The development of microgels/nanogels for drug delive

Progress in Polymer Science 33, 448-477

DOI: 10.1016/j.progpolymsci.2008.01.002

Citation Report

#	Article	IF	CITATIONS
1	Recent advances in controlled/living radical polymerization in emulsion and dispersion. Journal of Polymer Science Part A, 2008, 46, 6983-7001.	2.5	137
2	Spectral time moment analysis of microgel deswelling. Effect of the heating rate. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2792-2802.	2.4	5
3	Biotinâ€; Pyreneâ€; and GRGDSâ€Functionalized Polymers and Nanogels via ATRP and End Group Modification. Macromolecular Chemistry and Physics, 2008, 209, 2179-2193.	1.1	60
4	Synthesis of Poly(vinyl acetate) Nanogels by Xanthateâ€Mediated Radical Crosslinking Copolymerization. Macromolecular Rapid Communications, 2008, 29, 1965-1972.	2.0	44
5	Biodegradable Nanogels Prepared by Selfâ€Assembly of Poly(<scp>Lâ€</scp> lactide)â€Grafted Dextran: Entrapment and Release of Proteins. Macromolecular Bioscience, 2008, 8, 1044-1052.	2.1	26
6	Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer, 2008, 49, 5284-5293.	1.8	34
7	Chemically controlled closed-loop insulin delivery. Journal of Controlled Release, 2008, 132, 2-11.	4.8	233
8	Dual Stimuli-Responsive Nanogels by Self-Assembly of Polysaccharides Lightly Grafted with Thiol-Terminated Poly(<i>N</i> -isopropylacrylamide) Chains. Macromolecules, 2008, 41, 5985-5987.	2.2	124
9	Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4, 2303.	1.2	178
10	Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes. Langmuir, 2008, 24, 13838-13841.	1.6	47
11	Heterofunctional polymers and core–shell nanoparticles via cascade aminolysis/Michael addition and alkyne–azide click reaction of RAFT polymers. Chemical Communications, 2008, , 6501.	2.2	55
12	Synthesis of Poly(vinylacetylene) Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9522-9524.	2.2	14
13	Siloxane-crosslinked Polysaccharide Nanogels for Potential Biomedical Applications. Chemistry Letters, 2008, 37, 1282-1283.	0.7	8
14	Evaluation of effective parameters on fabrication of BSA nanoparticles. Nature Precedings, 2009, , .	0.1	1
15	Comparison of a hydrogel model to the Poisson–Boltzmann cell model. Journal of Chemical Physics, 2009, 131, 094903.	1.2	69
17	Synthesis of Per- and Poly-Substituted Trehalose Derivatives: Studies of Properties Relevant to Their Use as Excipients for Controlled Drug Release. Journal of Carbohydrate Chemistry, 2009, 28, 198-221.	0.4	7
18	Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release. Nanotechnology, 2009, 20, 335101.	1.3	47
19	Chitin and chitosan hydrogels. , 2009, , 849-888.		30

#	Article	IF	CITATIONS
20	Biodegradable Dextran Nanogels for RNA Interference: Focusing on Endosomal Escape and Intracellular siRNA Delivery. Advanced Functional Materials, 2009, 19, 1406-1415.	7.8	134
22	Methacryloyl and/or Hydroxyl Endâ€Functional Star Polymers Synthesized by ATRP Using the Armâ€First Method. Macromolecular Chemistry and Physics, 2009, 210, 421-430.	1.1	20
23	Preparation and Properties of Cyclodextrin/PNIPAm Microgels. Macromolecular Bioscience, 2009, 9, 525-534.	2.1	22
24	Hybrid Multicomponent Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 140-156.	2.1	266
25	Selfâ€Assembled Nanogel of Hydrophobized Dendritic Dextrin for Protein Delivery. Macromolecular Bioscience, 2009, 9, 694-701.	2.1	30
26	Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities. Angewandte Chemie - International Edition, 2009, 48, 5418-5429.	7.2	1,134
27	Enhanced Core Hydrophobicity, Functionalization and Cell Penetration of Polybasic Nanomatrices. Pharmaceutical Research, 2009, 26, 51-60.	1.7	32
28	Chitosan/TPP and Chitosan/TPP-hyaluronic Acid Nanoparticles: Systematic Optimisation of the Preparative Process and Preliminary Biological Evaluation. Pharmaceutical Research, 2009, 26, 1918-1930.	1.7	268
29	ARGET ATRP of methyl methacrylate in the presence of nitrogenâ€based ligands as reducing agents. Polymer International, 2009, 58, 242-247.	1.6	138
30	AGET ATRP in water and inverse miniemulsion: A facile route for preparation of highâ€molecularâ€weight biocompatible brushâ€like polymers. Journal of Polymer Science Part A, 2009, 47, 1771-1781.	2.5	57
31	Pegylated thermally responsive block copolymer micelles and nanogels via <i>in situ</i> RAFT aqueous dispersion polymerization. Journal of Polymer Science Part A, 2009, 47, 2373-2390.	2.5	189
32	Incorporation of poly(2â€acrylamidoâ€⊋â€methylâ€ <i>N</i> à€propanesulfonic acid) segments into block and brush copolymers by ATRP. Journal of Polymer Science Part A, 2009, 47, 5386-5396.	2.5	26
33	Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. Journal of Polymer Science Part A, 2009, 47, 5543-5549.	2.5	70
34	Degradable polymer networks and star polymers based on mixtures of two cleavable dimethacrylate crosslinkers: Synthesis, characterization, and degradation. Journal of Polymer Science Part A, 2009, 47, 5853-5870.	2.5	11
35	Synthesis of hyperbranched degradable polymers by atom transfer radical (Co)polymerization of inimers with ester or disulfide groups. Journal of Polymer Science Part A, 2009, 47, 6839-6851.	2.5	68
36	Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chemistry, 2009, 1, 276-288.	6.6	1,177
37	Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 2009, 117, 1-9.	2.2	591
38	Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer, 2009, 50, 4407-4423.	1.8	136

3

#	ARTICLE	IF	CITATIONS
39	Effects of the oil–water interface on network formation in nanogel synthesis using nitroxide-mediated radical copolymerization of styrene/divinylbenzene in miniemulsion. Polymer, 2009, 50, 5661-5667.	1.8	17
40	Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Progress in Polymer Science, 2009, 34, 317-350.	11.8	741
41	Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 2009, 34, 1261-1282.	11.8	461
42	Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials, 2009, 30, 5270-5278.	5.7	126
43	Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications. Biomacromolecules, 2009, 10, 3157-3175.	2.6	529
44	Atom transfer radical polymerization in aqueous dispersed media. Open Chemistry, 2009, 7, 657-674.	1.0	81
45	Polymer micelles from tadpole-shaped amphiphilic block-graft copolymers prepared by "Grafting-through―ATRP. Polymer Science - Series A, 2009, 51, 1210-1217.	0.4	9
46	Hydrophobically Modified Biodegradable Poly(ethylene glycol) Copolymers that Form Temperature-Responsive Nanogels. Langmuir, 2009, 25, 9734-9740.	1.6	31
47	Harnessing Labile Bonds between Nanogel Particles to Create Self-Healing Materials. ACS Nano, 2009, 3, 885-892.	7.3	80
48	One-Pot Synthesis of Hairy Nanoparticles by Emulsion ATRP. Macromolecules, 2009, 42, 1597-1603.	2.2	105
49	Influence of Initiation Efficiency and Polydispersity of Primary Chains on Gelation during Atom Transfer Radical Copolymerization of Monomer and Cross-Linker. Macromolecules, 2009, 42, 927-932.	2.2	59
50	Homopolymerization and Block Copolymerization of <i>N</i> -Vinylpyrrolidone by ATRP and RAFT with Haloxanthate Inifers. Macromolecules, 2009, 42, 8198-8210.	2.2	74
51	Effects of Temperature and pH on the Contraction and Aggregation of Microgels in Aqueous Suspensions. Journal of Physical Chemistry B, 2009, 113, 11115-11123.	1.2	63
52	Gelation in Living Copolymerization of Monomer and Divinyl Cross-Linker: Comparison of ATRP Experiments with Monte Carlo Simulations. Macromolecules, 2009, 42, 5925-5932.	2.2	88
53	Microengineering of Soft Functional Materials by Controlling the Fiber Network Formation. Journal of Physical Chemistry B, 2009, 113, 15467-15472.	1.2	39
54	Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization. Macromolecules, 2009, 42, 893-896.	2.2	61
55	Facile Preparation of Chemically Cross-Linked Microgels by Irradiation of Visible Light at Room Temperature. Langmuir, 2009, 25, 11272-11275.	1.6	11
56	Surface-Tethered pH-Responsive Hydrogel Thin Films as Size-Selective Layers on Nanoporous Asymmetric Membranes. Chemistry of Materials, 2009, 21, 4323-4331.	3.2	37

#	Article	IF	CITATIONS
57	Temperature Effect on Activation Rate Constants in ATRP: New Mechanistic Insights into the Activation Process. Macromolecules, 2009, 42, 6050-6055.	2.2	108
58	Self-Assembly and Cellular Uptake of Degradable and Water-Soluble Polyperoxides. Bioconjugate Chemistry, 2009, 20, 1879-1887.	1.8	33
59	Finite-Size Networks from Cylindrical Polyelectrolyte Brushes and Porphyrins. Macromolecules, 2009, 42, 830-840.	2.2	63
60	Preparation and Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional Ingredients. Biomacromolecules, 2009, 10, 1931-1938.	2.6	81
61	Star Polymers via Cross-Linking Amphiphilic Macroinitiators by AGET ATRP in Aqueous Media. Journal of the American Chemical Society, 2009, 131, 10378-10379.	6.6	75
62	Cellular Uptake of Functional Nanogels Prepared by Inverse Miniemulsion ATRP with Encapsulated Proteins, Carbohydrates, and Gold Nanoparticles. Biomacromolecules, 2009, 10, 2300-2309.	2.6	92
63	Cell-Adhesive Star Polymers Prepared by ATRP. Biomacromolecules, 2009, 10, 1795-1803.	2.6	42
64	Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap. Dalton Transactions, 2009, , 8878.	1.6	6
65	Microfluidic generation of microgels from synthetic and natural polymers. Chemical Society Reviews, 2009, 38, 2161.	18.7	240
66	A fundamental investigation of cross-linking efficiencies within discrete nanostructures, using the cross-linker as a reporting molecule. Soft Matter, 2009, 5, 3422.	1.2	22
67	Advanced nanogel engineering for drug delivery. Soft Matter, 2009, 5, 707-715.	1.2	443
68	Stimuli-responsive hydrogel thin films. Soft Matter, 2009, 5, 511-524.	1.2	514
69	Modeling of Branching and Gelation in RAFT Copolymerization of Vinyl/Divinyl Systems. Macromolecules, 2009, 42, 85-94.	2.2	81
70	Synthesis by AGET ATRP of Degradable Nanogel Precursors for In Situ Formation of Nanostructured Hyaluronic Acid Hydrogel. Biomacromolecules, 2009, 10, 2499-2507.	2.6	97
71	Thermally Responsive PM(EO)2MA Magnetic Microgels via Activators Generated by Electron Transfer Atom Transfer Radical Polymerization in Miniemulsion. Chemistry of Materials, 2009, 21, 3965-3972.	3.2	74
72	Aspects of Living Radical Polymerization Mediated by Cobalt Porphyrin Complexes. Journal of the Chinese Chemical Society, 2009, 56, 219-233.	0.8	16
73	Synthesis of Microgels by Radiation Methods. Advances in Polymer Science, 2010, , 95-128.	0.4	6
74	Surface patterning strategies for microfluidic applications based on functionalized poly- <i>p</i> -xylylenes. Bioanalysis, 2010, 2, 1717-1728.	0.6	5

#	Article	IF	Citations
75	Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers. Advances in Polymer Science, 2010, , 65-93.	0.4	12
76	Preparation of Soft Hydrogel Nanoparticles with PNIPAm Hair and Characterization of Their Temperature-Induced Aggregation. Langmuir, 2010, 26, 2076-2082.	1.6	26
77	Reducing Copper Concentration in Polymers Prepared via Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering, 2010, 4, 180-185.	0.9	61
78	Superhydrophilic Surfaces via Polymerâ^'SiO ₂ Nanocomposites. Langmuir, 2010, 26, 15567-15573.	1.6	97
79	Novel pH-sensitive microgels prepared using salt bridge. International Journal of Pharmaceutics, 2010, 388, 58-63.	2.6	22
80	Light-sensitive intelligent drug delivery systems of coumarin-modified mesoporous bioactive glass. Acta Biomaterialia, 2010, 6, 3256-3263.	4.1	86
81	In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31, 3023-3031.	5.7	192
82	Three dimensionally flocculated proangiogenic microgels for neovascularization. Biomaterials, 2010, 31, 6494-6501.	5.7	24
83	Real-time monitor on the release of salicylic acid from chitosan gel beads by means of dielectric spectroscopy. Colloid and Polymer Science, 2010, 288, 1245-1253.	1.0	3
84	Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA Journal, 2010, 1, 164-209.	3.3	293
85	Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices. Frontiers of Chemical Engineering in China, 2010, 4, 26-36.	0.6	9
86	Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. Journal of Controlled Release, 2010, 147, 420-427.	4.8	61
87	Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 374-397.	5.9	234
88	Dual Stimuliâ€Responsive Supramolecular Polypeptideâ€Based Hydrogel and Reverse Micellar Hydrogel Mediated by Host–Guest Chemistry. Advanced Functional Materials, 2010, 20, 579-586.	7.8	193
89	Synthesis, Reductive Cleavage, and Cellular Interaction Studies of Biodegradable, Polyglycerol Nanogels. Advanced Functional Materials, 2010, 20, 4133-4138.	7.8	93
90	Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Advanced Functional Materials, 2010, 20, 3235-3243.	7.8	329
91	Architecture of Supramolecular Soft Functional Materials: From Understanding to Microâ€Nanoscale Engineering. Advanced Functional Materials, 2010, 20, 3196-3216.	7.8	154
95	Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angewandte Chemie - International Edition, 2010, 49, 5846-5868.	7.2	903

#	Article	IF	CITATIONS
96	A Tumorâ€Acidityâ€Activated Chargeâ€Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoralâ€Cell Uptake and Drug Delivery. Angewandte Chemie - International Edition, 2010, 49, 3621-3626.	7.2	459
97	Synthesis of polystyrene nanocapsules by redox interfaceâ€initiated inversed microemulsion polymerization for drug release. Journal of Applied Polymer Science, 2010, 115, 1630-1634.	1.3	9
98	Nanogels of poly(acrylic acid): Uptake and release behavior with fluorescent oligothiopheneâ€labeled bovine serum albumin. Journal of Applied Polymer Science, 2010, 116, 2808-2815.	1.3	9
99	ATRP of Styrene and Methyl Methacrylate with Less Efficient Catalysts and with Alkyl Pseudohalides as Initiators/Chain Transfer Agents. Macromolecular Chemistry and Physics, 2010, 211, 493-500.	1.1	17
100	Synthesis of Wellâ€Defined Statistical and Diblock Copolymers of Acrylamide and Acrylic Acid by Inverse Miniemulsion Raft Polymerization. Macromolecular Chemistry and Physics, 2010, 211, 1977-1983.	1.1	22
101	Responsive Hybrid Polymeric/Metallic Nanoparticles for Catalytic Applications. Macromolecular Materials and Engineering, 2010, 295, 1049-1057.	1.7	70
102	Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science, 2010, 35, 174-211.	11.8	706
103	Stimuli-responsive molecular brushes. Progress in Polymer Science, 2010, 35, 24-44.	11.8	600
104	Transition metal catalysts for controlled radical polymerization. Progress in Polymer Science, 2010, 35, 959-1021.	11.8	461
105	Use of Environmental Scanning Electron Microscopy to image poly(N-isopropylacrylamide) microgel particles. Journal of Colloid and Interface Science, 2010, 342, 629-635.	5.0	21
106	One-step synthesis of pegylated cationic nanogels of poly(N,N′-dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. Polymer, 2010, 51, 2161-2167.	1.8	40
107	Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications. Polymer, 2010, 51, 3926-3933.	1.8	50
108	Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin. International Journal of Pharmaceutics, 2010, 401, 72-78.	2.6	60
109	Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials, 2010, 31, 5634-5642.	5.7	141
110	Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system. Acta Biomaterialia, 2010, 6, 102-109.	4.1	64
111	Iron nanoparticles encapsulated in poly(AAm-co-MAA) microgels for magnetorheological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 137-141.	2.3	22
112	Monte Carlo simulations of self-assembling star-block copolymers in dilute solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 81-89.	2.3	18
113	Time- and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohydrate Polymers, 2010, 80, 934-943.	5.1	75

#	Article	IF	CITATIONS
114	<i>N</i> â€vinylcaprolactamâ€based microgels for biomedical applications. Journal of Polymer Science Part A, 2010, 48, 1173-1181.	2.5	95
115	Endâ€inked amphiphilic polymer conetworks: Synthesis by sequential atom transfer radical polymerization and swelling characterization. Journal of Polymer Science Part A, 2010, 48, 1878-1886.	2.5	26
116	Effect of crosslinker multiplicity on the gel point in ATRP. Journal of Polymer Science Part A, 2010, 48, 2016-2023.	2.5	23
117	Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chemical Record, 2010, 10, 366-376.	2.9	311
118	Arm-replaceable star-like nanogels: arm detachment and arm exchange reactions by dynamic covalent exchanges of alkoxyamine units. Polymer Journal, 2010, 42, 860-867.	1.3	15
119	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	13.3	5,007
120	Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Materials, 2010, 9, 572-578.	13.3	433
121	Single Dose Preoperative Administration of Intravenous Iron Corrects Iron Deficiency Anaemia in Colorectal Cancer. Journal of Blood Disorders & Transfusion, 2010, 01, .	0.1	7
122	Conjugated Conducting Polymers as Components in Block Copolymer Systems. Molecular Crystals and Liquid Crystals, 2010, 521, 1-55.	0.4	28
123	Preparation and Release Properties of a pH-Tunable Carboxymethyl Cellulose Hydrogel/Methylene Blue Host/Guest Model. International Journal of Polymeric Materials and Polymeric Biomaterials, 2010, 60, 62-74.	1.8	16
124	Release of DNA from cryogel PVA-DNA membranes. EXPRESS Polymer Letters, 2010, 4, 480-487.	1.1	15
125	Preparation and Characterization of Textural and Energetic Parameters of Common and Functionalized SBA-15 Mesoporous Silicas. Adsorption Science and Technology, 2010, 28, 387-396.	1.5	3
126	Polymersome production on a microfluidic platform using pH sensitive block copolymers. Lab on A Chip, 2010, 10, 1922.	3.1	62
127	Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. Journal of the American Chemical Society, 2010, 132, 8246-8247.	6.6	193
128	Self-Cross-Linked Polymer Nanogels: A Versatile Nanoscopic Drug Delivery Platform. Journal of the American Chemical Society, 2010, 132, 17227-17235.	6.6	496
129	Drug Delivery: Nanoscale Devices. , 2010, , 1-9.		4
130	Synthesis, Characterization, and Properties of Starlike Poly(<i>n</i> -butyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 I	102 Td (ac	:rylate)- <i>b<</i>
131	Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles. Expert Opinion on Drug Delivery, 2010, 7, 811-828.	2.4	90

#	Article	IF	CITATIONS
132	Smart Coreâ^'Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chemistry of Materials, 2010, 22, 1966-1976.	3.2	163
133	Direct Observation of Microgel Erosion via in-Liquid Atomic Force Microscopy. Chemistry of Materials, 2010, 22, 3300-3306.	3.2	29
134	Thermally Responsive P(M(EO) < sub>2 < /sub>MA- <i>co < /i>OEOMA) Copolymers via AGET ATRP in Miniemulsion. Macromolecules, 2010, 43, 4623-4628.</i>	2.2	77
135	Excimer Emission from Self-Assembly of Fluorescent Diblock Copolymer Prepared by Atom Transfer Radical Polymerization. Chemistry of Materials, 2010, 22, 4426-4434.	3.2	43
136	Microengineering of Supramolecular Soft Materials by Design of the Crystalline Fiber Networks. Crystal Growth and Design, 2010, 10, 2699-2706.	1.4	47
137	Photo-Cross-Linkable Thermoresponsive Star Polymers Designed for Control of Cell-Surface Interactions. Biomacromolecules, 2010, 11, 2647-2652.	2.6	40
138	Comparison of the Thermoresponsive Deswelling Kinetics of Poly(2-(2-methoxyethoxy)ethyl) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 502
139	Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. Langmuir, 2010, 26, 249-259.	1.6	86
140	Poly(<i>N</i> -isopropylacrylamide) Microgels at the Oilâ^'Water Interface: Interfacial Properties as a Function of Temperature. Langmuir, 2010, 26, 13839-13846.	1.6	90
141	Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules, 2010, 43, 4355-4361.	2.2	204
142	Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter, 2010, 6, 5868.	1,2	88
143	Non-ionic Thermoresponsive Polymers in Water. Advances in Polymer Science, 2010, , 29-89.	0.4	406
144	Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization. Advances in Polymer Science, 2010, , 1-37.	0.4	150
145	Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polymer Chemistry, 2010, 1, 965.	1.9	206
146	Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery, 2010, 7, 681-703.	2.4	167
147	Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chemical Society Reviews, 2010, 39, 1338-1354.	18.7	753
148	Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Canadian Journal of Chemistry, 2010, 88, 173-184.	0.6	33
149	Mesoporous Hydrogels: Revealing Reversible Porosity by Cryoporometry, X-ray Scattering, and Gas Adsorption. Langmuir, 2010, 26, 10158-10164.	1.6	36

#	Article	IF	CITATIONS
150	Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chemical Communications, 2010, 46, 3520.	2.2	35
151	Thermoresponsive Nanohydrogels Cross-Linked by Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2261-2268.	4.0	45
152	Fundamentals of Atom Transfer Radical Polymerization. Journal of Chemical Education, 2010, 87, 916-919.	1.1	37
153	Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 4133-4139.	2.2	159
154	Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter, 2010, 6, 3778.	1.2	39
155	Dual-Reactive Surfactant Used for Synthesis of Functional Nanocapsules in Miniemulsion. Journal of the American Chemical Society, 2010, 132, 7823-7825.	6.6	101
156	Bead Formation, Strengthening, and Modification. , 2010, , 27-52.		14
157	Swelling and Collapse of an Adsorbed pH-Responsive Film-Forming Microgel Measured by Optical Reflectometry and QCM. Langmuir, 2010, 26, 14615-14623.	1.6	26
158	Sonochemically born proteinaceous micro- and nanocapsules. Advances in Protein Chemistry and Structural Biology, 2010, 80, 205-252.	1.0	7
159	Polyglycerol nanogels: highly functional scaffolds for biomedical applications. Soft Matter, 2010, 6, 4968.	1.2	66
160	Dynamics of Nanostructures for Drug Delivery: the Potential of QENS. Zeitschrift Fur Physikalische Chemie, 2010, 224, 227-242.	1.4	1
161	Robust synthesis of nanogel particles by an aggregation-crosslinking method. Soft Matter, 2010, 6, 4396.	1.2	7
162	Rapid Cellular Internalization of Multifunctional Star Polymers Prepared by Atom Transfer Radical Polymerization. Biomacromolecules, 2010, 11, 2199-2203.	2.6	45
163	Lipid multilayered particles: the role of chitosan on structure and morphology. Soft Matter, 2010, 6, 2533.	1.2	7
164	Facile engineering of nano- and microparticles via self-assembly of homopolymers. Soft Matter, 2011, 7, 6264.	1.2	15
165	Aggregation-induced microgelation: a new approach to prepare gels in solution. Soft Matter, 2011, 7, 978-985.	1.2	12
166	Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release. Biomacromolecules, 2011, 12, 3612-3620.	2.6	123
167	Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel. Soft Matter, 2011, 7, 10377.	1.2	37

#	Article	IF	CITATIONS
168	Guided self-assembly of microgels: from particle arrays to anisotropic nanostructures. Soft Matter, 2011, 7, 8231.	1.2	36
169	Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications. Chemical Communications, 2011, 47, 12424.	2.2	72
170	Synthesis of composite microgel capsules by ultrasonic spray combined with in situ crosslinking. Soft Matter, 2011, 7, 6144.	1.2	18
171	Study of volume phase transitions in polymeric nanogels by theoretically informed coarse-grained simulations. Soft Matter, 2011, 7, 5965.	1.2	79
172	Mobility of lysozyme inside oxidized starch polymer microgels. Soft Matter, 2011, 7, 1926.	1,2	35
173	Biocompatible, Antifouling, and Thermosensitive Coreâ 'Shell Nanogels Synthesized by RAFT Aqueous Dispersion Polymerization. Macromolecules, 2011, 44, 2524-2530.	2.2	203
174	A New Method for the Preparation of Concentrated Translucent Polymer Nanolatexes from Emulsion Polymerization. Langmuir, 2011, 27, 575-581.	1.6	18
175	Comparison of Thermoresponsive Deswelling Kinetics of Poly(oligo(ethylene oxide)) Tj ETQq1 1 0.784314 rgBT / 2011, 44, 2261-2268.	Overlock 1 2.2	10 Tf 50 467 60
176	Network Deconstruction Reveals Network Structure in Responsive Microgels. Journal of Physical Chemistry B, 2011, 115, 3761-3764.	1.2	41
177	Smart Polymer Nanoparticles Designed for Environmentally Compliant Coatings. Journal of the American Chemical Society, 2011, 133, 11299-11307.	6.6	27
178	UCST-Like Hybrid PAAm-AA/Fe ₃ O ₄ Microgels. Effect of Fe ₃ O ₄ Nanoparticles on Morphology, Thermosensitivity and Elasticity. Langmuir, 2011, 27, 8027-8035.	1.6	42
179	Aqueous Dispersion Polymerization of 2-Methoxyethyl Acrylate for the Synthesis of Biocompatible Nanoparticles Using a Hydrophilic RAFT Polymer and a Redox Initiator. Macromolecules, 2011, 44, 5237-5245.	2.2	181
180	Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles. Langmuir, 2011, 27, 3991-4003.	1.6	26
181	Hydrogels in Tissue Engineering. , 2011, , 9-46.		8
182	Synthesis of Biodegradable Hydrogel Nanoparticles for Bioapplications Using Inverse Miniemulsion RAFT Polymerization. Macromolecules, 2011, 44, 7167-7175.	2.2	46
183	Mechanism of Halogen Exchange in ATRP. Macromolecules, 2011, 44, 7546-7557.	2.2	93
184	Study of poly(N,N-diethylacrylamide) nanogel formation by aqueous dispersion polymerization of N,N-diethylacrylamide in the presence of poly(ethylene oxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFT agents. Soft Matter, 2011, 7, 3482.	1.2	90
185	Dynamic Covalent Single-Chain Polymer Nanoparticles. Macromolecules, 2011, 44, 7242-7252.	2.2	135

#	Article	IF	CITATIONS
186	Construction of protein-crosslinked nanogels with vitamin B6 bearing polysaccharide. Polymer Chemistry, 2011, 2, 1267.	1.9	27
187	Molecular-engineered polymeric microcapsules assembled from Concanavalin A and glycogen with specific responses to carbohydrates. Soft Matter, 2011, 7, 5805.	1.2	51
188	The formation of core cross-linked star polymer and nanogel assemblies facilitated by the formation of dynamic covalent imine bonds. Polymer Chemistry, 2011, 2, 2500.	1.9	78
189	Investigation into fiber formation in N-alkyl urea peptoid oligomers and the synthesis of a water-soluble PEG/N-alkyl urea peptoid oligomer conjugate. Polymer Chemistry, 2011, 2, 2635.	1.9	26
190	Synthesis of Biocompatible PEG-Based Star Polymers with Cationic and Degradable Core for siRNA Delivery. Biomacromolecules, 2011, 12, 3478-3486.	2.6	119
191	Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polymer Chemistry, 2011, 2, 672-678.	1.9	64
192	Nanotechnology-Based Spatiotemporal Controlled Drug Delivery Strategies. Else-Kröner-Fresenius-Symposia, 2011, , 53-70.	0.1	0
193	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
194	"Nanohybrids―Based on pH-Responsive Hydrogels and Inorganic Nanoparticles for Drug Delivery and Sensor Applications. Nano Letters, 2011, 11, 3136-3141.	4.5	99
195	Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter, 2011, 7, 839-856.	1.2	113
196	Post-functionalization of ATRPpolymers using both thiol/ene and thiol/disulfide exchange chemistry. Chemical Communications, 2011, 47, 1318-1320.	2.2	55
197	Direct DNA Conjugation to Star Polymers for Controlled Reversible Assemblies. Bioconjugate Chemistry, 2011, 22, 2030-2037.	1.8	56
198	Chitosan Nanogels by Template Chemical Cross-Linking in Polyion Complex Micelle Nanoreactors. Biomacromolecules, 2011, 12, 3499-3507.	2.6	47
199	ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst. Macromolecules, 2011, 44, 811-819.	2.2	143
200	A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. Journal of Materials Chemistry, 2011, 21, 4095.	6.7	263
201	Both Core- and Shell-Cross-Linked Nanogels: Photoinduced Size Change, Intraparticle LCST, and Interparticle UCST Thermal Behaviors. Langmuir, 2011, 27, 436-444.	1.6	72
202	Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12996-13001.	3.3	178
203	Stimulus responsive nanogels for drug delivery. Soft Matter, 2011, 7, 5908.	1.2	328

#	Article	IF	CITATIONS
204	Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 1141-1159.	2.4	48
205	Novel Thermoresponsive Polymers Tunable by pH. Macromolecules, 2011, 44, 1628-1634.	2.2	58
206	Covalently incorporated protein–nanogels using AGET ATRP in an inverse miniemulsion. Polymer Chemistry, 2011, 2, 1476.	1.9	66
208	Artificial Chaperone Polysaccharide Nanogels for Protein Delivery: A Thermodynamic Study of Protein-Nanogel Interactions Using Fluorescence Correlation Spectroscopy. Current Drug Discovery Technologies, 2011, 8, 308-313.	0.6	9
209	Progress in Nanoparticulate Systems for Peptide, Proteins and Nucleic Acid Drug Delivery. Current Pharmaceutical Biotechnology, 2011, 12, 1823-1839.	0.9	23
210	Silica-Based Materials: Bioprocesses and Nanocomposites. , 2011, , 119-136.		0
211	Metal Coordinative-crosslinked Polysaccharide Nanogels with Redox Sensitivity. Chemistry Letters, 2011, 40, 182-183.	0.7	9
212	Anion/Cation Induced Optical Switches Based on Luminescent Lanthanide (Tb ³⁺ and) Tj ETQq1 1 C).784314 i 1.3	rgBT_/Overlac
213	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	4.8	1,187
214	Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. Journal of Controlled Release, 2011, 152, 57-66.	4.8	200
215	Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel. Polymer, 2011, 52, 5746-5755.	1.8	59
216	Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 2011, 25, 1865-1880.	5.6	443
217	The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials, 2011, 32, 7847-7855.	5.7	123
218	Polyacrylamide Nanoparticles as a Delivery System in Photodynamic Therapy. Molecular Pharmaceutics, 2011, 8, 920-931.	2.3	91
219	Hollow poly(<i>N</i> â€isopropylacrylamide)â€ <i>co</i> â€poly(acrylic acid) microgels with high loading capacity for drugs. Journal of Applied Polymer Science, 2012, 124, 4678-4685.	1.3	10
220	Thermoresponsive Hydrogel Scaffolds with Tailored Hydrophilic Pores. Chemistry - an Asian Journal, 2011, 6, 128-136.	1.7	39
221	Microfabricated particulate drugâ€delivery systems. Biotechnology Journal, 2011, 6, 1477-1487.	1.8	27
222	Preparation of polymer nanocapsules for use as carriers via one-step redox interfacially initiated miniemulsion polymerization. Journal of Polymer Research, 2011, 18, 305-310.	1.2	9

#	Article	IF	CITATIONS
223	Atom transfer radical polymerization of monomers containing amide and ester moieties monitored by dilatometric method. Journal of Polymer Research, 2011, 18, 559-568.	1.2	9
224	Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid and Polymer Science, 2011, 289, 659-666.	1.0	8
225	Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase. Colloid and Polymer Science, 2011, 289, 685-691.	1.0	45
226	A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres. Microfluidics and Nanofluidics, 2011, 10, 1289-1298.	1.0	61
227	Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomaterialia, 2011, 7, 31-56.	4.1	184
228	In vitro and in vivo characteristics of core–shell type nanogel particles: Optimization of core cross-linking density and surface poly(ethylene glycol) density in PEGylated nanogels. Acta Biomaterialia, 2011, 7, 3354-3361.	4.1	34
229	Smart swelling biopolymer microparticles by a microfluidic approach: Synthesis, in situ encapsulation and controlled release. Colloids and Surfaces B: Biointerfaces, 2011, 82, 81-86.	2.5	44
230	Self-assembled nanogel of pluronic-conjugated heparin as a versatile drug nanocarrier. Macromolecular Research, 2011, 19, 180-188.	1.0	45
231	Hybrid alginate beads with thermalâ€responsive gates for smart drug delivery. Polymers for Advanced Technologies, 2011, 22, 1539-1546.	1.6	16
232	Multifunctional hybrid magnetite nanoparticles with pHâ€responsivity, superparamagnetism and fluorescence. Polymer International, 2011, 60, 1303-1308.	1.6	12
233	Fabrication of Advanced Particles and Particleâ€Based Materials Assisted by Dropletâ€Based Microfluidics. Small, 2011, 7, 1728-1754.	5.2	255
234	Synthesis of Nanosized (<20 nm) Polymer Particles by Radical Polymerization in Miniemulsion Employing in situ Surfactant Formation. Macromolecular Rapid Communications, 2011, 32, 1669-1675.	2.0	21
235	A One Pot, One Step Method for the Preparation of Clickable Hydrogels by Photoinitiated Polymerization. Macromolecular Rapid Communications, 2011, 32, 1906-1909.	2.0	41
236	Bromo <i>iso</i> butyramide as an Intermolecular Surface Binder for the Preparation of Freeâ€standing Biopolymer Assemblies. Advanced Materials, 2011, 23, 5668-5673.	11.1	42
237	Preparation and characterization of hydrophilic, spectroscopic, and kinetic properties of hydrogels based on polyacrylamide and methylcellulose polysaccharide. Journal of Applied Polymer Science, 2011, 120, 3004-3013.	1.3	27
238	Photophysical studies of novel lanthanide (Eu3+ and Tb3+) luminescent hydrogels. Inorganic Chemistry Communication, 2011, 14, 515-518.	1.8	16
239	Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science. Current Opinion in Colloid and Interface Science, 2011, 16, 106-117.	3.4	134
240	Light-responsive polymer micelles, nano- and microgels based on the reversible photodimerization of coumarin. Dyes and Pigments, 2011, 89, 278-283.	2.0	64

#	Article	IF	CITATIONS
241	Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly(n-butyl acrylate) macromonomers via ATRP. European Polymer Journal, 2011, 47, 746-751.	2.6	30
242	Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. European Polymer Journal, 2011, 47, 730-734.	2.6	70
243	Symmetric and asymmetric adsorption of pH-responsive gold nanoparticles onto microgel particles and dispersion characterisation. Journal of Colloid and Interface Science, 2011, 355, 321-327.	5.0	19
244	Synthesis and swelling behavior of temperature responsive \hat{l}^2 -carrageenan nanogels. Journal of Colloid and Interface Science, 2011, 355, 512-517.	5.0	96
245	One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer Science, 2011, 36, 671-712.	11.8	568
246	Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Progress in Polymer Science, 2011, 36, 168-189.	11.8	387
247	Polymer vectors via controlled/living radical polymerization for gene delivery. Progress in Polymer Science, 2011, 36, 1099-1131.	11.8	149
248	Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: How new and how powerful. Progress in Polymer Science, 2011, 36, 1050-1078.	11.8	122
249	Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors. Progress in Polymer Science, 2011, 36, 767-792.	11.8	275
250	Preparation and characterization of thermosensitive organic–inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polymer, 2011, 52, 172-179.	1.8	70
251	Aqueous nanogels modified with cyclodextrin. Polymer, 2011, 52, 1917-1924.	1.8	67
252	Effect of chain topology on the self-organization and the mechanical properties of poly(n-butyl) Tj ETQq1 1 0.784	1314 rgBT	/Gverlock 1
253	Tailoring thermoresponsive microbeads in supercritical carbon dioxide for biomedical applications. Journal of Supercritical Fluids, 2011, 56, 292-298.	1.6	14
254	Synthesis of Polystyrene-B-Poly(<i>Ethylene Oxide</i>)monomethyl Ethermethacrylate Block Copolymers and its Self-Assembly in Aqueous Solution. Advanced Materials Research, 2011, 284-286, 769-772.	0.3	0
255	Optical Properties of Two Novel Terbium Thermo-Sensitive Poly(<i>N-Isopropylacrylamide</i>) Gels. Advanced Materials Research, 2011, 399-401, 886-889.	0.3	0
256	Formulation Development of a Carrageenan Based Delivery System for Buccal Drug Delivery Using Ibuprofen as a Model Drug. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 582-595.	1.0	27
257	Nanoparticles, Promising Carriers in Drug Targeting: A Review. Current Drug Therapy, 2011, 6, 87-96.	0.2	8
258	Synthesis, Characterization, and Evaluation of Radical Scavenging Ability of Ellagic Acid-Loaded Nanogels. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	19

#	Article	IF	CITATIONS
259	Synthesis and Properties of pH-Responsive Polymers with Cadaverine Side Groups. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 816-822.	1.2	2
260	Fine Particles in Medicine and Pharmacy. , 2012, , .		9
261	Influence of the ionic character of a drug on its release rate from hydrogels based on 2-hydroxyethylmethacrylate and acrylamide synthesized by photopolymerization. EXPRESS Polymer Letters, 2012, 6, 189-197.	1,1	10
262	Novel macroporous amphoteric gels: Preparation and characterization. EXPRESS Polymer Letters, 2012, 6, 346-353.	1.1	22
263	Phase Transition of Poly(acrylic acid-co- <i>N</i> -isopropylacrylamide) Core-shell Nanogels. Chinese Journal of Chemical Physics, 2012, 25, 463-468.	0.6	4
264	Shape Dynamics and Rheology of Soft Elastic Particles in a Shear Flow. Physical Review Letters, 2012, 108, 058302.	2.9	44
265	Synthesis of hybrid microgels by coupling of laser ablation and polymerization in aqueous medium. Journal of Laser Applications, 2012, 24, 042012.	0.8	19
266	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	9.4	173
268	Spontaneous shape reconfigurations in multicompartmental microcylinders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16057-16062.	3.3	90
269	Alginate based Hydrogel as a Potential Biopolymeric Carrier for Drug Delivery and Cell Delivery Systems: Present Status and Applications. Current Drug Delivery, 2012, 9, 539-555.	0.8	146
270	Self-assembled Nanogel Engineering for Advanced Biomedical Technology. Chemistry Letters, 2012, 41, 202-208.	0.7	40
271	Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 2012, 51, 1487-1500.	1.9	467
272	Vinyl Polymerization in Heterogeneous Systems. , 2012, , 463-499.		1
273	Polymer Micelle with pH-Triggered Hydrophobic–Hydrophilic Transition and De-Cross-Linking Process in the Core and Its Application for Targeted Anticancer Drug Delivery. Biomacromolecules, 2012, 13, 4126-4137.	2.6	95
274	Tenside-free Preparation of Nanogels with High Functional \hat{l}^2 -Cyclodextrin Content. ACS Nano, 2012, 6, 8087-8093.	7.3	33
275	Copper-Mediated Atom Transfer Radical Polymerization. , 2012, , 377-428.		21
276	Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid and Interface Science, 2012, 17, 235-245.	3.4	366
278	Photopolymerization of biocompatible films containing poly(lactic acid). European Polymer Journal, 2012, 48, 2107-2116.	2.6	8

#	Article	IF	CITATIONS
279	A study of shrinkage stress reduction and mechanical properties of nanogel-modified resin systems. European Polymer Journal, 2012, 48, 1819-1828.	2.6	52
280	Layer-by-Layer Assembled Films Composed of "Charge Matched―and "Length Matched―Polysaccharides Self-Patterning and Unexpected Effects of the Degree of Polymerization. Biointerphases, 2012, 7, 64.	^{S:} 0.6	11
281	Orthogonally bifunctionalised polyacrylamide nanoparticles: a support for the assembly of multifunctional nanodevices. Nanoscale, 2012, 4, 2034.	2.8	27
282	Injectable hydrogels for central nervous system therapy. Biomedical Materials (Bristol), 2012, 7, 024101.	1.7	198
283	Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release. Journal of Colloid and Interface Science, 2012, 387, 115-122.	5.0	30
284	Bioreducible nanogels/microgels easily prepared via temperature induced self-assembly and self-crosslinking. Chemical Communications, 2012, 48, 5623.	2.2	34
285	A pH-sensitive macro- and nanohydrogel constructed from cationic hydroxyl-containing hyperbranched polycarbonate. Soft Matter, 2012, 8, 6906.	1.2	16
286	Biocompatible and functionalizable polyphosphate nanogel with a branched structure. Journal of Materials Chemistry, 2012, 22, 9322.	6.7	26
287	The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chemical Communications, 2012, 48, 585-587.	2.2	20
288	Enzymatically degradable nanogels by inverse miniemulsion copolymerization of acrylamide with dextran methacrylates as crosslinkers. Polymer Chemistry, 2012, 3, 204-216.	1.9	57
289	Glucose- and temperature-responsive core–shell microgels for controlled insulin release. RSC Advances, 2012, 2, 9904.	1.7	41
290	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
291	Biodegradable dextran based microgels: a study on network associated water diffusion and enzymatic degradation. Soft Matter, 2012, 8, 2494.	1.2	19
292	Hemocompatible Poly(NIPAm-MBA-AMPS) Colloidal Nanoparticles as Carriers of Anti-inflammatory Cell Penetrating Peptides. Biomacromolecules, 2012, 13, 1204-1211.	2.6	41
293	Triggering Polymeric Nanoparticle Disassembly through the Simultaneous Application of Two Different Stimuli. Macromolecules, 2012, 45, 2699-2708.	2.2	111
294	Degradable Thermoresponsive Nanogels for Protein Encapsulation and Controlled Release. Bioconjugate Chemistry, 2012, 23, 75-83.	1.8	91
295	Interconnected Roles of Scaffold Hydrophobicity, Drug Loading, and Encapsulation Stability in Polymeric Nanocarriers. Molecular Pharmaceutics, 2012, 9, 3569-3578.	2.3	29
296	Thermally Sensitive Block Copolymer Particles Prepared via Aerosol Flow Reactor Method: Morphological Characterization and Behavior in Water. Macromolecules, 2012, 45, 8401-8411.	2.2	18

#	Article	IF	CITATIONS
297	Use of Pyridine-Coated Star-Shaped ROMP Polymer As the Supporting Ligand for Ruthenium-Catalyzed Chemoselective Hydrogen Transfer Reduction of Ketones. Organometallics, 2012, 31, 5074-5080.	1.1	21
298	Photocontrolled Nanoparticles for On-Demand Release of Proteins. Biomacromolecules, 2012, 13, 2219-2224.	2.6	94
299	A Protein–Polymer Hybrid Mediated By DNA. Langmuir, 2012, 28, 1954-1958.	1.6	35
300	Preparation of Cationic Nanogels for Nucleic Acid Delivery. Biomacromolecules, 2012, 13, 3445-3449.	2.6	71
301	Volume Transition and Adhesion Force of Nanosized Bifunctional Spherical Polyelectrolyte Brushes Observed by Dynamic Light Scattering and Atomic Force Microscopy. Journal of Physical Chemistry B, 2012, 116, 10079-10088.	1.2	6
302	PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-in-Water Emulsions. Macromolecules, 2012, 45, 9419-9426.	2.2	81
303	Tuning Hemoglobin–Poly(acrylic acid) Interactions by Controlled Chemical Modification with Triethylenetetramine. Journal of Physical Chemistry B, 2012, 116, 12783-12792.	1.2	11
304	Synthesis of surface-functionalized polystyrene sub-micron spheres using novel amphiphilic comonomer. Polymer, 2012, 53, 3508-3513.	1.8	6
305	Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chemical Communications, 2012, 48, 7542.	2.2	332
306	Controlled Radical Polymerization: State-of-the-Art in 2011. ACS Symposium Series, 2012, , 1-13.	0.5	6
307	The synthesis of translucent polymer nanolatexes via microemulsion polymerization. Journal of Colloid and Interface Science, 2012, 383, 28-35.	5.0	8
308	Photocrosslinking, micropatterning and cell adhesion studies of sodium hyaluronate with a trisdiazonium salt. Carbohydrate Polymers, 2012, 90, 419-430.	5.1	3
309	Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydrate Polymers, 2012, 90, 1216-1225.	5.1	74
310	Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization. Colloids and Surfaces B: Biointerfaces, 2012, 99, 74-81.	2.5	36
311	Poly[alkylene (arylene) phosphate]s., 2012,, 129-261.		1
312	Inorganic Sulfites: Efficient Reducing Agents and Supplemental Activators for Atom Transfer Radical Polymerization. ACS Macro Letters, 2012, 1, 1308-1311.	2.3	95
313	Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology. Soft Matter, 2012, 8, 337-346.	1.2	34
314	Polymer Nanogels and Microgels. , 2012, , 309-350.		17

#	Article	IF	CITATIONS
315	Nanotoxicology. Frontiers of Nanoscience, 2012, 4, 443-485.	0.3	1
316	Hydrogels as drug-delivery platforms: physicochemical barriers and solutions. Therapeutic Delivery, 2012, 3, 775-786.	1.2	8
317	Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polymer Chemistry, 2012, 3, 852-856.	1.9	262
318	Cation-Condensed Microgel-Core Star Polymers as Polycationic Nanocapsules for Molecular Capture and Release in Water. Macromolecules, 2012, 45, 3377-3386.	2.2	34
319	Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter, 2012, 8, 5414.	1.2	132
320	Catalytic chain transfer polymerization for molecular weight control in microemulsion polymerization. Polymer Chemistry, 2012, 3, 514-524.	1.9	10
325	Stimuli-Responsive Fine Particles. , 2012, , 283-308.		1
326	Minimalism in Radiation Synthesis of Biomedical Functional Nanogels. Biomacromolecules, 2012, 13, 1805-1817.	2.6	40
327	Hydrogels for Protein Delivery. Chemical Reviews, 2012, 112, 2853-2888.	23.0	962
328	Hydrogels as Intracellular Depots for Drug Delivery. Molecular Pharmaceutics, 2012, 9, 196-200.	2.3	27
329	Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter, 2012, 8, 9302.	1.2	77
330	Synthesis of Oligo(thiophene)-Coated Star-Shaped ROMP Polymers: Unique Emission Properties by the Precise Integration of Functionality. Journal of the American Chemical Society, 2012, 134, 7892-7895.	6.6	45
331	Biointerface Properties of Core–Shell Poly(vinyl alcohol)-hyaluronic Acid Microgels Based on Chemoselective Chemistry. Biomacromolecules, 2012, 13, 3592-3601.	2.6	24
332	Controlled Synthesis of Cell-Laden Microgels by Radical-Free Gelation in Droplet Microfluidics. Journal of the American Chemical Society, 2012, 134, 4983-4989.	6.6	208
333	Highly Active Bipyridine-Based Ligands for Atom Transfer Radical Polymerization. ACS Macro Letters, 2012, 1, 508-512.	2.3	58
335	Designer Hydrophilic Regions Regulate Droplet Shape for Controlled Surface Patterning and 3D Microgel Synthesis. Small, 2012, 8, 393-403.	5.2	42
336	Thermo―and pHâ€responsive microgels for controlled release of insulin. Polymer International, 2012, 61, 1151-1157.	1.6	5
337	Core–shell nanogels by RAFT crosslinking polymerization: Synthesis and characterization. Journal of Polymer Science Part A, 2012, 50, 4277-4287.	2.5	11

#	Article	IF	Citations
338	New Design of Thiol-Responsive Degradable Block Copolymer Micelles as Controlled Drug Delivery Vehicles. ACS Symposium Series, 2012, , 287-302.	0.5	4
339	AGET ATRP of oligo(ethylene glycol) monomethyl ether methacrylate in inverse microemulsion. Polymer Chemistry, 2012, 3, 1813-1819.	1.9	25
342	In situ formation of crosslinked core–corona polymeric nanoparticles from a novel hyperbranched core. Polymer Chemistry, 2012, 3, 2807.	1.9	3
343	Synthesis of Porous PEG Microgels Using CaCO ₃ Microspheres as Hard Templates. Macromolecular Rapid Communications, 2012, 33, 1049-1054.	2.0	46
344	Atom Transfer Radical Polymerization: From Mechanisms to Applications. Israel Journal of Chemistry, 2012, 52, 206-220.	1.0	126
345	Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012, 45, 4015-4039.	2.2	2,260
346	Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter, 2012, 8, 3280.	1.2	463
347	Production methodologies of polymeric and hydrogel particles for drug delivery applications. Expert Opinion on Drug Delivery, 2012, 9, 231-248.	2.4	98
348	Responsive Macroscopic Materials From Selfâ€Assembled Cross‣inked SiO ₂ â€PNIPAAm Core/Shell Structures. Advanced Functional Materials, 2012, 22, 1724-1731.	7.8	23
349	Fabrication of Gelatin Microgels by a "Cast―Strategy for Controlled Drug Release. Advanced Functional Materials, 2012, 22, 2673-2681.	7.8	67
350	Synthesis and characterization of pH-responsive diblock copolymers with cadaverine side groups. Colloid and Polymer Science, 2012, 290, 1065-1075.	1.0	3
351	Semi-batch control over functional group distributions in thermoresponsive microgels. Colloid and Polymer Science, 2012, 290, 1181-1192.	1.0	30
352	Porous polysulfone coatings for enhanced drug delivery. Biomedical Microdevices, 2012, 14, 603-612.	1.4	25
353	Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydrate Polymers, 2012, 87, 101-109.	5.1	68
354	Cross-linked hydroxypropyl- \hat{l}^2 -cyclodextrin and \hat{l}^3 -cyclodextrin nanogels for drug delivery: Physicochemical and loading/release properties. Carbohydrate Polymers, 2012, 87, 2344-2351.	5.1	55
355	Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 2012, 428, 152-163.	2.6	160
356	Anionically cross linked homopolymer colloids applied in formation of platinum nanoparticles. Journal of Colloid and Interface Science, 2012, 369, 482-484.	5.0	5
357	Synthesis of pH and temperature sensitive, core–shell nano/microgels, by one pot, soap-free emulsion polymerization. Journal of Colloid and Interface Science, 2012, 369, 82-90.	5.0	43

#	Article	IF	CITATIONS
358	Effects of UV irradiation on the wettability of chitosan films containing dansyl derivatives. Journal of Colloid and Interface Science, 2012, 376, 255-261.	5.0	35
359	Enhancing water permeability of fouling-resistant POSS–PEGM hydrogels using â€~addition–extraction' of sacrificial additives. Journal of Membrane Science, 2012, 401-402, 306-312.	4.1	29
360	Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Progress in Polymer Science, 2012, 37, 365-405.	11.8	426
361	ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 2012, 37, 18-37.	11.8	506
362	Fluorine-containing thermo-sensitive core/shell microgel particles: Preparation, characterization, and their applications in controlled drug release. Journal of Fluorine Chemistry, 2012, 135, 75-82.	0.9	16
363	Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels. Journal of Magnetism and Magnetic Materials, 2012, 324, 1488-1497.	1.0	29
364	The synthesis and responsive properties of novel glucose-responsive microgels. Polymer Science - Series A, 2012, 54, 209-213.	0.4	3
365	Characterization of a Hierarchical Network of Hyaluronic Acid/Gelatin Composite for use as a Smart Injectable Biomaterial. Macromolecular Bioscience, 2012, 12, 202-210.	2.1	43
366	Kinetic Modeling of ICAR ATRP. Macromolecular Theory and Simulations, 2012, 21, 52-69.	0.6	84
367	Microfabricated Biomaterials for Engineering 3D Tissues. Advanced Materials, 2012, 24, 1782-1804.	11.1	351
368	Effect of chitosan multilayers encapsulation on controlled release performance of drug-loaded superparamagnetic alginate nanoparticles. Journal of Materials Science: Materials in Medicine, 2012, 23, 393-398.	1.7	11
369	Full factorial designâ€ofâ€experiments for preparation of crosslinked dextran microspheres. Journal of Applied Polymer Science, 2013, 127, 3712-3724.	1.3	19
370	Selfâ€assembled nanoparticles from folateâ€decorated maleilated pullulan–doxorubicin conjugate for improved drug delivery to cancer cells. Polymer International, 2013, 62, 165-171.	1.6	32
371	Preparation of â€~click' hydrogels from polyaspartamide derivatives. Polymer International, 2013, 62, 266-272.	1.6	13
372	Novel pH Induced Reversible Luminescent Lanthanide Hydrogels. Journal of Cluster Science, 2013, 24, 449-458.	1.7	7
373	Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. Journal of Polymer Research, 2013, 20, 1.	1.2	71
374	pH and redox responsive hydrogels and nanogels made from poly(2-ethyl-2-oxazoline). Polymer Chemistry, 2013, 4, 4801.	1.9	45
375	Ambient temperature rapid SARA ATRP of acrylates and methacrylates in alcohol–water solutions mediated by a mixed sulfite/Cu(ii)Br2 catalytic system. Polymer Chemistry, 2013, 4, 5629.	1.9	70

#	Article	IF	CITATIONS
376	Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 2013, 169, 289-295.	4.8	132
377	Shrinking Hydrogelâ€DNA Spots Generates 3D Microdots Arrays. Macromolecular Bioscience, 2013, 13, 227-233.	2.1	18
378	Genipin-cross-linked poly(l-lysine)-based hydrogels: Synthesis, characterization, and drug encapsulation. Colloids and Surfaces B: Biointerfaces, 2013, 111, 423-431.	2.5	34
379	Design and synthesis of lipase nanogel with interpenetrating polymer networks for enhanced catalysis: Molecular simulation and experimental validation. Journal of Molecular Catalysis B: Enzymatic, 2013, 88, 60-68.	1.8	13
380	Protein–polymer hybrids: Conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. European Polymer Journal, 2013, 49, 2919-2924.	2.6	25
381	Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering, 2013, 119, 781-792.	2.7	298
382	A dual location stimuli-responsive degradation strategy of block copolymer nanocarriers for accelerated release. Chemical Communications, 2013, 49, 7534.	2.2	44
383	Cellular Uptake and Intracellular Cargo Release From Dextran Based Nanogel Drug Carriers. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, 110021-110028.	0.8	15
384	Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate. Journal of Materials Science, 2013, 48, 7935-7948.	1.7	24
385	Dexamethasone eye drops containing \hat{i}^3 -cyclodextrin-based nanogels. International Journal of Pharmaceutics, 2013, 441, 507-515.	2.6	58
386	Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, 2013, , .	0.6	58
387	High throughput generation and trapping of individual agarose microgel using microfluidic approach. Microfluidics and Nanofluidics, 2013, 15, 467-474.	1.0	15
388	Folateâ€Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells. Macromolecular Bioscience, 2013, 13, 735-744.	2.1	63
389	Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels. Polymer Bulletin, 2013, 70, 653-664.	1.7	29
390	Control of the size and characteristic features of fluorine-containing aromatic polyamide particles. Colloid and Polymer Science, 2013, 291, 1641-1648.	1.0	8
391	Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium. Colloid and Polymer Science, 2013, 291, 21-31.	1.0	28
392	Hydrolytically degradable shells on thermoresponsive microgels. Colloid and Polymer Science, 2013, 291, 99-107.	1.0	15
393	Synthesis and characterization of pH-Responsive block copolymers with primary amine groups. Chemical Research in Chinese Universities, 2013, 29, 389-395.	1.3	О

#	Article	IF	CITATIONS
394	Effective parameters in determining cross-linked dextran microsphere characteristics: screening by Plackett–Burman design-of-experiments. Journal of Microencapsulation, 2013, 30, 599-611.	1.2	12
395	Biomimetic Coatings to Control Cellular Function through Cell Surface Engineering. Advanced Functional Materials, 2013, 23, 4437-4453.	7.8	106
396	Polycationic nanoparticles synthesized using ARGET ATRP for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 472-478.	2.0	31
397	Two-Dimensional Patterns of Poly(<i>N</i> -isopropylacrylamide) Microgels to Spatially Control Fibroblast Adhesion and Temperature-Responsive Detachment. Langmuir, 2013, 29, 12183-12193.	1.6	43
398	Surfactant-Free Synthesis of Biodegradable, Biocompatible, and Stimuli-Responsive Cationic Nanogel Particles. Biomacromolecules, 2013, 14, 3682-3688.	2.6	48
399	Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release, 2013, 172, 1020-1034.	4.8	193
400	Multifunctionality in metal@microgel colloidal nanocomposites. Journal of Materials Chemistry A, 2013, 1, 20-26.	5.2	65
401	Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). International Journal of Pharmaceutics, 2013, 453, 630-640.	2.6	54
402	Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Advances in Manufacturing, 2013, 1, 198-210.	3.2	36
403	Natural Polypeptide-Based Supramolecular Nanogels for Stable Noncovalent Encapsulation. Biomacromolecules, 2013, 14, 3515-3522.	2.6	49
404	25th Anniversary Article: Dynamic Interfaces for Responsive Encapsulation Systems. Advanced Materials, 2013, 25, 5029-5043.	11.1	82
405	Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. Polymer Reviews, 2013, 53, 407-442.	5.3	103
406	Synthesis of nanogel–protein conjugates. Polymer Chemistry, 2013, 4, 2464.	1.9	50
407	Fluorescent dextran-based nanogels: efficient imaging nanoprobes for adipose-derived stem cells. Polymer Chemistry, 2013, 4, 4103.	1.9	29
408	The Influence of Deposition Solution pH and Ionic Strength on the Quality of Poly(<i>N</i> -isopropylacrylamide) Microgel-Based Thin Films and Etalons. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 11977-11983.	4.0	22
409	Programming nanoparticle aggregation kinetics with poly(MeO2MA-co-OEGMA) copolymers. Soft Matter, 2013, 9, 11046.	1.2	16
410	Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. Journal of Materials Chemistry B, 2013, 1, 6147.	2.9	31
411	In situ generation of bioreducible and acid labile nanogels/microgels simply via adding water into the polymerization system. Polymer Chemistry, 2013, 4, 1694.	1.9	23

#	Article	IF	CITATIONS
412	Synthesis, Electrical and Magnetic Characterization of Polyacrylamide Hydrogels Including NiFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2013, 26, 213-218.	0.8	10
413	Self-Assembled pH-Sensitive Cholesteryl Pullulan Nanogel As a Protein Delivery Vehicle. Biomacromolecules, 2013, 14, 56-63.	2.6	122
414	Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale, 2013, 5, 860.	2.8	109
415	Synthesis of new enzymatically degradable thermo-responsive nanogels. Soft Matter, 2013, 9, 261-270.	1.2	42
416	Antibacterial activity of konjac glucomannan/chitosan blend films and their irradiation-modified counterparts. Carbohydrate Polymers, 2013, 92, 1302-1307.	5.1	24
417	Modular â€~Clickâ€inâ€Emulsion' Boneâ€Targeted Nanogels. Advanced Materials, 2013, 25, 1449-1454.	11.1	73
418	Adaptable poly(ethylene glycol) microspheres capable of mixed-mode degradation. Acta Biomaterialia, 2013, 9, 9270-9280.	4.1	31
419	Structure and biological evaluation of amino-functionalized PVP nanogels for fast cellular internalization. Reactive and Functional Polymers, 2013, 73, 1103-1113.	2.0	10
420	Synthesis and unusual volume phase transition behavior of poly(N-isopropylacrylamide)–poly(2-hydroxyethyl methacrylate) interpenetrating polymer network microgel. Soft Matter, 2013, 9, 1678-1684.	1.2	23
421	Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing smectite. Applied Clay Science, 2013, 83-84, 469-473.	2.6	22
422	Accessibility of cellulose: Structural changes and their reversibility in aqueous media. Carbohydrate Polymers, 2013, 93, 424-429.	5.1	40
423	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	23.0	1,173
425	Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. European Polymer Journal, 2013, 49, 22-32.	2.6	45
426	Phosphorylated curdlan microgels. Preparation, characterization, and in vitro drug release studies. Carbohydrate Polymers, 2013, 94, 889-898.	5.1	26
427	Dynamics and rheology of elastic particles in an extensional flow. Journal of Fluid Mechanics, 2013, 715, 573-596.	1.4	13
428	Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter, 2013, 9, 3840.	1.2	116
429	Redox―and pHâ€Responsive Cysteamineâ€Modified Poly(aspartic acid) Showing a Reversible Sol–Gel Transition. Macromolecular Bioscience, 2013, 13, 633-640.	2.1	53
430	Star Polymers with a Cationic Core Prepared by ATRP for Cellular Nucleic Acids Delivery. Biomacromolecules, 2013, 14, 1262-1267.	2.6	68

#	Article	IF	CITATIONS
431	Mild Oxidation of Thiofunctional Polymers to Cytocompatible and Stimuliâ€Sensitive Hydrogels and Nanogels. Macromolecular Bioscience, 2013, 13, 470-482.	2.1	17
432	Smectite–Polymer Nanocomposites. Developments in Clay Science, 2013, , 679-706.	0.3	25
433	Nanoparticle Assembling and System Integration. Interface Science and Technology, 2013, 19, 185-277.	1.6	5
435	Folate-conjugated poly(N-(2-hydroxypropyl)methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. Polymer Chemistry, 2013, 4, 3545.	1.9	35
436	Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nanogel for improved security and efficacy. Biomaterials Science, 2013, 1, 633-646.	2.6	55
437	Biomimetic Hydrogelâ€Based Actuating Systems. Advanced Functional Materials, 2013, 23, 4555-4570.	7.8	411
438	Micromechanics of temperature sensitive microgels: dip in the Poisson ratio near the LCST. Soft Matter, 2013, 9, 7158.	1.2	57
439	Factors Affecting Enzymatic Degradation of Microgel-Bound Peptides. Biomacromolecules, 2013, 14, 2317-2325.	2.6	34
440	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	2.6	108
441	pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation. Biomacromolecules, 2013, 14, 2023-2032.	2.6	159
442	Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 2013, 46, 4095-4104.	2.2	114
443	Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 2013, 38, 1329-1356.	11.8	284
444	Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. Journal of Materials Chemistry B, 2013, 1, 2324.	2.9	67
445	Crystalline colloidal arrays from the self-assembly of polymer microspheres. Progress in Polymer Science, 2013, 38, 406-419.	11.8	21
447	Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions. Polymer Chemistry, 2013, 4, 4601.	1.9	242
448	iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials, 2013, 34, 3523-3533.	5 . 7	129
449	Reduction-sensitive Nanosystems for Active Intracellular Drug Delivery. RSC Smart Materials, 2013, , 208-231.	0.1	2
450	UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles. RSC Smart Materials, 2013, , 304-348.	0.1	23

#	Article	IF	CITATIONS
451	The Importance of Controlled/Living Radical Polymerization Techniques in the Design of Tailor Made Nanoparticles for Drug Delivery Systems. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 315-357.	0.6	2
452	Gold Nanoflower@Gelatin Core–Shell Nanoparticles Loaded with Conjugated Polymer Applied for Cellular Imaging. ACS Applied Materials & Samp; Interfaces, 2013, 5, 213-219.	4.0	52
453	Biomedical. Interface Science and Technology, 2013, 19, 385-427.	1.6	2
454	Designing responsive microgels for drug delivery applications. Journal of Polymer Science Part A, 2013, 51, 3027-3043.	2.5	146
455	Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic) Tj ETQq0 0 0 rgBT /Overlock 10 pre-emulsified semi-batch emulsion polymerization. Journal of Colloid and Interface Science, 2013, 391, 86-94.	Tf 50 592 5.0	2 Td (acid)-gra 18
456	DNA–poly(vinyl alcohol) gel matrices: Release properties are strongly dependent on electrolytes and cationic surfactants. Colloids and Surfaces B: Biointerfaces, 2013, 101, 111-117.	2.5	7
458	Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy. Nanoscale, 2013, 5, 9902.	2.8	30
459	Facile aqueous-phase synthesis of multi-responsive nanogels based on polyetheramines and bisepoxide. Journal of Materials Chemistry B, 2013, 1, 1628.	2.9	24
460	Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter, 2013, 9, 5319.	1.2	31
461	Microgel particles: The structureâ€property relationships and their biomedical applications. Journal of Polymer Science Part A, 2013, 51, 2995-3003.	2.5	47
462	Characterization and Antimicrobial Property of Poly(Acrylic Acid) Nanogel Containing Silver Particle Prepared by Electron Beam. International Journal of Molecular Sciences, 2013, 14, 11011-11023.	1.8	20
463	Synthetic and Performance Research on the New Type Hydrogel with Acrylic Acid and Acrylamide Unit. Advanced Materials Research, 0, 864-867, 690-693.	0.3	O
464	Crossâ€Linking Density and Temperature Effects on the Selfâ€Assembly of SiO ₂ â€"PNIPAAm Coreâ€"Shell Particles at Interfaces. Chemistry - A European Journal, 2013, 19, 5586-5594.	1.7	27
465	Light-Sensitive Polymeric Nanoparticles Based on Photo-Cleavable Chromophores. Springer Theses, 2013, , .	0.0	9
466	Improving Drug Loading of Mucosal Solvent Cast Films Using a Combination of Hydrophilic Polymers with Amoxicillin and Paracetamol as Model Drugs. BioMed Research International, 2013, 2013, 1-8.	0.9	25
467	Fabrication and Characterisation of Microgel/ <scp>P</scp> olymer Composite Microfibres. Macromolecular Materials and Engineering, 2013, 298, 1282-1293.	1.7	8
468	A Dual Enzyme Microgel with High Antioxidant Ability Based on Engineered Selenoâ€Ferritin and Artificial Superoxide Dismutase. Macromolecular Bioscience, 2013, 13, 808-816.	2.1	14
469	Poly (<i>N</i> à€isopropylacrylamide) microgelâ€based assemblies. Journal of Polymer Science Part A, 2013, 51, 3004-3020.	2.5	30

#	Article	IF	Citations
470	pHâ€responsive destabilization and facile bioconjugation of new hydroxylâ€terminated block copolymer micelles. Journal of Polymer Science Part A, 2013, 51, 1620-1629.	2.5	8
472	Assembly of stimulus-sensitive gel particles with DNA–dye complexes. Polymer Journal, 2013, 45, 659-664.	1.3	2
473	Use of Nanotechnology to Develop Multi-Drug Inhibitors for Cancer Therapy. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	52
474	Smart Stimuli Sensitive Nanogels in Cancer Drug Delivery and Imaging: A Review. Current Pharmaceutical Design, 2013, 19, 7203-7218.	0.9	140
475	Grand challenges in polymer chemistry: energy, environment, health. Frontiers in Chemistry, 2013, 1, 31.	1.8	11
476	Biphasic Equilibrium Dialysis of Poly(N-Isopropyl Acrylamide) Nanogels Synthesized at Decreased Temperatures for Targeted Delivery of Thermosensitive Bioactives. International Journal of Polymer Science, 2013, 2013, 1-9.	1.2	1
477	Investigation of immobilization and hydrolytic properties of pectinase onto chitosan-PVA copolymer. International Journal of Advanced Chemistry, 2014, 2, .	0.1	1
479	Equilibrium Adsorption of Hexahistidine on pH-Responsive Hydrogel Nanofilms. Langmuir, 2014, 30, 15335-15344.	1.6	14
480	Thermo-responsive fibrinogen nanogels: a viable thermo-responsive drug delivery agent for breast cancer therapy?. Nanomedicine, 2014, 9, 2721-2723.	1.7	0
481	Monitoring the Internal Structure of Poly($\langle i \rangle N \langle i \rangle$ -vinylcaprolactam) Microgels with Variable Cross-Link Concentration. Langmuir, 2014, 30, 15317-15326.	1.6	60
482	A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nature Communications, 2014, 5, 4622.	5.8	140
483	Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. Acta Biomaterialia, 2014, 10, 4750-4758.	4.1	50
484	Novel Synthesis Pathways for PNIPAAm-Based Hydrogels and Their Application in Thermosensitive. , 2014, , 1-28.		0
485	Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review. Materials, 2014, 7, 805-875.	1.3	158
486	Controlled release of proteins with gel microparticles. , 2014, , .		0
487	Nanotechnological Strategies for Vaginal Administration of Drugs—A Review. Journal of Biomedical Nanotechnology, 2014, 10, 2218-2243.	0.5	31
488	Stabilization of photochromic isomers by copper nanoparticles in a high-diffusivity solid matrix. Optics Letters, 2014, 39, 5366.	1.7	5
489	Cell-induced flow-focusing instability in gelatin methacrylate microdroplet generation. Biomicrofluidics, 2014, 8, 036503.	1.2	25

#	Article	IF	Citations
490	Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers, 2014, 101, 945-958.	1.2	13
491	Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: Influence of particle internal structure and boundary. Journal of Chemical Physics, 2014, 140, 164902.	1.2	7
492	Cationic Polymers in Drug Delivery. RSC Polymer Chemistry Series, 2014, , 296-320.	0.1	0
493	Environment-Dependent Guest Exchange in Supramolecular Hosts. Langmuir, 2014, 30, 12384-12390.	1.6	17
494	Synthesis and Characterization of Hydrogel Nanoparticles Through Inverse Microemulsion Polymerization of 2-Acrylamido-2-methyl-1-propanesulfonic Acid. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 240-248.	1.2	12
495	"Smart―Surface Capsules for Delivery Devices. Advanced Materials Interfaces, 2014, 1, 1400237.	1.9	31
497	Dynamical Threshold of Diluteness of Soft Colloids. ACS Macro Letters, 2014, 3, 1271-1275.	2.3	7
498	Sensitive microgels as model colloids and microcapsules. Journal of Polymer Science Part A, 2014, 52, 435-449.	2.5	24
499	Synergistic Computationalâ€Experimental Approach to Improve Ionene Polymerâ€Based Functional Hydrogels. Advanced Functional Materials, 2014, 24, 4893-4904.	7.8	27
500	Ammonium Carbamate Functionalization of Microgels for pHâ€Sensitive Loading and Release of Anionic and Cationic Molecules. Macromolecular Chemistry and Physics, 2014, 215, 90-95.	1.1	O
501	Fast Self-Healing of Graphene Oxide-Hectorite Clay-Poly(<i>N,N</i> dimethylacrylamide) Hybrid Hydrogels Realized by Near-Infrared Irradiation. ACS Applied Materials & Interfaces, 2014, 6, 22855-22861.	4.0	97
502	Modulating the release of drugs from alginate matrices with the addition of gelatin microbeads. Journal of Bioactive and Compatible Polymers, 2014, 29, 193-207.	0.8	9
504	Structure of Microgels with Debye–Hückel Interactions. Polymers, 2014, 6, 1602-1617.	2.0	59
505	Cyclodextrin-based hydrogels toward improved wound dressings. Critical Reviews in Biotechnology, 2014, 34, 328-337.	5.1	42
506	Bisensitive core–shell nanohydrogels by e-Beam irradiation of micelles. Reactive and Functional Polymers, 2014, 75, 31-40.	2.0	19
507	One step poly(quercetin) particle preparation as biocolloid and its characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 173-180.	2.3	33
508	Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides. Colloids and Surfaces B: Biointerfaces, 2014, 114, 104-110.	2.5	5
509	Cationic Polymer Nanoparticles and Nanogels: From Synthesis to Biotechnological Applications. Chemical Reviews, 2014, 114, 367-428.	23.0	159

#	Article	IF	CITATIONS
510	Improvement single-wall carbon nanotubes (SWCNTs) based on functionalizing with monomers 2-hydroxyethylmethacryate (HEMA) and N-vinylpyrrolidone (NVP) for pharmaceutical applications as cancer therapy. Journal of Industrial and Engineering Chemistry, 2014, 20, 2895-2900.	2.9	27
511	Development of Multiple Stimuli Responsive Magnetic Polymer Nanocontainers as Efficient Drug Delivery Systems. Macromolecular Bioscience, 2014, 14, 131-141.	2.1	28
512	Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews, 2014, 78, 63-76.	6.6	242
513	PEGâ€Based Microgels Formed by Visibleâ€Lightâ€Mediated Thiolâ€Ene Photoâ€Click Reactions. Macromolecular Chemistry and Physics, 2014, 215, 507-515.	1.1	27
514	Nanogel-modified polycaprolactone microfibres with controlled water uptake and degradability. Polymer, 2014, 55, 2153-2162.	1.8	15
515	Soft Matter Anion Sensing Based on Lanthanide (Eu3+and TB3+) Luminescent Hydrogels. Soft Materials, 2014, 12, 98-102.	0.8	10
516	Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. Journal of Polymer Research, 2014, 21, 1.	1.2	87
517	The Effect of Glutathione as Chain Transfer Agent in PNIPAAm-Based Thermo-responsive Hydrogels for Controlled Release of Proteins. Pharmaceutical Research, 2014, 31, 742-753.	1.7	38
518	Graphene oxide/poly(acrylic acid) hydrogel by \hat{I}^3 -ray pre-irradiation on graphene oxide surface. Macromolecular Research, 2014, 22, 165-172.	1.0	43
519	Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35, 4969-4985.	5.7	629
520	Smart Nanocontainers: Progress on Novel Stimuliâ€Responsive Polymer Vesicles. Macromolecular Rapid Communications, 2014, 35, 767-779.	2.0	114
521	pH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Colloids and Surfaces B: Biointerfaces, 2014, 116, 247-256.	2.5	31
522	Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polymer Chemistry, 2014, 5, 1559-1565.	1.9	40
523	Macromolecular Engineering by Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2014, 136, 6513-6533.	6.6	1,036
524	Designing slow water-releasing alginate nanoreserviors for sustained irrigation in scanty rainfall areas. Carbohydrate Polymers, 2014, 102, 513-520.	5.1	21
525	Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Progress in Polymer Science, 2014, 39, 1235-1265.	11.8	193
526	Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014, 15, 1955-1969.	2.6	447
527	Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chemical Society Reviews, 2014, 43, 444-472.	18.7	157

#	Article	IF	CITATIONS
528	Gelation Chemistries for the Encapsulation of Nanoparticles in Composite Gel Microparticles for Lung Imaging and Drug Delivery. Biomacromolecules, 2014, 15, 252-261.	2.6	19
529	Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors. Carbohydrate Polymers, 2014, 101, 96-103.	5.1	30
530	Dendrimer-Assisted Formation of Fluorescent Nanogels for Drug Delivery and Intracellular Imaging. Biomacromolecules, 2014, 15, 492-499.	2.6	76
531	Targeting of EGFâ€displayed protein nanoparticles with anticancer drugs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1792-1798.	1.6	20
532	Poly(<i>N</i> â€vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field. Advanced Healthcare Materials, 2014, 3, 1941-1968.	3.9	119
533	Recent Strategies to Develop Polysaccharideâ€Based Nanomaterials for Biomedical Applications. Macromolecular Rapid Communications, 2014, 35, 1819-1832.	2.0	107
534	Thermoresponsive microhydrogels: preparation, properties and applications. Polymer International, 2014, 63, 925-932.	1.6	52
535	Core-shell type complex gelatin scaffold systems for controlled drug release. Macromolecular Research, 2014, 22, 1024-1031.	1.0	2
536	Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter, 2014, 10, 8157-8162.	1.2	65
537	What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter, 2014, 10, 2116-2123.	1.2	127
538	Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release. RSC Advances, 2014, 4, 229-237.	1.7	31
539	New ampholytic microgels based on N-isopropylacrylamide and $\hat{l}\pm$ -amino acid: changes in swelling behavior as a function of temperature, pH and divalent cation concentration. RSC Advances, 2014, 4, 48905-48911.	1.7	18
540	Design and Viscoelastic Properties of <scp>PDMA</scp> / <scp>S</scp> ilica Assemblies in Aqueous Media. Macromolecular Symposia, 2014, 337, 58-73.	0.4	6
541	Photoâ€induced thiolâ€ene polysulfideâ€crosslinked materials with tunable thermal and mechanical properties. Journal of Polymer Science Part A, 2014, 52, 3060-3068.	2.5	8
542	Advanced dextran based nanogels for fightingStaphylococcus aureusinfections by sustained zinc release. Journal of Materials Chemistry B, 2014, 2, 2175-2183.	2.9	35
543	Dual-temperature and pH responsive (ethylene glycol)-based nanogels <i>via</i> structural design. Polymer Chemistry, 2014, 5, 3061-3070.	1.9	28
544	The unusual volume phase transition behavior of the poly(N-isopropylacrylamide)–poly(2-hydroxyethyl methacrylate) interpenetrating polymer network microgel: different roles in different stages. Polymer Chemistry, 2014, 5, 5967-5977.	1.9	20
546	Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 12320-12364.	7.2	1,447

#	Article	IF	CITATIONS
547	Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures. RSC Advances, 2014, 4, 45504-45516.	1.7	68
548	Modeling of Ionization and Conformations of Starlike Weak Polyelectrolytes. Macromolecules, 2014, 47, 4004-4016.	2.2	58
549	Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermoresponsive nanogels with controlled composition, functionality and architecture. Polymer Chemistry, 2014, 5, 6244-6255.	1.9	48
550	Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels. RSC Advances, 2014, 4, 49547-49555.	1.7	32
551	Kinetically Controlled Self-Assembly of Latex–Microgel Core–Satellite Particles. Journal of Physical Chemistry Letters, 2014, 5, 2775-2780.	2.1	16
552	Design of Asymmetric Particles Containing a Charged Interior and a Neutral Surface Charge: Comparative Study on <i>in Vivo</i> Circulation of Polyelectrolyte Microgels. Journal of the American Chemical Society, 2014, 136, 9947-9952.	6.6	46
553	Structural and interaction parameters of thermosensitive native \hat{l}_{\pm} -elastin biohybrid microgel. Chemical Physics Letters, 2014, 612, 182-189.	1.2	7
554	Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials, 2014, 35, 8227-8235.	5.7	34
555	A novel nanoassembled doxorubicin prodrug with a high drug loading for anticancer drug delivery. Journal of Materials Chemistry B, 2014, 2, 3433-3437.	2.9	39
556	Controlled Drug Release from the Aggregation–Disaggregation Behavior of pH-Responsive Microgels. ACS Applied Materials & Discrete ACS ACS Applied Materials & Discrete ACS	4.0	52
557	A supramolecular polymer gel with dual-responsiveness constructed by crown ether based molecular recognition. Polymer Chemistry, 2014, 5, 5591-5597.	1.9	18
558	Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions. Macromolecules, 2014, 47, 4615-4621.	2.2	39
559	Degradation kinetics of photopolymerizable poly(lactic acid) films. Journal of Applied Polymer Science, 2014, 131, .	1.3	3
561	Nanogel carrier design for targeted drug delivery. Journal of Materials Chemistry B, 2014, 2, 8085-8097.	2.9	153
562	Thermoresponsive submicron-sized core–shell hydrogel particles with encapsulated olive oil. Colloid and Polymer Science, 2014, 292, 2581-2596.	1.0	5
563	Photoinduced ICAR ATRP of Methyl Methacrylate with AIBN as Photoinitiator. Journal of Polymer Research, 2014, 21, 1.	1.2	13
564	Significances of Nanostructured Hydrogels for Valuable Applications. , 2014, , 273-298.		3
565	Production of Cationic Nanogels with Potential Use in Controlled Drug Delivery. Particle and Particle Systems Characterization, 2014, 31, 101-109.	1.2	39

#	Article	IF	Citations
566	Polymeric hydrogel thin film synthesis via diffusion through a porous membrane. Materials Letters, 2014, 133, 171-174.	1.3	5
567	Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature. Analytica Chimica Acta, 2014, 839, 51-58.	2.6	27
568	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	4.2	26
569	A Dual-Cure, Solid-State Photoresist Combining a Thermoreversible Diels–Alder Network and a Chain Growth Acrylate Network. Macromolecules, 2014, 47, 3473-3482.	2.2	42
570	pH-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer, 2014, 55, 3579-3590.	1.8	47
571	Multifunctional lipid-coated polymer nanogels crosslinked by photo-triggered Michael-type addition. Polymer Chemistry, 2014, 5, 1728-1736.	1.9	24
572	Cross-Linked Polymer Synthesis. , 2014, , 1-11.		4
573	Insights into the Coassembly of Hydrogelators and Surfactants Based on Aromatic Peptide Amphiphiles. Biomacromolecules, 2014, 15, 1171-1184.	2.6	91
574	Design and processing of nanogels as delivery systems for peptides and proteins. Therapeutic Delivery, 2014, 5, 691-708.	1.2	27
575	Selfâ€Assembled Microspheres Driven by Dipoleâ€Dipole Interactions: UCSTâ€Type Transition in Water. Macromolecular Rapid Communications, 2014, 35, 103-108.	2.0	23
576	Fabrication of polymeric microgels using reflux-precipitation polymerization and its application for phosphoprotein enrichment. Journal of Materials Chemistry B, 2014, 2, 2575.	2.9	37
577	Environmentally sensitive, quickly responding microgels with lattice channels filled with polyaniline. Journal of Materials Chemistry B, 2014, 2, 1483.	2.9	22
578	Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces, 2014, 122, 693-700.	2.5	28
579	Cryotemplation for the rapid fabrication of porous, patternable photopolymerized hydrogels. Journal of Materials Chemistry B, 2014, 2, 4521-4530.	2.9	12
580	Thiol-ene clickable hyaluronans: From macro-to nanogels. Journal of Colloid and Interface Science, 2014, 419, 52-55.	5.0	14
581	Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: Smart armored nanocarriers. European Journal of Medicinal Chemistry, 2014, 73, 18-29.	2.6	22
582	Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)â€"A review. Radiation Physics and Chemistry, 2014, 102, 29-39.	1.4	57
583	High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels. Radiation Physics and Chemistry, 2014, 94, 76-79.	1.4	24

#	Article	IF	CITATIONS
584	Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery. International Journal of Pharmaceutics, 2014, 470, 107-119.	2.6	21
585	Poly[N-(2-hydroxypropyl)methacrylamide] nanogels by RAFT polymerization in inverse emulsion. Polymer Chemistry, 2014, 5, 1711-1719.	1.9	30
587	Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. Chemical Society Reviews, 2014, 43, 2324-2347.	18.7	48
588	Preparation and characterization of anionic pullulan thermoassociative nanoparticles for drug delivery. Carbohydrate Polymers, 2014, 111, 892-900.	5.1	36
589	On the droplet formation in hollow-fiber emulsification. Journal of Membrane Science, 2014, 467, 109-115.	4.1	13
590	Precise synthesis of undecenyl poly(ethylene oxide) macromonomers as heterofunctional building blocks for the synthesis of linear diblocks or of branched materials. European Polymer Journal, 2014, 57, 221-236.	2.6	9
591	A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Materials Science and Engineering C, 2014, 41, 134-141.	3.8	43
592	A facile strategy for preparation of single-chain polymeric nanoparticles by intramolecular photo-crosslinking of azide polymers. Polymer, 2014, 55, 3696-3702.	1.8	35
593	Biopolymer-Based Delivery Systems. , 2014, , 292-367.		1
594	Mechanical Particle Fabrication Methods. , 2014, , 150-175.		1
595	Chapter 50Nanoparticles: Biomaterials for Drug Delivery. , 2015, , 1175-1190.		2
597	Microgels: Drug Uptake and Release Behavior. , 0, , 4690-4700.		1
598	Effect of silica precursor transformation on diclofenac sodium release. RSC Advances, 2015, 5, 94067-94076.	1.7	5
599	Conducting Polymers: Prospects. , 0, , 2024-2038.		0
600	Droplet formation and shrinking in aqueous two-phase systems using a membrane emulsification method. Biomicrofluidics, 2015, 9, 044122.	1.2	8
601	Fabrication of Polyethylene Glycolâ€Based Hydrogel Microspheres Through Electrospraying. Macromolecular Materials and Engineering, 2015, 300, 823-835.	1.7	28
602	Fabrication of galactosylated chitosan–5‶uorouracil acetic acid based nanoparticles for controlled drug delivery. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
603	Starâ€Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics. Macromolecular Rapid Communications, 2015, 36, 1862-1876.	2.0	62

#	ARTICLE	IF	Citations
604	Amphiphilic block copolymer selfâ€assemblies of poly(NVP)â€∢i>b⟨/i>â€poly(MDOâ€∢i>co⟨/i>â€vinyl esters): Tunable dimensions and functionalities. Journal of Polymer Science Part A, 2015, 53, 2699-2710.	2.5	16
605	Polymerization Rate Considerations for High Molecular Weight Polyisopreneâ€ <i>b</i> â€Polystyreneâ€ <i>b</i> â€Poly(<i>N</i> , <i>N</i> â€dimethylacrylamide) Triblock Polymer: Synthesized Via Sequential Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Reactions. Macromolecular Chemistry and Physics. 2015. 216. 1831-1840.	S 1.1	10
606	<i>In situ</i> injectable poly(γâ€glutamic acid) based biohydrogel formed by enzymatic crosslinking. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
607	pHâ€sensitive hydroxyethyl starch–doxorubicin conjugates as antitumor prodrugs with enhanced anticancer efficacy. Journal of Applied Polymer Science, 2015, 132, .	1.3	11
608	Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique. Advanced Pharmaceutical Bulletin, 2015, 5, 269-275.	0.6	20
609	Microgels formed by enzyme-mediated polymerization in reverse micelles with tunable activity and high stability. RSC Advances, 2015, 5, 44342-44345.	1.7	8
610	Stabilization of proteins in solid form. Advanced Drug Delivery Reviews, 2015, 93, 14-24.	6.6	140
611	Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug. Nanoscale, 2015, 7, 12051-12060.	2.8	44
612	Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS Nano, 2015, 9, 5772-5781.	7.3	43
613	Stealth Nanogels of Histinylated Poly Ethyleneimine for Sustained Delivery of Methotrexate in Collagen-Induced Arthritis Model. Pharmaceutical Research, 2015, 32, 3309-3323.	1.7	27
614	Preparation and characterisation of gelatin–gum arabic aldehyde nanogels via inverse miniemulsion technique. International Journal of Biological Macromolecules, 2015, 76, 181-187.	3.6	40
615	Fabrication and characterization of carboxymethyl chitosan/poly(vinyl alcohol) hydrogels containing alginate microspheres for protein delivery. Journal of Bioactive and Compatible Polymers, 2015, 30, 397-411.	0.8	17
616	Acrylate copolymer: a rate-controlling membrane in the transdermal drug delivery system. E-Polymers, 2015, 15, 55-63.	1.3	4
617	In-Situ Gelling Polymers. Series in Bioengineering, 2015, , .	0.3	3
618	Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. Journal of Materials Chemistry B, 2015, 3, 1187-1192.	2.9	116
619	pH responsive tragacanth gum and poly(methyl methacrylate-co-maleic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 749-56.	Γf 50 147 [·] 1.8	Td (anhydri 43
620	Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science, 2015, 44, 79-112.	11.8	24
621	Oxygen and Carbon Dioxide Dual Gas-Responsive and Switchable Microgels Prepared from Emulsion Copolymerization of Fluoro- and Amino-Containing Monomers. Langmuir, 2015, 31, 2196-2201.	1.6	47

#	ARTICLE	IF	CITATIONS
622	Structure and osmotic pressure of ionic microgel dispersions. Journal of Chemical Physics, 2015, 142, 034904.	1.2	21
623	Hybrid polypeptide hydrogels produced via native chemical ligation. RSC Advances, 2015, 5, 16740-16747.	1.7	10
624	Thermoresponsive Polymer Nanoparticles Based on Viologen Cavitands. ChemPlusChem, 2015, 80, 217-222.	1.3	16
625	Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chemical Society Reviews, 2015, 44, 1948-1973.	18.7	298
627	Nanogels for delivery, imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 509-533.	3.3	108
628	Crystal Networks in Silk Fibrous Materials: From Hierarchical Structure to Ultra Performance. Small, 2015, 11, 1039-1054.	5.2	142
629	Cationic Nanogel-mediated Runx2 and Osterix siRNA Delivery Decreases Mineralization in MC3T3 Cells. Clinical Orthopaedics and Related Research, 2015, 473, 2139-2149.	0.7	20
630	Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Materials Science and Engineering C, 2015, 49, 824-834.	3.8	86
631	One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol. Chemical Communications, 2015, 51, 5264-5267.	2.2	22
632	pH and glucose dually responsive injectable hydrogel prepared by <i>in situ</i> crosslinking of phenylboronic modified chitosan and oxidized dextran. Journal of Polymer Science Part A, 2015, 53, 1235-1244.	2.5	59
633	Biocompatible microgel-modified electrospun fibers for zinc ion release. Polymer, 2015, 61, 163-173.	1.8	24
634	Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 2015, 219, 27-53.	7.0	350
635	Hydrogel microparticles for biosensing. European Polymer Journal, 2015, 72, 386-412.	2.6	162
636	Influence of binary microgel phase behavior on the assembly of multi-functional raspberry-structured microgel heteroaggregates. Journal of Colloid and Interface Science, 2015, 455, 93-100.	5.0	5
637	Ultrasound in Heterogeneous Systems andÂApplications in Food Processing. , 2015, , 251-276.		3
638	Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel. Chemical Papers, 2015, 69, .	1.0	3
639	Covalent Graphene Functionalization. , 2015, , 487-496.		0
640	Preparation and chiral recognition of thermosensitive poly(N-isopropylacrylamide) microgels containing modified L-phenylalanine groups. Chemical Research in Chinese Universities, 2015, 31, 664-668.	1.3	1

#	Article	IF	CITATIONS
641	Facile fabrication of poly(acrylic acid) hollow nanogels via in situ Pickering miniemulsion polymerization. Polymer Chemistry, 2015, 6, 6125-6128.	1.9	12
642	Chitin and Chitosan. , 2015, , 386-389.		1
643	Improved antitumor effect of paclitaxel administered in vivo as pH and glutathione-sensitive nanohydrogels. International Journal of Pharmaceutics, 2015, 492, 10-19.	2.6	12
644	Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter, 2015, 11, 5905-5917.	1.2	21
645	Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 133, 246-253.	2.5	36
646	Large-scale synthesis and characterization of magnetic poly(acrylic acid) nanogels via miniemulsion polymerization. RSC Advances, 2015, 5, 58889-58894.	1.7	13
647	Responsive hydrogel nanoparticles for pulmonary delivery. Journal of Drug Delivery Science and Technology, 2015, 29, 143-151.	1.4	18
648	Low Concentration Limitations of Catalyst and Conventional Free Radical Polymerization in ICAR ATRP of Butyl Methacrylate With PMDETA as the Ligand. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 609-616.	1.2	5
649	Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. Soft Matter, 2015, 11, 5647-5655.	1.2	12
650	Dynamic polymer systems with self-regulated secretion for the control of surface properties andÂmaterial healing. Nature Materials, 2015, 14, 790-795.	13.3	237
651	Cross-Linked Polymer Synthesis. , 2015, , 496-505.		2
652	Recent strategies to develop self-healable crosslinked polymeric networks. Chemical Communications, 2015, 51, 13058-13070.	2.2	98
653	Prevention of posterior capsular opacification. Experimental Eye Research, 2015, 136, 100-115.	1.2	124
654	Thermocatalytic deterioration of polymeric films with heat-sensitive S/BiOCl catalyst through naturally ambient-temperature excitation. Catalysis Communications, 2015, 66, 100-106.	1.6	2
655	Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnology Advances, 2015, 33, 1327-1341.	6.0	53
656	Soft Nanocompositesâ€"From Interface Control to Interphase Formation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12380-12386.	4.0	6
657	Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polymer Chemistry, 2015, 6, 3865-3874.	1.9	154
658	A robust platform for functional microgels via thiol–ene chemistry with reactive polyether-based nanoparticles. Polymer Chemistry, 2015, 6, 2029-2037.	1.9	22

#	Article	IF	CITATIONS
659	Stimuli-responsive microgel-based etalons for optical sensing. RSC Advances, 2015, 5, 44074-44087.	1.7	57
660	Preparation of nanosize alginate gel using pluronic-based nano-carrier as a template. European Polymer Journal, 2015, 72, 632-641.	2.6	19
661	Templateless Synthesis of Polyacrylamide-Based Nanogels via RAFT Dispersion Polymerization. Macromolecular Rapid Communications, 2015, 36, 566-570.	2.0	22
662	Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents. Biomaterials, 2015, 53, 349-357.	5.7	76
663	Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. Journal of Materials Chemistry B, 2015, 3, 2842-2852.	2.9	17
664	Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size. Chemistry of Materials, 2015, 27, 2557-2565.	3.2	10
665	Blending of reactive prepolymers to control the morphology and polarity of polyglycidol based microgels. Soft Matter, 2015, 11, 943-953.	1.2	18
666	Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos. Biomacromolecules, 2015, 16, 3491-3498.	2.6	10
667	Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale, 2015, 7, 16578-16582.	2.8	45
668	Chondroitin Sulfate., 2015,, 389-397.		0
669	Soya nuggets – a potential carrier: swelling kinetics and release of hydrophobic drugs. RSC Advances, 2015, 5, 92184-92188.	1.7	4
670	Preparation and self-healing behaviors of poly(acrylic acid)/cerium ions double network hydrogels. Macromolecular Research, 2015, 23, 1098-1102.	1.0	28
671	Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chemical Reviews, 2015, 115, 8564-8608.	23.0	401
672	Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics. Biomacromolecules, 2015, 16, 2743-2749.	2.6	34
673	Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions. Macromolecules, 2015, 48, 7698-7708.	2,2	72
674	Covalent Carbon Nanotube Functionalization. , 2015, , 480-487.		5
675	Biodegradation and Toxicity of Protease/Redox/pH Stimuli-Responsive PEGlated PMAA Nanohydrogels for Targeting Drug delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19843-19852.	4.0	107
676	Stable and degradable microgels linked with cystine for storing and environmentally triggered release of drugs. Journal of Materials Chemistry B, 2015, 3, 7262-7270.	2.9	34

#	Article	IF	CITATIONS
677	Carborane Polymers., 2015,, 316-320.		0
678	Cationic Ring-Opening Polymerization. , 2015, , 324-329.		1
679	Chain-Growth Condensation Polymerization. , 2015, , 347-357.		0
680	Carbon Dioxide-Based Polymers. , 2015, , 299-306.		0
681	Conjugated Dendrimers., 2015,, 412-427.		3
682	Catalytic Reduction of 2-Nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1554-1568.	1.9	72
683	Polymer-based vehicles for therapeutic peptide delivery. Therapeutic Delivery, 2015, 6, 1279-1296.	1.2	6
684	Amphiphilic Polymerizable Porphyrins Conjugated to a Polyglycerol Dendron Moiety as Functional Surfactants for Multifunctional Polymer Particles. Langmuir, 2015, 31, 12903-12910.	1.6	3
685	Synthesis and characterization of new microgel from tris(2-aminoethyl)amine and glycerol diglycidyl ether as poly(TAEA-co-GDE). Colloids and Surfaces B: Biointerfaces, 2015, 136, 1156-1165.	2.5	13
686	Synthesis of Poly(meth)acrylates with Thioether and Tertiary Sulfonium Groups by ARGET ATRP and Their Use as siRNA Delivery Agents. Biomacromolecules, 2015, 16, 236-245.	2.6	39
687	Protein nanogelation using vitamin B6-bearing pullulan: effect of zinc ions. Polymer Journal, 2015, 47, 201-205.	1.3	13
688	Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose, 2015, 22, 313-327.	2.4	14
689	Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydrate Polymers, 2015, 119, 118-125.	5.1	72
690	pH-, thermo- and electrolyte-responsive polymer gels derived from a well-defined, RAFT-synthesized, poly(2-vinyl-4,4-dimethylazlactone) homopolymer via one-pot post-polymerization modification. European Polymer Journal, 2015, 62, 204-213.	2.6	18
691	Graphene–NHC–iridium hybrid catalysts built through –OH covalent linkage. Carbon, 2015, 83, 21-31.	5.4	31
692	Subunit Vaccine Delivery. Advances in Delivery Science and Technology, 2015, , .	0.4	9
693	Polyion complex micelles with gradient pH-sensitivity for adjustable intracellular drug delivery. Polymer Chemistry, 2015, 6, 397-405.	1.9	75
694	Designing Hydrogels by ATRP. Series in Bioengineering, 2015, , 69-105.	0.3	5

#	Article	IF	CITATIONS
695	Synthesis of clickable hydrogels and linear polymers by type <scp>II</scp> photoinitiation. Polymer International, 2015, 64, 588-594.	1.6	22
696	Polyethlyene glycol microgels to deliver bioactive nerve growth factor. Journal of Biomedical Materials Research - Part A, 2015, 103, 604-613.	2.1	22
697	Microfluidic synthesis of monodisperse PEGDA microbeads for sustained release of 5-fluorouracil. Microfluidics and Nanofluidics, 2015, 18, 333-342.	1.0	27
698	Nanogel—an advanced drug delivery tool: Current and future. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 165-177.	1.9	106
699	Design, Synthesis, Characterization and Toxicity Studies of Poly (N-Iso- Propylacrylamide-co-Lucifer) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5 6
700	Transport of Indomethacin from Kappa-Carrageenan based Nanogel. Journal of Bioengineering & Biomedical Science, 2016, 6, .	0.2	1
701	Nanobiomaterials., 2016,, 401-429.		5
702	Temperature-Sensitive, Fluorescent Poly (N-Isopropyl-acrylamide)-Grafted Cellulose Nanocrystals for Drug Release. BioResources, 2016, 11 , .	0.5	6
704	Fabrication of Bacteria Environment Cubes with Dry Lift-Off Fabrication Process for Enhanced Nitrification. PLoS ONE, 2016, 11, e0165839.	1.1	9
705	Nanohybrid Stimuli-Responsive Microgels: A New Approach in Cancer Therapy. , 2016, , 715-742.		4
706	Engineered nanomaterials for biomedicine. , 2016, , 307-328.		2
707	Atom Transfer Radical Polymerization (ATRP). , 2016, , .		0
708	Biomimics of Metalloenzymes viaÂlmprinting. , 2016, , 121-158.		3
709	Novel europium (III)-gatifloxacin complex structure with dual functionality for pH sensing and metal recognition in aqueous environment. Optical Materials, 2016, 60, 1-5.	1.7	5
710	Transferrin Decorated Thermoresponsive Nanogels as Magnetic Trap Devices for Circulating Tumor Cells. Macromolecular Rapid Communications, 2016, 37, 439-445.	2.0	26
711	Biocompatible stimuliâ€responsive nanogels for controlled antitumor drug delivery. Journal of Polymer Science Part A, 2016, 54, 1694-1705.	2.5	32
712	Photo-triggered microgel aggregation using <i>>o</i> -nitrobenzaldehyde as aggregating power source. Journal of Polymer Science Part A, 2016, 54, 1317-1322.	2.5	4
713	Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. Chemical Record, 2016, 16, 1398-1435.	2.9	158

#	ARTICLE	IF	CITATIONS
714	Polymeric Nanogels with Tailorable Degradation Behavior. Macromolecular Bioscience, 2016, 16, 1122-1137.	2.1	9
715	Natural Polysaccharide-Based Hydrogels for Controlled Localized Drug Delivery. , 2016, , 35-59.		2
716	Simple Platform Method for the Synthesis of Densely Functionalized Microgels by Modification of Active Ester Latex Particles. Macromolecular Rapid Communications, 2016, 37, 1323-1330.	2.0	10
717	Poly(ethylene glycol)- <i>co</i> -methacrylamide- <i>co</i> -acrylic acid based nanogels for delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1413-1433.	1.9	15
718	Hydrogels for Drug Delivery. , 2016, , 191-224.		0
719	Engineering particle morphology with microfluidic droplets. Journal of Micromechanics and Microengineering, 2016, 26, 075011.	1.5	18
720	Microfluidic fabrication of composite hydrogel microparticles in the size range of blood cells. RSC Advances, 2016, 6, 103532-103540.	1.7	24
722	Thermoresponsive Toughening in LCST-Type Hydrogels: Comparison between Semi-Interpenetrated and Grafted Networks. Macromolecules, 2016, 49, 9568-9577.	2.2	36
723	Counterion-induced swelling of ionic microgels. Journal of Chemical Physics, 2016, 145, 164901.	1.2	34
724	Polymer Nanoparticles for In Vivo Applications: Progress on Preparation Methods and Future Challenges., 2016,, 3-16.		6
725	Influence of network topology on the swelling of polyelectrolyte nanogels. Journal of Chemical Physics, 2016, 144, 114903.	1.2	16
726	Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab on A Chip, 2016, 16, 2609-2617.	3.1	22
727	Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Properties. Macromolecules, 2016, 49, 4295-4306.	2.2	49
728	Synthesis and multi-responsiveness of poly(N-vinylcaprolactam-co-acrylic acid) core–shell microgels via miniemulsion polymerization. Polymer Chemistry, 2016, 7, 4106-4111.	1.9	10
729	Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites. Nanomedicine, 2016, 11, 1579-1590.	1.7	20
730	Smart Stimuli-Responsive Nano-sized Hosts for Drug Delivery. , 2016, , 1-26.		14
731	Combined Molecular Dynamics Simulations and Experimental Studies of the Structure and Dynamics of Poly-Amido-Saccharides. Journal of the American Chemical Society, 2016, 138, 6532-6540.	6.6	27
732	Mechanical properties of whey protein/Na alginate gel microparticles. Journal of Food Engineering, 2016, 188, 1-7.	2.7	29

#	ARTICLE	IF	CITATIONS
733	pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids and Surfaces B: Biointerfaces, 2016, 143, 352-358.	2.5	35
734	Formation of Chitosan-Based Hydrogels Network. , 2016, , 189-244.		2
735	Responsive microgels with supramolecular crosslinks: synthesis and triggered degradation in aqueous medium. Polymer Chemistry, 2016, 7, 5687-5697.	1.9	29
736	Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials, 2016, 108, 91-110.	5.7	75
737	Shape oscillations of elastic particles in shear flow. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 534-544.	1.5	7
738	Radiation Engineering of Multifunctional Nanogels. Topics in Current Chemistry, 2016, 374, 69.	3.0	27
739	Water-in-water (W/W) emulsions. Current Opinion in Colloid and Interface Science, 2016, 25, 109-119.	3.4	182
740	A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Research, 2016, 106, 259-271.	5.3	251
742	Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale, 2016, 8, 16091-16156.	2.8	145
743	Drug-Eluting Conformal Coatings on Individual Cells. Cellular and Molecular Bioengineering, 2016, 9, 382-397.	1.0	13
744	Phosphonate-functionalized polystyrene microspheres with controlled zeta potential for efficient uranium sorption. RSC Advances, 2016, 6, 74110-74116.	1.7	23
745	Redox-Sensitive and Intrinsically Fluorescent Photoclick Hyaluronic Acid Nanogels for Traceable and Targeted Delivery of Cytochrome <i>c</i> to Breast Tumor in Mice. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21155-21162.	4.0	79
746	Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry. Colloids and Surfaces B: Biointerfaces, 2016, 147, 1-8.	2.5	22
747	Dual responsive nanogels for intracellular doxorubicin delivery. International Journal of Pharmaceutics, 2016, 511, 424-435.	2.6	23
748	Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis. RSC Advances, 2016, 6, 76370-76380.	1.7	11
749	Microfluidic platforms for DNA methylation analysis. Lab on A Chip, 2016, 16, 3631-3644.	3.1	29
750	Fabrication of a nano-drug delivery system based on layered rare-earth hydroxides integrating drug-loading and fluorescence properties. Dalton Transactions, 2016, 45, 12137-12143.	1.6	26
751	Preparation and lower critical solution temperature behavior investigation of new thermoresponsive poly(<i>N</i> -isopropylacrylamide-co-phthalocyanine) magnetic nanocomposites containing phthalocyanine-coated Fe ₃ O ₄ hybrid. Canadian Journal of Chemistry, 2016, 94, 723-731.	0.6	0

#	Article	IF	CITATIONS
752	Supramolecular Microgels Fabricated from Supramonomers. ACS Macro Letters, 2016, 5, 1084-1088.	2.3	33
753	Well-Defined Zwitterionic Microgels: Synthesis and Application as Acid-Resistant Microreactors. Macromolecules, 2016, 49, 7204-7210.	2.2	28
754	Targeted Smart pH and Thermoresponsive <i>N,O</i> -Carboxymethyl Chitosan Conjugated Nanogels for Enhanced Therapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells. Bioconjugate Chemistry, 2016, 27, 2605-2619.	1.8	45
755	Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomaterials Science, 2016, 4, 1535-1553.	2.6	54
756	An Enzyme-Responsive Nanogel Carrier Based on PAMAM Dendrimers for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19899-19906.	4.0	68
757	Surfaceâ€Grafted Nanogel Arrays Direct Cell Adhesion and Motility. Advanced Materials Interfaces, 2016, 3, 1600455.	1.9	14
758	Water dispersible siloxane nanogels: a novel technique to control surface characteristics and drug release kinetics. Journal of Materials Chemistry B, 2016, 4, 5299-5307.	2.9	16
759	Sequential and controlled release of small molecules from poly(N-isopropylacrylamide) microgel-based reservoir devices. Journal of Materials Chemistry B, 2016, 4, 5144-5150.	2.9	21
760	Nanogels: Chemical Approaches to Preparation. , 2016, , 5266-5293.		11
761	Surface-bound microgels â€" From physicochemical properties to biomedical applications. Advances in Colloid and Interface Science, 2016, 238, 88-104.	7.0	32
762	Biocompatible amphiphilic microgel derived from dextrin and poly(methyl methacrylate) for dual drugs carrier. Polymer, 2016, 107, 282-291.	1.8	14
763	Metal Ion Ornamented Ultrafast Light-Sensitive Nanogel for Potential in Vivo Cancer Therapy. Chemistry of Materials, 2016, 28, 8598-8610.	3.2	35
764	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	2.9	26
765	Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Delivery and Translational Research, 2016, 6, 648-659.	3.0	34
766	Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1, .	23.3	2,817
768	Preparation of small and photoresponsive polymer nanoparticles by intramolecular crosslinking of reactive star azo-polymers. Reactive and Functional Polymers, 2016, 109, 56-63.	2.0	8
769	Cell-laden microfluidic microgels for tissue regeneration. Lab on A Chip, 2016, 16, 4482-4506.	3.1	133
770	Isothermal emulsion polymerization of <i>n</i> â€butyl methacrylate with KPS and redox initiators: Kinetic study at different surfactant/initiator concentrations and reaction temperature. Journal of Applied Polymer Science, 2016, 133, .	1.3	6

#	Article	IF	Citations
771	Coacervation of Elastin‣ike Recombinamer Microgels. Macromolecular Rapid Communications, 2016, 37, 181-186.	2.0	13
772	An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods in Molecular Biology, 2016, 1427, 363-415.	0.4	31
773	Poly(N-isopropylacrylamide-acrylic acid) copolymer microgels for various applications: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 841-852.	1.8	38
774	Aggregation behaviour of biohybrid microgels from elastin-like recombinamers. Soft Matter, 2016, 12, 6240-6252.	1.2	9
775	Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. European Journal of Pharmaceutical Sciences, 2016, 91, 144-153.	1.9	66
776	Optimization of Process Parameters for Controlled Ring-Opening Polymerization of Lactide to Produce Poly(L-Lactide) Diols as Precursor for Polyurethanes. Polymer-Plastics Technology and Engineering, 2016, 55, 1819-1830.	1.9	3
777	Positron porosimetry study of mesoporous polymer–silica composites. Adsorption, 2016, 22, 745-754.	1.4	9
778	Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering C, 2016, 68, 964-981.	3.8	225
779	Auditory and Vestibular Research. Methods in Molecular Biology, 2016, , .	0.4	8
780	One pot synthesis and characterization of Fe3O4 Nanorod-PNIPA Nanogel Composite for protein adsorption. Materials Science and Engineering C, 2016, 68, 59-64.	3.8	25
781	The strength of multi-scale modeling to unveil the complexity of radical polymerization. Progress in Polymer Science, 2016, 58, 59-89.	11.8	174
782	Transparent h- BN/polyacrylamide nanocomposite hydrogels with enhanced mechanical properties. Chinese Chemical Letters, 2016, 27, 1490-1494.	4.8	22
783	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	11.8	257
784	Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomaterialia, 2016, 41, 282-292.	4.1	45
785	Redox―and pHâ€Responsive Nanogels Based on Thiolated Poly(aspartic acid). Macromolecular Materials and Engineering, 2016, 301, 260-266.	1.7	35
786	Hydrogel Microparticles as an Emerging Tool in Pharmaceutical Field: A Review. Advances in Polymer Technology, 2016, 35, 121-128.	0.8	33
787	Volume phase transition of electron beam cross-linked thermo-responsive PVME nanogels in the presence and absence of nanoparticles: with a view toward rheology and interactions. RSC Advances, 2016, 6, 9693-9708.	1.7	38
788	Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomaterials Science, 2016, 4, 555-574.	2.6	125

#	Article	IF	CITATIONS
789	Crosslinking of poly(vinylpyrrolidone) activated by electrogenerated hydroxyl radicals: A first step towards a simple and cheap synthetic route of nanogel vectors. Electrochemistry Communications, 2016, 62, 64-68.	2.3	48
790	A Micromechanically Based Constitutive Model for the Inelastic and Swelling Behaviors in Double Network Hydrogels. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	26
791	Synthesis, characterization, X-ray crystallography analysis and kinetic study of tris(2-(4-trifluoromethylbenzylideneamino)ethyl)amine copper derivatives. Polyhedron, 2016, 114, 13-22.	1.0	1
792	Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of Controlled Release, 2016, 240, 109-126.	4.8	441
793	Tailored and biodegradable poly(2-oxazoline) microbeads as 3D matrices for stem cell culture in regenerative therapies. Biomaterials, 2016, 79, 1-14.	5.7	26
794	Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Advances, 2016, 6, 14692-14704.	1.7	29
795	Reduction- and pH-Sensitive lipoic acid-modified Poly(l-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer, 2016, 86, 32-41.	1.8	57
796	One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab on A Chip, 2016, 16, 1549-1555.	3.1	119
797	A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels. Colloids and Surfaces B: Biointerfaces, 2016, 141, 278-283.	2.5	10
798	Facile synthesis of histidine functional poly(N-isopropylacrylamide): zwitterionic and temperature responsive materials. Polymer Chemistry, 2016, 7, 1945-1952.	1.9	35
799	Chitosan-gelatin-based microgel for sustained drug delivery. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 441-453.	1.9	54
800	Phase behavior, microstructure and cytotoxicity in mixtures of a charged triblock copolymer and an ionic surfactant. European Polymer Journal, 2016, 75, 461-473.	2.6	6
801	Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids and Surfaces B: Biointerfaces, 2016, 142, 334-343.	2.5	74
802	Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Advances, 2016, 6, 23525-23536.	1.7	88
803	Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. European Polymer Journal, 2016, 78, 14-24.	2.6	48
804	Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties. Colloid and Polymer Science, 2016, 294, 889-899.	1.0	6
805	Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles. Applied Surface Science, 2016, 370, 25-31.	3.1	7
806	Pharmaceutical Applications of Natural Polymers. , 2016, , 263-313.		3

#	Article	IF	CITATIONS
807	Direct one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media. Polymer Chemistry, 2016, 7, 2521-2530.	1.9	13
808	Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Industrial & Engineering Chemistry Research, 2016, 55, 30-37.	1.8	49
809	Prolonged Release of Bioactive Model Proteins from Anionic Microgels Fabricated with a New Microemulsion Approach. Pharmaceutical Research, 2016, 33, 879-892.	1.7	8
810	Combined, independent small molecule release and shape memory via nanogel-coated thiourethane polymer networks. Polymer Chemistry, 2016, 7, 816-825.	1.9	15
811	Smart nanogels at the air/water interface: structural studies by neutron reflectivity. Nanoscale, 2016, 8, 4951-4960.	2.8	50
812	Cationic Micelles Based on Polyhedral Oligomeric Silsesquioxanes for Enhanced Gene Transfection. Australian Journal of Chemistry, 2016, 69, 363.	0.5	20
813	Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomaterialia, 2016, 30, 126-134.	4.1	24
814	A light sensitive self-assembled nanogel as a tecton for protein patterning materials. Chemical Communications, 2016, 52, 1222-1225.	2.2	23
815	<i>In situ</i> formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels. Journal of Polymer Engineering, 2016, 36, 287-292.	0.6	12
816	A confocal microscopy study of micron-sized poly(N -isopropylacrylamide) microgel particles at the oil–water interface and anisotopic flattening of highly swollen microgel. Journal of Colloid and Interface Science, 2016, 461, 409-418.	5.0	54
817	Effect of structural differences of carbon nanotubes and graphene based iridium-NHC materials on the hydrogen transfer catalytic activity. Carbon, 2016, 96, 66-74.	5.4	25
818	Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Progress in Polymer Science, 2016, 53, 1-51.	11.8	295
819	Trapping polystyrene and latex nanospheres inside hollow nanostructures using <i>Staphylococcus aureus </i> li>cells. Journal of Experimental Nanoscience, 2016, 11, 303-313.	1.3	0
820	Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 2017, 57, 1133-1152.	5.4	398
821	Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46, 855-914.	18.7	126
822	Selective solute adsorption and partitioning around single PNIPAM chains. Physical Chemistry Chemical Physics, 2017, 19, 5906-5916.	1.3	32
823	Biocompatible Polymeric Analogues of DMSO Prepared by Atom Transfer Radical Polymerization. Biomacromolecules, 2017, 18, 475-482.	2.6	54
824	Self-Assembly Assisted Fabrication of Dextran-Based Nanohydrogels with Reduction-Cleavable Junctions for Applications as Efficient Drug Delivery Systems. Scientific Reports, 2017, 7, 40011.	1.6	40

#	Article	IF	CITATIONS
825	A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. Journal of Materials Chemistry B, 2017, 5, 1542-1550.	2.9	43
826	<i>In vitro</i> and <i>in vivo</i> evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Drug Delivery, 2017, 24, 459-466.	2.5	25
827	Internal structure and phase transition behavior of stimuli-responsive microgels in PEG melts. Soft Matter, 2017, 13, 2738-2748.	1.2	9
829	Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery, 2017, 24, 539-557.	2.5	319
830	CO 2 -responsive polyacrylamide microspheres with interpenetrating networks. Journal of Colloid and Interface Science, 2017, 497, 249-257.	5.0	22
831	Synthesis and Validation of Functional Nanogels as pHâ€Sensors in the Hair Follicle. Macromolecular Bioscience, 2017, 17, 1600505.	2.1	28
832	Tuning the morphology, network structure, and degradation of thermo-sensitive microgels by controlled addition of degradable cross-linker. Colloid and Polymer Science, 2017, 295, 665-678.	1.0	11
833	A versatile microfluidic device for high throughput production of microparticles and cell microencapsulation. Lab on A Chip, 2017, 17, 2067-2075.	3.1	39
834	Dual-responsive semi-IPN copolymer nanogels based on poly (itaconic acid) and hydroxypropyl cellulose as a carrier for controlled drug release. Journal of Polymer Research, 2017, 24, 1.	1.2	13
836	Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2460-2474.	2.3	69
837	Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells. Carbohydrate Polymers, 2017, 171, 27-38.	5.1	41
838	Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. Journal of Materials Chemistry B, 2017, 5, 4835-4844.	2.9	23
839	Acid–degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Materials Science and Engineering C, 2017, 78, 246-257.	3.8	45
840	A facile way to prepare functionalized dextran nanogels for conjugation of hemoglobin. Colloids and Surfaces B: Biointerfaces, 2017, 155, 440-448.	2.5	19
841	Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 155, 538-543.	2.5	40
842	Polymeric nanocarriers for cancer theranostics. Polymers for Advanced Technologies, 2017, 28, 1572-1582.	1.6	14
843	Reversible interactions in self-healing and shape memory hydrogels. European Polymer Journal, 2017, 93, 642-669.	2.6	76
844	Biofunctional Microgelâ€Based Fertilizers for Controlled Foliar Delivery of Nutrients to Plants. Angewandte Chemie - International Edition, 2017, 56, 7380-7386.	7.2	89

#	Article	IF	Citations
845	Biofunktionale Mikrogelâ€basierte Dünger zur kontrollierten Blattdüngung mit Närstoffen auf Pflanzen. Angewandte Chemie, 2017, 129, 7486-7492.	1.6	7
846	Synthesis of polymer nanogels by electro-Fenton process: investigation of the effect of main operation parameters. Electrochimica Acta, 2017, 246, 812-822.	2.6	57
847	Thermo-responsive PNIPAM-metal hybrids: An efficient nanocatalyst for the reduction of 4-nitrophenol. Applied Surface Science, 2017, 420, 753-763.	3.1	54
848	Stimuli-responsive polymers: Fundamental considerations and applications. Macromolecular Research, 2017, 25, 513-527.	1.0	55
849	On the efficiency of a hydrogel-based desalination cycle. Desalination, 2017, 414, 28-34.	4.0	33
850	Aromatic ionene topology and counterion-tuned gelation of acidic aqueous solutions. Soft Matter, 2017, 13, 3031-3041.	1.2	14
851	Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. Journal of Controlled Release, 2017, 253, 122-136.	4.8	82
852	Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites. Saudi Pharmaceutical Journal, 2017, 25, 972-980.	1.2	1
853	Cross-linked polypeptide-based gel particles by emulsion for efficient protein encapsulation. Polymer, 2017, 115, 261-272.	1.8	23
854	The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots. Physical Chemistry Chemical Physics, 2017, 19, 127-134.	1.3	13
855	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers, 2017, 1, 807-822.	3.2	118
856	One-Step in Situ Synthesis of Polypeptide–Gold Nanoparticles Hybrid Nanogels and Their Application in Targeted Photoacoustic Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9841-9847.	3.2	25
857	Thermoresponsive behavior of water-salt solutions of a graft copolymer with a main polyimide chain and side poly(N,N-dimethylamino-2-ethyl methacrylate) side chains. Polymer Science - Series A, 2017, 59, 605-612.	0.4	0
858	Scaling Theory of Polyelectrolyte Nanogels*. Communications in Theoretical Physics, 2017, 68, 250.	1.1	1
859	Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomaterials Science, 2017, 5, 2328-2336.	2.6	35
860	<i>In Silico</i> Synthesis of Microgel Particles. Macromolecules, 2017, 50, 8777-8786.	2.2	105
861	Design of nano- and micro-structured molecule-responsive hydrogels. Polymer Journal, 2017, 49, 751-757.	1.3	9
862	Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. Macromolecular Research, 2017, 25, 504-512.	1.0	7

#	Article	IF	CITATIONS
864	Tunable uptake/release mechanism of protein microgel particles in biomimicking environment. Scientific Reports, 2017, 7, 6014.	1.6	19
865	A facile, efficient and "green―route to pH-responsive crosslinked poly(methacrylic acid) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 1-8.	2.3	15
867	Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing. ACS Omega, 2017, 2, 8849-8858.	1.6	14
868	Challenges in Polymerization in Dispersed Media. Advances in Polymer Science, 2017, , 1-22.	0.4	3
869	Microfluidic production of degradable thermoresponsive poly(<i>N</i> -isopropylacrylamide)-based microgels. Soft Matter, 2017, 13, 9060-9070.	1.2	15
870	Rheological reversibility and long-term stability of repulsive and attractive nanoemulsion gels. RSC Advances, 2017, 7, 47818-47832.	1.7	31
871	Multistructured Nanogelâ€Based Networks Formed from Interfacial Redox Polymerizations for Modulating Small Molecule Release. Macromolecular Chemistry and Physics, 2017, 218, 1700256.	1.1	2
872	Natural fibre envelope for cross-linked and non-cross-linked hydrogel-drug conjugates: Innovative design for oral drug delivery. Materials Discovery, 2017, 8, 1-8.	3.3	14
873	Poly(glutamic acid) hydrogels crosslinked via native chemical ligation. New Journal of Chemistry, 2017, 41, 8656-8662.	1.4	17
874	Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale, 2017, 9, 10404-10419.	2.8	58
875	Pneumatically Actuated Soft Micromold Device for Fabricating Collagen and Matrigel Microparticles. Soft Robotics, 2017, 4, 390-399.	4.6	6
876	Hydrogel based approaches for cardiac tissue engineering. International Journal of Pharmaceutics, 2017, 523, 454-475.	2.6	112
877	Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced Drug Delivery Reviews, 2017, 108, 68-82.	6.6	84
878	Stimuli-responsive polymers and their applications. Polymer Chemistry, 2017, 8, 127-143.	1.9	916
879	Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 192-198.	2.3	9
880	Fabrication methods of biopolymeric microgels and microgel-based hydrogels. Food Hydrocolloids, 2017, 62, 262-272.	5.6	90
881	Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opinion on Drug Delivery, 2017, 14, 611-620.	2.4	49
882	Chlorhexidine Loaded Cyclodextrin Containing PMMA Nanogels as Antimicrobial Coating and Delivery Systems. Macromolecular Bioscience, 2017, 17, 1600230.	2.1	20

#	Article	IF	CITATIONS
883	Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics. Jom, 2017, 69, 1185-1194.	0.9	10
884	Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: Synthesis and characterization. Carbohydrate Polymers, 2017, 155, 303-312.	5.1	32
885	An Implantable Micro-Caged Device for Direct Local Delivery of Agents. Scientific Reports, 2017, 7, 17624.	1.6	28
886	Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. International Journal of Nanomedicine, 2017, Volume 12, 645-658.	3.3	38
887	Engineering effective nanoscale nutrient carriers., 2017,, 141-176.		2
888	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. Polymers, 2017, 9, 186.	2.0	10
889	Novel gels: implications for drug delivery. , 2017, , 379-412.		9
890	Perspectives on Biomedical Applications of Ulvan. , 2017, , 305-330.		13
891	Polymer-based Nanodevices for Effective Antimicrobial Therapy: Synthetic Strategies and Applications. Current Applied Polymer Science, 2017, 1, 3-18.	0.2	0
892	Precision Design of Polymer Gel Networks Based on Living Radical Polymerization and Monomer Sequence Control. Kobunshi Ronbunshu, 2017, 74, 365-374.	0.2	0
893	Preparation of pH-Responsive Poly(aspartic acid) Nanogels in Inverse Emulsion. Periodica Polytechnica: Chemical Engineering, 2017, 61, 19.	0.5	14
894	Supramolecular Polymers in Nanomedicine. , 2017, , 227-254.		3
895	Fabrication of antibody-loaded microgels using microfluidics and thiol-ene photoclick chemistry. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 194-203.	2.0	20
896	Interaction of thermal responsive NIPAM nanogels with model lipid monolayers at the air-water interface. Journal of Colloid and Interface Science, 2018, 519, 97-106.	5.0	8
897	Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir, 2018, 34, 3316-3325.	1.6	18
898	Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy. Journal of Controlled Release, 2018, 292, 78-90.	4.8	34
899	Oxidoreductaseâ€Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. Advanced Materials, 2018, 30, e1705668.	11.1	60
900	Internal structure and swelling behaviour of <i>in silico </i> in silico ip microgel particles. Journal of Physics Condensed Matter, 2018, 30, 044001.	0.7	26

#	Article	IF	CITATIONS
901	Logic gate aggregation of poly(N-isopropylacrylamide) nanogels with catechol substituents that respond to body heat. Polymer Journal, 2018, 50, 503-510.	1.3	1
902	Sensor Embodiment and Flexible Electronics. , 2018, , 197-279.		5
903	Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018, 127, 138-166.	6.6	512
904	Nanogels of Natural Polymers. Gels Horizons: From Science To Smart Materials, 2018, , 71-110.	0.3	9
905	pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. European Polymer Journal, 2018, 101, 96-104.	2.6	32
906	Tumorâ€Specific Selfâ€Degradable Nanogels as Potential Carriers for Systemic Delivery of Anticancer Proteins. Advanced Functional Materials, 2018, 28, 1707371.	7.8	85
907	Drug Delivered Poly(ethylene glycol) Diacrylate (PEGDA) Hydrogels and Their Mechanical Characterization Tests for Tissue Engineering Applications. MRS Advances, 2018, 3, 1697-1702.	0.5	11
908	A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: Preparation, characterization, and drug delivery. Iranian Polymer Journal (English Edition), 2018, 27, 137-144.	1.3	22
909	Polymer-amino-functionalized silica composites for the sustained-release multiparticulate system. Materials Science and Engineering C, 2018, 85, 114-122.	3.8	8
910	Single-Step Binary Electrostatic Directed Assembly of Active Nanogels for Smart Concentration-Dependent Encryption. Langmuir, 2018, 34, 1557-1563.	1.6	13
911	Programmed Self-Assembly Systems of Amphiphilic Random Copolymers into Size-Controlled and Thermoresponsive Micelles in Water. Macromolecules, 2018, 51, 398-409.	2.2	102
912	Detection and Automation Technologies for the Mass Production of Droplet Biomicrofluidics. IEEE Reviews in Biomedical Engineering, 2018, 11, 260-274.	13.1	7
913	Grazing incidence SANS and reflectometry combined with simulation of adsorbed microgel particles. Physica B: Condensed Matter, 2018, 551, 172-178.	1.3	11
914	Reductionâ€Triggered Selfâ€Crossâ€Linked Hyperbranched Polyglycerol Nanogels for Intracellular Delivery of Drugs and Proteins. Macromolecular Bioscience, 2018, 18, e1700356.	2.1	16
915	Functionalization of cotton cellulose for improved wound healing. Journal of Materials Chemistry B, 2018, 6, 1887-1898.	2.9	95
916	Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomedicine and Pharmacotherapy, 2018, 97, 1521-1537.	2.5	223
917	Cationic Thermoresponsive Poly(<i>N</i> -vinylcaprolactam) Microgels Synthesized by Emulsion Polymerization Using a Reactive Cationic Macro-RAFT Agent. Macromolecules, 2018, 51, 2551-2563.	2.2	16
918	Grafting of Hydrophilic Monomers Onto Cellulosic Polymers for Medical Applications. , 2018, , 81-114.		1

#	Article	IF	CITATIONS
919	Crosslinked Microgels as Platform for Hydrolytic Catalysts. Biomacromolecules, 2018, 19, 1164-1174.	2.6	23
920	Cationic ionene as an n-dopant agent of poly(3,4-ethylenedioxythiophene). Physical Chemistry Chemical Physics, 2018, 20, 9855-9864.	1.3	9
921	Fabrication and in vitro evaluation of novel <scp>pH</scp> â€sensitive poly (2â€methoxyethyl) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 66
922	Platinum nanoparticles fabricated multiresponsive microgel composites: Synthesis, characterization, and applications. Polymer Composites, 2018, 39, 2167-2180.	2.3	31
923	Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly (acrylic) Tj ETQq0 0 0	0 rgBT /Ove 1.4	erlock 10 Tf 29
924	Medical application of glycosaminoglycans: a review. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e23-e41.	1.3	165
925	Synthesis of N-vinylformamide and 1-vinyl-(1-methacryloyl)-3,5-dimethylpyrazole copolymers and their extraction ability in relation to histidine in water-salt media. Polymer Bulletin, 2018, 75, 1237-1251.	1.7	7
926	Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 2018, 76, 40-64.	11.8	214
927	On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions. Food Hydrocolloids, 2018, 75, 41-50.	5.6	62
928	Interfacially-mediated oxygen inhibition for precise and continuous poly(ethylene glycol) diacrylate (PEGDA) particle fabrication. Journal of Colloid and Interface Science, 2018, 510, 334-344.	5.0	28
929	Controlled release profile of 5-fluorouracil loaded P(AAM-co-NVP-co-DEAEMA) microgel prepared via free radical precipitation polymerization. Polymer Bulletin, 2018, 75, 3053-3067.	1.7	13
930	Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity. AAPS PharmSciTech, 2018, 19, 634-647.	1.5	33
931	Hydroxypropylâ€Î²â€cyclodextrin hybrid nanogels as nanoâ€drug delivery carriers to enhance the solubility of dexibuprofen: Characterization, in vitro release, and acute oral toxicity studies. Advances in Polymer Technology, 2018, 37, 2171-2185.	0.8	26
932	Advances in nano-delivery systems for doxorubicin: an updated insight. Journal of Drug Targeting, 2018, 26, 296-310.	2.1	99
933	Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: Ambient release, drug release, and enantiopreferential release. Talanta, 2018, 177, 66-73.	2.9	13
934	Injectable hydrogels for delivering biotherapeutic molecules. International Journal of Biological Macromolecules, 2018, 110, 17-29.	3.6	170
935	Photoâ€Crosslinkable Unnatural Amino Acids Enable Facile Synthesis of Thermoresponsive Nano―to Microgels of Intrinsically Disordered Polypeptides. Advanced Materials, 2018, 30, 1704878.	11.1	56
936	Viscoelastic behaviour and relaxation modes of one polyamic acid organogel studied by rheometers and dynamic light scattering. Soft Matter, 2018, 14, 73-82.	1.2	12

#	Article	IF	Citations
937	Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. Journal of Materials Chemistry B, 2018, 6, 210-235.	2.9	85
938	Interactive Nanogel Marking at the Microscale for Security and Traceability Applications. Advanced Materials Technologies, 2018, 3, 1700244.	3.0	6
939	Biohybrid based on layered terbium hydroxide and applications as drug carrier and biological fluorescence probe. Applied Organometallic Chemistry, 2018, 32, e3926.	1.7	18
940	Gelation of Poly(Vinylidene Fluoride) Solutions in Native and Organically Modified Silica Nanopores. Molecules, 2018, 23, 3025.	1.7	4
941	Functional Dynamics Inside Nano- or Microscale Bio-Hybrid Systems. Frontiers in Chemistry, 2018, 6, 621.	1.8	2
942	A versatile synthetic platform for amphiphilic nanogels with tunable hydrophobicity. Polymer Chemistry, 2018, 9, 5572-5584.	1.9	27
943	Hyaluronic Acid-Based Nanomaterials for Cancer Therapy. Polymers, 2018, 10, 1133.	2.0	109
944	Multifunctional Hierarchically-Assembled Hydrogel Particles with Pollen Grains via Pickering Suspension Polymerization. Langmuir, 2018, 34, 14643-14651.	1.6	12
945	Overviews of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 3-24.	0.8	11
946	Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjugate Chemistry, 2018, 29, 4149-4159.	1.8	19
947	Avidin–Biotin Cross-Linked Microgel Multilayers as Carriers for Antimicrobial Peptides. Biomacromolecules, 2018, 19, 4691-4702.	2.6	17
949	A new look at effective interactions between microgel particles. Nature Communications, 2018, 9, 5039.	5.8	92
950	Subtle changes in network composition impact the biodistribution and tumor accumulation of nanogels. Chemical Communications, 2018, 54, 11777-11780.	2.2	8
951	A kinetic study, thermal analysis and kinetic modeling on homo and copolymerization of 2-(N,N-diethylamino)ethyl methacrylate and PEGMA. European Polymer Journal, 2018, 109, 347-359.	2.6	10
952	Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment. , 0, , .		6
953	1H NMR study of thermo-induced collapse of polyelectrolyte microgels. EXPRESS Polymer Letters, 2018, 12, 1005-1013.	1.1	7
954	Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. European Polymer Journal, 2018, 109, 117-123.	2.6	27
955	Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones. Advanced Healthcare Materials, 2018, 7, e1800729.	3.9	47

#	Article	IF	CITATIONS
956	Lotus leaf-inspired design of calcium alginate particles with superhigh drug encapsulation efficiency and pH responsive release. Colloids and Surfaces B: Biointerfaces, 2018, 172, 464-470.	2.5	10
957	Remediation of Cd(II) and reactive red 195 dye in wastewater by nanosized gels of grafted carboxymethyl cellulose. Cellulose, 2018, 25, 6645-6660.	2.4	49
958	Collagen/Heparin Biâ€Affinity Multilayer Modified Collagen Scaffolds for Controlled bFGF Release to Improve Angiogenesis In Vivo. Macromolecular Bioscience, 2018, 18, e1800086.	2.1	25
959	Intelligent Hydrogels as Drug Delivery Systems. Gels Horizons: From Science To Smart Materials, 2018, , 1-28.	0.3	1
960	Nanoformulations of doxorubicin: how far have we come and where do we go from here?. Nanotechnology, 2018, 29, 332002.	1.3	26
961	LCST behavior of poly(2-ethyl-2-oxazoline) containing diblock and triblock copolymers. European Polymer Journal, 2018, 100, 57-66.	2.6	14
962	Quenching of fully symmetric mixtures of oppositely charged microgels: the role of soft stiffness. Soft Matter, 2018, 14, 5106-5120.	1.2	5
963	Layer-by-layer polyelectrolyte coating of alginate microgels for sustained release of sodium benzoate and zosteric acid. Journal of Drug Delivery Science and Technology, 2018, 46, 46-54.	1.4	19
964	Universal Coatings Based on Zwitterionic–Dopamine Copolymer Microgels. ACS Applied Materials & Logical Science & Logi	4.0	49
965	Selective digestion of Ba ²⁺ /Ca ²⁺ alginate gel microdroplets for single-cell handling. Japanese Journal of Applied Physics, 2018, 57, 06HH02.	0.8	1
966	Compressive resistance of granular-scale microgels: From loose to dense packing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 406-416.	2.3	13
967	Selective Molecular Transport in Thermoresponsive Polymer Membranes: Role of Nanoscale Hydration and Fluctuations. Macromolecules, 2018, 51, 4853-4864.	2.2	28
968	Responsive biopolymer-based microgels/nanogels for drug delivery applications. , 2018, , 453-500.		26
969	Protein-based gels. , 2018, , 31-54.		4
970	Biocompatible Hydrogels. , 2018, , .		0
971	Hydrogen bonding reinforcement as a strategy to improve upper critical solution temperature of poly(<i>N</i> -acryloylglycinamide- <i>co</i> -methacrylic acid). Polymer Chemistry, 2018, 9, 3667-3673.	1.9	14
972	From Batch to Continuous Precipitation Polymerization of Thermoresponsive Microgels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24799-24806.	4.0	61
973	Design of Multifunctional Nanogels with Intelligent Behavior. Gels Horizons: From Science To Smart Materials, 2018, , 279-307.	0.3	1

#	Article	IF	CITATIONS
974	Tetraphenylethene Cross-Linked Thermosensitive Microgels via Acylhydrazone Bonds: Aggregation-Induced Emission in Nanoconfined Environments and the Cononsolvency Effect. Macromolecules, 2018, 51, 5762-5772.	2.2	39
975	Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers, 2018, 10, 418.	2.0	65
976	Polyamidoamine Dendrimer Microgels: Hierarchical Arrangement of Dendrimers into Micrometer Domains with Expanded Structural Features for Programmable Drug Delivery and Release. Macromolecules, 2018, 51, 6111-6118.	2.2	30
977	Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions. Gels, 2018, 4, 2.	2.1	17
978	Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opinion on Drug Delivery, 2018, 15, 703-716.	2.4	40
979	Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Materials Science and Engineering C, 2018, 92, 575-589.	3.8	46
980	Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes. Sensors, 2018, 18, 1119.	2.1	22
981	Targeted Treatment of Ischemic and Fibrotic Complications of Myocardial Infarction Using a Dual-Delivery Microgel Therapeutic. ACS Nano, 2018, 12, 7826-7837.	7. 3	63
982	Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels, 2018, 4, 62.	2.1	79
983	Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 247-258.	2.0	19
984	Control of cationic nanogel PEGylation in heterogeneous ARGET ATRP emulsion polymerization with PEG macromonomers. Journal of Polymer Science Part A, 2018, 56, 1536-1544.	2.5	14
985	Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. Soft Matter, 2018, 14, 7083-7096.	1.2	37
986	Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics, 2018, 3, 15.	1.5	164
987	Stimuli-Responsive Cellulose Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	0
988	Microgelation imparts emulsifying ability to surface-inactive polysaccharidesâ€"bottom-up vs top-down approaches. Npj Science of Food, 2018, 2, 15.	2.5	33
989	Cationic Polymers Bearing Quaternary Ammonium Groups-Catalyzed CO2 Fixation with Epoxides. Topics in Catalysis, 2018, 61, 1545-1550.	1.3	12
990	Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Scientific Reports, 2018, 8, 8525.	1.6	42
991	Nanohydrogels. , 2018, , 293-368.		13

#	ARTICLE	IF	Citations
992	Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. Journal of Materials Science: Materials in Medicine, 2018, 29, 84.	1.7	22
993	PDMS microparticles produced in PDMS microchannels under the jetting regime for optimal optical suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123737.	2.3	9
994	Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech, 2019, 20, 253.	1.5	39
995	Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123709.	2.3	71
996	Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Nanogels. Journal of Physical Chemistry B, 2019, 123, 6303-6313.	1.2	24
997	Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydrate Polymers, 2019, 223, 115045.	5.1	46
998	Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Therapeutic Delivery, 2019, 10, 281-293.	1,2	39
999	Two-Stage Collapse of PNIPAM Brushes: Viscoelastic Changes Revealed by an Interferometric Laser Technique. Langmuir, 2019, 35, 15776-15783.	1.6	2
1000	Nanogels for regenerative medicine. Journal of Controlled Release, 2019, 313, 148-160.	4.8	68
1001	Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42856-42864.	4.0	51
1002	Hydration and Solvent Exchange Induced Swelling and Deswelling of Homogeneous Poly(<i>N</i> -isopropylacrylamide) Microgel Thin Films. Langmuir, 2019, 35, 16341-16352.	1.6	20
1003	Use of microaspiration to study the mechanical properties of polymer gel microparticles. Soft Matter, 2019, 15, 7286-7294.	1.2	8
1004	Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics, 2019, 11, 441.	2.0	20
1005	Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess and Biosystems Engineering, 2019, 42, 1893-1901.	1.7	66
1006	Liposome-Enveloped Molecular Nanogels. Langmuir, 2019, 35, 13375-13381.	1.6	19
1007	Degradable redox-responsive disulfide-based nanogel drug carriers <i>via</i> dithiol oxidation polymerization. Biomaterials Science, 2019, 7, 607-617.	2.6	41
1008	Logical design and application of prodrug platforms. Polymer Chemistry, 2019, 10, 306-324.	1.9	58
1009	PEGylated NiPAM microgels: synthesis, characterization and colloidal stability. Soft Matter, 2019, 15, 963-972.	1.2	31

#	Article	IF	CITATIONS
1010	Novel Semi-IPN Nanocomposites with Functions of both Nutrient Slow-Release and Water Retention. 1. Microscopic Structure, Water Absorbency, and Degradation Performance. Journal of Agricultural and Food Chemistry, 2019, 67, 7587-7597.	2.4	35
1011	Connecting Elasticity and Effective Interactions of Neutral Microgels: The Validity of the Hertzian Model. Macromolecules, 2019, 52, 4895-4906.	2.2	47
1012	Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites, 2019, , 719-747.	0.6	2
1013	Studying synthesis confinement effects on the internal structure of nanogels in computer simulations. Journal of Molecular Liquids, 2019, 289, 111066.	2.3	10
1014	Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. Materials Science and Engineering C, 2019, 104, 109871.	3.8	15
1015	Transport of a model diffusion probe in polyelectrolyte-surfactant hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 73-79.	2.3	6
1016	The Application of Nucleic Acid Amplification Strategies in Theranostics. , 2019, , 289-305.		0
1017	A temperatureâ€responsive polyurethane and its biocompatible and biodegradable nanohydrogels with uniform crossâ€linking networks. Polymer Engineering and Science, 2019, 59, 1517-1523.	1.5	5
1018	Crossing biological barriers with nanogels to improve drug delivery performance. Journal of Controlled Release, 2019, 307, 221-246.	4.8	118
1019	Effect of Hydrophobic Interactions on Lower Critical Solution Temperature for Poly(N-isopropylacrylamide-co-dopamine Methacrylamide) Copolymers. Polymers, 2019, 11, 991.	2.0	48
1020	pHâ€responsive squeezing polysaccharidic nanogels for efficient docetaxel delivery. Polymers for Advanced Technologies, 2019, 30, 2067-2074.	1.6	17
1021	A Novel Amphiphilic AIE Molecule and Its Application in Thermosensitive Liposome. ChemistrySelect, 2019, 4, 5195-5198.	0.7	2
1022	Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Industrial & Engineering Chemistry Research, 2019, 58, 9709-9757.	1.8	63
1023	"Smart―IPN microgels with different network structures: Self-crosslinked vs conventionally crosslinked. Polymer, 2019, 176, 127-134.	1.8	18
1025	Passive droplet generation in aqueous two-phase systems with a variable-width microchannel. Soft Matter, 2019, 15, 4647-4655.	1.2	12
1026	Molecular Modeling of Complex Cross-Linked Networks of PEGDA Nanogels. Journal of Physical Chemistry B, 2019, 123, 4129-4138.	1.2	10
1027	Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials, 2019, 9, 656.	1.9	110
1028	Structural design of vinyl polymer hydrogels utilizing precision radical polymerization. Polymer Journal, 2019, 51, 803-812.	1.3	17

#	Article	IF	CITATIONS
1029	Nanogelation and Thermal Stabilization of Enzyme by Vitamin B ₆ -Bearing Polysaccharide as Biocrosslinker. ACS Biomaterials Science and Engineering, 2019, 5, 5752-5758.	2.6	3
1030	Offâ€Stoichiometric Thiolâ€Ene Chemistry to Dendritic Nanogel Therapeutics. Advanced Functional Materials, 2019, 29, 1806693.	7.8	24
1031	Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 2019, 1-26.	1.5	570
1032	Jammed Polyelectrolyte Microgels for 3D Cell Culture Applications: Rheological Behavior with Added Salts. ACS Applied Bio Materials, 2019, 2, 1509-1517.	2.3	35
1033	In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. Soft Matter, 2019, 15, 3565-3572.	1.2	20
1034	Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends in Food Science and Technology, 2019, 86, 465-478.	7.8	26
1035	Advances in atom-transfer radical polymerization for drug delivery applications. European Polymer Journal, 2019, 115, 45-58.	2.6	39
1036	Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrugâ€Resistant Bacteria. Small, 2019, 15, e1900999.	5.2	135
1037	Covalently Crosslinked Nanogels: An NMR Study of the Effect of Monomer Reactivity on Composition and Structure. Polymers, $2019,11,353.$	2.0	16
1038	Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics, 2019, 11, 71.	2.0	36
1039	Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites, 2019, , 1-29.	0.6	2
1040	Nanogels Containing Polysaccharides for Bioapplications. , 2019, , 387-420.		10
1041	Scalable synthesis of core–shell microgel particles using a â€~dry water' method. Chemical Communications, 2019, 55, 2849-2852.	2.2	7
1042	Nanotherapeutics., 2019,, 149-161.		18
1043	Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry, 2019, 5, 67.	1.0	92
1044	Nanogels as drug-delivery systems: a comprehensive overview. Therapeutic Delivery, 2019, 10, 697-717.	1.2	109
1045	Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices. SN Applied Sciences, 2019, 1 , 1 .	1.5	6
1046	Oil-in-water microemulsion polymerization. , 2019, , 267-360.		0

#	Article	IF	CITATIONS
1047	Microgels as viscosity modifiers influence lubrication performance of continuum. Soft Matter, 2019, 15, 9614-9624.	1.2	42
1048	Synthesis of chemically crosslinked pullulan/gelatin-based extracellular matrix-mimetic gels. International Journal of Biological Macromolecules, 2019, 122, 1262-1270.	3.6	27
1049	Transfer Free Energies and Partitioning of Small Molecules in Collapsed PNIPAM Polymers. Journal of Physical Chemistry B, 2019, 123, 720-728.	1.2	20
1050	A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 2019, 26, 154-174.	0.6	124
1051	Thermodynamic properties of polymethylsilsesquioxane nanogels with blocking trimethylsilyl groups. Journal of Chemical Thermodynamics, 2019, 131, 572-582.	1.0	1
1052	Recent insights in magnetic hyperthermia: From the "hot-spot―effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Advanced Drug Delivery Reviews, 2019, 138, 233-246.	6.6	122
1053	Interactions of NIPAM nanogels with model lipid multi-bilayers: A neutron reflectivity study. Journal of Colloid and Interface Science, 2019, 536, 598-608.	5.0	10
1054	Step-growth production of nanogels for use as macromers with dimethacrylate monomers. Reactive and Functional Polymers, 2019, 134, 85-92.	2.0	7
1055	Recent Developments in the Area of Clickâ€Crosslinked Nanocarriers for Drug Delivery. Macromolecular Rapid Communications, 2019, 40, e1800541.	2.0	11
1056	Modulating the burst drug release effect of waterborne polyurethane matrix by modifying with polymethylmethacrylate. Journal of Applied Polymer Science, 2019, 136, 47253.	1.3	39
1057	pH Responsive 5-Fluorouracil Loaded Biocompatible Nanogels For Topical Chemotherapy of Aggressive Melanoma. Colloids and Surfaces B: Biointerfaces, 2019, 174, 232-245.	2.5	65
1058	Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta, 2019, 195, 204-214.	2.9	62
1059	Stimuli-Responsive Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 269-308.	0.6	3
1060	Nanobased Intravenous and Transdermal Drug Delivery Systems. , 2019, , 551-594.		15
1061	Microfabrication and microfluidic devices for drug delivery., 2019,, 123-136.		5
1062	Mechanism for Development of Nanobased Drug Delivery System. , 2019, , 35-67.		28
1063	Engineering Nanomaterials for Smart Drug Release. , 2019, , 411-449.		25
1064	Characterization and phaseâ€transition behavior of thermoresponsive PVME nanogels in the presence of cellulose nanowhiskers: Rheology, morphology, and FTIR studies. Polymer Engineering and Science, 2019, 59, 899-912.	1.5	6

#	Article	IF	CITATIONS
1065	Graft copolymers of carboxymethyl cellulose with N-vinylimidazole: synthesis and application for drug delivery. Polymer Bulletin, 2019, 76, 4929-4949.	1.7	12
1066	Fabrication and biomedical potential of nanogels: An overview. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 287-296.	1.8	23
1067	Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiation Physics and Chemistry, 2020, 169, 108099.	1.4	26
1068	Preparation and characterization of bio- and UV- degradable superabsorbent hydrogels based on a novel cross-linker. Soft Materials, 2020, 18, 8-16.	0.8	6
1069	Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. Polymer Reviews, 2020, 60, 114-143.	5.3	34
1070	Electrostatic expansion of polyelectrolyte microgels: Effect of solvent quality and added salt. Journal of Colloid and Interface Science, 2020, 558, 200-210.	5.0	25
1071	Self-healing properties of hydrogels based on natural polymers. , 2020, , 223-245.		7
1072	Hydrophilic Polysiloxane Microspheres and Ceramic SiOC Microspheres Derived from Them. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 56-68.	1.9	16
1073	Promoted chondrogenesis of hMCSs with controlled release of TGF-Î ² 3 via microfluidics synthesized alginate nanogels. Carbohydrate Polymers, 2020, 229, 115551.	5.1	53
1074	Temperature/pH/magnetic tripleâ€sensitive nanogel–hydrogel nanocomposite for release of anticancer drug. Polymer International, 2020, 69, 156-164.	1.6	19
1075	Controlled radical polymerization in dispersed systems for biological applications. Progress in Polymer Science, 2020, 102, 101209.	11.8	72
1076	Coarse-grained simulations of diffusion controlled release of drugs from neutral nanogels: Effect of excluded volume interactions. Journal of Chemical Physics, 2020, 152, 024107.	1.2	8
1077	Resolving the internal morphology of core–shell microgels with super-resolution fluorescence microscopy. Nanoscale Advances, 2020, 2, 323-331.	2.2	22
1078	Metal–organic framework tethering pH- and thermo-responsive polymer for ON–OFF controlled release of guest molecules. CrystEngComm, 2020, 22, 1106-1111.	1.3	19
1079	Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Advanced Materials Interfaces, 2020, 7, 1901676.	1.9	27
1080	A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 2020, 317, 347-374.	4.8	53
1081	Dual physically and chemically cross-linked polyelectrolyte nanohydrogels: Compositional and pH-dependent behavior studies. European Polymer Journal, 2020, 122, 109398.	2.6	12
1082	Numerical Simulations of Nanogel Synthesis Using Pulsed Electron Beam. Macromolecular Theory and Simulations, 2020, 29, 1900046.	0.6	11

#	Article	IF	CITATIONS
1083	Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics, 2020, 10, 91-108.	4.6	29
1084	Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. Advanced Therapeutics, 2020, 3, 2000178.	1.6	21
1085	Different Strategies for the Preparation of Galactose-Functionalized Thermo-Responsive Nanogels with Potential as Smart Drug Delivery Systems. Polymers, 2020, 12, 2150.	2.0	8
1086	Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 121-153.	2.0	55
1087	Enhancing the CO2 capture efficiency of amines by microgel particles. International Journal of Greenhouse Gas Control, 2020, 103, 103172.	2.3	14
1088	Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 2020, 165, 804-821.	3.6	31
1089	Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide). Carbohydrate Polymers, 2020, 248, 116764.	5.1	21
1090	Synthesis and structure of temperature-sensitive nanocapsules. Colloid and Polymer Science, 2020, 298, 1179-1185.	1.0	6
1091	On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions. Radiation Physics and Chemistry, 2020, 174, 108900.	1.4	9
1092	Microparticles. , 2020, , 431-451.		2
1093	Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers, 2020, 12, 2561.	2.0	9
1094	Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials, 2020, 13, 5270.	1.3	96
1095	Influence of Buffers, Ionic Strength, and pH on the Volume Phase Transition Behavior of Acrylamide-Based Nanogels. Polymers, 2020, 12, 2590.	2.0	11
1096	Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers, 2020, 12, 2877.	2.0	178
1097	Short oligo(ethylene glycol) chain incorporated thermoresponsive microgels: from structural analysis to modulation of solution properties. Soft Matter, 2020, 16, 7845-7859.	1.2	12
1098	Structural and second harmonic generation properties of nanogel of niobium oxide nanoparticles. Materials Chemistry and Physics, 2020, 255, 123579.	2.0	O
1099	A coil-to-globule transition capable coarse-grained model for poly(<i>N</i> -isopropylacrylamide). Physical Chemistry Chemical Physics, 2020, 22, 17913-17921.	1.3	7
1100	An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics, 2020, 12, 970.	2.0	54

#	Article	IF	CITATIONS
1101	Surface Charge-Dependent Cytotoxicity of Plastic Nanoparticles in Alveolar Cells under Cyclic Stretches. Nano Letters, 2020, 20, 7168-7176.	4.5	68
1102	Insights into the internal structures of nanogels using a versatile asymmetric-flow field-flow fractionation method. Nanoscale Advances, 2020, 2, 4713-4721.	2.2	13
1103	Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics, 2020, 12, 837.	2.0	99
1104	Nanobiotechnology and Its Application in Nanomedicine: An Overview., 2020,, 3-25.		3
1105	Cumulative Submillisecond All-Atom Simulations of the Temperature-Induced Coil-to-Globule Transition of Poly(<i>N</i> -vinylcaprolactam) in Aqueous Solution. Macromolecules, 2020, 53, 9793-9810.	2.2	4
1106	Stress Relaxation via Covalent Dynamic Bonds in Nanogel-Containing Thiol–Ene Resins. ACS Macro Letters, 2020, 9, 713-719.	2.3	12
1107	Design of Stimuli-Responsive Polyampholytes and Their Transformation into Micro-Hydrogels for Drug Delivery. ACS Symposium Series, 2020, , 47-62.	0.5	2
1108	Nanogels as nanocarriers for drug delivery: A review. ADMET and DMPK, 2020, 8, 1-15.	1.1	36
1109	Gellan Gum Microgels as Effective Agents for a Rapid Cleaning of Paper. ACS Applied Polymer Materials, 2020, 2, 2791-2801.	2.0	24
1110	Synthesis and characterization of alginate nanocarrier encapsulating Artemisia ciniformis extract and evaluation of the cytotoxicity and apoptosis induction in AGS cell line. International Journal of Biological Macromolecules, 2020, 158, 338-357.	3.6	28
1111	Atomic scale investigation of the volume phase transition in concentrated PNIPAM microgels. Journal of Chemical Physics, 2020, 152, 204904.	1.2	7
1112	Design and regulation of the surface and interfacial behavior of protein molecules. Chinese Journal of Chemical Engineering, 2020, 28, 2837-2847.	1.7	2
1113	Hydrogenâ€Bonding UCSTâ€Thermosensitive Nanogels by Direct Photoâ€RAFT Polymerizationâ€Induced Selfâ€Assembly in Aqueous Dispersion. Macromolecular Rapid Communications, 2020, 41, e2000203.	2.0	21
1114	Selective Inhibition of <i>Streptococci</i> Biofilm Growth via a Hydroxylated Azobenzene Coating. Advanced Materials Interfaces, 2020, 7, 1902149.	1.9	6
1115	Emulsion polymer derived nanocomposite: a review on design and tailored attributes. Polymer-Plastics Technology and Materials, 2020, 59, 1737-1750.	0.6	4
1116	Temperature/pH/magnetic triple sensitive nanogel for doxorubicin anticancer drug delivery. Inorganic and Nano-Metal Chemistry, 2020, 50, 1189-1200.	0.9	13
1117	Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of Biological Engineering, 2020, 14, 8.	2.0	242
1118	Synthesis of millimeterâ€sized hydrogel beads by inverse Pickering polymerization using starchâ€based nanoparticles as emulsifier. Polymers for Advanced Technologies, 2020, 31, 1321-1329.	1.6	12

#	Article	IF	CITATIONS
1119	Stimuli-responsive photoluminescence soft hybrid microgel particles: synthesis and characterizations. Journal of Physics Condensed Matter, 2020, 32, 044001.	0.7	5
1120	Using Soft Polymer Template Engineering of Mesoporous TiO ₂ Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 18578-18589.	4.0	27
1121	Recent Advances in Anti-inflammatory Strategies for Implantable Biosensors and Medical Implants. Biochip Journal, 2020, 14, 48-62.	2.5	21
1122	Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins. Nature Communications, 2020, 11, 1342.	5.8	40
1123	Temperature-Responsive Poly(<i>N</i> -Isopropylacrylamide) Nanogels: The Role of Hollow Cavities and Different Shell Cross-Linking Densities on Doxorubicin Loading and Release. Langmuir, 2020, 36, 2683-2694.	1.6	56
1124	Harnessing biomimetic cryptic bonds to form self-reinforcing gels. Soft Matter, 2020, 16, 5120-5131.	1.2	7
1125	6. Application of microencapsulation in medical and pharmaceutical industry., 2020,, 131-158.		0
1126	Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers, 2020, 12, 1397.	2.0	281
1127	Nanoencapsulation of nutraceutical ingredients. , 2020, , 311-352.		9
1128	pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for "on-demand―anticancer drug delivery. Reactive and Functional Polymers, 2020, 149, 104532.	2.0	20
1129	Coarse-grained Monte Carlo simulations of nanogel–polyelectrolyte complexes: electrostatic effects. Soft Matter, 2020, 16, 3022-3028.	1.2	7
1130	Computational Design of Nanostructured Soft Interfaces: Focus on Shape Changes and Spreading of Cubic Nanogels. Langmuir, 2020, 36, 7109-7123.	1.6	13
1131	Smart nanogels in cancer therapy. , 2020, , 179-193.		4
1132	Precise regulation of particle size of poly(N-isopropylacrylamide) microgels: Measuring chain dimensions with a "molecular rulerâ€, Journal of Colloid and Interface Science, 2020, 566, 394-400.	5.0	3
1133	Composite Nanogels Based on Zeolite-Poly(ethylene glycol) Diacrylate for Controlled Drug Delivery. Nanomaterials, 2020, 10, 195.	1.9	14
1134	Functional DNA-based hydrogel intelligent materials for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1991-2009.	2.9	60
1135	Advances in Uniform Polymer Microspheres and Microcapsules: Preparation and Biomedical Applications. Chinese Journal of Chemistry, 2020, 38, 911-923.	2.6	17
1136	Theranostic Gastrointestinal Endoscopy: Bringing Healing Light to the Lumen. Clinical and Translational Gastroenterology, 2020, 11, e00119.	1.3	2

#	Article	IF	CITATIONS
1137	A comprehensive review of nano drug delivery system in the treatment of CNS disorders. Journal of Drug Delivery Science and Technology, 2020, 57, 101628.	1.4	17
1138	The influence of an applied magnetic field on the self-assembly of magnetic nanogels. Journal of Molecular Liquids, 2020, 307, 112902 .	2.3	16
1139	Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 6866-6876.	2.9	14
1140	pH-Responsive Microgels: Promising Carriers for Controlled Drug Delivery. , 2020, , .		0
1141	Polymeric Nanogels for Theranostic Applications: A Mini-Review. Current Nanoscience, 2020, 16, 392-398.	0.7	13
1142	Critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A review. Korean Journal of Chemical Engineering, 2021, 38, 248-263.	1.2	10
1143	Plasticized kafirin-based films: analysis of thermal, barrier and mechanical properties. Polymer Bulletin, 2021, 78, 1721-1733.	1.7	1
1144	Copolymeric nano/microgels of N-isopropylacrylamide and carboxyalkyl methacrylamides: Effect of methylene chains and the ionization state of the weak acids on size and sensitivity to pH and temperature. Soft Materials, 2021, 19, 89-99.	0.8	1
1145	Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Delivery and Translational Research, 2021, 11, 261-278.	3.0	16
1146	Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology, 2021, 69, 52-68.	4.3	125
1147	Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 560-571.	5.7	33
1148	Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 385-404.	1.9	10
1149	Preparation of ultrasmall nanogels by facile emulsion-free photopolymerization at 532Ânm. Journal of Colloid and Interface Science, 2021, 582, 711-719.	5.0	15
1150	Polymer nanogels: Fabrication, structural behavior, and biological applications., 2021,, 97-111.		1
1151	Microparticles from glycidylmethacrylated gelatin as cell carriers prepared in an aqueous two-phase system. European Polymer Journal, 2021, 142, 110148.	2.6	5
1152	Can oppositely charged polyelectrolyte stars form a gel? A simulational study. Soft Matter, 2021, 17, 1574-1588.	1.2	6
1153	Stimuliâ€responsive hybrid microgels for controlled drug delivery: Sorafenib as a model drug. Journal of Applied Polymer Science, 2021, 138, 50147.	1.3	11
1154	Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular poly(acrylamide-co-methacrylic acid) nanogels. Journal of Controlled Release, 2021, 329, 1162-1171.	4.8	8

#	Article	IF	CITATIONS
1155	Rationales Design von Nanogelen zur Überwindung biologischer Barrieren auf verschiedenen Verabreichungswegen. Angewandte Chemie, 2021, 133, 14884-14903.	1.6	6
1156	Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angewandte Chemie - International Edition, 2021, 60, 14760-14778.	7.2	44
1157	Multiarm Star Polymers. Fundamental Aspects. A Review. Doklady Chemistry, 2021, 496, 1-17.	0.2	5
1158	Temperature- and pH-responsive poly(<i>N</i> -isopropylacrylamide- <i>co</i> -methacrylic acid) microgels as a carrier for controlled protein adsorption and release. Soft Matter, 2021, 17, 9595-9606.	1.2	8
1159	An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. Journal of Nanobiotechnology, 2021, 19, 18.	4.2	55
1160	Adsorption dynamics of thermoresponsive microgels with incorporated short oligo(ethylene glycol) chains at the oil–water interface. Soft Matter, 2021, 17, 6127-6139.	1.2	6
1161	Nanogel Synthesis by Irradiation of Aqueous Polymer Solutions. , 2021, , 167-202.		0
1162	Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents. Chemical Science, 2021, 12, 3958-3965.	3.7	27
1163	Microgel Dynamics Characterization Using SEM. Journal of Undergraduate Reports in Physics, 2021, 31, 100011.	0.1	0
1164	A directed co-assembly of herbal small molecules into carrier-free nanodrugs for enhanced synergistic antitumor efficacy. Journal of Materials Chemistry B, 2021, 9, 1040-1048.	2.9	17
1165	Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252.	0.7	0
1166	Biopolymer based nanofertilizers applications in abiotic stress (drought and salinity) control. , 2021, , 85-110.		2
1167	Fibrin-modulating nanogels for treatment of disseminated intravascular coagulation. Blood Advances, 2021, 5, 613-627.	2.5	11
1168	Facile Hydrothermal Fabrication of Eu Doped Alumina for Potential Bioluminescent Imaging and Drug Delivery System. Key Engineering Materials, 0, 875, 359-365.	0.4	0
1170	Controlled Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Dexamethasone-Loaded Light-Responsive Microgels. ACS Applied Materials & Universal Science (1988), 13, 7051-7059.	4.0	19
1171	Microstructured Macromaterials Based on IPN Microgels. Polymers, 2021, 13, 1078.	2.0	7
1172	Emulsion-free chitosan–genipin microgels for growth plate cartilage regeneration. Journal of Biomaterials Applications, 2021, 36, 289-296.	1.2	16
1173	Tuning the Thermoresponsive Behavior of Surface-Attached PNIPAM Networks: Varying the Crosslinker Content in SI-ATRP. Langmuir, 2021, 37, 3391-3398.	1.6	19

#	Article	IF	Citations
1174	Stimuli-responsive biomaterials for cardiac tissue engineering and dynamic mechanobiology. APL Bioengineering, 2021, 5, 011506.	3.3	20
1175	Synthesis of Nanogels: Current Trends and Future Outlook. Gels, 2021, 7, 36.	2.1	72
1176	A versatile chitosan nanogel capable of generating AgNPs in-situ and long-acting slow-release of Ag+ for highly efficient antibacterial. Carbohydrate Polymers, 2021, 257, 117636.	5.1	39
1177	Supramolecular engineering of hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2021, 171, 240-256.	6.6	164
1178	BoneMAâ€"synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication, 2021, 13, 035031.	3.7	21
1179	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
1180	Hybrid System for Local Drug Delivery and Magnetic Hyperthermia Based on SPIONs Loaded with Doxorubicin and Epirubicin. Pharmaceutics, 2021, 13, 480.	2.0	32
1181	Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Frontiers in Chemistry, 2021, 9, 658548.	1.8	12
1182	Nanotechnology: revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opinion on Drug Delivery, 2021, 18, 1131-1149.	2.4	7
1183	Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromolecular Rapid Communications, 2021, 42, e2100112.	2.0	18
1184	A critical review of ferritin as a drug nanocarrier: Structure, properties, comparative advantages and challenges. Particuology, 2022, 64, 65-84.	2.0	14
1186	Drug Release Studies of SCâ€514 PLGA Nanoparticles. FASEB Journal, 2021, 35, .	0.2	0
1187	Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules, 2021, 26, 3984.	1.7	22
1188	Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. Polysaccharides, 2021, 2, 519-537.	2.1	8
1190	Recent Developments in Nanomaterialâ€Based Shearâ€Sensitive Drug Delivery Systems. Advanced Healthcare Materials, 2021, 10, e2002196.	3.9	24
1191	Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules, 2021, 22, 2976-2984.	2.6	7
1192	Overview of nanogel and its applications. GSC Biological and Pharmaceutical Sciences, 2021, 16, 040-061.	0.1	8
1193	Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials, 2021, 11, 1968.	1.9	52

#	Article	IF	CITATIONS
1194	Responsive Polymeric Nanoparticles for Biofilm-infection Control. Chinese Journal of Polymer Science (English Edition), 0 , 1 .	2.0	13
1195	3D-printed planar microfluidic device on oxyfluorinated PET-substrate. Polymer Testing, 2021, 99, 107209.	2.3	9
1196	Droplet-Based Microfluidic Synthesis of Hydrogel Microparticles via Click Chemistry-Based Cross-Linking for the Controlled Release of Proteins. ACS Applied Bio Materials, 2021, 4, 6186-6194.	2.3	4
1197	Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell and Bioscience, 2021, 11, 142.	2.1	70
1198	The Application of Polyaniline and Polypyrrole in Medical and Biological Fields. Part 2. Tissue Engineering, Muscle Simulation, and Systems with Controlled Release of Biologically Active Substances. Polymer Science - Series D, 2021, 14, 427-431.	0.2	2
1199	Biocompatible and photocrosslinkable poly(ethylene glycol)/keratin biocomposite hydrogels. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1998-2008.	1.9	7
1200	Generalized Newtonian fluid constitutive equation for polymer liquids considering chain stretch and monomeric friction reduction for very fast flows modeling. Physics of Fluids, 2021, 33, 083106.	1.6	1
1201	Stimuliâ€Responsive Depolymerization of Poly(Phthalaldehyde) Copolymers and Networks. Macromolecular Chemistry and Physics, 2021, 222, 2100111.	1.1	8
1202	Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. Journal of Controlled Release, 2021, 336, 16-39.	4.8	20
1203	Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals, 2021, 11, 1092.	1.0	25
1204	Microphase separation of stimuli-responsive interpenetrating network microgels investigated by scattering methods. Journal of Colloid and Interface Science, 2021, 597, 297-305.	5.0	15
1205	Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomedical Materials (Bristol), 2021, 16, 065026.	1.7	2
1206	Exploring the conditions to generate alginate nanogels. Journal of Sol-Gel Science and Technology, 2022, 102, 142-150.	1.1	7
1207	Comparing pH-responsive nanogel swelling in dispersion and inside a polyacrylamide gel using photoluminescence spectroscopy and small-angle neutron scattering. Journal of Colloid and Interface Science, 2022, 608, 378-385.	5.0	8
1208	Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays. PLoS ONE, 2021, 16, e0257495.	1.1	5
1209	Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive Materials, 2021, 6, 3634-3657.	8.6	63
1210	Bisepoxide-Jeffamine microgel synthesis and application toward heterogeneous surface morphology for differential neuronal/non-neuronal cell responses in vitro. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112009.	2.5	4
1211	New nanocarriers based on Porous Clay Heterostructures (PCH) designed for methotrexate delivery. Microporous and Mesoporous Materials, 2021, 328, 111434.	2.2	5

#	Article	IF	CITATIONS
1212	Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chemical Science, 2021, 12, 9839-9850.	3.7	12
1213	Preparation and use of nanogels as carriers of drugs. Drug Delivery, 2021, 28, 1594-1602.	2.5	44
1214	Production of hydrogel microparticles in microfluidic devices: a review. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	20
1215	Recent advances in nanocellulose processing, functionalization and applications: a review. Materials Advances, 2021, 2, 1872-1895.	2.6	108
1218	Disulfideâ€Containing Macromolecules for Therapeutic Delivery. Israel Journal of Chemistry, 2020, 60, 132-139.	1.0	21
1219	Basic Concepts of Stokes Flows. Soft and Biological Matter, 2019, , 35-50.	0.3	6
1220	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. Topics in Organometallic Chemistry, 2009, , 221-251.	0.7	33
1221	Magnetic Microgels: Synthesis and Characterization. Lecture Notes in Bioengineering, 2014, , 57-76.	0.3	3
1222	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	0.8	10
1223	Functionalized thermoresponsive microgels based on N-isopropylacrylamide: Energetics and mechanism of phase transitions. European Polymer Journal, 2020, 133, 109722.	2.6	15
1224	Influence of graphene sheet properties as supports of iridium-based N-heterocyclic carbene hybrid materials for water oxidation electrocatalysis. Journal of Organometallic Chemistry, 2020, 919, 121334.	0.8	8
1225	Triggered Small-Molecule Release from Dual-Stimuli Responsive Microgels. ACS Applied Polymer Materials, 2021, 3, 410-417.	2.0	9
1226	Nanogels for Drug Delivery: the Key Role of Nanogel–Drug Interactions. RSC Nanoscience and Nanotechnology, 2014, , 133-156.	0.2	2
1227	Injectable Nanogels in Drug Delivery. RSC Smart Materials, 2017, , 181-209.	0.1	1
1228	Chitosan-Based Gels: Drug Delivery Systems. , 0, , 1546-1577.		1
1229	Charge affinity and solvent effects in numerical simulations of ionic microgels. Journal of Physics Condensed Matter, 2021, 33, 084001.	0.7	5
1230	Prodrugs and Bioconjugate Hydrogels: A Valuable Strategy for the Prolonged-Delivery of Drugs. , 2017, , 88-112.		1
1231	Valorization and IntegralÂUse of SeafoodÂBy-Products. Contemporary Food Engineering, 2013, , 367-412.	0.2	2

#	Article	IF	CITATIONS
1232	Probiocs and Their Therapeuc Role. , 2014, , 61-108.		4
1233	Hydrogel Nanofilaments via Core-Shell Electrospinning. PLoS ONE, 2015, 10, e0129816.	1.1	23
1234	Application of Response Surface Methodology in the Preparation of Pectin-Caseinate Nanocomplexes for Potential Use as Nutraceutical Formulation: A Statistical Experimental Design Analysis. Pharmaceutical Sciences, 2018, 24, 52-59.	0.1	1
1235	Functional Nanogels for Biomedical Applications. Current Medicinal Chemistry, 2012, 19, 5029-5043.	1.2	79
1236	Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Current Medicinal Chemistry, 2020, 27, 6015-6056.	1.2	10
1237	Nanogels for Skin Cancer Therapy via Transdermal Delivery: Current Designs. Current Drug Metabolism, 2019, 20, 575-582.	0.7	12
1238	Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution. Current Topics in Medicinal Chemistry, 2020, 20, 1009-1028.	1.0	6
1240	SYNTHESIS OF GLUCOSE-SENSITIVE CORE-SHELL MICROGELS. Acta Polymerica Sinica, 2010, 010, 280-284.	0.0	2
1241	Targeting Aspects of Nanogels: An Overview. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7, 2612-2630.	0.0	9
1242	Structured Microgels through Microfluidic Assembly and Their Biomedical Applications. Soft, 2012, 01, 1-23.	0.7	13
1243	Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery. Journal of Pharmaceutical Investigation, 2010, 40, 201-212.	2.7	9
1244	Recent Progress for Synthesis of Advanced Functional Materials by Olefin Metathesis Polymerization: Controlled Synthesis of Multi-Block, Brush, Star Polymers for Precise Placement/Integration of Functionality. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 2-13.	0.0	5
1245	An Overview of Nanogel Drug Delivery System. Journal of Applied Pharmaceutical Science, 0, , .	0.7	25
1246	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	7.8	10
1247	Nanomedicines: Nano based Drug Delivery Systems Challenges and Opportunities. , 0, , .		6
1248	Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Frontiers in Bioengineering and Biotechnology, 2021, 9, 771851.	2.0	9
1249	Thermoresponsive Chitosan-Grafted-Poly(N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics, 2021, 13, 1654.	2.0	9
1250	Self-assembled Nanogel Engineering. , 2010, , 339-350.		0

#	Article	IF	CITATIONS
1251	Smart Thermo-Responsive Nanoparticles. , 2010, , 197-221.		0
1254	Novel Synthesis Pathways for PNIPAAm-Based Hydrogels and Their Application in Thermosensitive Textiles. , 2015, , 953-984.		1
1255	Chapter 6. Hydrogels. RSC Green Chemistry, 2015, , 134-147.	0.0	0
1256	Nanogels. , 0, , 5257-5265.		1
1257	Nanogels: Stimuli-responsive Drug Delivery Carriers. RSC Smart Materials, 2017, , 161-180.	0.1	0
1258	Magnetic Nanogel-enabled Image-guided Therapy. RSC Smart Materials, 2017, , 109-127.	0.1	1
1259	Future of Nanogels for Sensing Applications. RSC Smart Materials, 2017, , 261-282.	0.1	4
1260	Responsive Nanogels for Anti-cancer Therapy. RSC Smart Materials, 2017, , 210-260.	0.1	2
1261	Nanogels for Biomedical Applications: Challenges and Prospects. RSC Smart Materials, 2017, , 290-300.	0.1	0
1262	Biological Activities of Marine Biopolymers. , 2017, , 179-191.		0
1263	Biological Activities of Marine Biopolymers. , 2017, , 179-191.		1
1264	Nanogels: Chemical Approaches to Preparation. , 2017, , 1007-1034.		1
1265	Differences among Three Branded Formulations of Hyaluronic Acid: Data from Environmental Scanning Electron Microscope Profile, Rheology Behavior and Biological Activity. Biomedical Journal of Scientific & Technical Research, 2019, 17, .	0.0	0
1266	Recent progress in superabsorbent polymers for concrete. Cement and Concrete Research, 2022, 151, 106648.	4.6	80
1267	High strength, recyclable, anti-swelling and shape-memory hydrogels based on crystal microphase crosslinking and their application as flexible sensor. Chemical Engineering Journal, 2022, 430, 132957.	6.6	27
1268	Inorganic Nanomaterials for Enhanced Therapeutic Safety. Environmental Chemistry for A Sustainable World, 2020, , 1-24.	0.3	0
1270	Swelling of composite microgels with soft cores and thermo-responsive shells. Mechanics of Advanced Materials and Structures, 2022, 29, 7204-7220.	1.5	1
1271	Structural and Mechanistic Aspects of Copper Catalyzed Atom Transfer Radical Polymerization. Topics in Organometallic Chemistry, 2009, , 221.	0.7	0

#	Article	IF	CITATIONS
1273	Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chemical Society Reviews, 2022, 51, 128-152.	18.7	52
1274	Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox–Responsive Degradability for Intracellular Delivery. Pharmaceutics, 2021, 13, 2048.	2.0	3
1275	Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications. International Journal of Molecular Sciences, 2021, 22, 12294.	1.8	5
1276	Functional Nanogels as a Route to Interpenetrating Polymer Networks with Improved Mechanical Properties. Macromolecules, 2021, 54, 10657-10666.	2.2	6
1277	Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small, 2022, 18, e2104772.	5.2	3
1278	Translating Therapeutic Microgels into Clinical Applications. Advanced Healthcare Materials, 2022, 11, e2101989.	3.9	26
1279	Behaviour of a magnetic nanogel in a shear flow. Journal of Molecular Liquids, 2022, 346, 118056.	2.3	6
1280	Fundamentals and mechanics of polyelectrolyte gels: Thermodynamics, swelling, scattering, and elasticity. Chemical Physics Reviews, 2021, 2, .	2.6	10
1281	Magnetic and Fluorescent Nanogels for Nanomedicine. Gels Horizons: From Science To Smart Materials, 2021, , 73-105.	0.3	1
1282	Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology, 2022, 68, 103109.	1.4	20
1283	Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. European Polymer Journal, 2022, 163, 110935.	2.6	25
1284	Sonoproduction of nanobiomaterials – A critical review. Ultrasonics Sonochemistry, 2022, 82, 105887.	3.8	29
1286	Hybrid nanogel systems for drug delivery. , 2022, , 85-100.		2
1287	Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS Omega, 2022, 7, 4724-4734.	1.6	9
1288	Nanopesticides: Current status and scope for their application in agriculture. Plant Protection Science, 2021, 58, 1-17.	0.7	19
1291	The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules, 2022, 55, 3176-3188.	2.2	11
1292	Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation of Micrometer-Sized Emulsions. ACS Applied Materials & Spray-Assisted Formation (1997) and Sp	4.0	4
1293	Microgels and Nanogels for the Delivery of Poorly Water-Soluble Drugs. Molecular Pharmaceutics, 2022, 19, 1704-1721.	2.3	22

#	Article	IF	CITATIONS
1294	Carbohydrates Used in Polymeric Systems for Drug Delivery: From Structures to Applications. Pharmaceutics, 2022, 14, 739.	2.0	16
1296	Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. International Journal of Molecular Sciences, 2022, 23, 3638.	1.8	4
1297	The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. Journal of Molecular Liquids, 2022, 355, 118924.	2.3	4
1298	Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels. Journal of Polymer Research, 2022, 29, 1.	1.2	4
1299	Thiol-Ene "Click Reactions―as a Promising Approach to Polymer Materials. Polymer Science - Series B, 2022, 64, 1-16.	0.3	12
1300	Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics, 2021, 13, 2108.	2.0	26
1301	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58640-58651.	4.0	2
1302	Microgels react to force: mechanical properties, syntheses, and force-activated functions. Chemical Society Reviews, 2022, 51, 2939-2956.	18.7	23
1303	Antiseptic Materials on the Base of Polymer Interpenetrating Networks Microgels and Benzalkonium Chloride. International Journal of Molecular Sciences, 2022, 23, 4394.	1.8	7
1304	A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, .	1.2	4
1305	Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. Science China Technological Sciences, 2022, 65, 1011-1028.	2.0	7
1308	Diffusion of dyes in polyelectrolyte-surfactant hydrogels. RSC Advances, 2022, 12, 13242-13250.	1.7	1
1309	Continuous Preparation of Homogeneous Crosslinked PDMS Microgel Particles through Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Applied Polymer Materials, 2022, 4, 4347-4354.	2.0	2
1310	Adsorption of soft NIPAM nanogels at hydrophobic and hydrophilic interfaces: Conformation of the interfacial layers determined by neutron reflectivity. Journal of Colloid and Interface Science, 2022, 623, 337-347.	5.0	7
1311	Effect of Methacrylic Acid in PNNPAM Microgels on the Catalytic Activity of Embedded Palladium Nanoparticles. Macromolecular Chemistry and Physics, 0, , 2200045.	1.1	2
1312	Designing, structural determination, and antibacterial activity of injectable ciprofloxacin-loaded gelatin-sodium carboxymethyl cellulose composite nanogels against Staphylococcus aureus. Current Drug Delivery, 2022, 19, .	0.8	1
1313	Multifunctional Silica-Modified Hybrid Microgels Templated from Inverse Pickering Emulsions. Langmuir, 2022, 38, 6571-6578.	1.6	2
1314	<i>In vivo</i> stealthified molecularly imprinted polymer nanogels incorporated with gold nanoparticles for radiation therapy. Journal of Materials Chemistry B, 2022, 10, 6784-6791.	2.9	12

#	Article	IF	CITATIONS
1315	Bio-derived and biocompatible poly(lactic acid)/silk sericin nanogels and their incorporation within poly(lactide- <i>co</i> glycolide) electrospun nanofibers. Polymer Chemistry, 2022, 13, 3343-3357.	1.9	16
1316	Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels, 2022, 8, 316.	2.1	13
1317	Bioengineered nanogels for cancer immunotherapy. Chemical Society Reviews, 2022, 51, 5136-5174.	18.7	81
1318	Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules, 2022, 23, 2827-2837.	2.6	12
1320	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	22
1321	CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells, 2022, 11, 1974.	1.8	15
1323	Protected amine-functional initiators for the synthesis of \hat{l}_{\pm} -amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polymer Chemistry, 2022, 13, 4436-4445.	1.9	5
1324	Algae-based biomaterials for biomedicines. , 2022, , 251-276.		0
1325	Nanocarriers: A boon to the drug delivery systems. , 2022, , 555-584.		0
1326	Nanogel Development and its Application in Transdermal Drug Delivery System. Current Nanomedicine, 2022, 12, 126-136.	0.2	2
1327	Transient Lymph Node Immune Activation by Hydrolysable Polycarbonate Nanogels. Advanced Functional Materials, 2022, 32, .	7.8	11
1328	Plantâ€Actuated Micro–Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. Small, 2022, 18, .	5.2	5
1329	Genipin cross-linked chitosan–PVA composite films: An investigation on the impact of cross-linking on accelerating wound healing. Reactive and Functional Polymers, 2022, 178, 105339.	2.0	17
1330	Hydrogels: Smart Materials in Drug Delivery. , 0, , .		1
1331	Casiopeinas \hat{A}^{\otimes} third generation, with indomethacin: synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation. RSC Advances, 2022, 12, 21662-21673.	1.7	2
1332	Porous Crystalsomes via Emulsion Crystallization and Polymer Phase Separation. ACS Macro Letters, 2022, 11, 1022-1027.	2.3	9
1333	Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
1334	Controlled Covalent Selfâ€Assembly of a Homopolymer for Multiscale Materials Engineering. Advanced Materials, 2022, 34, .	11.1	7

#	ARTICLE	IF	Citations
1335	Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics, 2022, 14, 1781.	2.0	13
1336	Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydrate Polymers, 2022, 297, 120033.	5.1	27
1337	Maximum Incorporation of Soft Microgel at Interfaces of Water in Oil Emulsion Droplets Stabilized by Solid Silica Spheres. Nanomaterials, 2022, 12, 2649.	1.9	4
1338	Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. Chemosphere, 2022, 307, 135981.	4.2	4
1339	Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. International Journal of Biological Macromolecules, 2022, 220, 1277-1286.	3.6	68
1340	Designing and In Vitro Characterization of pH-Sensitive Aspartic Acid-Graft-Poly(Acrylic Acid) Hydrogels as Controlled Drug Carriers. Gels, 2022, 8, 521.	2.1	3
1341	Polymer based Gels: Recent and Future Applications in Drug Delivery Field. Current Drug Delivery, 2023, 20, 1288-1313.	0.8	5
1342	Optimizing Immunofunctionalization and Cell Capture on Micromolded Hydrogels via Controlled Oxygen-Inhibited Photopolymerization. ACS Applied Bio Materials, 0, , .	2.3	1
1343	Image systems for regularised Stokeslets at walls and free surfaces. European Journal of Mechanics, B/Fluids, 2023, 97, 112-127.	1.2	0
1344	Functional Nanogel from Natural Substances for Delivery of Doxorubicin. Polymers, 2022, 14, 3694.	2.0	5
1345	Uniquely sized nanogels <i>via</i> crosslinking polymerization. RSC Advances, 2022, 12, 29423-29432.	1.7	1
1346	Direct measurement of vorticity using tracer particles with internal markers. Experiments in Fluids, 2022, 63, .	1.1	1
1347	Anisotropic Microgels by Supramolecular Assembly and Precipitation Polymerization of Pyrazoleâ€Modified Monomers. Advanced Science, 2022, 9, .	5.6	4
1348	Molecularly Imprinted Ligand-Free Nanogels for Recognizing Bee Venom-Originated Phospholipase A2 Enzyme. Polymers, 2022, 14, 4200.	2.0	2
1349	Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. Journal of Drug Delivery Science and Technology, 2022, 77, 103879.	1.4	4
1350	Design of pH-responsive polymeric nanocarrier for targeted delivery of pyrogallol with enhanced antitumor potential in colon cancer. Archives of Biochemistry and Biophysics, 2022, 731, 109431.	1.4	4
1351	Catalytic degradation of methyl orange using bimetallic nanoparticles loaded into poly(N-isopropylmethacrylamide) microgels. Materials Today Communications, 2022, 33, 104700.	0.9	14
1352	Synthesis and organogelation properties of bis-carbamate compounds bearing spacers with a stereogenic center. Journal of Sol-Gel Science and Technology, 0, , .	1.1	0

#	Article	IF	CITATIONS
1353	Energy transfer photocatalyst enabled by covalent organic framework induced reversible complexation-mediated polymerization under white LED light irradiation and the mechanism study. Materials Today Chemistry, 2022, 26, 101253.	1.7	1
1354	Simulations Explain the Swelling Behavior of Hydrogels with Alternating Neutral and Weakly Acidic Blocks. Macromolecules, 2022, 55, 10751-10760.	2.2	9
1355	Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. International Journal of Biological Macromolecules, 2023, 226, 535-553.	3.6	21
1356	Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Materials Today Bio, 2023, 18, 100522.	2.6	62
1357	Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opinion on Drug Delivery, 2022, 19, 1664-1695.	2.4	16
1358	Nanogel fabricated from oxidized sodium alginate and hydrophilic-modified chitosan exhibits great potential as pH-responsive drug delivery system. Journal of the Iranian Chemical Society, 2023, 20, 921-930.	1.2	2
1359	Development of positively-charged cycloamylose, CAQ as efficient nanodelivery system for siRNA. Biochemical Engineering Journal, 2022, , 108767.	1.8	1
1360	Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 2022, 16, 19665-19690.	7. 3	32
1361	CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: a review. RSC Advances, 2023, 13, 2912-2936.	1.7	9
1362	One-dimensional Polymeric Nanocomposites in Drug Delivery Systems. Current Nanoscience, 2023, 19, 825-839.	0.7	3
1363	Content Size-Dependent Alginate Microcapsule Formation Using Centrifugation to Eliminate Empty Microcapsules for On-Chip Imaging Cell Sorter Application. Micromachines, 2023, 14, 72.	1.4	0
1364	Recent advancements in sodium alginate-based nanogels. , 2023, , 225-233.		1
1365	Smart biomaterials and constructs for cardiac tissue regeneration., 2023,, 259-276.		0
1366	Stages of anticandidal agent development. , 2023, , 97-109.		0
1367	Biopolymeric Nanohydrogels As Devices for Controlled and Targeted Delivery of Drugs., 2023, , 1-31.		0
1368	Theranostic nanogels. , 2023, , 27-51.		0
1369	Advances in Nanogels for Topical Drug Delivery in Ocular Diseases. Gels, 2023, 9, 292.	2.1	7
1370	Dendrimer and dendrimer gelâ€derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications. , 2023, 2, .		3

#	Article	IF	CITATIONS
1371	Trends in the Synthesis of Polymer Nano―and Microscale Materials for Bioâ€Related Applications. Macromolecular Bioscience, 2023, 23, .	2.1	6
1372	Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels, 2023, 9, 286.	2.1	3
1373	Construction and Performance Evaluation of Nicandra physalodes (Linn.) Gaertn. Polysaccharide-Based Nanogel. Polymers, 2023, 15, 1933.	2.0	1
1374	Supramolecular assemblies of multifunctional microgels for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 6265-6289.	2.9	3
1375	Biopolymeric Nanohydrogels as Devices for Controlled and Targeted Delivery of Drugs. , 2023, , 1857-1887.		0
1379	ESPResSo, a Versatile Open-Source Software Package for Simulating Soft Matter Systems. , 2024, , 578-601.		1
1389	Natural biopolymers in tissue engineering—role, challenges, and clinical applications. , 2023, , 409-434.		0
1396	Natural biopolymers in drug delivery—role, challenges and clinical applications. , 2023, , 3-23.		0
1403	Molecularly Imprinted Nanogels for Spike S1 Protein Recognition., 0,,.		0
1411	Polysaccharide-based hydrogels: history and chronological developments. , 2024, , 21-42.		0
1416	Hydrogels: A Unique Class of Soft Materials. Indian Institute of Metals Series, 2024, , 247-288.	0.2	0