Noninvasive Brain Stimulation for Parkinsonâ€₅™Diseas

Neurotherapeutics 5, 345-361 DOI: 10.1016/j.nurt.2008.02.002

Citation Report

#	Article	IF	CITATIONS
1	Agroclavine potentiates hippocampal EEG effects of weak combined magnetic field in rats. Brain Research Bulletin, 2009, 80, 1-8.	1.4	4
2	High-frequency magnetic stimulation induces long-term potentiation in rat hippocampal slices. Neuroscience Letters, 2009, 461, 150-154.	1.0	59
4	rTMS. , 2010, , 53-55.		0
5	Non-Invasive Brain Stimulation: Enhancing Motor and Cognitive Functions In Healthy Old Subjects. Frontiers in Aging Neuroscience, 2010, 2, 149.	1.7	79
6	Transcranial direct current stimulation in the treatment of anorexia. Medical Hypotheses, 2010, 74, 1044-1047.	0.8	14
7	Why do some promising brain-stimulation devices fail the next steps of clinical development?. Expert Review of Medical Devices, 2010, 7, 67-97.	1.4	16
9	Invasive and Non-Invasive Stimulation in Parkinsonâ \in ${}^{\mathrm{Ms}}$ s Disease. , 2011, , .		0
10	Estimulação magnética transcraniana e aplicabilidade clÃnica: perspectivas na conduta terapêutica neuropsiquiátrica. , 2011, 90, 3-14.	0.0	3
11	Investigating the Role of Current Strength in tDCS Modulation of Working Memory Performance in Healthy Controls. Frontiers in Psychiatry, 2011, 2, 45.	1.3	150
12	Non-invasive electrical stimulation of the brain (ESB) modifies the resting-state network connectivity of the primary motor cortex: A proof of concept fMRI study. Brain Research, 2011, 1403, 37-44.	1.1	35
13	A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 2011, 14, 1133-1145.	1.0	892
14	Treatment of dystonia. , 2011, , 293-310.		0
15	Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of Neurophysiology, 2012, 107, 1868-1880.	0.9	183
16	Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects' handedness: A pilot study. Restorative Neurology and Neuroscience, 2012, 30, 191-198.	0.4	35
17	Diagnostic and Therapeutic Role of Magnetic Stimulation in Neurology. , 2012, , 615-631.		0
18	Effects of theta burst stimulation on motor cortex excitability in Parkinson's disease. Clinical Neurophysiology, 2012, 123, 815-821.	0.7	64
19	Medical treatment of dystonia. Movement Disorders, 2013, 28, 1001-1012.	2.2	134
20	Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Al̂21–42-mediated memory deficits in rats. Experimental Gerontology, 2013, 48, 786-794.	1.2	60

#	Article	IF	CITATIONS
21	Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease. Brain Research, 2013, 1537, 290-302.	1.1	43
22	Immediate effect of transcranial direct current stimulation on postural stability and functional mobility in Parkinson's disease. Movement Disorders, 2013, 28, 2040-2041.	2.2	35
23	Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neuroscience and Biobehavioral Reviews, 2013, 37, 2737-2750.	2.9	111
24	A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders. Experimental Neurology, 2013, 245, 87-95.	2.0	45
25	Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Research, 2013, 1520, 23-35.	1.1	41
26	Transcranial magnetic stimulation as a tool for understanding neurophysiology in Huntington's disease: A review. Neuroscience and Biobehavioral Reviews, 2013, 37, 1420-1433.	2.9	17
27	Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 2013, 64, 579-587.	2.0	153
28	Magnetic flimmers: â€~light in the electromagnetic darkness'. Brain, 2013, 136, 971-979.	3.7	5
29	Comparative numerical analysis of magnetic and optical radiation propagation in adult human head. , 2013, , .		0
30	Cathodal Transcranial Direct Current Stimulation in Children With Dystonia. Journal of Child Neurology, 2013, 28, 1238-1244.	0.7	38
31	Treatments in context: transcranial direct current brain stimulation as a potential treatment in pediatric psychosis. Expert Review of Neurotherapeutics, 2013, 13, 447-458.	1.4	9
32	Procedural interventions. , 0, , 627-648.		Ο
33	Modulation of cortical-subcortical networks in Parkinson's disease by applied field effects. Frontiers in Human Neuroscience, 2013, 7, 565.	1.0	16
34	Oxidative Stress in Pathogenesis. , 2014, , 19-53.		0
35	Functional protection of learning and memory abilities in rats with vascular dementia. Restorative Neurology and Neuroscience, 2014, 32, 689-700.	0.4	24
35 36	Functional protection of learning and memory abilities in rats with vascular dementia. Restorative Neurology and Neuroscience, 2014, 32, 689-700. Brain Stimulation and its Role in Neurological Diseases. , 2014, , 333-369.	0.4	24 3
	Neurology and Neuroscience, 2014, 32, 689-700.	0.4	

#	Article	IF	CITATIONS
39	The effects of 1ÂHz rTMS preconditioned by tDCS on gait kinematics in Parkinson's disease. Journal of Neural Transmission, 2014, 121, 743-754.	1.4	27
40	Closed-Loop Brain–Machine–Body Interfaces for Noninvasive Rehabilitation of Movement Disorders. Annals of Biomedical Engineering, 2014, 42, 1573-1593.	1.3	47
41	Effects of repetitive transcranial magnetic stimulation on freezing of gait in patients with Parkinsonism. Restorative Neurology and Neuroscience, 2014, 32, 743-753.	0.4	44
42	Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Research, 2014, 1576, 52-62.	1.1	34
43	Time up and go task performance improves after transcranial direct current stimulation in patient affected by Parkinson's disease. Neuroscience Letters, 2014, 580, 74-77.	1.0	55
44	Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4367-75.	3.3	486
45	Effects of tDCS on executive function in Parkinson's disease. Neuroscience Letters, 2014, 582, 27-31.	1.0	146
46	Treatment and Physiology in Parkinson's Disease and Dystonia: Using Transcranial Magnetic Stimulation to Uncover the Mechanisms of Action. Current Neurology and Neuroscience Reports, 2014, 14, 449.	2.0	20
47	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.	0.7	1,647
48	tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 2014, 85, 934-947.	2.1	335
50			
	Transcranial Magnetic Stimulation: Application in Autism Treatment. , 2014, , 583-605.		3
51	Transcranial Magnetic Stimulation: Application in Autism Treatment. , 2014, , 583-605. The Neurophysiologist Perspective into MS Plasticity. Frontiers in Neurology, 2015, 6, 193.	1.1	3
51 52		1.1	
	The Neurophysiologist Perspective into MS Plasticity. Frontiers in Neurology, 2015, 6, 193. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in		15
52	The Neurophysiologist Perspective into MS Plasticity. Frontiers in Neurology, 2015, 6, 193. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behavioural Brain Research, 2015, 281, 149-155. Learning to Integrate versus Inhibiting Information Is Modulated by Age. Journal of Neuroscience,	1.2	15 60
52 53	The Neurophysiologist Perspective into MS Plasticity. Frontiers in Neurology, 2015, 6, 193. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behavioural Brain Research, 2015, 281, 149-155. Learning to Integrate versus Inhibiting Information Is Modulated by Age. Journal of Neuroscience, 2015, 35, 2213-2225. Current and emerging strategies for treatment of childhood dystonia. Journal of Hand Therapy, 2015,	1.2	15 60 26
52 53 54	The Neurophysiologist Perspective into MS Plasticity. Frontiers in Neurology, 2015, 6, 193. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behavioural Brain Research, 2015, 281, 149-155. Learning to Integrate versus Inhibiting Information Is Modulated by Age. Journal of Neuroscience, 2015, 35, 2213-2225. Current and emerging strategies for treatment of childhood dystonia. Journal of Hand Therapy, 2015, 28, 185-194. Theta burst stimulation over the supplementary motor area in Parkinson's disease. Journal of	1.2 1.7 0.7	15 60 26 29

#	Article	IF	CITATIONS
58	FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders. Computer Methods and Programs in Biomedicine, 2015, 118, 34-43.	2.6	12
60	Induction of Neurorestoration from Endogenous Stem Cells. Cell Transplantation, 2016, 25, 863-882.	1.2	21
61	Barium titanate nanoparticles: promising multitasking vectors in nanomedicine. Nanotechnology, 2016, 27, 232001.	1.3	78
62	Freezing of gait in Parkinson's disease: from pathophysiology to emerging therapies. Neurodegenerative Disease Management, 2016, 6, 431-446.	1.2	25
63	Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease. The Cochrane Library, 2016, 2016, CD010916.	1.5	34
64	The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats. Journal of Neuroscience, 2016, 36, 9873-9887.	1.7	30
65	Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain, 2016, 139, 2002-2014.	3.7	105
66	Ultrasound Enhances the Expression of Brain-Derived Neurotrophic Factor in Astrocyte Through Activation of TrkB-Akt and Calcium-CaMK Signaling Pathways. Cerebral Cortex, 2017, 27, bhw169.	1.6	74
67	Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Metaâ€Analysis. PM and R, 2016, 8, 356-366.	0.9	58
68	Effect of Dual-Mode and Dual-Site Noninvasive Brain Stimulation on Freezing of Gait in Patients With Parkinson Disease. Archives of Physical Medicine and Rehabilitation, 2017, 98, 1283-1290.	0.5	36
69	The role of the prefrontal cortex in freezing of gait in Parkinson's disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Experimental Brain Research, 2017, 235, 2463-2472.	0.7	57
70	Hemodynamic responses to magnetic stimulation of carotid sinus in normotensive rabbits. Journal of Hypertension, 2017, 35, 1676-1684.	0.3	4
71	Transcranial Direct Current Stimulation. , 2017, , 151-170.		0
72	Non-invasive brain stimulation for dystonia: therapeutic implications. European Journal of Neurology, 2017, 24, 1228-e64.	1.7	26
73	Fifteen Years of Clinical Trials inÂHuntington's Disease: A Very Low ClinicalÂDrug Development Success Rate. Journal of Huntington's Disease, 2017, 6, 157-163.	0.9	50
74	Transcranial direct current stimulation combined with visuo-motor training as treatment for chronic stroke patients. Restorative Neurology and Neuroscience, 2017, 35, 307-317.	0.4	9
75	Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis. Scientific Reports, 2017, 7, 14840.	1.6	56
76	Parkinson's disease treatments: focus on transcranial direct current stimulation (tDCS). Journal of Parkinsonism and Restless Legs Syndrome, 2017, Volume 7, 55-70.	0.8	14

	CITATION	Report	
#	Article	IF	CITATIONS
77	Non-Invasive Brain Stimulation (TMS/tDCS) and Rehabilitation for Stroke and Parkinsonâ \in Ms. , 2017, , .		0
78	Thermal effect induced by low-frequency magnetic field on physiological characteristics in hippocampal CA1 region of rat. Biomedical Physics and Engineering Express, 2018, 4, 015020.	0.6	1
79	Bilateral anodal transcranial direct current stimulation effect on balance and fearing of fall in patient with Parkinson's disease. NeuroRehabilitation, 2018, 42, 63-68.	0.5	25
80	Effects of Acute Transcranial Direct Current Stimulation on Gait Kinematics of Individuals With Parkinson Disease. Topics in Geriatric Rehabilitation, 2018, 34, 262-268.	0.2	13
81	Non-Invasive Neuromodulation Therapies for Parkinson $\hat{a} \in \mathbb{M}$ s Disease. , 0, , .		6
82	Generalizing remotely supervised transcranial direct current stimulation (tDCS): feasibility and benefit in Parkinson's disease. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 114.	2.4	61
83	Neurobiological Determinants of Tobacco Smoking in Schizophrenia. Frontiers in Psychiatry, 2018, 9, 672.	1.3	34
84	High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca2+–Calmodulin-Dependent Protein Kinase II–cAMP-Response Element-Binding Protein Pathway. Frontiers in Neurology, 2018, 9, 285.	1.1	22
85	Smart Inorganic Nanoparticles for Wireless Cell Stimulation. , 2018, , 189-198.		1
86	Dopamine, BDNF and motor function postbilateral anodal transcranial direct current stimulation in Parkinson's disease. Neurodegenerative Disease Management, 2018, 8, 171-179.	1.2	19
87	Acute kinematic and neurophysiological effects of treadmill and overground walking in Parkinson's disease. NeuroRehabilitation, 2019, 44, 433-443.	0.5	2
88	Different Therapeutic Effects of Transcranial Direct Current Stimulation on Upper and Lower Limb Recovery of Stroke Patients with Motor Dysfunction: A Meta-Analysis. Neural Plasticity, 2019, 2019, 1-13.	1.0	47
89	Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Review of Neurotherapeutics, 2019, 19, 133-144.	1.4	11
90	Transcranial direct-current stimulation in ultra-treatment-resistant schizophrenia. Brain Stimulation, 2019, 12, 54-61.	0.7	47
91	New potential stimulation targets for noninvasive brain stimulation treatment of chronic insomnia. Sleep Medicine, 2020, 75, 380-387.	0.8	15
92	Combination of Human Mesenchymal Stem Cells and Repetitive Transcranial Magnetic Stimulation Enhances Neurological Recovery of 6-Hydroxydopamine Model of Parkinsonian's Disease. Tissue Engineering and Regenerative Medicine, 2020, 17, 67-80.	1.6	14
93	Noninvasive direct current stimulation for schizophrenia: a review. Current Opinion in Psychiatry, 2021, 34, 253-259.	3.1	1
94	Neurobiological After-Effects of Low Intensity Transcranial Electric Stimulation of the Human Nervous System: From Basic Mechanisms to Metaplasticity. Frontiers in Neurology, 2021, 12, 587771.	1.1	37

#	Article	IF	CITATIONS
95	Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice. Journal of Psychiatric Research, 2021, 136, 204-216.	1.5	18
96	The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disorders—Implications for Rehabilitation. Brain Connectivity, 2021, 11, 278-296.	0.8	3
97	Protective effects of repetitive transcranial magnetic stimulation against 6-OHDA-induced Parkinson's symptoms in a mice model: the key role of miR-409-3p/PDHB axis. International Journal of Neuroscience, 2023, 133, 578-585.	0.8	0
98	Low-Intensity Pulsed Ultrasound Enhances Neurotrophic Factors and Alleviates Neuroinflammation in a Rat Model of Parkinson's Disease. Cerebral Cortex, 2021, 32, 176-185.	1.6	21
99	Design and Demonstration <i>In Vitro</i> of a Mouse-Specific Transcranial Magnetic Stimulation Coil. IEEE Transactions on Magnetics, 2021, 57, 1-11.	1.2	10
100	The effects of continuous oromotor activity on speech motor learning: speech biomechanics and neurophysiologic correlates. Experimental Brain Research, 2021, 239, 3487-3505.	0.7	2
101	Treatment of dystonia. , 2021, , 353-370.e10.		0
102	TMS-based neuromodulation of evoked and induced gamma oscillations and event-related potentials in children with autism. NeuroRegulation, 2016, 3, 101-126.	0.7	11
103	Clinical Applications of Transcranial Direct Current Stimulation in Neurological Disorders. Journal of the Korean Neurological Association, 2017, 35, 63-71.	0.0	3
104	Spinal Dysfunction, Transcranial Magnetic Stimulation, and Motor Evoked Potentials. , 2012, , 257-279.		0
105	Past, Current and Future Clinical Applications of MEG. , 0, , .		0
107	La riabilitazione motoria nel morbo di parkinson: nuovi interventi e prospettive future. Ricerche Di Psicologia, 2015, , 545-570.	0.2	0
108	Patch-clamp recordings of thermal effects of magnetic stimulation on the physiological characteristic of rat hippocampal neurons. Archives of Biological Sciences, 2016, 68, 567-573.	0.2	0
109	Chapter 23 Repetitive transcranial magnetic stimulation (rTMS) effects on evoked and induced gamma frequency EEG oscillations in autism spectrum disorder. , 2016, , 497-536.		0
113	Speech dysfunction, cognition, and Parkinson's disease. Progress in Brain Research, 2022, 269, 153-173.	0.9	5
114	Effectiveness of transcranial direct current stimulation on hand dexterity in stroke patients: a protocol for a systematic review and meta-analysis. BMJ Open, 2022, 12, e056064.	0.8	1
115	A feasibility pilot study of the effects of neurostimulation on swallowing function in Parkinson's Disease. AMRC Open Research, 0, 3, 19.	1.7	1
118	Lowâ€frequency <scp>rTMS</scp> targeting individual selfâ€initiated fingerâ€tapping task activation modulates the amplitude of local neural activity in the putamen. Human Brain Mapping, 2023, 44, 203-217	1.9	2

#	Article	IF	CITATIONS
119	Tremor in Parkinsonâ $€$ [™] s Disease: From Pathophysiology to Advanced Therapies. Tremor and Other Hyperkinetic Movements, 2022, 12, .	1.1	14