Use of electrospinning technique for biomedical applica

Polymer 49, 5603-5621

DOI: 10.1016/j.polymer.2008.09.014

Citation Report

#	Article	IF	CITATIONS
1	Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation. Tissue Engineering, 2007, 13, 1845-1866.	4.9	381
2	Encapsulation of Diclofenac Molecules into Poly(-Caprolactone) Electrospun Fibers for Delivery Protection. Journal of Nanomaterials, 2009, 2009, 1-8.	1.5	33
3	Structure development in electrospun fibres of gelatin. Journal of Physics: Conference Series, 2009, 183, 012021.	0.3	14
4	Electrospun Polyacrylonitrile Nanocomposite Fibers Reinforced with Magnetic Nanoparticles. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	2
5	Reclaiming a natural beauty: whole-organ engineering with natural extracellular materials. Regenerative Medicine, 2009, 4, 747-758.	0.8	18
6	Electrospinning of Manmade and Biopolymer Nanofibersâ€"Progress in Techniques, Materials, and Applications. Advanced Functional Materials, 2009, 19, 2863-2879.	7.8	233
7	Progress in the Field of Electrospinning for Tissue Engineering Applications. Advanced Materials, 2009, 21, 3343-3351.	11.1	454
8	Fabrication of silk fibroin blended P(LLAâ€CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 984-993.	2.1	75
9	A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS® bioâ€blends. Biotechnology and Bioengineering, 2009, 104, 1025-1033.	1.7	78
10	Fabrication of ultrafine fibers of poly(\hat{I}^3 -glutamic acid) and its derivative by electrospinning. Polymer Bulletin, 2009, 63, 735-742.	1.7	18
11	Oneâ€Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 2009, 5, 2349-2370.	5.2	801
12	Electrospinning and cutting of ultrafine bioerodible poly(lactideâ€coâ€ethylene oxide) tri―and multiblock copolymer fibers for inhalation applications. Polymers for Advanced Technologies, 2011, 22, 1335-1344.	1.6	26
13	Polymeric nanofibers via flat spinneret electrospinning. Polymer Engineering and Science, 2009, 49, 2475-2481.	1.5	46
14	Studies on electrospun nylon-6/chitosan complex nanofiber interactions. Electrochimica Acta, 2009, 54, 5739-5745.	2.6	104
15	Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. European Polymer Journal, 2009, 45, 1032-1037.	2.6	93
16	Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers. Polymer, 2009, 50, 475-480.	1.8	70
17	Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer, 2009, 50, 4189-4198.	1.8	325
18	Correlation between processing parameters and microstructure of electrospun poly(D,l-lactic acid) nanofibers. Polymer, 2009, 50, 6100-6110.	1.8	63

#	Article	IF	CITATIONS
19	Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Analytica Chimica Acta, 2009, 641, 7-13.	2.6	242
20	Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 2009, 61, 1033-1042.	6.6	940
21	Encapsulation of Bacterial Cells in Electrospun Microtubes. Biomacromolecules, 2009, 10, 1751-1756.	2.6	83
22	Reinforcing Poly(ε-caprolactone) Nanofibers with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2009, 1, 1996-2004.	4.0	235
23	Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 2009, 25, 10893-10900.	1.6	51
24	Novel Delivery System for the Bioregulatory Agent Nitric Oxide. Chemistry of Materials, 2009, 21, 5032-5041.	3.2	32
25	Characterization of Nano-Structured Poly(D,L-lactic acid) Nonwoven Mats Obtained from Different Solutions by Electrospinning. Journal of Macromolecular Science - Physics, 2009, 48, 1222-1240.	0.4	24
26	Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 2810.	6.7	182
27	Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 2009, 87, 173-198.	0.9	72
28	Electrospun nanofiber-based drug delivery systems. Health, 2009, 01, 67-75.	0.1	132
29	Designing high performance biomaterials with architectural manipulation. Materials Technology, 2010, 25, 177-183.	1.5	1
30	Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomaterialia, 2010, 6, 3013-3020.	4.1	73
31	Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials, 2010, 31, 5700-5718.	5.7	122
32	Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 2010, 81, 675-680.	5.1	102
33	Micropatterned Fibrous Scaffolds Fabricated Using Electrospinning and Hydrogel Lithography: New Platforms to Create Cellular Micropatterns. Sensors and Actuators B: Chemical, 2010, 148, 504-510.	4.0	20
34	Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications. Colloid and Polymer Science, 2010, 288, 115-121.	1.0	92
35	Initiator-free photocrosslinking of electrospun biodegradable polyester fiber based tubular scaffolds and their cell affinity for vascular tissue engineering. Chinese Journal of Polymer Science (English Edition), 2010, 28, 829-840.	2.0	17
36	Formation of silica on the surface of electrospun PLLA/PLys nanofibers. Fibers and Polymers, 2010, 11, 406-412.	1.1	0

3

#	Article	IF	CITATIONS
37	Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers. Probiotics and Antimicrobial Proteins, 2010, 2, 46-51.	1.9	83
38	Synthesis of poly(vinyl alcohol) (PVA) nanofibers incorporating hydroxyapatite nanoparticles as future implant materials. Macromolecular Research, 2010, 18, 59-66.	1.0	50
39	Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science: Materials in Medicine, 2010, 21, 1969-1978.	1.7	151
40	Effect of chitosan-polyvinyl alcohol blend nanofibrous web on the healing of excision and incision full thickness wounds. IET Nanobiotechnology, 2010, 4, 109.	1.9	14
41	Synthesis of Nonwoven Nanofibers by Electrospinning – A Promising Biomaterial for Tissue Engineering and Drug Delivery. Advanced Engineering Materials, 2010, 12, B380.	1.6	52
42	Fibrous Composites With Anisotropic Distribution of Mechanical Properties After Layerâ€byâ€Layer Deposition of Aligned Electrospun Fibers. Advanced Engineering Materials, 2010, 12, B529.	1.6	13
43	Synthesis of poly(butylene succinateâ€∢i>co⟨li>â€butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. Journal of Applied Polymer Science, 2010, 115, 2203-2211.	1.3	78
44	A design of experiments (DoE) approach to material properties optimization of electrospun nanofibers. Journal of Applied Polymer Science, 2010, 117, 2251-2257.	1.3	35
45	Experimental investigation of the governing parameters in the electrospinning of poly(3â€hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 2010, 118, 2682-2689.	1.3	24
46	Singleâ€Step Electrospinning of Bimodal Fiber Meshes for Ease of Cellular Infiltration. Macromolecular Rapid Communications, 2010, 31, 59-64.	2.0	53
47	Chemistry on Electrospun Polymeric Nanofibers: Merely Routine Chemistry or a Real Challenge?. Macromolecular Rapid Communications, 2010, 31, 1317-1331.	2.0	90
48	Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine, Pharmacy and Agriculture. Macromolecular Rapid Communications, 2010, 31, 2077-2083.	2.0	66
49	Novel â€~Nano in Nano' Composites for Sustained Drug Delivery: Biodegradable Nanoparticles Encapsulated into Nanofiber Nonâ€Wovens. Macromolecular Bioscience, 2010, 10, 1527-1535.	2.1	56
50	Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering, 2010, 98, 370-376.	2.7	177
51	Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer, 2010, 51, 2320-2328.	1.8	49
52	One-dimensional organic–inorganic hybrid nanomaterials. Polymer, 2010, 51, 4015-4036.	1.8	121
53	Formation and characterization of core-sheath nanofibers through electrospinning and surface-initiated polymerization. Polymer, 2010, 51, 4368-4374.	1.8	34
54	Ion-assisted collection of Nylon-4,6 electrospun nanofibers. Polymer, 2010, 51, 5221-5228.	1.8	12

#	Article	IF	CITATIONS
55	Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer, 2010, 51, 6203-6211.	1.8	159
56	In situ grown fibrous composites of poly(dl-lactide) and hydroxyapatite as potential tissue engineering scaffolds. Polymer, 2010, 51, 6268-6277.	1.8	25
57	Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. International Journal of Pharmaceutics, 2010, 397, 50-58.	2.6	144
58	Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sensors and Actuators B: Chemical, 2010, 148, 233-239.	4.0	88
59	Nano-coated hybrid yarns using electrospinning. Surface and Coatings Technology, 2010, 204, 3459-3463.	2.2	48
60	Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomaterialia, 2010, 6, 4019-4026.	4.1	147
61	Automatic characterization of nanofiber assemblies by image texture analysis. Chemometrics and Intelligent Laboratory Systems, 2010, 103, 66-75.	1.8	24
62	Types of neural guides and using nanotechnology for peripheral nerve reconstruction. International Journal of Nanomedicine, 2010, 5, 839.	3.3	99
63	LXXIIIrd Annual Meeting of the Hungarian Physiological Society (August 27–29, 2009, Budapest,) Tj ETQq0 0	0 rgBT /O\	verlgck 10 Tf 5
64	Organic Solvent Traces in Fibrillar Scaffolds for Tissue Engineering. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2010, 7, 1-6.	0.7	7
64		0.7	7
	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research,		
65	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research, 2010, 148-149, 1138-1143. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied	0.3	1
65 66	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research, 2010, 148-149, 1138-1143. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied Physics, 2010, 108, . Biocomposites Electrospun with Poly(ε-caprolactone) and Silk Fibroin Powder for Biomedical	0.3	1
65 66 67	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research, 2010, 148-149, 1138-1143. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied Physics, 2010, 108, . Biocomposites Electrospun with Poly(ε-caprolactone) and Silk Fibroin Powder for Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1687-1699. Electrospinning of Polymers, Their Modeling and Applications. Polymer-Plastics Technology and	0.3	1 15 24
65 66 67	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research, 2010, 148-149, 1138-1143. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied Physics, 2010, 108, . Biocomposites Electrospun with Poly(Îμ-caprolactone) and Silk Fibroin Powder for Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1687-1699. Electrospinning of Polymers, Their Modeling and Applications. Polymer-Plastics Technology and Engineering, 2010, 49, 427-441. Nanofibers Offer Alternative Ways to the Treatment of Skin Infections. Journal of Biomedicine and	0.3 1.1 1.9	1 15 24 79
65 66 67 68	Biomaterials, and Tissue Engineering, 2010, 7, 1-6. The Applications of Electrospun Nanofibers in the Medical Materials. Advanced Materials Research, 2010, 148-149, 1138-1143. Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied Physics, 2010, 108,. Biocomposites Electrospun with Poly(ε-caprolactone) and Silk Fibroin Powder for Biomedical Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1687-1699. Electrospinning of Polymers, Their Modeling and Applications. Polymer-Plastics Technology and Engineering, 2010, 49, 427-441. Nanofibers Offer Alternative Ways to the Treatment of Skin Infections. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	0.3 1.1 1.9	1 15 24 79 69

#	Article	IF	Citations
73	Artificial Vision System for the Automatic Measurement of Interfiber Pore Characteristics and Fiber Diameter Distribution in Nanofiber Assemblies. Industrial & Engineering Chemistry Research, 2010, 49, 2957-2968.	1.8	31
74	Crystalline Block Copolymer Decorated, Hierarchically Ordered Polymer Nanofibers. Macromolecules, 2010, 43, 9918-9927.	2.2	58
75	Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules, 2010, 47, 431-438.	3.6	157
76	Biodegradable Core/Shell Fibers by Coaxial Electrospinning: Processing, Fiber Characterization, and Its Application in Sustained Drug Release. Macromolecules, 2010, 43, 6389-6397.	2.2	165
77	Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomedical Materials (Bristol), 2010, 5, 054112.	1.7	30
78	Insoluble Synthetic Polypeptide Mats from Aqueous Solution by Electrospinning. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2728-2732.	4.0	20
79	Nanostructured Macromolecules. , 2010, , 1-78.		2
80	Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chemistry, 2010, 12, 1883.	4.6	109
81	Micropatterns of double-layered nanofiber scaffolds with dual functions of cell patterning and metabolite detection. Lab on A Chip, 2011, 11, 2849.	3.1	34
82	Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology, 2011, 22, 345301.	1.3	123
83	Introduction to electrospinning. , 2011, , 3-33.		22
84	Heparin-Conjugated PCL Scaffolds Fabricated by Electrospinning and Loaded with Fibroblast Growth Factor 2. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 389-406.	1.9	78
87	Development of Energy Absorbing Laminated Fiberglass Composites Using Electrospun Glass Nanofibers. , $2011, , .$		0
88	Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications. Advances in Polymer Science, 2011, , 213-239.	0.4	52
89	Nitric Oxide-Releasing Electrospun Polymer Microfibers. ACS Applied Materials & Samp; Interfaces, 2011, 3, 426-432.	4.0	47
90	Nanofibrous electrospun barrier membrane promotes osteogenic differentiation of human mesenchymal stem cells. Journal of Bioactive and Compatible Polymers, 2011, 26, 607-618.	0.8	13
91	Coaxial Electrospray Formulations for Improving Oral Absorption of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 2011, 8, 807-813.	2.3	70
93	Enhanced Infiltration and Biomineralization of Stem Cells on Collagen-Grafted Three-Dimensional Nanofibers. Tissue Engineering - Part A, 2011, 17, 1209-1218.	1.6	49

#	Article	IF	Citations
94	Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. Journal of Materials Chemistry, 2011, 21, 4476.	6.7	45
95	Stimuli-responsive electrospun fibers and their applications. Chemical Society Reviews, 2011, 40, 2417.	18.7	184
96	Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria. , 2011, , 391-421.		21
97	Nanocosmetics and Nanomedicines. , 2011, , .		40
98	Effect of Electrospun Fiber Diameter and Alignment on Macrophage Activation and Secretion of Proinflammatory Cytokines and Chemokines. Biomacromolecules, 2011, 12, 1900-1911.	2.6	236
99	Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. International Journal of Biological Macromolecules, 2011, 49, 247-254.	3.6	461
100	Electrospun Poly(É)-Caprolactone) Scaffold for Suture-Free Solder-Mediated Laser-Assisted Vessel Repair. Photomedicine and Laser Surgery, 2011, 29, 19-25.	2.1	15
101	Nanofibre Mats in Aqueous Solution for Anti-bacterial Exploits. Polymers and Polymer Composites, 2011, 19, 753-762.	1.0	12
102	Electrospinning of Continuous Nanofiber Bundles and Twisted Nanofiber Yarns., 2011,,.		15
103	Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects. PLoS ONE, 2011, 6, e25462.	1.1	120
104	Selective Deposition of Electrospun Alginate-Based Nanofibers onto Cell-Repelling Hydrogel Surfaces for Cell-Based Microarrays. Current Nanoscience, 2011, 7, 267-274.	0.7	8
105	Morphological Characterization of Individual Polyacrylonitrile Nanofibers. Current Nanoscience, 2011, 7, 415-419.	0.7	4
106	Application of Electrospray Deposition for Preparing Nanoparticulate Formulation of Poorly Soluble Drugs. Journal of the Society of Powder Technology, Japan, 2011, 48, 167-172.	0.0	0
107	Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes: Sorption kinetics and mechanism. Journal of Hazardous Materials, 2011, 192, 1409-1417.	6.5	45
108	Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiation Physics and Chemistry, 2011, 80, 1208-1215.	1.4	61
109	Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. International Journal of Pharmaceutics, 2011, 421, 310-320.	2.6	133
110	Poly (N-isopropylacrylamide)/poly (ethylene oxide) blend nanofibrous scaffolds: Thermo-responsive carrier for controlled drug release. Colloids and Surfaces B: Biointerfaces, 2011, 88, 749-754.	2.5	62
111	4th BBBB International Conference on Pharmaceutical Sciences. European Journal of Pharmaceutical Sciences, 2011, 44, 1-204.	1.9	32

#	Article	IF	CITATIONS
112	Electrospinning of food-grade polysaccharides. Food Hydrocolloids, 2011, 25, 1393-1398.	5.6	176
113	A Novel Method for the Fabrication of Fibrin-Based Electrospun Nanofibrous Scaffold for Tissue-Engineering Applications. Tissue Engineering - Part C: Methods, 2011, 17, 1121-1130.	1.1	48
114	Antimicrobial fibers: therapeutic possibilities and recent advances. Future Medicinal Chemistry, 2011, 3, 1821-1847.	1.1	48
115	Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1417.	15.6	289
116	Fabrication of photocatalytic PVA–TiO2 nano-fibrous hybrid membrane using the electro-spinning method. Journal of Materials Science, 2011, 46, 5615-5620.	1.7	47
117	Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. Journal of Materials Science, 2011, 46, 6148-6153.	1.7	52
118	Study of release speeds and bacteria inhibiting capabilities of drug delivery membranes fabricated via electrospinning by observing bacteria growth curves. Journal of Materials Science: Materials in Medicine, 2011, 22, 571-577.	1.7	6
119	Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2011, 22, 1753-1762.	1.7	38
120	Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Journal of Materials Science: Materials in Medicine, 2011, 22, 2207-2218.	1.7	73
121	Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomaterialia, 2011, 7, 2533-2543.	4.1	82
122	Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydrate Polymers, 2011, 84, 239-246.	5.1	69
123	Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydrate Polymers, 2011, 85, 276-279.	5.1	104
124	Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carbohydrate Polymers, 2011, 85, 681-686.	5.1	37
125	Electrospun composite nanofibrous membrane as wound dressing with good adhesion. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 221-226.	0.4	3
126	Encapsulation of cells within electrospun fibers. Polymers for Advanced Technologies, 2011, 22, 366-371.	1.6	66
127	On the way to clean and safe electrospinningâ€"green electrospinning: emulsion and suspension electrospinning. Polymers for Advanced Technologies, 2011, 22, 372-378.	1.6	159
128	Electrospinning of poly(hydroxybutyrateâ€ <i>co</i> àâ€hydroxyvalerate) fibrous tissue engineering scaffolds in two different electric fields. Polymer Engineering and Science, 2011, 51, 1325-1338.	1.5	13
129	Emulsion Electrospinning of a Collagenâ€Like Protein/PLGA Fibrous Scaffold: Empirical Modeling and Preliminary Release Assessment of Encapsulated Protein. Macromolecular Bioscience, 2011, 11, 1526-1536.	2.1	32

#	ARTICLE	IF	CITATIONS
130	Stimuliâ€Responsive Elastic Polyurethaneâ€Based Superabsorber Nanomat Composites. Macromolecular Materials and Engineering, 2011, 296, 517-523.	1.7	3
131	Improving Polymer Nanofiber Quality Using a Modified Coâ€axial Electrospinning Process. Macromolecular Rapid Communications, 2011, 32, 744-750.	2.0	68
133	Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on <scp>L</scp> â€lysine diisocyanate and <scp>L</scp> â€lysine chain extender. Journal of Biomedical Materials Research - Part A, 2011, 96A, 705-714.	2.1	48
134	Wicking properties of various polyamide nanofibrous structures with an optimized method. Journal of Applied Polymer Science, 2011, 120, 305-310.	1.3	37
135	A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate. Journal of Applied Polymer Science, 2011, 120, 425-433.	1.3	20
136	Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. Journal of Applied Polymer Science, 2011, 120, 592-598.	1.3	75
137	Biodegradable poly(glycolic acid) nanofiber prepared by CO ₂ laser supersonic drawing. Journal of Applied Polymer Science, 2011, 121, 3078-3084.	1.3	16
138	Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl) Tj ETQq $1\ 1\ 0.7843$	314 rgBT /0	Dverlock 10⊤ 24
139	An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 2011, 47, 1256-1263.	2.6	224
140	Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers, 2011, 86, 526-535.	5.1	65
141	Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds. Colloids and Surfaces B: Biointerfaces, 2011, 84, 528-535.	2.5	138
142	Aligned natural–synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomaterialia, 2011, 7, 634-643.	4.1	164
143	Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 2011, 7, 1702-1709.	4.1	217
144	Electrospinning of Biosyn $\hat{A}^{@}$ -based tubular conduits: Structural, morphological, and mechanical characterizations. Acta Biomaterialia, 2011, 7, 2070-2079.	4.1	28
145	Amorphous calcium phosphate/poly(d,l-lactic acid) composite nanofibers: Electrospinning preparation and biomineralization. Journal of Colloid and Interface Science, 2011, 359, 371-379.	5.0	54
146	Spontaneous core-sheath formation in electrospun nanofibers. Polymer, 2011, 52, 2869-2876.	1.8	14
147	Synthesis of biodegradable triple-layered capsules using a triaxial electrospray method. Polymer, 2011, 52, 3325-3336.	1.8	58
148	Release kinetics and cellular profiles for bFGF-loaded electrospun fibers: Effect of the conjugation density and molecular weight of heparin. Polymer, 2011, 52, 3357-3367.	1.8	24

#	Article	IF	Citations
149	Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering. Journal of Biomedical Nanotechnology, 2011, 7, 276-284.	0.5	101
150	Aptamers-on-nanofiber as a novel hybrid capturing moiety. Journal of Materials Chemistry, 2011, 21, 19203.	6.7	16
151	Fabrication of Self-Assembled Three-Dimensional Fibrous Stackings by Electrospinning. Materials Science Forum, 0, 688, 95-101.	0.3	15
152	Nanofibrous textiles in medical applications. , 2011, , 547-566.		5
153	Hydrotalcites in nanobiocomposites. , 2011, , 43-85.		8
154	Electrospun cerium nitrate/polymer composite fibres: synthesis, characterization and fibre-division model. Chinese Physics B, 2011, 20, 048101.	0.7	14
155	Production of Nanofibers by Electrospinning Technology: Overview and Application in Cosmetics. , 2011, , 311-332.		17
156	Cell culture systems for pancreatic research. , 2011, , 359-371.		1
157	Notice of Retraction: Post-Treatment of Cotton Fabrics with PVA (Polyvinyl Alcohol) Nanofibers Using Electrospinning Process., 2011,,.		0
158	Electrospun Polyamide 4.6 Nanofibrous Nonwovens: Parameter Study and Characterization. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	15
159	Thin-Layer Hydroxyapatite Deposition on a Nanofiber Surface Stimulates Mesenchymal Stem Cell Proliferation and Their Differentiation into Osteoblasts. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	27
160	Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties. Chinese Physics B, 2012, 21, 097805.	0.7	8
161	Morphology and mechanical properties of MWNT/PMIA nanofibers by electrospinning. Textile Reseach Journal, 2012, 82, 1390-1395.	1.1	10
162	Design of Bioactive Electrospun Scaffolds for Bone Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 223-228.	0.7	15
163	Bioresorbable and Nonresorbable Polymers for Bone Tissue Engineering Jordi Girones. Current Pharmaceutical Design, 2012, 18, 2536-2557.	0.9	27
164	Electrospun capric acid/polyethylene terephthalate composite nanofibres for storage and retrieval of thermal energy. Materials Research Innovations, 2012, 16, 429-437.	1.0	5
165	Electrospun porous conductive polymer membranes. Proceedings of SPIE, 2012, , .	0.8	6
166	ELECTROSPINNING OF CONTINUOUS CARBON NAONOFIBER-FILLED COMPOSITE FIBERS. International Journal of Modern Physics Conference Series, 2012, 05, 545-550.	0.7	0

#	Article	IF	CITATIONS
167	Application Opportunities of the Microfibril Reinforced Composite Concept., 2012,, 589-626.		8
168	Surface Modification of Electrospun Nanofiber and Nanofibrous Membranes., 2012, , 215-258.		0
169	Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1242-1262.	1.7	182
170	Superhydrophobic Materials for Tunable Drug Release: Using Displacement of Air To Control Delivery Rates. Journal of the American Chemical Society, 2012, 134, 2016-2019.	6.6	223
171	Biomedical production of implants by additive electro-chemical and physical processes. CIRP Annals - Manufacturing Technology, 2012, 61, 635-655.	1.7	255
172	Top–down meets bottom–up: A comparison of the mechanical properties of melt electrospun and self-assembled 1,3,5-benzenetrisamide fibers. Polymer, 2012, 53, 5754-5759.	1.8	9
173	Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles Incorporated GTR Membranes. , 2012, , 151-170.		0
174	Ethanol disinfection affects physical properties and cell response of electrospun poly(l-lactic acid) scaffolds. European Polymer Journal, 2012, 48, 2008-2018.	2.6	46
175	Electrospun microfibrous PLGA meshes coated with in situ cross-linkable gelatin hydrogels for tissue regeneration. Current Applied Physics, 2012, 12, S144-S149.	1.1	8
176	Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica, 2012, 19, 2029-2034.	0.3	164
177	Investigations of the structural evolution of electrospun nanofibers using atomic force microscopy. RSC Advances, 2012, 2, 11104.	1.7	8
178	Functional nanofibers for water purification. , 2012, , 331-370.		14
179	Direct electrospinning of highly twisted, continuous nanofiber yarns. Journal of the Textile Institute, 2012, 103, 80-88.	1.0	127
180	Effect of pH on Protein Distribution in Electrospun PVA/BSA Composite Nanofibers. Biomacromolecules, 2012, 13, 1269-1278.	2.6	54
181	Orientation and Structure of Single Electrospun Nanofibers of Poly(ethylene terephthalate) by Confocal Raman Spectroscopy. Macromolecules, 2012, 45, 1946-1953.	2.2	54
182	Biocompatible and Antibacterial Nanofibrous Poly($\langle i \rangle \ddot{\mu} \langle i \rangle$ -caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 131-138.	1.2	42
183	Preparation and Property of Bamboo Silk Fabric. Advanced Materials Research, 0, 627, 53-56.	0.3	0
184	Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl. Macromolecules, 2012, 45, 6527-6537.	2.2	42

#	Article	IF	Citations
185	The effect of procyanidine crosslinking on the properties of the electrospun gelatin membranes. Biofabrication, 2012, 4, 035007.	3.7	18
186	Cryogenic grinding of electrospun poly-ε-caprolactone mesh submerged in liquid media. Materials Science and Engineering C, 2012, 32, 1366-1374.	3.8	13
187	Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 1-13.	2.0	241
188	Plasma polymerizationâ€modified bacterial polyhydroxybutyrate nanofibrillar scaffolds. Journal of Applied Polymer Science, 2013, 128, 1904-1912.	1.3	7
189	Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polymer Degradation and Stability, 2012, 97, 2052-2059.	2.7	82
190	Biocompatibility of Electrospun Halloysite Nanotube-Doped Poly(Lactic-co-Glycolic Acid) Composite Nanofibers. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 299-313.	1.9	86
191	Spinline behavior and web morphology in multi-nozzle electrospinning of PAN/DMF solution. Fibers and Polymers, 2012, 13, 850-854.	1.1	6
192	Electrospun nanostructured chitosan–poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomedical Materials (Bristol), 2012, 7, 045005.	1.7	88
193	Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. Journal of Biomaterials Applications, 2012, 27, 255-266.	1.2	102
194	Fabrication of Polylactide/Poly($\hat{l}\mu$ -caprolactone) Blend Fibers by Electrospinning: Morphology and Orientation. Industrial & Engineering Chemistry Research, 2012, 51, 3682-3691.	1.8	63
195	Electrospun antibacterial nylon nanofibers through in situ synthesis of nanosilver: preparation and characteristics. Journal of Polymer Research, 2012, 19, 1.	1.2	46
196	Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo. Journal of Materials Science: Materials in Medicine, 2012, 23, 2227-2233.	1.7	18
197	Preparation of Polycaprolactone/Ethanolic Extract Propolis Nanofibers Films. Advanced Materials Research, 0, 506, 226-229.	0.3	6
198	Thermoâ€sensitive electrospun fibers prepared by a sequential thiolâ€ene click chemistry approach. Journal of Polymer Science Part A, 2012, 50, 4182-4190.	2.5	36
199	Influence of the Molecular Structure and Morphology of Selfâ€Assembled 1,3,5â€Benzenetrisamide Nanofibers on their Mechanical Properties. Small, 2012, 8, 2563-2570.	5. 2	35
200	Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. Journal of Materials Chemistry, 2012, 22, 11347.	6.7	59
201	Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale, 2012, 4, 2134.	2.8	121
202	Fabrication of magnetic drug-loaded polymeric composite nanofibres and their drug release characteristics. RSC Advances, 2012, 2, 2433.	1.7	44

#	Article	IF	CITATIONS
203	A Novel Approach to Prepare Uniaxially Aligned Nanofibers and Longitudinally Aligned Seamless Tubes Through Electrospinning. Macromolecular Materials and Engineering, 2012, 297, 604-608.	1.7	11
204	Waterâ€Stable Nonwovens Composed of Electrospun Fibers from Aqueous Dispersions by Photoâ€Crossâ€Linking. Macromolecular Materials and Engineering, 2012, 297, 532-539.	1.7	15
205	Preparation, characterization, and properties of nanofibers based on poly(vinylidene fluoride) and polyhedral oligomeric silsesquioxane. Polymers for Advanced Technologies, 2012, 23, 1252-1257.	1.6	20
206	Thermal and morphological properties of PVA/4â€vinylbenzene boronic acid hybrid nanofibrous. Polymer Composites, 2012, 33, 829-837.	2.3	11
207	Conformal coating of yarns and wires with electrospun nanofibers. Polymer Engineering and Science, 2012, 52, 1724-1732.	1.5	34
208	Preparation and <i>in vitro</i> characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1324-1334.	2.1	45
209	Electrospun fibers from functional polyglycidol/poly(ε aprolactone) blends with defined surface properties. Journal of Applied Polymer Science, 2012, 125, 3638-3647.	1.3	7
210	Simple methods influencing on properties of electrospun fibrous mats. Journal of Applied Polymer Science, 2012, 125, 4261-4266.	1.3	6
211	Air permeability of electrospun polyacrylonitrile nanoweb. Journal of Applied Polymer Science, 2012, 126, 232-243.	1.3	40
212	Biomimetic micropatterned multiâ€channel nerve guides by templated electrospinning. Biotechnology and Bioengineering, 2012, 109, 1571-1582.	1.7	52
213	Fabrication and characterization of dense Chitosan/polyvinyl-alcohol/poly-lactic-acid blend membranes. Fibers and Polymers, 2012, 13, 571-575.	1.1	24
214	Preparation of electrospun alginate fibers with chitosan sheath. Carbohydrate Polymers, 2012, 87, 2357-2361.	5.1	59
215	Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydrate Polymers, 2012, 88, 1304-1312.	5.1	64
216	A novel hybrid system for the fabrication of a fibrous mesh with micro-inclusions. Carbohydrate Polymers, 2012, 89, 222-229.	5.1	9
217	Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. International Journal of Pharmaceutics, 2012, 427, 379-384.	2.6	179
218	Tracking of the viability of Stenotrophomonas maltophilia bacteria population in polyvinylalcohol nanofiber webs by positron annihilation lifetime spectroscopy. International Journal of Pharmaceutics, 2012, 429, 135-137.	2.6	12
219	Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. European Polymer Journal, 2012, 48, 472-482.	2.6	47
220	Electrospun hydroxyapatite fibers from a simple sol–gel system. Materials Letters, 2012, 67, 233-236.	1.3	58

#	Article	IF	CITATIONS
221	High photocatalytic activity material based on highâ€porosity ZnO/CeO2 nanofibers. Materials Letters, 2012, 80, 145-147.	1.3	45
222	Electrospinning of Ion Jelly fibers. Materials Letters, 2012, 83, 161-164.	1.3	14
223	Electrospun composite nanofibers of polybutadiene rubber containing uniformly distributed Ag nanoparticles. Materials Letters, 2012, 84, 5-8.	1.3	11
224	Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. Journal of Membrane Science, 2012, 403-404, 110-120.	4.1	30
225	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	2.3	25
226	Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012, 157, 168-182.	4.8	1,198
227	Annealing Effect on Electrospun Polymer Fibers and Their Transformation into Polymer Microspheres. Macromolecular Rapid Communications, 2012, 33, 343-349.	2.0	30
228	Electrospun magnetic fibrillar polyarylene ether nitriles nanocomposites reinforced with Feâ€phthalocyanine/Fe ₃ O ₄ hybrid microspheres. Journal of Applied Polymer Science, 2012, 123, 1732-1739.	1.3	12
229	Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. Journal of Applied Polymer Science, 2012, 124, 123-131.	1.3	87
230	Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility. Korean Journal of Chemical Engineering, 2012, 29, 111-119.	1.2	20
231	Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. Journal of Materials Science, 2012, 47, 4118-4126.	1.7	24
232	Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 2012, 23, 195-204.	1.7	30
233	Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(εâ€eaprolactone) and gelatin. Journal of Applied Polymer Science, 2013, 127, 4225-4232.	1.3	23
234	Morphology, microstructure, and electrical properties of poly(<scp>D</scp> , <scp>L</scp> ″actic) Tj ETQq1 1 C).784314 i 1.3	gBT /Overlo
235	On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polymer International, 2013, 62, 41-48.	1.6	128
236	Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Industrial Crops and Products, 2013, 41, 198-202.	2.5	74
237	Molecularly imprinted electrospun nanofibers for adsorption of nickel-5,10,15,20-tetraphenylporphine (NTPP) in organic media. Journal of Polymer Research, 2013, 20, 1.	1.2	15
238	Mechanically Tough, Electrically Conductive Polyethylene Oxide Nanofiber Web Incorporating DNA-Wrapped Double-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2013, 5, 4150-4154.	4.0	20

#	ARTICLE	IF	CITATIONS
239	Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromolecular Bioscience, 2013, 13, 984-1019.	2.1	81
240	Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials (Bristol), 2013, 8, 045007.	1.7	138
241	Electrospinning of commercial guar-gum: Effects of purification and filtration. Carbohydrate Polymers, 2013, 93, 484-491.	5.1	66
242	Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013, 16, 229-241.	8.3	645
243	Electrospinning of polyvinylalcohol–polycaprolactone composite scaffolds for tissue engineering applications. Polymer Bulletin, 2013, 70, 2995-3010.	1.7	33
244	Electrospinning of poly (3-hydroxybutyric acid) and gelatin blended thin films: fabrication, characterization, and application in skin regeneration. Polymer Bulletin, 2013, 70, 2337-2358.	1.7	54
245	Vesicle-formation of hexadecyl phosphatidyl choline released from $\hat{l}\mu$ -caprolactone electrospun fibrous mats: preparation and characterization. Colloid and Polymer Science, 2013, 291, 2475-2479.	1.0	1
246	Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7956-7964.	4.0	43
247	Hydrogel Composite Materials for Tissue Engineering Scaffolds. Jom, 2013, 65, 505-516.	0.9	78
248	Effects of hard and soft components on the structure formation, crystallization behavior and mechanical properties of electrospun poly(l-lactic acid) nanofibers. Polymer, 2013, 54, 5250-5256.	1.8	24
249	Nano-/microfibrillar polymer–polymer and single polymer composites: The converting instead of adding concept. Composites Science and Technology, 2013, 89, 211-225.	3.8	82
250	Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Textile Reseach Journal, 2013, 83, 1452-1466.	1.1	100
251	Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Canadian Journal of Microbiology, 2013, 59, 716-719.	0.8	40
252	PVP Hydrogel Membranes Produced by Electrospinning for Protein Release Devices. Soft Materials, 2013, 11, 61-68.	0.8	19
253	Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning. Polymer, 2013, 54, 6752-6759.	1.8	17
254	Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. Journal of Materials Science, 2013, 48, 8308-8319.	1.7	24
255	Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromolecular Research, 2013, 21, 1281-1288.	1.0	5
256	Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. International Journal of Biological Macromolecules, 2013, 55, 176-184.	3.6	44

#	Article	IF	Citations
257	Tenside-Free Biodegradable Polymer Nanofiber Nonwovens by "Green Electrospinning― Macromolecules, 2013, 46, 7034-7042.	2.2	22
259	Effect of the relative humidity on the fibre morphology of polyamide 4.6 and polyamide 6.9 nanofibres. Journal of Materials Science, 2013, 48, 1746-1754.	1.7	16
260	Fibrinogen nanofibers for guiding endothelial cell behavior. Biomaterials Science, 2013, 1, 1065.	2.6	44
261	pH-dependent adhesion of mycobacteria to surface-modified polymer nanofibers. Journal of Materials Chemistry B, 2013, 1, 6608.	2.9	4
262	Improving cellular adhesion on scaffolds for transplantation: synthesising a poly(MMA-co-PEGM) network. Journal of Materials Chemistry B, 2013, 1, 6627.	2.9	1
263	Composite PLA scaffolds reinforced with PDO fibers for tissue engineering. Journal of Biomaterials Applications, 2013, 27, 707-716.	1.2	14
264	Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opinion on Drug Delivery, 2013, 10, 469-483.	2.4	108
265	Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 140-148.	1.8	44
266	Electrospinning of Functionalized Copolymer Nanofibers from Poly(acrylonitrileâ€∢i>coàêmethyl) Tj ETQq0 C	0 rgBT /C	veglock 10 Tf
267	Modified electrospun polymer nanofibers as affinity membranes: The effect of pre-spinning modification versus post-spinning modification. European Polymer Journal, 2013, 49, 3814-3824.	2.6	11
268	One-Dimensional nanostructures. SpringerBriefs in Materials, 2013, , .	0.1	126
269	Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2412-2423.	2.1	54
270	Fluorescent electrospun polyvinyl alcohol/CdSe@ZnS nanocomposite fibers. Journal of Composite Materials, 2013, 47, 3175-3185.	1.2	39
271	Electrospun fibers for vaginal anti-HIV drug delivery. Antiviral Research, 2013, 100, S9-S16.	1.9	84
272	Dual vs. single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 176-183.	2.3	23
273	Heparin Loading and Pre-endothelialization in Enhancing the Patency Rate of Electrospun Small-Diameter Vascular Grafts in a Canine Model. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2220-2226.	4.0	65
274	Functional materials by electrospinning of polymers. Progress in Polymer Science, 2013, 38, 963-991.	11.8	784
275	Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers and Polymers, 2013, 14, 405-408.	1.1	23

#	Article	IF	CITATIONS
276	Electrospun Antibacterial Chitosan-Based Fibers. Macromolecular Bioscience, 2013, 13, 860-872.	2.1	115
277	Nanofibers with Very Fine Core–Shell Morphology from Anisotropic Micelle of Amphiphilic Crystalline-Coil Block Copolymer. ACS Nano, 2013, 7, 4892-4901.	7.3	20
278	Biodegradable and electrically conducting polymers for biomedical applications. Progress in Polymer Science, 2013, 38, 1263-1286.	11.8	527
279	Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. Journal of Materials Chemistry B, 2013, 1, 3410.	2.9	86
280	Simple Technique for Spatially Separated Nanofibers/Nanobeads by Multinozzle Electrospinning toward White-Light Emission. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6038-6044.	4.0	31
281	Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 2013, 5, 7041.	2.8	97
282	The influence of salt and solvent concentrations on electrospun polyvinylpyrrolidone fiber diameters and bead formation. Polymer, 2013, 54, 2166-2173.	1.8	46
283	Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydrate Polymers, 2013, 97, 65-73.	5.1	152
284	Novel electrospun luminescent nanofibers from cationic polyfluorene/cellulose acetate blend. Cellulose, 2013, 20, 169-177.	2.4	10
285	Crosslinked gelatin nanofibres: Preparation, characterisation and in vitro studies using glial-like cells. Materials Science and Engineering C, 2013, 33, 2723-2735.	3.8	67
286	Study on Taylor Cone and Trajectory of Spinning Jet by Altering the Properties of Negative Electrode. Advanced Materials Research, 2013, 796, 317-322.	0.3	0
287	A novel drug carrier based on functional modified nanofiber cellulose and the control release behavior. , 2013, , .		1
288	Postelectrospinning "Click―Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules, 2013, 46, 9515-9525.	2.2	49
289	The Importance of Crosslinking and Glass Transition Temperature for the Mechanical Strength of Nanofibers Obtained by Green Electrospinning. Macromolecular Materials and Engineering, 2013, 298, 439-446.	1.7	7
290	The Effect of Applied Electric Field on the Diameter and Size Distribution of Electrospun <scp>N</scp> ylon6 Nanofibers. Scanning, 2013, 35, 183-188.	0.7	10
291	Fabrication of Nanofiber Microarchitectures Localized within Hydrogel Microparticles and Their Application to Protein Delivery and Cell Encapsulation. Advanced Functional Materials, 2013, 23, 591-597.	7.8	51
292	Fabrication of Conductive Polypyrrole Nanofibers by Electrospinning. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	24
293	A Mucoadhesive Electrospun Nanofibrous Matrix for Rapid Oramucosal Drug Delivery. Journal of Nanomaterials, 2013, 2013, 1-19.	1.5	47

#	Article	IF	CITATIONS
294	A Novel Porphyrin-Containing Polyimide Nanofibrous Membrane for Colorimetric and Fluorometric Detection of Pyridine Vapor. Sensors, 2013, 13, 15758-15769.	2.1	24
295	Evaluation of a Nisin-Eluting Nanofiber Scaffold To Treat Staphylococcus aureus-Induced Skin Infections in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 3928-3935.	1.4	122
296	Study of the effects of electrospun poly(epslon-caprolactone)/gelatin matrices on human mesenchymal stem cell culture. , 2013 , , .		0
297	Sequenceâ€Specific Crosslinking of Electrospun, Elastinâ€Like Protein Preserves Bioactivity and Nativeâ€Like Mechanics. Advanced Healthcare Materials, 2013, 2, 114-118.	3.9	39
298	The inclusion of fetal bovine serum in gelatin/PCL electrospun scaffolds reduces shortâ€term osmotic stress in HEK 293 cells caused by scaffold components. Journal of Applied Polymer Science, 2013, 129, 3273-3281.	1.3	5
299	Electrospun polycaprolactone nano-fibers support growth of human mesenchymal stem cells. , 2013, , .		1
301	Forward light scattering method for structural characterization of electrospun fibers. , 2013, , .		1
303	Novel electrospun nanofibers incorporating polymeric prodrugs of ketoprofen: Preparation, characterization, and <i>in vitro</i> sustained release. Journal of Applied Polymer Science, 2013, 130, 1570-1577.	1.3	3
304	Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. Journal of Applied Polymer Science, 2013, 130, 3634-3644.	1.3	46
305	Wicking Phenomenon in Nanofiber-Coated Filament Yarns. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	0.5	3
306	Photocatalytic Performance of TiO2 Nanofibers as a Function of Fiber Diameter Using TiCl2 as a Precursor. Journal of Materials, 2013, 2013, 1-8.	0.1	1
307	Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-Ô•caprolactone nanofibers and growth factors for prevention of incisional hernia formation. International Journal of Nanomedicine, 2014, 9, 3263.	3.3	53
308	Bioengineering Strategies for Polymeric Scaffold for Tissue Engineering an Aortic Heart Valve: An Update. International Journal of Artificial Organs, 2014, 37, 651-667.	0.7	19
309	The Multifaceted Potential of Electro-spinning in Regenerative Medicine. Pharmaceutical Nanotechnology, 2014, 2, 23-34.	0.6	29
310	Repair of cartilage defects in BMSCs via CDMP1 gene transfection. Genetics and Molecular Research, 2014, 13, 291-301.	0.3	13
312	Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conference Series: Materials Science and Engineering, 2014, 59, 012003.	0.3	33
313	Low frequency magnetic force augments hepatic differentiation of mesenchymal stem cells on a biomagnetic nanofibrous scaffold. Journal of Materials Science: Materials in Medicine, 2014, 25, 2579-2589.	1.7	7
314	Osteogenesis of human adipose-derived stem cells on hydroxyapatite-mineralized poly(lactic acid) nanofiber sheets. Materials Science and Engineering C, 2014, 45, 578-588.	3.8	16

#	Article	IF	Citations
315	Director orientation of nematic liquid crystal using orientated nanofibers obtained by electrospinning. Japanese Journal of Applied Physics, 2014, 53, 01AE03.	0.8	7
316	Dual growth factor-loaded core-shell polymer microcapsules can promote osteogenesis and angiogenesis. Macromolecular Research, 2014, 22, 1320-1329.	1.0	15
317	An Overview of Inverted Colloidal Crystal Systems for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2014, 20, 437-454.	2.5	25
318	Large-scale production of a ternary composite nanofiber membrane for wound dressing applications. Journal of Bioactive and Compatible Polymers, 2014, 29, 646-660.	0.8	19
319	Converting of Bulk Polymers Into Nanosized Materials With Controlled Nanomorphology. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 777-793.	1.8	20
320	Soluplus Graft Copolymer: Potential Novel Carrier Polymer in Electrospinning of Nanofibrous Drug Delivery Systems for Wound Therapy. BioMed Research International, 2014, 2014, 1-7.	0.9	46
321	Bactericidal effects of propolis/polylactic acid (PLA) nanofibres obtained via electrospinning. Journal of Apicultural Research, 2014, 53, 109-115.	0.7	34
322	Electrospun chitosan nanofibers for tissue engineering. , 2014, , .		O
323	The preliminary studies of a structure and electrospinning of new polyurethanes based on synthetic atactic poly[(R, S)-3-hydroxybutyrate]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 55-60.	0.8	1
324	Solvent-Free Aqueous Dispersions of Block Copolyesters for Electrospinning of Biodegradable Nonwoven Mats for Biomedical Applications. Macromolecular Materials and Engineering, 2014, 299, 1445-1454.	1.7	8
325	Controlling Fiber Morphology and Scaffold Design for Treatment of Dry Age-Related Macular Degeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 931-940.	1.8	2
327	Fabrication of Tubular Scaffolds with Controllable Fiber Orientations Using Electrospinning for Tissue Engineering. Macromolecular Materials and Engineering, 2014, 299, 1425-1429.	1.7	6
328	Radiotherapeutic Bandage Based on Electrospun Polyacrylonitrile Containing Holmium-166 Iron Garnet Nanoparticles for the Treatment of Skin Cancer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22250-22256.	4.0	37
329	Coaxial electrospun nanofibers as pharmaceutical nanoformulation for controlled drug release. , 2014, , .		3
330	Comparison of Nanocomposite Film and Electrospun Nanocomposite Fibers Based on Poly (2-Hydroxy) Tj ETQq0 Technology and Engineering, 2014, 53, 1690-1696.	0 0 rgBT / 1.9	Overlock 10 7 2
331	Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Research Letters, 2014, 9, 522.	3.1	58
332	Electrospinning of Nanocellulose-Based Materials. Materials and Energy, 2014, , 163-183.	2.5	2
333	Electrical Properties of Electrospun Flexible and Stretchable PVDF/PANI Nanoropes. Applied Mechanics and Materials, 0, 687-691, 4218-4222.	0.2	0

#	Article	IF	Citations
334	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25.	4.1	611
335	Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies. Polymer International, 2014, 63, 2-11.	1.6	81
336	A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly(d,l-lactide) membrane for the improvement of cytocompatibility. Journal of Membrane Science, 2014, 450, 224-234.	4.1	46
337	Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. Journal of Membrane Science, 2014, 452, 446-452.	4.1	142
338	Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties. Materials Science and Engineering C, 2014, 40, 32-41.	3.8	19
339	Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: A comparison with other techniques. Materials Science and Engineering C, 2014, 41, 335-342.	3.8	24
340	Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 1897-1908.	2.1	47
341	Fabrication of a Nanofibrous Scaffold for the In Vitro Culture of Cardiac Progenitor Cells for Myocardial Regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 229-239.	1.8	31
342	Electrospinning for regenerative medicine: a review of the main topics. Drug Discovery Today, 2014, 19, 743-753.	3.2	223
343	Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromolecular Bioscience, 2014, 14, 772-792.	2.1	455
344	Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 2014, 21, 1.	1,2	242
345	Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene) Tj ETQq1	1 0.784314 rgBT	Г <u>Д</u> Overlock
346	Antimicrobial activity of electrospun polyurethane nanofibers containing composite materials. Korean Journal of Chemical Engineering, 2014, 31, 855-860.	1.2	9
347	Recent advances in flexible and stretchable electronic devices via electrospinning. Journal of Materials Chemistry C, 2014, 2, 1209-1219.	2.7	144
348	Lyotropic self-assembly in electrospun biocidal polyurethane nanofibers regulates antimicrobial efficacy. Polymer, 2014, 55, 495-504.	1.8	22
349	Electrospun poly(aspartic acid) gel scaffolds for artificial extracellular matrix. Polymer International, 2014, 63, 1608-1615.	1.6	44
350	Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 2014, 39, 19-26.	5.6	302
351	pH-responsive nanofibers with controlled drug release properties. Polymer Chemistry, 2014, 5, 2050-2056.	1.9	71

#	Article	IF	CITATIONS
352	Preparation of magnetic polyimide/maghemite nanocomposite fibers by electrospinning. High Performance Polymers, 2014, 26, 810-816.	0.8	5
353	Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromolecular Bioscience, 2014, 14, 1084-1095.	2.1	50
355	Polyurethanes. , 2014, , 123-144.		20
356	Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials, 2014, 35, 1496-1506.	5.7	57
357	Silk fibroin microfiber and nanofiber scaffolds for tissue engineering and regeneration. , 2014, , 157-190.		4
358	Drugâ€loaded polyurethane/clay nanocomposite nanofibers for topical drugâ€delivery application. Journal of Applied Polymer Science, 2014, 131, .	1.3	30
359	Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 41-47.	1.8	59
360	Intracellular Delivery II. Fundamental Biomedical Technologies, 2014, , .	0.2	7
361	In Situ Deposition of PLGA Nanofibers via Solution Blow Spinning. ACS Macro Letters, 2014, 3, 249-254.	2.3	159
362	Preparation and pharmaceutical evaluation of nano-fiber matrix supported drug delivery system using the solvent-based electrospinning method. International Journal of Pharmaceutics, 2014, 464, 243-251.	2.6	45
363	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	3.8	116
364	Study of polyvinyl alcohol nanofibrous membrane by electrospinning as a magnetic nanoparticle delivery approach. Journal of Applied Physics, 2014, 115, 178908.	1.1	5
365	Effect of carbon nanotubes dispersion on morphology, internal structure and thermal stability of electrospun poly(vinyl alcohol)/carbon nanotubes nanofibers. Optical and Quantum Electronics, 2014, 46, 259-269.	1.5	14
366	Uniaxially Aligned Electrospun All-Cellulose Nanocomposite Nanofibers Reinforced with Cellulose Nanocrystals: Scaffold for Tissue Engineering. Biomacromolecules, 2014, 15, 618-627.	2.6	187
367	Co-electrospun gelatin-poly(l-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering C, 2014, 36, 130-138.	3.8	71
368	Synthesis and characterization of novel drug delivery system based on cellulose acetate electrospun nanofiber mats. Journal of Industrial Textiles, 2014, 43, 319-329.	1.1	40
369	<scp> </scp> â€carvoneâ€oaded nanofibrous membrane as a fragrance delivery system: fabrication, characterization and <i>in vitro</i> study. Flavour and Fragrance Journal, 2014, 29, 334-339.	1.2	11
370	Control of the electric field–polymer solution interaction by utilizing ultra-conductive fluids. Polymer, 2014, 55, 6390-6398.	1.8	15

#	Article	IF	CITATIONS
371	Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers. Journal of Materials Science: Materials in Medicine, 2014, 25, 2677-2689.	1.7	21
372	Aerodynamic Synthesis of Biocompatible Matrices and their Functionalization by Nanoparticles Obtained by the Method of Laser Ablation. Russian Physics Journal, 2014, 57, 293-300.	0.2	6
373	Biomedical Applications of Mulberry Silk and its Proteins: A Review. Journal of the Institution of Engineers (India): Series E, 2014, 95, 57-61.	0.5	2
374	Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering. RSC Advances, 2014, 4, 13652.	1.7	67
375	Multifunctional scaffolds for bone regeneration. , 2014, , 95-117.		6
376	The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Advances, 2014, 4, 23540-23553.	1.7	130
377	Polymer–Polymer and Single Polymer Composites Involving Nanofibrillar Poly(vinylidene Fluoride): Manufacturing and Mechanical Properties. Journal of Macromolecular Science - Physics, 2014, 53, 1168-1181.	0.4	12
378	Electrospun silica/nafion hybrid products: mechanical property improvement, wettability tuning and periodic structure adjustment. Journal of Materials Chemistry A, 2014, 2, 16569-16576.	5.2	18
379	Elasticity assessment of electrospun nanofibrous vascular grafts: A comparison with femoral ovine arteries. Materials Science and Engineering C, 2014, 45, 446-454.	3.8	21
380	Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles. Journal of Materials Science, 2014, 49, 8373-8385.	1.7	69
381	Manipulation and Formation Mechanism of Silica One-Dimensional Periodic Structures by Roller Electrospinning. Langmuir, 2014, 30, 2335-2345.	1.6	18
382	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305
383	Role of Single-Walled Carbon Nanotubes on Ester Hydrolysis and Topography of Electrospun Bovine Serum Albumin/Poly(vinyl alcohol) Membranes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11741-11748.	4.0	8
384	Thiol-ene modiï¬cation of electrospun polybutadiene fibers crosslinked by UV irradiation. Polymer, 2014, 55, 5596-5599.	1.8	33
385	N-Benzoylbenzamidinate complexes of aluminium: highly efficient initiators for the ring-opening polymerization of $\hat{l}\mu$ -caprolactone. Dalton Transactions, 2014, 43, 14816-14823.	1.6	19
386	A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 713-728.	1.9	41
387	Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer, 2014, 55, 4920-4931.	1.8	88
388	Electrospun Cellulose Acetate-Garnet Nanocomposite Magnetic Fibers for Bioseparations. ACS Applied Materials & Samp; Interfaces, 2014, 6, 244-251.	4.0	33

#	Article	IF	CITATIONS
389	A Comprehensive Review of Advanced Biopolymeric Wound Healing Systems. Journal of Pharmaceutical Sciences, 2014, 103, 2211-2230.	1.6	211
390	Novel Organic Solvent Free Micro-/Nano-fibrillar, Nanoporous Scaffolds for Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 416-423.	1.8	8
391	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30-38.	5.9	52
392	Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin. Carbon, 2014, 78, 566-577.	5.4	81
393	Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances, 2014, 4, 24777.	1.7	170
394	Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Advances, 2014, 4, 52598-52610.	1.7	154
395	Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 657-671.	1.8	80
396	In-plane mechanics of soft architectured fibre-reinforced silicone rubber membranes. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 339-353.	1.5	18
397	Electrospun nylon 6 nanofibers incorporated with 2â€substituted <i>N</i> à€alkylimidazoles and their silver(I) complexes for antibacterial applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
398	Electrospinning of chitosan/poly(lactic acid) nanofibers: The favorable effect of nonionic surfactant. Journal of Applied Polymer Science, 2014, 131, .	1.3	27
399	Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. Journal of Materials Science: Materials in Medicine, 2014, 25, 2313-2321.	1.7	63
400	Effect of structure, topography and chemistry on fibroblast adhesion and morphology. Journal of Materials Science: Materials in Medicine, 2014, 25, 1781-1787.	1.7	18
401	Optimization of fully aligned bioactive electrospun fibers for "in vitro―nerve guidance. Journal of Materials Science: Materials in Medicine, 2014, 25, 2323-2332.	1.7	54
402	PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration. Nanoscale Research Letters, 2014, 9, 314.	3.1	60
403	Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014, 55, 4728-4737.	1.8	275
404	Analysis of Porous Electrospun Fibers from Poly(<scp>I</scp> -lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 Engineering, 2014, 2, 1976-1982.	0 147 To 3.2	d (acid)/Poly(3 63
405	Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon, 2014, 71, 276-283.	5.4	58
406	Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation. International Journal of Pharmaceutics, 2014, 462, 29-37.	2.6	10

#	Article	IF	Citations
407	Using mathematical modeling to control topographical properties of poly ($\hat{l}\mu$ -caprolactone) melt electrospun scaffolds. Journal of Micromechanics and Microengineering, 2014, 24, 065009.	1.5	10
408	Hydrogel Micropattern-Incorporated Fibrous Scaffolds Capable of Sequential Growth Factor Delivery for Enhanced Osteogenesis of hMSCs. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9338-9348.	4.0	56
409	Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Materials Science and Engineering C, 2014, 42, 489-499.	3.8	42
410	Effect of Thermal Annealing on the Surface Properties of Electrospun Polymer Fibers. Macromolecular Rapid Communications, 2014, 35, 360-366.	2.0	29
411	Preparation and characterization of novel microparticles based on poly(3-hydroxybutyrate-co-3-hydroxyoctanoate). Journal of Microencapsulation, 2014, 31, 9-15.	1.2	4
412	Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 2014, 39, 862-890.	11.8	623
413	Hybrid biomimetic electrospun fibrous mats derived from poly(ε aprolactone) and silk fibroin protein for wound dressing application. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
414	Electrospun Polymeric Nanofiber Scaffolds for Tissue Regeneration. , 2014, , 229-254.		0
415	Fabrication, Physico-Chemical, and Pharmaceutical Characterization of Budesonide-Loaded Electrospun Fibers for Drug Targeting to the Colon. Journal of Pharmaceutical Sciences, 2015, 104, 3798-3803.	1.6	22
416	Waterâ€resistant plant protein <i>à€</i> based nanofiber membranes. Journal of Applied Polymer Science, 2015, 132, .	1.3	23
417	Electrospun Nanostructures as Biodegradable Composite Materials for Biomedical Applications. , 2015, , 49-72.		0
419	Electrospinning Technology: Medical Textile Production. , 0, , 3191-3202.		0
420	Preparation of Methacrylic Acid Copolymer S Nano-fibers Using a Solvent-Based Electrospinning Method and Their Application in Pharmaceutical Formulations. Chemical and Pharmaceutical Bulletin, 2015, 63, 81-87.	0.6	7
421	Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use. AIP Conference Proceedings, 2015, , .	0.3	0
422	Composites structures for bone tissue reconstruction. AIP Conference Proceedings, 2015, , .	0.3	0
423	Electrospun Fibers Containing Bioâ€Based Ricinoleic Acid: Effect of Amount and Distribution of Ricinoleic Acid Unit on Antibacterial Properties. Macromolecular Materials and Engineering, 2015, 300, 1085-1095.	1.7	8
424	Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 2015, 132, .	1.3	90
425	Additive electrospraying: a route to process electrospun scaffolds for controlled molecular release. Polymers for Advanced Technologies, 2015, 26, 1359-1369.	1.6	45

#	Article	IF	CITATIONS
426	In vivo biocompatibility of nanostructured Chitosan/Peo membranes. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 1039-1044.	0.1	3
427	Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by theγ-Ray Irradiation Technique. BioMed Research International, 2015, 2015, 1-10.	0.9	6
428	The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. International Journal of Molecular Sciences, 2015, 16, 12925-12942.	1.8	96
429	Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries. Journal of Functional Biomaterials, 2015, 6, 500-525.	1.8	142
430	Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications. Materials, 2015, 8, 4080-4095.	1.3	77
431	Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid) and Poly(lactic-co-glycolic acid) Nanocomposites: A Review. Materials, 2015, 8, 4912-4931.	1.3	22
432	Plasma Modified Textiles for Biomedical Applications. , O, , .		6
433	Nanocellulosic Materials in Tissue Engineering Applications. , 0, , .		4
434	Biofunctionalized Nanofibers Using <i>Arthrospira</i> Spirulina) Biomass and Biopolymer. BioMed Research International, 2015, 2015, 1-8.	0.9	25
435	Electro Spun- Nanofibrous Mats: A Modern Wound Dressing Matrix with a Potential of Drug Delivery and Therapeutics. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	17
437	Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix. RSC Advances, 2015, 5, 16748-16758.	1.7	21
438	Heterogeneous catalytic synthesis of poly(butylene succinate) by attapulgiteâ€supported <scp>S</scp> n catalyst. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
439	Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. Journal of Polymer Research, 2015, 22, 1.	1.2	22
440	Dual-functional OPH-immobilized polyamide nanofibrous membrane for effective organophosphorus toxic agents protection. Biochemical Engineering Journal, 2015, 98, 47-55.	1.8	14
441	Polymers in Tissue Engineering. , 2015, , 177-217.		4
442	Electrohydrodynamic direct printing of PCL/collagen fibrous scaffolds with a core/shell structure for tissue engineering applications. Chemical Engineering Journal, 2015, 279, 317-326.	6.6	32
443	Next-generation nanoantibacterial tools developed from peptides. Nanomedicine, 2015, 10, 1643-1661.	1.7	8
444	Feasibility of Fiber-Deposition Control by Secondary Electric Fields in Near-Field Electrospinning. Journal of Micro and Nano-Manufacturing, 2015, 3, .	0.8	13

#	Article	IF	CITATIONS
445	Blends of shellac as nanofiber formulations for wound healing. Journal of Bioactive and Compatible Polymers, 2015, 30, 472-489.	0.8	12
446	Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors. Nanoscale Research Letters, 2015, 10, 475.	3.1	30
447	Structure–property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres. Carbohydrate Polymers, 2015, 120, 69-73.	5.1	19
448	Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. International Journal of Pharmaceutics, 2015, 479, 252-260.	2.6	85
450	Fabrication of Smooth Electrospun Nanofibrous Gelatin Mat for Potential Application in Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 509-518.	1.8	8
451	In VitroBiocompatibility and Antibacterial Activity of Electrospun Ag Doped HAp/PHBV Composite Nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 465-473.	1.8	6
452	Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Advances, 2015, 5, 928-936.	1.7	54
454	Naturalâ€Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 2015, 27, 1143-1169.	11,1	743
455	Hydrophobic Electrospun Polyimide Nanofibers for Selfâ€cleaning Materials. Macromolecular Materials and Engineering, 2015, 300, 358-368.	1.7	42
456	Comparison of preparation and characterization of water-bath collected porous poly L –lactide microfibers and cellulose/silk fibroin based poly L-lactide nanofibers for biomedical applications. Journal of Polymer Research, 2015, 22, 1.	1.2	11
457	Antifungal nanofibers made by controlled release of sea animal derived peptide. Nanoscale, 2015, 7, 6238-6246.	2.8	23
458	Advances in Skin Regeneration: Application of Electrospun Scaffolds. Advanced Healthcare Materials, 2015, 4, 1114-1133.	3.9	217
459	Bladder Acellular Matrix Graft Reinforced Silk Fibroin Composite Scaffolds Loaded VEGF with Aligned Electrospun Fibers in Multiple Layers. ACS Biomaterials Science and Engineering, 2015, 1, 238-246.	2.6	20
460	Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers and Polymers, 2015, 16, 1319-1326.	1.1	19
461	Improving agar electrospinnability with choline-based deep eutectic solvents. International Journal of Biological Macromolecules, 2015, 80, 139-148.	3.6	33
462	Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes. Colloids and Surfaces B: Biointerfaces, 2015, 133, 221-230.	2.5	58
463	Poly(<scp>l</scp> -lactide)/halloysite nanotube electrospun mats as dual-drug delivery systems and their therapeutic efficacy in infected full-thickness burns. Journal of Biomaterials Applications, 2015, 30, 512-525.	1.2	39
464	Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices. , 2015, , .		1

#	Article	IF	Citations
465	The Influence of Formula and Process on Physical Properties and the Release Profile of PVA/BSA Nanofibers Formed by Electrospinning Technique. Journal of Nano Research, 0, 31, 103-116.	0.8	12
466	A novel preparation for a PVA/l-histidine/AgNPs membrane and its antibacterial property. RSC Advances, 2015, 5, 54182-54187.	1.7	15
467	Electrospinning of PEGylated polyamidoamine dendrimer fibers. Materials Science and Engineering C, 2015, 56, 189-194.	3.8	9
468	Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane. RSC Advances, 2015, 5, 34377-34382.	1.7	26
469	Preparation and Structural Properties of Electrospun PAN Nanofibers Reinforced With ZnS Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1251-1259.	0.6	6
470	Electrospun zinc oxide/poly(vinyl alcohol) nanofibrous membranes: inÂvitro and wear trial evaluation of antimicrobial activity. Textile Reseach Journal, 2015, 85, 1999-2008.	1.1	6
471	Bone–tendon interface. , 2015, , 345-361.		5
472	Effect of ionic liquids on the morphology and mesophase formation of electrospun polylactide nanofibers. Polymer, 2015, 65, 55-62.	1.8	18
473	Dynamic assembly of electrically conductive PEDOT:PSS nanofibers in electrospinning process studied by high speed video. Synthetic Metals, 2015, 203, 107-116.	2.1	32
474	Development of Bioactive Packaging Structure Using Melt Electrospinning. Journal of Polymers and the Environment, 2015, 23, 416-423.	2.4	17
475	Efficiency of Microfiltration Systems for the Removal of Bacterial and Viral Contaminants from Surface and Rainwater. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	36
476	Structure and properties of nonwoven materials based on copolymer of tetrafluoroethylene and vinyldenefluoride produced by aerodynamic formation. Inorganic Materials: Applied Research, 2015, 6, 22-31.	0.1	3
477	Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. Journal of Nanobiotechnology, 2015, 13, 21.	4.2	137
478	DOX-Cu ₉ S ₅ @mSiO ₂ -PG composite fibers for orthotopic synergistic chemo- and photothermal tumor therapy. Dalton Transactions, 2015, 44, 3118-3127.	1.6	40
479	High resolution digital holographic microscopy for the study of aggregated natural cellulose nanowhisker fibers. Optics and Lasers in Engineering, 2015, 73, 69-74.	2.0	5
480	Antimicrobial Electrospun Biopolymer Nanofiber Mats Functionalized with Graphene Oxide–Silver Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12751-12759.	4.0	256
481	Electrospinning for High Performance Sensors. Nanoscience and Technology, 2015, , .	1.5	30
482	Fibroâ€porous poliglecaprone/polycaprolactone conduits: synergistic effect of composition and <i>in vitro</i> degradation on mechanical properties. Polymer International, 2015, 64, 547-555.	1.6	18

#	Article	IF	Citations
483	Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 2015, 132, .	1.3	59
484	4-Vinylbenzene Boronic Acid–Hydroxy Apatite/Polyvinyl Alcohol Based Nanofiber Scaffold Synthesized by UV-Activated Reactive Electrospinning. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 727-732.	1.8	6
485	Engineering of a polymer layered bio-hybrid heart valve scaffold. Materials Science and Engineering C, 2015, 51, 263-273.	3.8	31
486	Effects of fiber alignment on stem cells–fibrous scaffold interactions. Journal of Materials Chemistry B, 2015, 3, 3358-3366.	2.9	33
487	Plasma-Assisted Preparation of High-Performance Chitosan Nanofibers/Gauze Composite Bandages. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 709-717.	1.8	7
488	Fabrication of a triiodothyronine incorporated nanofibrous biomaterial: its implications on wound healing. RSC Advances, 2015, 5, 83773-83780.	1.7	22
489	PVA immunonanofibers with controlled decay. Polymer, 2015, 77, 387-398.	1.8	9
490	Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. Journal of Power Sources, 2015, 299, 417-424.	4.0	110
491	Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 2015, 73, 433-446.	2.6	147
492	Electrospun Polyvinylpyrrolidone as a Carrier for Leaves Extracts of <i>Anredera cordifolia </i> (Ten.) Steenis. Materials Science Forum, 2015, 827, 91-94.	0.3	7
493	Use of Triazolinedione Click Chemistry for Tuning the Mechanical Properties of Electrospun SBS-Fibers. Macromolecules, 2015, 48, 6474-6481.	2.2	36
494	Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration. Methods in Molecular Biology, 2015, 1340, 133-151.	0.4	15
495	Electrostatic template-assisted deposition of microparticles on electrospun nanofibers: towards microstructured functional biochips for screening applications. RSC Advances, 2015, 5, 83600-83607.	1.7	22
496	Electrospun silica-based inorganic/organic hybrid membranes with tunable performance in appropriate solvent systems. RSC Advances, 2015, 5, 89113-89120.	1.7	4
497	Electrospun composites of PHBV/pearl powder for bone repairing. Progress in Natural Science: Materials International, 2015, 25, 327-333.	1.8	38
498	In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. ACS Applied Materials & Diterfaces, 2015, 7, 19672-19683.	4.0	123
499	Controllable and switchable drug delivery of ibuprofen from temperature responsive composite nanofibers. Nano Convergence, 2015, 2, .	6.3	24
500	Optimization of Solvent System and Polymer Concentration for Synthesis of Polyvinyl Alcohol (PVA) Fiber Using Rotary Forcespinning Technique. Advanced Materials Research, 0, 1123, 20-23.	0.3	6

#	Article	IF	CITATIONS
501	Synthesis of Styrofoam Fibers Using Rotary Forcespinning Technique. Materials Science Forum, 0, 827, 279-284.	0.3	11
502	Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone. Chemical Physics Letters, 2015, 641, 123-128.	1.2	14
503	Dual-compartment nanofibres: separation of two highly reactive components in close vicinity. RSC Advances, 2015, 5, 97477-97484.	1.7	15
504	The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering C, 2015, 48, 620-631.	3.8	65
505	Methods for Nano/Micropatterning of Substrates: Toward Stem Cells Differentiation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 338-353.	1.8	9
506	An in vitro method for the determination of microbial barrier property (MBP) of porous polymeric membranes for skin substitute and wound dressing applications. Tissue Engineering and Regenerative Medicine, 2015, 12, 12-19.	1.6	48
507	Advanced Polymers in Medicine. , 2015, , .		24
508	The Influence of Hydroxyapatite and Calcium Carbonate Microparticles on the Mechanical Properties of Nonwoven Composite Materials Based on Polycaprolactone. BioNanoScience, 2015, 5, 22-30.	1.5	16
509	Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 57-75.	1.9	72
510	Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies, 2015, 27, 15-25.	2.7	337
511	A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 2015, 356, 15-30.	4.0	787
512	Electrospun TiO ₂ nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab on A Chip, 2015, 15, 478-485.	3.1	43
513	Preparation by coaxial electrospinning and characterization of membranes releasing (â^') epicatechin as scaffold for tissue engineering. Materials Science and Engineering C, 2015, 46, 184-189.	3.8	22
514	Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydrate Polymers, 2015, 115, 348-355.	5.1	78
515	Nanofibers as novel drug carrier – An overview. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 135-143.	1.9	80
516	Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques. , 0, , .		13
517	Influence of Electrospinning Parameters on Fiber Diameter and Mechanical Properties of Poly(3-Hydroxybutyrate) (PHB) and Polyanilines (PANI) Blends. Polymers, 2016, 8, 97.	2.0	36
519	Bioinspired Nanotechnologies for Skin Regeneration. , 2016, , 337-352.		7

#	Article	IF	CITATIONS
520	Processing Biodegradable Polymers. , 2016, , 179-209.		8
521	Nanofibers in Cosmetics. , 0, , .		6
522	Microencapsulation of probiotic cells: applications in nutraceutic and food industry., 2016,, 627-668.		14
523	Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials, 2016, 9, 991.	1.3	132
524	Bionanofibers in drug delivery * *Xin Zhao and Lara Yildirimer contributed equally , 2016, , 403-445.		1
525	Non-thermal Plasma Technology for the Improvement of Scaffolds for Tissue Engineering and Regenerative Medicine - A Review. , 0, , .		6
526	Novel Natural Polymer/Medicinal Plant Extract Electrospun Nanofiber for Cosmeceutical Application. , 0, , .		3
527	Protection of Vine Plants against Esca Disease by Breathable Electrospun Antifungal Nonwovens. Macromolecular Bioscience, 2016, 16, 1391-1397.	2.1	15
528	Comparative Study of Poly ($\hat{l}\mu$ -Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 2016, 33, 2433-2444.	1.7	19
529	Scalable production of polymer nanofiberâ€based ropes, cables, and coatings. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
530	Fabrication of Electrospun Polymer Fibers with Nonspherical Crossâ€Sections Using a Nanopressing Technique. Macromolecular Rapid Communications, 2016, 37, 239-245.	2.0	4
531	Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 2016, 37, 2847-2854.	2.3	34
532	Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process. Applied Surface Science, 2016, 387, 82-88.	3.1	50
533	Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 2016, 182, 359-362.	1.3	8
534	Antibacterial poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts. Polymers for Advanced Technologies, 2016, 27, 1617-1624.	1.6	7
535	Fabrication and chemical crosslinking of electrospun trans-polyisoprene nanofiber nonwoven. Chinese Journal of Polymer Science (English Edition), 2016, 34, 697-708.	2.0	11
536	Poly(DL-lactide-co-ε-caprolactone) and poly(DL-lactide-co-glycolide) blends for biomedical application: Physical properties, cell compatibility, and in vitro degradation behavior. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 741-750.	1.8	8
537	Optimization of elecrospinning process of zein using central composite design. Fibers and Polymers, 2016, 17, 769-777.	1.1	41

#	Article	IF	CITATIONS
538	Hybrid Electrospun Polycaprolactone Mats Consisting of Nanofibers and Microbeads for Extended Release of Dexamethasone. Pharmaceutical Research, 2016, 33, 1509-1516.	1.7	22
539	The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly(I-lactide) on the osteogenesis of mesenchymal stem cells. International Journal of Pharmaceutics, 2016, 507, 1-11.	2.6	56
540	Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers, 2016, 144, 419-427.	5.1	90
541	Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 824-838.	1.9	77
542	The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 720-728.	1.8	40
543	Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Colloids and Surfaces B: Biointerfaces, 2016, 143, 371-381.	2.5	42
544	Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discovery Today, 2016, 21, 1243-1256.	3.2	81
545	Fabrication of cell-penetrable microfibrous matrices with a highly porous structure using a simple fluidic device for tissue engineering. Materials Letters, 2016, 168, 116-120.	1.3	2
546	Nanocontainers in and onto Nanofibers. Accounts of Chemical Research, 2016, 49, 816-823.	7.6	50
547	The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning. Frontiers of Materials Science, 2016, 10, 113-121.	1.1	37
548	Preparation and properties of a magnetic field responsive three-dimensional electrospun polymer scaffold. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503, 79-87.	2.3	25
549	Development of a novel electrospun nanofibrous delivery system for poorly water-soluble \hat{l}^2 -sitosterol. Asian Journal of Pharmaceutical Sciences, 2016, 11, 500-506.	4.3	18
550	A novel method for fabricating continuous polymer nanofibers. Polymer, 2016, 102, 209-213.	1.8	9
551	Nano-size Polymers., 2016,,.		16
552	Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells. Biomacromolecules, 2016, 17, 3287-3297.	2.6	60
553	Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel. Biotechnology Reports (Amsterdam, Netherlands), 2016, 12, 6-12.	2.1	46
554	From Polymer Blends to Nano-size Materials with Controlled Nanomorphology., 2016,, 179-200.		0
555	Spinning of polyacrylamidoximes by solution blowing technique: Synthesis and characterization. Fibers and Polymers, 2016, 17, 1456-1463.	1.1	1

#	Article	IF	Citations
556	"Green―electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Communications, 2016, 6, 402-407.	0.8	20
557	Advances in electrospun skin substitutes. Progress in Materials Science, 2016, 84, 314-334.	16.0	129
559	Impact of sterilization methods on electrospun scaffolds for tissue engineering. European Polymer Journal, 2016, 82, 181-195.	2.6	44
560	Biomedical applications of electrospun polycaprolactone fiber mats. Polymers for Advanced Technologies, 2016, 27, 1264-1273.	1.6	86
561	Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(Îμ-caprolactone) mat. Fibers and Polymers, 2016, 17, 1033-1042.	1.1	95
562	Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation. Tissue Engineering and Regenerative Medicine, 2016, 13, 375-387.	1.6	19
563	Advances in electrospinning: The production and application of nanofibres and nanofibrous structures. Textile Progress, 2016, 48, 119-219.	1.3	30
564	Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environmental Science and Pollution Research, 2016, 23, 20904-20914.	2.7	69
565	Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device. Dalton Transactions, 2016, 45, 13222-13233.	1.6	34
566	Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds. Materials Science and Engineering C, 2016, 69, 1167-1174.	3.8	36
567	Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials, 2016, 106, 24-45.	5.7	111
568	Two-in-One Composite Fibers With Side-by-Side Arrangement of Silk Fibroin and Poly(<scp>l</scp> -lactide) by Electrospinning. Macromolecular Materials and Engineering, 2016, 301, 48-55.	1.7	46
569	Electrospinning of Crystallizable Polypeptoid Fibers. Macromolecular Rapid Communications, 2016, 37, 100-104.	2.0	15
570	Electrospinning applications from diagnosis to treatment of diabetes. RSC Advances, 2016, 6, 83638-83655.	1.7	49
571	A review on non-electro nanofibre spinning techniques. RSC Advances, 2016, 6, 83783-83801.	1.7	101
572	Electrospun composite matrices of poly($\hat{l}\mu$ -caprolactone)-montmorillonite made using tenside free Pickering emulsions. Materials Science and Engineering C, 2016, 69, 685-691.	3.8	29
573	Polyacrylonitrile nanofiber yarns and fabrics produced using a novel electrospinning method combined with traditional textile techniques. Textile Reseach Journal, 2016, 86, 1716-1727.	1.1	32
574	Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide- co -glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds. Materials Science and Engineering C, 2016, 69, 321-329.	3.8	27

#	Article	IF	CITATIONS
575	Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Advances, 2016, 6, 94595-94616.	1.7	116
576	Electrospun homogeneous silk fibroin/poly (É>-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Journal of Biomaterials Applications, 2016, 31, 421-437.	1.2	19
577	Rapidly Biodegrading PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs. ACS Biomaterials Science and Engineering, 2016, 2, 1595-1607.	2.6	26
578	Passive and Interactive Dressing Materials. , 2016, , 93-144.		5
579	Influence of structure on release profile of acyclovir loaded polyurethane nanofibers: Monolithic and core/shell structures. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
580	Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fibers and Polymers, 2016, 17, 1627-1633.	1.1	21
581	Critical Conversion of Crosslinked Epoxyamine Polymers. , 2016, , 39-54.		0
582	Pamidronic acid-grafted nHA/PLGA hybrid nanofiber scaffolds suppress osteoclastic cell viability and enhance osteoblastic cell activity. Journal of Materials Chemistry B, 2016, 4, 7596-7604.	2.9	19
583	Nonwoven Carboxylated Agarose-Based Fiber Meshes with Antimicrobial Properties. Biomacromolecules, 2016, 17, 4021-4026.	2.6	36
584	Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood. Journal of Visualized Experiments, 2016, , .	0.2	5
585	Full-Color Emissive Poly(Ethylene Oxide) Electrospun Nanofibers Containing a Single Hyperbranched Conjugated Polymer for Large-Scale, Flexible Light-Emitting Sheets. Macromolecular Rapid Communications, 2016, 37, 303-310.	2.0	16
586	Fabrication of polymer/drugâ€loaded hydroxyapatite particle composite fibers for drug sustained release. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
587	Antimicrobial Wound Dressing Containing Silver Sulfadiazine With High Biocompatibility: In Vitro Study. Artificial Organs, 2016, 40, 765-773.	1.0	55
588	In pursuit of functional electrospun materials for clinical applications in humans. Therapeutic Delivery, 2016, 7, 387-409.	1.2	32
589	Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers. Polymer, 2016, 104, 240-250.	1.8	19
590	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	11.8	257
591	Phaseâ€Changeable Fatty Acid Available for Temperatureâ€Regulated Drug Release. Macromolecular Materials and Engineering, 2016, 301, 887-894.	1.7	10
592	A Patientâ€Inspired Ex Vivo Liver Tissue Engineering Approach with Autologous Mesenchymal Stem Cells and Hepatogenic Serum. Advanced Healthcare Materials, 2016, 5, 1058-1070.	3.9	25

#	Article	IF	CITATIONS
593	Permeability study of ciprofloxacin from ultra-thin nanofibrous film through various mucosal membranes. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 122-127.	1.9	30
594	A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 715-738.	1.3	395
595	Facile electrospinning of an efficient drug delivery system. Expert Opinion on Drug Delivery, 2016, 13, 741-753.	2.4	40
596	Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications. ACS Applied Materials & Empty (Interfaces, 2016, 8, 3241-3249.	4.0	171
597	Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science, 2016, 56, 116-166.	11.8	381
598	Quercetin/ \hat{l}^2 -cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chemistry, 2016, 197, 864-871.	4.2	115
599	Electrospinning as a powerful technique for biomedical applications: a critically selected survey. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 157-176.	1.9	118
600	Electrospun zwitterionic nanofibers with in situ decelerated epithelialization property for non-adherent and easy removable wound dressing application. Chemical Engineering Journal, 2016, 287, 640-648.	6.6	76
601	Induced insolubility of electrospun poly(N-vinylcaprolactam) fibres through hydrogen bonding with Tannic acid. Polymer, 2016, 87, 194-201.	1.8	22
602	Thermally exfoliated graphene oxide reinforced fluorinated pentablock poly(<scp>l</scp> â€lactideâ€ <i>co</i> âflactideâ€ <i>co</i> coolial activity and biodegradation. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
603	Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab on A Chip, 2016, 16, 959-976.	3.1	96
604	A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. International Journal of Biological Macromolecules, 2016, 87, 201-207.	3.6	48
605	The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats. Polymer Degradation and Stability, 2016, 126, 101-106.	2.7	10
606	Antimicrobial electrospun poly(l̂µ-caprolactone) scaffolds for gingival fibroblast growth. RSC Advances, 2016, 6, 19647-19656.	1.7	56
607	Gelatin nanofibers: Analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocolloids, 2016, 57, 200-208.	5.6	50
608	Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds. Tissue Engineering - Part C: Methods, 2016, 22, 338-347.	1.1	21
609	Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 220-233.	1.5	64
610	A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids and Surfaces B: Biointerfaces, 2016, 143, 71-80.	2.5	101

#	Article	IF	CITATIONS
611	Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 323-329.	1.8	18
612	Preparation of Chitosan based Nanofibers: Optimization and Modeling. International Journal of Chemical Reactor Engineering, 2016, 14, 283-288.	0.6	6
613	Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polymer Bulletin, 2016, 73, 2761-2777.	1.7	38
614	Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. British Medical Bulletin, 2016, 117, 25-37.	2.7	52
615	Piroxicam \hat{I}^2 -cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations. Chemical Papers, 2016, 70, .	1.0	10
616	Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. Biomaterials, 2016, 76, 261-272.	5.7	26
617	Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. European Polymer Journal, 2016, 74, 279-286.	2.6	82
618	Photoactivatable Nanostructured Surfaces for Biomedical Applications. Topics in Current Chemistry, 2016, 370, 135-168.	4.0	17
619	Tunable Release of Multiclass Anti-HIV Drugs that are Water-Soluble and Loaded at High Drug Content in Polyester Blended Electrospun Fibers. Pharmaceutical Research, 2016, 33, 125-136.	1.7	76
620	Light-Responsive Nanostructured Systems for Applications in Nanomedicine. Topics in Current Chemistry, 2016, , .	4.0	9
621	Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering C, 2016, 59, 1181-1194.	3.8	170
622	Effect of photografting 2-hydroxyethyl acrylate on the hemocompatibility of electrospun poly(ethylene-co-vinyl alcohol) fibroporous mats. Materials Science and Engineering C, 2016, 60, 19-29.	3.8	15
623	Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 247-262.	1.9	33
624	Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine. Springer Series on Polymer and Composite Materials, 2016, , 151-189.	0.5	8
625	Spatial Patterning of Stem Cells to Engineer Microvascular Networks. , 2016, , 143-166.		1
626	Preparation of electrospun nanofibers from solutions of different gelatin types using a benign solvent mixture composed of water/PBS/ethanol. Polymers for Advanced Technologies, 2016, 27, 382-392.	1.6	10
627	Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of Industrial Textiles, 2016, 46, 562-577.	1.1	54
628	New route for development of electromagnetic shielding based on cellulosic nanofibers. Journal of Industrial Textiles, 2017, 46, 1598-1615.	1.1	16

#	Article	IF	CITATIONS
629	Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 185-192.	1.9	341
630	Preparation and optimization of chitosan/polyethylene oxide nanofiber diameter using artificial neural networks. Neural Computing and Applications, 2017, 28, 3131-3143.	3.2	31
631	Controlling the Release of Proteins from Therapeutic Nanofibers: The Effect of Fabrication Modalities on Biocompatibility and Antimicrobial Activity of Lysozyme. Planta Medica, 2017, 83, 445-452.	0.7	3
632	UVâ€reactive electrospinning of keratin/4â€vinyl benzene boronic acid–hydroxyapatite/poly(vinyl alcohol) composite nanofibers. Polymer Composites, 2017, 38, 1371-1377.	2.3	6
633	Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study. Neurourology and Urodynamics, 2017, 36, 565-573.	0.8	41
634	Non-covalently crosslinked chitosan nanofibrous mats prepared by electrospinning as substrates for soft tissue regeneration. Carbohydrate Polymers, 2017, 162, 82-92.	5.1	41
635	Effect of the dissolution time into an acid hydrolytic solvent to tailor electrospun nanofibrous polycaprolactone scaffolds. European Polymer Journal, 2017, 87, 174-187.	2.6	26
636	Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. International Journal of Pharmaceutics, 2017, 518, 177-184.	2.6	108
637	Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 589-602.	1.8	16
638	Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Biofabrication, 2017, 9, 015018.	3.7	18
639	Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11392-11404.	4.0	81
640	Biological Effect of the Surface Modification of the Fibrous Poly(L-lactic acid) Scaffolds by Radio Frequency Magnetron Sputtering of Different Calcium-Phosphate Targets. BioNanoScience, 2017, 7, 50-57.	1.5	21
641	An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Materials Science and Engineering C, 2017, 75, 433-444.	3.8	134
642	Electrospun nanofiber membranes as ultrathin flexible supercapacitors. RSC Advances, 2017, 7, 12033-12040.	1.7	35
643	Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality. Royal Society Open Science, 2017, 4, 160911.	1.1	36
644	Unlocking Nanocarriers for the Programmed Release of Antimalarial Drugs. Global Challenges, 2017, 1, 1600011 .	1.8	7
645	Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262.	0.9	29
646	Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications. Materials Science and Engineering C, 2017, 75, 1184-1190.	3.8	17

#	Article	IF	CITATIONS
647	Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method. European Journal of Pharmaceutical Sciences, 2017, 101, 160-166.	1.9	43
648	Green chemistry and polymers made from sulfur. Green Chemistry, 2017, 19, 2748-2761.	4.6	290
649	Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uniaxial tensile testing. Journal of Applied Polymer Science, 2017, 134, .	1.3	20
650	The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. Journal of the Australian Ceramic Society, 2017, 53, 225-233.	1.1	15
651	Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing. Molecular Pharmaceutics, 2017, 14, 808-820.	2.3	31
652	Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. Journal of Polymer Research, 2017, 24, 1.	1.2	22
653	Can Extensional Flow Rupture Macromolecules in an Electrospinning Process?. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1051-1054.	2.4	4
654	Drawing in poly($\hat{l}\mu$ -caprolactone) fibers: tuning mechanics, fiber dimensions and surface-modification density. Journal of Materials Chemistry B, 2017, 5, 4499-4506.	2.9	13
655	Ternary blend nanofibres of poly(lactic acid), polycaprolactone and cellulose acetate butyrate for skin tissue scaffolds: influence of blend ratio and polycaprolactone molecular mass on miscibility, morphology, crystallinity and thermal properties. Polymer International, 2017, 66, 1463-1472.	1.6	27
656	Poly(amino acid)â€Based Gel Fibers with pH Responsivity by Coaxial Reactive Electrospinning. Macromolecular Rapid Communications, 2017, 38, 1700147.	2.0	64
658	Nanosecond laser ablation enhances cellular infiltration in a hybrid tissue scaffold. Materials Science and Engineering C, 2017, 77, 190-201.	3.8	5
659	Biodegradable hydrogelâ€based biomaterials with high absorbent properties for nonâ€adherent wound dressing. International Wound Journal, 2017, 14, 1076-1087.	1.3	46
660	Amphiphilic Nanofiberâ€Based Aerogels for Selective Liquid Absorption from Electrospun Biopolymers. Advanced Materials Interfaces, 2017, 4, 1700065.	1.9	60
662	Solvent-free electrospinning: opportunities and challenges. Polymer Chemistry, 2017, 8, 333-352.	1.9	65
663	Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering C, 2017, 80, 371-378.	3.8	84
664	Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 41-53.	2.7	11
665	Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. Journal of Science: Advanced Materials and Devices, 2017, 2, 309-316.	1.5	78
666	Improved response time of thick liquid crystal device by using electrospun nanofiber. Japanese Journal of Applied Physics, 2017, 56, 061701.	0.8	7

#	Article	IF	CITATIONS
667	Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts. Biofabrication, 2017, 9, 025035.	3.7	4
669	Polymer sutures for simultaneous wound healing and drug delivery – A review. International Journal of Pharmaceutics, 2017, 524, 454-466.	2.6	86
670	pH-Responsive and pyrene based electrospun nanofibers for DNA adsorption and detection. RSC Advances, 2017, 7, 6023-6030.	1.7	9
671	Characterization and cell response of electrospun <scp><i>R</i></scp> <i>action and cell response of electrospun <scp><i>R</i></scp><i>action and cell response of electrospun <scp><i>R</i></scp><i>action and cell response of electrospun <scp><i>R</i></scp><i>action and cell response of electrospun <scp><i>action and</i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></i></i></i>	1.3	16
672	Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, 2017, 78, 47-58.	3.8	64
673	Osteogenic priming potential of bovine hydroxyapatite sintered at different temperatures for tissue engineering applications. Materials Letters, 2017, 197, 83-86.	1.3	13
674	"Practical―Electrospinning of Biopolymers in Ionic Liquids. ChemSusChem, 2017, 10, 106-111.	3.6	43
675	Polymer Blends and Composites for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2017, , 195-235.	0.7	4
676	Influence of graphene oxide doping on the morphology and the magnetic properties of Ni 0.8 Gd 0.2 Fe 2 O 4 nanofibers prepared by electrospinning. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 658-662.	0.9	11
677	Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Electrospun Chitosan Nanofibers. Journal of Fluorescence, 2017, 27, 767-772.	1.3	5
678	Potential Seed Coatings Fabricated from Electrospinning Hexaaminocyclotriphosphazene and Cobalt Nanoparticles Incorporated Polyvinylpyrrolidone for Sustainable Agriculture. ACS Sustainable Chemistry and Engineering, 2017, 5, 146-152.	3.2	29
679	Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. Journal of Materials Chemistry B, 2017, 5, 517-524.	2.9	38
680	Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. Journal of Materials Chemistry B, 2017, 5, 553-564.	2.9	16
681	Influence of the structure of poly (L-lactic acid) electrospun fibers on the bioactivity of endothelial cells: proliferation and inflammatory cytokines expression. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 323-335.	1.9	5
682	Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. Materials Science and Engineering C, 2017, 73, 72-79.	3.8	5
683	Chitosan based nanofibers in bone tissue engineering. International Journal of Biological Macromolecules, 2017, 104, 1372-1382.	3.6	206
684	Defect Detection in SEM Images of Nanofibrous Materials. IEEE Transactions on Industrial Informatics, 2017, 13, 551-561.	7.2	90
685	Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics. International Journal of Pharmaceutics, 2017, 533, 99-110.	2.6	33

#	Article	IF	CITATIONS
686	N-Benzoylbenzamidinate Complexes of Magnesium: Catalysts for the Ring-Opening Polymerization of $\hat{l}\mu$ -Caprolactone and CO2/Epoxide Coupling. Organometallics, 2017, 36, 4005-4012.	1.1	16
687	Thermoresponsive and Active Functional Fiber Mats for Cultured Cell Recovery. Biomacromolecules, 2017, 18, 3714-3725.	2.6	5
688	Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning. RSC Advances, 2017, 7, 48972-48979.	1.7	14
689	Core–Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness. Biomacromolecules, 2017, 18, 2906-2917.	2.6	12
690	Medical Applications of Functional Electrospun Nanofibers - A Review. Key Engineering Materials, 0, 752, 132-138.	0.4	8
691	Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017, 149, 51-62.	5.7	178
692	A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 160, 48-59.	2.5	103
693	Design of Boron Nitride/Gelatin Electrospun Nanofibers for Bone Tissue Engineering. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33695-33706.	4.0	135
694	Fabrication and Microstructure Evaluation of Fibrous Composite for Acetabular Labrum Implant. Materials Science Forum, 0, 900, 17-22.	0.3	5
695	The viscoelastic interaction between dispersed and continuous phase of PCL/HA-PVA oil-in-water emulsion uncovers the theoretical and experimental basis for fiber formation during emulsion electrospinning. European Polymer Journal, 2017, 96, 44-54.	2.6	22
696	Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laserâ€assisted vascular anastomosis. Lasers in Surgery and Medicine, 2017, 49, 928-939.	1.1	9
697	Facile Fabrication of Composite Electrospun Nanofibrous Matrices of Poly(Îμ-caprolactone)–Silica Based Pickering Emulsion. Langmuir, 2017, 33, 8062-8069.	1.6	15
698	Chitosan: Application in tissue engineering and skin grafting. Journal of Polymer Research, 2017, 24, 1.	1.2	71
699	Enzyme Prodrug Therapy Engineered into Electrospun Fibers with Embedded Liposomes for Controlled, Localized Synthesis of Therapeutics. Advanced Healthcare Materials, 2017, 6, 1700385.	3.9	33
700	Nanocomposites of Polymeric Biomaterials Containing Carbonate Groups: An Overview. Macromolecular Materials and Engineering, 2017, 302, 1700042.	1.7	10
701	Preparation of Polymeric Mats Through Electrospinning for Technological Uses. , 2017, , 83-128.		1
702	Electrospun poly(ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose, 2017, 24, 3353-3365.	2.4	33
703	Crosslinking of poly(vinyl alcohol) nanofibres with polycarboxylic acids: biocompatibility with human skin keratinocyte cells. Journal of Materials Science, 2017, 52, 12098-12108.	1.7	18

#	Article	IF	CITATIONS
704	Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods. Nanoscale, 2017, 9, 11605-11618.	2.8	27
705	Surface texturing of electrospun fibres by photoembossing using pulsed laser interference holography and its effects on endothelial cell adhesion. Polymer, 2017, 125, 40-49.	1.8	6
706	Effects of plasma treatment on biocompatibility of poly[(L-lactide)- <i>co</i> -(<i>μ</i> -caprolactone)] and poly[(L-lactide)- <i>co</i> -glycolide] electrospun nanofibrous membranes. Polymer International, 2017, 66, 1640-1650.	1.6	17
707	Application of electrospun fibers for female reproductive health. Drug Delivery and Translational Research, 2017, 7, 796-804.	3.0	19
708	Electrospun silk fibroin/PAN double-layer nanofibrous membranes containing polyaniline/TiO2 nanoparticles for anionic dye removal. Journal of Polymer Research, 2017, 24, 1.	1.2	37
709	Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomaterialia, 2017, 62, 116-127.	4.1	84
710	Easy Manipulation of Architectures in Protein-based Hydrogels for Cell Culture Applications. Journal of Visualized Experiments, 2017, , .	0.2	5
711	Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications. RSC Advances, 2017, 7, 39628-39634.	1.7	27
712	One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranes. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 667-677.	1.0	5
713	Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors. Scientific Reports, 2017, 7, 15436.	1.6	17
714	Biodegradable polycaprolactone nanofibres with \hat{l}^2 -chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017, 123, 194-202.	1.8	34
715	Excellent flexibility of high-temperature-treated SiO2-TiO2 hybrid fibres and their enhanced luminescence with Eu3+ doping. Ceramics International, 2017, 43, 12710-12717.	2.3	10
716	RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. International Journal of Energy Production and Management, 2017, 4, 159-166.	1.9	66
717	Chitosan centered bionanocomposites for medical specialty and curative applications: A review. International Journal of Pharmaceutics, 2017, 529, 200-217.	2.6	77
718	Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications. Journal of Materials Science, 2017, 52, 10661-10672.	1.7	33
719	Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dental Materials, 2017, 33, 71-83.	1.6	114
720	Stretched graphene tented by polycaprolactone and polypyrrole net–bracket for neurotransmitter detection. Applied Surface Science, 2017, 396, 832-840.	3.1	11
721	Synthetic biodegradable medical polyesters. , 2017, , 79-105.		13

#	Article	IF	CITATIONS
722	Peptide Modified Electrospun Glycopolymer Fibers. Macromolecular Bioscience, 2017, 17, 1600327.	2.1	5
723	Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. Journal of Materials Science, 2017, 52, 1617-1624.	1.7	25
724	Cell delivery for regenerative medicine by using bioresorbable polymers., 2017,, 365-389.		1
725	In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Analytical Chemistry, 2017, 89, 276-299.	3.2	62
726	Vaterite coatings on electrospun polymeric fibers for biomedical applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 94-103.	2.1	46
727	Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. European Polymer Journal, 2017, 88, 724-732.	2.6	22
728	Immobilizing hydroxyapatite microparticles on poly(lactic acid) nonwoven scaffolds using layer-by-layer deposition. Textile Reseach Journal, 2017, 87, 2028-2038.	1.1	5
729	Electrospun nanofibers. , 2017, , 267-300.		13
730	Nanohydroxyapatite-coated hydroxyethyl cellulose/poly (vinyl) alcohol electrospun scaffolds and their cellular response. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 115-122.	1.8	15
731	Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. Tissue Engineering - Part B: Reviews, 2017, 23, 9-26.	2.5	30
732	Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 1-17.	2.0	211
733	Polymeric Nanofiber/Antifungal Formulations Using a Novel Co-extrusion Approach. AAPS PharmSciTech, 2017, 18, 1917-1924.	1.5	18
734	A novel technique for producing conductive polyurethane nanofibrous membrane for flexible electronics applications. IOP Conference Series: Materials Science and Engineering, 2017, 244, 012010.	0.3	2
735	Prediction of diameter in blended nanofibers of polycaprolactone-gelatin using ANN and RSM. Fibers and Polymers, 2017, 18, 2368-2378.	1.1	12
736	Functional electrospun cellulosic nanofiber mats for antibacterial bandages. Fibers and Polymers, 2017, 18, 2379-2386.	1.1	13
737	Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS Omega, 2017, 2, 8959-8968.	1.6	54
738	Membrane Technology for Human Health. , 2017, 14, 43-59.		0
739	Latest Improvements of Acrylic-Based Polymer Properties for Biomedical Applications. , 0, , .		6

#	Article	IF	CITATIONS
740	Myoblast Differentiation of Umbilical Cord Blood Derived Stem Cells on Biocompatible Composites Scaffold Meshes. , 0, , .		O
741	Developing targeted biocomposites in tissue engineering and regenerative medicine., 2017,, 569-587.		0
742	Electrospun polyvinyl alcohol/pectin composite nanofibers., 2017,, 599-608.		10
743	Electrospun Polyurethane Nanofibers., 0, , .		17
744	Electrospun nanofibrous materials for wound healing applications., 2017,, 147-177.		7
745	Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications. Inventions, 2017, 2, 9.	1.3	58
746	Electrospun scaffolds for vascular tissue engineering. , 2017, , 261-287.		3
747	Electrospinning., 2017,, 3-41.		9
748	Properties of Electrospun Nanofibers of Multi-Block Copolymers of [Poly-Îμ-caprolactone-b-poly(tetrahydrofuran-co-Îμ-caprolactone)]m Synthesized by Janus Polymerization. Polymers, 2017, 9, 559.	2.0	16
749	Effect of Chitosan on the Properties of Electrospun Fibers From Mixed Poly(Vinyl Alcohol)/Chitosan Solutions. Materials Research, 2017, 20, 984-993.	0.6	48
750	Electrospun Nanofibers in Drug Delivery. , 2017, , 189-215.		11
751	Platelet-functionalized three-dimensional poly-& psilon;-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. International Journal of Nanomedicine, 2017, Volume 12, 347-361.	3.3	26
752	Preparation and Characterisation of Cyclodextrin Glucanotransferase Enzyme Immobilised in Electrospun Nanofibrous Membrane. Journal of Fiber Science and Technology, 2017, 73, 251-260.	0.2	8
753	Robot-aided electrospinning toward intelligent biomedical engineering. Robotics and Biomimetics, 2017, 4, 17.	1.7	10
754	Synthetic Biomaterial for Regenerative Medicine Applications. , 2017, , 901-921.		11
755	Flexible tissue-like electrode as a seamless tissue-electronic interface. BioNanoMaterials, 2017, 18, .	1.4	5
756	Processing of ferroelectric polymer composites. , 2017, , 249-280.		3
757	General requirements of electrospun materials for tissue engineering. , 2017, , 43-56.		15

#	Article	IF	CITATIONS
758	Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. Sensors, 2017, 17, 1293.	2.1	37
759	Nanostructured biocomposites for tissue engineering scaffolds. , 2017, , 501-542.		4
760	Electrospinning and surface modification methods for functionalized cell scaffolds. , 2017, , 201-225.		9
761	Novel 3D porous semi-IPN hydrogel scaffolds of silk sericin and poly(N-hydroxyethyl acrylamide) for dermal reconstruction. EXPRESS Polymer Letters, 2017, 11, 719-730.	1.1	16
762	Rice Straw Extracted Cellulose Biocompatible Nanofiber. International Journal of Chemoinformatics and Chemical Engineering, 2017, 6, 1-20.	0.1	0
763	Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS Applied Materials & Company (1988) Materials	4.0	42
764	Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications. MRS Advances, 2018, 3, 233-240.	0.5	3
765	Analysis of axisymmetric instability in polymer melt electrospinning jet. Journal of Non-Newtonian Fluid Mechanics, 2018, 255, 1-12.	1.0	11
766	Integration of Emerging Biomedical Technologies in Meat Processing to Improve Meat Safety and Quality. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 615-632.	5.9	5
767	Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2018, 6, 2075-2084.	3.3	33
768	Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose, 2018, 25, 1687-1703.	2.4	42
769	Electrospun nanofiber reinforced composites: a review. Polymer Chemistry, 2018, 9, 2685-2720.	1.9	431
770	Aligned laminin core-polydioxanone/collagen shell fiber matrices effective for neuritogenesis. Scientific Reports, 2018, 8, 5570.	1.6	22
771	Polymer–Magnetic Composite Fibers for Remote-Controlled Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 15524-15531.	4.0	61
772	Preparation and characterization of gelatin-chitosan-nanoÎ ² -TCP based scaffold for orthopaedic application. Materials Science and Engineering C, 2018, 86, 83-94.	3.8	51
773	Recent Advances in Cell Electrospining of Natural and Synthetic Nanofibers for Regenerative Medicine. Drug Research, 2018, 68, 425-435.	0.7	35
774	Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annual Review of Food Science and Technology, 2018, 9, 525-549.	5.1	105
775	Antibacterial and Antifungal Activity of Poly(Lactic Acid)–Bovine Lactoferrin Nanofiber Membranes. Macromolecular Bioscience, 2018, 18, 1700324.	2.1	18

#	Article	IF	CITATIONS
776	Encoding materials for programming a temporal sequence of actions. Journal of Materials Chemistry B, 2018, 6, 1433-1448.	2.9	5
777	Catalytically active (Pd) nanoparticles supported by electrospun PIM-1: Influence of the sorption capacity of the polymer tested in the reduction of some aromatic nitro compounds. Applied Catalysis A: General, 2018, 555, 178-188.	2.2	20
778	Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair. Neurourology and Urodynamics, 2018, 37, 716-725.	0.8	38
779	Hybrid functional microfibers for textile electronics and biosensors. Journal of Semiconductors, 2018, 39, 011009.	2.0	4
780	An experimental study on the coaxial electrospinning of silk fibroin/poly(vinyl alcohol)–salicylic acid core-shell nanofibers and process optimization using response surface methodology. Journal of Industrial Textiles, 2018, 48, 884-903.	1.1	13
781	Development of electrospun poly (vinyl alcohol)â€based bionanocomposite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1111-1120.	2.1	59
782	PHBVâ€TiO ₂ mats prepared by electrospinning technique: Physicoâ€chemical properties and cytocompatibility. Biopolymers, 2018, 109, e23120.	1.2	22
783	Efficient preparation of poly(lactic acid) nanofibers by melt differential electrospinning with addition of acetyl tributyl citrate. Journal of Applied Polymer Science, 2018, 135, 46554.	1.3	27
784	Investigation of plasmaâ€induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 2018, 15, 1700226.	1.6	42
785	Nanofibers and Microfibers for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 97-123.	0.8	13
786	Photocatalytic degradation of naphthalene using calcined Fe ZnO/ÂPVA nanofibers. Chemosphere, 2018, 205, 610-617.	4.2	41
787	Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Applied Nanoscience (Switzerland), 2018, 8, 33-40.	1.6	38
788	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	5.5	466
789	Nano Fibrous Scaffolds for Tissue Engineering Application. , 2018, , 1-28.		1
790	Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. European Polymer Journal, 2018, 101, 273-281.	2.6	31
791	Design parameters for electrospun biodegradable vascular grafts. Journal of Industrial Textiles, 2018, 47, 2205-2227.	1.1	29
792	<i>In vitro</i> evaluation of gelatin and chitosan electrospun fibres as an artificial guide in peripheral nerve repair: a comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e679-e694.	1.3	17
793	Fabrication and characterization of electrospun poly lactic- <i>co</i> -glycolic acid/zeolite nanocomposite scaffolds using bone tissue engineering. Journal of Bioactive and Compatible Polymers, 2018, 33, 63-78.	0.8	21

#	Article	IF	CITATIONS
794	Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2505-2520.	1.7	60
795	Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications. Biomedizinische Technik, 2018, 63, 245-253.	0.9	25
796	Stabilized core/shell PVA/SA nanofibers as an efficient drug delivery system for dexpanthenol. Polymer Bulletin, 2018, 75, 547-560.	1.7	23
797	Production and hemocompatibility assessment of novel electrospun polyurethane nanofibers loaded with dietary virgin coconut oil for vascular graft applications. Journal of Bioactive and Compatible Polymers, 2018, 33, 210-223.	0.8	11
798	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Materials and Design, 2018, 137, 394-403.	3.3	14
799	Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoScience, 2018, 8, 154-165.	1.5	9
800	Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. Journal of Materials Science, 2018, 53, 1527-1539.	1.7	70
801	Recent Trends in the Processing and Applications of Carbon Nanotubes and C-MEMS-Based Carbon Nanowires. Advanced Structured Materials, 2018, , 97-141.	0.3	2
802	A Novel Methodology for Bio-electrospraying Mesenchymal Stem Cells that Maintains Differentiation, Immunomodulatory and Pro-reparative Functions. Journal of Medical and Biological Engineering, 2018, 38, 497-513.	1.0	11
803	Accelerating Biodegradation of Calcium Phosphate Cement. Springer Series in Biomaterials Science and Engineering, 2018, , 227-255.	0.7	7
804	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	6.0	320
805	Stretchable scintillator composites for indirect X-ray detectors. Composites Part B: Engineering, 2018, 133, 226-231.	5.9	14
806	Polysaccharide-based Fibers and Composites. , 2018, , .		7
807	Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. Journal of Applied Polymer Science, 2018, 135, 45691.	1.3	28
808	Electrospun amorphous medicated nanocomposites fabricated using a Teflon-based concentric spinneret. E-Polymers, 2018, 18, 3-11.	1.3	7
809	Study of nanofiber scaffolds of PAA, PAA/CS, and PAA/ALG for its potential use in biotechnological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 800-807.	1.8	12
810	Electrospinning of poly(lactic acid)/polycaprolactone blends: investigation of the governing parameters and biocompatibility. Journal of Polymer Engineering, 2018, 38, 409-417.	0.6	9
811	Mechanical and viscoelastic properties of confined amorphous polymers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 9-30.	2.4	64

#	Article	IF	CITATIONS
812	Advances in the generation of bioengineered bile ducts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1532-1538.	1.8	17
813	Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Materials Science and Engineering C, 2018, 85, 57-67.	3.8	48
814	Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering. European Polymer Journal, 2018, 98, 483-491.	2.6	64
815	Enzyme functionalized electrospun chitosan mats for antimicrobial treatment. Carbohydrate Polymers, 2018, 181, 551-559.	5.1	52
816	Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 45905.	1.3	21
817	Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering C, 2018, 92, 1075-1091.	3.8	83
818	Nanofibrous nonwovens based on dendriticâ€linearâ€dendritic poly(ethylene glycol) hybrids. Journal of Applied Polymer Science, 2018, 135, 45949.	1.3	6
819	Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of Food Engineering, 2018, 222, 54-62.	2.7	18
820	Impact of 1-butyl-3-methylimidazolium chloride on the electrospinning of cellulose acetate nanofibers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 142-147.	1.2	7
821	Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1053-1065.	1.9	20
822	Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules, 2018, 106, 712-718.	3.6	164
823	Functional polymer surfaces for controlling cell behaviors. Materials Today, 2018, 21, 38-59.	8.3	257
824	Controlling the Secondary Surface Morphology of Electrospun PVDF Nanofibers by Regulating the Solvent and Relative Humidity. Nanoscale Research Letters, 2018, 13, 285.	3.1	76
825	Antibacterial properties of electrospun Ti ₃ C ₂ T _z (MXene)/chitosan nanofibers. RSC Advances, 2018, 8, 35386-35394.	1.7	149
826	Introduction to electrofluidodynamic techniques. Part II., 2018, , 19-36.		1
827	Review on cellulose nanocrystals (CNCs) as reinforced agent on electrospun nanofibers: mechanical and thermal properties. IOP Conference Series: Materials Science and Engineering, 2018, 440, 012011.	0.3	3
828	Photochromic Nanofibers., 0,,.		1
829	Fabrication of PLLA nanofibers as synthetic grafts for anterior cruciate ligament reconstruction. Materials Today: Proceedings, 2018, 5, 16585-16591.	0.9	3

#	Article	IF	CITATIONS
830	Coaxial Hydro-Nanofibrils for Self-Assembly of Cell Sheets Producing Skin Bilayers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43503-43511.	4.0	19
831	Eumelanin Nanoparticle-Incorporated Polyvinyl Alcohol Nanofibrous Composite as an Electroconductive Scaffold for Skeletal Muscle Tissue Engineering. ACS Applied Bio Materials, 2018, 1, 1893-1905.	2.3	12
832	Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 2018, 10, 1178.	2.0	25
833	Bubble Melt Electrospinning for Production of Polymer Microfibers. Polymers, 2018, 10, 1246.	2.0	16
834	Fabrication and Characterization of Electrospun Nanofibers for the Modified Release of the Chronobiotic Hormone Melatonin. Current Drug Delivery, 2018, 16, 79-85.	0.8	33
835	Effects of electrospinning conditions on microstructural properties of polystyrene fibrous materials. Journal of Applied Physics, 2018, 124, .	1.1	28
836	Fabrication of liver-derived extracellular matrix nanofibers and functional evaluation in in vitro culture using primary hepatocytes. Materialia, 2018, 4, 518-528.	1.3	23
837	An openwork like structures of polylactide – manufacturing and properties. E3S Web of Conferences, 2018, 44, 00165.	0.2	2
838	Nanostructure of electrospun collagen: Do electrospun collagen fibers form native structures?. Materialia, 2018, 3, 90-96.	1.3	67
839	Nanofibers: Emerging Progress on Fabrication Using Mechanical Force and Recent Applications. Polymer Reviews, 2018, 58, 688-716.	5.3	14
840	Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles. Colloid and Polymer Science, 2018, 296, 1849-1855.	1.0	4
841	Design of electrospun fibrous patches for myocardium regeneration. , 2018, , 221-250.		3
842	Improvements in Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques. ACS Biomaterials Science and Engineering, 2018, 4, 3927-3938.	2.6	20
843	Reduced Graphene-Oxide-Embedded Polymeric Nanofiber Mats: An "On-Demand―Photothermally Triggered Antibiotic Release Platform. ACS Applied Materials & Triggered Antibiotic Release Platform.	4.0	7 5
844	PVA-PDMS-Stearic acid composite nanofibrous mats with improved mechanical behavior for selective filtering applications. Scientific Reports, 2018, 8, 16038.	1.6	12
845	Cellular Response to Surface Morphology: Electrospinning and Computational Modeling. Frontiers in Bioengineering and Biotechnology, 2018, 6, 155.	2.0	65
846	Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Materials, 2018, 11, 1963.	1.3	101
847	Homogenization of Amorphous Solid Dispersions Prepared by Electrospinning in Low-Dose Tablet Formulation. Pharmaceutics, 2018, 10, 114.	2.0	14

#	Article	IF	Citations
848	Effects of binary solvent mixtures on the electrospinning behavior of poly (vinyl alcohol). Materials Research Express, 2018, 5, 115407.	0.8	19
849	Preparation and characterization of hydrophilic polyurethane scaffolds by electrospinning and radiation induced grafting of 2-hydroxyethylmethacrylate. AIP Conference Proceedings, 2018, , .	0.3	1
850	Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Acta Biomaterialia, 2018, 80, 188-202.	4.1	22
851	Quantitative approaches of nanofibers organization for biomedical patterned nanofibrous scaffold by image analysis. Journal of Biomedical Materials Research - Part A, 2018, 106, 2963-2972.	2.1	10
852	Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer, 2018, 153, 643-652.	1.8	33
853	CO ₂ /Epoxide Coupling and the ROP of Îμ-Caprolactone: Mg and Al Complexes of Î ³ -Phosphino-ketiminates as Dual-Purpose Catalysts. Organometallics, 2018, 37, 1656-1664.	1.1	17
854	Current Advances on Nanofiber Membranes for Water Purification Applications., 2018,, 25-46.		10
855	Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. International Journal of Biological Macromolecules, 2018, 116, 1250-1259.	3.6	122
856	Activated release of bioactive aldehydes from their precursors embedded in electrospun poly(lactic) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
857	Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. International Journal of Artificial Organs, 2018, 41, 467-473.	0.7	26
858	Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	2
859	Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes. , 2018, , 181-209.		1
860	Nanoelectrospun matrices for localized drug delivery. , 2018, , 491-508.		7
861	Reinforcing Mechanical Strength of Electrospun Chitosan Nanofibrous Scaffold Using Cellulose Nanofibers. Journal of Nano Research, 2018, 52, 71-79.	0.8	3
862	One-step fabrication of functionalized poly(l-lactide) porous fibers by electrospinning and the adsorption/separation abilities. Journal of Hazardous Materials, 2018, 360, 150-162.	6.5	52
863	Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures. Polymer, 2018, 151, 299-306.	1.8	40
864	Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections. Recent Clinical Techniques, Results, and Research in Wounds, 2018, , 213-253.	0.1	4
865	Advances in multidrug delivery from electrospun nanomaterials. , 2018, , 405-430.		3

#	Article	IF	CITATIONS
866	A polypropylene mesh modified with poly-& amp; epsilon; -caprolactone nanofibers in hernia repair: large animal experiment. International Journal of Nanomedicine, 2018, Volume 13, 3129-3143.	3.3	22
867	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
868	Dual Electrospun Supramolecular Polymer Systems for Selective Cell Migration. Macromolecular Bioscience, 2018, 18, e1800004.	2.1	2
869	Nanocomposite Hydrogels Obtained by Gamma Irradiation. Polymers and Polymeric Composites, 2018, , 1-23.	0.6	1
870	Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399, 26-41.	4.0	125
871	Advances in Nanofibers for Antimicrobial Drug Delivery. , 2018, , 1-42.		4
872	Polymer Based Nanofibers: Preparation, Fabrication, and Applications. , 2018, , 1-47.		10
873	Introduction and Literature Review. Springer Theses, 2018, , 1-45.	0.0	0
874	Additive electrospraying for scaffold functionalization. , 2018, , 179-203.		0
875	Enhancement of Hydrogels' Properties for Biomedical Applications: Latest Achievements. , 0, , .		6
876	Antimicrobial quaternary ammonium organosilane cross-linked nanofibrous collagen scaffolds for tissue engineering. International Journal of Nanomedicine, 2018, Volume 13, 4473-4492.	3.3	20
877	Engineering Musculoskeletal Tissue Interfaces. Frontiers in Materials, 2018, 5, .	1.2	37
878	Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences, 2018, 19, 407.	1.8	236
879	Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 2018, 8, 15.	1.4	94
880	Fabrication of nanofibers and nanotubes for tissue regeneration and repair., 2018,, 205-228.		5
881	Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 2018, 10, 161.	2.0	196
882	Elastinâ€based polymer: synthesis, characterization and examination of its miscibility characteristics with poly(vinyl alcohol) and electrospinning of the miscible blends. Polymer International, 2018, 67, 1511-1522.	1.6	12
883	Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 2018, 199, 628-640.	5.1	101

#	Article	IF	CITATIONS
884	A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. Journal of Orthopaedic Surgery and Research, 2018, 13, 63.	0.9	24
885	Rice bran nanofiber composites for stabilization of phytase. Chemistry Central Journal, 2018, 12, 28.	2.6	7
886	Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges. , 2018, , 429-452.		5
887	Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method. European Polymer Journal, 2018, 108, 69-75.	2.6	53
888	Structural Multifunctional Nanofibers and Their Emerging Applications. , 2018, , 1-47.		0
889	Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances, 2018, 36, 1984-2016.	6.0	106
890	Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications. International Journal of Molecular Sciences, 2018, 19, 1563.	1.8	34
891	Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology. Materials, 2018, 11, 441.	1.3	15
892	Molecularly imprinted electrospun nanofibers for adsorption of 2,4-dinitrotoluene in water. Analyst, The, 2018, 143, 3465-3471.	1.7	16
893	Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers. Acta Biomaterialia, 2018, 75, 129-139.	4.1	43
894	White paper on the future of plasma science and technology in plastics and textiles. Plasma Processes and Polymers, 2019, 16, 1700228.	1.6	73
895	Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun polycaprolactone fibers. Polymer Bulletin, 2019, 76, 1333-1347.	1.7	9
896	Recent Advances in Biomaterials Science and Engineering Research in India: A Minireview. ACS Biomaterials Science and Engineering, 2019, 5, 3-18.	2.6	8
897	Surface modification to control the water wettability of electrospun mats. International Materials Reviews, 2019, 64, 249-287.	9.4	71
898	Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series, 2019, , .	0.3	4
899	Advances in Nanotechnology Based Functional, Smart and Intelligent Textiles: A Review. , 2019, , 253-290.		30
900	Nanofibrillar Patches of Commensal Skin Bacteria. Biomacromolecules, 2019, 20, 102-108.	2.6	10
901	Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 639-646.	1.8	20

#	Article	IF	CITATIONS
902	Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharmaceutical Development and Technology, 2019, 24, 1187-1199.	1.1	34
903	Electrospinning of poly(ethylene oxide) solutions - Quantitative relations between mean nanofibre diameter, concentration, molecular weight, and viscosity. AIP Conference Proceedings, 2019, , .	0.3	1
904	Polymer fibers electrospun using pulsed voltage. Materials and Design, 2019, 183, 108106.	3.3	23
905	Electroactive nanofibers mats based on poly(l-lactic acid)/poly(ortho-ethoxyaniline) blends for biological applications. Materials Science and Engineering C, 2019, 105, 110045.	3.8	1
906	In Vivo Evaluation of the Anti-Inflammatory Activity of Electrospun Micro/Nanofibrous Patches Loaded with Pinus halepensis Bark Extract on Hairless Mice Skin. Materials, 2019, 12, 2596.	1.3	15
907	Scanning Electron Microscopy and Atomic Force Microscopy: Topographic and Dynamical Surface Studies of Blends, Composites, and Hybrid Functional Materials for Sustainable Future. Advances in Materials Science and Engineering, 2019, 2019, 1-16.	1.0	31
908	Recycling of waste silk fibers towards silk fibroin fibers with different structures through wet spinning technique. Journal of Cleaner Production, 2019, 236, 117653.	4.6	20
909	Multiple and Promising Applications of Strontium (Sr)-Containing Bioactive Glasses in Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 161.	2.0	122
910	Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. Materials, 2019, 12, 2016.	1.3	41
911	Drug-eluting non-vascular stents for localised drug targeting in obstructive gastrointestinal cancers. Journal of Controlled Release, 2019, 308, 209-231.	4.8	23
912	Crystal-to-Crystal Transition and the Structure Development of Electrospun Poly(ethylene 2,6) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 342
913	Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1505-1522.	1.9	50
914	Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech, 2019, 20, 256.	1.5	31
915	Water Resistant Self-Extinguishing Low Frequency Soundproofing Polyvinylpyrrolidone Based Electrospun Blankets. Polymers, 2019, 11, 1205.	2.0	23
916	Encapsulation of Fatty Oils into Electrospun Nanofibers for Cosmetic Products with Antioxidant Activity. Applied Sciences (Switzerland), 2019, 9, 2955.	1.3	17
917	Advances in Nanofibers for Antimicrobial Drug Delivery. , 2019, , 733-774.		1
918	Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Acta Biomaterialia, 2019, 96, 161-174.	4.1	24
919	Nanofibrous Scaffolds for Tissue Engineering Application. , 2019, , 665-691.		0

#	ARTICLE	IF	CITATIONS
920	Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules. RSC Advances, 2019, 9, 20565-20572.	1.7	16
921	Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. International Journal of Biological Macromolecules, 2019, 138, 13-20.	3.6	73
922	Polyvinyl Alcohol (PVA)–Azadirachta indica (Neem) Nanofibrous Mat for Biomedical Application: Formation and Characterization. Journal of Polymers and the Environment, 2019, 27, 2933-2942.	2.4	23
923	In vitro evaluation of biodegradable nHAPâ€Chitosanâ€Gelatinâ€based scaffold for tissue engineering application. IET Nanobiotechnology, 2019, 13, 301-306.	1.9	6
924	Influence of aorta extracellular matrix in electrospun polycaprolactone scaffolds. Journal of Applied Polymer Science, 2019, 136, 48181.	1.3	18
925	Hydrolytic Destruction of Agrofiber Made of Natural Polymers. Fibre Chemistry, 2019, 51, 117-120.	0.0	8
926	Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules, 2019, 9, 684.	1.8	26
927	Physicochemical assessment of tailor made fibrous polyurethane scaffolds incorporated with turmeric oil for wound healing applications. International Journal of Polymer Analysis and Characterization, 2019, 24, 752-762.	0.9	7
928	Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials. ACS Applied Bio Materials, 2019, 2, 4714-4719.	2.3	23
929	Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. Biomedical Materials (Bristol), 2019, 14, 045006.	1.7	28
930	Chitosanâ€"Polyamide Composite Nanofibers Produced by Needleless Electrospinning. Fibre Chemistry, 2019, 50, 391-395.	0.0	3
931	Enriched physicochemical and blood-compatible properties of nanofibrous polyurethane patch engrafted with juniper oil and titanium dioxide for cardiac tissue engineering. International Journal of Polymer Analysis and Characterization, 2019, 24, 696-708.	0.9	13
932	Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control. ACS Applied Bio Materials, 2019, 2, 4258-4270.	2.3	22
933	Comparison of Traditional and Ultrasound-Enhanced Electrospinning in Fabricating Nanofibrous Drug Delivery Systems. Pharmaceutics, 2019, 11, 495.	2.0	20
934	Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent. Polymers, 2019, 11, 1517.	2.0	12
935	Fabrication of Surfactant-Dispersed HiPco Single-Walled Carbon Nanotube-Based Alginate Hydrogel Composites as Cellular Products. International Journal of Molecular Sciences, 2019, 20, 4802.	1.8	14
936	Functional Polyimide-Based Electrospun Fibers for Biomedical Application. Materials, 2019, 12, 3201.	1.3	22
937	Electrospun Polymeric Nanofibers: Fundamental Aspects of Electrospinning Processes, Optimization of Electrospinning Parameters, Properties, and Applications. Lecture Notes in Bioengineering, 2019, , 375-409.	0.3	14

#	Article	IF	CITATIONS
938	Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS Applied Bio Materials, 2019, 2, 952-969.	2.3	258
939	Characterization and in vitro and in vivo assessment of poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Journal of Polymer Research, 2019, 26, 1.	50 707 To 1.2	l (adipate-co 27
940	Biomedical Applications of Electrospun Polymer Composite Nanofibres. Lecture Notes in Bioengineering, 2019, , 111-165.	0.3	5
941	Solvent-Induced Nanotopographies of Single Microfibers Regulate Cell Mechanotransduction. ACS Applied Materials & Diterfaces, 2019, 11, 7671-7685.	4.0	32
942	Nanofibrous Structures., 2019,, 93-122.		5
943	Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , .	0.3	17
944	Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor. Frontiers in Materials, 2019, 6 , .	1.2	67
945	Highly aligned and geometrically structured poly(glycerol sebacate)-polyethylene oxide composite fiber matrices towards bioscaffolding applications. Biomedical Microdevices, 2019, 21, 53.	1.4	7
946	Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids, 2019, 97, 105170.	5.6	129
947	Scaffolds for lung tissue engineering. , 2019, , 427-448.		5
948	Scaffolds for engineering heart valve. , 2019, , 643-658.		0
949	Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. Applied Sciences (Switzerland), 2019, 9, 2205.	1.3	137
950	Evaluation of the effects of Î ² -tricalcium phosphate on physical, mechanical and biological properties of Poly (3-hydroxybutyrate)/chitosan electrospun scaffold for cartilage tissue engineering applications. Materials Technology, 2019, 34, 615-625.	1.5	36
951	Understanding solubility, spinnability and electrospinning behaviour of cellulose acetate using different solvent systems. Bulletin of Materials Science, 2019, 42, 1.	0.8	27
952	Fabrication and preliminary in vitro evaluation of ultraviolet-crosslinked electrospun fish scale gelatin nanofibrous scaffolds. Journal of Materials Science: Materials in Medicine, 2019, 30, 62.	1.7	16
953	Nanotechnology and nanomaterials in dentistry. , 2019, , 477-505.		22
954	Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. Journal of Drug Delivery Science and Technology, 2019, 52, 979-985.	1.4	29
955	Improving anti thrombogenicity of nanofibrous polycaprolactone through surface modification. Journal of Biomaterials Applications, 2019, 34, 408-418.	1.2	19

#	Article	IF	CITATIONS
956	Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering, 2019, 6, 41.	1.6	32
957	Elastic, hydrophilic and biodegradable poly (1, 8-octanediol-co-citric acid)/polylactic acid nanofibrous membranes for potential wound dressing applications. Polymer Degradation and Stability, 2019, 166, 163-173.	2.7	30
958	Potential Protective Effect of Nitric Oxide-Releasing Nanofibers in Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury. Journal of Nanoscience and Nanotechnology, 2019, 19, 6539-6545.	0.9	11
959	Pyridine as an additive to improve the deposition of continuous electrospun filaments. PLoS ONE, 2019, 14, e0214419.	1.1	9
960	Effect of Modified Natural Rubber on Morphology, Chemical Structure, and Crystallinity of Electrospun Polyvinylidene Difluoride Nanofibers. Materials Science Forum, 0, 950, 128-132.	0.3	1
961	Core-shell Nanofibers of Silk Fibroin/Polycaprolactone-Clindamycin: Study on Nanofibers Structure and Controlled Release Behavior. Polymer Science - Series A, 2019, 61, 85-95.	0.4	3
962	Electrospun Combination of Peppermint Oil and Copper Sulphate with Conducive Physico-Chemical properties for Wound Dressing Applications. Polymers, 2019, 11, 586.	2.0	22
963	Effect of Solution Composition Variables on Electrospun Alginate Nanofibers: Response Surface Analysis. Polymers, 2019, 11, 692.	2.0	47
964	Development and characterization of rapid dissolving ornidazole loaded PVP electrospun fibers. Pharmaceutical Development and Technology, 2019, 24, 864-873.	1.1	36
965	Chitosan and gelatin-based electrospun fibers for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 133, 354-364.	3.6	165
966	An electrospun citric acid modified polyvinyl alcohol scaffold for vascular tissue engineering. Journal of Bioactive and Compatible Polymers, 2019, 34, 263-279.	0.8	7
967	Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. Journal of Bioactive and Compatible Polymers, 2019, 34, 115-130.	0.8	19
968	Probiotics Biofilm-Integrated Electrospun Nanofiber Membranes: A New Starter Culture for Fermented Milk Production. Journal of Agricultural and Food Chemistry, 2019, 67, 3198-3208.	2.4	47
969	Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing. Scientific Reports, 2019, 9, 3446.	1.6	15
970	Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules, 2019, 24, 834.	1.7	212
971	Production of a new platform based calixarene nanofiber for controlled release of the drugs. Materials Science and Engineering C, 2019, 100, 466-474.	3.8	16
972	Electrospun nanofibers for tissue engineering applications. , 2019, , 77-95.		8
973	Electrospun microporous gelatin–polycaprolactone blend tubular scaffold as a potential vascular biomaterial. Polymer International, 2019, 68, 1367-1377.	1.6	9

#	Article	IF	Citations
974	Polyethylene and polypropylene matrix composites for biomedical applications., 2019, , 175-216.		32
975	An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Advances, 2019, 9, 9838-9844.	1.7	11
977	Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2019, 23, 1009-1015.	0.9	9
978	The effect of released new synthetic peptide from nanofibrous scaffold of peptide/Poly (Vinyl) Tj ETQq1 1 0.78431 albicans. Infection, Genetics and Evolution, 2019, 70, 36-41.	4 rgBT /O	verlock 10 1
979	Nanofibers for Biomedical and Healthcare Applications. Macromolecular Bioscience, 2019, 19, e1800256.	2.1	187
980	Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials, 2019, 12, 568.	1.3	388
981	Bio-functional electrospun nanomaterials: From topology design to biological applications. Progress in Polymer Science, 2019, 91, 1-28.	11.8	92
982	Solution properties and electrospinning of poly(galacturonic acid) nanofibers. Carbohydrate Polymers, 2019, 212, 102-111.	5.1	13
983	A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 0 , 1 .	1.2	0
984	Alginate/chitosan microcapsules for in-situ delivery of the protein, interleukin-1 receptor antagonist (IL-1Ra), for the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 112-121.	2.0	34
985	Rational design of microfabricated electroconductive hydrogels for biomedical applications. Progress in Polymer Science, 2019, 92, 135-157.	11.8	138
986	Miscibility studies of plastic-mimetic polypeptide with hydroxypropylmethylcellulose blends and generation of non-woven fabrics. Carbohydrate Polymers, 2019, 212, 129-141.	5.1	23
987	Hybrid multi-layered scaffolds produced via grain extrusion and electrospinning for 3D cell culture tests. Rapid Prototyping Journal, 2019, 26, 593-602.	1.6	6
988	PVA/CA based electrospun nanofibers: Influence of processing parameters in the fiber diameter. IOP Conference Series: Materials Science and Engineering, 2019, 634, 012040.	0.3	5
989	Electrospun PVA/AGAROSE Blends as Prospective Wound Healing Patches for Foot Ulcers., 2019,,.		1
990	Emergence of Three Dimensional Printed Cardiac Tissue: Opportunities and Challenges in Cardiovascular Diseases. Current Cardiology Reviews, 2019, 15, 188-204.	0.6	8
991	Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual Relations between Mean Diameter of Electrospun Nanofibers and Solution Characteristics. Processes, 2019, 7, 948.	1.3	28
992	Potentiostatic deposition of poly(3, 4-ethylenedioxythiophene) and manganese oxide on porous functionalised carbon fibers as an advanced electrode for asymmetric supercapacitor. Journal of Power Sources, 2019, 444, 227324.	4.0	31

#	Article	IF	CITATIONS
993	Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric biomedical materials., 2019, , 159-172.		1
994	Enhanced osteogenesis of mesenchymal stem cells on electrospun cellulose nanocrystals/poly(ε-caprolactone) nanofibers on graphene oxide substrates. RSC Advances, 2019, 9, 36040-36049.	1.7	20
995	3. Electrospun biomaterials. , 2019, , 45-58.		1
996	Postfabrication Tethering of Molecular Gradients on Aligned Nanofibers of Functional Poly(ε-caprolactone)s. Biomacromolecules, 2019, 20, 4494-4501.	2.6	2
997	In Vitro Biocompatibility of Electrospun Poly(<i>ε</i> Caprolactone)/Cellulose Nanocrystals-Nanofibers for Tissue Engineering. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	17
998	Accentuated osseointegration in osteogenic nanofibrous coated titanium implants. Scientific Reports, 2019, 9, 17638.	1.6	25
999	Bi-Layered Polymer Carriers with Surface Modification by Electrospinning for Potential Wound Care Applications. Pharmaceutics, 2019, 11, 678.	2.0	20
1000	Mechanical and Thermal Characteristics of Optimized Electrospun Nylon 6,6 Nanofibers by Using Taguchi Method. Nano, 2019, 14, 1950139.	0.5	6
1001	Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 2019, 6, 36.	6.3	188
1002	<p>Electrospun Poly (Aspartic Acid)-Modified Zein Nanofibers for Promoting Bone Regeneration</p> . International Journal of Nanomedicine, 2019, Volume 14, 9497-9512.	3.3	8
1003	Nanoparticles in an antibiotic-loaded nanomesh for drug delivery. RSC Advances, 2019, 9, 30064-30070.	1.7	9
1004	Antimicrobial fibers obtained by electrospinning. , 2019, , 53-76.		1
1005	Polyethylenimine: A new differentiation factor to endothelial/cardiac tissue. Journal of Cellular Biochemistry, 2019, 120, 1511-1521.	1,2	13
1006	Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Separation and Purification Technology, 2019, 210, 913-919.	3.9	53
1007	In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. International Journal of Biological Macromolecules, 2019, 126, 717-730.	3.6	41
1008	Multi-arm polymers prepared by atom transfer radical polymerization (ATRP) and their electrospun films as oxygen sensors and pressure sensitive paints. European Polymer Journal, 2019, 112, 214-221.	2.6	8
1009	Tridax Procumbens Extract Loaded Electrospun PCL Nanofibers: A Novel Wound Dressing Material. Macromolecular Research, 2019, 27, 55-60.	1.0	33
1010	Preparation of Polymer Nanofibers with Controlled Diameters by Continuous Spinning Using Ordered Anodic Porous Alumina as Spinneret. Chemistry Letters, 2019, 48, 86-89.	0.7	3

#	Article	IF	CITATIONS
1011	The multiscale stiffness of electrospun substrates and aspects of their mechanical biocompatibility. Acta Biomaterialia, 2019, 84, 146-158.	4.1	14
1012	Development of advanced nanostructured polyurethane composites comprising hybrid fillers with enhanced properties for regenerative medicine. Polymer Testing, 2019, 73, 12-20.	2.3	15
1013	Singleâ€Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Advanced Materials Interfaces, 2019, 6, 1801211.	1.9	38
1014	Nanocomposite Hydrogels Obtained by Gamma Irradiation. Polymers and Polymeric Composites, 2019, , 601-623.	0.6	2
1015	Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites, 2019, , 909-949.	0.6	2
1016	Study of electrospun fish gelatin nanofilms from benign organic acids as solvents. Food Packaging and Shelf Life, 2019, 19, 66-75.	3.3	24
1017	Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers, 2019, 11, 34.	2.0	140
1018	Citronella oilâ€loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito <i>Aedes albopictus</i> . Pest Management Science, 2019, 75, 2142-2147.	1.7	11
1019	Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. Materials Science and Engineering C, 2019, 97, 567-575.	3.8	23
1020	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	11.8	472
1021	Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Materials Science and Engineering C, 2019, 94, 1102-1124.	3.8	70
1022	Iron/carbon composite microfiber catalyst derived from hemoglobin blood protein for lithium-oxygen batteries. Applied Surface Science, 2019, 466, 562-567.	3.1	17
1023	Electrospinning production of nanofibrous membranes. Environmental Chemistry Letters, 2019, 17, 767-800.	8.3	103
1024	Polyurethane/poly(d,l-lactic acid) scaffolds based on supercritical fluid technology for biomedical applications: Studies with L929 cells. Materials Science and Engineering C, 2019, 96, 539-551.	3.8	12
1025	Polyglycerol sebacate/chitosan/gelatin nano-composite scaffolds for engineering neural construct. Materials Chemistry and Physics, 2019, 222, 147-151.	2.0	19
1026	Nanoengineered biomaterials for tendon/ligament regeneration. , 2019, , 73-93.		6
1027	Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 2019, 76, 95-110.	1.8	95
1028	Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science and Engineering C, 2019, 95, 397-408.	3.8	67

#	Article	IF	CITATIONS
1029	Porous electrospun Casein/PVA nanofibrous mat for its potential application as wound dressing material. Journal of Porous Materials, 2019, 26, 29-40.	1.3	28
1030	Fabrication and characterization of electrospun polyurethane blended with dietary grapes for skin tissue engineering. Journal of Industrial Textiles, 2020, 50, 655-674.	1.1	12
1031	Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 477-504.	1.8	15
1032	Plasma treatment and chitosan coating: a combination for improving PET surface properties. Surface Innovations, 2020, 8, 76-88.	1.4	11
1033	Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation. Materials Science and Engineering C, 2020, 107, 110296.	3.8	28
1034	Fabrication of electrospun poly(lactic acid) nanoporous membrane loaded with niobium pentoxide nanoparticles as a potential scaffold for biomaterial applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1559-1567.	1.6	10
1035	Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 910-924.	1.6	33
1036	A step toward engineering thick tissues: Distributing microfibers within 3D printed frames. Journal of Biomedical Materials Research - Part A, 2020, 108, 581-591.	2.1	8
1037	Electrospun chitosan/nanocrystalline cellulose-graft-poly(N-vinylcaprolactam) nanofibers as the reinforced scaffold for tissue engineering. Journal of Materials Science, 2020, 55, 2176-2185.	1.7	38
1038	Continuous Fabrication of Antimicrobial Nanofiber Mats Using Post-Electrospinning Functionalization for Roll-to-Roll Scale-Up. ACS Applied Polymer Materials, 2020, 2, 304-316.	2.0	18
1039	Development of QCM based biosensor for the selective and sensitive detection of paraoxon. Analytical Biochemistry, 2020, 591, 113572.	1.1	18
1040	In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polymer Testing, 2020, 82, 106298.	2.3	107
1041	Fabrication of multifunctional cellulose/TiO ₂ /Ag composite nanofibers scaffold with antibacterial and bioactivity properties for future tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 947-962.	2.1	34
1042	The effect of aligned electrospun fibers and macromolecular crowding in tenocyte culture. Methods in Cell Biology, 2020, 157, 225-247.	0.5	8
1043	Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124282.	2.3	66
1044	Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomaterials Science and Engineering, 2020, 6, 505-516.	2.6	47
1045	Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 2020, 12, 7.	2.0	141
1046	Extending uniaxial material laws to multiaxial constitutive relations: H-approach. European Journal of Mechanics, A/Solids, 2020, 81, 103937.	2.1	3

#	Article	IF	CITATIONS
1047	Substituted glycolides from natural sources: preparation, alcoholysis and polymerization. Polymer Chemistry, 2020, 11, 6890-6902.	1.9	5
1048	Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. International Journal of Biological Macromolecules, 2020, 162, 1555-1565.	3.6	69
1049	Uniform wet-Spinning Mechanically Automated (USMA) fiber device. HardwareX, 2020, 8, e00124.	1.1	2
1050	UV-initiated crosslinking of electrospun chitosan/poly(ethylene oxide) nanofibers doped with ZnO-nanoparticles: development of antibacterial nanofibrous hydrogel. MRS Communications, 2020, 10, 642-651.	0.8	8
1051	Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 1 extruded microfibres. International Journal of Biological Macromolecules, 2020, 163, 1959-1969.	.0 Tf 50 58 3.6	37 Td (acid)-p 10
1052	Electrospun Nanodiamond–Silk Fibroin Membranes: A Multifunctional Platform for Biosensing and Wound-Healing Applications. ACS Applied Materials & Interfaces, 2020, 12, 48408-48419.	4.0	50
1053	Antibacterial electrospun nanofibers from poly (vinyl alcohol) and <i>Mikania micrantha</i> with augmented moisture properties: formation and evaluation. Journal of the Textile Institute, 2021, 112, 1602-1610.	1.0	11
1054	Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth. Drug Delivery, 2020, 27, 1378-1385.	2.5	16
1055	Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Advances, 2020, 10, 26594-26603.	1.7	21
1056	Effect of elasticity on electrospun styrene–butadiene–styrene fibrous membrane cell culture behaviors. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 2114-2127.	1.9	1
1057	Fluoropolymers for oil/water membrane separation. , 2020, , 209-246.		4
1058	PVDF-based shape memory materials. , 2020, , 247-274.		2
1059	Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomaterials Science and Engineering, 2020, 6, 6490-6509.	2.6	34
1060	Functionalization of Electrospun Nanofibers and Fiber Alignment Enhance Neural Stem Cell Proliferation and Neuronal Differentiation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580135.	2.0	39
1061	Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Advances, 2020, 10, 37246-37265.	1.7	18
1062	PLGA Membranes Functionalized with Gelatin through Biomimetic Mussel-Inspired Strategy. Nanomaterials, 2020, 10, 2184.	1.9	12
1063	A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. Journal of Drug Delivery Science and Technology, 2020, 60, 101930.	1.4	14
1064	Nano-structured glaucoma drainage implant safely and significantly reduces intraocular pressure in rabbits via post-operative outflow modulation. Scientific Reports, 2020, 10, 12911.	1.6	8

#	Article	IF	CITATIONS
1065	Antimicrobial modification of PLA scaffolds with ascorbic and fumaric acids via plasma treatment. Surface and Coatings Technology, 2020, 400, 126216.	2.2	26
1066	Effects of Fiber Density and Strain Rate on the Mechanical Properties of Electrospun Polycaprolactone Nanofiber Mats. Frontiers in Chemistry, 2020, 8, 610.	1.8	34
1067	Nanofiber-based hydrogels and aerogels. , 2020, , 259-276.		0
1068	Fabrication and Characterization of Electrospun Membranes Based on "Poly(ε-caprolactone)â€, "Poly(3-hydroxybutyrate)―and Their Blend for Tunable Drug Delivery of Curcumin. Polymers, 2020, 12, 2239.	2.0	24
1069	Cytocompatibility of Bilayer Scaffolds Electrospun from Chitosan/Alginate-Chitin Nanowhiskers. Biomedicines, 2020, 8, 305.	1.4	17
1070	Positively Charged Electroceutical Spun Chitosan Nanofibers Can Protect Health Care Providers From COVID-19 Infection: An Opinion. Frontiers in Bioengineering and Biotechnology, 2020, 8, 885.	2.0	32
1071	Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing. Materials, 2020, 13, 3884.	1.3	47
1072	Trends in Surgical and Beauty Masks for a Cleaner Environment. Cosmetics, 2020, 7, 68.	1.5	26
1073	Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications. Materials, 2020, 13, 3961.	1.3	13
1074	Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39620-39629.	4.0	18
1075	Snake Tracks in Polymer Land: Wavy Polymer Structures via Selective Solvent Vapor Annealing. Langmuir, 2020, 36, 9780-9785.	1.6	3
1076	Coreâ€"Shell Electrospun Fibers with an Improved Open Pore Structure for Size-Controlled Delivery of Nanoparticles. ACS Applied Polymer Materials, 2020, 2, 4004-4015.	2.0	10
1077	Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization. Technologies, 2020, 8, 71.	3.0	3
1078	Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers, 2020, 12, 2896.	2.0	29
1079	Rheology and Electrospinnability of Supramolecular Comb Polymer Networks Formed via Coordination Interactions. ACS Applied Polymer Materials, 2020, 2, 5094-5109.	2.0	1
1080	Electrospinning/Electrospray of Ferrocene Containing Copolymers to Fabricate ROS-Responsive Particles and Fibers. Polymers, 2020, 12, 2520.	2.0	15
1081	Biopolymers, liposomes, and nanofibers as modified peroral drug release formulants., 2020,, 249-270.		1
1082	Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Materials Science and Engineering C, 2020, 115, 111112.	3.8	34

#	ARTICLE	IF	CITATIONS
1083	Tensile Properties of Composite Reinforced with Three-Dimensional Printed Fibers. Polymers, 2020, 12, 1089.	2.0	12
1084	A pathway toward new era of intelligent cell attachment; mechanism and a key major guideline. Journal of Cleaner Production, 2020, 266, 121873.	4.6	2
1085	Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy. Materials Science and Engineering C, 2020, 115, 111068.	3.8	25
1086	Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals, 2020, 13, 83.	1.7	39
1087	Dual source co-electrospun tubular scaffold generated from gelatin-vinyl acetate and poly-É-caprolactone for smooth muscle cell mediated blood vessel engineering. Materials Science and Engineering C, 2020, 114, 111030.	3.8	8
1088	Direct incorporation of mesenchymal stem cells into a Nanofiber scaffold – in vitro and in vivo analysis. Scientific Reports, 2020, 10, 9557.	1.6	9
1089	Acrylic-Based Hydrogels as Advanced Biomaterials. , 2020, , .		1
1090	Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs. Polymer, 2020, 202, 122644.	1.8	8
1091	Nanomechanical characterization of electrospun biodegradable vascular scaffolds. Chemical Papers, 2020, 74, 3467-3474.	1.0	3
1092	Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. Regenerative Engineering and Translational Medicine, 2020, 6, 383-397.	1.6	9
1093	Polymer nanocomposites: Why their mechanical performance does not justify the expectation and a possible solution to the problem?. EXPRESS Polymer Letters, 2020, 14, 436-466.	1.1	20
1094	Antibacterial efficacy of chitosan- and poly(hexamethylene biguanide)-immobilized nanofiber membrane. International Journal of Biological Macromolecules, 2020, 154, 844-854.	3 . 6	35
1095	Electrospinning of ABS nanofibers and their high filtration performance. Advanced Fiber Materials, 2020, 2, 34-43.	7.9	41
1096	Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. International Journal of Biological Macromolecules, 2020, 153, 921-930.	3.6	114
1097	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	1.7	30
1098	Poly(l-lactide-co-caprolactone)/tussah silk fibroin nanofiber vascular scaffolds with small diameter fabricated by core-spun electrospinning technology. Journal of Materials Science, 2020, 55, 7106-7119.	1.7	26
1099	Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Separation and Purification Technology, 2020, 242, 116794.	3.9	53
1100	A free-standing NiCr-CNT@C anode mat by electrospinning for a high-performance urea/H2O2 fuel cell. Electrochimica Acta, 2020, 354, 136657.	2.6	13

#	Article	IF	CITATIONS
1101	In vitro and in vivo evaluation of Ca/P-hyaluronic acid/gelatin based novel dental plugs for one-step socket preservation. Materials and Design, 2020, 194, 108891.	3.3	27
1102	Acrylic-Based Materials for Biomedical and Bioengineering Applications. , 2020, , .		0
1103	Structural Rearrangement in LSM Perovskites for Enhanced Syngas Production via Solar Thermochemical Redox Cycles. ACS Catalysis, 2020, 10, 8263-8276.	5.5	15
1104	The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics, 2020, 12, 602.	2.0	81
1105	Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. International Journal of Biological Macromolecules, 2020, 162, 762-773.	3.6	39
1106	Electrospun conductive gold covered polycaprolactone fibers as electrochemical sensors for O2 monitoring in cell culture media. Electrochemistry Communications, 2020, 111, 106662.	2.3	10
1107	A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 2020, 26, 1847-1861.	1.2	4
1108	Graphene Oxide–Silver Nanoparticle Nanohybrids: Synthesis, Characterization, and Antimicrobial Properties. Nanomaterials, 2020, 10, 376.	1.9	123
1109	Controlled delivery of tetracycline hydrochloride intercalated into smectite clay using polyurethane nanofibrous membrane for wound healing application. Nano Structures Nano Objects, 2020, 21, 100418.	1.9	39
1110	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting Polyvinylidene Fiber	4.0	148
1111	Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. Tissue Engineering - Part B: Reviews, 2020, 26, 249-271.	2.5	16
1112	Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 2020, 107, 25-49.	4.1	374
1113	Curcumin loaded nanofibrous mats for wound healing application. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110885.	2.5	12
1114	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	1.3	5
1115	Osteoblasts and fibroblasts attachment to poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) film and electrospun scaffolds. Materials Science and Engineering C, 2020, 110, 110668.	3.8	44
1116	Fabrication and Characterization of Polyetherimide Electrospun Scaffolds Modified with Graphene Nano-Platelets and Hydroxyapatite Nano-Particles. International Journal of Molecular Sciences, 2020, 21, 583.	1.8	13
1117	Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydrate Polymers, 2020, 233, 115873.	5.1	68
1118	Response Improvement of Liquid Crystal-Loaded NRD Waveguide Type Terahertz Variable Phase Shifter. Crystals, 2020, 10, 307.	1.0	6

#	Article	IF	CITATIONS
1119	Novel mineralized electrospun chitosan/PVA/TiO ₂ nanofibrous composites for potential biomedical applications: computational and experimental insights. Nanoscale Advances, 2020, 2, 1512-1522.	2.2	29
1120	High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Materials Science and Engineering C, 2020, 112, 110939.	3.8	65
1121	Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity. Polymer, 2020, 196, 122467.	1.8	51
1122	Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics, 2020, 9, 174.	1.5	25
1123	Prodigiosin-loaded electrospun nanofibers scaffold for localized treatment of triple negative breast cancer. Materials Science and Engineering C, 2020, 114, 110976.	3.8	27
1124	Materials science perspective of multifunctional materials derived from collagen. International Materials Reviews, 2021, 66, 160-187.	9.4	20
1125	High humidity electrospinning of porous fibers for tuning the release of drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 880-892.	1.8	16
1126	The properties of nanofiber scaffolds of polyurethane-Cinnamomum zeylanicum against pathogens of Pseudomonas aeruginosa and Staphylococcus aureus. Polymer Bulletin, 2021, 78, 223-245.	1.7	4
1127	Emerging Role of Elastin-Like Polypeptides in Regenerative Medicine. Advances in Wound Care, 2021, 10, 257-269.	2.6	20
1128	Enhancement of biocompatibility of PVA/HTCC blend polymer with collagen for skin care application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 459-468.	1.8	34
1129	Bioactive and Biodegradable Polymer-Based Composites. , 2021, , 674-700.		1
1130	Bio-extract amalgamated sodium alginate-cellulose nanofibres based 3D-sponges with interpenetrating BioPU coating as potential wound care scaffolds. Materials Science and Engineering C, 2021, 118, 111348.	3.8	7
1131	A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 2021, 401, 123608.	6.5	192
1132	Electrospinning for tissue engineering applications. Progress in Materials Science, 2021, 117, 100721.	16.0	378
1133	Recent progress and challenges in solution blow spinning. Materials Horizons, 2021, 8, 426-446.	6.4	125
1134	Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV coreâ€shell nanofibers as bone tissue scaffold. Journal of Applied Polymer Science, 2021, 138, 49797.	1.3	23
1135	A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere, 2021, 267, 128916.	4.2	38
1136	Fabrication and conductivity study of silver nanoparticles loaded polyvinyl alcohol (PVA-AgNPs) nanofibers. Materials Today: Proceedings, 2021, 42, 515-520.	0.9	6

#	Article	IF	CITATIONS
1137	The Effect of Mechanical Properties of Synthetic Prostheses Made by Electrospinning on the Results of Experimental Implantation in the Infrarenal Abdominal Aorta. Annals of Vascular Surgery, 2021, 70, 506-516.	0.4	0
1138	Regeneration of the peripheral nerve via multifunctional electrospun scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 437-452.	2.1	27
1139	Functionalized polyvinyl alcohol nanofiber webs containing $\hat{l}^2\hat{a}\in$ "cyclodextrin/Vitamin C inclusion complex. Journal of Industrial Textiles, 2021, 50, 1559-1571.	1.1	3
1140	Fabrication and characterization of polycaprolactone-based green materials for drug delivery. , 2021, , 395-423.		2
1141	In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589223.	2.0	11
1142	The initial study of polyvinyl alcohol/honey/glycerin composite fibers. Materials Today: Proceedings, 2021, 44, 3408-3411.	0.9	1
1143	Nanofibers of polycaprolactone containing hydroxyapatite doped with aluminum/vanadate ions for wound healing applications. New Journal of Chemistry, 2021, 45, 22610-22620.	1.4	13
1144	Advances and innovations in electrospinning technology. , 2021, , 45-81.		9
1145	Nanostructured Materials for Glycan Based Applications. , 2021, , 473-505.		0
1146	Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomaterials Science, 2021, 9, 4228-4245.	2.6	15
1147	Silkworm and spider silk electrospinning: a review. Environmental Chemistry Letters, 2021, 19, 1737-1763.	8.3	65
1148	Preliminary study of composite fibers polyvinylpyrrolidone/cellulose acetate loaded by garlic extract by means of electrospinning method. Materials Today: Proceedings, 2021, 44, A1-A4.	0.9	4
1149	Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. Nanoscale, 2021, 13, 16034-16051.	2.8	32
1150	Surface-Functionalized Electrospun Nanofibers for Tissue Engineering. Springer Series on Polymer and Composite Materials, 2021, , 315-351.	0.5	2
1151	Functionalized magnetic composite nano/microfibres with highly oriented van der Waals Crl ₃ inclusions by electrospinning. Nanotechnology, 2021, 32, 145703.	1.3	4
1152	Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide. Polymer Testing, 2021, 93, 107006.	2.3	30
1153	Fabrication of Nanostructured Scaffolds for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2021, , 317-334.	0.7	1
1154	Nanomaterial-Based Bio Scaffolds for Enhanced Biomedical Applications. , 2021, , 125-160.		1

#	Article	IF	CITATIONS
1155	Lightweight Nanocomposites Polymers for Shielding Application. , 2021, , 554-575.		0
1156	Fabrication and Characterization of Polyvinyl Chloride/Copolyester/Nanoclay Composite Nanofiber. Asian Journal of Chemistry, 2021, 33, 1868-1874.	0.1	1
1157	Development of antibacterial nanofibrous wound dressing and conceptual reaction mechanism to deactivate the viral protein by Nigella sativa extract. Advances in Traditional Medicine, 2022, 22, 283-291.	1.0	5
1158	Fabrication and characterization of electrospun psyllium huskâ€based nanofibers for tissue regeneration. Journal of Applied Polymer Science, 2021, 138, 50569.	1.3	3
1159	Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Advanced Healthcare Materials, 2021, 10, e2001305.	3.9	35
1160	Ecofriendly antimicrobial Acalypha indica leaf extract immobilized polycaprolactone nanofibrous mat for food package applications. Journal of Food Processing and Preservation, 2021, 45, e15302.	0.9	4
1161	Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomedical Materials (Bristol), 2021, 16, 035004.	1.7	9
1162	Adsorbability of Modified PBS Nanofiber Membrane to Heavy Metal Ions and Dyes. Journal of Polymers and the Environment, 2021, 29, 3029-3039.	2.4	13
1163	Enhanced properties of poly(εâ€caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3â€hexafluoroâ€2â€propanol. Journal of Applied Polymer Science, 2021, 138, app50535.	1.3	8
1164	Electrospun Biomaterials' Applications and Processing. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 49, 91-100.	0.5	4
1165	Development of calixarene-based drug nanocarriers. Journal of Molecular Liquids, 2021, 325, 115246.	2.3	38
1166	Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies, 2021, 32, 2267-2289.	1.6	43
1167	Electrospinning for developing flame retardant polymer materials: Current status and future perspectives. Polymer, 2021, 217, 123466.	1.8	43
1168	Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. International Journal of Pharmaceutics, 2021, 596, 120203.	2.6	52
1169	Solution Blow Spinning of Polycaprolactoneâ€"Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. Materials, 2021, 14, 1463.	1.3	19
1170	Mechanical Reinforcement of Lime Pastes by Electrospun Cellulose Acetate Polymer Fibers. Fibers and Polymers, 2021, 22, 676-684.	1.1	5
1171	High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical Reviews, 2021, 121, 4561-4677.	23.0	89
1172	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	23.3	128

#	ARTICLE	IF	CITATIONS
1173	Phenolic Compound, Antioxidant and Antibacterial properties of Electrospun PVP Nanofiber loaded with Bassela rubra linn extract and Alginate from Sargassum sp IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012015.	0.3	1
1174	Effects of Scaffold Pore Morphologies on Glucose Transport Limitations in Hollow Fibre Membrane Bioreactor for Bone Tissue Engineering: Experiments and Numerical Modelling. Membranes, 2021, 11, 257.	1.4	10
1175	Materialâ€mediated cell immobilization technology in the biological fermentation proces. Biofuels, Bioproducts and Biorefining, 2021, 15, 1160-1173.	1.9	9
1176	Structurally optimized suture resistant polylactic acid (PLA)/poly (\tilde{N} "-caprolactone) (PCL) blend based engineered nanofibrous mats. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104331.	1.5	23
1177	The Drug-Loaded Electrospun Poly(l $\hat{l}\mu$ -Caprolactone) Mats for Therapeutic Application. Nanomaterials, 2021, 11, 922.	1.9	14
1178	A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromolecular Materials and Engineering, 2021, 306, 2100115.	1.7	78
1179	Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers, 2021, 13, 1209.	2.0	50
1180	Numerical Analysis of Ampicillin Release from Electrospun Nanofibrous Mats. Northwestern Medical Journal, 0, , 163-174.	0.0	0
1181	Selenium and clarithromycin loaded PLA-GO composite wound dressings by electrospinning method. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 898-909.	1.8	9
1182	Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Frontiers in Chemistry, 2021, 9, 680836.	1.8	16
1183	Physicomechanical performance and encapsulation efficiency of \hat{l}^2 -cyclodextrin loaded functional electrospun mats based on aliphatic polyesters and their blends. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1489-1513.	1.9	16
1184	Synthesis, Optimal Fabrication, and Physicoâ€Mechanical Property Evaluation of PCL <i>â€bâ€</i> PLLA Diblock Copolymerâ€Based Nanoscale Roughness Textured Electrospun Mats. Macromolecular Materials and Engineering, 2021, 306, 2100226.	1.7	11
1185	Poly (Lâ€lactic acid) nanofibrous scaffolds support the proliferation and neural differentiation of mouse neural stem and progenitor cells. International Journal of Developmental Neuroscience, 2021, 81, 438-447.	0.7	6
1186	A postgraduate experiment: a study of fabricating nanofibers by electrospinning. European Journal of Physics, 2021, 42, 045501.	0.3	3
1188	Electrospun scaffold for bone regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 842-857.	1.8	12
1190	Crosslinking of Gelatin in Bicomponent Electrospun Fibers. Materials, 2021, 14, 3391.	1.3	8
1191	Review on Electrospun Nanofiber-Applied Products. Polymers, 2021, 13, 2087.	2.0	85
1192	Fabrication and Antimicrobial Activity of Poly(lactic acid) Nanofibers Containing Firstly Synthesized Silver Diclofenac Complex with (2-methylimidazole) for Wound Dressing Applications. Fibers and Polymers, 2021, 22, 2738-2749.	1.1	14

#	Article	IF	CITATIONS
1193	Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine—A Review. Polymers, 2021, 13, 1973.	2.0	66
1194	Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment. Pharmaceutics, 2021, 13, 916.	2.0	6
1195	Coaxial electrospun membranes of poly(εâ€caprolactone)/poly(lactic acid) with reverse <scp>coreâ€shell</scp> structures loaded with curcumin as tunable drug delivery systems. Polymers for Advanced Technologies, 2021, 32, 4005-4013.	1.6	17
1196	Electrospun Polysaccharidic Textiles for Biomedical Applications. Textiles, 2021, 1, 152-169.	1.8	11
1197	Antibacterial efficacy of quaternized chitosan/poly (vinyl alcohol) nanofiber membrane crosslinked with blocked diisocyanate. Carbohydrate Polymers, 2021, 262, 117910.	5.1	51
1198	Electrospinning for drug delivery applications: A review. Journal of Controlled Release, 2021, 334, 463-484.	4.8	345
1200	Antibacterial Poly(Îμ-CL)/Hydroxyapatite Electrospun Fibers Reinforced by Poly(Îμ-CL)-b-poly(ethylene) Tj ETQq0	0 0 rgBT /	Overlock 10 T
1201	Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 2021, 6, 2100410.	3.0	183
1202	Electrospun nanofiber patch based on gum tragacanth/polyvinyl alcohol/molybdenum disulfide composite for tetracycline delivery and their inhibitory effect on Gram+ and Gram– bacteria. Journal of Molecular Liquids, 2021, 334, 115989.	2.3	21
1203	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	3.6	6
1204	Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126615.	2.3	31
1205	A Novel Aloe Vera-Loaded Ethylcellulose/Hydroxypropyl Methylcellulose Nanofibrous Mat Designed for Wound Healing Application. Journal of Polymers and the Environment, 2022, 30, 867-877.	2.4	19
1206	Design and characterization of novel ecofriendly European fish eel gelatin-based electrospun microfibers applied for fish oil encapsulation. Process Biochemistry, 2021, 106, 10-19.	1.8	8
1207	Preparation and characterization of wool fiber reinforced nonwoven alginate hydrogel for wound dressing. Cellulose, 2021, 28, 7941-7951.	2.4	28
1208	Formaldehyde vapour sensing property of electrospun NiO nanograins. Frontiers of Materials Science, 2021, 15, 416-430.	1.1	5
1209	Fabrication of a Cu Nanoparticles/Poly(ε-caprolactone)/Gelatin Fiber Membrane with Good Antibacterial Activity and Mechanical Property <i>via</i> Green Electrospinning. ACS Applied Bio Materials, 2021, 4, 6137-6147.	2.3	10
1210	Biodegradable Antimicrobial Agent/Analgesic/Bone Morphogenetic Protein-Loaded Nanofibrous Fixators for Bone Fracture Repair. International Journal of Nanomedicine, 2021, Volume 16, 5357-5370.	3.3	2
1211	Fabrication of Poly (Vinyl Alcohol)/Gelatin Biomimetic Electrospun Nanofibrous Composites and Its Bioactivity Assessment for Bone Tissue Engineering. Gene, Cell and Tissue, 2021, 8, .	0.2	0

#	Article	IF	CITATIONS
1212	Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology, 2021, 64, 102600.	1.4	15
1213	Electrospinning through the prism of time. Materials Today Chemistry, 2021, 21, 100543.	1.7	27
1214	Plasma-assisted multiscale topographic scaffolds for soft and hard tissue regeneration. Npj Regenerative Medicine, 2021, 6, 52.	2.5	12
1215	Electrospun polyimide fiber membranes for separation of oil-in-water emulsions. Separation and Purification Technology, 2021, 270, 118825.	3.9	26
1216	Preparation and morphological investigation on bioactive ion-modified carbonated hydroxyapatite-biopolymer composite ceramics as coatings for orthopaedic implants. Ceramics International, 2022, 48, 760-768.	2.3	19
1217	Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering. Human Cell, 2021, 34, 1682-1696.	1.2	4
1218	Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology. , 2022, 232, 107990.		44
1219	Improvement of Drug Release and Compatibility between Hydrophilic Drugs and Hydrophobic Nanofibrous Composites. Materials, 2021, 14, 5344.	1.3	9
1220	Electrospun Starch Nanofibers as a Delivery Carrier for Carvacrol as Antiâ€Glioma Agent. Starch/Staerke, 2022, 74, 2100115.	1,1	7
1221	Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: A review. Carbon, 2021, 182, 463-483.	5.4	28
1222	A novel porous composite membrane of PHA/PVA via coupling of electrospinning and spin coating for antibacterial applications. Materials Letters, 2021, 301, 130279.	1.3	20
1223	Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor. Sustainable Materials and Technologies, 2021, 30, e00341.	1.7	7
1224	Poly(vinylidene fluoride)/poly(styrene-co-acrylic acid) nanofibers as potential materials for blood separation. Journal of Membrane Science, 2022, 641, 119881.	4.1	8
1225	Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. Journal of Materials Chemistry B, 2021, 9, 4120-4133.	2.9	10
1226	Toward an Augmented and Explainable Machine Learning Approach for Classification of Defective Nanomaterial Patches. Proceedings of the International Neural Networks Society, 2021, , 244-255.	0.6	2
1227	Nanosystems Comprising Biocompatible Polymers for the Delivery of Photoactive Compounds in Biomedical Applications. Nanomedicine and Nanotoxicology, 2021, , 253-287.	0.1	0
1228	Multifunctional Fibroblasts Enhanced via Thermal and Freeze-Drying Post-treatments of Aligned Electrospun Nanofiber Membranes. Advanced Fiber Materials, 2021, 3, 26-37.	7.9	31
1230	Silicone Fiber Electrospinning for Medical Applications. IFMBE Proceedings, 2015, , 537-540.	0.2	3

#	Article	IF	CITATIONS
1231	Nanofibre-Based Sensors for Visual and Optical Monitoring. Nanoscience and Technology, 2015, , 157-177.	1.5	12
1232	Functional Nanofibers Containing Cyclodextrins. , 2018, , 29-62.		2
1234	Hyaluronic Acid Based Nanofibers for Wound Dressing and Drug Delivery Carriers. Fundamental Biomedical Technologies, 2014, , 417-433.	0.2	2
1235	Toward an Automatic Classification ofÂSEM Images of Nanomaterials via a Deep Learning Approach. Smart Innovation, Systems and Technologies, 2020, , 61-72.	0.5	10
1236	Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. Journal of Materials Science, 2020, 55, 5667-5679.	1.7	53
1237	Polymer nanofiber composites. , 2017, , 55-78.		6
1238	Towards advanced wound regeneration. European Journal of Pharmaceutical Sciences, 2020, 149, 105360.	1.9	10
1239	Biodegradable electrospun PLLA fibers containing the mosquito-repellent DEET. European Polymer Journal, 2019, 113, 377-384.	2.6	24
1240	Polyvinyl alcohol/Gum tragacanth/graphene oxide composite nanofiber for antibiotic delivery. Journal of Drug Delivery Science and Technology, 2020, 60, 102044.	1.4	43
1241	Chapter 14. Materials for Tissue Engineering and 3D Cell Culture. RSC Polymer Chemistry Series, 2016, , 460-489.	0.1	1
1242	Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. Journal of Food Science, 2017, 82, 1412-1422.	1.5	54
1243	Magnetic Polymer Nanocomposites. , 2010, , 135-158.		1
1244	Electrospinning of Nanofibers. , 2012, , 293-320.		4
1245	Electrospun Fibers in Composite Materials for Medical ApplicationsÂ. Journal of Composites and Biodegradable Polymers, 2013, 1, 56-65.	0.3	18
1246	A Comparative Study on In Vitro Osteogenic Priming Potential of Electron Spun Scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for Tissue Engineering Application. PLoS ONE, 2014, 9, e104389.	1.1	47
1247	Monitoring Drug Release from Electrospun Fibers Using an In Situ Fiber-Optic System. Dissolution Technologies, 2016, 23, 6-11.	0.2	7
1248	Structural design toward functional materials by electrospinning: A review. E-Polymers, 2020, 20, 682-712.	1.3	103
1249	Solid Aerosol Filtration by Electrospun Poly Vinyl Pyrrolidone Fiber Mats and Dependence on Pore Size. Journal of Textile Engineering & Fashion Technology, 2017, 1, .	0.1	2

#	Article	IF	CITATIONS
1250	Electrical and Optical Characteristics of Nematic Liquid Crystal/Nanofibers Composite Device. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 704-709.	0.2	2
1251	Preparation of Chitosan-Polyethylene Oxide-Colocasia esculenta Flour Nanofibers using Electrospinning Method. Journal of Mechanical Engineering Science and Technology, 2019, 3, 1-7.	0.1	3
1252	Applications of electrospun nanofibers in the biomedical field. SURG Journal, 2012, 5, 63-73.	0.1	15
1253	Electrospinning Technology for Applications in Supercapacitors. Current Organic Chemistry, 2013, 17, 1402-1410.	0.9	18
1254	Corrosion Protection of Nano-biphasic Calcium Phosphate Coating on Titanium Substrate. Current Nanoscience, 2020, 16, 779-792.	0.7	3
1255	Advances in Electrospinning of Nanofibers and their Biomedical Applications. Current Tissue Engineering, 2013, 2, 91-108.	0.2	14
1256	Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering., 2011, 21, 384-395.		32
1257	Biomedical Applications of Natural Polymer Based Nanofibrous Scaffolds. International Journal of Medical Nano Research, 2015, 2, .	0.5	6
1258	Electrospun Scaffolds in Tendons Regeneration: a review. Muscles, Ligaments and Tendons Journal, 2019, 09, 478.	0.1	6
1259	Medical applications of stereolithography: An overview. International Journal of Academic Medicine, 2018, 4, 252.	0.2	11
1260	Nanopores Structure in Electrospun Bacterial Cellulose. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 92-96.	1.0	15
1261	Development of Biobased Poly(Lactic Acid)/Epoxidized Natural Rubber Blends Processed by Electrospinning: Morphological, Structural and Thermal Properties. Materials Sciences and Applications, 2016, 07, 210-219.	0.3	7
1262	Poly(<i>N</i> -Vinyl Pyrrolidone- <i>b</i> -Dimethylsiloxane) Electrospun Nanofibers: Preparation, Characterization and Biological Response. Open Journal of Biophysics, 2013, 03, 148-157.	0.7	4
1263	Development of Drug Eluting Stent for the Treatment of Benign Biliary Stricture by Electro-spray Method. Porrime, 2012, 36, 163-168.	0.0	1
1264	Fabrication of Electrospun Antibacterial Curcumin-loaded Zein Nanofibers. Porrime, 2014, 38, 744-751.	0.0	7
1265	Fabrication of Chitosan-Based Biomaterials: Techniques and Designs. , 2021, , 455-518.		4
1266	Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering. Materials, 2021, 14, 6295.	1.3	9
1267	Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnology and Bioengineering, 2022, 119, 9-33.	1.7	38

#	Article	IF	CITATIONS
1268	Telmisartan Loaded Nanofibers Enhance Re-Endothelialization and Inhibit Neointimal Hyperplasia. Pharmaceutics, 2021, 13, 1756.	2.0	5
1269	Cyclodextrin-based nanostructures. Progress in Materials Science, 2022, 124, 100869.	16.0	48
1270	Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 2022, 57, 58-104.	1.7	42
1271	Recent advancement of electrocorticography (ECoG) electrodes for chronic neural recording/stimulation. Materials Today Communications, 2021, 29, 102853.	0.9	19
1272	Wireless Wearable ECG Monitoring System. , 2011, , 72-88.		0
1274	Applications of Electrospun Nanofibers. SpringerBriefs in Materials, 2013, , 75-139.	0.1	1
1275	Effect of Electrospinning Parameters on Fiber Morphology of Tissue Engineering Scaffolds: A Review. Journal of Fashion Technology & Textile Engineering, 2014, 02, .	0.1	0
1276	Spinning. Seikei-Kakou, 2014, 26, 317-324.	0.0	0
1277	Nanofiber Structured Polymeric Tissue Scaffolds. Tekstil Ve Muhendis, 2014, , 38-50.	0.3	4
1282	Covalent Functionalizations of Poly(vinyl chloride) in Tune with Applications: An Update. Journal of Research Updates in Polymer Science, 2015, 4, 79-122.	0.3	1
1283	Nanotextile and Tissue Engineering from a Biological Perspective., 2015,, 147-185.		0
1284	Nanofibers: Drug Delivery. , 0, , 5178-5200.		0
1285	Electrospun Herbal Extract Derived Polymer Nanocomposites for Medical Applications. Materials Science Textile and Clothing Technology, 0, 10, 7.	0.1	0
1287	CHAPTER 14. Biocompatible Electrospun Polymer–Halloysite Nanofibers for Sustained Release. RSC Smart Materials, 2016, , 379-398.	0.1	0
1288	Electrospinning Technology: Biopolymeric Materials Development., 0,, 3169-3181.		0
1289	Silk Natural Nanofibers. , 0, , 7244-7254.		0
1290	Electrospun Nanofibrous Membranes., 2016,, 666-670.		1
1291	Overview of Polylactide-co-Glycolide Drug Delivery Systems. , 2016, , 159-185.		O

#	Article	IF	CITATIONS
1292	Electrospun Biodegradable Polyester Micro-/Nanofibers for Drug Delivery and Their Clinical Applications., 2016,, 125-158.		0
1293	Fabrication of Highly Aligned Poly(Vinyl Alcohol) Nanofibers and its Yarn by Electrospinning. , 0, , .		2
1294	Electrospinning Technology: Polymeric Nanofiber Drug Delivery. , 2017, , 491-505.		0
1295	Nanotechnologies for Neurosciences. PoliTO Springer Series, 2019, , 81-98.	0.3	0
1296	Differentiation of Periodontal Ligament Stem Cells Into Osteoblasts on Hybrid Alginate/ Polyvinyl Alcohol/ Hydroxyapatite Nanofibrous Scaffolds. Archives of Neuroscience, 2018, In Press, .	0.1	3
1297	Modified PLGA nanofibers as a nerve regenerator with Schwann cells. Cellular and Molecular Biology, 2018, 64, 66-71.	0.3	6
1298	Lightweight Nanocomposites Polymers for Shielding Application. Advances in Chemical and Materials Engineering Book Series, 2019, , 206-233.	0.2	0
1299	Polymer-Based Nanofibers: Preparation, Fabrication, and Applications., 2019,, 215-261.		14
1300	Fabricación de fibras poliméricas a base de PLA obtenidas mediante electrohilado. Cultura CientÃfica Y Tecnológica, 2020, 17, 1-6.	0.0	0
1301	Computational characterization of nonwoven fibrous media: I. Pore-network extraction and morphological analysis. Physical Review Materials, 2020, 4, .	0.9	4
1302	Nexus of Electrospun Nanofibers and Additive Processingâ€"Overview of Wearable Tactical Gears for CBRNE Defense. Smart Innovation, Systems and Technologies, 2022, , 133-145.	0.5	4
1303	Electrospinning Fabrication Methods to Incorporate Laminin in Polycaprolactone for Kidney Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2022, 19, 73-82.	1.6	18
1304	Fabrication of Composite-Based Electrospun Nanofiber Adsorbent and Application in Dye Removal. Journal of Environmental Science and Pollution Research, 2020, 6, 431-434.	0.2	1
1305	Electrospun Nanofibers for Drug Delivery Applications. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 33-51.	0.3	0
1306	Skin-on-a-Chip Technology for Testing Transdermal Drug Deliveryâ€"Starting Points and Recent Developments. Pharmaceutics, 2021, 13, 1852.	2.0	15
1307	Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability. Polymer Science - Series A, 2020, 62, 648-659.	0.4	1
1308	Gas separation and filtration membrane applications of polymer/graphene nanocomposites., 2022,, 197-222.		0
1309	Effect of the Hemin Molecular Complexes on the Structure and Properties of the Composite Electrospun Materials Based on Poly(3-hydroxybutyrate). Polymers, 2021, 13, 4024.	2.0	7

#	Article	IF	Citations
1310	Synthesis and Characterization of Nonwoven Cotton-Reinforced Cellulose Hydrogel for Wound Dressings. Polymers, 2021, 13, 4098.	2.0	26
1311	Polyurethane electrospun membranes with ⟨scp⟩hydroxyapatiteâ€vancomycin⟨/scp⟩ for potential application in bone tissue engineering and drug delivery. Journal of Applied Polymer Science, 2022, 139, 51893.	1.3	3
1312	Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-19.	1.8	3
1313	Aggregation-induced emission active luminescent polymeric nanofibers: From design, synthesis, fluorescent mechanism to applications. TrAC - Trends in Analytical Chemistry, 2022, 146, 116502.	5.8	13
1314	Fabrication, microstructure characterization, and degradation performance of electrospun mats based on poly(3â€hydroxybutyrate‷co â€3 hydroxyvalerate)/polyethylene glycol blend for potential tissue engineering. Luminescence, 2022, 37, 323-331.	1.5	1
1315	Electrochemical and optical properties of magnetic CuFe2O4 nanofibers grown by PVP and PVA-assisted sol–gel electrospinning. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	12
1316	Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications. , 2022, , 532-566.		1
1317	Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers, 2022, 14, 469.	2.0	37
1318	How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers, 2022, 14, 209.	2.0	4
1319	Heterogeneously engineered porous media for directional and asymmetric liquid transport. Cell Reports Physical Science, 2022, 3, 100710.	2.8	23
1320	Polymer-based bionanomaterials for targeted drug delivery., 2022,, 241-271.		3
1321	Methods to Characterize Electrospun Scaffold Morphology: A Critical Review. Polymers, 2022, 14, 467.	2.0	14
1322	Mechanical and Shape Memory Properties of Electrospun Polyurethane with Thiol-Ene Crosslinking. Nanomaterials, 2022, 12, 406.	1.9	2
1323	Beyond biopreservatives, bacteriocins biotechnological applications: History, current status, and promising potentials. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102248.	1.5	5
1324	Multifunctional Membranesâ€"A Versatile Approach for Emerging Pollutants Removal. Membranes, 2022, 12, 67.	1.4	11
1325	Effect of drug incorporation and polymer properties on the characteristics of electrospun nanofibers for drug delivery. Journal of Drug Delivery Science and Technology, 2022, 68, 103112.	1.4	8
1326	Electrospinning of poly(decamethylene terephthalate) to support vascular graft applications. European Polymer Journal, 2022, 165, 111003.	2.6	6
1327	High efficiency biomimetic electrospun fibers for use in regenerative medicine and drug delivery: A review. Materials Chemistry and Physics, 2022, 279, 125785.	2.0	10

#	Article	IF	CITATIONS
1328	Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Applied Bionics and Biomechanics, 2022, 2022, 1-15.	0.5	22
1329	Physicomechanical characterization and tablet compression of theophylline nanofibrous mats prepared by conventional and ultrasound enhanced electrospinning. International Journal of Pharmaceutics, 2022, 616, 121558.	2.6	14
1331	Medical applications of polymer/functionalized nanoparticle composite systems, renewable polymers, and polymer–metal oxide composites. , 2022, , 129-164.		0
1332	Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. Journal of Materials Chemistry B, 2022, 10, 1763-1774.	2.9	10
1333	Tissue engineered scaffolds for corneal endothelial regeneration: a material's perspective. Biomaterials Science, 2022, 10, 2440-2461.	2.6	11
1334	Hydrophobic modification of water-borne poly(vinyl alcohol) electrospun nonwovens for advanced applications. Polymers and Polymer Composites, 2022, 30, 096739112210805.	1.0	1
1335	Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. Journal of Tissue Engineering, 2022, 13, 204173142210856.	2.3	3
1336	Altered phase behavior of the lauric acid–stearic acid binary mixtures in electrospun PVA–PDMS mats. Materials Advances, 2022, 3, 2737-2748.	2.6	2
1338	Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances. Injury, 2022, 53, S2-S12.	0.7	13
1339	Characterizing the Effect of Adding Boron Nitride Nanotubes on the Mechanical Properties of Electrospun Polymer Nanocomposite Microfibers Mesh. Materials, 2022, 15, 1634.	1.3	1
1341	Electrospinning research and products: The road and the way forward. Applied Physics Reviews, 2022, 9, .	5.5	50
1342	Improving Needleless Electrospinning Throughput by Tailoring Polyurethane Solution Properties with Polysiloxane Additives. ACS Applied Polymer Materials, 2022, 4, 2205-2215.	2.0	8
1343	Development of Eco-Friendly Nanomembranes of Aloe vera/PVA/ZnO for Potential Applications in Medical Devices. Polymers, 2022, 14, 1029.	2.0	5
1344	Designing a novel 3D nanofibrous scaffold based on nanoalloy AuAg NPs (AuAg@ PAN NFs) for osteogenic differentiation of human adipose derived mesenchymal stem cells (hADMSCs). European Polymer Journal, 2022, 167, 111073.	2.6	1
1345	Cranberry proanthocyanidins composite electrospun nanofibers as a potential alternative for bacterial entrapment applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1876-1886.	1.6	0
1346	Self-Healing Nanofibers for Engineering Applications. Industrial & Engineering Chemistry Research, 2022, 61, 3789-3816.	1.8	22
1347	Electrospinning of Quaternized Chitosan-Poly(vinyl alcohol) Composite Nanofiber Membrane: Processing Optimization and Antibacterial Efficacy. Membranes, 2022, 12, 332.	1.4	10
1348	Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech, 2022, 12, 92.	1.1	4

#	Article	IF	CITATIONS
1349	Smoothâ€rough asymmetric <scp>PLGA</scp> structure made of dip coating membrane and electrospun nanofibrous scaffolds meant to be used for guided tissue regeneration of periodontium. Polymer Engineering and Science, 2022, 62, 2061-2069.	1.5	7
1350	Synergistically Promoting Bone Regeneration by Icariin-Incorporated Porous Microcarriers and Decellularized Extracellular Matrix Derived From Bone Marrow Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, 824025.	2.0	8
1351	Effects of D-lactide content and molecular weight on the morphological, thermal, and mechanical properties of electrospun nanofiber polylactide mats. Journal of Industrial Textiles, 0, , 152808372210902.	1.1	2
1352	Progress in recycling and valorization of waste silk. Science of the Total Environment, 2022, 830, 154812.	3.9	27
1353	The wettability of electron spun membranes by synovial fluid. Royal Society Open Science, 2021, 8, 210892.	1.1	1
1355	Production and in vitro analysis of catechin incorporated electrospun gelatin/ poly (lactic acid) microfibers for wound dressing applications. Journal of Industrial Textiles, 2022, 51, 7529S-7544S.	1.1	7
1356	Improvement of Air Filtration Performance Using Nanofibrous Membranes with a Periodic Variation in Packing Density. Advanced Materials Interfaces, 2022, 9, .	1.9	5
1357	Preparation and Evaluation of Extended-Release Nanofibers Loaded with Pramipexole as a Novel Oral Drug Delivery System: Hybridization of Hydrophilic and Hydrophobic Polymers. Journal of Pharmaceutical Innovation, 2023, 18, 287-299.	1.1	4
1358	Fabrication and Characterization of Antibacterial Suture Yarns Containing PLA/Tetracycline Hydrochloride-PVA/Chitosan Nanofibers. Fibers and Polymers, 2022, 23, 1538-1547.	1.1	10
1359	Basic Principles of Electrospinning, Mechanisms, Nanofibre Production, and Anticancer Drug Delivery. Journal of Chemistry, 2022, 2022, 1-15.	0.9	15
1360	Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 2022, 1-14.	0.7	1
1363	Electrospun SF/PLGA/ICG Composite Nanofibrous Membranes for Potential Wound Healing and Tumor Therapy. Processes, 2022, 10, 850.	1.3	0
1364	Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. Journal of Biomedical Materials Research - Part A, 2022, 110, 1460-1487.	2.1	25
1365	Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells, 2022, 11, 1582.	1.8	14
1366	Tuning structural-response of PLA/PCL based electrospun nanofibrous mats: Role of dielectric-constant and electrical-conductivity of the solvent system. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1759-1793.	1.9	6
1367	Optimised release of tetracycline hydrochloride from core-sheath fibres produced by pressurised gyration. Journal of Drug Delivery Science and Technology, 2022, 72, 103359.	1.4	7
1368	Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. International Journal of Biological Macromolecules, 2022, 210, 324-336.	3.6	12
1369	Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 433-459.	1.8	13

#	Article	IF	CITATIONS
1370	Bio-derived and biocompatible poly(lactic acid)/silk sericin nanogels and their incorporation within poly(lactide- <i>co</i> -glycolide) electrospun nanofibers. Polymer Chemistry, 2022, 13, 3343-3357.	1.9	16
1371	Superior processability of Antheraea mylitta silk with cryo-milling: Performance in bone tissue regeneration. International Journal of Biological Macromolecules, 2022, 213, 155-165.	3.6	3
1372	Polymer supported electrospun nanofibers with supramolecular materials for biological applications $\hat{a} \in \text{``a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1042-1058.}$	1.8	4
1373	Electrospinning for the Modification of 3D Objects for the Potential Use in Tissue Engineering. Technologies, 2022, 10, 66.	3.0	3
1374	Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers, 2022, 14, 2094.	2.0	9
1375	Basement membrane properties and their recapitulation in organ-on-chip applications. Materials Today Bio, 2022, 15, 100301.	2.6	11
1376	Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for		

#	Article	IF	CITATIONS
1391	Electrospun Materials for Biomedical Applications. Pharmaceutics, 2022, 14, 1556.	2.0	5
1392	Synthesis and evaluation of electrospun PCL-plasmid DNA nanofibers for post cancer treatments. Materials Today: Proceedings, 2022, , .	0.9	0
1393	The Effect of the Natural and Synthetic Porphyrin Complexes on the Structure and Properties of the Semiâ€Crystalline Polymers. Macromolecular Symposia, 2022, 404, 2100326.	0.4	0
1394	Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers, 2022, 14, 3266.	2.0	39
1395	Covalent and biodegradable chitosan-cellulose hydrogel dressing containing microspheres for drug delivery and wound healing. Materials Today Communications, 2022, 33, 104163.	0.9	4
1396	Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes, 2022, 12, 861.	1.4	32
1398	Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications. International Journal of Biological Macromolecules, 2022, 220, 1402-1414.	3.6	19
1399	Electrospinning-Driven InHfOx Nanofiber Channel Field-Effect Transistors and Humidity Stability Exploration. IEEE Transactions on Electron Devices, 2022, 69, 6417-6422.	1.6	2
1400	Recent Developments in Electrospinning Spinneret and Collector Assembly for Biomedical Applications. Advances in Polymer Science, 2022, , .	0.4	0
1401	Fabrication of Textile-Based Scaffolds Using Electrospun Nanofibers for Biomedical Applications. Advances in Polymer Science, 2022, , .	0.4	1
1402	Future direction of wound dressing research: Evidence From the bibliometric analysis. Journal of Industrial Textiles, 2022, 52, 152808372211305.	1.1	3
1403	Electrospun biomedical nanofibers and their future as intelligent biomaterials. Current Opinion in Biomedical Engineering, 2022, 24, 100418.	1.8	9
1404	Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. International Journal of Molecular Sciences, 2022, 23, 11525.	1.8	6
1405	Surfaceâ€Modified Melt Coextruded Nanofibers Enhance Blood Clotting In Vitro. Macromolecular Bioscience, 2022, 22, .	2.1	0
1406	Electrospun nanofiber mesh with connective tissue growth factor and mesenchymal stem cells for pelvic floor repair: Longâ€term study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 392-401.	1.6	8
1407	Kinetic analysis and dielectric properties of tyrosine-based tripeptide side groups carrying novel methacrylate polymers. Journal of Polymer Research, 2022, 29, .	1.2	1
1408	Wound Healing: An Overview of Wound Dressings on Health Care. Current Pharmaceutical Biotechnology, 2023, 24, 1079-1093.	0.9	9
1409	Comparative Study of the Structural, Mechanical and Electrochemical Properties of Polyacrylonitrile (PAN)-Based Polypyrrole (PPy) and Polyvinylidene Fluoride (PVDF) Electrospun Nanofibers. Journal of Macromolecular Science - Physics, 2022, 61, 1103-1115.	0.4	1

#	Article	IF	CITATIONS
1410	A combinatorial approach to the elastic response of electrospun mats: Architectural framework and single fiber properties. Mechanics of Materials, 2022, , 104484.	1.7	0
1411	Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. Journal of Cleaner Production, 2022, 377, 134479.	4.6	8
1412	High Strength and High Toughness Electrospun Multifibrillar Yarns with Highly Aligned Hierarchy Intended as Anisotropic Extracellular Matrix. Macromolecular Bioscience, 0, , 2200291.	2.1	0
1413	Biomaterials for Periodontal Regeneration. Dental Clinics of North America, 2022, 66, 659-672.	0.8	10
1414	Chitosan-poly(ethylene oxide) nanofibrous mat as a vaginal platform for tenofovir disoproxyl fumarate â€" The effect of vaginal pH on drug carrier performance. International Journal of Biological Macromolecules, 2022, 222, 856-867.	3.6	5
1415	Current strategies for enhancement of the bioactivity of artificial ligaments: A mini-review. Journal of Orthopaedic Translation, 2022, 36, 205-215.	1.9	3
1416	Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics, 2022, 14, 2093.	2.0	4
1417	High-Throughput Electrospinning of Biomaterials. , 2022, , 341-352.		1
1418	Chain-End Functionalization of Poly($\hat{l}\mu$ -caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive Properties. Polymers, 2022, 14, 4203.	2.0	3
1419	Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material. Polymers, 2022, 14, 4209.	2.0	5
1420	Nigella/honey/garlic/olive oil co-loaded PVA electrospun nanofibers for potential biomedical applications. Progress in Biomaterials, 2022, 11, 431-446.	1.8	10
1421	Protein–based electrospun nanofibers: electrospinningÂconditions, biomedical applications, prospects, and challenges. Journal of the Textile Institute, 2023, 114, 1592-1617.	1.0	7
1422	Microstructure evolution of electrospun polyvinylidene fluoride fibers via stretching at varying temperatures. Polymer, 2022, 262, 125434.	1.8	2
1423	Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil. Polymers, 2022, 14, 4741.	2.0	1
1424	Nanofiber Based on Electrically Conductive Materials for Biosensor Applications. , 2023, 1, 664-679.		2
1425	Adsorption dynamics of quercetin with electrospun konjac glucomannan fabric containing double stranded DNA. Polymer, 2023, 265, 125606.	1.8	0
1426	Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering. International Journal of Biological Macromolecules, 2023, 228, 78-88.	3.6	9
1427	Polymeric materials and processes to produce facial reconstruction implants: A review. MATEC Web of Conferences, 2022, 370, 10004.	0.1	0

#	Article	IF	CITATIONS
1428	Improved endothelial cell proliferation on laminin-derived peptide conjugated nanofibrous microtubes using custom made bioreactor. International Advanced Researches and Engineering Journal, 0, , .	0.4	0
1429	Electrospun Textile Strategies in Tendon to Bone Junction Reconstruction. Advanced Fiber Materials, 2023, 5, 764-790.	7.9	7
1430	Polysaccharide-Enriched Electrospun Nanofibers for Salicylic Acid Controlled Release., 2023, 1, 508-518.		4
1431	Novel di and tripeptide side groups bearing acrylate polymers: synthesis, characterization, and their theoretical, and electrical properties. Journal of Polymer Research, 2022, 29, .	1.2	0
1432	PLA and PBATâ€Based Electrospun Fibers Functionalized with Antibacterial Bioâ€Based Polymers. Macromolecular Bioscience, 2023, 23, .	2.1	4
1433	Grapheneâ€Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Advanced Healthcare Materials, 2023, 12, .	3.9	9
1434	Suspension Arrays Prepared from Nanofiber-Based Microparticles for a Platform of SERS-Based Multiplex Immunoassay. ACS Applied Polymer Materials, 2023, 5, 625-634.	2.0	2
1435	Matrix mechanophysical factor: pore size governs the cell behavior in cancer. Advances in Physics: X, 2023, 8, .	1.5	1
1436	Innovative antibacterial electrospun nanofibers mats depending on piezoelectric generation. Scientific Reports, 2022, 12, .	1.6	6
1437	An Overview of Collagen-Based Composite Scaffold for Bone Tissue Engineering. Applied Biochemistry and Biotechnology, 2023, 195, 4617-4636.	1.4	1
1438	Supramolecular assembly of benzocaine bearing cyclodextrin cavity via host-guest complexes on polyacrylonitrile as an electrospun nanofiber. Journal of Pharmaceutical and Biomedical Analysis, 2023, 225, 115223.	1.4	3
1439	Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 2023, 15, 65.	2.0	49
1440	A Promising Antibacterial Wound Dressing Made of Electrospun Poly (Glycerol Sebacate) (PGS)/Gelatin with Local Delivery of Ascorbic Acid and Pantothenic Acid. Journal of Polymers and the Environment, 2023, 31, 2504-2518.	2.4	2
1441	Preparation of Advanced Multi-Porous Carbon Nanofibers for High-Performance Capacitive Electrodes in Supercapacitors. Polymers, 2023, 15, 213.	2.0	9
1442	Multifaceted approach for nanofiber fabrication. , 2023, , 253-283.		0
1443	Fabrication and Characterization of Electrospun Poly(Caprolactone)/Tannic Acid Scaffold as an Antibacterial Wound Dressing. Polymers, 2023, 15, 593.	2.0	7
1444	Current approaches in nanofiber-based drug delivery systems: methods and applications., 2023,, 39-71.		1
1445	Photothermally Controlled Drug Release of Poly(d,l-lactide) Nanofibers Loaded with Indocyanine Green and Curcumin for Efficient Antimicrobial Photodynamic Therapy. Pharmaceutics, 2023, 15, 327.	2.0	6

#	Article	IF	CITATIONS
1446	Nanospun membranes developed by electrospinning techniques for drug delivery applications. , 2023, , 471-499.		0
1447	Scope of using hollow fibers as a medium for drug delivery. , 2023, , 169-213.		0
1448	Gelatin-based nanosystems for therapeutic applications. , 2023, , 497-520.		0
1449	Magnetic-Field-Assisted Emulsion Electrospinning System: Designing, Assembly, and Testing for the Production of PCL/Gelatin Core–Shell Nanofibers. Fibers and Polymers, 2023, 24, 515-523.	1.1	1
1450	Artificial bone scaffolds and bone joints by additive manufacturing: A review. Bioprinting, 2023, 31, e00268.	2.9	5
1451	Design and characterization of polyurethane based electrospun systems modified with transition metals oxides for protective clothing applications. Applied Surface Science, 2023, 617, 156563.	3.1	7
1452	Nude and Modified Electrospun Nanofibers, Application to Air Purification. Nanomaterials, 2023, 13, 593.	1.9	7
1453	Biointerface Coatings With Structural and Biochemical Properties Modifications of Biomaterials. Advanced Materials Interfaces, 2023, 10, .	1.9	6
1454	Collagen Nanoyarns: Hierarchical Three-Dimensional Biomaterial Constructs. Biomacromolecules, 2023, 24, 1155-1163.	2.6	1
1456	Tissue engineering of skeletal muscle, tendons and nerves: A review of manufacturing strategies to meet structural and functional requirements. Applied Materials Today, 2023, 31, 101737.	2.3	3
1457	Quercetin-Loaded Polycaprolactone-Polyvinylpyrrolidone Electrospun Membranes for Health Application: Design, Characterization, Modeling and Cytotoxicity Studies. Membranes, 2023, 13, 242.	1.4	6
1458	Fluid Flow Templating of Polymeric Soft Matter with Diverse Morphologies. Advanced Materials, 2023, 35, .	11.1	3
1459	Biomedical applications of multifunctional tubular nanofibers. , 2023, , 323-344.		0
1460	Facile One-Step Electrospinning Process to Prepare AgNPs-Loaded PLA and PLA/PEO Mats with Antibacterial Activity. Polymers, 2023, 15, 1470.	2.0	9
1461	Effect of PCL nanofiber mats coated with chitosan microcapsules containing cinnamon essential oil for wound healing. BMC Complementary Medicine and Therapies, 2023, 23, .	1.2	4
1462	Advances in Ultrathin Soft Sensors, Integrated Materials, and Manufacturing Technologies for Enhanced Monitoring of Human Physiological Signals. Advanced Electronic Materials, 2023, 9, .	2.6	6
1463	Dyeing of Recycled Electrospun Polyamide 6 Nanofibers: Implications of Dye Particle Size. Fibers and Polymers, 0, , .	1.1	3
1464	Metalâ€Organic Framework Based Polymer Fibers: Review on Synthesis and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	2

#	Article	IF	CITATIONS
1465	Engineers in Medicine: Foster Innovation by Traversing Boundaries. Critical Reviews in Biomedical Engineering, 2023, , .	0.5	0
1466	Determination of vitamins B1 and B6 in infant formula and food supplement samples using magnetic layered double hydroxide nanoadsorbent before liquid chromatography-tandem mass spectrometry. Journal of Liquid Chromatography and Related Technologies, 2022, 45, 227-236.	0.5	1
1467	Postâ€modification of electrospun chitosan fibers. Polymer Engineering and Science, 2023, 63, 1921-1931.	1.5	1
1470	The role of nanochitin in biologically-active matrices for tissue engineering-where do we stand?. Journal of Materials Chemistry B, 2023, 11, 5630-5649.	2.9	2
1482	Nanofiber-based Systems. , 2023, , 392-420.		0
1488	Electrospinning with non-DC voltages. , 2023, , .		0
1494	Processing of Biodegradable Polymers. Materials Horizons, 2023, , 27-47.	0.3	0
1504	Nanostructured polymeric materials for medicine. , 2023, , 177-218.		0
1506	Processing and characterization of polymeric biomaterials. , 2023, , 653-701.		0
1509	Application Opportunities of the Microfibril Reinforced Composite Concept., 2012, , 589-626.		0
1516	Research Progress on Insulin Dressings to Promote Wound Healing. , 0, , .		0
1537	Electrospun fiber-based mats as antimicrobial coatings for medical devices and implant. , 2024, , 231-250.		0
1539	Board 18: Work in Progress: Implementation of a Junior-level Biomedical Engineering Design Course Focused on the Manufacturing of Electrospun Nanofibers , 0, , .		0