materials Horizons, 2014, 1, 540-545.	12.2	26
235	An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity. Lab on A Chip, 2014, 14, 2505-2514.	6.0	21
236	Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1629-1640.	3.5	5
237	Novel Functionalization of Discrete Polymeric Biomaterial Microstructures for Applications in Imaging and Three-Dimensional Manipulation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14477-14485.	8.0	11
238	Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces. Biomacromolecules, 2014, 15, 894-899.	5.4	15
239	High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. Journal of Membrane Science, 2014, 468, 172-183.	8.2	91

#	Article	IF	CITATIONS
240	Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films. Materials Science and Engineering C, 2014, 42, 808-815.	7.3	29
241	Enhanced Stability of Reduced Graphene Oxide Colloid Using Cross-Linking Polymers. Journal of Physical Chemistry C, 2014, 118, 9450-9457.	3.1	38
242	Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. Journal of Membrane Science, 2014, 470, 90-101.	8.2	81
243	Fabrication of Robust Hydrogel Coatings on Polydimethylsiloxane Substrates Using Micropillar Anchor Structures with Chemical Surface Modification. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9126-9133.	8.0	56
244	Blood compatible materials: state of the art. Journal of Materials Chemistry B, 2014, 2, 5718-5738.	5.8	237
245	Controlled Lecithin Release from a Hierarchical Architecture on Blood-Contacting Surface to Reduce Hemolysis of Stored Red Blood Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9808-9814.	8.0	36
246	Protein Interactions with Polymer Coatings and Biomaterials. Angewandte Chemie - International Edition, 2014, 53, 8004-8031.	13.8	614
247	Quantitative Evaluation of Interaction Force between Functional Groups in Protein and Polymer Brush Surfaces. Langmuir, 2014, 30, 2745-2751.	3.5	50
248	A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. Colloids and Surfaces B: Biointerfaces, 2014, 122, 134-142.	5.0	70
249	Blood activation and compatibility on single-molecular-layer biointerfaces. Journal of Materials Chemistry B, 2014, 2, 4911-4921.	5.8	53
250	Bacterial Resistance Control on Mineral Surfaces of Hydroxyapatite and Human Teeth via Surface Charge-Driven Antifouling Coatings. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3201-3210.	8.0	101
251	Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends. Progress in Surface Science, 2014, 89, 239-277.	8.3	86
252	Inhibition of Protein and Cell Attachment on Materials Generated from <i>N</i> -(2-Hydroxypropyl) Acrylamide. Biomacromolecules, 2014, 15, 3259-3266.	5.4	36
253	Superhydrophobic coating of elastomer on different substrates using a liquid template to construct a biocompatible and antibacterial surface. Journal of Materials Chemistry B, 2014, 2, 7186-7191.	5.8	30
254	Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomaterialia, 2014, 10, 1227-1237.	8.3	8
256	Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	32
258	Interaction of intraocular lenses with fibronectin and human lens epithelial cells: Effect of chemical composition and aging. Journal of Biomedical Materials Research - Part A, 2015, 103, 3843-3851.	4.0	8
259	Study on the processability of UHMWPE filled with different size distribution calcium carbonate particles. Polymer Composites, 2015, 36, 1807-1812.	4.6	6

#	Article	IF	CITATIONS
260	Bioinspired Blood Compatible Surface Having Combined Fibrinolytic and Vascular Endothelium‣ike Properties via a Sequential Coimmobilization Strategy. Advanced Functional Materials, 2015, 25, 5206-5213.	14.9	53
261	Obtaining of Hydrogels using PVA and HEC for Adipose Tissue Regeneration. Journal of Tissue Science & Engineering, 2015, 06, .	0.2	6
262	Cyclic Comonomers for the Synthesis of Carboxylic Acid and Amine Functionalized Poly(l-Lactic Acid). Molecules, 2015, 20, 4764-4779.	3.8	8
263	Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. Journal of Functional Biomaterials, 2015, 6, 708-832.	4.4	118
264	Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications. International Journal of Nanomedicine, 2015, 10, 5909.	6.7	10
265	Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer., 2015, 103, 97-105.		33
266	Thromboresistance of functionalized poly(methylmethacrylate): the effect of surface polarity. Bulletin of Materials Science, 2015, 38, 769-772.	1.7	2
267	Overview on Cell-Biomaterial Interactions. , 2015, , 91-128.		2
268	Review: Polymers, Surface-Modified Polymers, and Self Assembled Monolayers as Surface-Modifying Agents for Biomaterials. Polymer-Plastics Technology and Engineering, 2015, 54, 1358-1378.	1.9	54
269	Study on the rheological behaviors of UHMWPE/CAâ€MMT nanocomposite. Polymer Composites, 2015, 36, 47-50.	4.6	9
270	Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 342 Td (r	nethacryla	ate)/Poly(acry
271	Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metabolism Reviews, 2015, 47, 431-454.	3.6	28
272	Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility. Applied Surface Science, 2015, 329, 32-39.	6.1	45
273	Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification. Drug Delivery, 2015, 22, 182-190.	5.7	17
274	Photocurable Polymer Nanocomposites for Magnetic, Optical, and Biological Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 324-335.	2.9	12
275	Effect of Silicone on the Collagen Fibrillogenesis and Stability. Journal of Pharmaceutical Sciences, 2015, 104, 1275-1281.	3.3	9
276	Interaction of switchable biomaterials surfaces with proteins. , 2015, , 167-188.		5
277	The correlation between fibronectin adsorption and attachment of vascular cells on heparinized polycaprolactone membrane. Journal of Colloid and Interface Science, 2015, 448, 231-237.	9.4	19

#	Article	IF	CITATIONS
278	Nanofibrous Heparin and Heparin-Mimicking Multilayers as Highly Effective Endothelialization and Antithrombogenic Coatings. Biomacromolecules, 2015, 16, 992-1001.	5.4	74
279	Initial Cell Adhesion on Well-Defined Surface by Polymer Brush Layers with Varying Chemical Structures. ACS Biomaterials Science and Engineering, 2015, 1, 103-109.	5.2	43
280	Adsorption Force of Fibronectin on Various Surface Chemistries and Its Vital Role in Osteoblast Adhesion. Biomacromolecules, 2015, 16, 973-984.	5.4	61
282	Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16, 1-13.	8.3	354
283	Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 621-632.	3.3	39
284	Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications. Colloids and Surfaces B: Biointerfaces, 2015, 127, 22-32.	5.0	48
285	Protein release from water-swellable poly(d,l-lactide-PEG)-b-poly($\ddot{\mu}$ -caprolactone) implants. International Journal of Pharmaceutics, 2015, 480, 73-83.	5.2	8
286	Cysteine modified polyaniline films improve biocompatibility for two cell lines. Materials Science and Engineering C, 2015, 51, 51-56.	7. 3	28
287	Role of adsorbed proteins on hydroxyapatite-coated titanium in osteoblast adhesion and osteogenic differentiation. Science Bulletin, 2015, 60, 691-700.	9.0	16
288	Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 304-313.	5.0	21
289	Effects of Lithium Niobate Polarization on Cell Adhesion and Morphology. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18113-18119.	8.0	60
290	Enhanced biological performance on nano-microstructured surfaces assembled by SrTiO ₃ cubic nanocrystals. RSC Advances, 2015, 5, 67896-67900.	3.6	3
291	Role of Interfacial Water in Protein Adsorption onto Polymer Brushes as Studied by SFG Spectroscopy and QCM. Journal of Physical Chemistry C, 2015, 119, 17193-17201.	3.1	84
292	Graphene Oxide Nanocomposite Incorporated Poly(ether imide) Mixed Matrix Membranes for in Vitro Evaluation of Its Efficacy in Blood Purification Applications. Industrial & Engineering Chemistry Research, 2015, 54, 7899-7913.	3.7	38
293	Antithrombogenic Properties of Amphiphilic Block Copolymer Coatings: Evaluation of Hemocompatibility Using Whole Blood. ACS Biomaterials Science and Engineering, 2015, 1, 352-362.	5.2	10
294	In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab on A Chip, 2015, 15, 1366-1375.	6.0	42
295	Real-Time Monitoring of Critical Care Analytes in the Bloodstream with Chemical Sensors: Progress and Challenges. Annual Review of Analytical Chemistry, 2015, 8, 171-192.	5.4	52
296	Mechanically strong hybrid double network hydrogels with antifouling properties. Journal of Materials Chemistry B, 2015, 3, 5426-5435.	5.8	77

#	Article	IF	CITATIONS
297	Molecular Interaction Forces Generated during Protein Adsorption to Well-Defined Polymer Brush Surfaces. Langmuir, 2015, 31, 3108-3114.	3.5	55
298	Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors. Applied Surface Science, 2015, 346, 50-56.	6.1	29
299	Synthesis of functionalized Pluronic-b-poly ($\hat{l}\mu$ -caprolactone) and the comparative study of their pendant groups on the cellular internalization behavior. Journal of Materials Science: Materials in Medicine, 2015, 26, 171.	3.6	4
300	Gamma Globulins Adsorption on Carbofunctional Polysiloxane Microspheres. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 507-514.	3.7	13
301	Research progress on site-oriented and three-dimensional immobilization of protein. Molecular Biology, 2015, 49, 1-20.	1.3	20
303	RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption. Journal of Polymer Science Part A, 2015, 53, 2273-2284.	2.3	6
304	Bovine serum albumin adsorption onto functionalized polystyrene lattices: A theoretical modeling approach and error analysis. Progress of Theoretical and Experimental Physics, 2015, 2015, .	6.6	7
305	One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 459-467.	3.5	7
307	Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17489-17498.	8.0	75
308	Neutron reflectometry from poly (ethylene-glycol) brushes binding anti-PEG antibodies: Evidence of ternary adsorption. Biomaterials, 2015, 46, 95-104.	11.4	42
309	Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces. Journal of Materials Science: Materials in Medicine, 2015, 26, 261.	3.6	19
310	Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22709-22718.	8.0	13
311	Evaluation of optical properties and biocompatibility of polymer materials for microfluidic applications. , $2015, \ldots$		0
312	Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomaterialia, 2015, 28, 225-233.	8.3	59
313	Enhancing enzyme stability and metabolic functional ability of \hat{l}^2 -galactosidase through functionalized polymer nanofiber immobilization. Bioprocess and Biosystems Engineering, 2015, 38, 1915-1923.	3.4	27
314	Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains. Colloids and Surfaces B: Biointerfaces, 2015, 135, 490-496.	5.0	6
315	Prospects of common biomolecules as coating substances for polymeric biomaterials. RSC Advances, 2015, 5, 69660-69679.	3.6	23
316	In vitro hemocompatibility of sulfonated polypropylene non-woven fabric prepared via a facile \hat{l}^3 -ray pre-irradiation grafting method. Applied Surface Science, 2015, 356, 1221-1228.	6.1	31

#	Article	IF	CITATIONS
317	Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26050-26062.	8.0	81
318	Quantification of protein–materials interaction by soft colloidal probe spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 3014-3018.	2.8	14
319	Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte. Colloids and Surfaces B: Biointerfaces, 2015, 125, 28-33.	5.0	9
320	Advanced Polymers in Medicine. , 2015, , .		24
321	Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. Journal of Colloid and Interface Science, 2015, 438, 138-148.	9.4	47
322	The Roll of NaPSS Surfactant on the Ceria Nanoparticles Embedding in Polypyrrole Films. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	1
323	A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. International Journal of Molecular Sciences, 2016, 17, 908.	4.1	20
324	Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules, 2016, 21, 1715.	3.8	110
325	Design of Bloodâ€Compatible Interfaces with Poly(vinyl ether)s. Advanced Materials Interfaces, 2016, 3, 1600034.	3.7	15
326	Controlling the Integration of Polyvinylpyrrolidone onto Substrate by Quartz Crystal Microbalance with Dissipation To Achieve Excellent Protein Resistance and Detoxification. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 18684-18692.	8.0	12
327	Current Approaches in Improving Hemocompatibility of Polymeric Membranes for Biomedical Application. Macromolecular Materials and Engineering, 2016, 301, 771-800.	3.6	42
328	A highly expandable and tough polyacrylamide – alginate microcapsule. RSC Advances, 2016, 6, 44896-44901.	3.6	4
329	Preparation, characterization and protein sorption of photo-crosslinked cell membrane-mimicking chitosan-based hydrogels. Carbohydrate Polymers, 2016, 151, 237-244.	10.2	43
330	Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates. Journal of Colloid and Interface Science, 2016, 475, 8-16.	9.4	13
331	Biomineralization on single crystalline rutile: the modulated growth of hydroxyapatite by fibronectin in a simulated body fluid. RSC Advances, 2016, 6, 35507-35516.	3.6	19
332	Endothelialization of polyurethanes: Surface silanization and immobilization of REDV peptide. Colloids and Surfaces B: Biointerfaces, 2016, 144, 335-343.	5.0	28
333	An antithrombotic hydrogel with thrombin-responsive fibrinolytic activity: breaking down the clot as it forms. Materials Horizons, 2016, 3, 556-562.	12.2	34
334	Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate). Colloids and Surfaces B: Biointerfaces, 2016, 146, 888-894.	5.0	37

#	ARTICLE	IF	CITATIONS
335	Single-Molecule Kinetics of Protein Adsorption on Thin Nylon-6,6 Films. Analytical Chemistry, 2016, 88, 9926-9933.	6.5	25
336	Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption. Biomaterials, 2016, 105, 102-108.	11.4	22
338	Nanoporous Films with Superior Resistance to Protein Adsorption by Selective Swelling of Polystyrene- <i>block</i> -poly(ethylene oxide). Industrial & Engineering Chemistry Research, 2016, 55, 8133-8140.	3.7	15
339	Chain mobility and film softness mediated protein antifouling at the solid–liquid interface. Journal of Materials Chemistry B, 2016, 4, 6134-6142.	5 . 8	17
340	Key Role of Ionic Hydrogen Bonding in Nonspecific Protein Adsorption on a Hydrophobic Surface. Journal of Physical Chemistry C, 2016, 120, 19135-19141.	3.1	12
341	pH-Responsive Core–Shell Structured Nanoparticles for Triple-Stage Targeted Delivery of Doxorubicin to Tumors. ACS Applied Materials & Interfaces, 2016, 8, 23498-23508.	8.0	45
342	Enhancement of Cell Adhesion on a Phosphorylcholine-Based Surface through the Interaction with DNA Mediated by Ca ²⁺ lons. Journal of Physical Chemistry B, 2016, 120, 12272-12278.	2.6	2
343	Measuring the Surface–Surface Interactions Induced by Serum Proteins in a Physiological Environment. Langmuir, 2016, 32, 12129-12136.	3.5	9
344	Effects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites. RSC Advances, 2016, 6, 92586-92595.	3.6	12
345	Direct Interaction Force and Adsorption Behavior of Fibrinogen on Well-Characterized Polymer Brush Surfaces. Transactions of the Materials Research Society of Japan, 2016, 41, 51-54.	0.2	1
346	A microfluidic chip of multiple-channel array with various oxygen tensions for drug screening. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	14
347	Neuronal commitment of human circulating multipotent cells by carbon nanotube-polymer scaffolds and biomimetic peptides. Nanomedicine, 2016, 11, 1929-1946.	3.3	20
348	Thiol Reactive Maleimido-Containing Tannic Acid for the Bioinspired Surface Anchoring and Post-Functionalization of Antifouling Coatings. ACS Sustainable Chemistry and Engineering, 2016, 4, 4264-4272.	6.7	39
349	Analysis of the biocompatibility of perfluoropolyether dimethacrylate network using an organotypic method. Materials Science and Engineering C, 2016, 65, 295-302.	7.3	12
351	Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10710-10716.	8.0	14
352	Surface Charge Convertible and Biodegradable Synthetic Zwitterionic Nanoparticles for Enhancing Cellular Drug Uptake. Macromolecular Bioscience, 2016, 16, 308-313.	4.1	14
353	Significantly reduced adsorption and activation of blood components in a membrane oxygenator system coated with crosslinkable zwitterionic copolymer. Acta Biomaterialia, 2016, 40, 153-161.	8.3	34
354	Localized protein immobilization on microstructured polymeric surfaces for diagnostic applications. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	3

#	Article	IF	CITATIONS
355	Manipulation of nanofiber-based \hat{l}^2 -galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. Journal of Biotechnology, 2016, 222, 56-64.	3.8	30
356	Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT / adsorption resistance. Colloids and Surfaces B: Biointerfaces, 2016, 141, 507-512.	Overlock : 5.0	10 Tf 50 70 47
357	Dual-functional anticoagulant and antibacterial blend coatings based on gemini quaternary ammonium salt waterborne polyurethane and heparin. RSC Advances, 2016, 6, 17336-17344.	3.6	13
358	Effect of polyethylene glycol on the antibacterial properties of polyurethane/carbon nanotube electrospun nanofibers. RSC Advances, 2016, 6, 19238-19244.	3.6	37
359	Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components. Composites Science and Technology, 2016, 127, 28-35.	7.8	36
360	Study of the conformational change of adsorbed proteins on biomaterial surfaces using hydrogen-deuterium exchange with mass spectroscopy. Colloids and Surfaces B: Biointerfaces, 2016, 141, 513-518.	5.0	12
361	Surface characterization techniques for polyurethane biomaterials., 2016,, 23-73.		12
362	Embolic applications of shape memory polyurethane scaffolds. , 2016, , 561-597.		5
363	Functionalized Denture Resins as Drug Delivery Biomaterials to Control Fungal Biofilms. ACS Biomaterials Science and Engineering, 2016, 2, 224-230.	5.2	13
364	Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces, 2016, 140, 19-27.	5.0	33
365	Hemocompatible interface control via thermal-activated bio-inspired surface PEGylation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 409-420.	3.4	7
366	Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. Journal of Membrane Science, 2016, 498, 135-146.	8.2	68
367	Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 8-20.	3.1	90
368	For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods, 2016, 94, 51-64.	3.8	61
369	Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating. Materials Science and Engineering C, 2017, 73, 788-797.	7.3	27
370	Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. Journal of Membrane Science, 2017, 528, 251-263.	8.2	65
372	Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy. Biomaterials Science, 2017, 5, 686-697.	5.4	32
373	Thermal stability of brushite with chitosan samples. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012066.	0.6	1

#	Article	IF	CITATIONS
374	Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 590-600.	5.2	91
375	Polymer brushes based on PLLA- <i>b</i> -PEO colloids for the preparation of protein resistant PLA surfaces. Biomaterials Science, 2017, 5, 1130-1143.	5.4	12
376	One simple and stable coating of mixedâ€charge copolymers on poly(vinyl chloride) films to improve antifouling efficiency. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
377	Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomaterials Science, 2017, 5, 1230-1235.	5.4	70
378	Fouling release of UV-cured acrylic coatings: Set-up of an in vitro test with Rhodotorula mucilaginosa. Surface and Coatings Technology, 2017, 325, 377-385.	4.8	3
379	Selfâ€assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017, 114, 2173-2186.	3.3	16
380	Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications. Nanoscale Research Letters, 2017, 12, 328.	5.7	44
381	A facile technique for fabricating poly (2-methacryloyloxyethyl phosphorylcholine) coatings on titanium alloys. Journal of Coatings Technology Research, 2017, 14, 1127-1135.	2.5	2
382	Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond. Carbohydrate Polymers, 2017, 167, 219-228.	10.2	33
383	Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomaterials Science, 2017, 5, 1072-1081.	5.4	45
384	Tea Stains-Inspired Antifouling Coatings Based on Tannic Acid-Functionalized Agarose. ACS Sustainable Chemistry and Engineering, 2017, 5, 3055-3062.	6.7	37
385	"Hearing Loss―in QCM Measurement of Protein Adsorption to Protein Resistant Polymer Brush Layers. Analytical Chemistry, 2017, 89, 4184-4191.	6.5	31
386	Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation. Acta Biomaterialia, 2017, 50, 476-483.	8.3	14
387	Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomaterials Science, 2017, 5, 2416-2426.	5.4	27
388	Hydrogen bonding induced protein adsorption on polymer brushes: a Monte Carlo study. Journal of Materials Chemistry B, 2017, 5, 8479-8486.	5.8	11
389	Thrombosisâ€Responsive Thrombolytic Coating Based on Thrombinâ€Degradable Tissue Plasminogen Activator (tâ€PA) Nanocapsules. Advanced Functional Materials, 2017, 27, 1703934.	14.9	35
390	Neutron Reflectometry Elucidates Protein Adsorption from Human Blood Serum onto PEG Brushes. Langmuir, 2017, 33, 12708-12718.	3.5	9
391	Effects of polymer topology on biointeractions of polymer brushes: Comparison of cyclic and linear polymers. Colloids and Surfaces B: Biointerfaces, 2017, 159, 527-532.	5.0	13

#	Article	IF	CITATIONS
392	Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption. Langmuir, 2017, 33, 10402-10410.	3.5	16
393	3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34314-34324.	8.0	210
394	Phosphorylcholine oligomer-grafted graphene oxide for tumor-targeting doxorubicin delivery. RSC Advances, 2017, 7, 41675-41685.	3.6	8
396	Surfaceâ€attached polymer networks through carbene intermediates generated from αâ€diazo esters. Journal of Polymer Science Part A, 2017, 55, 3276-3285.	2.3	12
397	Neutron reflectometry yields distance-dependent structures of nanometric polymer brushes interacting across water. Soft Matter, 2017, 13, 5767-5777.	2.7	17
398	Efficient protein-repelling thin films regulated by chain mobility of low-T g polymers with increased stability via crosslinking. Applied Surface Science, 2017, 426, 796-803.	6.1	9
399	Silicone rubber with mussel-inspired adhesive coatings for enhancing antifouling property and blood compatibility. Macromolecular Research, 2017, 25, 841-848.	2.4	13
400	A novel hybrid polyhedral oligomeric silsesquioxane-based copolymer with zwitterion: Synthesis, characterization, self-assembly behavior and pH responsive property. Macromolecular Research, 2017, 25, 817-825.	2.4	7
401	Solvent Isotope Effect on Biomolecular Adsorption at Hydrophobic Surfaces. Journal of Physical Chemistry C, 2017, 121, 16879-16887.	3.1	4
403	Tumor-Targeted Accumulation of Ligand-Installed Polymeric Micelles Influenced by Surface PEGylation Crowdedness. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44045-44052.	8.0	17
404	Plasma assisted surface treatments of biomaterials. Biophysical Chemistry, 2017, 229, 151-164.	2.8	37
405	Best practice recommendations for the use of fully implanted telemetry devices in pinnipeds. Animal Biotelemetry, 2017, 5, .	1.9	18
406	Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization. Langmuir, 2017, 33, 611-621.	3.5	48
407	Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins. Colloids and Surfaces B: Biointerfaces, 2017, 149, 130-137.	5.0	19
408	Surface Modification of Polymers. , 2017, , 109-130.		46
409	Investigation of cell surface interfacial interactions of HeLa cell cultured over self-assembled monolayer surface., 2017,,.		1
411	Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. International Journal of Polymer Science, 2017, 2017, 1-10.	2.7	4
412	A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2018, 167, 28-35.	5.0	17

#	Article	IF	CITATIONS
413	Effect of PEGylation on the stability of thermoresponsive nanogels. Journal of Colloid and Interface Science, 2018, 524, 245-255.	9.4	13
414	Chitosan-based hydrogels: Preparation, properties and applications. International Journal of Biological Macromolecules, 2018, 115, 194-220.	7. 5	230
415	Polymeric-Patterned Surface for Biomedical Applications. Energy, Environment, and Sustainability, 2018, , 227-251.	1.0	2
416	Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption. Journal of Materials Chemistry B, 2018, 6, 556-567.	5. 8	36
417	Anti-thrombogenicity and permeability of polyethersulfone hollow fiber membrane with sulfonated alginate toward blood purification. International Journal of Biological Macromolecules, 2018, 116, 364-377.	7. 5	24
418	Additive Manufacturing with Ultraviolet Curable Silicones Containing Carbon Black. 3D Printing and Additive Manufacturing, 2018, 5, 73-86.	2.9	18
419	Influence of brush length of <scp>PVP</scp> chains immobilized on silicon wafers on their blood compatibility. Polymers for Advanced Technologies, 2018, 29, 835-842.	3.2	2
420	Surface modification of bioactive glasses. , 2018, , 119-143.		5
421	Plasma processing of PDMS based spinal implants for covalent protein immobilization, cell attachment and spreading. Journal of Materials Science: Materials in Medicine, 2018, 29, 178.	3.6	7
422	Biodegradable Anisotropic Microparticles for Stepwise Cell Adhesion and Preparation of Janus Cell Microparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36776-36785.	8.0	16
423	Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. Langmuir, 2018, 34, 12463-12470.	3.5	6
424	Interactions Between Biological Products and Product Packaging and Potential Approaches to Overcome Them. AAPS PharmSciTech, 2018, 19, 3681-3686.	3.3	12
425	Analysis of Interaction Between Interfacial Structure and Fibrinogen at Blood-Compatible Polymer/Water Interface. Frontiers in Chemistry, 2018, 6, 542.	3.6	25
426	Multifunctional Protein-Immobilized Plasma Polymer Films for Orthopedic Applications. ACS Biomaterials Science and Engineering, 2018, 4, 4084-4094.	5.2	27
427	End Point Versus Backbone Specificity Governs Characteristics of Antibody Binding to Poly(ethylene) Tj ETQq0 0	0 ggBT /O	verlock 10 Tf
428	Extraction of the Polyurethane Layer in Textile Composites for Textronics Applications Using Optical Coherence Tomography. Polymers, 2018, 10, 469.	4.5	13
429	Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel. Biofouling, 2018, 34, 769-783.	2.2	14
430	Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach. Journal of Membrane Science, 2018, 563, 115-125.	8.2	28

#	Article	IF	CITATIONS
431	Fabrication of robust biomimetic coating by integrated physisorption/chemical crosslinking technique. Applied Surface Science, 2018, 453, 37-47.	6.1	8
432	Construction of anti-thrombotic and anti-oxidative surfaces with elastomer/Pluronic F127 assembled microfibers. Applied Surface Science, 2018, 451, 76-85.	6.1	10
433	Adsorption force of fibronectin controls transmission of cell traction force and subsequent stem cell fate. Biomaterials, 2018, 162, 170-182.	11.4	17
434	Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials, 2018, 177, 67-77.	11.4	82
435	Biocompatibility of polymer-based biomaterials and medical devices – regulations, <i>in vitro</i> screening and risk-management. Biomaterials Science, 2018, 6, 2025-2053.	5.4	183
436	Selective self-induced stimulus amplification prodrug platform for inhibiting multidrug resistance and lung metastasis. Journal of Controlled Release, 2018, 284, 224-239.	9.9	18
437	Cellular responses to radical propagation from ion-implanted plasma polymer surfaces. Applied Surface Science, 2018, 456, 701-710.	6.1	21
438	"Click-chemical―modification of cellulose acetate nanofibers: a versatile platform for biofunctionalization. Journal of Materials Chemistry B, 2018, 6, 4579-4582.	5.8	17
439	Bio-inspired microcapsule for targeted antithrombotic drug delivery. RSC Advances, 2018, 8, 27253-27259.	3.6	10
440	Improved antifouling ability of thin film composite polyamide membrane modified by a pH-sensitive imidazole-based zwitterionic polyelectrolyte. Journal of Membrane Science, 2018, 564, 788-799.	8.2	36
441	Self-Assembly Behavior and pH-Stimuli-Responsive Property of POSS-Based Amphiphilic Block Copolymers in Solution. Micromachines, 2018, 9, 258.	2.9	10
442	Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(L-lactic acid) scaffolds for bone defect repair. International Journal of Nanomedicine, 2018, Volume 13, 1707-1721.	6.7	81
443	Coatings for biomaterials to improve hemocompatibility. , 2018, , 163-190.		17
444	Collagen/chitosan/hyaluronic acid – based injectable hydrogels for tissue engineering applications – design, physicochemical and biological characterization. Colloids and Surfaces B: Biointerfaces, 2018, 170, 152-162.	5.0	75
445	Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. Journal of Drug Targeting, 2019, 27, 355-366.	4.4	15
446	Co-immobilization of ACH11 antithrombotic peptide and CAG cell-adhesive peptide onto vascular grafts for improved hemocompatibility and endothelialization. Acta Biomaterialia, 2019, 97, 344-359.	8.3	44
447	A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Progress in Materials Science, 2019, 106, 100588.	32.8	147
448	Processing of nanotubes on NiTi-shape memory alloys and their modification with photografted anti-adhesive polymer brushes. Towards smart implant surfaces. Materials and Design, 2019, 182, 108031.	7.0	9

#	Article	IF	CITATIONS
449	Preparation of monometallic and bimetallic alloy nanoparticles stabilized with sulfobetaine-based block copolymer and their catalytic activities. Colloid and Polymer Science, 2019, 297, 1067-1078.	2.1	7
451	Fundamentals and Advances in the Adhesion of Polymer Surfaces and Thin Films. Langmuir, 2019, 35, 15914-15936.	3.5	66
452	Poly(2-methyl-2-oxazoline) and poly(4-vinyl pyridine) based mixed brushes with switchable ability toward protein adsorption. European Polymer Journal, 2019, 120, 109199.	5.4	15
453	Enhanced Adhesion of Fish Ovarian Germline Stem Cells on Solid Surfaces by Mussel-Inspired Polymer Coating. Marine Drugs, 2019, 17, 11.	4.6	3
454	A rapid one-step surface functionalization of polyvinyl chloride by combining click sulfur(<scp>vi</scp>)-fluoride exchange with benzophenone photochemistry. Chemical Communications, 2019, 55, 858-861.	4.1	28
455	Investigations for In-house prepared Biocompatible Feed Stock Filament of Fused Deposition Modelling: A Process Capability study. Journal of the Institution of Engineers, Bangladesh, 2019, 48, 18-23.	0.5	3
456	The Influence of Surface Wettability and Topography on the Bioactivity of TiO2/Epoxy Coatings on AISI 316L Stainless Steel. Materials, 2019, 12, 1877.	2.9	32
457	Achieving systemic delivery of oncolytic viruses. Expert Opinion on Drug Delivery, 2019, 16, 607-620.	5.0	56
458	Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces, 2019, 3, 48.	2.1	140
459	Chemistries for Making Additive Nanolithography in OrmoComp Permissive for Cell Adhesion and Growth. ACS Applied Materials & Amp; Interfaces, 2019, 11, 19793-19798.	8.0	6
460	Synthesis of polythiophene nanoparticles by surfactant-free chemical oxidative polymerization method: Characterization, in vitro biomineralization, and cytotoxicity evaluation. Journal of Industrial and Engineering Chemistry, 2019, 77, 243-252.	5.8	25
461	Formation of Hydrophobic Domains on the poly(MPC- <i>co</i> -Dodecyl Methacrylate)-Coated Surface Recognized by Macrophage-like Cells. Langmuir, 2019, 35, 12229-12235.	3.5	13
462	Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. Materials Science and Engineering C, 2019, 100, 215-225.	7. 3	16
463	New protein-resistant surfaces of amphiphilic graft copolymers containing hydrophilic poly(ethylene) Tj ${\sf ETQq1\ 1}$	0.784314 6.1	rgBT /Overl
464	A computational avenue towards understanding and design of zwitterionic anti-biofouling materials. Molecular Simulation, 2019, 45, 1211-1222.	2.0	11
465	<p>Atomic Layer Deposition Coating of TiO₂ Nano-Thin Films on Magnesium-Zinc Alloys to Enhance Cytocompatibility for Bioresorbable Vascular Stents</p> . International Journal of Nanomedicine, 2019, Volume 14, 9955-9970.	6.7	39
466	Hemodialysis Membrane for Blood Purification Process. , 2019, , 283-314.		4
467	Surface modification of AO-PAN@OHec nanofiber membranes with amino acid for antifouling and hemocompatible properties. Applied Surface Science, 2019, 475, 934-941.	6.1	21

#	ARTICLE	IF	Citations
468	Fabrication of stable biomimetic coating on PDMS surface: Cooperativity of multivalent interactions. Applied Surface Science, 2019, 469, 720-730.	6.1	22
469	Biofunctionalized Electrospun PCLâ€PIBMD/SF Vascular Grafts with PEG and Cellâ€Adhesive Peptides for Endothelialization. Macromolecular Bioscience, 2019, 19, e1800386.	4.1	46
470	Straightforward Route to Superhydrophilic Poly(2-oxazoline)s via Acylation of Well-Defined Polyethylenimine. Biomacromolecules, 2019, 20, 222-230.	5.4	36
471	Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. Langmuir, 2019, 35, 1544-1551.	3.5	60
472	Physicochemical Stability of Monoclonal Antibodies: A Review. Journal of Pharmaceutical Sciences, 2020, 109, 169-190.	3.3	227
473	Hydrophilic Polysiloxane Microspheres and Ceramic SiOC Microspheres Derived from Them. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 56-68.	3.7	16
474	Tirapazamine-embedded polyplatinum(<scp>iv</scp>) complex: a prodrug combo for hypoxia-activated synergistic chemotherapy. Biomaterials Science, 2020, 8, 694-701.	5.4	26
475	Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110756.	5.0	28
476	Reduction of thrombotic and inflammatory complications of polystyrene-block-polyisoprene-block-polystyrene (SIS) with one-step electrospinning. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 642-657.	3.5	4
477	Poly(2-aminoethyl methacrylate)-based polyampholyte brush surface with carboxylic groups to improve blood compatibility. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 679-693.	3.5	4
478	Nitric Oxide-Generating Antiplatelet Polyurethane Surfaces with Multiple Additional Biofunctions via Cyclodextrin-Based Host–Guest Interactions. ACS Applied Bio Materials, 2020, 3, 570-576.	4.6	12
479	A zwitterionic serine modified chitosan derivative for improving protein stability and activity. International Journal of Biological Macromolecules, 2020, 163, 1738-1746.	7.5	5
480	In Vitro Study of a Stentless Aortic Bioprosthesis Made of Bacterial Cellulose. Cardiovascular Engineering and Technology, 2020, 11, 646-654.	1.6	4
481	Polymeric nanocarriers in targeted drug delivery systems: A review. Polymers for Advanced Technologies, 2020, 31, 2939-2954.	3.2	40
482	A core–shell double-layer structured polylactic acid/chitosan delivery system containing large molecular protein. Iranian Polymer Journal (English Edition), 2020, 29, 997-1006.	2.4	4
483	Applications of neutron reflectometry in biology. EPJ Web of Conferences, 2020, 236, 04002.	0.3	8
484	In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends in Chemistry, 2020, 2, 689-706.	8.5	27
485	Protein adsorption behavior in nanoscale phase-separated polymer coatings prepared using poly(2-methacrylolyoxyethyl phosphorylcholine)-containing amphiphilic block copolymers. European Polymer Journal, 2020, 135, 109885.	5.4	7

#	Article	IF	CITATIONS
486	Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules, 2020, 53, 8570-8580.	4.8	22
487	In Vitro and In Vivo Studies of Biodegradability and Biocompatibility of Poly(ÎμCL)-b-Poly(EtOEP)-Based Films. Polymers, 2020, 12, 3039.	4.5	7
488	Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111066.	5 . 0	29
489	Reactive films fabricated using click sulfur(<scp>vi</scp>)–fluoride exchange reactions <i>via</i> layer-by-layer assembly. Journal of Materials Chemistry B, 2020, 8, 5529-5534.	5 . 8	10
490	The classification and application of cyclodextrin polymers: a review. New Journal of Chemistry, 2020, 44, 9137-9148.	2.8	36
491	Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules, 2020, 21, 2557-2573.	5.4	116
492	Competitive inhibition of protein adsorption to silica surfaces by their coating with high density charge polyelectrolytes. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110993.	5.0	3
493	Controlled structure and hydrophilic property of polymethylhydrosiloxane thin films attached on silicon support and modified with phosphorylcholine group. Thin Solid Films, 2020, 709, 138196.	1.8	5
494	Novel aerosol assisted plasma deposition of PEG containing coatings for non-fouling application. Applied Surface Science, 2020, 527, 146698.	6.1	13
495	Multi-functional zwitterionic coating for silicone-based biomedical devices. Chemical Engineering Journal, 2020, 398, 125663.	12.7	53
496	Tri-functional platform for the facile construction of dual-functional surfaces <i>via</i> a one-pot strategy. Journal of Materials Chemistry B, 2020, 8, 5602-5605.	5.8	4
497	Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification. Biomaterials Science, 2020, 8, 2120-2128.	5.4	19
498	Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. Macromolecules, 2020, 53, 2713-2723.	4.8	45
499	A New Nanocomposite Copolymer Based On Functionalised Graphene Oxide for Development of Heart Valves. Scientific Reports, 2020, 10, 5271.	3.3	31
500	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
501	Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2020, 41, e1900430.	3.9	86
503	Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application. Colloids and Interface Science Communications, 2020, 35, 100241.	4.1	19
504	On 3D printed scaffolds for orthopedic tissue engineering applications. SN Applied Sciences, 2020, 2, 1.	2.9	14

#	Article	IF	CITATIONS
505	Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomaterialia, 2020, 109, 51-60.	8.3	25
506	Reinforced non-conventional material composites: a comprehensive review. Advances in Materials and Processing Technologies, 2021, 7, 333-342.	1.4	6
507	Mechanical, Rheological and Thermal Investigations of Biocompatible Feedstock Filament Comprising of PVC, PP and HAp. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 159-168.	1.2	3
508	Synthesis and characterization of sulphonic acid ligand immobilized Aminopropyl silanetriol copolymer and evaluation of its Bovine serum albumin adsorption efficiency. Materials Today: Proceedings, 2021, 41, 728-735.	1.8	3
509	Effect of interfacial structure based on grafting density of poly(2-methoxyethyl acrylate) on blood compatibility. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111517.	5.0	11
510	Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules, 2021, 22, 223-261.	5.4	20
511	3D printing of robust and biocompatible poly(ethylene glycol)diacrylate/nano-hydroxyapatite composites <i>via</i> continuous liquid interface production. Journal of Materials Chemistry B, 2021, 9, 1315-1324.	5.8	16
512	Conjugation of Polysulfobetaine via Poly(pyrogallol) Coatings for Improving the Antifouling Efficacy of Biomaterials. ACS Omega, 2021, 6, 3517-3524.	3.5	12
513	Functional modification of silicone rubber through nanoâ€hydroxylapatite embedding. Polymers for Advanced Technologies, 2021, 32, 2118-2130.	3.2	2
514	Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials, 2021, 11, 404.	4.1	45
515	Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Review of Molecular Diagnostics, 2021, 21, 175-193.	3.1	18
516	Hemocompatible Surfaces Through Surface-attached Hydrogel Coatings and their Functional Stability in a Medical Environment. ASAIO Journal, 2021, Publish Ahead of Print, .	1.6	1
517	Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. Coatings, 2021, 11, 461.	2.6	6
518	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	10.4	18
519	Surface Chemistry, Crystal Structure, Size and Topography Role in the Albumin Adsorption Process on TiO2 Anatase Crystallographic Faces and Its 3D-Nanocrystal: A Molecular Dynamics Study. Coatings, 2021, 11, 420.	2.6	9
520	Development of Nonfouling Zwitterionic Copolymerized Peptides Based on Glutamic Acid and Lysine Dimers for Adjustable Enzymatic Degradation. Langmuir, 2021, 37, 5776-5782.	3.5	5
521	Ambient temperature sulfonated carbon fiber reinforced <scp>PEEK</scp> with hydroxyapatite and reduced graphene oxide hydroxyapatite composite coating. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2174-2183.	3.4	10
522	"CHicable―and "Clickable―Copolymers for Network Formation and Surface Modification. Langmuir, 2021, 37, 6510-6520.	3.5	4

#	Article	IF	CITATIONS
523	Cell Adhesion Characteristics on Tantalum Pentoxide Gate Insulator for Cultured-Cell-Gate Field-Effect Transistor. Langmuir, 2021, 37, 7548-7555.	3.5	6
524	Impact of crossâ€linker on the structure and hydrophilic–hydrophobic properties of polyhydromethylsiloxaneâ€derived microspheres. Polymers for Advanced Technologies, 2021, 32, 3967-3974.	3.2	3
525	Adsorption Force of Fibronectin: A Balance Regulator to Transmission of Cell Traction Force and Fluid Shear Stress. Biomacromolecules, 2021, 22, 3264-3273.	5.4	5
526	Lysine-oligoether-modified electrospun poly(carbonate urethane) matrices for improving hemocompatibility response. Polymer Journal, 2021, 53, 1393-1402.	2.7	2
527	Viscoelastic Behavior of Drug-Loaded Polyurethane. Polymers, 2021, 13, 2608.	4.5	2
528	Protein adsorption/desorption dynamics on Ca-enriched titanium surfaces: biological implications. Journal of Biological Inorganic Chemistry, 2021, 26, 715-726.	2.6	13
529	Surface modification of PA layer of TFC membranes: Does it effective for performance Improvement?. Journal of Industrial and Engineering Chemistry, 2021, 102, 271-292.	5.8	18
530	Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioactive Materials, 2021, 6, 3125-3135.	15.6	16
531	Dual stimulus-responsive chitosan-based nanoparticles co-delivering doxorubicin and quercetin for cancer therapy. Materials Letters, 2021, 305, 130826.	2.6	9
532	Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. Iranian Polymer Journal (English Edition), 2021, 30, 343-353.	2.4	7
533	Supercritical Fluid Pasteurization and Food Safety. RSC Green Chemistry, 2018, , 153-195.	0.1	3
534	Chapter 4. Supercritical Fluid Pasteurization and Food Safety. RSC Green Chemistry, 0, , 145-183.	0.1	2
535	Development of tamoxifenâ€loaded surfaceâ€modified nanostructured lipid carrier using experimental design: <i>in vitro</i> and <i>ex vivo</i> characterisation. IET Nanobiotechnology, 2020, 14, 261-274.	3.8	7
536	Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions. PLoS ONE, 2017, 12, e0173910.	2.5	7
537	Parametric Investigation of Batch Adsorption of Proteins onto Polymeric Particles. Current Pharmaceutical Biotechnology, 2015, 16, 816-822.	1.6	1
538	Recent Developments in Polymer Microfluidic Devices with Capillary Electrophoresis and Electrochemical Detection. Micro and Nanosystems, 2010, 2, 108-136.	0.6	8
540	Nano-Colloid Printing of Functionalized PLA-b-PEO Copolymers: Tailoring the Surface Pattern of Adhesive Motif and its Effect on Cell Attachment. Physiological Research, 2015, 64, S61-S73.	0.9	2
541	INTERACTION BETWEEN PNIPAAM MODIFIED SILICON SURFACES AND PLASMA PROTEINS. Acta Polymerica Sinica, 2011, 011, 537-542.	0.0	2

#	Article	IF	CITATIONS
542	PREPARATION OF BIOACTIVE SURFACES FOR PROMOTING CELL ADHESION. Acta Polymerica Sinica, 2011, 011, 622-627.	0.0	1
543	REGULATION OF PROTEIN ADSORPTION ON pH-RESPONSIVE SURFACES. Acta Polymerica Sinica, 2011, 011, 812-816.	0.0	3
544	Natural Material Source of Bagasse Cellulose and Their Application to Hydrogel Films. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 19-43.	0.4	1
545	Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly(Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering. American Journal of Biomedical Engineering, 2012, 1, 13-19.	0.9	3
546	Surface Modification Strategies for Fabrication of Nano-biodevices: A Critical Review. Reviews of Adhesion and Adhesives, 2016, 4, 166-191.	3.4	11
547	A conserved Neurite Outgrowth and Guidance motif with biomimetic potential in neuronal Cell Adhesion Molecules. Computational and Structural Biotechnology Journal, 2021, 19, 5622-5636.	4.1	3
548	Hydrogel-Based Therapies for Cardiovascular Diseases. , 2021, , 399-427.		0
549	Lysine-doped polydopamine coating enhances antithrombogenicity and endothelialization of an electrospun aligned fibrous vascular graft. Applied Materials Today, 2021, 25, 101198.	4.3	16
550	Novel Microspheres for Prolonged Cell Survival. , 2012, , 633-664.		0
551	Preparation and Applications of Modulated Surface Energy Biomaterials. , 2013, , 495-538.		0
552	DIBLOCK COMB-LIKE COPOLYMER MODIFIED SURFACE FOR SELECTIVE ADHESION OF VASCULAR ENDOTHELIAL CELLS. Acta Polymerica Sinica, 2013, 013, 1108-1114.	0.0	0
553	Determining the Mass composition of Polymer Composites by Fourier Ir Spectroscopy. the Segmented Polyether Urethane–Polyhydroxybutyrate System. International Polymer Science and Technology, 2013, 40, T29-T31.	0.1	0
554	Smart Surfaces. NIMS Monographs, 2014, , 115-188.	0.3	0
555	Advances in Molecular Design of Polymer Surfaces with Antimicrobial, Anticoagulant, and Antifouling Properties., 2015,, 53-80.		1
558	Modulated Surface Energy Biomaterials: Preparation and Applications. , 0, , 4815-4846.		0
559	Polyurethanes: Surface Protein Adsorption. , 0, , 6724-6742.		0
561	Examination of the Effects of Activated Carbon Produced from Coal Using Single-Step H3PO4/N2+H2O Vapor Activation on the Adsorption of Bovine Serum Albumin at Different Temperatures and pH Values. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 219-236.	1.1	1
563	Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chinese Journal of Chemical Engineering, 2021, 37, 12-29.	3.5	5

#	ARTICLE	IF	CITATIONS
564	Shearâ€sensitive chain extension of dissolved poly(ethylene oxide) by aluminate ions. Journal of Polymer Science, 2021, 59, 146-152.	3.8	1
565	Analysis of the Interaction between a Protein and Polymer Membranes Using Steered Molecular Dynamics Simulation to Interpret the Fouling Behavior. Bulletin of the Chemical Society of Japan, 2020, 93, 1443-1448.	3.2	4
566	Surface-Modifying Polymers for Blood-Contacting Polymeric Biomaterials. Advances in Experimental Medicine and Biology, 2020, 1250, 189-198.	1.6	7
567	Investigating the Conformation of Surface-Adsorbed Proteins with Standing-Wave X-ray Fluorescence. Biomacromolecules, 2021, , .	5.4	4
569	ADVANCES IN TECHNIQUES AND APPLICATIONS OF RUBBER SURFACE GRAFTING MODIFICATION. Rubber Chemistry and Technology, 2022, 95, 1-18.	1.2	2
570	Photoresponsive behaviour of zwitterionic polymer particles with photodimerizable groups on their surfaces. Journal of Materials Chemistry B, 2022, 10, 2637-2648.	5.8	11
571	Biocompatible nanocomposite production <i>via</i> nanoclays with diverse morphology. International Journal of Polymer Analysis and Characterization, 2022, 27, 158-179.	1.9	4
572	Robust, anti-biofouling 2D nanogel films from poly(<i>N</i> -vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	0 462 _{.8} Td (c	capgolactam-«
573	Zwitterionic polymers in biofouling and inorganic fouling mechanisms., 2022,, 33-70.		1
575	Grafting of 2-hydroxyethyl methacrylate onto polyacrylonitrile using supercritical carbon dioxide. Journal of Supercritical Fluids, 2022, 186, 105589.	3.2	3
576	Determining the adsorption capacity and stability of Aflatoxin B1, Ochratoxin A, and Zearalenon on single and co-culture L. acidophilus and L. rhamnosus surfaces. Journal of Food Composition and Analysis, 2022, 110, 104517.	3.9	7
577	Sustainable Polymer Used as Renewable Source for Medical Industry. , 2022, , .		O
578	Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules, 2022, 23, 1841-1863.	5.4	61
582	Biocompatible enhancement of poly(ethylene terephthalate) (<scp>PET</scp>) waste films by cold plasma aminolysis. Journal of Chemical Technology and Biotechnology, 2022, 97, 3001-3010.	3.2	8
583	The influence of the functional end groups on the properties of polylactide-based materials. Progress in Polymer Science, 2022, 130, 101556.	24.7	25
584	Electrode hydrophilicity enhanced the rate of extracellular electron uptake in Desulfovibrio ferrophilus IS5. Electrochimica Acta, 2022, 421, 140504.	5.2	1
585	Effects of microsize on the biocompatibility of UiO67 from protein-adsorption behavior, hemocompatibility, and histological toxicity. Journal of Hazardous Materials, 2022, 435, 129042.	12.4	5
586	Triâ€functional unit groups contained polyurethane composites with excellent antibacterial property and biocompatibility. Journal of Polymer Science, 2022, 60, 2383-2394.	3.8	2

#	Article	IF	CITATIONS
587	Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials. Materials, 2022, 15, 3822.	2.9	1
588	A Multidisciplinary Experiment to Characterize Antifouling Biocompatible Interfaces via Quantification of Surface Protein Adsorption. Journal of Chemical Education, 2022, 99, 2667-2676.	2.3	5
589	Development of 3D Thermoplastic Polyurethane (TPU)/Maghemite (i'-Fe2O3) Using Ultra-Hard and Tough (UHT) Bio-Resin for Soft Tissue Engineering. Polymers, 2022, 14, 2561.	4.5	2
590	Biological Properties of Polyurethanes. , 2022, , 83-114.		0
591	Recent advancement challenges with synthesis of biocompatible hemodialysis membranes. Chemosphere, 2022, 307, 135626.	8.2	13
592	Polydioxanone Derivative Bearing Methoxy Groups toward Bioâ€Functional Degradable Polymers Exhibiting Hydrationâ€Driven Biocompatibility. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
594	Biointerface Phenomena in Biological Science and Bioengineering: Importance of Engineering Courses. , 2023, , 185-204.		1
595	Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite. ACS Biomaterials Science and Engineering, 2023, 9, 918-931.	5.2	2
596	Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering, 2023, 258, 110701.	12.0	44
597	Biologically Responsive Polymers. , 2016, , 199-253.		0
598	Practical Aspects for SPME Method Development in Complex Samples. , 2023, , 32-74.		0
599	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	32.8	6
600	Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings, 2023, 13, 708.	2.6	1
601	Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles. Biomicrofluidics, 2023, 17, .	2.4	1
602	The overview of analytical methods for studying of fossil natural resins. Critical Reviews in Analytical Chemistry, 0 , $1-23$.	3.5	1
603	Macromolecular Modification Strategies for Biomaterial Surface: Challenges in Fundamental Research and Applications. Macromolecules, 2023, 56, 3465-3473.	4.8	4
604	Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications. Catalysts, 2023, 13, 980.	3.5	5
605	Laserâ€Responsive Shape Memory Device to Program the Stepwise Control of Intraocular Pressure in Glaucoma. Advanced Functional Materials, 2023, 33, .	14.9	3

#	Article	IF	CITATIONS
606	Electrospun biocompatible stent with antibacterial property from shape memory polyurethane/gallic acid. Journal of Applied Polymer Science, 0, , .	2.6	0
607	Self-anticoagulant sponge for whole blood auto-transfusion and its mechanism of coagulation factor inactivation. Nature Communications, 2023, 14, .	12.8	1
608	Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week. Journal of Functional Biomaterials, 2023, 14 , 432.	4.4	0
609	Characterizing polyproline II conformational change of collagen superhelix unit on adsorption on gold surface. Nanoscale Advances, 2023, 5, 5322-5331.	4.6	0
610	Hemocompatible polymers for medical applications. , 2023, , 143-175.		0
612	Bioabsorbable Zwitterionic Hydrogels Achieving Excellent Protein Repulsion and Cell Adhesion. Chemistry of Materials, 2023, 35, 9208-9224.	6.7	3
613	Single-Component Hydrophilic Terpolymer Thin Film Systems for Imparting Surface Chemical Versatility on Various Substrates. Polymers, 2024, 16, 44.	4.5	0
614	Polymeric Nanocarriers for the Delivery of Phytoconstituents. , 2024, , 89-123.		0
615	Polymer interactions with blood. , 2024, , 457-486.		0
616	Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber. ACS Applied Materials & Samp; Interfaces, 2024, 16, 8333-8345.	8.0	0
617	Estimating Biosafety of Biodegradable Biomedical Materials From In Vitro Ion Tolerance Parameters and Toxicity of Nanomaterials in Brain. Advances in Healthcare Information Systems and Administration Book Series, 2024, , 201-221.	0.2	0