Processing technologies for poly(lactic acid)

Progress in Polymer Science 33, 820-852

DOI: 10.1016/j.progpolymsci.2008.05.004

Citation Report

#	Article	IF	CITATIONS
4	Hollow polylactide microcapsules with controlled morphology and thermal and mechanical properties. AICHE Journal, 2009, 55, 2827-2834.	1.8	6
5	Thermomechanical and optical properties of biodegradable poly(<scp>L</scp> â€lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science, 2009, 114, 3379-3388.	1.3	92
6	Relationship between structure and rheological, mechanical and thermal properties of polylactide/Cloisite 30B nanocomposites. Journal of Applied Polymer Science, 2010, 116, 1357-1365.	1.3	18
7	Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. Journal of Cleaner Production, 2009, 17, 1183-1194.	4.6	235
8	Characterization for water vapour barrier and heat sealability properties of heatâ€treated paperboard/polylactide structure. Packaging Technology and Science, 2009, 22, 451-460.	1.3	20
9	Lipase-catalyzed synthesis of poly-l-lactide using supercritical carbon dioxide. Journal of Supercritical Fluids, 2009, 51, 197-201.	1.6	47
10	Correlation between processing parameters and microstructure of electrospun poly(D,l-lactic acid) nanofibers. Polymer, 2009, 50, 6100-6110.	1.8	63
11	Polymorphism and isomorphism in biodegradable polyesters. Progress in Polymer Science, 2009, 34, 605-640.	11.8	527
12	Novel Delivery System for the Bioregulatory Agent Nitric Oxide. Chemistry of Materials, 2009, 21, 5032-5041.	3.2	32
13	Blending Effects on Polymorphic Crystallization of Poly(<scp>l</scp> -lactide). Macromolecules, 2009, 42, 3374-3380.	2.2	142
14	A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2. International Journal of Molecular Sciences, 2009, 10, 5381-5397.	1.8	182
15	The effect of processing history on physical behavior and cellular response for tyrosine-derived polyarylates. Biomedical Materials (Bristol), 2009, 4, 065006.	1.7	1
16	Longitudinal acoustic properties of poly(lactic acid) and poly(lactic- <i>co</i> -glycolic acid). Biomedical Materials (Bristol), 2010, 5, 055004.	1.7	43
17	Polylactic acid (PLA): Research, development and industrialization. Biotechnology Journal, 2010, 5, 1125-1136.	1.8	291
18	Improved hydrolytic stability of poly(dl-lactide) with epoxidized soybean oil. Polymer Degradation and Stability, 2010, 95, 485-490.	2.7	12
19	Crystallization kinetics of virgin and processed poly(lactic acid). Polymer Degradation and Stability, 2010, 95, 1148-1159.	2.7	114
20	Phase behavior and morphology in epoxy resin/poly(L-lactide) blends. Comparison with epoxy resin/poly(L,D-lactide) blends. Colloid and Polymer Science, 2010, 288, 1281-1291.	1.0	2
21	Enzymatic synthesis of poly-l-lactide-co-glycolide in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Bioprocess and Biosystems Engineering, 2010, 33, 1095-1101.	1.7	22

#	ARTICLE	IF	CITATIONS
22	Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 2010, 18, 422-429.	2.4	257
23	Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid). Journal of Polymers and the Environment, 2010, 18, 654-660.	2.4	49
24	Effect of Hydrothermal Polylactic Acid Degradation on Polymer Molecular Weight and Surface Properties. Journal of Polymers and the Environment, 2010, 18, 532-538.	2.4	22
25	In vitro degradation and drug release from polymer blends based on poly(dl-lactide), poly(l-lactide-glycolide) and poly(ε-caprolactone). Journal of Materials Science, 2010, 45, 1284-1292.	1.7	55
26	Solution casting versus melt compounding: effect of fabrication route on the structure and thermal behavior of poly(I-lactic acid) clay nanocomposites. Journal of Materials Science, 2010, 45, 6474-6480.	1.7	24
27	Polyâ€Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 552-571.	5.9	1,123
28	Characterization of an airâ€spun poly(<scp>L</scp> â€lactic acid) nanofiber mesh. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 531-543.	1.6	20
31	Pervaporation separation of methanol/methyl <i>tert</i> à€butyl ether with poly(lactic acid) membranes. Journal of Applied Polymer Science, 2010, 118, 1364-1371.	1.3	20
32	Dramatic Improvements in Mechanical Properties of Poly(<scp>L</scp> â€lactide)/Silica Nanocomposites by Addition of Hyperbranched Poly(ester amide). Macromolecular Materials and Engineering, 2010, 295, 415-419.	1.7	11
33	A New Biodegradable Flexible Composite Sheet from Poly(lactic acid)/Poly(<i>ε</i> ê€aprolactone) Blends and Microâ€₹alc. Macromolecular Materials and Engineering, 2010, 295, 750-762.	1.7	97
34	Water Vapor Permeability of Poly(<scp>L</scp> â€lactide)/Poly(<scp>D</scp> â€lactide) Stereocomplexes. Macromolecular Materials and Engineering, 2010, 295, 709-715.	1.7	76
35	Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture. Journal of Membrane Science, 2010, 362, 105-112.	4.1	53
36	New trends in polylactide (PLA)-based materials: "Green―PLA–Calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability, 2010, 95, 374-381.	2.7	153
37	The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation and Stability, 2010, 95, 889-900.	2.7	244
38	Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polymer Degradation and Stability, 2010, 95, 1751-1758.	2.7	127
39	Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polymer Degradation and Stability, 2010, 95, 2563-2573.	2.7	78
40	Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: Formation and characterization. Polymer, 2010, 51, 4823-4830.	1.8	66
41	Effect of blow moulding ratio on barrier properties of polylactide nanocomposite films. Polymer Testing, 2010, 29, 251-257.	2.3	60

#	Article	IF	CITATIONS
42	Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(I-lactic acid) in carbon dioxide+acetone binary fluid mixtures. Journal of Supercritical Fluids, 2010, 54, 296-307.	1.6	57
43	Effect of plasma treatment on hydrophobicity and barrier property of polylactic acid. Surface and Coatings Technology, 2010, 204, 2933-2939.	2.2	74
44	PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochimica Acta, 2010, 511, 129-139.	1.2	185
45	Glass transition and disorder-to-order phase transition behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Vibrational Spectroscopy, 2010, 53, 307-310.	1.2	35
46	Utilization of polymer degradation to modify electrical properties of poly(l-lactide)/poly(methyl) Tj ETQq0 0 0 rgBT	lOyerlock	10 Tf 50 5
47	Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) $\hat{a} \in \text{``Hybrid membranes. Composites Science and Technology, 2010, 70, 1805-1812.}$	3.8	48
48	An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101, 8493-8501.	4.8	1,943
49	Rheology and extrusion foaming of chainâ€branched poly(lactic acid). Polymer Engineering and Science, 2010, 50, 629-642.	1.5	215
50	Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polymer Engineering and Science, 2010, 50, 2298-2305.	1.5	72
51	Poly (L-lactic acid)/layered Silicate Nanocomposite Blown Film for Packaging Application: Thermal, Mechanical and Barrier Properties. Journal of Polymer Engineering, 2010, 30, 361-376.	0.6	21
52	The effect of processing and composition on the properties of polylactide–multiwall carbon nanotube composites prepared by solvent casting. Smart Materials and Structures, 2010, 19, 094003.	1.8	10
53	PLLA Mesophase and Its Phase Transition Behavior in the PLLAâ^'PEGâ^'PLLA Copolymer As Revealed by Infrared Spectroscopy. Macromolecules, 2010, 43, 4240-4246.	2.2	111
56	Synthesis and Characterization of MPS-g-PLA Copolymer and its Application in Surface Modification of Bacterial Cellulose. International Journal of Polymer Analysis and Characterization, 2010, 15, 199-209.	0.9	18
57	Synthesis and Characterization of a Novel Biodegradable Material, Poly(Lactic Acid-co-Tryptophane). Designed Monomers and Polymers, 2010, 13, 415-426.	0.7	12
58	Soluble Hyperbranched Poly(glycolide) Copolymers. Macromolecules, 2010, 43, 8539-8548.	2.2	25
59	Complementarity of Solvent-Free MALDI TOF and Solid-State NMR Spectroscopy in Spectral Analysis of Polylactides. Analytical Chemistry, 2010, 82, 323-328.	3.2	21
60	Study on sound absorption property of ramie fiber reinforced poly(l-lactic acid) composites: Morphology and properties. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1012-1018.	3.8	104
61	Annealing-Induced Oriented Crystallization and Its Influence on the Mechanical Responses in the Melt-Spun Monofilament of Poly(<scp>l</scp> -lactide). Macromolecules, 2010, 43, 1156-1158.	2.2	36

#	Article	IF	Citations
62	Biodegradable Core/Shell Fibers by Coaxial Electrospinning: Processing, Fiber Characterization, and Its Application in Sustained Drug Release. Macromolecules, 2010, 43, 6389-6397.	2.2	165
63	Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. Journal of Biomaterials Applications, 2010, 25, 291-366.	1.2	270
64	New Insights on the Strain-Induced Mesophase of Poly(<scp>d</scp> , <scp>l</scp> -lactide): <i>ln Situ</i> WAXS and DSC Study of the Thermo-Mechanical Stability. Macromolecules, 2010, 43, 7228-7237.	2.2	216
65	Adjustable Mutations in Lactate (LA)-Polymerizing Enzyme for the Microbial Production of LA-Based Polyesters with Tailor-Made Monomer Composition. Biomacromolecules, 2010, 11, 815-819.	2.6	67
66	Crystalline structure of annealed polylactic acid and its relation to processing. EXPRESS Polymer Letters, 2010, 4, 659-668.	1.1	256
67	Flame retardancy of polylactide: an overview. Polymer Chemistry, 2010, 1, 1413.	1.9	247
68	Polylactic Acid and Polylactic Acid-Based Nanocomposite Photooxidation. Biomacromolecules, 2010, 11, 2919-2926.	2.6	144
69	Processing of PLA. , 2010, , 142-207.		3
70	Synthesis and Manufacture of PLA. , 2010, , 15-37.		5
72	Foaming of Poly(lactic acid) Based on Its Nonisothermal Crystallization Behavior under Compressed Carbon Dioxide. Industrial & Engineering Chemistry Research, 2011, 50, 1997-2007.	1.8	100
73	Biomass-Based Composites from Poly(lactic acid) and Wood Flour by Vapor-Phase Assisted Surface Polymerization. ACS Applied Materials & Interfaces, 2011, 3, 385-391.	4.0	23
74	Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter, 2011, 7, 10812.	1.2	62
76	Biopolymers, Processing, and Biodegradation. ACS Symposium Series, 2011, , 117-132.	0.5	4
77	Polylactide–Poly(6-methyl-ε-caprolactone)–Polylactide Thermoplastic Elastomers. Macromolecules, 2011, 44, 8537-8545.	2.2	116
80	High-Performance Polylactide/ZnO Nanocomposites Designed for Films and Fibers with Special End-Use Properties. Biomacromolecules, 2011, 12, 1762-1771.	2.6	241
81	Poly(<scp>I</scp> -lactic acid) Metal Organic Framework Composites. Mass Transport Properties. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 11136-11142.	1.8	24
82	Ultrasonic Irradiation Enhanced Cell Nucleation in Microcellular Poly(lactic Acid): A Novel Approach to Reduce Cell Size Distribution and Increase Foam Expansion. Industrial & Engineering Chemistry Research, 2011, 50, 13840-13847.	1.8	55
83	Control of Crystal Morphology in Poly(<scp>l</scp> -lactide) by Adding Nucleating Agent. Macromolecules, 2011, 44, 1233-1237.	2.2	203

#	ARTICLE	IF	CITATIONS
84	Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 956-966.	1.1	82
85	Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Composites Part A: Applied Science and Manufacturing, 2011, 42, 66-74.	3.8	110
86	A facile method for preparing biodegradable chitosan derivatives with low grafting degree of poly(lactic acid). International Journal of Biological Macromolecules, 2011, 49, 1016-1021.	3.6	27
87	High-performance hybrid materials prepared by the thermo-reversible Diels–Alder polymerization of furfuryl ester-terminated butylene succinate oligomers and maleimide compounds. Polymer Journal, 2011, 43, 455-463.	1.3	15
88	Processing and shelf life issues of selected food packaging materials and structures from renewable resources. Trends in Food Science and Technology, 2011, 22, 72-80.	7.8	167
89	Polymeric Scaffolds for Regenerative Medicine. Polymer Reviews, 2011, 51, 23-52.	5.3	93
90	Poly(lactic acid)/titanium dioxide nanocomposite films: Influence of processing procedure on dispersion of titanium dioxide and photocatalytic activity. Polymer Composites, 2011, 32, 519-528.	2.3	46
93	Matching Crops for Selected Bioproducts. , 2011, , 101-109.		1
98	Characterization of interfacial stress transfer ability of particulate cellulose composite materials. Mechanics of Materials, 2011, 43, 693-704.	1.7	24
99	Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability, 2011, 96, 1557-1561.	2.7	96
100	Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet. Polymer, 2011, 52, 4303-4318.	1.8	59
101	Determination of D-lactide content in purified L-lactide using gas chromatography-high performance liquid chromatography. Polymer Testing, 2011, 30, 876-880.	2.3	6
102	Influence of fiber surface-treatment on interfacial property of poly(l-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging. Materials Chemistry and Physics, 2011, 126, 524-531.	2.0	38
103	Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Materials Letters, 2011, 65, 3525-3528.	1.3	35
104	New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal, 2011, 47, 2134-2144.	2.6	209
105	Determination of organic acid impurities in lactic acid obtained by fermentation of sugarcane juice. Journal of Chromatography A, 2011, 1218, 7147-7157.	1.8	17
106	Chapter 2. Synthetic Green Polymers from Renewable Monomers. RSC Green Chemistry, 2011, , 22-78.	0.0	1
107	Crystallization Behavior of Asymmetric PLLA/PDLA Blends. Journal of Physical Chemistry B, 2011, 115, 2864-2869.	1.2	101

#	Article	IF	CITATIONS
108	Modeling of the mechanical properties of polylactic acid/clay nanocomposites using composite theories. International Journal of Plastics Technology, 2011, 15, 174-187.	2.9	8
109	From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 2011, 12, 523-532.	2.6	573
110	High speed insertion of bone fracture fixation pins: a finite element penetration model with experimental comparisons. Journal of Materials Science: Materials in Medicine, 2011, 22, 2823-2832.	1.7	1
111	Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources. Journal of Polymers and the Environment, 2011, 19, 18-39.	2.4	106
112	Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 2011, 19, 362-371.	2.4	113
113	The Properties of Poly(l-Lactide) Prepared by Different Synthesis Procedure. Journal of Polymers and the Environment, 2011, 19, 419-430.	2.4	21
114	Crystal and Thermal Properties of PLLA/PDLA Blends Synthesized by Direct Melt Polycondensation. Journal of Polymers and the Environment, 2011, 19, 574-581.	2.4	21
115	Synthesis of novel biodegradable material poly(lactic acid-trimesic acid) via direct melt copolycondensation and its characterization. Journal of Polymer Research, 2011, 18, 499-508.	1.2	24
116	ADI pathway and histidine decarboxylation are reciprocally regulated in Lactobacillus hilgardii ISE 5211: proteomic evidence. Amino Acids, 2011, 41, 517-527.	1.2	18
117	Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-Aminophthalimide as nucleating agent. Polymer Bulletin, 2011, 67, 775-791.	1.7	45
118	Pervaporation separation of ethanol/ETBE mixture using poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes. Journal of Membrane Science, 2011, 373, 29-35.	4.1	57
119	Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polymers for Advanced Technologies, 2011, 22, 30-37.	1.6	103
120	Poly(lactic acid)/ <i>Phormium tenax</i> composites: Morphology and thermoâ€mechanical behavior. Polymer Composites, 2011, 32, 1362-1368.	2.3	35
121	Examination of starch preprocess drying and water absorption of injectionâ€molded starchâ€filled poly(lactic acid) products. Polymer Engineering and Science, 2011, 51, 843-850.	1.5	24
122	Ultrasonic and impulse welding of polylactic acid films. Polymer Engineering and Science, 2011, 51, 1059-1067.	1.5	5
123	Improvement in toughness and crystallization of poly(<scp>L</scp> â€lactic acid) by melt blending with poly(epichlorohydrinâ€ <i>co</i> â€ethylene oxide). Polymer Engineering and Science, 2011, 51, 2370-2380.	1.5	49
124	Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1555-1562.	2.4	37
125	Study of the thermal stabilization mechanism of biodegradable poly(<scp>L</scp> â€lactide)/silica nanocomposites. Polymer International, 2011, 60, 202-210.	1.6	65

#	ARTICLE	IF	CITATIONS
126	Morphology, crystallization and enzymatic hydrolysis of poly(<scp>L</scp> â€lactide) nucleated using layered metal phosphonates. Polymer International, 2011, 60, 284-295.	1.6	63
127	Combustion properties and transference behavior of ultrafine microencapsulated ammonium polyphosphate in ramie fabricâ€reinforced poly(<scp>L</scp> â€lactic acid) biocomposites. Polymer International, 2011, 60, 599-606.	1.6	33
128	Preparation and Recycling of Plasticized PLA. Macromolecular Materials and Engineering, 2011, 296, 141-150.	1.7	70
129	Highly Enhanced Nucleating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> â€lactic acid) Crystallization. Macromolecular Materials and Engineering, 2011, 296, 887-893.	1.7	70
130	Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 2011, 119, 472-481.	1.3	23
131	Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite nanocomposites prepared by twinâ€screw extrusion. Journal of Applied Polymer Science, 2011, 120, 896-905.	1.3	34
132	Synthesis and characterization of the biomaterial poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 507 Td (acidât copolymerization. Journal of Applied Polymer Science, 2011, 121, 420-426.	€ <i>co</i> 1.3	>â€ ∢ i>N<
133	Crystallization behavior of biodegradable poly(<scp>L</scp> â€lactic acid) filled with a powerful nucleating agent: <i>N,N</i> ′â€bis(benzoyl) suberic acid dihydrazide. Journal of Applied Polymer Science, 2011, 121, 1408-1416.	1.3	72
134	Melt processing of poly(<scp>L</scp> â€lactic acid) in the presence of organomodified anionic or cationic clays. Journal of Applied Polymer Science, 2011, 122, 112-125.	1.3	64
135	Synthesis of biodegradable material poly(lactic acidâ€ <i>co</i> â€aspartic acid) via direct melt polycondensation and its characterization. Journal of Applied Polymer Science, 2011, 121, 3662-3668.	1.3	13
136	Rheological and topological characterizations of electron beam irradiation prepared longâ€chain branched polylactic acid. Journal of Applied Polymer Science, 2011, 122, 1857-1865.	1.3	39
137	Biodegradable polymeric microcapsules: Preparation and properties. Chemical Engineering Journal, 2011, 169, 1-10.	6.6	56
138	A novel saccharification method of starch using microwave irradiation with addition of activated carbon. Bioresource Technology, 2011, 102, 3985-3988.	4.8	32
139	Preparation and characterization of blends made of poly(l-lactic acid) and \hat{l}^2 -cyclodextrin: Improvement of the blend properties by using a masterbatch. Carbohydrate Polymers, 2011, 86, 1022-1030.	5.1	25
140	Accelerated ageing and degradation in poly-l-lactide/hydroxyapatite nanocomposites. Polymer Degradation and Stability, 2011, 96, 595-607.	2.7	37
141	Thermal degradation of poly(l-lactide): Accelerating effect of residual DBU-based organic catalysts. Polymer Degradation and Stability, 2011, 96, 739-744.	2.7	35
142	Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer, 2011, 52, 1391-1401.	1.8	50
143	Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polymer Testing, 2011, 30, 463-471.	2.3	62

#	ARTICLE	IF	CITATIONS
144	Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. Journal of Supercritical Fluids, 2011, 58, 177-188.	1.6	190
145	Crystalline, mobile amorphous and rigid amorphous fractions in poly(L-lactic acid) by TMDSC. Thermochimica Acta, 2011, 522, 118-127.	1,2	91
146	Bulk Ring Opening Polymerization of <scp>L</scp> â€Lactide with Calcium methoxide. Macromolecular Symposia, 2011, 299-300, 156-163.	0.4	16
147	Synthesis of Additives from Montmorillonite to Modify High Density Polyethylene Final Properties. Macromolecular Symposia, 2011, 301, 104-113.	0.4	1
149	Study on Desorption of Ethanol-Loaded Activated Carbon by Microwave Irradiation under Vacuum Condition. Advanced Materials Research, 0, 396-398, 1825-1831.	0.3	0
150	Fracture behavior of quenched poly(lactic acid). EXPRESS Polymer Letters, 2011, 5, 82-91.	1.1	47
151	Characteristics of poly(lactic acid) reinforced composites with waste cotton. Journal of Polymer Engineering, 2011, 31, .	0.6	3
152	Numerical Integral in the Ideal Adsorbed Solution Theory. Advanced Materials Research, 2011, 396-398, 1809-1812.	0.3	O
153	Acoustic, tomographic, and morphological properties of bismaleimide-modified PLA green composites. Journal of Reinforced Plastics and Composites, 2011, 30, 1329-1340.	1.6	9
154	Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	20
155	Thermal–mechanical property and fracture behaviour of plasticised PLA–CaCO ₃ nanocomposite. Plastics, Rubber and Composites, 2012, 41, 175-179.	0.9	22
156	Crystallization Properties of Nucleated Poly(lactic acid). Advanced Materials Research, 2012, 549, 322-326.	0.3	3
157	Study on "Vacuum Migration―of the Desorption of Ethanol-Loaded Activated Carbon by Microwave Irradiation. Advanced Materials Research, 0, 581-582, 154-159.	0.3	0
158	Surface Modified CaCO ₃ Nanoparticles with Silica via Sol-Gel Process Using in Poly(lactic) Tj ETQq1 I	l <u>8.7</u> 8431	4 _{.7} gBT /Ove
159	Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid). Journal of Plastic Film and Sheeting, 2012, 28, 314-335.	1.3	36
160	Nettle fibre (<i>Urtica dioica</i> L.) reinforced poly(lactic acid): A first approach. Journal of Composite Materials, 2012, 46, 3077-3087.	1.2	35
161	Research on Poly Lactic Acid Solvent Coated Paper. Applied Mechanics and Materials, 2012, 200, 380-384.	0.2	0
162	Effects of Different Processing Techniques on the Properties of PLA. Advanced Materials Research, 2012, 550-553, 2932-2935.	0.3	O

#	Article	IF	Citations
163	Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal, 2012, 18, 500-507.	1.6	173
164	Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 2012, 17, 11729-11747.	1.7	165
165	Influence of loading rates on morpholgy and mechanical properties of PLA/clay nanocomposites. International Journal of Microstructure and Materials Properties, 2012, 7, 390.	0.1	1
166	Investigation on thermoformability of PLA by rheological and hot tensile tests. AIP Conference Proceedings, 2012, , .	0.3	1
167	Thermal behavior of drawn poly(lactic acid)-nanocomposite fiber probed by near-infrared hyperspectral imaging based on roundtrip temperature scan. Analytical Methods, 2012, 4, 2259.	1.3	3
168	Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer, 2012, 53, 5816-5824.	1.8	100
169	Rapid crystallization of poly(l-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer, 2012, 53, 4300-4309.	1.8	92
170	Poly(lactic acid) crystallization. Progress in Polymer Science, 2012, 37, 1657-1677.	11.8	1,190
171	Biodegradable Bicomponent Fibers from Renewable Sources: Meltâ€Spinning of Poly(lactic acid) and Poly[(3â€hydroxybutyrate) <i>à€coâ€</i> (3â€hydroxyvalerate)]. Macromolecular Materials and Engineering, 2012, 297, 75-84.	1.7	84
172	Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 2012, 72, 1508-1514.	3.8	75
173	Local piezoelectric activity of single poly(L-lactic acid) (PLLA) microfibers. Applied Physics A: Materials Science and Processing, 2012, 109, 51-55.	1.1	71
174	Preparation of poly(l-lactide) blends and biodegradation by Lentzea waywayandensis. Biotechnology Letters, 2012, 34, 2031-2035.	1.1	20
175	Photodegradation of Poly(lactic acid) Stereocomplex by UV-Irradiation. Journal of Polymers and the Environment, 2012, 20, 706-712.	2.4	25
176	Effect of Silica Nanoparticles on the Mechanical Performances of Poly(Lactic Acid). Journal of Polymers and the Environment, 2012, 20, 713-725.	2.4	75
177	Melt Strength and Rheological Properties of Biodegradable Poly(Lactic Aacid) Modified via Alkyl Radical-Based Reactive Extrusion Processes. Journal of Polymers and the Environment, 2012, 20, 741-747.	2.4	52
178	A Holistic Approach to Design Support for Bio-polymer Based Packaging. Journal of Polymers and the Environment, 2012, 20, 1112-1123.	2.4	24
179	Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Engineering, 2012, 42, 1402-1413.	1.2	333
180	Formation of Shish-Kebabs in Injection-Molded Poly(<scp> </scp> -lactic acid) by Application of an Intense Flow Field. ACS Applied Materials & Interfaces, 2012, 4, 6774-6784.	4.0	128

#	Article	IF	CITATIONS
181	Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid). Physical Chemistry Chemical Physics, 2012, 14, 12301.	1.3	44
182	Formation of well-defined spherical particles during suspension polymerization of biodegradable poly(glycolide-co-p-dioxanone) in supercritical carbon dioxide. RSC Advances, 2012, 2, 10365.	1.7	2
183	Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 2012, 25, 927-948.	2.6	249
184	Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. ACS Symposium Series, 2012, , 213-235.	0.5	8
185	Permeability in Clay/Polyesters Nano-Biocomposites. Green Energy and Technology, 2012, , 237-264.	0.4	12
186	Tailoring Impact Toughness of Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Applied Materials & Samp; Interfaces, 2012, 4, 897-905.	4.0	218
187	New Degradable Alternating Copolymers from Naturally Occurring Aldehydes: Well-Controlled Cationic Copolymerization and Complete Degradation. Macromolecules, 2012, 45, 4060-4068.	2.2	29
188	Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA. Carbohydrate Polymers, 2012, 89, 1038-1043.	5.1	39
189	Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, 2013, 128, 1895-1903.	1.3	47
190	The crystalline and mechanical properties of PLA/layered silicate degradable composites. Polymer Science - Series A, 2012, 54, 393-400.	0.4	15
191	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	0.4	20
193	Crystallization Behavior of Long-Chain Branching Polylactide. Industrial & Engineering Chemistry Research, 2012, 51, 13670-13679.	1.8	24
194	Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties. ACS Applied Materials & Diterfaces, 2012, 4, 3091-3101.	4.0	266
195	Blends of Linear and Long-Chain Branched Poly(<scp> </scp> -lactide)s with High Melt Strength and Fast Crystallization Rate. Industrial & Engineering Chemistry Research, 2012, 51, 10088-10099.	1.8	78
196	Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 2012, 43, 3549-3562.	5.9	452
197	Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polymer Degradation and Stability, 2012, 97, 2021-2026.	2.7	66
198	Synthesis and characterizations of poly(ethylene-co-vinylalcohol)-grafted-poly(3-hydroxybutyrate-co-hydroxyvalerate) copolymers. Polymer, 2012, 53, 4585-4594.	1.8	13
199	Influence of block composition on structural, thermal and mechanical properties of novel aliphatic polyester based triblock copolymers. Polymer, 2012, 53, 4662-4671.	1.8	11

#	Article	IF	CITATIONS
200	Development of poly(lactic acid) cellular materials: Physical and morphological characterizations. Polymer, 2012, 53, 5885-5895.	1.8	28
202	Low Molecular Weight Poly(lactic acid) Microparticles for Controlled Release of the Herbicide Metazachlor: Preparation, Morphology, and Release Kinetics. Journal of Agricultural and Food Chemistry, 2012, 60, 4111-4119.	2.4	41
203	Shear Flow and Carbon Nanotubes Synergistically Induced Nonisothermal Crystallization of Poly(lactic acid) and Its Application in Injection Molding. Biomacromolecules, 2012, 13, 3858-3867.	2.6	95
204	Antioxidant Activity and Diffusion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(<scp>I</scp> -lactic acid). Journal of Agricultural and Food Chemistry, 2012, 60, 6515-6523.	2.4	75
205	From miscible to partially miscible biodegradable double crystalline poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10	Ţf _. 50 582	Td (succina
206	Preparation and characterization of the covalent-integrated poly(lactic acid) and scrap leather fiber composites. Journal of Shanghai Jiaotong University (Science), 2012, 17, 586-592.	0.5	4
207	Photochemical Behavior of Polylactide/ZnO Nanocomposite Films. Biomacromolecules, 2012, 13, 3283-3291.	2.6	117
208	Synthesis and Properties of Biodegradable Poly(butylene succinate-co-diethylene glycol succinate) Copolymers. Industrial & Demistry Research, 2012, 51, 12258-12265.	1.8	53
209	An Optical Microscopy Study on the Phase Structure of Poly(<scp>l</scp> -lactide acid)/Poly(propylene) Tj ETQq0	0 _{1.2} rgBT /0	Dygrlock 10
210	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	0.5	216
211	Hardâ€block degradable thermoplastic urethaneâ€elastomers for electrospun vascular prostheses. Journal of Polymer Science Part A, 2012, 50, 1272-1280.	2.5	42
212	Effect of crystallization on barrier properties of formulated polylactide. Polymer International, 2012, 61, 180-189.	1.6	73
213	Kinetics of the ringâ€opening polymerization of <scp>D</scp> , <scp>L</scp> â€lactide using zinc (II) octoate as catalyst. Polymer International, 2012, 61, 265-273.	1.6	19
214	Poly(<scp>L</scp> â€lactic acid) metal organic framework composites: optical, thermal and mechanical properties. Polymer International, 2012, 61, 30-37.	1.6	32
215	Biocomposites based on ramie fibers and poly(<scp>L</scp> â€lactic acid) (PLLA): morphology and properties. Polymers for Advanced Technologies, 2012, 23, 198-207.	1.6	16
216	Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Performance Polymers, 2012, 24, 254-261.	0.8	23
217	Structural evaluation and thermal properties of poly(lactic acid) and different synthetic micas nanocomposites. Polymer Composites, 2012, 33, 555-561.	2.3	10
218	Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polymer Composites, 2012, 33, 1025-1032.	2.3	52

#	Article	IF	Citations
219	Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(l̂µâ€caprolactone) composites: A review. Polymer Composites, 2012, 33, 1045-1053.	2.3	69
220	Preparation and characteristics of a novel nanoâ€sized calcium carbonate (nanoâ€CaCo ₃)â€supported nucleating agent of poly(<scp>L</scp> â€lactide). Polymer Engineering and Science, 2012, 52, 1474-1484.	1.5	23
221	Synthesis and properties of bioâ€based thermoplastic polyurethane based on poly (<scp>L</scp> â€lactic) Tj ETC	2qQ.9 0 rę	gBT/Overlock
222	Oxygenâ€barrier properties of poly(lactic acid)/poly(vinyl acetateâ€ <i>co</i> â€vinyl alcohol) blends as biodegradable films. Journal of Applied Polymer Science, 2012, 125, E20.	1.3	13
223	Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. Journal of Applied Polymer Science, 2012, 125, 2460-2466.	1.3	41
224	Hydrolytic degradation of poly(<scp>L</scp> â€lactic acid): Combined effects of UV treatment and crystallization. Journal of Applied Polymer Science, 2012, 125, 2394-2406.	1.3	25
225	Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties. Iranian Polymer Journal (English Edition), 2012, 21, 109-120.	1.3	44
226	Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. Journal of Materials Science, 2012, 47, 5158-5168.	1.7	25
227	Structure–property relationship for poly(lactic acid) (PLA) filaments: physical, thermomechanical and shape memory characterization. Journal of Polymer Research, 2012, 19, 1.	1.2	34
228	Antimicrobial Activity of Lauric Arginateâ€Coated Polylactic Acid Films against <i>Listeria monocytogenes</i> and <i>Salmonella</i> Typhimurium on Cooked Sliced Ham. Journal of Food Science, 2012, 77, M142-9.	1.5	58
229	Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 2012, 88, 165-172.	5.1	64
230	Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: Structure and properties. European Polymer Journal, 2012, 48, 127-135.	2.6	117
231	Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 2012, 30, 321-328.	6.0	929
232	Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances, 2012, 30, 550-563.	6.0	158
233	Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters, 2012, 71, 63-65.	1.3	45
234	Novel PLLA/magnesium composite for orthopedic applications: A proof of concept. Materials Letters, 2012, 74, 239-242.	1.3	65
235	WAXS study of the structural reorganization of semi-crystalline polylactide under tensile drawing. Polymer, 2012, 53, 519-528.	1.8	68
236	Deformation-mediated superstructures and cavitation of poly (I-lactide): In-situ small-angle X-ray scattering study. Polymer, 2012, 53, 648-656.	1.8	68

#	ARTICLE	IF	Citations
237	Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 2012, 53, 2306-2314.	1.8	72
238	Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid). Polymer Testing, 2012, 31, 83-92.	2.3	34
239	Rapid determination of residual monomer in polylactide using thermogravimetric analysis. Polymer Testing, 2012, 31, 660-662.	2.3	7
240	Influence of fiber diameter and crystallinity on the stability of electrospun poly(I-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	2.3	25
241	Assessing the suitability of polylactic acid flexible films for high pressure pasteurization and sterilization of packaged foodstuff. Journal of Food Engineering, 2012, 111, 34-45.	2.7	29
242	Structure and thermal behavior of poly(<scp>L</scp> â€lactic acid) clay nanocomposites: Effect of preparation method as a function of the nanofiller modification level. Journal of Applied Polymer Science, 2012, 124, 2999-3006.	1.3	7
243	Miscibility of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis. Journal of Applied Polymer Science, 2012, 124, 3074-3081.	1.3	48
244	Synthesis and thermal properties of poly(methyl methacrylate)â€poly(<scp>L</scp> â€lactic) Tj ETQq1 1 0.7843 3905-3911.	14 rgBT /C 1.3	Overlock 10 Tf 4
245	Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly(d-lactic acid) blends with moderate optical purity. Polymer Bulletin, 2012, 68, 1135-1151.	1.7	21
246	Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different <scp>L</scp> â€isomer content. Journal of Applied Polymer Science, 2013, 127, 2661-2669.	1.3	31
247	Mechanical and barrier properties of poly(lactic acid) films coated by nanoclay–ink composition. Journal of Applied Polymer Science, 2013, 127, 3823-3829.	1.3	12
248	Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)â€ <i>co</i> à€adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)â€ <i>co</i> àâ€adipate]/clay ternary nanocomposites. Journal of Applied Polymer Science, 2013, 127, 2290-2306.	1.3	48
249	Polyolefins/Poly(3â€hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) blends compatibilization: Morphology, rheological, and mechanical properties. Journal of Applied Polymer Science, 2013, 127, 1148-1156.	1.3	19
250	Preparation of meltingâ€free poly(lactic acid) by amorphous and crystal crosslinking under UV irradiation. Journal of Applied Polymer Science, 2013, 127, 4515-4523.	1.3	34
251	Morphology, microstructure, and electrical properties of poly(<scp>D</scp> , <scp>L</scp> â€lactic) Tj ETQq0 0 0) rgBJ /Ov	erlock 10 Tf 5
252	Stretchâ€induced molecular ordering in amorphous/crystalline polylactide blends. Polymer Engineering and Science, 2013, 53, 21-26.	1.5	10
253	The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 2013, 98, 2063-2071.	2.7	185
254	Impact of synthetic talc on PLLA electrospun fibers. European Polymer Journal, 2013, 49, 2572-2583.	2.6	51

#	ARTICLE	IF	CITATIONS
255	Physical extruder foaming of poly(lactic acid)â€"processing and foam properties. Polymer Engineering and Science, 2013, 53, 941-949.	1.5	31
256	Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromolecular Research, 2013, 21, 529-533.	1.0	45
257	PLA and Organoclays Nanocomposites: Degradation Process and Evaluation of ecotoxicity Using Allium cepa as Test Organism. Journal of Polymers and the Environment, 2013, 21, 1052-1063.	2.4	42
258	PLA and Montmorilonite Nanocomposites: Properties, Biodegradation and Potential Toxicity. Journal of Polymers and the Environment, 2013, 21, 738-759.	2.4	39
259	Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. Journal of Polymers and the Environment, 2013, 21, 692-701.	2.4	186
260	Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend. Journal of Polymers and the Environment, 2013, 21, 375-387.	2.4	52
261	Effect of Poly(Vinyl Acetate) on Mechanical Properties and Characteristics of Poly(Lactic) Tj ETQq0 0 0 rgBT /Ov	erlock 10 2.4	Tf 50 502 Td (
262	Highly enhanced accelerating effect of meltâ€recrystallized stereocomplex crystallites on poly(<scp>L</scp> â€lactic acid) crystallization: effects of molecular weight of poly(<scp>D</scp> â€lactic) Tj ET	`Qq 1. d 0.7	784 21 4 rgBT
263	Stereocomplex Formation in Polylactide Multiarm Stars and Comb Copolymers with Linear and Hyperbranched Multifunctional PEG. Macromolecular Chemistry and Physics, 2013, 214, 1434-1444.	1.1	30
264	Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. European Polymer Journal, 2013, 49, 2356-2364.	2.6	133
265	High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection. Journal of Materials Science, 2013, 48, 7374-7383.	1.7	5
266	Biopolymers. , 2013, , 521-535.		27
267	Hydrophobic properties of cardboard coated with polylactic acid and ethylene scavengers. Journal of Coatings Technology Research, 2013, 10, 749-755.	1.2	17
268	Effect of nucleation and plasticization on the stereocomplex formation between enantiomeric poly(lactic acid)s. Polymer, 2013, 54, 5762-5770.	1.8	44
269	Poly(Lactic Acid) and Poly(Butylene Succinate) Blend Fibers Prepared by Melt Spinning Technique. Energy Procedia, 2013, 34, 493-499.	1.8	60
270	Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polymer Bulletin, 2013, 70, 2911-2922.	1.7	27
271	Migration of \hat{l} ±-tocopherol and resveratrol from poly(L-lactic acid)/starch blends films into ethanol. Journal of Food Engineering, 2013, 116, 814-828.	2.7	33
272	Toughening of poly(l-lactide) with poly($\hat{l}\mu$ -caprolactone): Combined effects of matrix crystallization and impact modifier particle size. Polymer, 2013, 54, 5257-5266.	1.8	129

#	Article	IF	CITATIONS
273	PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. European Polymer Journal, 2013, 49, 3471-3482.	2.6	219
274	Morphology of fibrous composites of PLA and PVDF. Composites Science and Technology, 2013, 89, 186-193.	3.8	20
275	<scp>PLA</scp> / <scp>PHBV</scp> Films with Improved Mechanical and Gas Barrier Properties. Macromolecular Materials and Engineering, 2013, 298, 1065-1073.	1.7	87
276	Synthesis and Crystallization of Poly(vinyl acetate)- <i>g</i> -Poly(<scp> </scp> -lactide) Graft Copolymer with Controllable Graft Density. Industrial & Engineering Chemistry Research, 2013, 52, 12897-12905.	1.8	30
277	Rheologically Determined Critical Shear Rates for Shear-Induced Nucleation Rate Enhancements of Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2013, 1, 663-672.	3.2	74
278	Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 2013, 573, 186-192.	1.2	31
279	d- and l-lactic acid production from fresh sweet potato through simultaneous saccharification and fermentation. Biochemical Engineering Journal, 2013, 81, 40-46.	1.8	42
280	Poly(ethylene succinate)-b-poly(butylene succinate) Multiblock Copolyesters: The Effects of Block Length and Composition on Physical Properties. Industrial & Engineering Chemistry Research, 2013, 52, 13669-13676.	1.8	15
281	Balancing crystalline and amorphous domains in PLA through star-structured polylactides with dual plasticizer/nucleating agentÂfunctionality. Polymer, 2013, 54, 7058-7070.	1.8	41
282	Effect of clay surface modification and organoclay purity on microstructure and thermal properties of poly(l-lactic acid)/vermiculite nanocomposites. Applied Clay Science, 2013, 80-81, 372-381.	2.6	33
283	Biocomposites based on lignin and plasticized poly(<scp>L</scp> â€lactic acid). Journal of Applied Polymer Science, 2013, 129, 202-214.	1.3	59
284	Properties of modified ethylene terpolymer/poly(lactic acid) blends based films. Fibers and Polymers, 2013, 14, 1422-1431.	1.1	12
285	Nanocomposites of halloysite and polylactide. Applied Clay Science, 2013, 75-76, 52-59.	2.6	179
286	A comparative analysis of mass losses of some aliphatic polyesters upon enzymatic degradation. Polymer Testing, 2013, 32, 209-214.	2.3	28
287	The effect of modifiers on Poly (lactic acid) properties. , 2013, , .		0
288	Study on the thermal degradation behavior and flameâ€retardant property of polylactide/PEDPP blends. Polymers for Advanced Technologies, 2013, 24, 576-583.	1.6	12
289	Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends. Industrial & Engineering Chemistry Research, 2013, 52, 2569-2581.	1.8	118
290	Can spherulitic growth rate accelerate before impingement for a semicrystalline polymer during the isothermal crystallization process?. CrystEngComm, 2013, 15, 5464.	1.3	17

#	Article	IF	CITATIONS
291	Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 2013, 1, 13379.	5.2	594
292	Properties of Poly(Lactic Acid)/ Organo-Montmorillonite Nanocomposites Prepared by Solution Intercalation. Journal of Macromolecular Science - Physics, 2013, 52, 1041-1055.	0.4	11
293	Thermoplastic starches: Properties, challenges, and prospects. Starch/Staerke, 2013, 65, 61-72.	1.1	287
294	Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization. Radiation Physics and Chemistry, 2013, 83, 105-110.	1.4	20
295	The effects of gamma irradiation on the morphology and properties of polylactide/Cloisite 30B nanocomposites. Polymer Degradation and Stability, 2013, 98, 348-355.	2.7	43
296	Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polymer Bulletin, 2013, 70, 195-206.	1.7	59
297	Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. Journal of Thermal Analysis and Calorimetry, 2013, 111, 633-646.	2.0	19
298	Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. International Journal of Life Cycle Assessment, 2013, 18, 401-417.	2.2	74
299	Selective Molecular Permeability Induced by Glass Transition Dynamics of Semicrystalline Polymer Ultrathin Films. Macromolecules, 2013, 46, 395-402.	2,2	30
300	Ringâ€opening polymerization of <scp>L</scp> â€lactide using halfâ€titanocene complexes of the ATiCl ₂ Nu type: Synthesis, characterization, and thermal properties. Journal of Polymer Science Part A, 2013, 51, 1162-1174.	2.5	11
301	Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blended with poly-(l-lactic acid) (PLA). European Polymer Journal, 2013, 49, 3681-3690.	2.6	55
302	Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly(ethylene glycol) based copolymers. Polymer Degradation and Stability, 2013, 98, 1591-1600.	2.7	28
303	Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydrate Polymers, 2013, 94, 822-828.	5.1	31
304	Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 2013, 119, 308-315.	2.7	86
306	The influence of isosorbide on thermal properties of poly(<scp>L</scp> â€lactide) synthesized by different methods. Polymer Engineering and Science, 2013, 53, 1374-1382.	1.5	8
307	In-melt transesterification of poly(lactic acid) and poly(ethylene-co-vinylalcohol). Materials Chemistry and Physics, 2013, 140, 559-569.	2.0	11
308	Morphology and performance control of PLLA-based porous membranes by phase separation. Polymer, 2013, 54, 5965-5973.	1.8	54
309	Crystallization kinetics and melting behaviors of poly(l-lactide)/graphene oxides composites. Thermochimica Acta, 2013, 566, 57-70.	1.2	43

#	Article	IF	CITATIONS
310	Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic) Tj ETQq0 0 0 r	gBT /Overl	ock ₉ 10 Tf 50
311	The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. Journal of Materials Science, 2013, 48, 3055-3066.	1.7	24
312	Significantly Accelerated Spherulitic Growth Rates for Semicrystalline Polymers through the Layer-by-Layer Film Method. Journal of Physical Chemistry C, 2013, 117, 5882-5893.	1.5	27
313	Nucleation and crystal growth kinetics of poly(l-lactic acid) with self-assembled DBS nanofibrils. Materials Chemistry and Physics, 2013, 139, 161-168.	2.0	20
314	Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552, 106-113.	1.2	74
315	Biodegradable Polyesters from Renewable Resources. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 143-170.	3.3	55
316	Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 2013, 117, 113-123.	2.7	132
317	Processing and characterization of solid and microcellular poly(lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Part B: Engineering, 2013, 51, 79-91.	50 467 To 5.9	d (acid)/polyh 142
318	Effect of PLA lamination on performance characteristics of agar/ \hat{l}^{Ω} -carrageenan/clay bio-nanocomposite film. Food Research International, 2013, 51, 714-722.	2.9	103
319	Molecular Simulation of Oxygen Sorption and Diffusion in the Poly (lactic acid). Chinese Journal of Chemical Engineering, 2013, 21, 301-309.	1.7	21
320	Nonisothermal crystallization kinetics of poly(lactide)â€"effect of plasticizers and nucleating agent. Polymer Engineering and Science, 2013, 53, 1085-1098.	1.5	42
321	Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 2013, 38, 1720-1747.	11.8	527
322	Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 12117-12135.	1.5	85
323	Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. Polymer Degradation and Stability, 2013, 98, 751-758.	2.7	30
324	Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2013, 98, 1389-1396.	2.7	52
325	Morphology-Crystallinity Relationship in PLA-PHBV Blends Prepared via Extrusion. Key Engineering Materials, 0, 554-557, 1707-1714.	0.4	1
326	Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Advances, 2013, 3, 8783.	1.7	45
327	Melt Spinning of Poly(lactic acid) and Hydroxyapatite Composite Fibers: Influence of the Filler Content on the Fiber Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6864-6872.	4.0	77

#	Article	IF	CITATIONS
328	Structure Development of Biodegradable Polymers: Crystallization of PLA. Key Engineering Materials, 0, 554-557, 1628-1633.	0.4	0
329	Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 2013, 38, 1653-1689.	11.8	866
330	Insight into the annealing peak and microstructural changes of poly(l-lactic acid) by annealing at elevated temperatures. Polymer, 2013, 54, 3377-3384.	1.8	38
332	Fully bio-based poly(l-lactide)-b-poly(ricinoleic acid)-b-poly(l-lactide) triblock copolyesters: investigation of solid-state morphology and thermo-mechanical properties. Polymer Chemistry, 2013, 4, 3357.	1.9	47
333	Effect of NR on the hydrolytic degradation of PLA. Polymer Degradation and Stability, 2013, 98, 943-950.	2.7	52
334	Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 2013, 119, 236-243.	2.7	176
335	Crystallization Kinetics and Spherulitic Morphologies of Biodegradable Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock Research, 2013, 52, 1591-1599.	10 Tf 50 1.8	507 Td (suc 18
336	Biodegradation Behavior of PLA/PBS Blends. Advanced Materials Research, 0, 821-822, 937-940.	0.3	7
337	Effect of heat setting parameters on some properties of PLA knitted fabric. Fibers and Polymers, 2013, 14, 1347-1353.	1.1	10
338	Blends of polylactide/thermoplactic elastomer: Miscibility, physical aging and crystallization behaviors. Fibers and Polymers, 2013, 14, 1688-1698.	1.1	26
339	Microcellular Foaming of Poly(lactic acid)/Silica Nanocomposites in Compressed CO ₂ : Critical Influence of Crystallite Size on Cell Morphology and Foam Expansion. Industrial & Engineering Chemistry Research, 2013, 52, 6390-6398.	1.8	88
341	Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose, 2013, 20, 2491-2504.	2.4	119
342	Characterization and antistatic behavior of SiO2-functionalized multiwalled carbon nanotube/poly(trimethylene terephthalate) composites. Journal of Polymer Research, 2013, 20, 1.	1.2	13
343	Effect of a chain extender on the rheological and mechanical properties of biodegradable poly(lactic) Tj ETQq1 1 0 2418-2428.	.784314 i 1.3	gBT /Over <mark>lo</mark> 75
344	Synergistic Empirical and Theoretical Study on the Stereoselective Mechanism for the Aluminum Salalen Complex Mediated Polymerization of <i>rac</i> ?â€Lactide. Chemistry - A European Journal, 2013, 19, 4712-4716.	1.7	44
345	Highly Enhanced Accelerating Effect of Meltâ€Recrystallized Stereocomplex Crystallites on Poly(<scp>L</scp> â€lactic acid) Crystallization, 2–Effects of Poly(<scp>D</scp> â€lactic acid) Concentration. Macromolecular Materials and Engineering, 2013, 298, 270-282.	1.7	43
346	Foaming behaviour and cell structure of poly(lactic acid) after various modifications. Polymer International, 2013, 62, 759-765.	1.6	32
347	An Empirical Investigation into the Influence of Sealing Crimp Geometry and Process Settings on the Seal Integrity of Traditional and Biopolymer Packaging Materials. Packaging Technology and Science, 2013, 26, 355-371.	1.3	10

#	Article	IF	CITATIONS
348	Thermal Properties of Poly(lactic Acid)., 2013,, 109-141.		4
349	Tensile properties and weibull modulus of some highâ€performance polymeric fibers. Journal of Applied Polymer Science, 2013, 128, 1185-1192.	1.3	30
350	Microbial Plastic Factory: Synthesis and Properties of the New Lactate-Based Biopolymers. ACS Symposium Series, 2013, , 175-197.	0.5	2
351	Impact of the use of renewable materials on ecoefficiency of manufacturing processes. Plastics, Rubber and Composites, 2013, 42, 129-133.	0.9	O
352	Modifying Poly(L-Lactic Acid) Matrix Film Properties with High Loaded Poly(Ethylene Glycol). Key Engineering Materials, 0, 545, 57-62.	0.4	16
353	Water vapor permeability and tensile properties of poly(l-lactic acid)/synthetic mica nanocomposites prepared by melt blending. Journal of Plastic Film and Sheeting, 2013, 29, 112-126.	1.3	2
354	Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources. EXPRESS Polymer Letters, 2013, 7, 107-119.	1.1	69
355	Characterisation of low-odour emissive polylactide/cellulose fibre biocomposites for car interior. EXPRESS Polymer Letters, 2013, 7, 787-804.	1.1	31
356	Study on Microwave Desorption Azeotropic Distillation of Ethanol-Loaded Activated Carbon under Vacuum Condition. Applied Mechanics and Materials, 0, 295-298, 1240-1244.	0.2	1
357	Effect of Screw Rotation Speed on Mechanical Properties of Extruded PLA/Kenaf Nanocomposites. Advanced Materials Research, 2013, 748, 61-64.	0.3	1
358	Definitions and Assessment of (Bio)degradation. , 2013, , 77-94.		7
359	Crystallization Behavior of Poly(lactic acid) Nucleated by a Hydrazide Compound. Advanced Materials Research, 2013, 710, 85-88.	0.3	4
360	Valorisation of Cheese Whey, a By-Product from the Dairy Industry. , 0, , .		83
361	Thermomechanical and flexural properties of chopped silk fiber-reinforced poly(butylene succinate) green composites: effect of electron beam treatment of worm silk. Advanced Composite Materials, 2013, 22, 437-449.	1.0	19
362	Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. EXPRESS Polymer Letters, 2013, 7, 261-271.	1.1	87
363	Impact Toughness and Ductility Enhancement of Biodegradable Poly(lactic) Tj ETQq1 1 0.784314 rgBT /Overlock Science and Engineering, 2013, 2013, 1-8.	10 Tf 50 1 1.0	47 Td (acid 49
364	Crystallization behavior and crystallite morphology control of poly(<scp>L</scp> â€lactic acid) through <i>N</i> , <i>N</i> 倲â€bis(benzoyl)sebacic acid dihydrazide. Polymer International, 2013, 62, 647-657.	1.6	28
365	Phase Structure and Properties of Toughened Poly(L-Lactic Acid)/Glycidyl Methacrylate Grafted Poly(Ethylene Octane) Blends Adjusted by the Stereocomplex. Polymer-Plastics Technology and Engineering, 2013, 52, 1250-1258.	1.9	12

#	ARTICLE	IF	CITATIONS
366	Tensile properties of microcellular poly(lactic acid) foams blown by compressed CO ₂ . Journal of Cellular Plastics, 2013, 49, 101-117.	1.2	28
367	Polylactides with "green―plasticizers: Influence of isomer composition. Journal of Applied Polymer Science, 2013, 130, 2962-2970.	1.3	22
368	Deterioration of metal–organic framework crystal structure during fabrication of poly(<scp>l</scp> â€lactic acid) mixedâ€matrix membranes. Polymer International, 2013, 62, 1144-1151.	1.6	21
369	Improving Melt Strength of Polylactic Acid. International Polymer Processing, 2013, 28, 64-71.	0.3	23
370	A performance study on composites made from bamboo fabric and poly(lactic acid). Journal of Reinforced Plastics and Composites, 2013, 32, 1513-1525.	1.6	52
371	Synthesis of Isoidide through Epimerization of Isosorbide using Ruthenium on Carbon. ChemSusChem, 2013, 6, 693-700.	3.6	33
372	Effect of aluminum trihydroxide on flame retardancy and dynamic mechanical and tensile properties of kenaf/poly(lactic acid) green composites. Advanced Composite Materials, 2013, 22, 451-464.	1.0	27
373	Nanotoughening and Microtoughening of Polymer Syntactic Foams. , 2013, , 47-72.		0
374	Research concerning fabrication of fibrous osteoconductive plga/hap nanocomposite material using the method of electrospinning from polymer solution. Autex Research Journal, 2013, 13, 57-66.	0.6	2
375	Recent advances in high performance poly(lactide): from "green―plasticization to super-tough materials via (reactive) compounding. Frontiers in Chemistry, 2013, 1, 32.	1.8	129
376	A Study on Mechanical Properties of Short Kenaf Fiber Reinforced Polylactide (PLA) Composites. Journal of Solid Mechanics and Materials Engineering, 2013, 7, 439-454.	0.5	2
377	Manufacture of Partially Biodegradable Composite Materials Based on PLA-Tires Powder: Process and Characterization. International Journal of Polymer Science, 2013, 2013, 1-8.	1.2	10
378	Observations of the effects of different chemical blowing agents on the degradation of poly(lactic) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
380	Plasticized Biodegradable Poly(lactic acid) Based Composites Containing Cellulose in Micro- and Nanosize. Journal of Engineering (United States), 2013, 2013, 1-9.	0.5	44
381	Synthesis and Characterization of Polyphosphazenes Modified with Hydroxyethyl Methacrylate and Lactic Acid. International Journal of Polymer Science, 2013, 2013, 1-7.	1.2	3
382	Ring-Opening Polymerization of l-Lactic Acid O-Carboxyanhydrides Initiated by Alkoxy Rare Earth Compounds. Molecules, 2013, 18, 12768-12776.	1.7	18
384	An Overview of the Synthesis and Synthetic Mechanism of Poly (Lactic acid). Modern Chemistry & Applications, 2014, 02, .	0.2	15
386	Nonisothermal Crystallization Kinetics of Poly(lactic acid) Nucleated with a Multiamide Nucleating Agent. Journal of Macromolecular Science - Physics, 2014, 53, 1680-1694.	0.4	31

#	Article	IF	CITATIONS
387	Mechanical and biodegradable properties of <scp>l</scp> -lactide-grafted sisal fiber reinforced polylactide composites. Journal of Reinforced Plastics and Composites, 2014, 33, 2034-2045.	1.6	17
388	Miscibility and Phase Morphology of Polylactide/Poly(vinyl acetate-co-vinyl alcohol) Blends Obtained by Melt Mixing. Polymer-Plastics Technology and Engineering, 2014, 53, 1590-1597.	1.9	7
389	Properties and weldability of plasticized polylactic acid films. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
390	On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal Physics D: Applied Physics, 2014, 47, 495003.	1.3	288
391	Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polymer Bulletin, 2014, 71, 3305-3321.	1.7	28
392	Flame-retardant and Anti-dripping Properties of Intumescent Flame-retardant Polylactide with Different Synergists. Polymer-Plastics Technology and Engineering, 2014, 53, 387-394.	1.9	15
393	Viscoelastic behavior and crystallization property of poly(lactic acid)/silica nanocomposite. Journal of Reinforced Plastics and Composites, 2014, 33, 875-882.	1.6	7
394	Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites. , 2014, , 709-773.		10
395	Effect of Ultrasound on Molecular Structure Development of Polylactide. Polymer-Plastics Technology and Engineering, 2014, 53, 927-934.	1.9	2
396	Particle Formation Using Sub- and Supercritical Fluids. , 2014, , 31-67.		10
397	Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol). Macromolecular Research, 2014, 22, 1312-1319.	1.0	25
398	Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal, 2014, 61, 285-299.	2.6	61
399	Environmentally friendly films based on poly(3-hydroxybutyrate) and poly(lactic acid): A review. Russian Journal of Physical Chemistry B, 2014, 8, 726-732.	0.2	26
400	Melt Recycling of Poly(lactic Acid) Plastic Wastes to Produce Biodegradable Fibers. Polymer-Plastics Technology and Engineering, 2014, 53, 742-751.	1.9	16
401	Study on Bulk and Surface Properties of Poly(Lactic Acid)/Fluorinated Polymer Blends. Polymer-Plastics Technology and Engineering, 2014, 53, 952-960.	1.9	4
402	Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler. Polymers, 2014, 6, 2386-2403.	2.0	48
403	Post-extrusion heat-treatment as a facile method to enhance the mechanical properties of extruded xylan-based polymeric materials. RSC Advances, 2014, 4, 62295-62300.	1.7	12
404	In Situ Polymerization of Bionanocomposites. Materials and Energy, 2014, , 69-88.	2.5	1

#	Article	IF	CITATIONS
405	Effect of Mechanical Compression and Hydrostatic Pressure on the Molecular Mobility of Poly(lactic) Tj ETQq0 0 0	rgBT /Ov	erlock 10 Tf :
406	Super Toughened Poly(L-lactide)/Thermoplastic Polyurethane Blends Achieved by Adding Dicumyl Peroxide. Polymer-Plastics Technology and Engineering, 2014, 53, 1344-1353.	1.9	14
407	Water Resistance and Barrier Properties Improvement of Paperboard by Poly(Lactic Acid) Electrospraying. Packaging Technology and Science, 2014, 27, 341-352.	1.3	13
408	Influence of the processing parameters and composition on the thermal stability of PLA/nanoclay bioâ€nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
409	Enhancing the PLA crystallization rate by incorporating a polystyreneâ€∢i>block Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 823-832.	rgBT /Ove 2.4	rlock 10 Tf 50 11
410	Miscible blends of polylactide and poly(methyl methacrylate): Morphology, structure, and thermal behavior. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1168-1177.	2.4	37
411	Tailoring Crystallization: Towards Highâ€Performance Poly(lactic acid). Advanced Materials, 2014, 26, 6905-6911.	11.1	207
412	Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer, 2014, 55, 6743-6753.	1.8	77
413	Crystallization Behavior of Stereo Diblock Poly(Lactide)s with Relatively Short Poly(<scp>D</scp> ‣actide) Segment from Partially Melted State. Macromolecular Materials and Engineering, 2014, 299, 1089-1105.	1.7	24
414	Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
415	Relatively Short Poly(<scp>D</scp> â€lactide) Segments as Intraâ€ <scp>C</scp> rystallizationâ€ <scp>A</scp> ccelerating Moieties in Stereo Diblock Poly(lactide)s. Macromolecular Materials and Engineering, 2014, 299, 430-435.	1.7	11
416	Biodegradable biomedical foam scaffolds. , 2014, , 163-187.		17
417	Study on parameters influencing shape change of melt spun cross-shaped polypropylene and poly (lactic acid) fibers. Journal of Polymer Research, 2014, 21, 1.	1.2	2
418	Processability, morphology and thermal behavior of poly(lactic acid)/synthetic mica nanocomposites obtained by melt blending. Journal of Composite Materials, 2014, 48, 1429-1440.	1.2	2
419	Isothermal Crystallization Behavior and Kinetics of Poly (lactic acid) Filled with a Novel Nucleating Agent. Advanced Materials Research, 0, 887-888, 716-722.	0.3	3
420	Injection-moulded biocomposites from polylactic acid (PLA) and recycled carbon fibre. Journal of Thermoplastic Composite Materials, 2014, 27, 1286-1300.	2.6	19
421	<i>In Vitro</i> Degradation of Poly-L-DL-Lactic Acid (PLDLLA) after Two Processing Methods. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2014, 20, 45-64.	0.5	1
422	Role of Temperature Change on Poly(DL-lactic acid) Porous Matrix Film Fabrication by Solvent Casting Method. Advanced Materials Research, 0, 1060, 184-187.	0.3	1

#	Article	IF	CITATIONS
423	Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. Journal of Composite Materials, 2014, 48, 2737-2746.	1.2	38
424	Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA. Polymer Degradation and Stability, 2014, 101, 10-17.	2.7	64
425	Poly(lactic acid) film incorporated with marigold flower extract (Tagetes erecta) intended for fatty-food application. Food Control, 2014, 46, 55-66.	2.8	65
426	Studies of poly(lactic acid) based calcium carbonate nanocomposites. Composites Part B: Engineering, 2014, 56, 184-188.	5.9	50
427	Online observations and process analysis of chain extended polylactides during injection moulding. Polymer Degradation and Stability, 2014, 101, 65-70.	2.7	10
428	Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 2014, 64, 99-106.	3.8	54
429	PLA/Halloysite Nanocomposite Films: Water Vapor Barrier Properties and Specific Key Characteristics. Macromolecular Materials and Engineering, 2014, 299, 104-115.	1.7	115
430	Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films. Radiation Physics and Chemistry, 2014, 96, 12-18.	1.4	25
431	Film forming microbial biopolymers for commercial applications—A review. Critical Reviews in Biotechnology, 2014, 34, 338-357.	5.1	86
432	Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid and Polymer Science, 2014, 292, 163-172.	1.0	40
433	How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites?. Composites Science and Technology, 2014, 90, 9-15.	3.8	73
434	Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technology, 2014, 255, 10-16.	2.1	59
435	Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Applied Microbiology and Biotechnology, 2014, 98, 2453-2460.	1.7	31
436	Sheets of branched poly(lactic acid) obtained by one-step reactive extrusion–calendering process: physical aging and fracture behavior. Journal of Materials Science, 2014, 49, 4093-4107.	1.7	30
437	Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Polylactide Blends: Thermal Stability, Flammability and Thermo-Mechanical Behavior. Journal of Polymers and the Environment, 2014, 22, 131-139.	2.4	49
438	Preparation and Characterization of High-Melt-Strength Polylactide with Long-Chain Branched Structure through \hat{I}^3 -Radiation-Induced Chemical Reactions. Industrial & Engineering Chemistry Research, 2014, 53, 1150-1159.	1.8	70
439	Investigation of Processability of Chain-Extended Polylactides During Melt Processing - Compounding Conditions and Polymer Molecular Structure. Macromolecular Materials and Engineering, 2014, 299, 307-318.	1.7	33
440	Lowâ€temperature clean preparation of poly(lactic acid) foams by combining ethyl lactate and supercritical <scp>CO₂</scp> : correlation between processing and foam pore structure. Polymer International, 2014, 63, 1303-1310.	1.6	11

#	Article	IF	CITATIONS
441	Preparation of a cellulose and water-based resin composite. Materials Letters, 2014, 123, 70-74.	1.3	7
442	Poly (lactic acid) foaming. Progress in Polymer Science, 2014, 39, 1721-1741.	11.8	401
443	Development of biodegradable films with antioxidant properties based on polyesters containing \hat{l}_{\pm} -tocopherol and olive leaf extract for food packaging applications. Food Packaging and Shelf Life, 2014, 1, 140-150.	3.3	93
444	Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO ₂ nanofillers. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
445	Bread residues conversion into lactic acid by alkaline hydrothermal treatments. Chemical Engineering Journal, 2014, 250, 326-330.	6.6	18
446	Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites. Macromolecules, 2014, 47, 1439-1448.	2.2	267
447	Enhancement of stainâ€induced crystallization in polylactide via thermal preannealing. Journal of Applied Polymer Science, 2014, 131, .	1.3	2
448	Plasticization and Polymer Morphology. , 2014, , 87-108.		6
449	Influence of the chain extension on the crystallization behavior of polylactide. Polymer Engineering and Science, 2014, 54, 616-625.	1.5	22
450	Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polymer Degradation and Stability, 2014, 100, 37-41.	2.7	104
451	Impact of hydrophobic plasma treatments on the barrier properties of poly(lactic acid) films. RSC Advances, 2014, 4, 5626.	1.7	25
452	Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, 2014, 108, 319-329.	2.7	187
453	Synergistic effect of stereocomplex crystals and shear flow on the crystallization rate of poly(l-lactic acid): A rheological study. RSC Advances, 2014, 4, 2733-2742.	1.7	20
454	The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusion. Journal of Reinforced Plastics and Composites, 2014, 33, 648-662.	1.6	14
455	Stiffness contribution of cellulose nanofibrils to composite materials. International Journal of Solids and Structures, 2014, 51, 945-953.	1.3	31
456	Improved Flame-Retardant Properties of Poly(lactic acid) Foams Using Starch as a Natural Charring Agent. Industrial & Description (Section 2014) Agent. Industrial & Description (1998) Agent. Industrial & Descripti	1.8	62
457	Bioplastics for Food Packaging. , 2014, , 353-368.		29
458	Characterization of multi-injected poly(ε-caprolactone). Polymer Testing, 2014, 33, 116-120.	2.3	17

#	Article	IF	Citations
460	Use of nanoclay platelets in food packaging materials: technical and cytotoxicity approach. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 354-363.	1.1	38
461	Poly(lactic acid)-based systems filled with talc microparticles: Thermal, structural, and morphological issues. Polymer Composites, 2014, 35, 1093-1103.	2.3	14
462	Development of plasticized PLA/NH ₂ â€CNTs nanocomposite: potential of NH ₂ â€CNTs to improve electroactive shape memory properties. Polymer Composites, 2014, 35, 2129-2136.	2.3	16
463	Biopolymer-Based Lightweight Materials for Packaging Applications. ACS Symposium Series, 2014, , 239-255.	0.5	29
464	Heat-Resistant Fully Bio-Based Nanocomposite Blends Based on Poly(lactic acid). Macromolecular Materials and Engineering, 2014, 299, 31-40.	1.7	60
465	On novel bio-hybrid system based on PLA and POSS. Colloid and Polymer Science, 2014, 292, 3271-3278.	1.0	16
466	Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene) Tj ETQq0 0 0 rgt	BT Overlo 2.0	ck 10 Tf 50 5
467	PLA maleation: an easy and effective method to modify the properties of PLA/PCL immiscible blends. Colloid and Polymer Science, 2014, 292, 2391-2398.	1.0	74
468	Preparation and performance evaluation of castor oil-based polyurethane prepolymer/polylactide blends. Journal of Materials Science, 2014, 49, 8016-8030.	1.7	27
469	Enzymatic pretreatment of seed flax- and polylactide-commingled nonwovens for composite processing. Journal of Thermoplastic Composite Materials, 2014, 27, 1387-1398.	2.6	3
470	Development of novel melt-processable biopolymer nanocomposites based on poly(l-lactic acid) and WS2 inorganic nanotubes. CrystEngComm, 2014, 16, 5062.	1.3	39
471	Composition dependence of physical properties of biodegradable poly(ethylene succinate) urethane ionenes. RSC Advances, 2014, 4, 54175-54186.	1.7	13
472	Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter, 2014, 10, 1512.	1.2	60
473	Studies on crystallization kinetics of bimodal long chain branched polylactides. CrystEngComm, 2014, 16, 2452.	1.3	49
474	From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1534-1542.	3.2	43
475	In situ formed crosslinked polyurethane toughened polylactide. Polymer Chemistry, 2014, 5, 2530.	1.9	129
476	Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Advances, 2014, 4, 6616.	1.7	48
477	Towards high-performance poly(<scp>l</scp> -lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface. RSC Advances, 2014, 4, 49374-49385.	1.7	52

#	ARTICLE	IF	CITATIONS
478	Thermoresponsive elastin/laminin mimicking artificial protein for modifying PLLA scaffolds in nerve regeneration. Journal of Materials Chemistry B, 2014, 2, 5061-5067.	2.9	11
479	Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3â€hydroxybutyrateâ€ <i>co</i> â€ââ€hydroxyvalerate)/polylactide blends. Polymer Engineering and Science, 2014, 54, 2239-2251.	1.5	24
480	Biodegradable polymer blends and composites: An overview. Polymer Science - Series A, 2014, 56, 812-829.	0.4	79
481	The Effects of Thermomechanical Cycles on the Properties of PLA/TPS Blends. Advances in Polymer Technology, 2014, 33, .	0.8	26
482	The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly(Lactic) Tj ETQq0 0	0 rgBT /C	verlgck 10 Tf
483	Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polymer Chemistry, 2014, 5, 5985-5993.	1.9	76
484	Novel poly(<scp>I</scp> -lactide)/poly(<scp>d</scp> -lactide)/poly(tetrahydrofuran) multiblock copolymers with a controlled architecture: Synthesis and characterization. Journal of Polymer Science Part A, 2014, 52, 3269-3282.	2.5	11
485	Strain rate effect on semi-crystalline PLLA mechanical properties measured by instrumented indentation tests. European Polymer Journal, 2014, 59, 239-246.	2.6	18
486	Full Biobased Polymeric Material from Plant Oil and Poly(lactic acid) with a Shape Memory Property. ACS Sustainable Chemistry and Engineering, 2014, 2, 2057-2062.	3.2	51
487	Manufacturing methods for natural fibre composites. , 2014, , 176-215.		21
488	Properties of Polylactide Inks for Solvent-Cast Printing of Three-Dimensional Freeform Microstructures. Langmuir, 2014, 30, 1142-1150.	1.6	86
489	Supertoughened Renewable PLA Reactive Multiphase Blends System: Phase Morphology and Performance. ACS Applied Materials & Interfaces, 2014, 6, 12436-12448.	4.0	207
490	Hydrolytic behavior of poly(lactic acid) films with different architecture modified by poly(dodecafluorheptyl methylacrylate). European Polymer Journal, 2014, 59, 189-199.	2.6	5
491	Tuning the interaction of an immiscible poly(<scp>l</scp> -lactide)/poly(vinylidene fluoride) blend by adding poly(methyl methacrylate) via a competition mechanism and the resultant mechanical properties. RSC Advances, 2014, 4, 40569-40579.	1.7	13
492	Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties. Journal of Composite Materials, 2014, 48, 769-781.	1.2	36
493	Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer, 2014, 55, 5760-5772.	1.8	61
494	Mechanical Properties, Heat Resistance and Flame Retardancy of Glass Fiber-Reinforced PLA-PC Alloys Based on Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 2014, 53, 613-625.	1.9	29
495	Silsesquioxanes: Novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. European Polymer Journal, 2014, 58, 69-78.	2.6	67

#	Article	IF	CITATIONS
496	Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 2014, 58, 23-33.	2.6	160
497	Study of Thermo-Mechanical and Morphological Behaviour of Biodegradable PLA/PBAT/Layered Silicate Blend Nanocomposites. Journal of Polymers and the Environment, 2014, 22, 398-408.	2.4	43
498	Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer, 2014, 55, 4077-4090.	1.8	155
499	Biobased building blocks for the rational design of renewable block polymers. Soft Matter, 2014, 10, 7405-7424.	1.2	136
500	Matrix crystallization induced simultaneous enhancement of electrical conductivity and mechanical performance in poly(I-lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposites. Composites Science and Technology, 2014, 102, 20-27.	3.8	42
501	A green route to synthesize poly(lactic acid)-based macromonomers in scCO2 for biodegradable nanoparticle production. RSC Advances, 2014, 4, 12795.	1.7	9
502	Preparation of Biodegradable Polymer Copolyesteramides from L-Lactic Acid Oligomers and Polyamide Monomers. Energy Procedia, 2014, 56, 648-658.	1.8	9
503	Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: Effect of fiber treatment. Fibers and Polymers, 2014, 15, 1303-1309.	1.1	24
504	Preparation and characterization of polyurethane foam using a PLA/PEG polyol mixture. Fibers and Polymers, 2014, 15, 1349-1356.	1.1	21
505	Tensile and Thermal Properties of Poly(lactic acid)/Eggshell Powder Composite Films. International Journal of Polymer Analysis and Characterization, 2014, 19, 245-255.	0.9	77
506	Miscibility and crystallization behaviors of stereocomplex-type poly(l- and d-lactide)/poly(methyl) Tj ETQq0 0 0 rgE	3T_lQverloc	ck 10 Tf 50 3
507	Biopolymers for surface engineering of paper-based products. Cellulose, 2014, 21, 3145-3160.	2.4	64
508	Modelling of PLA melt rheology and batch mixing energy balance. European Polymer Journal, 2014, 60, 273-285.	2.6	14
509	Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. Journal of Materials Science, 2014, 49, 6270-6281.	1.7	49
510	Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic) Tj ETQq0 0 0 r	gBT/Over	lock 10 Tf 50
511	Crystallization Behavior and Dynamic Mechanical Properties of Poly(I-Lactic Acid) with Poly(Ethylene) Tj ETQq1 1 (0.784314	rgBT /Ove <mark>rlo</mark>
512	Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 2014, 36, 1-9.	2.3	106
513	The Thermal Behavior of Polylactide with Different <scp>D</scp> â€Lactide Content in the Presence of Dissolved CO ₂ . Macromolecular Materials and Engineering, 2014, 299, 1232-1239.	1.7	45

#	Article	IF	CITATIONS
514	Synthesis, characterization and application of methyl 3,5-disulfo-benzoate dipotassium dihydrate as nucleating agent for poly(L-lactide). Chemical Research in Chinese Universities, 2014, 30, 333-338.	1.3	7
515	New Stereocomplex PLA-Based Fibers: Effect of POSS on Polymer Functionalization and Properties. Macromolecules, 2014, 47, 4718-4727.	2.2	61
516	Biodegradable tough blends of poly(L -lactide) and poly(castor oil)–poly(L -lactide) copolymer. Materials Letters, 2014, 133, 87-90.	1.3	12
517	Supertough Polylactide Materials Prepared through In Situ Reactive Blending with PEG-Based Diacrylate Monomer. ACS Applied Materials & Diacrylate Monomer. ACS Applied Monomer. ACS Applie	4.0	139
518	Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014, 55, 4728-4737.	1.8	275
519	Effect of nanosilver on the photodegradation of poly(lactic acid). Journal of Applied Polymer Science, 2014, 131, .	1.3	25
520	Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): Effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochimica Acta, 2014, 594, 31-38.	1.2	41
521	Poly(lactic acid) stereocomplex formation: Application to PLA rheological property modification. Journal of Applied Polymer Science, 2014, 131, .	1.3	27
522	Sintering of PLLA powders for rotational molding. Thermochimica Acta, 2014, 582, 59-67.	1.2	19
523	Synthesis of high molecular weight poly(l-lactic acid) and poly(d-lactic acid) with improved thermal stability via melt/solid polycondensation catalyzed by biogenic creatinine. Polymer, 2014, 55, 1491-1496.	1.8	13
524	"Nucleation density reduction―effect of biodegradable cellulose acetate butyrate on the crystallization of poly(lactic acid). Materials Letters, 2014, 128, 85-88.	1.3	16
525	Identification of important abiotic and biotic factors in the biodegradation of poly(I-lactic acid). International Journal of Biological Macromolecules, 2014, 71, 155-162.	3.6	79
526	Significantly Improving Oxygen Barrier Properties of Polylactide via Constructing Parallel-Aligned Shish-Kebab-Like Crystals with Well-Interlocked Boundaries. Biomacromolecules, 2014, 15, 1507-1514.	2.6	147
527	Nonisothermal crystallization behaviors of biodegradable double crystalline poly(butylene) Tj ETQq $1\ 1\ 0.784314$	rgBT /Ove	rlock 10 Tf 5
528	Crystallization kinetics and morphology of partially melted poly(lactic acid). Polymer Testing, 2014, 37, 179-185.	2.3	41
529	Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets. Polymer Testing, 2014, 33, 34-39.	2.3	27
530	Cellulose nanofibrils as templates for the design of poly(l-lactide)-nucleating surfaces. Polymer, 2014, 55, 2937-2942.	1.8	30
531	Improvement of blown film extrusion of poly(Lactic Acid): Structure–Processing–Properties relationships. Polymer Engineering and Science, 2014, 54, 840-857.	1.5	99

#	ARTICLE	IF	CITATIONS
533	Cyclodextrin-based biodegradable polymer stars: synthesis and fluorescence studies. Green Materials, 2014, 2, 31-42.	1.1	7
535	Thermal degradation behavior and gas phase flameâ€retardant mechanism of polylactide/PCPP blends. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
536	Dramatic Improvements in Strain Hardening and Crystallization Kinetics of PLA by Simple Reactive Modification in the Melt State. Macromolecular Materials and Engineering, 2014, 299, 1419-1424.	1.7	35
537	The Influence of Stretch Rod Speed on the Relationship between Preblown Bottle Aesthetic Quality and Final Blown Bottle Thickness Profile in Stretch Blow Molding from Preform Process. Applied Mechanics and Materials, 2015, 797, 383-390.	0.2	0
538	Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, <scp>PLA</scp> , and <scp>PHA</scp> . Journal of Applied Polymer Science, 2015, 132, .	1.3	63
539	Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 2015, 132, .	1.3	106
540	Bio-Based and Bio-Inspired Cellular Materials. , 2015, , 1-37.		0
541	Physical changes of poly(lactic acid) induced by water sorption. AIP Conference Proceedings, 2015, , .	0.3	5
542	Testing of thermomechanical stability of sensitive polymers by oscillation rheometry. AIP Conference Proceedings, 2015, , .	0.3	0
543	Effect of polymer/organoclay composition on morphology and rheological properties of polylactide nanocomposites. Polymer Composites, 2015, 36, 1135-1144.	2.3	50
544	Analysis of the Suitability of Poly(lactic acid) in Rotational Molding Process. Advances in Polymer Technology, 2015, 34, .	0.8	18
545	Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender addition on key properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	58
546	Blends of polylactide and poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property. Journal of Applied Polymer Science, 2015, 132, .	1.3	26
547	Enhanced Crystallization Rate of Poly(<scp>l</scp> -lactide) Mediated by a Hydrazide Compound: Nucleating Mechanism Study. Macromolecular Chemistry and Physics, 2015, 216, 1134-1145.	1.1	48
548	Synthesis, characterization and isothermal crystallization behavior of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock Technologies, 2015, 26, 1003-1013.	10 Tf 50 1 1.6	187 Td (succi 15
549	Oneâ€Pot Formation of ZnOâ€∢i>graftâ€Poly(<scp>d</scp> , <scp>l</scp> â€Lactide) Hybrid Systems via Microwaveâ€Assisted Polymerization of <scp>d</scp> , <scp>l</scp> â€Lactide in the Presence of ZnO Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 1629-1637.	1.1	17
550	Solubility factors as screening tools of biodegradable toughening agents of polylactide. Journal of Applied Polymer Science, $2015,132,.$	1.3	22
551	Mechanical performance of microcellular injection molded biocomposites from green plastics. , 2015, , 141-160.		5

#	Article	IF	CITATIONS
553	Non-Isothermal Cold-Crystallization Behavior and Kinetics of Poly(I-Lactic Acid)/WS2 Inorganic Nanotube Nanocomposites. Polymers, 2015, 7, 2175-2189.	2.0	23
554	Oscillation rheometry $\hat{a} \in \hat{a}$ method for processing stability testing of high sensitive polymers. AIP Conference Proceedings, 2015, , .	0.3	0
555	Characterisation and Biodegradation of Poly(Lactic Acid) Blended with Oil Palm Biomass and Fertiliser for Bioplastic Fertiliser Composites. BioResources, 2015, 11, .	0.5	6
556	Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials. Materials, 2015, 8, 7106-7117.	1.3	44
557	Synthesis and study of sericin-g-PLA. AIP Conference Proceedings, 2015, , .	0.3	0
558	ECO-BIOCOMPOSITE MATERIALS FOR SHOCK CUSHIONING APPLICATION: AN OUTLOOK OF THE POTENTIALS AND CHALLENGES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	0
559	Engineering of Novel Proteinoids and PLLA-Proteinoid Polymers of Narrow Size Distribution and Uniform Nano/ Micro-Hollow Particles for Biomedical Applications. , 2015, , .		2
560	Polylactic Acid in Medicine. Polymer-Plastics Technology and Engineering, 2015, 54, 944-967.	1.9	101
561	Sequence-controlled degradable polymers by controlled cationic copolymerization of vinyl ethers and aldehydes: precise placement of cleavable units at predetermined positions. Polymer Chemistry, 2015, 6, 4102-4108.	1.9	29
562	Preparation, characterization and properties of PLA/TiO ₂ nanocomposites based on a novel vane extruder. RSC Advances, 2015, 5, 4639-4647.	1.7	104
563	Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(I-lactic acid). Polymer, 2015, 67, 63-71.	1.8	71
564	Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(<scp>I</scp> -lactide)/multi-walled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 2015, 3, 13835-13847.	5.2	49
565	Effect of poly(vinyl alcohol) as an efficient crystallization-assisting agent on the enhanced crystallization rate of biodegradable poly(<scp> </scp> -lactide). RSC Advances, 2015, 5, 49216-49223.	1.7	10
566	Degradation and stability of green composites fabricated from oil palm empty fruit bunch fiber and polylactic acid: Effect of fiber length. Journal of Composite Materials, 2015, 49, 3103-3114.	1.2	14
567	Synthesis of chlorostannate(<scp>ii</scp>) ionic liquids and their novel application in the preparation of high-quality <scp>I</scp> -lactide. RSC Advances, 2015, 5, 50747-50755.	1.7	27
568	Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polymer Testing, 2015, 45, 101-106.	2.3	66
569	On the development of a facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nano-graphite systems. Green Chemistry, 2015, 17, 4082-4088.	4.6	44
570	Hydrolytic degradation of cellulose-graft-poly(l-lactide) copolymers. Polymer Degradation and Stability, 2015, 118, 130-136.	2.7	18

#	Article	IF	CITATIONS
571	Effect of aliphatic diacyl adipic dihydrazides on the crystallization of poly(lactic acid). Journal of Applied Polymer Science, $2015,132,.$	1.3	5
572	Studies on Melt Processable Biocomposites of Polylactic Acid. Journal of Polymers and the Environment, 2015, 23, 321-333.	2.4	10
573	Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 2015, 20, 1579-1593.	1.7	96
574	Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 2015, 613, 41-53.	1.2	66
575	Synthesis and characterization of poly(lactic acid) based graft copolymers. Reactive and Functional Polymers, 2015, 93, 47-67.	2.0	101
576	Fully biobased triblock copolyesters from l-lactide and sulfur-containing castor oil derivatives: Preparation, oxidation and characterization. Polymer, 2015, 68, 101-110.	1.8	11
577	Amino acids and poly(amino acids) as nucleating agents for poly(lactic acid). Journal of Polymer Engineering, 2015, 35, 169-180.	0.6	17
578	Extrusion blow molding of a starch–gelatin polymer matrix reinforced with cellulose. European Polymer Journal, 2015, 73, 335-343.	2.6	37
579	Release of allyl isothiocyanate from mustard seed meal powder entrapped in electrospun PLA–PEO nonwovens. Food Research International, 2015, 77, 467-475.	2.9	37
580	Poly(1-butene) as a modifier of polylactide properties. Polymer Science - Series A, 2015, 57, 799-810.	0.4	1
581	Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: Effect of composition and hard segment ratio. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1294-1304.	2.0	18
582	Nonâ€isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium <i>cis</i> à€4â€cyclohexeneâ€1,2â€dicarboxylate as a novel and efficient nucleating agent. Polymers for Advanced Technologies, 2015, 26, 376-384.	1.6	22
583	High-melting-point crystals of poly(<scp>l</scp> -lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm, 2015, 17, 2310-2320.	1.3	39
584	Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel. International Journal of Polymer Analysis and Characterization, 2015, 20, 99-109.	0.9	68
585	Adipate and Citrate Esters as Plasticizers for Poly(Lactic Acid)/Thermoplastic Starch Sheets. Journal of Polymers and the Environment, 2015, 23, 54-61.	2.4	40
586	Cell Morphology and Improved Heat Resistance of Microcellular Poly(<scp>I</scp> -lactide) Foam via Introducing Stereocomplex Crystallites of PLA. Industrial & Engineering Chemistry Research, 2015, 54, 2476-2488.	1.8	59
587	Ternary melt blends of poly(lactic acid)/poly(vinyl alcohol)-chitosan. Industrial Crops and Products, 2015, 72, 159-165.	2.5	21
588	Control of thermal degradation of poly(lactic acid) using functional polysilsesquioxane microspheres as chain extenders. Journal of Applied Polymer Science, 2015, 132, .	1.3	10

#	Article	IF	CITATIONS
589	Graphene modifications in polylactic acid nanocomposites: a review. Polymer Bulletin, 2015, 72, 931-961.	1.7	75
590	Polylactide stereocomplexation facilitated by the self-assembly of complementary ion pairs at the terminal group. Polymer Degradation and Stability, 2015, 112, 185-191.	2.7	14
591	Characterization of the effect of REC on the compatibility of PHBH and PLA. Polymer Testing, 2015, 42, 17-25.	2.3	25
592	Polylactide and hybrid silicasol nanoparticleâ€based composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
593	Potential role of nanofillers as compatibilizers in immiscible <scp>PLA/LDPE</scp> Blends. Journal of Applied Polymer Science, 2015, 132, .	1.3	49
594	Compression molding and meltâ€spinning of the blends of poly(lactic acid) and poly(butylene) Tj ETQq1 1 0.784.	314 rgBT 1.3	/Oyerlock 10
595	Ultrasonic welding of plasticized PLA films. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
596	Effect of nanoparticle SiO2 grafted poly (methyl methacrylate) on poly(I-lactic) acid crystallization. Polymer Bulletin, 2015, 72, 1247-1263.	1.7	5
597	Tailoring Polylactide Properties for Automotive Applications: Effects of Co-Addition of Halloysite Nanotubes and Selected Plasticizer. Macromolecular Materials and Engineering, 2015, 300, 684-698.	1.7	55
598	Processing of Impact Modifed PLA in a Continous Process at High Speed: Comparison with PET Molding Conditions – A New Era. Polymer-Plastics Technology and Engineering, 2015, 54, 368-374.	1.9	1
599	Synthesis and structure control of <scp> </scp> â€ actic acidâ€"glycolic acid copolymer by homoâ€copolymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
600	Biobased Thermoplastic Poly(ester urethane) Elastomers Consisting of Poly(butylene succinate) and Poly(propylene succinate). Industrial & Engineering Chemistry Research, 2015, 54, 6258-6268.	1.8	14
601	Enhancing the PLA Crystallization Rate and Mechanical Properties by Melt Blending with Poly(styrene-butadiene-styrene) Copolymer. Polymer-Plastics Technology and Engineering, 2015, 54, 1043-1050.	1.9	15
602	A novel technology to manufacture biodegradable polylactide bead foam products. Materials and Design, 2015, 83, 413-421.	3.3	101
603	Tailoring the crystallization behavior of poly(L-lactide) with self-assembly-type oxalamide compounds as nucleators: 1. Effect of terminal configuration of the nucleators. European Polymer Journal, 2015, 70, 400-411.	2.6	50
604	Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. European Polymer Journal, 2015, 71, 126-139.	2.6	150
605	A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polymer Testing, 2015, 47, 79-86.	2.3	11
606	A low-environmental-impact approach for novel bio-composites based on PLLA/PCL blends and high surface area graphite. European Polymer Journal, 2015, 70, 28-36.	2.6	43

#	ARTICLE	IF	Citations
607	Balanced strength and ductility improvement of in situ crosslinked polylactide/poly(ethylene) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 742
608	Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process. EXPRESS Polymer Letters, 2015, 9, 185-195.	1.1	17
609	Isothermal crystallization kinetics and melting behavior of poly(I-lactic acid)/WS2 inorganic nanotube nanocomposites. Journal of Materials Science, 2015, 50, 6066-6074.	1.7	15
610	Environmental Effects on the Properties of Biopolymer Service-ware Products. Polymer-Plastics Technology and Engineering, 2015, 54, 506-514.	1.9	7
611	Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites Part B: Engineering, 2015, 81, 14-25.	5.9	190
612	Bio-based Branched Polymer Bearing Castor Oil Core as a Nucleating Agent for Poly(l-Lactic Acid). Journal of Polymers and the Environment, 2015, 23, 559-565.	2.4	6
613	Biopolymer Blends Based on Poly (lactic acid): Shear and Elongation Rheology/Structure/Blowing Process Relationships. Polymers, 2015, 7, 939-962.	2.0	60
614	Properties and medical applications of polylactic acid: A review. EXPRESS Polymer Letters, 2015, 9, 435-455.	1.1	505
615	Fabricating Highly Reactive Bio-based Compatibilizers of Epoxidized Citric Acid To Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Industrial & Engineering Chemistry Research, 2015, 54, 3806-3812.	1.8	27
616	Thermal degradation of poly(lactide-co-propylene carbonate) measured by TG/FTIR and Py-GC/MS. Polymer Degradation and Stability, 2015, 117, 16-21.	2.7	26
617	Peculiar crystallization kinetics of biodegradable poly(lactic acid)/poly(propylene carbonate) blends. Polymer Engineering and Science, 2015, 55, 2698-2705.	1.5	26
618	Spectroscopic analysis of post drawing relaxation in poly(lactic acid) with oriented mesophase. Polymer Testing, 2015, 43, 103-107.	2.3	21
619	Chain Packing and Its Anomalous Effect on Mechanical Toughness for Poly(lactic acid). Biomacromolecules, 2015, 16, 1660-1666.	2.6	66
620	Hot embossing and mechanical punching of biodegradable microcontainers for oral drug delivery. Microelectronic Engineering, 2015, 133, 104-109.	1.1	17
621	Layer-by-layer assembly deposition of graphene oxide on poly(lactic acid) films to improve the barrier properties. High Performance Polymers, 2015, 27, 318-325.	0.8	14
622	Development of Cellulose-Reinforced Poly(Lactic Acid) (PLA) for Engineering Applications. Materials Science Forum, 0, 812, 59-64.	0.3	2
623	Toughening of poly(lactide) using polyethylene glycol methyl ether acrylate: Reactive versus physical blending. Polymer Engineering and Science, 2015, 55, 1408-1419.	1.5	35
624	Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. Journal of Polymers and the Environment, 2015, 23, 407-415.	2.4	34

#	Article	IF	CITATIONS
625	Nonisothermal crystallization behavior and kinetics of poly(l-lactide-co-propylene carbonate). Journal of Thermal Analysis and Calorimetry, 2015, 121, 877-883.	2.0	8
626	Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. Journal of Thermal Analysis and Calorimetry, 2015, 122, 407-417.	2.0	46
627	Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromolecular Research, 2015, 23, 231-236.	1.0	37
628	Plasticization of poly(lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. European Polymer Journal, 2015, 66, 533-542.	2.6	64
629	Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
630	ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 2015, 111, 10-20.	2.6	130
631	Chemical foaming extrusion of poly(lactic acid) with chain-extenders: Physical and morphological characterizations. European Polymer Journal, 2015, 67, 40-49.	2.6	36
632	Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Advances, 2015, 5, 27814-27822.	1.7	54
633	Effect of fiber treatment on thermal properties and crystallization of sisal fiber reinforced polylactide composites. Journal of Reinforced Plastics and Composites, 2015, 34, 718-730.	1.6	33
634	Influence of asymmetric ratio of polystyrene-block-poly(methyl methacrylate) block copolymer on the crystallization rate of PLA. European Polymer Journal, 2015, 66, 160-169.	2.6	16
635	Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 2015, 5, 32546-32565.	1.7	216
636	Synthesis of multi-thiol functionalized polylactic acid, polyhydroxybutyrate and polycaprolactone. European Polymer Journal, 2015, 66, 290-300.	2.6	12
637	Effects of poly(ethylene glycol) grafted silica nanoparticles on crystallization behavior of poly(<scp>d</scp> â€lactide). Polymer International, 2015, 64, 1066-1071.	1.6	7
638	The relationship between morphology and impact toughness of poly(l-lactic acid)/poly(ethylene oxide) blends. Polymer, 2015, 63, 179-188.	1.8	27
639	Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree. Carbohydrate Polymers, 2015, 127, 79-85.	5.1	32
640	Isothermal Crystallization Behavior of PLA/PIL Composites . Advanced Materials Research, 0, 1096, 465-469.	0.3	О
641	Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 2015, 73, 433-446.	2.6	147
642	Tailoring crystallization behavior of poly (I-lactide) with a low molecular weight aliphatic amide. Colloid and Polymer Science, 2015, 293, 3573-3583.	1.0	26

#	Article	IF	CITATIONS
643	Electrospun scaffolds of polylactide with a different enantiomeric content and loaded with anti-inflammatory and antibacterial drugs. Macromolecular Research, 2015, 23, 636-648.	1.0	11
644	Cold Crystallization of PDMS and PLLA in Poly(<scp>l</scp> -lactide- <i>b</i> -dimethylsiloxane- <i>b</i> -cscp>l-lactide) Triblock Copolymer and Their Effect on Nanostructure Morphology. Macromolecules, 2015, 48, 5367-5377.	2.2	29
645	Effect of processing conditions on crystallization behavior and mechanical properties of poly(lactic) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
646	Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering and Science, 2015, 55, 1104-1112.	1.5	19
647	The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing, 2015, 8, 110-116.	1.7	283
648	Synthesis and Structural Characterization of Magnesium Drug Complexes: Efficient Initiators for Forming Polylactide–Drug Conjugates. Organometallics, 2015, 34, 4871-4880.	1.1	13
649	Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 2015, 116-117, 69-77.	2.6	77
650	Impact of Humid Environment on Structural and Mechanical Properties of Biobased Polylactide. International Polymer Processing, 2015, 30, 522-527.	0.3	6
651	Improved thermal stability of polylactic acid (PLA) composite film via PLA–β-cyclodextrin-inclusion complex systems. International Journal of Biological Macromolecules, 2015, 81, 591-598.	3.6	40
652	Star Telechelic Poly(<scp>l</scp> -lactide) Ionomers. Macromolecules, 2015, 48, 6580-6588.	2.2	29
653	Properties. , 2015, , 91-138.		8
654	Manufacturing of Natural Fibre Reinforced Polymer Composites. , 2015, , .		44
655	Green Composite Manufacturing via Compression Molding and Thermoforming., 2015,, 45-63.		1
656	Melt compounding of poly (Lactic Acid) and talc: assessment of material behavior during processing and resulting crystallization. Journal of Polymer Research, 2015, 22, 1.	1.2	39
657	Thermal and electroactive shape memory behaviors of poly(<scp>I</scp> -lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. RSC Advances, 2015, 5, 101455-101465.	1.7	30
658	Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers., 2015,, 93-140.		21
659	Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: thermal degradation, flame retardancy and mechanical properties. RSC Advances, 2015, 5, 105869-105879.	1.7	45
660	Effects of electron beam irradiation on the gel fraction, thermal and mechanical properties of poly(butylene succinate) crosslinked by multi-functional monomer. Materials and Design, 2015, 87, 428-435.	3.3	15

#	Article	IF	CITATIONS
661	Morphological, Mechanical, and Crystallization Behavior of Polylactide/Polycaprolactone Blends Compatibilized by <scp>l</scp> -Lactide/Caprolactone Copolymer. Industrial & Engineering Chemistry Research, 2015, 54, 9505-9511.	1.8	71
662	Poly(l-lactic acid) membranes: Absence of genotoxic hazard and potential for drug delivery. Toxicology Letters, 2015, 232, 513-518.	0.4	23
663	Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polymer Testing, 2015, 41, 163-171.	2.3	46
664	PLA architectures: the role of branching. Polymer Chemistry, 2015, 6, 850-867.	1.9	120
665	A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment. Journal of Molecular Structure, 2015, 1081, 486-493.	1.8	13
666	Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Composites Science and Technology, 2015, 106, 149-155.	3.8	198
667	Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1â€butylâ€3â€methylimidazolium dibutylphosphate. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
668	Synthesis of poly(butylene succinate) using metal catalysts. Polymer Engineering and Science, 2015, 55, 1889-1896.	1.5	34
669	Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Organic Electronics, 2015, 17, 77-86.	1.4	100
670	Property modification and process parameter optimization design of polylactic acid composite materials. Part I: polylactic acid toughening and photo-degradation modification and optimized parameter design. Textile Reseach Journal, 2015, 85, 13-25.	1.1	10
671	Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding. Materials & Design, 2015, 65, 749-756.	5.1	57
672	Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chemical Engineering Journal, 2015, 262, 78-87.	6.6	156
673	Properties. , 2015, , 79-116.		6
674	Antifungal Poly(lactic acid) Films Containing Thymol and Carvone. MATEC Web of Conferences, 2016, 67, 06107.	0.1	17
675	Quantitative Determination of Fluorine Content in Blends of Polylactide (PLA)–Talc Using Near Infrared Spectroscopy. Sensors, 2016, 16, 1216.	2.1	2
676	Poly(lactic acid)/thermoplastic starch sheets: effect of adipate esters on the morphological, mechanical and barrier properties. Polimeros, 2016, 26, 66-73.	0.2	16
677	Processing Biodegradable Polymers. , 2016, , 179-209.		8
678	Types of Biodegradable Polymers. , 2016, , 81-151.		17

#	Article	IF	CITATIONS
679	Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE) Blends: Effects of Annealing and Reactive Compatibilizer. Polymers, 2016, 8, 417.	2.0	17
680	Antimicrobial Food Packaging Based on Biodegradable Materials. , 2016, , 363-384.		24
681	Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials, 2016, 9, 133.	1.3	114
682	Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites. Materials, 2016, 9, 539.	1.3	14
683	Bio-Based Polymers with Potential for Biodegradability. Polymers, 2016, 8, 262.	2.0	190
684	The Use of Polylactic Acid in Food Packaging. , 2016, , .		1
685	Molecular characterisation of a bioâ€based active packaging containing <i>Origanum vulgare</i> L. essential oil using pyrolysis gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 2016, 96, 3207-3212.	1.7	12
686	Mechanical, thermal and rheological properties and morphology of poly (lactic acid)/poly (propylene) Tj ETQq $1\ 1$. 0.784314 1.6	4 rgBT /Over <mark>lo</mark>
687	Microcellular injection molded polylactic acid/poly ($\hat{l}\mu$ -caprolactone) blends with supercritical CO ₂ : Correlation between rheological properties and their foaming behavior. Polymer Engineering and Science, 2016, 56, 939-946.	1.5	21
688	Effects of water sorption on poly(lactic acid). Polymer, 2016, 99, 130-139.	1.8	22
690	Decoupling the effects of screw speed and particle surface functionality on the filler suspension state in PBS/fumed silica nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1820-1828.	2.4	0
691	Enhanced crystallization of poly(lactide) stereocomplex by xylan propionate. Polymer International, 2016, 65, 339-345.	1.6	6
692	Supercritical processing of CO 2 -philic polyhedral oligomeric silsesquioxane (POSS)-poly(I -lactic) Tj ETQq0 0 0	rgBT/Over	:lock 10 Tf 50
693	Flammability and anti-dripping behaviors of polylactide composite containing hyperbranched triazine compound. Integrated Ferroelectrics, 2016, 172, 10-24.	0.3	12
694	Degradation of <scp>PLA</scp> and <scp>PLA</scp> in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science, 2016, 133, .	1.3	39
695	Poly(lactic acid) fibers obtained by solution blow spinning: Effect of a greener solvent on the fiber diameter. Journal of Applied Polymer Science, 2016, 133, .	1.3	28
696	Toward High-Performance Poly(<scp>l</scp> -lactide) Fibers via Tailoring Crystallization with the Aid of Fibrillar Nucleating Agent. ACS Sustainable Chemistry and Engineering, 2016, 4, 3939-3947.	3.2	41
697	Palm oil deodorizer distillate as toughening agent in polylactide packaging films. Polymer International, 2016, 65, 683-690.	1.6	9

#	ARTICLE	IF	CITATIONS
698	Investigation of structure and mechanical properties of toughened poly(<scp> </scp> â€kactide)/thermoplastic poly(ester urethane) blends. Journal of Applied Polymer Science, 2016, 133, .	1.3	40
699	Motion mode of poly(lactic acid) chains in film during strainâ€induced crystallization. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
700	Compounding and rheometry of PLA nanocomposites with coated and uncoated hydroxyapatite nanoplatelets. AIP Conference Proceedings, $2016, \ldots$	0.3	1
701	Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees. Scientific Reports, 2016, 6, 26560.	1.6	38
702	Effect of solubility of a hydrazide compound on the crystallization behavior of poly(<scp> </scp> -lactide). RSC Advances, 2016, 6, 113377-113389.	1.7	12
703	Evaluation of Nanoparticle Effect on Bubble Nucleation in Polymer Foaming. Journal of Physical Chemistry C, 2016, 120, 26841-26851.	1.5	19
704	Biodegradation Properties of Bioplastic-Based Planting Pots. , 2016, , 199-210.		0
705	Fabrication and Characterization of Bio-Based Poly Lactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blend With Nanoclay. , 2016, , .		1
706	Thermal oxidation and structure of polylactide–polyethylene blends. Russian Journal of Physical Chemistry B, 2016, 10, 825-829.	0.2	11
707	Optimization of PLA compounds using novel nucleating agents and plasticizers. AIP Conference Proceedings, 2016, , .	0.3	0
708	Development of bio-sourced binder to metal injection moulding. AIP Conference Proceedings, 2016, , .	0.3	1
709	Toughening of poly(lactic acid) without sacrificing stiffness and strength by melt-blending with polyamide 11 and selective localization of halloysite nanotubes. AIP Conference Proceedings, 2016, , .	0.3	8
710	Evaluation and performance analysis of 3D printing technique for Ka-band antenna production. , 2016, , .		3
711	Silane crosslinking of electrospun poly (lactic acid)/nanocrystalline cellulose bionanocomposite. Materials Science and Engineering C, 2016, 68, 397-405.	3.8	32
712	Biodegradation and hydrolysis studies on polypropylene/polylactide/organo-clay nanocomposites. Polymer Bulletin, 2016, 73, 3287-3304.	1.7	14
713	Effect of high energy \hat{I}^2 -radiation and addition of triallyl isocyanurate on the selected properties of polylactide. Nuclear Instruments & Methods in Physics Research B, 2016, 377, 59-66.	0.6	22
714	Nanoclay Reinforced Polymer Composites. Engineering Materials, 2016, , .	0.3	21
715	Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties. Engineering Materials, 2016, , 81-101.	0.3	1

#	Article	IF	CITATIONS
716	Highly Enhanced Mesophase Formation in Glassy Poly(<scp>l</scp> -lactide) at Low Temperatures by Low-Pressure CO ₂ That Provides Moderately Increased Molecular Mobility. Macromolecules, 2016, 49, 2262-2271.	2.2	46
717	Physical changes and sorption/desorption behaviour of amorphous and semi-crystalline PLLA exposed to water, methanol and ethanol. European Polymer Journal, 2016, 76, 278-293.	2.6	13
718	New transparent poly(<scp>l</scp> -lactide acid) films as high-performance bio-based nanocomposites. RSC Advances, 2016, 6, 23949-23955.	1.7	8
719	Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107, 333-366.	6.6	895
720	Green and Efficient Synthesis of Dispersible Cellulose Nanocrystals in Biobased Polyesters for Engineering Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 2517-2527.	3.2	58
721	Influence of trifluoropropyl-POSS nanoparticles on the microstructure, rheological, thermal and thermomechanical properties of PLA. RSC Advances, 2016, 6, 37149-37159.	1.7	35
722	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	6.6	651
723	Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials & Amp; Interfaces, 2016, 8, 8096-8109.	4.0	102
724	Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers. Materials Letters, 2016, 176, 194-198.	1.3	16
725	Polymer blend nanocomposites based on poly(<scp>l</scp> -lactic acid), polypropylene and WS ₂ inorganic nanotubes. RSC Advances, 2016, 6, 40033-40044.	1.7	25
726	The crystallization behaviors and mechanical properties of poly(<scp>l</scp> -lactic acid)/magnesium oxide nanoparticle composites. RSC Advances, 2016, 6, 43855-43863.	1.7	21
727	Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 2016, 107, 247-276.	6.6	342
728	Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polymer Degradation and Stability, 2016, 129, 222-230.	2.7	33
729	Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 2016, 125, 849-860.	2.0	5
730	Toughening poly(lactic acid) (PLA) through <i>in situ</i> reactive blending with liquid polybutadiene rubber (LPB). Composite Interfaces, 2016, 23, 807-818.	1.3	12
731	Cyclic pressure on compression-moulded bioresorbable phosphate glass fibre reinforced composites. Materials and Design, 2016, 100, 141-150.	3.3	12
732	Influence of clay-nanofiller geometry on the structure and properties of poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 1	10 _{1.7} 50 1	02 _. Td (acid)/t
733	Polylactidesâ€"Methods of synthesis and characterization. Advanced Drug Delivery Reviews, 2016, 107, 3-16.	6.6	135

#	Article	IF	Citations
734	Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science and Technology, 2016, 53, 23-33.	7.8	51
735	Effects of electron beam irradiation on thermal and mechanical properties of poly(lactic acid) films. Polymer Degradation and Stability, 2016, 133, 293-302.	2.7	25
736	A novel method for fabricating continuous polymer nanofibers. Polymer, 2016, 102, 209-213.	1.8	9
737	Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2016, 122, 315-322.	2.6	8
738	Poly[(R)3-hydroxybutyrate] (PHB)/poly(l-lactic acid) (PLLA) blends with poly(PHB/PLLA urethane) as a compatibilizer. Polymer Degradation and Stability, 2016, 134, 30-40.	2.7	25
739	Mesophase-Mediated Crystallization of Poly(<scp>l</scp> -lactide): Deterministic Pathways to Nanostructured Morphology and Superstructure Control. Macromolecules, 2016, 49, 7387-7399.	2.2	34
740	Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. Journal of Analytical and Applied Pyrolysis, 2016, 122, 241-248.	2.6	47
741	Green Antibacterial Nanocomposites from Poly(lactide)/Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 TChemistry and Engineering, 2016, 4, 6417-6426.	f 50 467 ⁻ 3.2	Td (adipate < 78
742	Mechanical and Thermal Behavior of PLA/PEgAA Blends. Macromolecular Symposia, 2016, 367, 82-89.	0.4	7
743	High-performance poly(lactide) composites by construction of network-like shish-kebab crystals. RSC Advances, 2016, 6, 71046-71051.	1.7	10
744	Polylactides in additive biomanufacturing. Advanced Drug Delivery Reviews, 2016, 107, 228-246.	6.6	63
745	Rejuvenation of PLLA: Effect of plastic deformation and orientation on physical ageing in poly(<scp>I</scp> -lactic acid) films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2233-2244.	2.4	16
746	Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 2016, 82, 232-243.	2.6	93
747	Characterization of biaxial strain of poly(<scp> < scp>â€ actide) tubes. Polymer International, 2016, 65, 133-141.</scp>	1.6	14
748	Effect of surface treatments of jute fibers on the microstructural and mechanical responses of poly(lactic acid)/jute fiber biocomposites. RSC Advances, 2016, 6, 73373-73382.	1.7	51
749	Creep behaviour of injection-moulded basalt fibre reinforced poly(lactic acid) composites. Journal of Reinforced Plastics and Composites, 2016, 35, 1600-1610.	1.6	20
750	Control Strategy and Comparison of Tuning Methods for Continuous Lactide Ringâ€Opening Polymerization. Chemical Engineering and Technology, 2016, 39, 2117-2125.	0.9	4
751	Surface properties of poly(lactic acid)/polyacrylate semi-interpenetrating networks – Effect of UVC radiation. Polymer Degradation and Stability, 2016, 131, 71-81.	2.7	6

#	Article	IF	CITATIONS
752	Polylactic Acid: Synthesis, Properties, and Applications., 0,, 6480-6490.		2
753	Hot-compacted interwoven webs of biodegradable polymers. Polymer, 2016, 101, 127-138.	1.8	9
754	New ternary PLA/organoclay-hydrogel nanocomposites: Design, preparation and study on thermal, combustion and mechanical properties. Materials and Design, 2016, 110, 811-820.	3.3	41
755	Nanoclay Reinforced Polymer Composites. Engineering Materials, 2016, , .	0.3	28
756	Bioplastics and Bionanocomposites Based on Nanoclays and Other Nanofillers. Engineering Materials, 2016, , 115-139.	0.3	2
757	Photochemical reactivity of PLA at the vicinity of glass transition temperature. The photo-rheology method. European Polymer Journal, 2016, 81, 239-246.	2.6	24
758	Compatibilization of poly(lactic acid)/ethyleneâ€propyleneâ€diene rubber blends by using organic montmorillonite as a compatibilizer. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
759	Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes, 2016, 2, .	2.2	34
760	Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid and Polymer Science, 2016, 294, 1779-1787.	1.0	14
761	Improving efficiency of calcium oxide expansive additives by polylactic acid film. Magazine of Concrete Research, 2016, 68, 1070-1078.	0.9	7
762	The molecular weight dependence of the crystallization behavior of four-arm poly(L-lactide). Colloid and Polymer Science, 2016, 294, 1865-1870.	1.0	3
763	Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(l-lactide). Polymer, 2016, 103, 365-375.	1.8	55
764	Design of New Cardanol Derivative: Synthesis and Application as Potential Biobased Plasticizer for Poly(lactide). Macromolecular Materials and Engineering, 2016, 301, 1267-1278.	1.7	10
765	Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polymer Testing, 2016, 54, 19-28.	2.3	56
766	Poly (I-Lactic acid)/silk fibroin composite membranes with improved crystallinity and thermal stability from non-solvent induced phase separation processes involving hexafluoroisopropanol. Composites Science and Technology, 2016, 132, 38-46.	3.8	15
767	Design of toughened PLA based material for application in structures subjected to severe loading conditions. Part 1. Quasi-static and dynamic tensile tests at ambient temperature. Polymer Testing, 2016, 54, 233-243.	2.3	9
768	Control of the Crystalline Morphology of Poly(<scp>l</scp> -lactide) by Addition of High-Melting-Point Poly(<scp>l</scp> -lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2016, 120, 7423-7437.	1.2	40
770	Toughening effect of annealing-induced intermolecular crystallization of PBA-g-PLLA in PLA matrix. Macromolecular Research, 2016, 24, 515-521.	1.0	13

#	Article	IF	CITATIONS
771	Supercritical Debinding of Environmentally Friendly Inconel 718 Feedstock to Metal Injection Moulding Process. Key Engineering Materials, 2016, 716, 824-829.	0.4	0
772	Physical and mechanical characterization of PLLA interference screws produced by two stage injection molding method. Progress in Biomaterials, 2016, 5, 183-191.	1.8	10
773	Fabrication of micro-structured surface of plants-derived polyamide using femtosecond laser and their frictional properties. AIP Conference Proceedings, 2016 , , .	0.3	2
774	<i>In situ</i> compatibilization of polylactide/thermoplastic polyester elastomer blends using a multifunctional epoxide compound as a processing agent. Journal of Applied Polymer Science, 2016, 133,	1.3	19
775	Mechanical properties of biodegradable polylactide/poly(etherâ€blockâ€amide)/thermoplastic starch blends: Effect of the crosslinking of starch. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
776	CE-UV/VIS and CE-MS for monitoring organic impurities during the downstream processing of fermentative-produced lactic acid from second-generation renewable feedstocks. Journal of Biological Engineering, 2016, 10, 7.	2.0	8
777	Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide. Macromolecules, 2016, 49, 4587-4598.	2.2	49
778	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	6.6	1,957
779	Structural evolution of poly(l-lactide) block upon heating of the glassy ABA triblock copolymers containing poly(l-lactide) A blocks. Polymer, 2016, 105, 422-430.	1.8	19
780	Stereocomplex crystallites induce simultaneous enhancement in impact toughness and heat resistance of injection-molded polylactide/polyurethane blends. RSC Advances, 2016, 6, 17008-17015.	1.7	26
781	Composites based on green high-density polyethylene, polylactide and nanosized calcium carbonate: Effect of the processing parameter and blend composition. Materials Chemistry and Physics, 2016, 181, 344-351.	2.0	11
782	Robust Interfacial Cylindrites of Polylactic Acid Modulated by an Intense Shear Flow Field. ACS Sustainable Chemistry and Engineering, 2016, 4, 3558-3566.	3.2	17
783	Effects of poly(L-lactide- $\hat{l}\mu$ -caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomaterials Research, 2016, 20, 7.	3.2	23
784	Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under compressed carbon dioxide. Polymer, 2016, 98, 100-109.	1.8	29
785	From Laboratory to Industrial Continuous Production of Polylactic Acid with Low Residual Monomer. Macromolecular Symposia, 2016, 360, 40-48.	0.4	3
786	Flame retardant properties and mechanism of an efficient intumescent flame retardant PLA composites. Polymers for Advanced Technologies, 2016, 27, 693-700.	1.6	56
787	Microcellular foaming of polylactide and poly(butylene adipateâ€coâ€terphathalate) blends and their CaCO ₃ reinforced nanocomposites using supercritical carbon dioxide. Polymers for Advanced Technologies, 2016, 27, 550-560.	1.6	44
788	Controlled biodegradation of polymers using nanoparticles and its application. RSC Advances, 2016, 6, 67449-67480.	1.7	62

#	Article	IF	CITATIONS
789	A coarse-grained model for polylactide: glass transition temperature and conformational properties. Journal of Polymer Research, 2016, 23, 1.	1.2	15
790	Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene. Journal of Applied Polymer Science, $2016,133,.$	1.3	25
791	Reactive Extraction of Lactic Acid by Using Triâ€ <i>n</i> àê€octylamine: Structure of the Ionic Phase. Chemistry - A European Journal, 2016, 22, 3268-3272.	1.7	8
792	The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocomposites. Journal of Thermoplastic Composite Materials, 2016, 29, 538-557.	2.6	6
793	The effect of two commercial melt strength enhancer additives on the thermal, rheological and morphological properties of polylactide. Journal of Polymer Engineering, 2016, 36, 31-41.	0.6	25
794	Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties. Composites Part A: Applied Science and Manufacturing, 2016, 83, 89-97.	3.8	147
795	Development of reinforced polylactide composite resin for micro surgery bone plate and screw. Macromolecular Research, 2016, 24, 37-43.	1.0	3
796	Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber. Iranian Polymer Journal (English Edition), 2016, 25, 169-178.	1.3	19
797	Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1-12.	2.0	19
798	Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. Journal of Thermal Analysis and Calorimetry, 2016, 124, 799-805.	2.0	20
799	An Ultraviolet-Induced Reactive Extrusion To Control Chain Scission and Long-Chain Branching Reactions of Polylactide. Industrial & Engineering Chemistry Research, 2016, 55, 597-605.	1.8	49
800	The physical properties of poly(I-lactide) and functionalized eggshell powder composites. International Journal of Biological Macromolecules, 2016, 85, 63-73.	3.6	43
801	Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly(lactide). Polymer Bulletin, 2016, 73, 2087-2104.	1.7	13
802	Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold. Journal of Thermal Analysis and Calorimetry, 2016, 123, 349-361.	2.0	42
803	Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites. International Journal of Biological Macromolecules, 2016, 82, 998-1010.	3.6	44
804	Remarkably Enhanced Impact Toughness and Heat Resistance of poly(<scp>l</scp> -Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustainable Chemistry and Engineering, 2016, 4, 111-120.	3.2	123
805	The role of shear and stabilizer on PLA degradation. Polymer Testing, 2016, 51, 109-116.	2.3	77
806	Microwave Synthesis and Melt Blending of Glycerol Based Toughening Agent with Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2016, 4, 2142-2149.	3.2	38

#	Article	IF	Citations
807	Cardanol derivatives as innovative bio-plasticizers for poly-(lactic acid). Polymer Degradation and Stability, 2016, 132, 213-219.	2.7	32
808	Effect of multiâ€branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA. Journal of Applied Polymer Science, 2016, 133, .	1.3	16
809	Shear-induced nonisothermal crystallization of two grades of PLA. Polymer Testing, 2016, 50, 172-181.	2.3	39
810	The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites. Colloid and Polymer Science, 2016, 294, 801-813.	1.0	28
811	Lactide polymerisation by ring-expanded NHC complexes of zinc. Polyhedron, 2016, 103, 121-125.	1.0	17
812	Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International Journal of Biological Macromolecules, 2016, 86, 885-892.	3.6	74
813	Thermal degradation of polylactide and its electrospun fiber. Fibers and Polymers, 2016, 17, 66-73.	1.1	13
814	Influence of Specific Processing Conditions and Aliphatic-Aromatic Copolyester on Polylactide Properties. Chemical Engineering Communications, 2016, 203, 1540-1546.	1.5	3
815	Simultaneously reinforcing and toughening of polylactide/carbon fiber composites via adding small amount of soft poly(ether)urethane. Composites Science and Technology, 2016, 127, 54-61.	3.8	28
816	Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 2016, 55, 1057-1075.	1.9	108
817	Improving Stiffness, Strength, and Toughness of Poly(ω-pentadecalactone) Fibers through <i>in Situ</i> Reinforcement with a Vanillic Acid-Based Thermotropic Liquid Crystalline Polyester. Macromolecules, 2016, 49, 2228-2237.	2.2	17
818	Morphology Controlled PA11 Bio-Alloys with Excellent Impact Strength. ACS Sustainable Chemistry and Engineering, 2016, 4, 2158-2164.	3.2	13
819	Effect of Hot Drawing on the Mechanical Properties of Biodegradable Fibers. Journal of Polymers and the Environment, 2016, 24, 56-63.	2.4	11
820	Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials and Design, 2016, 92, 846-852.	3.3	94
821	Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 2016, 93, 290-301.	2.5	112
822	Graphene nanoplatelets dispersion in poly(l-lactic acid): preparation method and its influence on electrical, crystallinity and thermomechanical properties. Iranian Polymer Journal (English Edition), 2016, 25, 193-202.	1.3	13
823	Preparation of cellulose-graft-polylactic acid via melt copolycondensation for use in polylactic acid based composites: synthesis, characterization and properties. RSC Advances, 2016, 6, 1973-1983.	1.7	35
824	Effect of Metallic Salts of Phenylmalonic Acid on the Crystallization of Poly(L-lactide). Journal of Macromolecular Science - Physics, 2016, 55, 128-137.	0.4	8

#	Article	IF	CITATIONS
825	Environmental friendly and sustainable gas barrier on porous materials: Nanocellulose coatings prepared using spin- and dip-coating. Materials and Design, 2016, 93, 19-25.	3.3	59
826	Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend. Materials Letters, 2016, 164, 409-412.	1.3	41
827	Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese Journal of Polymer Science (English Edition), 2016, 34, 69-76.	2.0	22
828	Potentials of Fibrous and Nonfibrous Materials in Biodegradable Packaging. Environmental Footprints and Eco-design of Products and Processes, 2016, , 75-113.	0.7	7
829	Attenuated total reflectance-mid infrared spectroscopy (ATR-MIR) coupled with independent components analysis (ICA): A fast method to determine plasticizers in polylactide (PLA). Talanta, 2016, 147, 569-580.	2.9	24
830	Environmental Footprints of Packaging. Environmental Footprints and Eco-design of Products and Processes, 2016, , .	0.7	4
831	Evaluation of the Effect of Chemical or Enzymatic Synthesis Methods on Biodegradability of Polyesters. Journal of Polymers and the Environment, 2016, 24, 64-71.	2.4	5
832	Identifying conditions to optimize lactic acid production from food waste co-digested with primary sludge. Biochemical Engineering Journal, 2016, 105, 205-213.	1.8	43
833	Structure and mechanical property of polylactide fibers manufactured by air drawing. Textile Reseach Journal, 2016, 86, 948-959.	1.1	6
834	Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. E-Polymers, 2016, 16, 1-13.	1.3	59
835	Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic) Tj ETQq0 0 0 r 53, 59-67.	gBT /Over 1.5	lock 10 Tf 50 35
836	Effect of melt viscosity on the cell morphology and properties of poly(lactic acid) foams. Journal of Cellular Plastics, 2016, 52, 175-187.	1.2	11
837	Grapheneâ€modified poly(lactic acid) for packaging: Material formulation, processing and performance. Journal of Applied Polymer Science, 2016, 133, .	1.3	14
838	Preparation and characterization of linear and starâ€shaped poly <scp>L</scp> â€lactide blends. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
839	Promising PLAâ€functionalized MWCNT composites to use in nanotechnology. Polymer Composites, 2016, 37, 3066-3072.	2.3	10
840	Mechanical properties of poly(l â€lactic acid) composites filled with mesoporous silica. Polymer Composites, 2017, 38, 1118-1126.	2.3	8
841	Nonâ€isothermal crystallization kinetics of PEG plasticized PLA/Gâ€POSS nanocomposites. Polymer Composites, 2017, 38, 1378-1389.	2.3	22
842	Poly(lactic acid)/palygorskite nanocomposites: Enhanced the physical and thermal properties. Polymer Composites, 2017, 38, 1600-1608.	2.3	3

#	Article	IF	CITATIONS
843	Rotational Molding of Poly(lactic acid): Effect of Polymer Grade and Granulometry. Advances in Polymer Technology, 2017, 36, 477-482.	0.8	14
844	Banana/sisal fibers reinforced poly(lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polymer Composites, 2017, 38, 1053-1062.	2.3	27
845	Effect of peanut shell content on mechanical, thermal, and biodegradable properties of peanut shell/polylactic acid biocomposites. Polymer Composites, 2017, 38, 682-690.	2.3	13
846	Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polymer Degradation and Stability, 2017, 137, 122-130.	2.7	388
847	Synthesis of PP-g-MA as compatibilizer for PP/PLA biocomposites: Thermal, mechanical and biodegradability properties. AIP Conference Proceedings, 2017, , .	0.3	2
848	Effect of chemical modification on the thermal and rheological properties of polylactide. Polymer Engineering and Science, 2017, 57, 1242-1251.	1.5	22
849	Poly(lactic acid)â€based nanocomposites. Polymers for Advanced Technologies, 2017, 28, 919-930.	1.6	52
850	New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration and Biodegradation, 2017, 117, 215-223.	1.9	264
851	Crystallization behavior, heat resistance, and mechanical performances of <scp>PLLA</scp> / <i>myo</i> å€inositol blends. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
852	Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 229-241.	1.5	87
853	Nucleating agentâ€containing P(LLAâ€mbâ€BSA) multiâ€block copolymers with balanced mechanical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	5
854	Highâ€Yield Synthesis of Ethyl Lactate with Mesoporous Tin Silicate Catalysts Prepared by an Aerosolâ€Assisted Sol–Gel Process. ChemCatChem, 2017, 9, 2211-2218.	1.8	34
855	Organomontmorillonite/graphene-PLA/PCL nanofilled blends: New strategy to enhance the functional properties of PLA/PCL blend. Applied Clay Science, 2017, 139, 81-91.	2.6	65
856	A traditional aboriginal condiment as an antioxidant agent in the development of biodegradable active packaging. Journal of Applied Polymer Science, 2017, 134, .	1.3	12
857	Effect of nitrogen-doped graphene on morphology and properties of immiscible poly(butylene) Tj ETQq0 0 0 rgBT /	/Qverlock	10 Tf 50 18
858	Advances in polymer precursors and bioâ€based polymers synthesized from 5â€hydroxymethylfurfural. Journal of Polymer Science Part A, 2017, 55, 1478-1492.	2.5	97
859	Miscible blends of biobased poly(lactide) with poly(methyl methacrylate): Effects of chopped glass fiber incorporation. Journal of Applied Polymer Science, 2017, 134, .	1.3	13
860	Preparation, Characterization, and Surface Functionality of Polyester Bioplastic-based Green Composites Containing Powdered Curcumin Products. Polymer-Plastics Technology and Engineering, 2017, 56, 1177-1187.	1.9	O

#	Article	IF	Citations
861	Effect of molar mass on the α′/α-transition in poly (-lactic acid). Polymer, 2017, 114, 144-148.	1.8	28
862	Hierarchical structures in poly(lactic acid)/poly(ethylene glycol) blends. European Polymer Journal, 2017, 89, 381-398.	2.6	14
863	Polylactic Acid Green Nanocomposites for Automotive Applications. Green Energy and Technology, 2017, , 193-208.	0.4	8
864	Supercooling-dependent morphology evolution of an organic nucleating agent in poly(<scp>l</scp> -lactide)/poly(<scp>d</scp> -lactide) blends. CrystEngComm, 2017, 19, 1648-1657.	1.3	24
865	Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of Polylactide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10148-10159.	4.0	77
866	Toughening polylactide by dynamic vulcanization with castor oil and different types of diisocyanates. Polymer Testing, 2017, 59, 470-477.	2.3	32
867	Cellulosic Biocomposites: Potential Materials for Future. Green Energy and Technology, 2017, , 69-100.	0.4	16
868	Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose, 2017, 24, 2163-2175.	2.4	45
869	Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications. Materials Science and Engineering C, 2017, 75, 1184-1190.	3.8	17
870	Copper(II) complexes containing N,N′-bidentate N-substituted N-(pyridin-2-ylmethyl)amine: Synthesis, structure and application towards polymerization of rac-lactide. Polyhedron, 2017, 127, 51-58.	1.0	32
871	Salan group 13 complexes – structural study and lactide polymerisation. New Journal of Chemistry, 2017, 41, 2198-2203.	1.4	22
872	Poly(<scp>l</scp> -lactide) Materials with Balanced Mechanical Properties Prepared by Blending with PEG-mb-PPA Multiblock Copolymers. Industrial & Engineering Chemistry Research, 2017, 56, 2773-2782.	1.8	15
873	Antibacterial effect of novel biodegradable and bioresorbable PLDA/Mg composites. Biomedical Materials (Bristol), 2017, 12, 015025.	1.7	13
874	Active Nanocomposites in Food Contact Materials. Sustainable Agriculture Reviews, 2017, , 1-44.	0.6	4
875	Crystallization of polylactic acid under <i>in situ</i> deformation during nonsolventâ€induced phase separation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1055-1062.	2.4	14
876	Recent advances on the ageing of flame retarded PLA: Effect of UV-light and/or relative humidity. Polymer Degradation and Stability, 2017, 139, 143-164.	2.7	28
877	The influence of the preparation conditions and filler content on thermal properties of poly- <scp>l</scp> -lactide and hydroxyapatite/poly- <scp>l</scp> -lactide nanocomposite. Polymer International, 2017, 66, 1275-1283.	1.6	1
878	Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 271-278.	1.5	51

#	Article	IF	CITATIONS
879	Development and characterisation of a biosourced feedstock of superalloy in metal injection moulding process. Powder Metallurgy, 2017, 60, 105-111.	0.9	6
880	Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly(I-lactide) composites. Polymer, 2017, 118, 280-296.	1.8	25
881	Making a Supertough Flame-Retardant Polylactide Composite through Reactive Blending with Ethylene-Acrylic Ester-Glycidyl Methacrylate Terpolymer and Addition of Aluminum Hypophosphite. ACS Omega, 2017, 2, 1886-1895.	1.6	27
882	Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1043-1052.	2.0	13
883	Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). European Polymer Journal, 2017, 93, 822-832.	2.6	113
884	Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. Journal of Industrial and Engineering Chemistry, 2017, 52, 338-348.	2.9	25
885	Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polymer Degradation and Stability, 2017, 140, 166-175.	2.7	129
886	Thermal behavior of extruded and injectionâ€molded poly(lactic acid)–talc engineered biocomposites: Effects of material design, thermal history, and shear stresses during melt processing. Journal of Applied Polymer Science, 2017, 134, 45179.	1.3	12
887	Mechanical properties and state of miscibility in poly(racD,L-lactide-co-glycolide)/(L-lactide-co-ε-caprolactone) blends. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 372-382.	1.5	12
888	Design and manufacture of degradable polymers: Biocomposites of micro-lamellar talc and poly(lactic) Tj ETQq1	1 0.78431 2.0	4 rgBT /Ove
889	Polylactic Acid Sealed Polyelectrolyte Multilayer Microchambers for Entrapment of Salts and Small Hydrophilic Molecules Precipitates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16536-16545.	4.0	44
890	Synthesis of multi-arm poly(I-lactide) and its modification on linear polylactide. Polymer Bulletin, 2017, 74, 245-262.	1.7	11
891	Crystallinity as a tunable switch of poly(L-lactide) shape memory effects. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 144-151.	1.5	26
892	Design of toughened PLA based material for application in structures subjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature. Polymer Testing, 2017, 57, 235-244.	2.3	14
893	A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 2017, 96, 282-301.	3.6	295
894	Thermal stability enhancement of hydrogen bonded semicrystalline thermoplastics achieved by combination of aramide chemistry and supramolecular chemistry. Polymer Chemistry, 2017, 8, 461-471.	1.9	22
895	Design of high-performance poly(l-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. Polymer, 2017, 108, 38-49.	1.8	41
896	Poly-l-lactic acid: Pellets to fiber to fused filament fabricated scaffolds, and scaffold weight loss study. Additive Manufacturing, 2017, 16, 167-176.	1.7	30

#	Article	IF	CITATIONS
897	Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 2017, 145, 60-69.	2.7	40
898	Realization of ultra-high barrier to water vapor by 3D-interconnection of super-hydrophobic graphene layers in polylactide films. Journal of Materials Chemistry A, 2017, 5, 14377-14386.	5. 2	20
899	Organocatalytic ring-opening polymerization of l-lactide in bulk: A long standing challenge. European Polymer Journal, 2017, 95, 628-634.	2.6	83
900	Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Research International, 2017, 99, 650-659.	2.9	83
901	Effect of monomeric composition on the thermal, mechanical and crystalline properties of poly[(R)-lactate-co-(R)-3-hydroxybutyrate]. Polymer, 2017, 122, 169-173.	1.8	16
902	Synthesis and characterization of methacrylated starâ€shaped poly(lactic acid) employing core molecules with different hydroxyl groups. Journal of Applied Polymer Science, 2017, 134, 45341.	1.3	19
903	Production of Monofilaments from Polylactide Melt: Structure, Properties, and Biocompatibility. Fibre Chemistry, 2017, 48, 456-461.	0.0	1
904	Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. Journal of Polymer Research, 2017, 24, 1.	1.2	31
905	Lignocellulosics as sustainable resources for production of bioplastics – A review. Journal of Cleaner Production, 2017, 162, 646-664.	4.6	312
906	Synthesis of aluminum complexes supported by 2-(1,10-phenanthrolin-2-yl)phenolate ligands and their catalysis in the ring-opening polymerization of cyclic esters. RSC Advances, 2017, 7, 27177-27188.	1.7	8
907	PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Composites Science and Technology, 2017, 148, 59-69.	3.8	131
908	Stability of adhesive interfaces by stereocomplex formation of polylactides and hybridization with nanoparticles. Polymer Degradation and Stability, 2017, 141, 69-76.	2.7	7
909	Concentration-dependent anti-/pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polymer Degradation and Stability, 2017, 142, 21-28.	2.7	37
910	Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites. Composites Science and Technology, 2017, 148, 89-96.	3.8	21
911	The Compostable Plastic Poly(lactic) Acid Causes a Temporal Shift in Fungal Communities in Maturing Compost. Compost Science and Utilization, 2017, 25, 211-219.	1.2	8
912	Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1235-1244.	2.4	7
913	Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(<scp>l</scp> -lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Journal of Physical Chemistry B, 2017, 121, 6271-6279.	1.2	23
914	Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. Journal of Plastic Film and Sheeting, 2017, 33, 361-383.	1.3	17

#	Article	IF	CITATIONS
915	Reactive Extrusion of Polylactic Acid/Cellulose Nanocrystal Films for Food Packaging Applications: Influence of Filler Type on Thermomechanical, Rheological, and Barrier Properties. Industrial & Engineering Chemistry Research, 2017, 56, 4718-4735.	1.8	76
916	Tortuosity model to predict the combined effects of crystallinity and nano-sized clay mineral on the water vapour barrier properties of polylactic acid. Applied Clay Science, 2017, 141, 46-54.	2.6	38
917	Synthesis and characterization of star-shaped carboxyl group functionalized poly(lactic acid) through polycondensation reaction. Macromolecular Research, 2017, 25, 180-189.	1.0	4
918	Progress in Toughening Poly(Lactic Acid) with Renewable Polymers. Polymer Reviews, 2017, 57, 557-593.	5.3	172
919	Effects of cellulose nanowhiskers preparation methods on the properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polylactic acid nanocomposites., 2017,, 111-136.		2
920	Mastering the structure of <scp>PLA</scp> foams made with extrusion assisted by supercritical <scp>CO</scp> ₂ . Journal of Applied Polymer Science, 2017, 134, 45067.	1.3	24
921	Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(l-lactic acid)/glycerol triacetate blends. Polymer Bulletin, 2017, 74, 4799-4814.	1.7	18
922	Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology. International Journal of Biological Macromolecules, 2017, 101, 580-594.	3.6	29
923	"Practical―Electrospinning of Biopolymers in Ionic Liquids. ChemSusChem, 2017, 10, 106-111.	3.6	43
924	Multi-interfaces investigation on the PLA composites toughened by modified MWCNTs. Composite Interfaces, 2017, 24, 743-759.	1.3	7
925	Fabrication of starchâ€ <i>g</i> â€poly(<scp>l</scp> ″actic acid) biocomposite films: Effects of the shearâ€mixing and reactiveâ€extrusion conditions. Journal of Applied Polymer Science, 2017, 134, .	1.3	7
926	Laser transmission welding of polylactide to aluminium thin films for applications in the food-packaging industry. Optics and Laser Technology, 2017, 91, 80-84.	2.2	27
927	Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic) Tj ETQq0 0 0 r	gBT /Overl 2.6	ock 10 Tf 50
928	Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Accounts of Chemical Research, 2017, 50, 2861-2869.	7.6	75
929	In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. European Polymer Journal, 2017, 96, 505-519.	2.6	35
930	Designing of Poly(l-lactide)–Nicotine Conjugates: Mechanistic and Kinetic Studies and Thermal Release Behavior of Nicotine. ACS Omega, 2017, 2, 6131-6142.	1.6	7
931	Crystallization behavior of poly(lactic acid) with a self-assembly aryl amide nucleating agent probed by real-time infrared spectroscopy and X-ray diffraction. Polymer Testing, 2017, 64, 12-19.	2.3	38
932	Low-Temperature Sintering of Stereocomplex-Type Polylactide Nascent Powder: Effect of Crystallinity. Macromolecules, 2017, 50, 7611-7619.	2.2	47

#	Article	IF	CITATIONS
933	Near-Infrared Spectroscopic Evaluation of the Water Content of Molded Polylactide under the Effect of Crystallization. Applied Spectroscopy, 2017, 71, 1300-1309.	1.2	10
934	Development of Poly(Lactic Acid) Filled with Basalt Fibres and Talc for Engineering Applications. Materials Science Forum, 0, 885, 303-308.	0.3	5
935	Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Composites Part A: Applied Science and Manufacturing, 2017, 103, 96-105.	3.8	133
936	The effect of environmental factors on biodegradable polylactide-based materials. Polymer Science - Series D, 2017, 10, 289-292.	0.2	3
937	Enhanced cold crystallization and dielectric polarization of PLA composites induced by P[MPEGMA-IL] and graphene. Thermochimica Acta, 2017, 657, 156-162.	1.2	15
938	Nanosilk-Grafted Poly(lactic acid) Films: Influence of Cross-Linking on Rheology and Thermal Stability. ACS Omega, 2017, 2, 7071-7084.	1.6	44
939	Poly(butylene terephthalate)/Glycerol-based Vitrimers via Solid-State Polymerization. Macromolecules, 2017, 50, 6742-6751.	2.2	104
940	Micro-composites based on polylactic acid with kaolinite or rice husk particles and their performance on water vapor permeability. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 669-677.	1.2	6
941	Cyclic polylactides via simultaneous ringâ€opening polymerization and polycondensation catalyzed by dibutyltin mercaptides. Journal of Polymer Science Part A, 2017, 55, 3767-3775.	2.5	20
942	Effect of molar mass on enthalpy relaxation and crystal nucleation of poly (I-lactic acid). European Polymer Journal, 2017, 96, 361-369.	2.6	32
943	Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Materials Research Express, 2017, 4, 105019.	0.8	25
944	Recent Advances in Processing of Stereocomplexâ€Type Polylactide. Macromolecular Rapid Communications, 2017, 38, 1700454.	2.0	139
945	Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites. Composites Science and Technology, 2017, 152, 129-138.	3.8	41
946	Cold Crystallization of Glassy Polylactide during Solvent Crazing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34325-34336.	4.0	20
947	Physico Chemical Characterization of Nanofibrous Poly(Î-Caprolactone) Electrospun Templates for Cell Adhesion. MRS Advances, 2017, 2, 2689-2694.	0.5	0
948	Tensile Property Balanced and Gas Barrier Improved Poly(lactic acid) by Blending with Biobased Poly(butylene 2,5-furan dicarboxylate). ACS Sustainable Chemistry and Engineering, 2017, 5, 9244-9253.	3.2	65
949	Preparation and properties of poly (lactic acid)/magnetic Fe ₃ O ₄ composites and nonwovens. RSC Advances, 2017, 7, 41929-41935.	1.7	27
950	A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry, 2017, 19, 4737-4753.	4.6	251

#	Article	IF	CITATIONS
952	Characterizations of PLA-PEG blends involving organically modified montmorillonite. Journal of Analytical and Applied Pyrolysis, 2017, 127, 343-349.	2.6	27
953	Simultaneously improving toughness and UV-resistance of polylactide/titanium dioxide nanocomposites by adding poly(ether)urethane. Polymer Degradation and Stability, 2017, 143, 136-144.	2.7	25
954	Complete stereo-complexation of enantiomeric polylactides for scalable continuous production. Chemical Engineering Journal, 2017, 328, 759-767.	6.6	37
955	PLLA/PMMA blend in polymer nanoparticles: influence of processing methods. Colloid and Polymer Science, 2017, 295, 1621-1633.	1.0	7
956	Novel Poly(I-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Journal of Colloid and Interface Science, 2017, 507, 344-352.	5.0	33
957	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation., 2017,, 265-300.		6
958	Effect of aqueous medium on the molecular mobility of polylactide. Russian Journal of Physical Chemistry B, 2017, 11, 531-537.	0.2	10
959	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	4.6	9
960	Performance of Zinc Oxide Nanoparticles as Polymerization Initiating Systems in the Microwaveâ€Assisted Synthesis of Poly(<scp>d</scp> , <scp>l</scp> â€Lactide)/ZnO Nanocomposites. Macromolecular Symposia, 2017, 374, 1600102.	0.4	6
961	Wear resistance of injection moulded PLA-talc engineered bio-composites: Effect of material design, thermal history and shear stresses during melt processing. Wear, 2017, 390-391, 184-197.	1.5	14
962	Morphological control and properties of poly(lactic acid) hollow fibers for biomedical applications. Journal of Applied Polymer Science, 2017, 134, 45494.	1.3	16
963	Polymer recycling in an open-source additive manufacturing context: Mechanical issues. Additive Manufacturing, 2017, 17, 87-105.	1.7	124
966	Retroreflection in binary bio-based PLA/PBF blends. Polymer, 2017, 125, 138-143.	1.8	20
967	Thermal Properties of Polylactides with Different Stereoisomers of Lactides Used as Comonomers. Macromolecules, 2017, 50, 6064-6073.	2.2	26
969	Morphological features of composites prepared from polylactide and iron(III)â ⁻ tetraphenylporphyrin complex. Russian Journal of Physical Chemistry B, 2017, 11, 828-832.	0.2	8
970	Bio-based mesoporous sponges of chitosan conjugated with amino acid-diketopiperazine through oil-in-water emulsions. Journal of Polymer Research, 2017, 24, 1.	1.2	10
971	Synthesis and properties of fibers based on polylactide stereocomplexes. Russian Journal of Applied Chemistry, 2017, 90, 1021-1029.	0.1	2
972	Thermal Properties and Thermodynamics of Poly(I-lactic acid). Advances in Polymer Science, 2017, , 153-193.	0.4	18

#	Article	IF	CITATIONS
973	Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 2017, 146, 277-286.	2.7	38
974	3D Printing of Poly(lactic acid). Advances in Polymer Science, 2017, , 139-158.	0.4	27
975	Processing of Poly(lactic Acid). Advances in Polymer Science, 2017, , 1-33.	0.4	12
976	Present Situation and Future Perspectives of Poly(lactic acid). Advances in Polymer Science, 2017, , 1-25.	0.4	6
977	Poly(lactic acid)-Based Materials for Automotive Applications. Advances in Polymer Science, 2017, , 177-219.	0.4	26
978	Poly(lactic acid) as Biomaterial for Cardiovascular Devices and Tissue Engineering Applications. Advances in Polymer Science, 2017, , 51-77.	0.4	16
979	H-Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones, All-Conditions Approach. Macromolecules, 2017, 50, 8948-8954.	2,2	51
980	Largely improved toughness of poly(lactic acid) by unique electrospun fiber network structure of thermoplastic polyurethane. Polymer Testing, 2017, 64, 250-253.	2.3	10
981	Effect of Star-shaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chinese Journal of Polymer Science (English Edition), 2017, 35, 974-991.	2.0	19
982	Star-Shaped Poly(<scp>I</scp> -lactide) with a Dipyridamole Core: Role of Polymer Chain Packing on Induced Circular Dichroism and Photophysical Properties of Dipyridamole. Macromolecules, 2017, 50, 5261-5270.	2.2	13
983	High-Performance Green Composites of Poly(lactic acid) and Waste Cellulose Fibers Prepared by High-Shear Thermokinetic Mixing. Industrial & Engineering Chemistry Research, 2017, 56, 8568-8579.	1.8	19
984	Compatibilization of PLA/PEBA Blends via Reactive Extrusion: A Comparison of Different Coupling Agents. Journal of Polymers and the Environment, 2017, 25, 812-827.	2.4	16
985	Polylactic Acid (PLA) Biocomposites Filled with Waste Leather Buff (WLB). Journal of Polymers and the Environment, 2017, 25, 1099-1109.	2.4	34
986	Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. Materials Science and Engineering C, 2017, 72, 18-25.	3.8	41
987	Equilibrium condition and stabilization kinetics of lactic acid oligomers in aqueous solutions. Canadian Journal of Chemical Engineering, 2017, 95, 863-870.	0.9	5
988	An overview on PET waste recycling for application in packaging. International Journal of Plastics Technology, 2017, 21, 1-24.	2.9	82
989	Melt Flow Behavior and Processability of Polylactic Acid/Polystyrene (PLA/PS) Polymer Blends. Journal of Polymers and the Environment, 2017, 25, 994-998.	2.4	34
990	Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid). Journal of Polymers and the Environment, 2017, 25, 983-993.	2.4	49

#	Article	IF	CITATIONS
991	Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites. Polymer Engineering and Science, 2017, 57, 570-580.	1.5	44
992	Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 2017, 135, 583-595.	2.6	97
993	Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate- co-hydroxyvalerate) (PLA/PHBV) filament yarns. Textile Reseach Journal, 2017, 87, 2464-2474.	1.1	20
994	Effect of wood flour as nucleating agent on the isothermal crystallization of poly(lactic acid). Polymers for Advanced Technologies, 2017, 28, 252-260.	1.6	25
995	Influence of inorganic fillers on PLA crystallinity and thermal properties. Journal of Thermal Analysis and Calorimetry, 2017, 127, 371-380.	2.0	36
996	Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. Journal of Thermal Analysis and Calorimetry, 2017, 127, 389-398.	2.0	20
997	A comprehensive study on the fabrication and properties of biocomposites of poly(lactic) Tj ETQq0 0 0 rgBT /Ove	erlock 10 1	f 50 502 Td
998	Production and Application ofÂPolylactides. , 2017, , 633-653.		2
999	Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 781-790.	1.5	46
1000	Facile preparation of open-cellular porous poly (I-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chemical Engineering Journal, 2017, 307, 1017-1025.	6.6	193
1001	Autoclave foaming of chemically modified polylactide. Journal of Cellular Plastics, 2017, 53, 481-489.	1.2	10
1002	Evaluation of Physicochemical and Antifungal Properties of Polylactic Acid–Thermoplastic Starch–Chitosan Biocomposites. Polymer-Plastics Technology and Engineering, 2017, 56, 44-54.	1.9	12
1003	A review on recent researches on polylactic acid/carbon nanotube composites. Polymer Bulletin, 2017, 74, 2921-2937.	1.7	38
1004	Life cycle assessment of non-alcoholic single-serve polyethylene terephthalate beverage bottles in the state of California. Resources, Conservation and Recycling, 2017, 116, 45-52.	5.3	35
1005	Modified Polymer Materials for Use in Selected Personal Protective Equipment Products. Autex Research Journal, 2017, 17, 35-47.	0.6	12
1006	Cellulose-g-poly(d-lactide) nanohybrids induced significant low melt viscosity and fast crystallization of fully bio-based nanocomposites. Carbohydrate Polymers, 2017, 155, 498-506.	5.1	22
1007	Influence of different \hat{l}^2 -nucleation agents on poly($\langle scp \rangle \langle scp \rangle $ -lactic acid): structure, morphology, and dynamic mechanical behavior. RSC Advances, 2017, 7, 55364-55370.	1.7	16
1008	Surface Modification and Coatings for Controlling the Degradation and Bioactivity of Magnesium Alloys for Medical Applications. , 2017, , 331-363.		8

#	ARTICLE	IF	Citations
1009	Frictional properties of plants-derived polyamide against surface microstructures of metal counterpart fabricated by femtosecond laser. AIP Conference Proceedings, 2017, , .	0.3	0
1010	Effect of Aminosilane Concentrations on the Properties of Poly(Lactic Acid)/Kenaf-Derived Cellulose Composites. Polymers and Polymer Composites, 2017, 25, 63-76.	1.0	13
1011	Natural Anti-oxidants for Bio-polymeric Materials. Archives in Chemical Research, 2017, 01, .	0.2	5
1012	A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture. Materials, 2017, 10, 39.	1.3	1
1013	Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples. Materials, 2017, 10, 970.	1.3	94
1014	On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 2017, 10, 1008.	1.3	272
1015	Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple. Nanomaterials, 2017, 7, 207.	1.9	88
1016	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	2.0	109
1017	Triethyl Citrate (TEC) as a Dispersing Aid in Polylactic Acid/Chitin Nanocomposites Prepared via Liquid-Assisted Extrusion. Polymers, 2017, 9, 406.	2.0	37
1018	Equilibrium Melting Temperature of Polymorphic Poly(l-lactide) and Its Supercooling Dependence on Growth Kinetics. Polymers, 2017, 9, 625.	2.0	10
1019	Thermoplastic biopolymer matrices for biocomposites. , 2017, , 81-123.		5
1020	Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials, 2017, 10, 952.	1.3	291
1021	Bioplastics From Solid Waste. , 2017, , 1-26.		11
1022	Fundamental of polymer blends and its thermodynamics. , 2017, , 27-55.		14
1023	Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during <i> In Vitro </i> Degradation. International Journal of Biomaterials, 2017, 2017, 1-11.	1.1	18
1024	Dielectric Properties of 3D Printed Polylactic Acid. Advances in Materials Science and Engineering, 2017, 2017, 1-10.	1.0	74
1025	Influence of Processing Conditions on the Mechanical Behavior and Morphology of Injection Molded Poly(lactic-co-glycolic acid) 85:15. International Journal of Biomaterials, 2017, 2017, 1-8.	1.1	5
1026	Synthesis of Thermoplastic Xylan-Lactide Copolymer with Amidine-Mediated Organocatalyst in Ionic Liquid. Scientific Reports, 2017, 7, 551.	1.6	16

#	Article	IF	CITATIONS
1027	Processing and properties of PLA-HA nanocomposites: The effect of particle morphology and dispersants. AIP Conference Proceedings, 2017, , .	0.3	1
1028	Multiphase Biodegradable Scaffolds for Tissue Engineering a Tendon-Bone Junction. Journal of Tissue Science & Engineering, 2017, 08, .	0.2	1
1029	An Overview on Polylactic Acid, its Cellulosic Composites and Applications. Current Organic Synthesis, 2017, 14, 156-170.	0.7	17
1030	Micro-FDM process capability and comparison with micro-injection moulding. AIP Conference Proceedings, 2017, , .	0.3	1
1031	Effect of Cold Drawing on Mechanical Properties of Biodegradable Fibers. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 70-76.	0.7	8
1032	New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. EXPRESS Polymer Letters, 2017, 11, 531-544.	1.1	95
1033	Desenvolvimento de biocomp \tilde{A}^3 sitos de poli(L- \tilde{A}_i cido l \tilde{A}_i ctico) (PLLA) com serragem de madeira. Revista Materia, 2017, 22, .	0.1	2
1034	Development and Characterization of PLA/Buriti Fibre Composites – Influence of Fibre and Coupling Agent Contents. Polymers and Polymer Composites, 2017, 25, 143-152.	1.0	7
1035	Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. Journal of Polymer Engineering, 2018, 38, 449-460.	0.6	8
1036	Influence of the admicelled poly(methyl methacrylate) on the compatibility and toughness of poly(lactic acid). Journal of Materials Research, 2018, 33, 662-673.	1.2	6
1037	Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development. AAPS PharmSciTech, 2018, 19, 1592-1605.	1.5	15
1038	Supercritical CO 2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging. Food Research International, 2018, 107, 486-495.	2.9	80
1039	Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material. Journal of Physics: Conference Series, 2018, 953, 012015.	0.3	8
1040	Some effects of radiation treatment of biodegradable PCL/PLA blends. Journal of Polymer Engineering, 2018, 38, 635-640.	0.6	9
1041	Improvement of microstructures and properties of poly(lactic acid)/poly(l̂µâ€€aprolactone) blends compatibilized with polyoxymethylene. Journal of Applied Polymer Science, 2018, 135, 46536.	1.3	8
1042	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	18.7	117
1043	Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 2018, 23, 383-395.	0.9	236
1044	A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres. Materials Research Express, 2018, 5, 085314.	0.8	26

#	ARTICLE	IF	CITATIONS
1045	Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites. Journal of Polymers and the Environment, 2018, 26, 3484-3492.	2.4	26
1046	In-situ NIR-laser mediated bioactive substance delivery to single cell for EGFP expression based on biocompatible microchamber-arrays. Journal of Controlled Release, 2018, 276, 84-92.	4.8	37
1047	Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic) Tj ETQq0 0 0 rg 46468.	gBT /Overl 1.3	ock 10 Tf 50 50
1048	Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends. Chinese Journal of Polymer Science (English Edition), 2018, 36, 620-631.	2.0	12
1049	Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. Journal of Thermal Analysis and Calorimetry, 2018, 134, 559-565.	2.0	23
1050	Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polymer Degradation and Stability, 2018, 150, 37-45.	2.7	87
1051	High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. International Journal of Biological Macromolecules, 2018, 112, 46-53.	3.6	16
1052	Poly (I-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. European Polymer Journal, 2018, 100, 178-186.	2.6	15
1053	Design of copolymer PLA-PCL electrospun matrix for biomedical applications. Reactive and Functional Polymers, 2018, 124, 77-89.	2.0	65
1054	Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 2018, 118, 91-96.	1.9	47
1055	Nonsolvent-induced morphological changes and nanoporosity in poly(<scp>l</scp> -lactide) films. Soft Matter, 2018, 14, 1492-1498.	1.2	6
1056	Preparation and characterization of poly(ethylene carbonate)/poly(lactic acid) blends. Journal of Polymer Research, 2018, 25, 1.	1.2	10
1057	Effect of stereoisomerism of poly(lactic acid) during neural guide conduit membrane synthesis. Journal of Applied Polymer Science, 2018, 135, 46190.	1.3	1
1058	Effects of Compressed CO ₂ and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 2094-2104.	1.8	29
1059	Implantable and Biodegradable Poly(<scp> </scp> â€lactic acid) Fibers for Optical Neural Interfaces. Advanced Optical Materials, 2018, 6, 1700941.	3.6	92
1060	Numerical Simulation of the Crack Formation in the Quenched Poly(<scp>l</scp> â€lactic acid) Spherulites. Macromolecular Theory and Simulations, 2018, 27, 1700043.	0.6	2
1061	Improving the toughening in poly(lactic acid)â€thermoplastic cassava starch reactive blends. Journal of Applied Polymer Science, 2018, 135, 46140.	1.3	21
1062	Microdiamond/PLA composites with enhanced thermal conductivity through improving filler/matrix interface compatibility. Diamond and Related Materials, 2018, 81, 161-167.	1.8	22

#	Article	IF	CITATIONS
1063	Alkylated alkali lignin for compatibilizing agents of carbon fiber-reinforced plastics with polypropylene. Polymer Journal, 2018, 50, 281-284.	1.3	17
1064	Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 2018, 340, 9-14.	6.6	482
1065	PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders. Journal of Materials Science, 2018, 53, 10846-10871.	1.7	13
1066	A simple method for preparation of microcellular <scp>PLA</scp> /calcium carbonate nanocomposite using super critical nitrogen as a blowing agent: Control of microstructure. Advances in Polymer Technology, 2018, 37, 3017-3026.	0.8	11
1067	Thermal and Rheological Properties of Poly(lactic acid)/Low-Density Polyethylene Blends and Their Supercritical CO2 Foaming Behavior. Journal of Polymers and the Environment, 2018, 26, 3564-3573.	2.4	27
1068	Crystallizability of substituted poly(lactic acid)s: Effects of alkyl side-chain structure. Polymer Degradation and Stability, 2018, 153, 318-324.	2.7	5
1069	Preparation of open microcellular polylactic acid foams with a microfibrillar additive using coreback foam injection molding processes. Journal of Cellular Plastics, 2018, 54, 765-784.	1.2	13
1070	Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate- <i>co</i> -terephthalate) blends. RSC Advances, 2018, 8, 11850-11861.	1.7	50
1071	Phase morphology, fracture toughness and failure mechanisms in super-toughened PLA/PB-g-SAN/PMMA ternary blends: A quantitative analysis of crack resistance. Polymer Testing, 2018, 67, 380-391.	2.3	22
1072	Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydrate Polymers, 2018, 190, 139-147.	5.1	55
1073	Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol). Thermochimica Acta, 2018, 663, 67-76.	1.2	21
1074	Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. International Journal of Biological Macromolecules, 2018, 113, 1080-1091.	3.6	33
1075	Effect of Hydrothermal Aging on Injection Molded Short Jute Fiber Reinforced Poly(Lactic Acid) (PLA) Composites. Journal of Polymers and the Environment, 2018, 26, 3176-3186.	2.4	34
1076	Influence of Carboxylic Acids on Poly(lactic acid)/Thermoplastic Starch Biodegradable Sheets Produced by Calendering–Extrusion. Advances in Polymer Technology, 2018, 37, 332-338.	0.8	17
1077	Mechanical and thermomechanical properties of PLA/Manâ€made cellulose green composites modified with functional chain extendersâ€"A comprehensive study. Polymer Composites, 2018, 39, 1716-1723.	2.3	14
1078	Wear Behavior of Chitosanâ€Filled Polylactic Acid/Basalt Fiber Hybrid Composites. Advances in Polymer Technology, 2018, 37, 898-905.	0.8	9
1079	Enhancement of crystallinity and toughness of poly (<scp> </scp> â€ actic acid) influenced by Ag nanoparticles processed by twin screw extruder. Polymer Composites, 2018, 39, 2368-2376.	2.3	7
1080	Investigation of relationship between crystallization kinetics and interfacial interactions in plasticized poly(lactic acid)/POSS nanocomposites: "Effects of different POSS types― Polymer Composites, 2018, 39, 2674-2684.	2.3	13

#	Article	IF	CITATIONS
1081	Properties investigation of recycled polylactic acid reinforced by cellulose nanofibrils isolated from bagasse. Polymer Composites, 2018, 39, 3740-3749.	2.3	18
1082	Melt compounding and characterization of poly(lactide) stereocomplex/natural rubber composites. Polymer Engineering and Science, 2018, 58, 713-718.	1.5	6
1083	Highly electrically conducting poly(L-lactic acid)/graphite composites prepared via <i>in situ</i> expansion and subsequent reduction of graphite. Journal of Polymer Engineering, 2018, 38, 167-177.	0.6	11
1084	Influence of equal channel angular pressing on the properties of polylactic acid. Polymer Engineering and Science, 2018, 58, 665-672.	1.5	8
1085	Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic) Tj ETQq0 0 0 rg	gBŢ <u>/</u> Overlo	ock 10 Tf 50
1086	Compressive and flexural properties of novel polylactic acid/hydroxyapatite/yttria-stabilized zirconia hybrid nanocomposite scaffold. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 229-238.	1.8	15
1087	Degradation of Polylactic Acid by Irradiation. Journal of Polymers and the Environment, 2018, 26, 122-131.	2.4	13
1088	Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polymer Composites, 2018, 39, 3147-3156.	2.3	18
1089	Polylactic acid/carbon fiber composites: Effects of polylactic acid-g-maleic anhydride on mechanical properties, thermal behavior, surface compatibility, and electrical characteristics. Journal of Composite Materials, 2018, 52, 405-416.	1.2	11
1090	Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres. Polymer Bulletin, 2018, 75, 809-827.	1.7	9
1091	Biodegradable poly (lactic acid)/poly (butylene succinate) fibers with high elongation for health care products. Textile Reseach Journal, 2018, 88, 1735-1744.	1.1	24
1092	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	11.8	257
1093	Poly(lactic acid) foams reinforced with cellulose micro and nanofibers and foamed by chemical blowing agents. Journal of Cellular Plastics, 2018, 54, 577-596.	1.2	19
1094	Adherability and weldability of poly(lactic acid) and basalt fibre-reinforced poly(lactic acid). Journal of Adhesion Science and Technology, 2018, 32, 173-184.	1.4	6
1095	Reactive plasticization of poly(lactide) with epoxy functionalized cardanol. Polymer Engineering and Science, 2018, 58, E64.	1.5	7
1096	Review on Three-Dimensionally Emulated Fiber-Embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector. Polymer-Plastics Technology and Engineering, 2018, 57, 860-874.	1.9	38
1097	Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites. Polymer Composites, 2018, 39, E188.	2.3	28
1098	Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. Arabian Journal of Chemistry, 2018, 11, 343-352.	2.3	61

#	Article	IF	CITATIONS
1099	Aligned plasticized polylactic acid cellulose nanocomposite tapes: Effect of drawing conditions. Composites Part A: Applied Science and Manufacturing, 2018, 104, 101-107.	3.8	42
1100	Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polymer Engineering and Science, 2018, 58, 475-484.	1.5	32
1101	Triggered release of hexanal from an imidazolidine precursor encapsulated in poly(lactic acid) and ethylcellulose carriers. Journal of Materials Science, 2018, 53, 2221-2235.	1.7	31
1102	Fabrication of Admicelled Natural Rubber by Polycaprolactone for Toughening Poly(lactic acid). Journal of Polymers and the Environment, 2018, 26, 2268-2280.	2.4	8
1103	Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 2018, 135, 45726.	1.3	234
1104	Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydrate Polymers, 2018, 179, 86-92.	5.1	65
1105	Effect of <i>in situ</i> reaction on thermal and mechanical properties of polylactide/talc composites. Polymer Composites, 2018, 39, E1618.	2.3	10
1106	Fracture behavior of highly toughened poly(lactic acid)/ethylene-co-vinyl acetate blends. E-Polymers, 2018, 18, 153-162.	1.3	6
1107	Mechanical and electrical properties of polylactic acid/carbon nanotube composites by rolling process. Science and Engineering of Composite Materials, 2018, 25, 891-901.	0.6	3
1108	Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Advanced Healthcare Materials, 2018, 7, 1701035.	3.9	173
1109	Visualization of hydrolysis in polylactide using nearâ€infrared hyperspectral imaging and chemometrics. Journal of Applied Polymer Science, 2018, 135, 45898.	1.3	16
1110	Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials and Design, 2018, 140, 54-63.	3.3	71
1111	Optimization of acid and enzymatic hydrolysis of kodo millet (Paspalum scrobiculatum) bran residue to obtain fermentable sugars for the production of optically pure d (â°') lactic acid. Industrial Crops and Products, 2018, 111, 731-742.	2.5	24
1112	Temperature-dependent polymorphic crystallization of poly(l-lactide)s on the basis of optical purity and microstructure. Polymer, 2018, 134, 163-174.	1.8	26
1113	Observation of Polylactide Stereocomplex by Atomic Force Microscopy. Chemistry Letters, 2018, 47, 82-84.	0.7	3
1114	Isothermal and nonisothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2213-2223.	2.0	20
1115	Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 2018, 111, 878-888.	2.5	106
1116	Blends of linear and peroxideâ€modified branched polylactide for extrusion coating. Packaging Technology and Science, 2018, 31, 41-51.	1.3	2

#	Article	IF	CITATIONS
1117	A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics, 2018, 24, 787-795.	1.2	16
1118	Morphology, rheology property, and crystallization behavior of PLLA/OMMT nanocomposites prepared by an innovative eccentric rotor extruder. Polymers for Advanced Technologies, 2018, 29, 41-51.	1.6	41
1119	Improvement in Crystallizability and Melt Flow Property of Linear Poly(L-lactide) Bioplastic by Blending with Star-shaped Poly(L-lactide). Oriental Journal of Chemistry, 2018, 34, 1878-1883.	0.1	1
1120	Degradability studies of PLA nanocomposites under controlled water sorption and soil burial conditions. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012025.	0.3	2
1122	Characterization and Processing Behavior of Heated Aluminum-Polycarbonate Composite Build Plates for the FDM Additive Manufacturing Process. Journal of Manufacturing and Materials Processing, 2018, 2, 12.	1.0	21
1123	Physico-Mechanical, Thermal and Biodegradation Performance of Random Flax/Polylactic Acid and Unidirectional Flax/Polylactic Acid Biocomposites. Fibers, 2018, 6, 98.	1.8	29
1124	Thermoplastic starch and glutaraldehyde modified thermoplastic starch foams prepared using supercritical carbon dioxide fluid as a blowing agent. Polymers for Advanced Technologies, 2018, 29, 2643-2654.	1.6	10
1125	Bio-based Materials: Past to Future., 2018, , 1-32.		3
1127	Hydrolytic degradation of branched PLA produced by reactive extrusion. Polymer Degradation and Stability, 2018, 158, 228-237.	2.7	30
1128	Preparation and characterization of poly(lactic acid) with adipate ester added as a plasticizer. Polymers and Polymer Composites, 2018, 26, 446-453.	1.0	13
1129	Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). International Journal of Engineering and Technology(UAE), 2018, 7, 74.	0.2	63
1131	Living Ring-Opening Polymerization of O-Carboxyanhydrides: The Search for Catalysts. Frontiers in Chemistry, 2018, 6, 641.	1.8	18
1132	Thermal properties of polylactic acid/zinc oxide biocomposite films. AIP Conference Proceedings, 2018,	0.3	4
1133	Radiopaque Fully Degradable Nanocomposites for Coronary Stents. Scientific Reports, 2018, 8, 17409.	1.6	26
1134	A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012011.	0.3	9
1135	Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. EXPRESS Polymer Letters, 2018, 12, 808-823.	1.1	65
1136	Bio-Based Polymers for 3D Printing of Bioscaffolds. Polymer Reviews, 2018, 58, 668-687.	5.3	67
1137	Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide. Journal of Polymer Research, 2018, 25, 1.	1.2	18

#	Article	IF	CITATIONS
1138	Sustainable Approach for Mechanical Recycling of Poly(lactic acid)/Cellulose Nanocrystal Films: Investigations on Structure–Property Relationship and Underlying Mechanism. Industrial & Engineering Chemistry Research, 2018, 57, 14493-14508.	1.8	18
1139	Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. , 2018, , .		18
1140	Mesoporous Methyl-Functionalized Sn-Silicates Generated by the Aerosol Process for the Sustainable Production of Ethyl Lactate. ACS Sustainable Chemistry and Engineering, 2018, 6, 14095-14103.	3.2	26
1141	The mechanical, thermal and morphological properties of \hat{I}^3 -irradiated PLA/TAIC and PLA/OvPOSS. Radiation Physics and Chemistry, 2018, 153, 214-225.	1.4	39
1142	Nucleating and Plasticization Effects in Drawn Poly(Lactic Acid) Fiber during Accelerated Weathering Degradation. Polymers, 2018, 10, 365.	2.0	12
1143	Toughening of Poly(L-lactide) with Blends of Poly(<mml:math) 0.784314="" 1="" 1-8.<="" 10="" 2018.="" 50="" 552="" biomaterials.="" chain="" etqq1="" extender.="" in="" international="" journal="" of="" overlock="" presence="" rgbt="" td="" tf="" the="" tj=""><td>Td (xmlns: 1.1</td><td>:mml="http 9</td></mml:math)>	Td (xmlns: 1.1	:mml="http 9
1144	Synthesis and Photoinitiated Crosslinking of Active Poly(lactic acid) Materials. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1239-1246.	0.4	5
1145	Medical grade polylactide, copolyesters and polydioxanone: Rheological properties and melt stability. Polymer Testing, 2018, 72, 214-222.	2.3	22
1146	Enhanced flame-retardant performance of poly (lactic acid) (PLA) composite by using intrinsically phosphorus-containing PLA. Progress in Natural Science: Materials International, 2018, 28, 590-597.	1.8	40
1147	Twin-Screw Extrusion: A Key Technology for the Biorefinery. ACS Symposium Series, 2018, , 25-44.	0.5	3
1148	Contribution of Reactive Extrusion to Technological and Scientific Challenges of Eco-Friendly Circular Economy. ACS Symposium Series, 2018, , 45-66.	0.5	1
1149	Preparation of Cationic Starches by Reactive Extrusion: Experiments and Modelling. ACS Symposium Series, 2018, , 67-88.	0.5	1
1150	Starch Extrudates as Sustainable Ingredients in Food and Non-Food Applications. ACS Symposium Series, 2018, , 89-113.	0.5	0
1151	Melt Stability of Starch-Filled LDPE during Multi-Pass Extrusion Determined by Melt-Flow and Non-Isothermal Thermogravimetric Investigations. ACS Symposium Series, 2018, , 115-136.	0.5	O
1152	Microcellular Foaming of (Nano)Biocomposites by Continuous Extrusion Assisted by Supercritical CO2. ACS Symposium Series, 2018, , 171-188.	0.5	3
1153	Extrusion and Ionic Liquids: A Promising Combination To Develop High Performance Polymer Materials. ACS Symposium Series, 2018, , 189-208.	0.5	O
1154	Wet Feeding Approach for Cellulosic Materials/PCL Biocomposites. ACS Symposium Series, 2018, , 209-226.	0.5	6
1155	Applying Mathematical Optimization To Efficiently Make Better Decisions for Extrusion Technology: State-of-the-Art and Opportunities. ACS Symposium Series, 2018, , 243-260.	0.5	1

#	Article	IF	CITATIONS
1156	Organocatalytic ring-opening polymerization of l-lactide in supercritical carbon dioxide under plasticizing conditions. Tetrahedron Letters, 2018, 59, 4392-4396.	0.7	4
1157	SÃntese e biodegradação em solo de copolÃmeros de PET-co-PLLA. Revista Materia, 2018, 23, .	0.1	0
1158	Smart Design of Rapid Crystallizing and Nonleaching Antibacterial Poly(lactide) Nanocomposites by Sustainable Aminolysis Grafting and in Situ Interfacial Stereocomplexation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13367-13377.	3.2	23
1159	A comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer, 2018, 154, 119-127.	1.8	47
1160	Thermomechanical properties of alumina-filled plasticized polylactic acid: Effect of alumina loading percentage. Ceramics International, 2018, 44, 22767-22776.	2.3	36
1161	Enhanced Crystallization Properties of Poly(lactic acid) Nanocomposites Assisted by Poly(amidoamine) Functionalized Graphene Oxide. ECS Journal of Solid State Science and Technology, 2018, 7, M139-M144.	0.9	7
1162	Industrial Applications of Poly(lactic acid). Advances in Polymer Science, 2018, , .	0.4	51
1163	Synthesis and characterization of polypropyleneâ€ <i>graft</i> â€poly(<scp> </scp> â€lactide) copolymers by CuAAC click chemistry. Journal of Polymer Science Part A, 2018, 56, 2595-2601.	2.5	32
1164	Facile and Low Environmental Impact Approach to Prepare Thermally Conductive Nanocomposites Based on Polylactide and Graphite Nanoplatelets. ACS Sustainable Chemistry and Engineering, 2018, 6, 14340-14347.	3.2	13
1165	Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co- <i>$\hat{l}\mu$</i> -caprolactone). Journal of Polymer Engineering, 2018, 38, 819-826.	0.6	3
1166	Using Reactive Extrusion To Manufacture Greener Products: From Laboratory Fundamentals to Commercial Scale. ACS Symposium Series, 2018, , 1-23.	0.5	5
1167	Effects of 1D and 2D nanofillers in basalt/poly(lactic acid) composites for additive manufacturing. Composites Part B: Engineering, 2018, 153, 364-375.	5.9	23
1168	Lowâ€Temperature Sintering of Stereocomplexâ€Type Polylactide Nascent Powder: From Compression Molding to Injection Molding. Macromolecular Materials and Engineering, 2018, 303, 1800178.	1.7	14
1170	Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology: A pilot study. PLoS ONE, 2018, 13, e0201777.	1.1	27
1171	Improvement in melt flow property and flexibility of poly(l-lactide)-b-poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock and Design, 2018, 154, 73-80.	10 Tf 50 1 3.3	87 Td (glycol 34
1172	Preparation of High Purity Lactide Using a High-Boiling-Point Alcohol Immobilization Method. Industrial & Description of High Purity Lactide Using a High-Boiling-Point Alcohol Immobilization Method.	1.8	10
1173	Effect of polyethylene glycol plasticizer on longâ€ŧerm antibacterial activity and the release profile of bacteriocin nisin from polylactide blends. Polymers for Advanced Technologies, 2018, 29, 2253-2263.	1.6	14
1174	Core-shell nanoparticles toughened polylactide with excellent transparency and stiffness-toughness balance. Composites Science and Technology, 2018, 164, 168-177.	3.8	39

#	Article	IF	CITATIONS
1175	Tailoring Crystalline Morphology by High-Efficiency Nucleating Fiber: Toward High-Performance Poly(<scp>l</scp> -lactide) Biocomposites. ACS Applied Materials & Interfaces, 2018, 10, 20044-20054.	4.0	36
1176	Thermal expansion coefficient determination of polylactic acid using digital image correlation. E3S Web of Conferences, 2018, 32, 01007.	0.2	9
1177	Crystallization, rheology behavior, and antibacterial application of graphene oxide- graft -poly (l) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50 6
1178	Crystallization Behavior of Semicrystalline Polymers in the Presence of Nucleation Agent. , 2018, , 433-469.		5
1179	Stereocomplex Crystallization of Polymers With Complementary Configurations. , 2018, , 535-573.		11
1180	Influence of Boron Nitride Nanosheets on the Crystallization and Polymorphism of Poly(<scp>I</scp> -lactide). Journal of Physical Chemistry B, 2018, 122, 6442-6451.	1.2	16
1181	Highly-Toughened Polylactide- (PLA-) Based Ternary Blends with Significantly Enhanced Glass Transition and Melt Strength: Tailoring the Interfacial Interactions, Phase Morphology, and Performance. Macromolecules, 2018, 51, 4298-4314.	2.2	113
1182	Activated release of bioactive aldehydes from their precursors embedded in electrospun poly(lactic) Tj ETQq1 1	0.784314 1.7	rgBT /Overloc
1183	Effect of the composition and degree of crosslinking on the properties of poly(<scp>l</scp> â€lactic) Tj ETQq0 (0 0 rgBT /C	overlock 10 Tf
1184	Composite Materials Based on Polylactide and Poly-3-hydroxybutyrate "Green―Polymers. Russian Journal of Applied Chemistry, 2018, 91, 417-423.	0.1	18
1186	Thermal, optical and structural properties of blocks and blends of PLA and P2HEB. Green Materials, 2018, 6, 85-96.	1.1	9
1187	Improving the resistance to hydrothermal ageing of flame-retarded PLA by incorporating miscible PMMA. Polymer Degradation and Stability, 2018, 155, 52-66.	2.7	17
1188	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2018, 154, 56-63.	5.9	108
1189	Enhancement of Mechanical Properties of FDMâ€PLA Parts via Thermal Annealing. Macromolecular Materials and Engineering, 2018, 303, 1800169.	1.7	133
1190	Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams. International Journal of Biological Macromolecules, 2018, 118, 1518-1531.	3.6	42
1191	Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers, 2018, 10, 505.	2.0	134
1192	Effect of Mold Opening Process on Microporous Structure and Properties of Microcellular Polylactide–Polylactide Nanocomposites. Polymers, 2018, 10, 554.	2.0	23

#	Article	IF	CITATIONS
1194	Antioxidant Polymers for Food Packaging. , 2018, , 213-238.		3
1195	PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Composites Part B: Engineering, 2018, 152, 267-274.	5.9	35
1196	Effect of different nucleating agent on crystallinity and properties of polylactic acid. AIP Conference Proceedings, 2018, , .	0.3	1
1197	Properties of injection-molded poly (l-co-d,l-lactic acid) using different melt temperatures and stress concentrator in the specimen geometry. International Journal of Advanced Manufacturing Technology, 2018, 98, 2231-2237.	1.5	5
1198	Toward Super-Tough Poly(<scp>I</scp> -lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 26594-26603.	4.0	41
1199	Properties and Morphology of Poly(Lactic Acid)/Calcium Carbonate Whiskers Composites Prepared by a Vane Mixer based on an Extensional Flow Field. Journal of Macromolecular Science - Physics, 2018, 57, 418-436.	0.4	6
1200	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-121.	11.8	71
1201	Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 2018, 85, 83-127.	11.8	418
1203	Facile dispersion of exfoliated graphene/ <scp>PLA</scp> nanocomposites via <i>in situ</i> polycondensation with a melt extrusion process and its rheological studies. Journal of Applied Polymer Science, 2018, 135, 46476.	1.3	26
1204	Assessment of pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polymer Degradation and Stability, 2018, 152, 280-288.	2.7	13
1205	Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(<scp>I</scp> -lactide). RSC Advances, 2018, 8, 28453-28460.	1.7	10
1206	Fabrication of high-expansion microcellular PLA foams based on pre-isothermal cold crystallization and supercritical CO2 foaming. Polymer Degradation and Stability, 2018, 156, 75-88.	2.7	63
1207	Current Challenges in Melt Extrusion of Cellulose-Based Nanocomposites. ACS Symposium Series, 2018, , 137-152.	0.5	1
1208	Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets. Polymers, 2018, 10, 95.	2.0	49
1209	Cellulose and Nanocellulose Produced from Lignocellulosic Residues by Reactive Extrusion. ACS Symposium Series, 2018, , 227-242.	0.5	3
1210	Spinning of Cellulose Nanofibrils. ACS Symposium Series, 2018, , 153-169.	0.5	1
1211	The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polimeros, 2018, 28, 169-177.	0.2	54
1212	Beyond Ethanol: Contribution of Various Bioproducts to Enhance the Viability of Biorefineries. , 2018, , 155-176.		0

#	Article	IF	Citations
1213	Selected properties of polylactide containing natural antiaging compounds. Polymers for Advanced Technologies, 2018, 29, 2963-2971.	1.6	10
1214	Controlled synthesis of train-structured montmorillonite/layered double hydroxide nanocomposites by regulating the hydrolysis of polylactic acid. Journal of Materials Science, 2018, 53, 15859-15870.	1.7	23
1215	Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson's Ratio Structure. Materials, 2018, 11, 1357.	1.3	43
1216	Butylated lignin as a compatibilizing agent for polypropylene-based carbon fiber-reinforced plastics. Polymer Journal, 2018, 50, 997-1002.	1.3	9
1217	Synergistic effect of organo-montmorillonite on intumescent flame-retardant PLA. Ferroelectrics, 2018, 527, 25-36.	0.3	18
1218	Feasibility and Characterization of Common and Exotic Filaments for Use in 3D Printed Terahertz Devices. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 614-635.	1.2	32
1219	Poly (<scp>l</scp> -lactic acid) synthesis using continuous microwave irradiation–simultaneous cooling method. Chemical Engineering Communications, 2018, 205, 1665-1677.	1.5	8
1220	Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Industrial Crops and Products, 2018, 122, 375-383.	2.5	47
1221	Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and application of this thermoplastic starch as a filler for PLA. Industrial Crops and Products, 2018, 122, 545-552.	2.5	45
1222	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
1223	Use of Lignocellulosic Materials in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , 65-85.	0.1	6
1224	The properties of chemical cross-linked poly(lactic acid) by bis(tert-butyl dioxy isopropyl) benzene. Polymer Bulletin, 2019, 76, 575-594.	1.7	19
1225	Synthesis of cross-linked polylactide–poly(tetramethylene oxide) copolymers with enhanced toughness. Polymer Bulletin, 2019, 76, 1531-1545.	1.7	2
1226	Antibacterial Nanocomposite of Poly(Lactic Acid) and ZnO Nanoparticles Stabilized with Poly(Vinyl) Tj ETQq1 1 0.7 2019, 58, 105-112.	784314 rg 0 . 6	BT /Overloci 6
1227	Effect of continuous elongational flow on structure and properties of poly(Lâ€lactic) Tj ETQq0 0 0 rgBT /Overlock Composites, 2019, 40, E617.	10 Tf 50 1 2.3	87 Td (acid) 5
1228	Exfoliated graphene-dispersed poly (lactic acid)-based nanocomposite sensors for ethanol detection. Polymer Bulletin, 2019, 76, 2367-2386.	1.7	19
1229	Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3107-3114.	2.0	22
1230	Thermal decomposition behavior of poly(propylene carbonate) in poly(propylene carbonate)/poly(vinyl) Tj ETQq1 1	1 <u>0</u> 78431.	4.rgBT /Ove

#	Article	IF	CITATIONS
1231	Forming and formability of 3D printed thermoplastics. , 2019, , .		3
1232	Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers, 2019, 11, 1304.	2.0	21
1233	Dual Organocatalysts Based on Ionic Mixtures of Acids and Bases: A Step Toward High Temperature Polymerizations. ACS Macro Letters, 2019, 8, 1055-1062.	2.3	44
1234	Improving the stability and ductility of polylactic acid <i>via</i> phosphite functional polysilsesquioxane. RSC Advances, 2019, 9, 25151-25157.	1.7	14
1235	An insight on the process–property relationships of melt spun polylactic acid fibers. Textile Reseach Journal, 2019, 89, 4959-4966.	1.1	7
1236	Effects of chemical modifications on the rheological and the expansion behavior of polylactide (PLA) in foam extrusion. E-Polymers, 2019, 19, 297-304.	1.3	22
1237	Effect of branching on flow-induced crystallization of poly (lactic acid). European Polymer Journal, 2019, 119, 410-420.	2.6	31
1238	Influence of Annealing and Biaxial Expansion on the Properties of Poly(l-Lactic Acid) Medical Tubing. Polymers, 2019, 11, 1172.	2.0	14
1239	Experimental Design of Sustainable 3D-Printed Poly(Lactic Acid)/Biobased Poly(Butylene Succinate) Blends via Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2019, 7, 14460-14470.	3.2	43
1240	Modification of epoxidized natural rubber as a PLA toughening agent. Journal of Applied Polymer Science, 2019, 136, 48267.	1.3	25
1241	Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based On Polysulfone-Quartz Fiber Grafted with Nano-TiO2. Nanomaterials, 2019, 9, 985.	1.9	21
1242	Kinetically Controlled Localization of Carbon Nanotubes in Polylactide/Poly(vinylidene fluoride) Blend Nanocomposites and Their Influence on Electromagnetic Interference Shielding, Electrical Conductivity, and Rheological Properties. Journal of Physical Chemistry C, 2019, 123, 19195-19207.	1.5	40
1243	The structure transformation of preâ€oriented polylactic acid film during uniaxial stretching at room temperature. Polymer Crystallization, 2019, 2, e10072.	0.5	2
1244	Effect of the Processing-Induced Morphology on the Mechanical Properties of Biodegradable Extruded Films Based on Poly(lactic acid) (PLA) Blends. Journal of Polymers and the Environment, 2019, 27, 2325-2333.	2.4	7
1245	Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. Npj Regenerative Medicine, 2019, 4, 15.	2.5	133
1246	Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites. Materials Horizons, 2019, , 221-231.	0.3	1
1247	Dual effect of dynamic vulcanization of biobased unsaturated polyester: Simultaneously enhance the toughness and fire safety of Poly(lactic acid). Composites Part B: Engineering, 2019, 175, 107069.	5.9	33
1248	Crystal-to-Crystal Transition and the Structure Development of Electrospun Poly(ethylene 2,6) Tj ETQq1 1 0.7843	14 rgBT /0 1.2	Dverlock 10

#	Article	IF	Citations
1249	Nanocellular Foaming Behaviors of Chain-Extended Poly(lactic acid) Induced by Isothermal Crystallization. ACS Omega, 2019, 4, 12512-12523.	1.6	42
1250	The effect of alginate on the mechanical, thermal, and rheological properties of nano calcium carbonateâ€filled polylactic acid composites. Polymer Engineering and Science, 2019, 59, 1882-1888.	1.5	9
1251	Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 47-55.	1.5	14
1252	Micromechanical Characterization of Poly(Lactic Acid)/Halloysite Bionanocomposite Membrane. , 2019, , 53-67.		2
1253	Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions. Nanomaterials, 2019, 9, 950.	1.9	78
1254	Thermal Properties of Poly(Lactic Acid). , 2019, , 97-133.		5
1255	Properties of biobased packaging material. , 2019, , 25-111.		2
1256	Thermal diffusivity and secondary crystallisation kinetics in poly(lactic acid). Polymer, 2019, 179, 121595.	1.8	15
1257	Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties. Green Chemistry, 2019, 21, 4449-4456.	4.6	73
1258	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.3	11
1259	Strong and ductile poly (lactic acid) achieved by carbon dioxide treatment at room temperature. Journal of CO2 Utilization, 2019, 33, 292-302.	3.3	21
1260	A review on the thermomechanical properties and biodegradation behaviour of polyesters. European Polymer Journal, 2019, 121, 109296.	2.6	143
1261	A Systematic Experimental and Computational Analysis of Commercially Available Aliphatic Polyesters. Applied Sciences (Switzerland), 2019, 9, 3397.	1.3	4
1262	Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer, 2019, 181, 121803.	1.8	102
1263	Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management, 2019, 202, 112212.	4.4	74
1264	Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. Nanomaterials, 2019, 9, 1548.	1.9	31
1265	Biodegradation of Levan Polymer / Poly (Lactic Acid) (PLA) Blend. IOP Conference Series: Materials Science and Engineering, 2019, 526, 012025.	0.3	0
1267	Effects and mechanism of cellulose acetate butyrate on the crystallization of polylactic acid. European Polymer Journal, 2019, 121, 109286.	2.6	11

#	Article	IF	CITATIONS
1268	Partnerships for improving dementia care in primary care: Extending access to primary careâ€based memory clinics in Ontario, Canada. Health and Social Care in the Community, 2019, 27, 1574-1585.	0.7	7
1269	Crystallinity and Property Enhancements in Neat Polylactic Acid by Chilled Extrusion: Solidâ€State Shear Pulverization and Solidâ€State/Melt Extrusion. Polymer Engineering and Science, 2019, 59, E286.	1.5	12
1270	Combination of 3D printing and injection molding: Overmolding and overprinting. EXPRESS Polymer Letters, 2019, 13, 889-897.	1.1	38
1271	Solid-Phase Thermal Oxidation of Polyethyleneâ€"Polylactide Blends. Russian Journal of Physical Chemistry B, 2019, 13, 354-361.	0.2	4
1272	Increased gt Conformer Contents of PLLA Molecular Chains Induced by Li-TFSI in Melt: Another Route to Promote PLLA Crystallization. Macromolecules, 2019, 52, 7065-7072.	2.2	17
1273	Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. Materials, 2019, 12, 3006.	1.3	126
1274	Thermal expansivity and degradation properties of PLA/HA and PLA/ \hat{l}^2 TCP in vitro conditioned composites. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2691-2702.	2.0	8
1275	Significantly Enhanced Crystallization of Poly(L-lactide) by the Synergistic Effect of Poly(diethylene) Tj ETQq1 1 & amp; Engineering Chemistry Research, 2019, 58, 15526-15532.	0.784314 1.8	rgBT /Overloci 10
1276	Highly Crystalline Poly(<scp> </scp> -lactic acid) Porous Films Prepared with CO ₂ -philic, Hybrid, Liquid Cell Nucleators. Industrial & Engineering Chemistry Research, 2019, 58, 22541-22550.	1.8	6
1277	Poly(<scp>I</scp> -lactic acid)/Boron Nitride Nanocomposites: Influence of Boron Nitride Functionalization on the Properties of Poly(<scp>I</scp> -lactic acid). Journal of Physical Chemistry B, 2019, 123, 8599-8609.	1.2	24
1278	Influence of Protonic Ionic Liquid on the Dispersion of Carbon Nanotube in PLA/EVA Blends and Blend Compatibilization. Frontiers in Materials, 2019, 6, .	1.2	16
1279	Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Materials Today: Proceedings, 2019, 17, 2104-2110.	0.9	37
1280	ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: Correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocomposite. Polymers for Advanced Technologies, 2019, 30, 1083-1095.	1.6	20
1281	Slow release formulation of herbicide metazachlor based on high molecular weight poly(lactic acid) submicro and microparticles. International Journal of Environmental Science and Technology, 2019, 16, 6135-6144.	1.8	7
1282	Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 50
1283	Poly(<scp>l</scp> -lactide) and Poly(<scp>l</scp> -lactide- <i>co</i> -trimethylene carbonate) Melt-Spun Fibers: Structure–Processing–Properties Relationship. Biomacromolecules, 2019, 20, 1346-1361.	2.6	22
1284	In-process thermal treatment of polylactic acid in fused deposition modelling. Materials and Manufacturing Processes, 2019, 34, 701-713.	2.7	31
1285	Creation of polylactide vascular scaffolds with high compressive strength using a novel melt-tube drawing method. Polymer, 2019, 166, 130-137.	1.8	15

#	Article	IF	CITATIONS
1286	Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends. RSC Advances, 2019, 9, 2189-2198.	1.7	12
1287	Interplay between Stereocomplexation and Microphase Separation in PS- <i>b</i> -PLLA- <i>b</i> -PDLA Triblock Copolymers. Macromolecules, 2019, 52, 1004-1012.	2.2	13
1288	Morphological and mechanical properties of treated kenaf fiber/MMT clay reinforced PLA hybrid biocomposites. AIP Conference Proceedings, 2019, , .	0.3	15
1289	Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl2 Solution. International Journal of Molecular Sciences, 2019, 20, 474.	1.8	14
1290	Biomedical Applications of Electrospun Polymer Composite Nanofibres. Lecture Notes in Bioengineering, 2019, , 111-165.	0.3	5
1291	Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , .	0.3	17
1292	Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide. Polymer, 2019, 166, 13-20.	1.8	39
1293	Super-Toughed PLA Blown Film with Enhanced Gas Barrier Property Available for Packaging and Agricultural Applications. Materials, 2019, 12, 1663.	1.3	30
1294	Depolymerization of Endâ€ofâ€Life Poly(lactide) via 4â€Dimethylaminopyridineâ€Catalyzed Methanolysis. ChemistrySelect, 2019, 4, 6845-6848.	0.7	46
1295	Dip-dip-dry: Solvent-induced tuning of polylactic acid surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123591.	2.3	5
1296	Microspheres of essential oil in polylactic acid and poly(methyl methacrylate) matrices and their blends. Journal of Microencapsulation, 2019, 36, 305-316.	1.2	10
1297	Processing of Poly(Lactic Acid)., 2019,, 307-324.		0
1298	Characterisation and constitutive modelling of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 346-354.	1.5	8
1299	Effective stress transferring interface and mechanical property enhancement of poly(I-lactide)/multi-walled carbon nanotubes fibers. Materials Chemistry and Physics, 2019, 234, 296-303.	2.0	10
1300	Monte Carlo simulations of stereocomplex formation in multiblock copolymers. Physical Chemistry Chemical Physics, 2019, 21, 13296-13303.	1.3	20
1301	Improvements in the crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability, 2019, 166, 248-257.	2.7	78
1302	Processing a Supertoughened Polylactide Ternary Blend with High Heat Deflection Temperature by Melt Blending with a High Screw Rotation Speed. Industrial & Engineering Chemistry Research, 2019, 58, 10618-10628.	1.8	16
1303	Development of blown polylactic acid-MgO nanocomposite films for food packaging. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105482.	3.8	59

#	Article	IF	CITATIONS
1304	Synthesis and Characterization of Aluminum Containing Silica Aerogel Catalysts for Degradation of PLA. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	0
1305	Extrusion blow molding of environmentally friendly bottles in biodegradable polyesters blends. Polymer Testing, 2019, 77, 105885.	2.3	13
1306	Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polymer Degradation and Stability, 2019, 165, 110-116.	2.7	56
1307	Crystallization of triethylâ€citrateâ€plasticized poly(lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 2019, 136, 47936.	1.3	30
1308	Suitability of lyocell fiber for pillow fillings. Textile Reseach Journal, 2019, 89, 3722-3743.	1.1	3
1309	Super-Toughened Poly(lactic Acid) with Poly($\hat{l}\mu$ -caprolactone) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate by Reactive Melt Blending. Polymers, 2019, 11, 771.	2.0	28
1310	Salalens and Salans Derived from 3-Aminopyrrolidine: Aluminium Complexation and Lactide Polymerisation. European Journal of Inorganic Chemistry, 2019, 2019, 2768-2773.	1.0	3
1311	Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid. Fermentation, 2019, 5, 34.	1.4	12
1312	Effect of interface affinity on the performance of a composite of microcrystalline cellulose and polypropylene/polylactide blends. Polymer International, 2019, 68, 1402-1410.	1.6	11
1313	Sustainable Agriculture Reviews 34. Sustainable Agriculture Reviews, 2019, , .	0.6	5
1314	Date Palm Waste: An Efficient Source for Production of Glucose and Lactic Acid. Sustainable Agriculture Reviews, 2019, , 155-178.	0.6	7
1315	A review on tensile and morphological properties of poly (lactic acid) (PLA)/ thermoplastic starch (TPS) blends. Polymer-Plastics Technology and Materials, 2019, 58, 1945-1964.	0.6	41
1316	Rheology, Mechanical Properties and Morphology of Poly(lactic acid)/Ethylene Vinyl Acetate Blends. Journal of Polymers and the Environment, 2019, 27, 1439-1448.	2.4	26
1317	Prediction of a-C:H layer failure on industrial relevant biopolymer polylactide acide (PLA) foils based on the sp2/sp3 ratio. Surface and Coatings Technology, 2019, 368, 79-87.	2.2	14
1318	Influence of graphene nanoscrolls on the crystallization behavior and nanoâ€mechanical properties of polylactic acid. Polymers for Advanced Technologies, 2019, 30, 1825-1835.	1.6	18
1319	The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight Poly(I-Lactic Acid) for Medical Tubing Applications. Polymers, 2019, 11, 710.	2.0	11
1320	Fabrication of radiophotoluminescence dosimeter with 3D-printing technology. Radiation Measurements, 2019, 124, 141-145.	0.7	8
1321	Influence of Various Climatic Conditions on the Structural Changes of Semicrystalline PLA Spun-Bonded Mulching Nonwovens during Outdoor Composting. Polymers, 2019, 11, 559.	2.0	10

#	Article	IF	CITATIONS
1322	Minimizing the time gap between service lifetime and complete resorption of degradable melt-spun multifilament fibers. Polymer Degradation and Stability, 2019, 163, 43-51.	2.7	18
1323	Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers., 2019,, 259-296.		1
1324	Technological challenges and advances: from lactic acid to polylactate and copolymers. , 2019, , $117\text{-}153$.		0
1325	Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 2019, 127, 1612-1626.	1.4	485
1326	Dynamics of the \hat{l} ±-relaxation during the crystallization of PLLA and the effect of thermal annealing under humid atmosphere. Polymer Degradation and Stability, 2019, 164, 90-101.	2.7	11
1327	The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Designed Monomers and Polymers, 2019, 22, 8-53.	0.7	92
1328	The Use of 3D Printed Molds to Cast Tablets with a Designed Disintegration Profile. AAPS PharmSciTech, 2019, 20, 127.	1.5	7
1329	Exfoliated graphite/acrylic composite film as hydrophobic coating of 3D-printed polylactic acid surfaces. Journal of Coatings Technology Research, 2019, 16, 1133-1140.	1.2	7
1330	The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1287-1297.	2.0	27
1331	Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019, 268, 64-81.	7.0	67
1332	Enhanced tendon to bone healing in rotator cuff tear by PLLA/CPS composite films prepared by a simple melt-pressing method: An in vitro and in vivo study. Composites Part B: Engineering, 2019, 165, 526-536.	5.9	22
1333	Hydrolysis of poly(I â€lactide)/ZnO nanocomposites with antimicrobial activity. Journal of Applied Polymer Science, 2019, 136, 47786.	1.3	5
1334	Effects of the matrix crystallinity, dispersed phase, and processing type on the morphological, thermal, and mechanical properties of polylactideâ€based binary blends with poly[(butylene) Tj ETQq0 0 0 rgBT/0	Overlock 1	.0 ₃₈ 50 262
1335	Polymer Science, 2019, 136, 47636. Stereocomplex formation in mixed polymers filled with two-dimensional nanofillers. Physical Chemistry Chemical Physics, 2019, 21, 6443-6452.	1.3	18
1336	Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 2019, 108, 238-252.	8.2	116
1337	Particulate systems of PLA and its copolymers. , 2019, , 349-380.		1
1338	Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 2019, 9, 374-378.	8.1	635
1339	Rheology of poly (lactic acid)-based systems. Polymer Reviews, 2019, 59, 465-509.	5. 3	101

#	Article	IF	CITATIONS
1340	The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers, 2019, 11, 575.	2.0	33
1341	In vitro degradation of biodegradable polylactic acid/Mg composites: Influence of nature and crystalline degree of the polymeric matrix. Materialia, 2019, 6, 100270.	1.3	21
1342	Thermal conductivity of poly(L‣actic Acid) subjected to elongational deformations. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 547-553.	2.4	4
1343	Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 101, 660-673.	3.8	86
1344	Electron beam treatment of polylactide at elevated temperature in nitrogen atmosphere. Radiation Physics and Chemistry, 2019, 159, 166-173.	1.4	20
1345	Effect of iron doped hydroxyapatite nanoparticles on the structural, morphological, mechanical and magnetic properties of polylactic acid polymer. Journal of Materials Research and Technology, 2019, 8, 2098-2106.	2.6	28
1346	Processing of Super Tough Plasticized PLA by Rotational Molding. Advances in Polymer Technology, 2019, 2019, 1-8.	0.8	14
1347	Toughening modification of PLLA with PCL in the presence of PCLâ€ <i>b</i> â€PLLA diblock copolymers as compatibilizer. Polymers for Advanced Technologies, 2019, 30, 963-972.	1.6	24
1348	Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: Production and characterization. European Polymer Journal, 2019, 114, 271-278.	2.6	68
1349	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	1.3	123
1350	The combined effect of reactive and high-shear extrusion on the phase morphologies and properties of PLA/OBC/EGMA ternary blends. Polymer, 2019, 169, 66-73.	1.8	29
1351	Natural monomers: A mine for functional and sustainable materials – Occurrence, chemical modification and polymerization. Progress in Polymer Science, 2019, 92, 158-209.	11.8	124
1353	Preliminary investigations of polylactic acid (PLA) properties. AIP Conference Proceedings, 2019, , .	0.3	19
1354	Properties of Poly(Lactic Acid) Filled with Hydrophobic Cellulose/SiO2 Composites. International Journal of Polymer Science, 2019, 2019, 1-8.	1.2	17
1355	Toward Supertough and Heat-Resistant Stereocomplex-Type Polylactide/Elastomer Blends with Impressive Melt Stability via <i>in Situ</i> Formation of Graft Copolymer during One-Pot Reactive Melt Blending. Macromolecules, 2019, 52, 1718-1730.	2.2	94
1356	Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder. International Journal of Molecular Sciences, 2019, 20, 675.	1.8	29
1357	Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer, 2019, 168, 77-85.	1.8	40
1358	From thermodynamics to kinetics: Theoretical study of CO2 dissolving in poly (lactic acid) melt. Journal of Molecular Liquids, 2019, 280, 97-103.	2.3	4

#	Article	IF	CITATIONS
1359	Synthesis, Characterization, and Biodegradability of Novel Fully Biobased Poly(decamethylene- <i>co</i> -isosorbide 2,5-furandicarboxylate) Copolyesters with Enhanced Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 5501-5514.	3.2	41
1360	Influence of poly(lactide) stereocomplexes as nucleating agents on the crystallization behavior of poly(lactide)s. RSC Advances, 2019, 9, 6221-6227.	1.7	20
1361	Miktoarm starâ€shaped poly(lactic acid) copolymer: Synthesis and stereocomplex crystallization behavior. Journal of Polymer Science Part A, 2019, 57, 814-826.	2.5	14
1362	In situ grafting effect of a coupling agent on different properties of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/olive husk flour composite. Polymer Bulletin, 2019, 76, 6275-6290.	1.7	5
1363	Chemical Modification and Foam Processing of Polylactide (PLA). Polymers, 2019, 11, 306.	2.0	118
1364	Stereocomplex-type polylactide with bimodal melting temperature distribution: Toward desirable melt-processability and thermomechanical performance. Polymer, 2019, 169, 21-28.	1.8	26
1365	Starch-Based Nanocomposites: Types and Industrial Applications. , 2019, , 157-181.		17
1366	The quantitative analysis of tensile strength of additively manufactured continuous carbon fiber reinforced polylactic acid (PLA). Rapid Prototyping Journal, 2019, 25, 1624-1636.	1.6	16
1367	Cross Effect of Natural Rubber and Annealing on the Properties of Poly(Lactic Acid). Periodica Polytechnica, Mechanical Engineering, 2019, 63, 270-277.	0.8	14
1368	The in-plane compression performance of hierarchical honeycomb additive manufactured structures. IOP Conference Series: Materials Science and Engineering, 2019, 564, 012015.	0.3	9
1369	The influence of the unipolar corona discharge on surface energy of modified cardboard. AIP Conference Proceedings, 2019, , .	0.3	1
1370	Effect of process parameters to flexural strength of 3D printed anatomical bone part. IOP Conference Series: Materials Science and Engineering, 2019, 635, 012034.	0.3	4
1371	Modification of biodegradable materials by natural biocidal agents., 2019,, 263-279.		2
1372	Critical specific work of flow for shearâ€induced formation of crystal nuclei in poly (<scp>l</scp> â€lactic acid). Polymer Crystallization, 2019, 2, e10073.	0.5	11
1373	Fused Deposition Modeling of Poly (Lactic Acid)/Walnut Shell Biocomposite Filamentsâ€"Surface Treatment and Properties. Applied Sciences (Switzerland), 2019, 9, 4892.	1.3	15
1374	Hydrophilic and Antibacterial Modification of Poly(lactic acid) Films by \hat{l}^3 -ray Irradiation. ACS Omega, 2019, 4, 21439-21445.	1.6	37
1375	2. State of the art of the fused deposition modeling using PLA: improving the performance. , 2019, , 59-112.		2
1376	Study on the Optimization of Process Parameters for Absorbable Bone Plate with In-Mold Heat Treatment. Solid State Phenomena, 2019, 294, 71-76.	0.3	1

#	Article	IF	CITATIONS
1377	Accelerated Weathering of Polylactide-Based Composites Filled with Linseed Cake: The Influence of Time and Oil Content within the Filler. Polymers, 2019, 11, 1495.	2.0	25
1378	Phase Morphology and Performance of Supertough PLA/EMA–GMA/ZrP Nanocomposites Prepared through Reactive Melt-Blending. ACS Omega, 2019, 4, 19046-19053.	1.6	20
1379	Synthesis of lactide from alkyl lactates catalyzed by lanthanide salts. Mendeleev Communications, 2019, 29, 648-650.	0.6	13
1380	Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects. Journal of Polymer Engineering, 2019, 40, 38-48.	0.6	11
1381	A facile fabrication of porous fluoro-polymer with excellent mechanical properties based on high internal phase emulsion templating using PLA as co-stabilizer. RSC Advances, 2019, 9, 40513-40522.	1.7	6
1382	Study on Aging and Recover of Poly (Lactic) Acid Composite Films with Graphene and Carbon Nanotubes Produced by Solution Blending and Extrusion. Coatings, 2019, 9, 359.	1.2	11
1383	Crystallization, flameâ€retardant, and mechanical behaviors of poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 5 Journal of Applied Polymer Science, 2019, 136, 46982.	507 Td (ac	id)9,10â€dih 19
1384	Toughness enhancement of poly(lactic acid) through hybridisation with epoxide-functionalised silane via reactive extrusion. Polymer Degradation and Stability, 2019, 160, 195-202.	2.7	11
1385	Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. Journal of Applied Polymer Science, 2019, 136, 47382.	1.3	48
1386	Effects of micrometre-sized graphite flake to reinforce the performances of poly(lactic acid) thermoplastic biocomposites. Polymers and Polymer Composites, 2019, 27, 20-32.	1.0	5
1387	Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 2019, 125, 307-360.	3.6	505
1388	A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering. Polymer, 2019, 162, 50-57.	1.8	30
1389	Dynamic Monte Carlo simulations of competition in crystallization of mixed polymers grafted on a substrate. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 89-97.	2.4	21
1390	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	3.6	51
1391	Properties of mineral filled poly(lactic acid)/poly(methyl methacrylate) blend. Journal of Applied Polymer Science, 2019, 136, 46927.	1.3	2
1392	Manufacture and Property of Warp-Knitted Fabrics with Polylactic Acid Multifilament. Polymers, 2019, 11, 65.	2.0	4
1393	Fused deposition processing polycaprolactone of composites for biomedical applications. Polymer-Plastics Technology and Materials, 2019, 58, 1365-1398.	0.6	43
1394	Water–soluble extracts from banana pseudo–stem as functional additives for polylactic acid: Thermal and mechanical investigations. European Polymer Journal, 2019, 112, 466-476.	2.6	12

#	Article	IF	CITATIONS
1395	Influence of the viscoelastic regime onto the UV reactivity of poly(lactic acid). European Polymer Journal, 2019, 110, 138-144.	2.6	2
1396	Physicochemical Characterization and Evaluation of Pecan Nutshell as Biofiller in a Matrix of Poly(lactic acid). Journal of Polymers and the Environment, 2019, 27, 521-532.	2.4	15
1397	Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3Dâ€printed tissue trapper. Journal of Cellular Physiology, 2019, 234, 9564-9576.	2.0	30
1398	Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Composites Part B: Engineering, 2019, 162, 54-61.	5.9	49
1399	In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 2019, 27, 84-96.	2.4	42
1400	Star-shaped and branched polylactides: Synthesis, characterization, and properties. Progress in Polymer Science, 2019, 89, 159-212.	11.8	112
1401	The relationship between solubility and nucleating effect of organic nucleating agent in poly(Lâ€lactic) Tj ETQq0 (O 0.rgBT /C	Overlock 10 T
1402	Effect of Dâ€lactide content of annealed poly(lactic acid) on its thermal, mechanical, heat deflection temperature, and creep properties. Journal of Applied Polymer Science, 2019, 136, 47103.	1.3	14
1403	Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites, 2019, 27, 43-54.	1.0	10
1404	Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 107-121.	1.9	11
1405	High-toughness PLA/Bamboo cellulose nanowhiskers bionanocomposite strengthened with silylated ultrafine bamboo-char. Composites Part B: Engineering, 2019, 165, 174-182.	5.9	64
1406	Electrospinning production of nanofibrous membranes. Environmental Chemistry Letters, 2019, 17, 767-800.	8.3	103
1407	Synthesis and properties of partially biodegradable fluorinated polyacrylate: Poly() Tj ETQq0 0 0 rgBT /Overlock 10	O Tf 50 26	2 Td (‑lacti 11
1408	Mechanical properties of poly(lactid acid) plasticized by cardanol derivatives. Polymer Degradation and Stability, 2019, 159, 199-204.	2.7	25
1409	Polylactic acid sealed polyelectrolyte complex microcontainers for controlled encapsulation and NIR-Laser based release of cargo. Colloids and Surfaces B: Biointerfaces, 2019, 173, 521-528.	2.5	18
1410	Thermal analysis of polylactic acid under high CO2 pressure applied in supercritical impregnation and foaming process design. Journal of Supercritical Fluids, 2019, 144, 71-80.	1.6	43
1411	Development of poly(lactic acid) films with propolis as a source of active compounds: Biodegradability, physical, and functional properties. Journal of Applied Polymer Science, 2019, 136, 47090.	1.3	29
1412	Effect of micro-lamellar talc on dimensional accuracy and stability in injection molding of PLA/PBSA blends. Polymer-Plastics Technology and Materials, 2019, 58, 776-788.	0.6	7

#	Article	IF	CITATIONS
1413	Rheological behavior of wood flour filled poly(lactic acid): Temperature and concentration dependence. Polymer Composites, 2019, 40, E169.	2.3	22
1414	Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. Journal of Natural Fibers, 2019, 16, 933-943.	1.7	51
1415	Processable conductive and mechanically reinforced polylactide/graphene bionanocomposites through interfacial compatibilizer. Polymer Composites, 2019, 40, 389-400.	2.3	14
1416	Material properties of sponge-gourd fiber–reinforced polylactic acid biocomposites: Effect of fiber weight ratio, chemical treatment, and treatment concentrations. Journal of Thermoplastic Composite Materials, 2019, 32, 967-994.	2.6	4
1417	Melt-spun PLA liquid-filled fibers: physical, morphological, and thermal properties. Journal of the Textile Institute, 2019, 110, 89-99.	1.0	15
1418	Manufacturing of Biodegradable Poly Lactic Acid (PLA): Green Alternatives to Petroleum Derived Plastics., 2020,, 561-569.		5
1419	Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 2020, 33, 1145-1171.	2.6	112
1420	Indocyanine green based fluorescent polymeric nanoprobes for in vitro imaging. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 538-554.	1.6	8
1421	Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polymer Bulletin, 2020, 77, 2111-2137.	1.7	17
1422	Properties and End-of-Life of Polymers From Renewable Resources. , 2020, , 253-262.		3
1423	Crystallization kinetics of chain extended poly(L-lactide)s having different molecular structures. Materials Chemistry and Physics, 2020, 240, 122217.	2.0	8
1424	Molecular simulations of microscopic mechanism of the effects of chain length on stereocomplex formation in polymer blends. Computational Materials Science, 2020, 172, 109297.	1.4	30
1425	Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/PLA-Hybrid Biocomposites. Silicon, 2020, 12, 1751-1760.	1.8	45
1426	Rheology of Shape-Memory Polymers, Polymer Blends, and Composites. Advanced Structured Materials, 2020, , 85-94.	0.3	1
1427	Multifilament yarns of polyoxymethylene/poly(lactic acid) blends produced by a melt-spinning method. Textile Reseach Journal, 2020, 90, 294-301.	1.1	4
1428	Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology. Applied Surface Science, 2020, 499, 143733.	3.1	35
1429	Achieving highly crystalline rate and crystallinity in Poly(I-lactide) via in-situ melting reaction with diisocyanate and benzohydrazine to form nucleating agents. Polymer Testing, 2020, 81, 106216.	2.3	9
1430	Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging. Journal of Food Science and Technology, 2020, 57, 1242-1250.	1.4	30

#	Article	IF	CITATIONS
1431	Evaluation of PLA content in PLA/PBAT blends using TGA. Polymer Testing, 2020, 81, 106211.	2.3	61
1432	Effect of saline and alkaline solution aging on the properties of jute/poly(lactic acid) composites. Polymer Composites, 2020, 41, 1003-1012.	2.3	11
1433	Compatibility in biobased poly(L″actide)/polyamide binary blends: From meltâ€state interfacial tensions to (thermo)mechanical properties. Journal of Applied Polymer Science, 2020, 137, 48440.	1.3	7
1434	Fabrication of Biocompatible Composites of Poly(lactic acid)/Hydroxyapatite Envisioning Medical Applications. Polymer Engineering and Science, 2020, 60, 636-644.	1.5	47
1435	Bisâ€Î²â€(diketonates) Zn(II) complexes substituted with thiophene: Electropolymerization, homogeneous and heterogeneous catalysis for ring opening polymerization of lactide. Journal of Polymer Science, 2020, 58, 557-567.	2.0	3
1436	In-situ changes of thermo-mechanical properties of poly(lactic acid) film immersed in alcohol solutions. Polymer Testing, 2020, 82, 106320.	2.3	5
1437	Manipulating the Strength–Toughness Balance of Poly(<scp>l</scp> -lactide) (PLLA) via Introducing Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile PLLA) via Introducing Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) and Strong Shear Flow. Industrial & Ductile Poly(ε-caprolactone) (PCL) (P	1.8	15
1438	Stretch-induced crystalline structural evolution and cavitation of poly(butylene adipate-ran-butylene) Tj ETQq1 1	0.784314	rgBT /Overl
1439	Conformation Variation Induced Crystallization Enhancement of Poly(<scp>l</scp> -lactic acid) by Gluconic Derivatives. Crystal Growth and Design, 2020, 20, 653-660.	1.4	3
1440	Composites based on polylactide and manganese (III) tetraphenylporphyrin. Influence of concentration on the structure and properties. Journal of Molecular Liquids, 2020, 302, 112176.	2.3	10
1441	Interfaces in biopolymer nanocomposites: Their role in the gas barrier properties and kinetics of residual solvent desorption. Applied Surface Science, 2020, 507, 145066.	3.1	9
1442	Selective Degradation of Endâ€ofâ€Life Poly(lactide) via Alkaliâ€Metalâ€Halide Catalysis. Advanced Sustainable Systems, 2020, 4, 1900081.	2.7	34
1443	Synthesis and characterization of carbon black modified by polylactic acid (PLA―g â€CB) as pigment for dope dyeing of black PLA fibers. Journal of Applied Polymer Science, 2020, 137, 48784.	1.3	3
1444	Preparation of High-Elongation and High-Toughness Poly(l-lactide) Using Multi-Arm Methyl-Î ² -Cyclodextrin-Poly(l-lactide). Macromolecular Research, 2020, 28, 257-265.	1.0	2
1445	Effect of glass fiber reinforcement on the thermal, mechanical, and flame retardancy behavior of poly(lactic acid)/polycarbonate blend. Polymer Composites, 2020, 41, 1481-1489.	2.3	8
1446	The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. International Journal of Biological Macromolecules, 2020, 155, 1578-1588.	3.6	32
1447	Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Composites Part B: Engineering, 2020, 182, 107661.	5.9	100
1448	Polyester Stereocomplexes Beyond PLA: Could Synthetic Opportunities Revolutionize Established Material Blending?. Macromolecular Rapid Communications, 2020, 41, e1900560.	2.0	38

#	Article	IF	Citations
1449	Advance on processing of compostable and thermally stable biodegradable polyester blends. Journal of Applied Polymer Science, 2020, 137, 48722.	1.3	6
1450	Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: a comparative study with injection molding. Materials Today Sustainability, 2020, 7-8, 100027.	1.9	45
1451	Role of Surface-Treated Silica Nanoparticles on the Thermo-Mechanical Behavior of Poly(Lactide). Applied Sciences (Switzerland), 2020, 10, 6731.	1.3	15
1452	Rheological rationalization of in situ nanofibrillar structure development: Tailoring of nanohybrid shish-kebab superstructures of poly (lactic acid) crystalline phase. Polymer, 2020, 211, 123040.	1.8	8
1453	Preparation of antimicrobial and biodegradable hybrid soybean oil and poly (ÊŸ-lactide) based polymer with quaternized ammonium salt. Polymer Degradation and Stability, 2020, 181, 109317.	2.7	21
1454	Influence of clay percentage on the technical properties of montmorillonite/polylactic acid nanocomposites. Applied Clay Science, 2020, 198, 105818.	2.6	10
1455	Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules, 2020, 10, 1038.	1.8	42
1456	The role of poly (ethylene glycol) on crystallization, interlayer bond and mechanical performance of polylactide parts fabricated by fused filament fabrication. Additive Manufacturing, 2020, 35, 101414.	1.7	15
1457	The Impact of the Addition of Compatibilizers on Poly (lactic acid) (PLA) Properties after Extrusion Process. Polymers, 2020, 12, 2688.	2.0	1
1458	Electrospinning of Poly(1,4 yclohexanedimethylene Acetylene Dicarboxylate): Study on the Morphology, Wettability, Thermal and Biodegradation Behaviors. Macromolecular Chemistry and Physics, 2020, 221, 2000310.	1.1	16
1459	Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers, 2020, 12, 2693.	2.0	1
1460	Application of Bismuth Catalysts for the Methanolysis of Endâ€ofâ€Life Poly(lactide). ChemistrySelect, 2020, 5, 12313-12316.	0.7	15
1461	Nanocomposite Materials with Poly(l-lactic Acid) and Transition-Metal Dichalcogenide Nanosheets 2D-TMDCs WS2. Polymers, 2020, 12, 2699.	2.0	7
1462	Preparation of antimicrobial <scp>3D</scp> printing filament: In situ thermal formation of silver nanoparticles during the material extrusion. Polymer Composites, 2020, 41, 4692-4705.	2.3	20
1463	Toughness Enhancement in Polyactide Nanocomposites with Swallow-Tailed Graphene Oxide. Polymer Science - Series B, 2020, 62, 560-571.	0.3	2
1464	Recent Advances on Purification of Lactic Acid. Chemical Record, 2020, 20, 1236-1256.	2.9	18
1465	Waste and 3R's in Footwear and Leather Sectors. Textile Science and Clothing Technology, 2020, , 261-293.	0.4	7
1466	Development and Processing of PLA, PHA, and Other Biopolymers. , 2020, , 47-63.		9

#	Article	IF	Citations
1467	Toward all stereocomplex-type polylactide with outstanding melt stability and crystallizability via solid-state transesterification between enantiomeric poly(l-lactide) and poly(d-lactide). Polymer, 2020, 205, 122850.	1.8	22
1468	Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. Journal of Polymer Research, 2020, 27, 1.	1.2	20
1469	Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 2020, 90, 106707.	2.3	187
1470	Fused Deposition Modeling of Poly (lactic acid)/Nutshells Composite Filaments: Effect of Alkali Treatment. Journal of Polymers and the Environment, 2020, 28, 3139-3152.	2.4	14
1471	Foaming of PLA Composites by Supercritical Fluid-Assisted Processes: A Review. Molecules, 2020, 25, 3408.	1.7	30
1472	High performance branched poly(lactide) induced by reactive extrusion with low-content cyclic organic peroxide and multifunctional acrylate coagents. Polymer, 2020, 205, 122867.	1.8	9
1473	Microneedle Arrays of Polyhydroxyalkanoate by Laser-Based Micromolding Technique. ACS Applied Bio Materials, 2020, 3, 5856-5864.	2.3	9
1474	High molar mass cyclic poly(<scp> </scp> -lactide) obtained by means of neat tin(<scp>ii</scp>) 2-ethylhexanoate. Polymer Chemistry, 2020, 11, 5249-5260.	1.9	30
1475	Poly(lactic acid)-silkworm silk fibre/fibroin bio-composites: A review of their processing, properties, and nascent applications. EXPRESS Polymer Letters, 2020, 14, 924-951.	1.1	8
1476	Leather and Footwear Sustainability. Textile Science and Clothing Technology, 2020, , .	0.4	3
1477	Heat Properties of Polylactic Acid Biocomposites after Addition of Plasticizers and Oil Palm Frond Microfiber. Jurnal Kimia Sains Dan Aplikasi, 2020, 23, 295-304.	0.1	2
1478	Dynamics affected memory for crystallization behaviors of poly (d-lactic acid). Polymer, 2020, 211, 123078.	1.8	7
1479	Induction Heating in Nanoparticle Impregnated Zeolite. Materials, 2020, 13, 4013.	1.3	8
1480	Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packaging and Shelf Life, 2020, 26, 100578.	3.3	85
1481	Enhanced compatibility between poly(lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of N-halamine epoxy precursor. International Journal of Biological Macromolecules, 2020, 165, 460-471.	3.6	27
1482	Biodestruction of Polylactide and Poly(3-Hydroxybutyrate) Non-Woven Materials by Micromycetes. Fibre Chemistry, 2020, 52, 43-47.	0.0	6
1483	Bioprocess Engineering for Bioremediation. Handbook of Environmental Chemistry, 2020, , .	0.2	1
1484	Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine, 2020, 15, 2287-2309.	1.7	6

#	Article	IF	CITATIONS
1485	Hydrolytic Degradation of Polylactide in Distilled Water and Seawater. Polymer Science - Series D, 2020, 13, 306-310.	0.2	5
1486	Preparation of pesticide microspheres based on polylactic acid: optimized by response surface methodology. IOP Conference Series: Materials Science and Engineering, 2020, 711, 012026.	0.3	0
1487	Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Frontiers in Chemistry, 2020, 8, 688.	1.8	46
1488	Ethylene vinyl acetate (EVA)/poly(lactic acid) (PLA) blends and their foams. Molecular Crystals and Liquid Crystals, 2020, 707, 38-45.	0.4	8
1489	The Influence of Sub-Zero Conditions on the Mechanical Properties of Polylactide-Based Composites. Materials, 2020, 13, 5789.	1.3	5
1490	Chemical Recycling of Endâ€ofâ€Life Poly(lactide) via Zincâ€Catalyzed Depolymerization and Polymerization. ChemistryOpen, 2020, 9, 1224-1228.	0.9	21
1491	Depolymerization of Endâ€ofâ€Life Poly(lactide) to Lactide via Zincâ€Catalysis. ChemistrySelect, 2020, 5, 14759-14763.	0.7	29
1492	Melt extension-induced shish-kebabs with heterogeneous spatial distribution of crystalline polymorphs in lightly crosslinked poly(lactic acid). Polymer, 2020, 208, 122875.	1.8	12
1493	Crystallization Behaviors of Plasticized Poly(Lactic Acid)/Microcrystalline Cellulose Composite Sheet. Key Engineering Materials, 2020, 856, 303-308.	0.4	0
1494	Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials, 2020, 13, 4910.	1.3	25
1495	Preparation and Characterization of magnetic PLA/Fe ₃ O ₄ -g-PLLA composite melt blown nonwoven fabric for air filtration. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502096822.	0.5	6
1496	Fire-extinguishing characteristics and flame retardant mechanism of polylactide foams: Influence of tricresyl phosphate combined with natural flame retardant. International Journal of Biological Macromolecules, 2020, 158, 1090-1101.	3.6	30
1497	Biodegradable PLA-based composites modified by POSS particles. Polymer-Plastics Technology and Materials, 2020, 59, 998-1009.	0.6	4
1498	<scp>3Dâ€printed</scp> polymer packing structures: Uniformity of morphology and mechanical properties via microprocessing conditions. Journal of Applied Polymer Science, 2020, 137, 49381.	1.3	9
1499	Temperature and Time Dependence of the Solvent-Induced Crystallization of Poly(I-lactide). Polymers, 2020, 12, 1065.	2.0	14
1500	Biodegradable Polylactide–Poly(3-Hydroxybutyrate) Compositions Obtained via Blending under Shear Deformations and Electrospinning: Characterization and Environmental Application. Polymers, 2020, 12, 1088.	2.0	18
1501	Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes. Molecules, 2020, 25, 1976.	1.7	32
1502	A Review on Barrier Properties of Poly(Lactic Acid)/Clay Nanocomposites. Polymers, 2020, 12, 1095.	2.0	65

#	Article	IF	CITATIONS
1503	Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. Journal of Cleaner Production, 2020, 268, 122129.	4.6	64
1504	Synergistic effect of different basalt fillers and annealing on the structure and properties of polylactide composites. Polymer Testing, 2020, 89, 106628.	2.3	24
1505	Surface modification of PLA nets intended for agricultural applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124787.	2.3	20
1506	Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. International Journal of Biological Macromolecules, 2020, 160, 506-517.	3.6	42
1507	Annealing effect on tensile property and hydrolytic degradation of biodegradable poly(lactic acid) reactive blend with poly(trimethylene terephthalate) by two-step blending procedure. Polymer Degradation and Stability, 2020, 179, 109228.	2.7	12
1508	Facile Fabrication of Methylcellulose/PLA Membrane with Improved Properties. Coatings, 2020, 10, 499.	1.2	15
1509	Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105990.	3.8	40
1510	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
1511	Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers, 2020, 12, 1333.	2.0	41
1512	Enhanced (thermo)mechanical properties in biobased poly(<scp>l</scp> â€ <scp>lactide</scp>)/poly(amideâ€12) blends using high shear extrusion processing without compatibilizers. Polymer Engineering and Science, 2020, 60, 1902-1916.	1.5	10
1513	Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packaging and Shelf Life, 2020, 25, 100515.	3.3	76
1514	Composite of PLA Nanofiber and Hexadecyl Trimethyl-Ammonium Chloride-Modified Montmorillonite Clay: Fabrication and Morphology. Coatings, 2020, 10, 484.	1.2	12
1515	Extreme Foaming Modes for SCF-Plasticized Polylactides: Quasi-Adiabatic and Quasi-Isothermal Foam Expansion. Polymers, 2020, 12, 1055.	2.0	9
1516	Polylactic Acid/Polycaprolactone Blends: On the Path to Circular Economy, Substituting Single-Use Commodity Plastic Products. Materials, 2020, 13, 2655.	1.3	29
1517	Decrease in non-linear viscosity of a polylactide nanocomposite with regard to the clay volume fraction. Rheologica Acta, 2020, 59, 269-278.	1.1	8
1518	PLA/metal oxide biocomposites for antimicrobial packaging application. Polymer-Plastics Technology and Materials, 2020, 59, 1332-1342.	0.6	19
1519	Evaluation of the Zero Shear Viscosity, the D-Content and Processing Conditions as Foam Relevant Parameters for Autoclave Foaming of Standard Polylactide (PLA). Materials, 2020, 13, 1371.	1.3	20
1520	Mechanical and morphological characterization of basalt/ <i>Cissus quadrangularis</i> hybrid fiber reinforced polylactic acid composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2895-2907.	1.1	19

#	Article	IF	Citations
1521	Electrical and Optical Properties of Silicon Oxide Lignin Polylactide (SiO2-L-PLA). Molecules, 2020, 25, 1354.	1.7	5
1522	Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking. E-Polymers, 2020, 20, 39-54.	1.3	36
1523	Applicability of Fe-CNC/GR/PLA composite as potential sensor for biomolecules. Journal of Materials Science: Materials in Electronics, 2020, 31, 5984-5999.	1.1	7
1524	Investigation of 3Dâ€printed PLA–stainlessâ€steel polymeric composite through fused deposition modellingâ€based additive manufacturing process for biomedical applications. Medical Devices & Sensors, 2020, 3, e10080.	2.7	8
1525	Tin(<scp>ii</scp>) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide). Polymer Chemistry, 2020, 11, 2625-2629.	1.9	33
1526	Super tough poly(lactic acid) blends: a comprehensive review. RSC Advances, 2020, 10, 13316-13368.	1.7	221
1527	Solid and microcellular polylactide nucleated with PLA stereocomplex and cellulose nanocrystals. Journal of Thermal Analysis and Calorimetry, 2020, 142, 695-713.	2.0	9
1528	Bio-based packaging materials., 2020,, 279-309.		9
1529	Affecting the bonding between PLA fibrils and kraft pulp for improving paper dry-strength. Nordic Pulp and Paper Research Journal, 2020, 35, 185-194.	0.3	2
1530	Studies on the Uncrosslinked Fraction of PLA/PBAT Blends Modified by Electron Radiation. Materials, 2020, 13, 1068.	1.3	16
1531	Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers, 2020, 12, 463.	2.0	40
1532	Monitoring of Morphology and Properties During Preparation of PCL/PLA Microfibrillar Composites With Organophilic Montmorillonite. Frontiers in Materials, 2020, 7, .	1.2	6
1533	Supercritical Fluid Applications in the Design of Novel Antimicrobial Materials. Molecules, 2020, 25, 2491.	1.7	15
1534	Microstructure and performance characteristics of acoustic insulation materials from post-consumer recycled denim fabrics. Journal of Industrial Textiles, 2022, 51, 6001S-6027S.	1.1	16
1535	Retardation effect of nanohydroxyapatite on the hydrolytic degradation of poly (lactic acid). Polymer Engineering and Science, 2020, 60, 2152-2162.	1.5	5
1536	Sustainable Micro and Nano Additives for Controlling the Migration of a Biobased Plasticizer from PLA-Based Flexible Films. Polymers, 2020, 12, 1366.	2.0	36
1537	Effect of the chemical modification on the thermal and rheological properties of different polylactides for foaming. AIP Conference Proceedings, 2020, , .	0.3	0
1538	Polyethylene oxide enhances the ductility and toughness of polylactic acid: the role of mesophase. Soft Matter, 2020, 16, 7018-7032.	1.2	7

#	Article	IF	CITATIONS
1539	Recent Developments in Food-Based Bioplastics Production. Handbook of Environmental Chemistry, 2020, , 107-127.	0.2	1
1540	Dilute solution properties of poly(d,I-lactide) by static light scattering, SAXS, and intrinsic viscosity. Polymer Journal, 2020, 52, 387-396.	1.3	7
1541	Simultaneous Improvement of the Foaming Property and Heat Resistance in Polylactide via One-step Branching Reaction Initiated by Cyclic Organic Peroxide. Industrial & Engineering Chemistry Research, 2020, 59, 2934-2945.	1.8	15
1542	On the interaction of C60 fullerene with poly(L-lactic acid) or poly(lactide). Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 621-626.	1.0	3
1543	Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes. Polymer, 2020, 191, 122279.	1.8	8
1544	Evidence for the Soft and Hard Epitaxies of Poly(<scp>l</scp> -lactic acid) on an Oriented Polyethylene Substrate and Their Dependence on the Crystallization Temperature. Macromolecules, 2020, 53, 1745-1751.	2.2	16
1545	High <i>T</i> _m poly(L-lactide)s <i>via</i> REP or ROPPOC of <scp>l</scp> -lactide. Polymer Chemistry, 2020, 11, 2182-2193.	1.9	20
1546	Evaluation of biodegradation of polylactic acid mineral composites in composting conditions. Journal of Applied Polymer Science, 2020, 137, 48939.	1.3	9
1547	Advances in Sustainable Polymers. Materials Horizons, 2020, , .	0.3	5
1548	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	3.2	47
1549	Effect of Organic Modifier and Clay Content on Non-Isothermal Cold Crystallization and Melting Behavior of Polylactide/Organovermiculite Nanocomposites. Polymers, 2020, 12, 364.	2.0	18
1550	Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography. ACS Applied Polymer Materials, 2020, 2, 949-957.	2.0	91
1551	Phytic Acid Modified Boron Nitride Nanosheets as Sustainable Multifunctional Nanofillers for Enhanced Properties of Poly(<scp>l</scp> -lactide). ACS Sustainable Chemistry and Engineering, 2020, 8, 1868-1878.	3.2	38
1552	pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110826.	2.5	11
1553	Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles. Biomaterials Science, 2020, 8, 2018-2030.	2.6	20
1554	Effects of divinylbenzeneâ€maleic anhydride copolymer hollow microspheres on crystallization behaviors, mechanical properties and heat resistance of poly(lâ€lactide acid). Polymers for Advanced Technologies, 2020, 31, 817-826.	1.6	10
1555	The development and challenges of poly (lactic acid) and poly (glycolicÂacid). Advanced Industrial and Engineering Polymer Research, 2020, 3, 60-70.	2.7	245
1556	Estimation of the Size of Critical Secondary Nuclei of Melt-Grown Poly(<scp>l</scp> -lactide) Lamellar Crystals. Macromolecules, 2020, 53, 3482-3492.	2.2	15

#	Article	IF	CITATIONS
1557	Fabrication of Edge Rounded Polylactic Acid Biomedical Stents by the Multi-Axis Micro-Milling Process. Applied Sciences (Switzerland), 2020, 10, 2809.	1.3	3
1558	Effect of Chitin Nanocrystals on Crystallization and Properties of Poly(lactic acid)-Based Nanocomposites. Polymers, 2020, 12, 726.	2.0	19
1559	Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 2020, 137, 49346.	1.3	18
1560	Graphite oxide nanocoatings as a sustaibale route to extend the applicability of biopolymer-based film. Applied Surface Science, 2020, 522, 146471.	3.1	11
1561	Investigation of the thermoformability of various <scp>D</scp> â€Lactide content poly(lactic acid) films by ball burst test. Polymer Engineering and Science, 2020, 60, 1266-1277.	1.5	19
1562	Rutheniumâ€Catalyzed Hydrogenative Degradation of Endâ€ofâ€Life Poly(lactide) to Produce 1,2â€Propanediol as Platform Chemical. ChemistryOpen, 2020, 9, 401-404.	0.9	22
1563	Lignin. Springer Series on Polymer and Composite Materials, 2020, , .	0.5	26
1564	Biovalorization potential of agro-forestry/industry biomass for optically pure lactic acid fermentation. , 2020, , 261-276.		1
1565	Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 2020, 254, 126791.	4.2	341
1566	Formation and decomposition of Poly(l-lactic acid) charge-transfer complex with iodine: A new molecular switch. Polymer Degradation and Stability, 2020, 176, 109155.	2.7	10
1567	The Crystallization Behavior of Poly(<scp>l</scp> -lactic acid)/Poly(<scp>d</scp> -lactic acid) Electrospun Fibers: Effect of Distance of Isomeric Polymers. Industrial & Engineering Chemistry Research, 2020, 59, 8480-8491.	1.8	15
1568	Thermal properties of aliphatic polyesters. , 2020, , 151-189.		1
1569	Influence of hydrothermal ageing of PHBV/olive husk flour composite in acid medium. Materials Today: Proceedings, 2021, 36, 54-60.	0.9	0
1570	Influence of fused filament fabrication parameters on tensile properties of polylactide/layered silicate nanocomposite using response surface methodology. Journal of Applied Polymer Science, 2021, 138, 50174.	1.3	9
1571	Highly toughened poly(lactic acid) blends prepared by reactive blending with a renewable poly(etherâ€blockâ€amide) elastomer. Journal of Applied Polymer Science, 2021, 138, 50097.	1.3	10
1572	Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion. Journal of Applied Polymer Science, 2021, 138, 49720.	1.3	6
1573	Simultaneous impact modified and chain extended glass fiber reinforced poly(lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance. Journal of Applied Polymer Science, 2021, 138, 49752.	1.3	24
1574	Thermosetting polymers from renewable sources. Polymer International, 2021, 70, 167-180.	1.6	38

#	Article	IF	Citations
1575	Tertiary and quaternary recycling of thermoplastics by additive manufacturing approach for thermal sustainability. Materials Today: Proceedings, 2021, 37, 2382-2386.	0.9	16
1576	Commodity chemical production fromÂthirdâ€generation biomass: a technoâ€economic assessment of lactic acid production. Biofuels, Bioproducts and Biorefining, 2021, 15, 257-281.	1.9	17
1577	Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polymer Engineering and Science, 2021, 61, 201-210.	1.5	26
1578	Thermal behavior of PLA plasticized by commercial and cardanol-derived plasticizers and the effect on the mechanical properties. Journal of Thermal Analysis and Calorimetry, 2021, 146, 131-141.	2.0	34
1579	The promises of drop-in vs. functional innovations: The case of bioplastics. Ecological Economics, 2021, 181, 106886.	2.9	11
1580	Stereocomplex Crystallization in Asymmetric Diblock Copolymers Studied by Dynamic Monte Carlo Simulations. Chinese Journal of Polymer Science (English Edition), 2021, 39, 632-639.	2.0	9
1581	Evaluation of the removal of n â€butanol vapor by the poly(lactic acid) â€zeoliteâ€TiO 2 composite and formation of byâ€products. Journal of Applied Polymer Science, 2021, 138, 49842.	1.3	2
1582	Various Types of Natural Fibers Reinforced Poly-Lactic Acid Composites. Composites Science and Technology, 2021, , 165-180.	0.4	0
1583	Processing of bio-based polymers for industrial and medical applications. , 2021, , 191-238.		4
1584	Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology & Engineering, 2021, 2, 1.	0.4	6
1585	Impact of Water and UV Irradiation on Nonwoven Polylactide/Natural Rubber Fiber. Polymers, 2021, 13, 461.	2.0	20
1586	A Study on modification of polylactic acid and its biomedical application. E3S Web of Conferences, 2021, 308, 02008.	0.2	1
1587	Effect of Storage Conditions on the Thermal Stability and Crystallization Behaviors of Poly(L-Lactide)/Poly(D-Lactide). Polymers, 2021, 13, 238.	2.0	1
1588	Aliphatic polyesters with novel molecular architectures via ring-opening polymerization: synthesis, properties, and applications., 2021,, 163-208.		0
1589	Mechanical properties of poly(lactic acid) compounded with recycled tyre waste/graphene nanoplatelets nanocomposite. Materials Today: Proceedings, 2021, 42, 265-269.	0.9	3
1590	Boosting PLA melt strength by controlling the chirality of co-monomer incorporation. Chemical Science, 2021, 12, 5672-5681.	3.7	20
1591	An overview of the recent advances in polylactideâ€based sustainable nanocomposites. Polymer Engineering and Science, 2021, 61, 617-649.	1.5	56
1592	PLLA and cassava thermoplastic starch blends: crystalinity, mechanical properties, and UV degradation. Journal of Polymer Research, 2021, 28, 1.	1.2	8

#	Article	IF	CITATIONS
1593	Optimization of FDM for Fabrication of PLA-HAp-CS Based Functional Prototypes/Scaffolds Using Matrix Co-Relation. , 2021, , .		0
1594	Melt-Spun Poly(D,L-lactic acid) Monofilaments Containing N,N-Diethyl-3-methylbenzamide as Mosquito Repellent. Materials, 2021, 14, 638.	1.3	8
1595	Super toughened and highly ductile <scp>PLA</scp> / <scp>TPU</scp> blend systems by in situ reactive interfacial compatibilization using multifunctional epoxyâ€based chain extender. Journal of Applied Polymer Science, 2021, 138, 50457.	1.3	39
1596	A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules, 2021, 26, 404.	1.7	124
1597	Novel coatings to improve the performance of multilayer biopolymeric films for food packaging applications., 2021,, 259-280.		0
1598	Improving Polylactide Toughness by Plasticizing with Low Molecular Weight Polylactide-Poly(Butylene Succinate) Copolymer. Journal of Renewable Materials, 2021, 9, 1267-1281.	1.1	16
1599	Simultaneously enhancing the crystallization rate and fire retardancy of poly(lactic acid) by using a novel bifunctional additive trimethylamine phenylphosphonate. RSC Advances, 2021, 11, 27346-27355.	1.7	10
1600	Impact of environmental agents on non-woven polylactide/natural rubber agrofiber. E3S Web of Conferences, 2021, 285, 07034.	0.2	1
1601	Bio-based polymers. , 2021, , 1-28.		2
1602	Effects of Process Parameters on Structure and Properties of Melt-Blown Poly(Lactic Acid) Nonwovens for Skin Regeneration. Journal of Functional Biomaterials, 2021, 12, 16.	1.8	16
1603	Improved Rheology, Crystallization, and Mechanical Performance of PLA/mPCL Blends Prepared by Electron-Induced Reactive Processing. ACS Sustainable Chemistry and Engineering, 2021, 9, 3478-3489.	3.2	22
1604	Blends of Poly(butylene glutarate) and Poly(lactic acid) with Enhanced Ductility and Composting Performance. ACS Applied Polymer Materials, 2021, 3, 1652-1663.	2.0	14
1605	Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronics. Journal of Plastic Film and Sheeting, 2021, 37, 429-462.	1.3	22
1606	Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1333-1380.	5. 9	134
1607	Perspectives of polylactic acid from structure to applications. Polymers From Renewable Resources, 2021, 12, 60-74.	0.8	17
1608	Nonisothermal melt and cold crystallization behaviors of biodegradable poly(lactic acid)/Ti3C2Tx MXene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2239-2251.	2.0	10
1609	Review of zirconia-based biomimetic scaffolds for bone tissue engineering. Journal of Materials Science, 2021, 56, 8309-8333.	1.7	19
1610	<scp>ROP</scp> of <scp>L″actide</scp> and <scp>εâ€caprolactone</scp> catalyzed by tin(<scp>ii</scp>) and tin(<scp>iv</scp>) acetates–switching from <scp>COOH</scp> terminated linear chains to cycles. Journal of Polymer Science, 2021, 59, 439-450.	2.0	13

#	Article	IF	CITATIONS
1611	The Impact of Biodegradable Plastics in the Properties of Recycled Polyethylene Terephthalate. Journal of Polymers and the Environment, 2021, 29, 2686-2700.	2.4	24
1612	Synergistic effect of plasticizer and nucleating agent on crystallization behavior of polylactide during fused filament fabrication. Polymer, 2021, 215, 123426.	1.8	15
1613	Thermal analysis and polarized light microscopy as methods to study the increasing of the durability of PLA designed for 3D printing. International Journal of Polymer Analysis and Characterization, 2021, 26, 253-264.	0.9	2
1614	Thermal and mechanical properties of poly(lactic acid) filled with modified silicon dioxide: importance of the surface area. Polymer Bulletin, 2022, 79, 1409-1435.	1.7	6
1615	A Short Review on the Synthesis of Polylactic Acid by Reactive Extrusion and Static Mixing Reaction Techniques. Science of Advanced Materials, 2021, 13, 181-187.	0.1	0
1616	Confined crystallization of Poly(ethylene glycol) in spherulites of Poly(L-lactic acid) in a PLLA/PEG blend. Polymer, 2021, 215, 123370.	1.8	15
1617	High T _m Poly(<scp>l</scp> â€lactide)s by Means of Bismuth Catalysts?. Macromolecular Chemistry and Physics, 2021, 222, 2100019.	1.1	3
1618	Effects of heteroâ€armed starâ€shaped PCLâ€PLA polymers with POSS core on thermal, mechanical, and morphological properties of PLA. Journal of Applied Polymer Science, 2021, 138, 50712.	1.3	15
1619	Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds. Applied Materials Today, 2021, 22, 100923.	2.3	18
1620	Two-dimensional clay nanosheet-reinforced polytetrafluoroethylene composites and their mechanical/tribological studies. Materials Today Communications, 2021, 26, 102026.	0.9	6
1621	Advances in peroxideâ€initiated graft modification of thermoplastic biopolyesters by reactive extrusion. Canadian Journal of Chemical Engineering, 2021, 99, 1870-1884.	0.9	8
1622	Effect of 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer on crystallization behavior of poly(Lâ€'lactic acid) as nucleation agent and mobility promoter. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3207-3216.	2.0	6
1623	Effect of bubble nucleating agents derived from biochar on the foaming mechanism of poly lactic acid foams. Applied Surface Science Advances, 2021, 3, 100059.	2.9	2
1624	Prediction of tensile modulus from calorimetric melting curves of polylactic acid with pronounced cold crystallization ability. Polymer Testing, 2021, 95, 107112.	2.3	7
1625	Two-Stage Crystallization Kinetics and Morphological Evolution with Stereocomplex Crystallite-Induced Enhancement for Long-Chain Branched Polylactide/Poly(D-lactic acid) Blends. Industrial & Long-Chain Branched Polylactide/Poly(D-lactic acid) Blends.	1.8	11
1626	Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique. Journal of Polymer Engineering, 2021, 41, 490-498.	0.6	3
1627	Roadmap to Biodegradable Plasticsâ€"Current State and Research Needs. ACS Sustainable Chemistry and Engineering, 2021, 9, 6170-6187.	3.2	112
1628	The effects of multi-walled carbon nanotube additives with different functionalities on the properties of polycarbonate/poly (lactic acid) blend. Journal of Polymer Research, 2021, 28, 1.	1.2	8

#	Article	IF	CITATIONS
1629	Biological compatibility, thermal and in vitro simulated degradation for poly(p) Tj ETQq $0\ 0\ 0$ rgBT /Overlock 10 Tf Materials Research - Part B Applied Biomaterials, 2021, 109, 1817-1835.	50 747 Td 1.6	l (â€dioxano 1
1630	Effects of poly(hexylene succinate) amount on the crystallization and molecular mobility of poly(lactic acid) copolymers. Thermochimica Acta, 2021, 698, 178883.	1.2	10
1631	Influence of Reactive Chain Extension on the Properties of 3D Printed Poly(Lactic Acid) Constructs. Polymers, 2021, 13, 1381.	2.0	20
1632	Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42.	1.4	83
1633	Performance and multi-scale investigation on the phase miscibility of poly(lactic acid)/amided silica nanocomposites. International Journal of Biological Macromolecules, 2021, 177, 271-283.	3.6	17
1635	Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior. Polymers, 2021, 13, 1167.	2.0	19
1636	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	2.0	208
1638	Thermomechanical Properties and Thermal Behavior of Poly(Lactic Acid) Composites Reinforced with TiO ₂ Nanofiller. Solid State Phenomena, 0, 317, 341-350.	0.3	3
1639	Mechanical and Water Uptake Properties of Epoxy Nanocomposites with Surfactant-Modified Functionalized Multiwalled Carbon Nanotubes. Nanomaterials, 2021, 11, 1234.	1.9	32
1640	Toughness improvement of poly(lactic acid) with poly(vinyl propionate)â€grafted natural rubber. Journal of Applied Polymer Science, 2021, 138, 50980.	1.3	1
1641	c-Perpendicular Orientation of Poly(ÊŸ-lactide) Films. Polymers, 2021, 13, 1572.	2.0	5
1642	Interaction of Poly L-Lactide and Tungsten Disulfide Nanotubes Studied by In Situ X-ray Scattering during Expansion of PLLA/WS2NT Nanocomposite Tubes. Polymers, 2021, 13, 1764.	2.0	6
1643	A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactide. Polymer Testing, 2021, 97, 107160.	2.3	8
1644	Degradation of Polylactide–Polyethylene Blends in Aqueous Media. Russian Journal of Applied Chemistry, 2021, 94, 639-646.	0.1	3
1645	Injection Molding, Closures, Rotational Molding, Compression Molding, and Tubes., 2021,, 293-308.		0
1646	Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Propertiesâ€"From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 2021, 13, 1822.	2.0	233
1647	Influence of extrusion screw speed on the properties of halloysite nanotube impregnated polylactic acid nanocomposites. Journal of Polymer Engineering, 2021, 41, 499-508.	0.6	3
1648	Effect of jute fibers on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 2021, 28, 5513.	2.4	20

#	Article	IF	CITATIONS
1649	Poly (vinyl alcohol)/polylactic acid blend film with enhanced processability, compatibility, and mechanical property fabricated via melt processing. Journal of Applied Polymer Science, 2021, 138, 51204.	1.3	16
1650	Thermomechanical, Crystallization and Melting Behavior of Plasticized Poly(Lactic Acid) Nanocomposites. Solid State Phenomena, 0, 317, 351-360.	0.3	1
1651	Mixing of Racemic Poly(L-lactide)/Poly(D-lactide) Blend with Miscible Poly(D,L-lactide): Toward All Stereocomplex-type Polylactide with Strikingly Enhanced SC Crystallizability. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1470-1480.	2.0	19
1652	Effect of glycidyl methacrylate-grafted poly(ethylene octene) on the compatibility in PLA/PBAT blends and films. Korean Journal of Chemical Engineering, 2021, 38, 1746-1755.	1.2	11
1653	Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour. Renewable Energy, 2021, 171, 254-265.	4.3	28
1654	The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Composites Modified by Electron Beam Irradiation. Applied Sciences (Switzerland), 2021, 11, 5317.	1.3	9
1655	Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View, 2021, 2, 20200142.	2.7	9
1656	Recycling and rheology of poly(lactic acid) (PLA) to make foams using supercritical fluid. Physics of Fluids, 2021, 33, 067119.	1.6	9
1657	New non-destructive optical approach to determine the crystallization kinetics of PLA under a CO2 atmosphere with spatial and temporal resolution. Polymer Testing, 2021, 98, 107201.	2.3	6
1658	Gum Rosin as a Size Control Agent of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Domains to Increase the Toughness of Packaging Formulations Based on Polylactic Acid (PLA). Polymers, 2021, 13, 1913.	2.0	9
1659	Improving the sustainable performance of Biopolymers using nanotechnology. Polymer-Plastics Technology and Materials, 0 , , 1 - 31 .	0.6	3
1660	Study on the preferential distribution of acetyl tributyl citrate in poly(lactic) acid-poly(butylene) Tj ETQq1 1 0.7845	314 rgBT / 2.3	'Overlock 1
1661	Annealing and crystallization kinetics of poly(lactic acid) pieces obtained by additive manufacturing. Polymer Engineering and Science, 2021, 61, 2097-2104.	1.5	9
1662	The Characterization of Nanocomposites from Poly(lactic acid) with Nanocarbon Black as the Reinforcement. , 2021 , , .		О
1663	Nanocomposite Materials Based on TMDCs WS2 Modified Poly(I-Lactic Acid)/Poly(Vinylidene Fluoride) Polymer Blends. Polymers, 2021, 13, 2179.	2.0	1
1664	Corotating twinâ€screw extrusion of poly(lactic acid) <scp>PLA </scp> /poly(butylene) Tj ETQq1 1 0.784314 rgBT /cfor alcoholic beverages. Journal of Applied Polymer Science, 2021, 138, 51294.	Overlock : 1.3	10 Tf 50 14 7
1665	Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. International Journal of Biological Macromolecules, 2021, 183, 222-234.	3.6	21
1666	Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication. Progress in Additive Manufacturing, 2022, 7, 65-75.	2.5	29

#	Article	IF	CITATIONS
1667	Poly lactic acid (PLA) polymers: from properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1117-1130.	1.8	47
1668	Super enhancement of rheological properties of amorphous PLA through generation of a fiberlike oriented crystal network. Journal of Rheology, 2021, 65, 493-505.	1.3	6
1669	Structural Evolution of Polyglycolide and Poly(glycolide- <i>co</i> -lactide) Fibers during the Heat-Setting Process. Biomacromolecules, 2021, 22, 3342-3356.	2.6	6
1670	The control of expansion ratios and cellular structure of supercritical CO2-aid thermoplastic starch foams using crosslinking agents and nano-silica particles. Journal of Polymer Research, 2021, 28, 1.	1.2	5
1671	The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(I-lactic acid) Nanocomposites. Polymers, 2021, 13, 2214.	2.0	5
1672	Glycidyl methacrylate functionalized star-shaped polylactide for electron beam modification of polylactic acid: Synthesis, irradiation effects and microwave-resistant studies. Polymer Degradation and Stability, 2021, 189, 109619.	2.7	9
1673	Modulation of Crystallinity through Radiofrequency Electromagnetic Fields in PLLA/Magnetic Nanoparticles Composites: A Proof of Concept. Materials, 2021, 14, 4300.	1.3	1
1674	Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers, 2021, 13, 2458.	2.0	13
1675	Thermal and Mechanical Assessment of PLA-SEBS and PLA-SEBS-CNT Biopolymer Blends for 3D Printing. Applied Sciences (Switzerland), 2021, 11, 6218.	1.3	12
1676	Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Molecules, 2021, 26, 4557.	1.7	9
1677	Mechanical, Morphological and Thermal Properties of Woven Polyester Fiber Reinforced Polylactic Acid (PLA) Composites. Fibers and Polymers, 2022, 23, 234-242.	1.1	9
1678	Triallyl <scp>isocyanurateâ€assisted</scp> grafting of maleic anhydride to poly(lactic acid): Efficient compatibilizers for poly(lactic acid)/talc composites with enhanced mechanical properties. Journal of Applied Polymer Science, 2022, 139, 51488.	1.3	2
1679	Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material. Polymer, 2021, 229, 124027.	1.8	38
1680	Preparations of Poly(lactic acid) Dispersions in Water for Coating Applications. Polymers, 2021, 13, 2767.	2.0	9
1681	Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites. Iranian Polymer Journal (English Edition), 2021, 30, 1251-1262.	1.3	34
1682	Investigation of the Thermal and Hydrolytic Degradation of Polylactide during Autoclave Foaming. Polymers, 2021, 13, 2624.	2.0	12
1683	Improving Recycled Poly(lactic Acid) Biopolymer Properties by Chain Extension Using Block Copolymers Synthesized by Nitroxide-Mediated Polymerization (NMP). Polymers, 2021, 13, 2791.	2.0	5
1684	Ultrahigh performance polylactide achieved by the design of molecular structure. Materials and Design, 2021, 206, 109779.	3.3	8

#	Article	IF	CITATIONS
1685	Effects of Processing Conditions and Plasticizing-Reinforcing Modification on the Crystallization and Physical Properties of PLA Films. Membranes, 2021, 11, 640.	1.4	10
1686	Characteristics of 3D Printable Bronze PLA-Based Filament Composites for Gaskets. Materials, 2021, 14, 4770.	1.3	3
1687	Effect of In-Mold Annealing on the Properties of Asymmetric Poly(l-lactide)/Poly(d-lactide) Blends Incorporated with Nanohydroxyapatite. Polymers, 2021, 13, 2835.	2.0	6
1688	Evaluating the Potential of Polylactide Nonwovens as Bio-Based Media for Air Filtration. Textiles, 2021, 1, 268-282.	1.8	0
1689	Biopolymer Nanocomposite Materials Based on Poly(L-lactic Acid) and Inorganic Fullerene-like WS2 Nanoparticles. Polymers, 2021, 13, 2947.	2.0	7
1690	Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers, 2021, 13, 2899.	2.0	11
1691	Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard?. Science of the Total Environment, 2021, 783, 146994.	3.9	32
1692	Branched copolylactides: the effect of the synthesis method on their properties. Journal of Physics: Conference Series, 2021, 1990, 012046.	0.3	2
1693	Design, manufacturing and preliminary assessment of the suitability of bioplastic bottles for wine packaging. Polymer Testing, 2021, 100, 107227.	2.3	11
1694	Polylactic Acid/Cerium Fluoride Films: Effects of Cerium Fluoride on Mechanical Properties, Crystallinity, Thermal Behavior, and Transparency. Materials, 2021, 14, 4882.	1.3	3
1695	Injectionâ€stretch blow molding of poly (lactic acid)/polybutylene succinate blends for the manufacturing of bottles. Journal of Applied Polymer Science, 2022, 139, 51557.	1.3	3
1696	Application of CO2-Assisted Polymer Compression to Polylactic Acid and the Relationship between Crystallinity and Plasticization. Compounds, 2021, 1, 75-82.	1.0	1
1697	Tunable polylactide plasticizer design: Rigid stereoisomers. European Polymer Journal, 2021, 157, 110649.	2.6	14
1699	Enhancing catalytic activity via metal tuning of zeolitic imidazole frameworks for ring opening polymerization of l-lactide. Applied Catalysis A: General, 2021, 624, 118319.	2.2	4
1700	Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polymer Testing, 2021, 101, 107282.	2.3	58
1701	Modified Polylactic Acid with Improved Impact Resistance in the Presence of a Thermoplastic Elastomer and the Influence of Fused Filament Fabrication on Its Physical Properties. Journal of Composites Science, 2021, 5, 232.	1.4	3
1702	Super Tough Polylactic Acid Plasticized with Epoxidized Soybean Oil Methyl Ester for Flexible Food Packaging. ACS Applied Polymer Materials, 2021, 3, 5087-5095.	2.0	46
1703	Effect of Exposure in Aqueous Medium at Elevated Temperature on the Structure of Nonwoven Materials Based on Polylactide and Natural Rubber. Polymer Science - Series A, 2021, 63, 515-525.	0.4	4

#	Article	IF	CITATIONS
1704	Characterization of CaCO3 Filled Poly(lactic) Acid and Bio Polyethylene Materials for Building Applications. Polymers, 2021, 13, 3323.	2.0	6
1705	Thermal crosslinking of polylactide/star-shaped polycaprolactone for toughening and resistance to thermal deformation. Polymer Journal, 0, , .	1.3	6
1706	Biomaterials Printing for Sustainability. Springer Tracts in Additive Manufacturing, 2022, , 15-28.	0.2	1
1707	Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society, 2021, 143, 15784-15790.	6.6	42
1708	Polylactic acid production from biotechnological routes: A review. International Journal of Biological Macromolecules, 2021, 186, 933-951.	3.6	69
1709	Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis. Carbohydrate Polymers, 2021, 268, 118243.	5.1	17
1710	4D printing of shape memory polylactic acid (PLA). Polymer, 2021, 230, 124080.	1.8	103
1711	Influence of chemistry and fiber diameter of electrospun PLA, PCL and their blend membranes, intended as cell supports, on their biological behavior. Polymer Testing, 2021, 103, 107364.	2.3	23
1712	ROPs of l-lactide catalyzed by neat $Tin(II)$ 2-ethylhexanoate - Influence of the reaction conditions on Tm and \hat{I} "Hm. Polymer, 2021, 231, 124122.	1.8	5
1713	Constructing robust chain entanglement network, well-defined nanosized crystals and highly aligned graphene oxide nanosheets: Towards strong, ductile and high barrier Poly(lactic acid) nanocomposite films for green packaging. Composites Part B: Engineering, 2021, 222, 109048.	5.9	29
1714	Environmental performance of bioplastic packaging on fresh food produce: A consequential life cycle assessment. Journal of Cleaner Production, 2021, 317, 128377.	4.6	34
1715	Flexible eco-friendly multilayer film heaters. Composites Part B: Engineering, 2021, 224, 109208.	5.9	16
1716	Improving thermomechanical properties of fused filament fabrication printed parts by using nanocomposites. Composites Part B: Engineering, 2021, 224, 109227.	5.9	3
1717	Heat insulating PLA/HNTs foams with enhanced compression performance fabricated by supercritical carbon dioxide. Journal of Supercritical Fluids, 2021, 177, 105344.	1.6	18
1718	Reactive processing of poly(lactic acid)/poly(ethylene octene) blend film with tailored interfacial intermolecular entanglement and toughening mechanism. Journal of Materials Science and Technology, 2022, 98, 186-196.	5.6	11
1719	Polylactic acid and polyhydroxybutyrate chemistry. , 2021, , 185-211.		0
1720	Effects of star-shaped PCL having different numbers of arms on the mechanical, morphological, and thermal properties of PLA/PCL blends. Journal of Polymer Research, 2021, 28, 1.	1.2	11
1721	Polylactide (PLA): molecular structure and properties. , 2021, , 97-143.		2

#	Article	IF	Citations
1722	About the transformation of low $\langle i > T < /i > < sub > m < sub > m < /i > T < /i > < sub > m < /sub > m < m < mu < mu < mu < mu < mu < mu <$	1.7	15
1723	Rotational Molding of Poly(Lactic Acid)/Polyethylene Blends: Effects of the Mixing Strategy on the Physical and Mechanical Properties. Polymers, 2021, 13, 217.	2.0	13
1724	Agro-based green biocomposites for packaging applications. , 2021, , 235-254.		1
1725	Recycling of plastics and composites materials and degradation technologies for bioplastics and biocomposites., 2021,, 311-333.		2
1726	Utilization of sustainable biopolymers in textile processing. , 2021, , 453-469.		3
1727	Effect of Silane Functionalization on Properties of Poly(Lactic Acid)/Palygorskite Nanocomposites. Inorganics, 2021, 9, 3.	1.2	11
1730	High molecular weight poly(<scp>l</scp> â€lactide) via <scp>ringâ€opening polymerization</scp> with bismuth subsalicylate–The role of cocatalysts. Journal of Applied Polymer Science, 2021, 138, 50394.	1.3	7
1731	Crystallization behavior of poly(lactic acid) and its blends. Polymer Crystallization, 2021, 4, e10171.	0.5	7
1732	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€shear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	1.5	13
1733	Effect of Crushing Method of Wasted Tire on Mechanical Behavior on PLA Composites. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 85-91.	0.3	2
1734	Metabolic Engineering of Escherichia coli for Lactic Acid Production from Renewable Resources. , 2017, , 125-145.		3
1735	The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. Microbiology Monographs, 2013, , 1-49.	0.3	6
1736	Characterization of Kenaf/Aloevera Fiber Reinforced PLA-Hybrid Biocomposite. Lecture Notes in Mechanical Engineering, 2020, , 1061-1067.	0.3	7
1737	Barrier functionality of SiO x layers and their effect on mechanical properties of SiO x /PLA composite films. Journal of Coatings Technology Research, 2018, 15, 505-514.	1.2	7
1738	Significant enhancement of notched Izod impact strength of PLA-based blends through encapsulating PA11 particles of low amounts by EGMA elastomer. Applied Surface Science, 2020, 526, 146657.	3.1	20
1740	Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing. Journal of Wood Chemistry and Technology, 2019, 39, 14-30.	0.9	73
1741	Bone Substitutes: Artificial Biomimetic., 0,, 1124-1136.		1
1742	Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Textile Reseach Journal, 2021, 91, 1641-1669.	1.1	44

#	Article	IF	CITATIONS
1743	Development and Applications of Sustainable Polylactic Acid Parts., 2016,, 430-485.		1
1744	Physical and tensile properties of chemically modified wheat straw/poly lactic acid composites. International Journal of Biosciences, 2015, 6, 85-90.	0.4	2
1745	Effect of Chain Extension on Thermal Stability Behaviors of Polylactide Bioplastics. Oriental Journal of Chemistry, 2015, 31, 635-641.	0.1	12
1746	Preparation of Stereocomplex Polylactide Bioplastics from Star-shaped/Linear Polylactide Blending. Oriental Journal of Chemistry, 2015, 31, 1551-1558.	0.1	2
1747	Investigation of Long Cellulose Fibre Reinforced and Injection Moulded Poly(lactic acid) Biocomposites. Acta Technica Jaurinensis, 2018, 11, 150-164.	0.6	6
1748	Effectiveness assessment of TiO ₂ -Al ₂ O ₃ nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films. Journal of Polymer Engineering, 2020, 40, 848-858.	0.6	21
1749	Industrial Composting of Poly(Lactic Acid) Bottles. Journal of Testing and Evaluation, 2010, 38, 717-723.	0.4	4
1750	The Effects of Blending Ratio of Poly(lactic acid)/POSS Cored Star Poly(ε-caprolactone) Biopolymers. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 649-660.	0.4	1
1751	Pengaruh Konsentrasi Substrat Kulit Nanas dan Kecepatan Pengadukan terhadap Pertumbuhan Lactobacillus plantarum untuk Produksi Asam Laktat. Jurnal Rekayasa Kimia & Lingkungan, 2013, 9, 144-151.	0.5	2
1752	Fabrication of Plga/Hap and Plga/Phb/Hap Fibrous Nanocomposite Materials for Osseous Tissue Regeneration. Autex Research Journal, 2014, 14, 95-110.	0.6	8
1754	Crystallization kinetics of poly(lactic acid)-talc composites. EXPRESS Polymer Letters, 2011, 5, 849-858.	1.1	283
1755	Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams. EXPRESS Polymer Letters, 2016, 10, 176-186.	1.1	19
1756	Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
1758	Effect of Poly($\hat{l}\mu$ -caprolactone-b-tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends. Journal of Renewable Materials, 2019, 7, 129-138.	1.1	21
1760	On the Optical Activity of Poly(l-lactic acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes. International Journal of Molecular Sciences, 2021, 22, 8.	1.8	10
1761	EFFECT OF MINERAL FILLERS ON CRYSTALLIZATION AND MELTING BEHAVIOR OF POLY(LACTID ACID)/MINERAL FILLER COMPOSITES. Acta Polymerica Sinica, 2012, 012, 952-957.	0.0	3
1762	EFFECT OF POLY(ACRYLIC ACID) ON THE RHEOLOGICAL AND THERMAL PROPERTIES OF POLY(LACTIC ACID). Acta Polymerica Sinica, 2013, 013, 922-927.	0.0	2
1763	CRYSTALLIZATION STRUCTURES AND THERMAL PROPERTIES OF HIGH HEAT-RESISTANCE PLLA/PDLA BLENDS. Acta Polymerica Sinica, 2013, 013, 1006-1012.	0.0	1

#	Article	IF	CITATIONS
1764	Biodegradable Linear/Star-shaped Poly(L-lactide) Blends Prepared by Single Step Ring-opening Polymerization. Journal of Applied Sciences, 2012, 12, 1364-1370.	0.1	2
1765	Bacterial Lipases as Potential Industrial Biocatalysts: An Overview. Research Journal of Microbiology, 2011, 6, 1-24.	0.2	119
1766	Does magnesium compromise the high temperature processability of novel biodegradable and bioresorbables PLLA/Mg composites?. Revista De Metalurgia, 2014, 50, e011.	0.1	4
1767	Dynamic Mechanical Properties and Thermal Stability of Poly(lactic Acid) and Poly(butylene Succinate) Blends Composites. Journal of Fiber Bioengineering and Informatics, 2013, 6, 85-94.	0.2	98
1768	Development of Biobased Poly(Lactic Acid)/Epoxidized Natural Rubber Blends Processed by Electrospinning: Morphological, Structural and Thermal Properties. Materials Sciences and Applications, 2016, 07, 210-219.	0.3	7
1769	Preparation and Characterization of Raw and Chemically Modified Sponge-Gourd Fiber Reinforced Polylactic Acid Biocomposites. Materials Sciences and Applications, 2018, 09, 281-304.	0.3	3
1770	Batch Foaming of Amorphous Poly (DL-Lactic Acid) and Poly (Lactic Acid-co-Glycolic Acid) with Supercritical Carbon Dioxide: CO2 Solubility, Intermolecular Interaction, Rheology and Morphology. , 0, , .		2
1771	Recent Advances in Biodegradable Polymers. Journal of Research Updates in Polymer Science, 2018, 7, .	0.3	3
1772	Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent. International Journal of Chemical Engineering and Applications (IJCEA), 2016, 7, 85-88.	0.3	30
1773	Study on Isothermal Crystallization Characteristics of PLA Film by Adding APP as a Nucleation Agent. Korean Chemical Engineering Research, 2012, 50, 582-587.	0.2	3
1774	Emerging Trend of Bio-plastics and Its Impact on Society. Biotechnology Journal International, 0, , 1-10.	0.2	11
1775	Rheological behavior, crystallization properties, and foaming performance of chain-extended poly (lactic acid) by functionalized epoxy. RSC Advances, 2021, 11, 32799-32809.	1.7	16
1776	In-Situ Isothermal Crystallization of Poly(I-lactide). Polymers, 2021, 13, 3377.	2.0	5
1777	Novel Biobased Polylactic Acid/Poly(pentamethylene 2,5-furanoate) Blends for Sustainable Food Packaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 13742-13750.	3.2	29
1778	Bioplastics and Carbon-Based Sustainable Materials, Components, and Devices: Toward Green Electronics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49301-49312.	4.0	27
1779	Colloidal Crystal Thin Films with Square Lattice Nanoprotrusions Formed by Selfâ€Assembly via Spinâ€Coating and Heating. ChemistrySelect, 2021, 6, 9920-9925.	0.7	0
1780	Effects of auxiliary heat on the interlayer bonds and mechanical performance of polylactide manufactured through fused deposition modeling. Polymer Testing, 2021, 104, 107390.	2.3	11
1781	Shelf Life of Foods in Biobased Packaging. , 2009, , 353-365.		1

#	Article	IF	CITATIONS
1782	Matching Crops for Selected Bioproducts. , 2011, , 109-118.		0
1783	Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature. Korean Chemical Engineering Research, 2011, 49, 611-616.	0.2	4
1784	EFFECT OF NUCLEATING AGENT AND ITS ADJUVANT ON CRYSTALLIZATION BEHAVIORS OF POLY(LACTIC ACID). Acta Polymerica Sinica, 2013, 013, 949-955.	0.0	0
1785	EVALUATION OF BIODEGRADABILITY OF POLYLACTIC ACID FILMS IN THE SOIL. Journal of Agricultural Chemistry and Biotechnology, 2015, 6, 461-472.	0.0	0
1786	Biodegradable Polymers: Blends and Composites. , 0, , 625-637.		0
1787	Biodegradable Poly(Lactic Acid) and Its Composites. , 2016, , 890-931.		O
1788	Overview of the Sustainable Materials for Composites and Their Industrial Adaptability., 2016, , 155-175.		0
1789	Foams: Polylactic Acid-Based System for Tissue Engineering. , 0, , 3469-3488.		O
1790	Polylactic Acid: Properties and Applications. , 0, , 6449-6459.		0
1791	Polylactic Acid: Microwave-Assisted Synthesis. , 0, , 6433-6448.		0
1792	Scaffolds: Regenerative Medicine. , 0, , 7093-7113.		0
1793	Innovative PLA Bead Foam Technology. Polymeric Foams Series, 2016, , 159-199.	0.0	O
1796	FORMATION AND PROPERTIES OF DBC/PLA MICROFIBRES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 5-13.	0.1	0
1798	Preparation of Open Cellular Polylactic Acid Foam by Coreback Foam Injection Molding. Seikei-Kakou, 2018, 30, 492-498.	0.0	0
1799	Thermal and Dynamic Mechanical Analyses of Poly(Lactic Acid)/Poly(Ethylene Glycol) Blends. Academic Perspective Procedia, 2018, 1, 526-535.	0.0	0
1800	Advances in Bio-based Polymer Membranes for CO2 Separation. Materials Horizons, 2019, , 277-307.	0.3	1
1801	Biodegradable Composite Scaffold for Bone Tissue Regeneration. , 2019, , 657-679.		0
1802	Concept of an Evaluation Technique for Planar Elongational Stress and Relaxation Time Using Hoop Stress in Swirling Flow. Nihon Reoroji Gakkaishi, 2019, 47, 207-217.	0.2	O

#	Article	IF	CITATIONS
1803	Lignin and Its Composites. Springer Series on Polymer and Composite Materials, 2020, , 181-202.	0.5	0
1804	Natural edible films and coatings applied in food: a bibliographic review. Research, Society and Development, 2020, 9, e578997613.	0.0	5
1805	A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules, 2021, 26, 6446.	1.7	39
1806	Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. International Journal of Biological Macromolecules, 2021, 193, 874-892.	3.6	38
1807	Thermal Properties and Structural Evolution of Poly(<scp>l</scp> -lactide)/Poly(<scp>d</scp> -lactide) Blends. Macromolecules, 2021, 54, 10163-10176.	2.2	31
1808	An outlook on recent progress in poly(lactic acid): polymerization, modeling, and optimization. Iranian Polymer Journal (English Edition), 2022, 31, 59.	1.3	6
1809	Impact of Accelerated Aging on the Performance Characteristics of "Green" Packaging Material of Polylactide. Advances in Science and Technology Research Journal, 2020, 14, 1-10.	0.4	1
1810	The Impact of UnCalcined & Calcined Eggshell Powder as BioFiller for Polylacticacid. Diyala Journal of Engineering Sciences, 2020, 13, 71-79.	0.3	3
1811	The influences of PLA into PMMA on crystallinity and thermal properties enhancement-based hybrid polymer in gel properties. Materials Today: Proceedings, 2022, 49, 3105-3111.	0.9	13
1812	Toughening Polylactic Acid by a Biobased Poly(Butylene 2,5-Furandicarboxylate)- <i>b</i> Poly(Ethylene) Tj ETQq1 Biomacromolecules, 2021, 22, 374-385.	1 0.78431 2.6	l 4 rgBT /Ov 17
1812 1813			
	Biomacromolecules, 2021, 22, 374-385.		17
1813	Biomacromolecules, 2021, 22, 374-385. Nano-biodegradation of polymers. , 2022, , 213-238.		8
1813 1814	Biomacromolecules, 2021, 22, 374-385. Nano-biodegradation of polymers., 2022, , 213-238. Plastics and Sustainability., 2021, , 489-504.	2.6	8
1813 1814 1815	Biomacromolecules, 2021, 22, 374-385. Nano-biodegradation of polymers., 2022, , 213-238. Plastics and Sustainability., 2021, , 489-504. Foams and their applications. Supercritical Fluid Science and Technology, 2021, 9, 1-20. Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers.	0.5	17 8 8 1 3
1813 1814 1815 1816	Biomacromolecules, 2021, 22, 374-385. Nano-biodegradation of polymers., 2022, , 213-238. Plastics and Sustainability., 2021, , 489-504. Foams and their applications. Supercritical Fluid Science and Technology, 2021, 9, 1-20. Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers. Materials Horizons, 2020, , 341-362. The effect of different printing parameters on mechanical and thermal properties of PLA specimens.	0.5	17 8 1 3 0 O
1813 1814 1815 1816	Biomacromolecules, 2021, 22, 374-385. Nano-biodegradation of polymers., 2022, , 213-238. Plastics and Sustainability., 2021, , 489-504. Foams and their applications. Supercritical Fluid Science and Technology, 2021, 9, 1-20. Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers. Materials Horizons, 2020, , 341-362. The effect of different printing parameters on mechanical and thermal properties of PLA specimens. Gradus, 2020, 7, 166-173. Alternative Materials for Printed Circuit Board Production: An Environmental Perspective.	0.5 0.3 0.1	17 8 1 3 0 2 2

#	Article	IF	CITATIONS
1821	Thermal and Thermooxidative Degradation of Blends Based on Polylactide and Polyethylene. Russian Metallurgy (Metally), 2020, 2020, 1182-1185.	0.1	1
1822	Features of obtaining and properties of binary blends of polylactides. Review. Chemistry Technology and Application of Substances, 2020, 3, 146-156.	0.2	0
1823	Morphology and Antibacterial Properties of Composites Based on Polylactide and Manganese(III) Complex with Tetraphenylporphyrin. Russian Journal of Physical Chemistry B, 2020, 14, 1022-1027.	0.2	8
1824	Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 2021, 23, 8795-8820.	4.6	77
1825	A Study of the Elastic Properties of the Polymer PLA by Static and Ultrasonic Methods. Acoustical Physics, 2021, 67, 375-380.	0.2	1
1826	Additive manufacturing of multifunctional polylactic acid (PLA)—multiwalled carbon nanotubes (MWCNTs) nanocomposites. Nanocomposites, 2021, 7, 184-199.	2.2	40
1827	Use of Biochar as Filler for Biocomposite Blown Films: Structure-Processing-Properties Relationships. Polymers, 2021, 13, 3953.	2.0	23
1828	Crazing and Toughness in Diblock Copolymer-Modified Semicrystalline Poly(<scp>I</scp> -lactide). Macromolecules, 2021, 54, 11154-11169.	2.2	13
1829	Tailoring of advanced poly(lactic acid)â€based materials: A review. Journal of Applied Polymer Science, 2022, 139, 51839.	1.3	33
1830	Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: Exploring the role of nanofibrillated stereocomplex polylactide crystals. International Journal of Biological Macromolecules, 2021, 193, 2210-2220.	3.6	22
1831	Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyping Journal, 2022, 28, 884-894.	1.6	21
1832	Investigation Of Physical Properties Of Poly(Lactic Acid)/Eggshell Powder Composite Films. European Journal of Science and Technology, 0, , .	0.5	0
1833	Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 2022, 14, 202.	2.0	157
1834	Deposition of Biocompatible Polymers by 3D Printing (FDM) on Titanium Alloy. Polymers, 2022, 14, 235.	2.0	4
1835	Valorization of disposable polylactide (PLA) cups by rotational molding technology: The influence of pre-processing grinding and thermal treatment. Polymer Testing, 2022, 107, 107481.	2.3	14
1836	Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydrate Polymers, 2022, 278, 118973.	5.1	14
1837	Infrared bands to distinguish amorphous, meso and crystalline phases of poly(lactide)s: Crystallization and phase transition pathways of amorphous, meso and co-crystal phases of poly(ÊŸ-lactide) in the heating process. Polymer, 2022, 240, 124495.	1.8	12
1838	Effect of Ozone on the Structure and Dynamics of Polylactide-Polyethylene Blends. Russian Journal of Physical Chemistry B, 2021, 15, 854-860.	0.2	1

#	Article	IF	Citations
1839	Comparison of the efficiency of the most effective heterogeneous nucleating agents for Poly(lactic) Tj ETQq0 0 0) rgBT /Ov	erlock 10 Tf 5
1840	Substantially Enhanced Stereocomplex Crystallization of Poly(L-lactide)/Poly(D-lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. Crystals, 2022, 12, 210.	1.0	8
1841	Biodegradable nanocomposites: Effective alternative of synthetic polymer in electronic industries. , 2022, , 423-443.		0
1842	SnOct ₂ â€Catalyzed and Alcoholâ€Initiated ROPS of <scp>I</scp> â€Lactide—Control of the Molecular Weight and the Role of Cyclization. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	10
1843	Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends. Journal of Polymer Engineering, 2022, 42, 214-222.	0.6	1
1844	A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polymer Bulletin, 2023, 80, 47-87.	1.7	30
1845	Improved mechanical and EMI shielding properties of PLA/PCL composites by controlling distribution of PIL-modified CNTs. Advanced Composites and Hybrid Materials, 2022, 5, 991-1002.	9.9	17
1846	Modeling the Effect of In Situ Nozzle-Integrated Compression Rolling on the Void Reduction and Filaments-Filament Adhesion in Fused Filament Fabrication (FFF). Multiscale Science and Engineering, 0, , 1.	0.9	3
1847	Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Advanced Engineering Materials, 2022, 24, .	1.6	17
1848	Cellulose Nanocrystals-mediated Phase Morphology of PLLA/TPU Blends for 3D Printing. Chinese Journal of Polymer Science (English Edition), 2022, 40, 299-309.	2.0	4
1849	Toward simultaneous compatibilization and nucleation of fully biodegradabe nanocomposites: Effect of nanorod-assisted interfacial stereocomplex crystals in immiscible polymer blends. Composites Part B: Engineering, 2022, 234, 109708.	5.9	16
1850	Effect of thermal annealing and filler ball-milling on the properties of highly filled polylactic acid/pecan nutshell biocomposites. International Journal of Biological Macromolecules, 2022, 200, 350-361.	3.6	10
1851	Poly (lactic acid) blends with excellent low temperature toughness: A comparative study on poly (lactic acid) blends with different toughening agents. International Journal of Biological Macromolecules, 2022, 201, 662-675.	3.6	27
1852	Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. International Journal of Biological Macromolecules, 2022, 203, 369-378.	3.6	19
1853	N3/4-pyridinyl Schiff base copper(II) benzoate complexes: synthesis, crystal structures and ring-opening polymerization studies. Transition Metal Chemistry, 2022, 47, 113-126.	0.7	4
1854	Evaluation of the Oil-Rich Waste Fillers' Influence on the Tribological Properties of Polylactide-Based Composites. Materials, 2022, 15, 1237.	1.3	5
1855	Synergistic effects of a novel multi-branched polylactide ionomer on polylactide film. MRS Communications, 2022, 12, 160-167.	0.8	3
1856	Edible, Ultrastrong, and Microplasticâ€Free Bacterial Celluloseâ€Based Straws by Biosynthesis. Advanced Functional Materials, 2022, 32, .	7.8	42

#	Article	IF	CITATIONS
1857	Science and technology of polylactide. , 2022, , 31-49.		0
1858	Preparation of 4D printed peripheral vascular stent and its degradation behavior under fluid shear stress after deployment. Biomaterials Science, 2022, 10, 2302-2314.	2.6	15
1859	Crystallization of polylactides examined by vibrational circular dichroism of intra- and inter-chain chiral interactions. Soft Matter, 2022, 18, 2722-2725.	1.2	6
1860	Biodegradable and Bio-Based Environmentally Friendly Polymers. , 2022, , .		1
1862	Graphene Polymer Composites for Biomedical Applications. , 2022, , 435-470.		0
1863	Syntheses of polylactides by means of tin catalysts. Polymer Chemistry, 2022, 13, 1618-1647.	1.9	29
1864	Nanocellulose Based Plastics and Composites. , 2022, , 497-503.		1
1865	Processing technologies for polylactide-based blends. , 2022, , 127-138.		0
1866	Non-Covalent PS–SC–PI Triblock Terpolymers <i>via</i> Polylactide Stereocomplexation: Synthesis and Thermal Properties. Macromolecules, 2022, 55, 2832-2843.	2.2	7
1867	Effects of dicumyl peroxide on crossâ€linking pure poly(butylene succinate) foaming materials for high expansion and high mechanical strength. Polymers for Advanced Technologies, 2022, 33, 1706-1714.	1.6	1
1868	Influence of Biodegradable Component Nature on Biodegradation of Composites Based on Polyethylene. Key Engineering Materials, 0, 910, 623-629.	0.4	0
1869	Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers, 2022, 14, 977.	2.0	26
1870	Morphological Structures and Drug Release Effect of Multiple Electrospun Nanofibre Membrane Systems Based on PLA, PCL, and PCL/Magnetic Nanoparticle Composites. Journal of Nanomaterials, 2022, 2022, 1-19.	1.5	9
1871	Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polymer Bulletin, 2023, 80, 1117-1153.	1.7	19
1872	Cotton noil based cellulose microfibers reinforced polylactic acid composite films for improved water vapor and ultraviolet light barrier properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
1873	An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 2024, 14, 3057-3076.	2.9	11
1874	Compatibilization of PLA grafted maleic anhydrate through blending of thermoplastic starch (TPS) and nanoclay nanocomposites for the reduction of gas permeability. International Journal of Smart and Nano Materials, 2022, 13, 130-151.	2.0	9
1875	KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ×ZELLİKLERİNE ETKİSİ. Uludağ U of Engineering, 0, , 375-388.	niversity Jo	ournal of the

#	Article	IF	Citations
1876	A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorganic Chemistry and Applications, 2022, 2022, 1-28.	1.8	19
1877	Manufacturing High-Performance Polylactide by Constructing 3D Network Crystalline Structure with Adding Self-Assembly Nucleator. Industrial & Engineering Chemistry Research, 2022, 61, 4567-4578.	1.8	9
1878	Chemical modification of TiO2 with essential oils for its application in active packaging. Polymer Bulletin, $0, 1$.	1.7	2
1879	Preparation and characterization of polyvinyl alcohol/polylactic acid/titanium dioxide nanocomposite films enhanced by γâ€irradiation and its antibacterial activity. Journal of Applied Polymer Science, 2022, 139, .	1.3	10
1880	Thermal Properties and Dynamic Characteristics of Electrospun Polylactide/Natural Rubber Fibers during Disintegration in Soil. Polymers, 2022, 14, 1058.	2.0	10
1881	Rheological Response of Polylactic Acid Dispersions in Water with Xanthan Gum. ACS Omega, 2022, 7, 12536-12548.	1.6	3
1882	Combined effect of poly(ethylene glycol) and boron nitride nanosheets on the crystallization behavior and thermal properties of poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 2022, 147, 11147-11158.	2.0	2
1883	Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers, 2022, 14, 1477.	2.0	31
1884	Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability. Carbohydrate Polymers, 2022, 286, 119320.	5.1	44
1885	Surface treatment of biopolymer films Polylactic acid and Polyhydroxybutyrat with angular changing oxygen plasma â€' More than just gradual purification. Surfaces and Interfaces, 2022, 30, 101856.	1.5	3
1886	Biodegradable mulch films produced from soy-filled polymer resins. Materials Today Communications, 2022, 31, 103331.	0.9	6
1887	The Spectral Characteristics and Morphology of a Composite Material Based on Polylactide and Alkoxy-Substituted meso-Arylporphyrins. Polymer Science - Series B, 2021, 63, 905-914.	0.3	2
1888	Control of endâ€ofâ€ife oxygenâ€containing groups accumulation in biopolyesters through introduction of crosslinked polysaccharide particles. Polymer Engineering and Science, 2022, 62, 426-436.	1.5	0
1889	Technological features of obtaining polylactide extrusion products. Chemistry Technology and Application of Substances, 2021, 4, 179-187.	0.2	3
1890	Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial Drawing: Effect on Structure, Mechanical, and Thermal Properties. Nanomaterials, 2021, 11, 3308.	1.9	5
1891	Sandwich-Structured, Hydrophobic, Nanocellulose-Reinforced Polyvinyl Alcohol as an Alternative Straw Material. Polymers, 2021, 13, 4447.	2.0	8
1892	Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. Journal of Functional Biomaterials, 2021, 12, 71.	1.8	25
1893	Production and waste treatment of polyesters: application of bioresources and biotechniques. Critical Reviews in Biotechnology, 2023, 43, 503-520.	5.1	7

#	Article	IF	CITATIONS
1894	Effect of Melt Jet Spinning Process on Poly(lactic acid) Disposable Nonwoven Fabric Production. Fibers and Polymers, 0, , 1.	1.1	1
1895	Curing and morphology approaches of polyurethane/poly(ethylene glycol) foam upon poly(lactic acid) addition. Polymers for Advanced Technologies, 0, , .	1.6	3
1896	Selective Localization of Nanofiller on Mechanical Properties of Poly(lactic acid)/Poly(butylene) Tj ETQq0 0 0 rgBT Macromolecules, 2022, 55, 3287-3300.	/Overlock 2.2	10 Tf 50 66 16
1897	Fundamentals and Biotechnological Applications of Downstream Processing Technologies. RSC Green Chemistry, 2014, , 29-63.	0.0	O
1900	Role of stereocomplex in advancing mass transport and thermomechanical properties of polylactide. Green Chemistry, 2022, 24, 3416-3432.	4.6	14
1901	Mechanical Properties of Composites Based on Polylactide and Poly-3-Hydroxybutyrate with Rubbers. Russian Journal of Physical Chemistry B, 2022, 16, 162-166.	0.2	2
1902	Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-33.	1.0	43
1903	The Modification of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Melt Blending. Polymers, 2022, 14, 1725.	2.0	4
1904	High performance polyvinyl alcohol/polylactic acid materials: Facile preparation and improved properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
1905	The Influence of Solar Sintering on Copper Heat Exchanger Parts with Controlled 3D-Printed Morphology. Materials, 2022, 15, 3324.	1.3	2
1907	Poly(lactic acid)/artificially cultured diatom frustules nanofibrous membranes with fast and controllable degradation rates for air filtration. Advanced Composites and Hybrid Materials, 2022, 5, 1221-1232.	9.9	12
1908	Assessment of Surface, Structural, and Viscoelastic Properties of Immiscible Polylactic Acid/Polyvinylidene Fluoride Blends. Macromolecular Research, 0, , .	1.0	1
1909	Effect of ionic interactions on crystallization of star telechelic poly(l-lactide) ionomers. Polymer, 2022, 252, 124939.	1.8	2
1910	Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials, 2022, 435, 129057.	6.5	91
1911	Preparation and characterization of poly(lactic acid)/boron oxide nanocomposites: Thermal, mechanical, crystallization, and flammability properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
1912	Crystallization Kinetics of Commercial PLA Filament. Communications - Scientific Letters of the University of Zilina, 2017, 19, 15-19.	0.3	1
1913	Nucleating effect of boron nitride nanotubes on poly(lactic acid) crystallization. Colloid and Polymer Science, 2022, 300, 775-784.	1.0	4
1914	PLLA/Graphene Nanocomposites Membranes with Improved Biocompatibility and Mechanical Properties. Coatings, 2022, 12, 718.	1.2	2

#	Article	IF	CITATIONS
1915	Production of high-added value compounds from biomass., 2022,, 381-445.		2
1916	Liquid-Liquid Equilibria for Ternary Aqueous Mixture Containing Lactic Acid, Methyl Isobutyl Ketone at Elevated Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
1917	Different properties of poly(L-lactic acid) monofilaments and its corresponding braided springs after constrained and unconstrained annealing. Journal of Biomaterials Applications, 0, , 088532822210959.	1.2	0
1918	Characterisation of enzyme catalysed hydrolysation stage of poly(lactic acid) fibre surface by nanoscale thermal analysis: New mechanistic insight. Materials and Design, 2022, 219, 110810.	3.3	3
1924	Sustainable profiled poly(lactic acid) multifilaments with high moisture management performance for textiles. Textile Reseach Journal, 0, , 004051752211026.	1.1	1
1925	Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials, 2022, 15, 4312.	1.3	64
1926	Degradation kinetics and performances of poly(lactic acid) films in artificial seawater. Chemical Papers, 0, , .	1.0	1
1927	Development of Bioplastic and Biodegradable Plastics. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 249-283.	0.1	0
1928	Recent Advances in Production of Ecofriendly Polylactide (PLA)–Calcium Sulfate (Anhydrite II) Composites: From the Evidence of Filler Stability to the Effects of PLA Matrix and Filling on Key Properties. Polymers, 2022, 14, 2360.	2.0	10
1929	Crystallization effect of poly(L-lactic acid)/silver nanocomposites blends, on barrier and mechanical properties using glyceryl triacetate as plasticizer. Polymer Bulletin, 2023, 80, 5273-5290.	1.7	2
1930	Poly(lactic acid)/Polyethylenimine Functionalized Mesoporous Silica Biocomposite Films for Food Packaging. ACS Applied Polymer Materials, 2022, 4, 4632-4642.	2.0	10
1931	Performance of polylactic acid/polycaprolactone/microcrystalline cellulose biocomposites with different filler contents and maleic anhydride compatibilization. Polymer Composites, 2022, 43, 5179-5188.	2.3	13
1932	Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129464.	2.3	7
1933	Biodegradable plastics as a substitute to traditional polythenes: a step toward a safer environment., 2022, , 193-215.		1
1934	Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS2. Polymers, 2022, 14, 2692.	2.0	0
1935	Superior Ductile and High-barrier Poly(lactic acid) Films by Constructing Oriented Nanocrystals as Efficient Reinforcement of Chain Entanglement Network and Promising Barrier Wall. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1201-1212.	2.0	9
1936	Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid). Fibers and Polymers, 0, , .	1.1	1
1937	Biobased nucleation agents for poly-L-(lactic acid) â€" Effect on crystallization, rheological and mechanical properties. International Journal of Biological Macromolecules, 2022, 218, 588-600.	3.6	4

#	Article	IF	CITATIONS
1938	Deep Eutectic Solvent-Extracted Lignin as an Efficient Additive for Entirely Biobased Polylactic Acid Composites. ACS Applied Polymer Materials, 2022, 4, 5861-5871.	2.0	13
1939	Impact of Melt Processing Conditions on the Degradation of Polylactic Acid. Polymers, 2022, 14, 2790.	2.0	10
1940	Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Progress in Polymer Science, 2022, 132, 101579.	11.8	82
1941	Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites. International Journal of Biological Macromolecules, 2022, 216, 456-464.	3.6	14
1942	Highly active Ni–Mg–Al catalyst effect on carbon nanotube production from waste biodegradable plastic catalytic pyrolysis. Environmental Technology and Innovation, 2022, 28, 102845.	3.0	10
1943	Utilization of logging residue powder as a bio-based reinforcement for injection molded poly(lactic) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT /Overlock
1944	Biocomoposites of polylactic acid/ poly(butylene adipate-co-terephthalate) blends loaded with quinoa husk agro-waste: thermal and mechanical properties. Journal of Polymer Research, 2022, 29, .	1.2	3
1945	Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites. Journal of Polymer Engineering, 2022, .	0.6	O
1946	Engineered polylactide (PLA)–polyamide (PA) blends for durable applications: 1. PLA with high crystallization ability to tune up the properties of PLA/PA12 blends. European Journal of Materials, 2023, 3, 1-36.	0.8	1
1947	The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry. Polymers, 2022, 14, 3342.	2.0	1
1948	Multifunctional Porous Films Based on Polylactic Acid/Polycaprolactone Blend and Graphite Nanoplateles. ACS Applied Polymer Materials, 2022, 4, 6521-6530.	2.0	1
1949	Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics, 2022, 14, 1673.	2.0	8
1950	Effects of Titanium–Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly (Lactic) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
1951	Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal, 2022, 178, 111505.	2.6	21
1952	Poly(I-lactic acid) nucleation by alkylated carbon black. Polymer, 2022, 256, 125237.	1.8	3
1953	Poly(lactic acid) composites with few layer graphene produced by noncovalent chemistry. Polymer Composites, 2022, 43, 8409-8425.	2.3	3
1954	Improvement in thermal stability, elastic modulus, and impact strength of Poly(lactic acid) blends with modified polyketone. Polymer, 2022, 257, 125281.	1.8	7
1955	Microstructure and physical properties of poly(lactic acid)/polycaprolactone/rice straw lightweight bio-composite foams for wall insulation. Construction and Building Materials, 2022, 354, 129216.	3.2	15

#	Article	IF	CITATIONS
1956	Long-term antimicrobial effect of polylactide-based composites suitable for biomedical use. Polymer Testing, 2022, 116, 107760.	2.3	5
1957	Microstructure and barrier properties of reactive compatibilized PLA/PA11 blends investigated by positron annihilation lifetime spectroscopy. Polymer Testing, 2022, 115, 107763.	2.3	8
1958	Fundamental understanding of the size and surface modification effects on <i>r</i> ₁ , the relaxivity of Prussian blue nanocube@ <i>m</i> <sio<sub>2: a novel targeted chemo-photodynamic theranostic agent to treat colon cancer. RSC Advances, 2022, 12, 24555-24570.</sio<sub>	1.7	3
1959	Copper Nanoparticle Synthesis on Plasma Treated Poly(lactic) Acid Nonwoven Fabrics. , 2022, , .		0
1960	Diisocyanate-Induced Dynamic Vulcanization of Difunctional Fatty Acids toward Mechanically Robust PLA Blends with Enhanced Luminescence Emission. Macromolecules, 2022, 55, 7695-7710.	2.2	17
1961	Structural evolution of in situ polymerized poly(L-lactic acid) nanocomposite for smart textile application. Scientific Reports, 2022, 12, .	1.6	1
1962	Vitrimeric Polylactide by Two-step Alcoholysis and Transesterification during Reactive Processing for Enhanced Melt Strength. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45966-45977.	4.0	16
1964	Enhanced miscibility of PBAT/PLA/lignin upon <i>γ</i> â <irradiation .<="" 139,="" 2022,="" and="" applied="" crystallization.="" effects="" journal="" nonâ€isothermal="" of="" on="" polymer="" science,="" td="" the=""><td>1.3</td><td>5</td></irradiation>	1.3	5
1965	The biocomposites properties of compounded poly(lactic acid) with untreated and treated spent coffee grounds. Journal of Applied Polymer Science, 0, , .	1.3	2
1966	Effect of annealing on thermal and dynamic mechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 2022, 139, .	1.3	1
1967	Enhancing Toughness of PLA/ZrP Nanocomposite through Reactive Melt-Mixing by Ethylene-Methyl Acrylate-Glycidyl Methacrylate Copolymer. Polymers, 2022, 14, 3748.	2.0	4
1968	Polylactide/Carbon Black Segregated Composites for 3D Printing of Conductive Products. Polymers, 2022, 14, 4022.	2.0	8
1969	Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a <i>N</i> -Heterocyclic Carbene. ACS Macro Letters, 2022, 11, 1148-1155.	2.3	10
1970	A strategy to enhance recyclability of degradable block copolymers by introducing low-temperature formability. Journal of Materials Chemistry A, 2022, 10, 25446-25452.	5 . 2	3
1971	Agricultural synthetic and natural polymer films. AIP Conference Proceedings, 2022, , .	0.3	0
1972	Exploring the Size Effect of Graphene Oxide on Crystallization Kinetics and Barrier Properties of Poly(lactic acid). ACS Omega, 2022, 7, 37315-37327.	1.6	4
1973	Ductile polylactic acid-based blend derived from bio-based poly(butylene adipate-co-butylene) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 102
1974	Progress in the Preparation, Properties, and Applications of PLA and Its Composite Microporous Materials by Supercritical CO2: A Review from 2020 to 2022. Polymers, 2022, 14, 4320.	2.0	12

#	Article	IF	CITATIONS
1975	Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite. Acta Mechanica Et Automatica, 2022, 16, 316-324.	0.3	1
1976	Biopolymers as alternatives to synthetic polymers in flameâ€retarded polymeric composites: A study of fire and mechanical behaviors. Journal of Vinyl and Additive Technology, 2023, 29, 120-129.	1.8	7
1977	Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. International Journal of Molecular Sciences, 2022, 23, 12165.	1.8	40
1978	3D Printing as a Disruptive Technology for the Circular Economy of Plastic Components of End-of-Life Vehicles: A Systematic Review. Sustainability, 2022, 14, 13256.	1.6	8
1979	Superior Toughened Biodegradable Poly(L-lactic acid)-based Blends with Enhanced Melt Strength and Excellent Low-temperature Toughness via In situ Reaction Compatibilization. Chinese Journal of Polymer Science (English Edition), 2023, 41, 373-385.	2.0	9
1980	Advances in Biodegradable Soft Robots. Polymers, 2022, 14, 4574.	2.0	8
1981	Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. Japanese Dental Science Review, 2022, 58, 316-327.	2.0	4
1982	Preparation of graphene oxide-silica nanohybrid/poly(lactic acid) biaxially oriented films with enhanced mechanical properties. Polymer, 2022, 261, 125410.	1.8	3
1983	Analysis of processing and environmental impact of polymer compounds reinforced with banana fiber in an injection molding process. Journal of Cleaner Production, 2022, 379, 134476.	4.6	5
1984	Study of Thermal, Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene) Tj ETQq1 1 .	0.784314 1.1	rgBT /Overlo
1985	Young's modulus of the different crystalline phases of poly (I-lactic acid). Journal of the Mechanical Behavior of Biomedical Materials, 2023, 137, 105546.	1.5	6
1986	Silica-based nanocomposites for preservation of post-harvest produce. , 2023, , 373-394.		0
1987	Construction of Twisted/Coiled Poly(lactic acid) Fiber-Based Artificial Muscles and Stable Actuating Mechanism. ACS Sustainable Chemistry and Engineering, 2022, 10, 15186-15198.	3.2	3
1988	Structure, Properties, and Release Kinetics of the Polymer/Insect Repellent System Poly (I-Lactic) Tj ETQq1 1 0.78	4314 rgB ⁻ 2.0	「/Qverlock 1
1989	A novel PLA high oxygen barrier multilayer film/foam. SPE Polymers, 2022, 3, 179-191.	1.4	3
1990	Influence of surface-modified cellulose nanocrystal on the rheological, thermal and mechanical properties of PLA nanocomposites. Polymer Bulletin, 0, , .	1.7	0
1991	Glass transition temperature of poly(d,l-lactic acid) of different molar mass. Thermochimica Acta, 2022, 718, 179387.	1.2	9
1992	Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties. Polymers, 2022, 14, 4988.	2.0	7

#	Article	IF	CITATIONS
1993	About the Influence of (Nonâ€)Solvents on the Ring Expansion Polymerization of <scp>l</scp> â€Lactide and the Formation of Extended Ring Crystals. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	6
1994	Photolithographyâ€Based Microfabrication of Biodegradable Flexible and Stretchable Sensors. Advanced Materials, 2023, 35, .	11.1	11
1995	Crystallinity effect on electron-induced molecular structure transformations in additive-free PLA. Polymer, 2023, 265, 125609.	1.8	3
1996	Toughening polylactide with nonlinear, degradable analogues of PEG and its copolymers. Polymer Chemistry, 0, , .	1.9	0
1997	Rigid epoxy microspheres reinforced and toughened polylactic acid through enhancement of interfacial reactivity. Composites Science and Technology, 2023, 232, 109888.	3.8	3
1998	Toward the Scalable Fabrication of Fully Bio-Based Antimicrobial and UVB-Blocking Transparent Polylactic Acid Films That Incorporate Natural Coatings and Nanopatterns. ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS APPLIED	4.0	4
1999	Physical, Mechanical, and Thermal Properties and Characterization of Natural Fiber Composites Reinforced Poly(Lactic Acid): Miswak (Salvadora Persica L.) Fibers. International Journal of Polymer Science, 2022, 2022, 1-20.	1.2	6
2000	Improvement of Poly(lactic acid)-Poly(hydroxy butyrate) Blend Properties for Use in Food Packaging: Processing, Structure Relationships. Polymers, 2022, 14, 5104.	2.0	5
2001	The effect of alcoholic solutions on the thermomechanical properties of immersed poly(lactic acid) films. Journal of Applied Polymer Science, 0, , .	1.3	2
2002	Thermomechanical Properties and Biodegradation Behavior of Itaconic Anhydride-Grafted PLA/Pecan Nutshell Biocomposites. Polymers, 2022, 14, 5532.	2.0	1
2003	Fabrication and properties of interweaved poly(ether ether ketone) composite scaffolds. Scientific Reports, 2022, 12, .	1.6	2
2004	Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers, 2022, 14, 5256.	2.0	9
2005	Improvement of the Thermal Stability of Polymer Bioblends by Means of Reactive Extrusion. Polymers, 2023, 15, 105.	2.0	4
2006	Paper bottles: potential to replace conventional packaging for liquid products. Biomass Conversion and Biorefinery, 0, , .	2.9	2
2007	Bionic structure and blood compatibility of highly oriented homo-epitaxially crystallized poly(l-lactic) Tj ETQq0 0 C) rgBT /Ove	erlpck 10 Tf 5
2008	Coming out the egg: Assessing the benefits of circular economy strategies in agri-food industry. Journal of Cleaner Production, 2023, 385, 135665.	4.6	24
2009	3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water. Chemical Engineering Journal, 2023, 457, 141153.	6.6	17
2010	Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers. Polymers, 2022, 14, 5551.	2.0	2

#	ARTICLE	IF	CITATIONS
2011	Controlling orientation, polymorphism, and crystallinity in thin films of poly(lacticâ€acid) homopolymer and stereocomplex aligned by high temperature rubbing. Journal of Applied Polymer Science, 2023, 140, .	1.3	1
2012	Polylactide cocrystals and gels. SPE Polymers, 2023, 4, 3-15.	1.4	2
2013	Thermal and morphological characterization of 3D-printed PLA scaffolds for biomedical applications. MRS Advances, 2022, 7, 1206-1211.	0.5	2
2014	A Novel Hydrophilic, Antibacterial Chitosan-Based Coating Prepared by Ultrasonic Atomization Assisted LbL Assembly Technique. Journal of Functional Biomaterials, 2023, 14, 43.	1.8	3
2015	Deformation Behavior of 3D Printed Auxetic Structures of Thermoplastic Polymers: PLA, PBAT, and Blends. Polymers, 2023, 15, 389.	2.0	3
2016	Converting textile waste into value-added chemicals: An integrated bio-refinery process. Environmental Science and Ecotechnology, 2023, 15, 100238.	6.7	6
2017	A review of environmental friendly green composites: production methods, current progresses, and challenges. Environmental Science and Pollution Research, 2023, 30, 16905-16929.	2.7	23
2018	Molecular dynamics simulations of copolymer compatibilizers for polylactide/poly(butylene) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
2019	In Situ Formation of Soft–Rigid Hybrid Fibers Decorated by Sparse Lamellae of PLLA: Achieving Ductile and Heat-Resistant Materials with High Strength. Macromolecules, 0, , .	2.2	3
2020	Functional Filaments: Creating and Degrading pH-Indicating PLA Filaments for 3D Printing. Polymers, 2023, 15, 436.	2.0	4
2021	Fabrication of outstanding mechanical performance engineered poly (lactic acid)/thermoplastic poly(ester)urethane in-situ nanofiber composites with a large-scale industrial innovation methodology. Chemical Engineering Journal, 2023, 457, 141371.	6.6	2
2022	Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. Polymer, 2023, 268, 125677.	1.8	4
2023	Life cycle assessment of poly(lactic acid)-based green composites filled with pine needles or kenaf fibers. Journal of Cleaner Production, 2023, 387, 135901.	4.6	6
2024	Alcohol-initiated and SnOct2-catalyzed Ring-Opening Polymerization (ROP) of l-lactide in solution: A re-investigation. European Polymer Journal, 2023, 185, 111822.	2.6	4
2025	Broadband terahertz spectroscopy of enantiomeric polylactide. Japanese Journal of Applied Physics, 2023, 62, SG1003.	0.8	3
2026	Structural Evolution of PGA Nascent Fiber during Single Low-Temperature and Segmented High-Temperature Hot Stretching. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
2027	Revisiting the Contribution of Additives to the Long-Term Mechanical Stability and Hydrolytic Resistance of Highly Crystalline Polylactide Fibers. ACS Applied Materials & Interfaces, 2023, 15, 1984-1995.	4.0	0
2028	Mechanical and Thermal Properties of Bamboo Fiber–Reinforced PLA Polymer Composites: A Critical Study. International Journal of Polymer Science, 2022, 2022, 1-15.	1.2	23

#	Article	IF	Citations
2029	Processing Polymer Blends of Mater-Bi $\hat{A}^{@}$ and Poly-L-(Lactic Acid) for Blown Film Application with Enhanced Mechanical Strength. Polymers, 2023, 15, 153.	2.0	0
2030	Effect of Nanocalcium Carbonate Content on the Properties of PLA Nanocomposites. Journal of Composites and Biodegradable Polymers, 2017, 5, 26-33.	0.3	5
2031	Stereocomplex crystallization in cyclic polymer blends studied using dynamic Monte Carlo simulations. CrystEngComm, 2023, 25, 1347-1357.	1.3	1
2032	Preparation of oriented poly(lactic acid) thin films by a combination of high temperature rubbing and thermal annealing: Impact of annealing parameters on structure, polymorphism and morphology. Journal of Polymer Science, 2023, 61, 829-841.	2.0	2
2033	Biodegradable polymers- a greener approach for food packaging., 2023,, 317-369.		4
2034	In-Mold Electronics on Poly(Lactic Acid): towards a more sustainable mass production of plastronic devices. International Journal of Advanced Manufacturing Technology, 2023, 125, 2643-2660.	1.5	2
2035	Physical, mechanical, viscoelastic, and morphological properties of poly(lactic acid)/ethylene― <scp><i>co</i> </scp> â€vinyl acetate blend reinforced with silicon carbide nanoparticles. Polymer Composites, 0, , .	2.3	2
2036	Development of ductile green flame retardant poly(lactic acid) composites using hydromagnesite&huntite and bioâ€based plasticizer. Journal of Vinyl and Additive Technology, 0, , .	1.8	3
2038	One Step Catalytic Conversion of Polysaccharides in Ulva prolifera to Lactic Acid and Value-Added Chemicals. Catalysts, 2023, 13, 262.	1.6	1
2039	Synthesis of Polyethylene Glycol-9,10-dihydroxy Monostearate as Palm Oil-Based Polyol and Its Application on the Preparation of Polylactic acid/Polyurethane Block Copolymer. Polymer Science - Series A, 2022, 64, 755-764.	0.4	0
2040	The Facile and Efficient Fabrication of Rice Husk/poly (lactic acid) Foam Composites by Coordinated the Interface Combination and Bubble Hole Structure. International Journal of Biological Macromolecules, 2023, 234, 123734.	3.6	2
2041	About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate-catalyzed ROPs of L-lactide conducted in solution. Polymer, 2023, 276, 125946.	1.8	8
2042	Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 267 Td (International Journal of Biological Macromolecules, 2023, 236, 123980.	(acid)-poly 3.6	v(lactide-co-c 3
2043	Fabrication of PLA/CB composites with excellent electrical conductivity and stiffness-ductility balance based on coupling extensional stress with thermal field. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107516.	3.8	1
2044	Sustainable compressed biocomposite: Review on development and novel approaches. Materials Today Communications, 2023, 35, 105846.	0.9	4
2045	Thermomechanical characteristics of green nanofibers made from polylactic acid: An insight into tensile behavior via molecular dynamics simulation. Mechanics of Materials, 2023, 181, 104640.	1.7	3
2046	Consumer Awareness of Plastic: an Overview of Different Research Areas. Circular Economy and Sustainability, 2023, 3, 2083-2107.	3.3	5
2047	Preparation and characterization of poly(lactic acid)/linear low density polyethylene/recycled tire waste/graphene nanocomposites. Materials Today: Proceedings, 2023, , .	0.9	1

#	ARTICLE	IF	CITATIONS
2048	Tailoring lightweight, mechanical and thermal performance of PLA/recycled HDPE biocomposite foams reinforced with kenaf fibre. Industrial Crops and Products, 2023, 197, 116632.	2.5	8
2049	Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. IScience, 2023, 26, 106022.	1.9	1
2050	Correlation between Processing Parameters, Morphology, and Properties of Injection-Molded Polylactid Acid (PLA) Specimens at Different Length Scales. Polymers, 2023, 15, 721.	2.0	4
2051	Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	11
2052	A dual role of D-Sorbitol in crystallizing and processing poly (lactic acid). Journal of Polymer Research, 2023, 30, .	1.2	4
2053	Impact of In-Soil Ageing Effect on PLA Printed Parts Tensile Properties. Polymers, 2023, 15, 862.	2.0	0
2054	Ultrastrong, Hydrostable, and Degradable Straws Derived from Microplastic-Free Thermoset Films for Sustainable Development. ACS Omega, 2023, 8, 7968-7977.	1.6	1
2055	A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 2023, 234, 123715.	3.6	63
2056	Potential Perspectives and Sustainability of Bioplastics Developed from Horticulture., 2023, 14, .		0
2057	Polylactideâ€"Meso-Substituted Arylporphyrin Composites: Structure, Properties and Antibacterial Activity. Polymers, 2023, 15, 1027.	2.0	1
2058	Aging of Polylactide Films Exposed to Plasma—Hydrophobic Recovery and Selected Application Properties. Applied Sciences (Switzerland), 2023, 13, 2751.	1.3	1
2059	Distinct strategy for the improvement of conductivity and electromagnetic shielding properties of <scp>MWCNTs</scp> /cscp>PLA/cscp>PBS composites: Synergistic effects of double percolation structure and <scp>UV</scp> aging. Polymer Composites, 2023, 44, 2816-2835.	2.3	6
2060	Effect of Drawing Conditions on Crystal Structure and Mechanical Properties of Melt-Spun Polylactic Acid Fibers. Fibers and Polymers, 2023, 24, 483-488.	1.1	0
2061	Physicochemical Properties of UV-Irradiated, Biaxially Oriented PLA Tubular Scaffolds. Polymers, 2023, 15, 1097.	2.0	2
2062	Herbaceous plants-derived hydroxycinnamic units for constructing recyclable and controllable copolyesters. Green Chemistry, 2023, 25, 2458-2465.	4.6	6
2063	Polylactic Acid (PLA) Melt-Blown Nonwovens with Superior Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2023, 11, 4279-4288.	3.2	20
2064	The Diffusion of Bioplastics: What Can We Learn from Poly(Lactic Acid)?. Sustainability, 2023, 15, 4699.	1.6	2
2065	A Study on the Effect of Doping Metallic Nanoparticles on Fracture Properties of Polylactic Acid Nanofibres via Molecular Dynamics Simulation. Nanomaterials, 2023, 13, 989.	1.9	1

#	ARTICLE	IF	CITATIONS
2066	Fungal–Lactobacteria Consortia and Enzymatic Catalysis for Polylactic Acid Production. Journal of Fungi (Basel, Switzerland), 2023, 9, 342.	1.5	4
2067	Enzymes' Power for Plastics Degradation. Chemical Reviews, 2023, 123, 5612-5701.	23.0	80
2068	Star-to-Bottlebrush Transition in Extensional and Shear Deformation of Unentangled Polymer Melts. Macromolecules, 2023, 56, 2406-2417.	2.2	6
2069	Rheological and mechanical properties, heat resistance and hydrolytic degradation of poly(butylene) Tj ETQq $1\ 1\ 0$ 2023, 140 , .	.784314 r 1.3	gBT /Overlo 2
2070	Medical-Grade Poly(Lactic Acid)/Hydroxyapatite Composite Films: Thermal and In Vitro Degradation Properties. Polymers, 2023, 15, 1512.	2.0	5
2071	A Biodegradable Stereo-Complexed Poly (Lactic Acid) Drinking Straw of High Heat Resistance and Performance. Materials, 2023, 16, 2438.	1.3	1
2072	Invention of biobased polymer alloys and their application in plastic automobile parts. Polymer Journal, 2023, 55, 753-760.	1.3	1
2073	Bioprocesses for Sustainable Bioeconomy: Fermentation, Benefits, and Constraints., 2023, , 115-138.		O
2074	Biodégradabilité des plastiques biosourcésÂ: revue bibliographique sur l'acide polylactique. Materiaux Et Techniques, 2022, 110, 604.	0.3	1
2075	Effect of water and soil microbiota on structure and properties of PLA fiber composites. E3S Web of Conferences, 2023, 376, 01049.	0.2	O
2076	Materials for the Needs of Agriculture Based on Biopolymers: A Comparative Analysis of Physical and Mechanical Properties. Materials Science Forum, 0, 1082, 127-132.	0.3	0
2077	Structural Features of Polylactide Films Obtained from a Melt and Solution. Russian Journal of Physical Chemistry B, 2023, 17, 171-176.	0.2	O
2078	Effect of Water on the Structure of Polyethylene–Polylactide Binary Blends and Polyethylene–Polylactide–Aged Polyethylene Ternary Blends. Russian Journal of Physical Chemistry B, 2023, 17, 163-170.	0.2	0
2079	Bixin, a performing natural antioxidant in active food packaging for the protection of oxidation sensitive food. LWT - Food Science and Technology, 2023, 180, 114730.	2.5	6
2080	Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites. Journal of Composites Science, 2023, 7, 141.	1.4	4
2081	Melt-blended PLA/curcumin-cross-linked polyurethane film for enhanced UV-shielding ability. E-Polymers, 2023, 23, .	1.3	2
2082	Sustainable Immiscible Polylactic Acid (PLA) and Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) (PHBV) Blends: Crystallization and Foaming Behavior. ACS Sustainable Chemistry and Engineering, 2023, 11, 6676-6687.	3.2	3
2083	PLA bioplastic production: From monomer to the polymer. European Polymer Journal, 2023, 193, 112076.	2.6	21

#	ARTICLE	IF	CITATIONS
2084	Isoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Simple Potassium Amidate Complexes Containing Polycyclic Aryl Group. Catalysts, 2023, 13, 770.	1.6	0
2086	Biodegradable polymer nanocomposites for food packaging applications. , 2023, , 639-674.		1
2087	Crystallization and Melting Kinetics of Phase Separated Polymer Blends., 2023,, 41-60.		0
2088	Linear viscoelasticity of bio-based composites of polylactic acid and regenerated cellulose fibers: modeling and experimental validation. Composites Part A: Applied Science and Manufacturing, 2023, , 107580.	3.8	O
2098	Bioplastics from microbial and agricultural biomass. , 2023, , 413-438.		0
2099	Quantitative study on the degradation behaviour of biopolyesters during melt processing. AIP Conference Proceedings, 2023, , .	0.3	0
2102	Prospects of Biopolymers Based Nanocomposites for the Slow and Controlled Release of Agrochemicals Formulations. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 3845-3860.	1.9	4
2118	Renewable bio-based materials: A journey towards the development of sustainable ecosystem. , 2023, , 31-75.		3
2121	Electron Beam Irradiation-Induced Compatibilization of Poly (Lactic Acid)-Based Blends. Materials Horizons, 2023, , 79-106.	0.3	0
2122	Rotational moulding of poly-lactic acid; effect of plasticization and degree of crystallinity. AIP Conference Proceedings, 2023, , .	0.3	0
2134	Ergonomic Design of the PET Bottle for Maximum Usability. Lecture Notes in Networks and Systems, 2023, , 305-313.	0.5	0
2137	Processing of Biodegradable Polymers. Materials Horizons, 2023, , 27-47.	0.3	O
2141	Polylactic acid-based bionanocomposites: Synthesis, properties, and applications. , 2024, , 93-116.		0
2151	Recent Advances in the Functionalized Poly(α-Hydroxy Acids) Synthesized from <i>O</i> -Carboxyanhydrides. ACS Symposium Series, 0, , 99-123.	0.5	O
2165	Injection Molding, Closures, Rotational Molding, Compression Molding, and Tubes. , 2021, , 293-308.		0
2188	Sustainable Raw Materials. Textile Science and Clothing Technology, 2023, , 59-128.	0.4	O
2193	Processing of Biobased Packaging Materials. , 2023, , 37-66.		0
2195	Cells–biomaterials structure–function at different length scales. , 2024, , 463-516.		0

#	Article	IF	CITATIONS
2196	Circular-BioEconomy Through Anaerobic Digestion. , 2023, , 449-468.		1
2203	Polymers Injection Molding, Process & Defects. Materials Forming, Machining and Tribology, 2024, , 81-104.	0.7	O
2212	A review on biodegradable composites based on poly (lactic acid) with various bio fibers. Chemical Papers, 2024, 78, 2695-2728.	1.0	0
2214	Man-Made Bio-based and Biodegradable Fibers for Textile Applications. Sustainable Textiles, 2024, , 229-280.	0.4	0
2216	Economics and commercialization of bioplastics. , 2024, , 271-309.		0
2228	Influence of Recycled Scrap Particles on Tensile Behavior of Additively Manufactured Polylactic Acid (PLA) Composites for Automotive Upholstery Applications., 0,,.		0
2233	Perspective Chapter: Morphological and Thermal Properties of Biodegradable Graft Copolymer LLDPE-g-MA/Gelatin Composites., 0, , .		0