Hydrogels in drug delivery: Progress and challenges

Polymer 49, 1993-2007 DOI: 10.1016/j.polymer.2008.01.027

Citation Report

#	Article	IF	CITATIONS
1	Self-organization of Water Soluble and Amphiphile Crosslinked Carboxymethylpullulan. Polymer Journal, 2008, 40, 1132-1139.	1.3	5
2	Rheological Behavior of Self-Assembling PEG-β-Cyclodextrin/PEG-Cholesterol Hydrogels. Langmuir, 2008, 24, 12559-12567.	1.6	64
3	Comparison of a hydrogel model to the Poisson–Boltzmann cell model. Journal of Chemical Physics, 2009, 131, 094903.	1.2	69
4	Synthesis of Per- and Poly-Substituted Trehalose Derivatives: Studies of Properties Relevant to Their Use as Excipients for Controlled Drug Release. Journal of Carbohydrate Chemistry, 2009, 28, 198-221.	0.4	7
5	Proteinâ€Release Behavior of Selfâ€Assembled PEG– <i>β</i> yclodextrin/PEG–Cholesterol Hydrogels. Advanced Functional Materials, 2009, 19, 2992-3001.	7.8	101
6	Swelling properties of copolymeric hydrogels of poly(ethylene glycol) monomethacrylate and monoesters of itaconic acid for use in drug delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 716-726.	1.6	7
7	Gelation and Hollow Particle Formation in Nitroxideâ€Mediated Radical Copolymerization of Styrene and Divinylbenzene in Miniemulsion. Macromolecular Chemistry and Physics, 2009, 210, 140-149.	1.1	36
8	Hybrid Multicomponent Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 140-156.	2.1	266
9	Preparation and swelling properties of semiâ€IPN hydrogels based on chitosanâ€ <i>g</i> â€poly(acrylic acid) and phosphorylated polyvinyl alcohol. Journal of Applied Polymer Science, 2009, 114, 643-652.	1.3	19
10	Responsive hydrogel layers—from synthesis to applications. Colloid and Polymer Science, 2009, 287, 881-891.	1.0	123
11	A unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water. Polymer, 2009, 50, 519-523.	1.8	64
12	Multi-morphological biodegradable PLGE nanoparticles and their drug release behavior. Biomaterials, 2009, 30, 100-107.	5.7	18
13	Chemical actuation in responsive hydrogels. Polymer International, 2009, 58, 285-289.	1.6	38
14	A novel pHâ€sensitive and freezeâ€thawed carboxymethyl chitosan/poly(vinyl alcohol) blended hydrogel for protein delivery. Polymer International, 2009, 58, 1120-1125.	1.6	14
15	The controlled release behavior and pH―and thermoâ€sensitivity of alginate/poly(vinyl alcohol) blended hydrogels. Polymers for Advanced Technologies, 2009, 20, 680-688.	1.6	20
16	Polymer blends based on PEO and starch: Miscibility and spherulite growth rate evaluated through DSC and optical microscopy. Materials Science and Engineering C, 2009, 29, 499-504.	3.8	40
17	Self-assembled prodrugs: An enzymatically triggered drug-delivery platform. Biomaterials, 2009, 30, 383-393.	5.7	141
18	Preparation of poly(vinyl alcohol)/poly(acrylic acid) microcapsules and microspheres and their pH-responsive release behavior. Journal of Industrial and Engineering Chemistry, 2009, 15, 902-906.	2.9	18

		CITATION REF	PORT	
#	Article		IF	CITATIONS
19	Large strain behaviour of nanostructured polyelectrolyte hydrogels. Polymer, 2009, 50, 481-4	90.	1.8	47
20	Hindered diffusion of oligosaccharides in high strength poly(ethylene glycol)/poly(acrylic acic interpenetrating network hydrogels: Hydrodynamic vs. obstruction models. Polymer, 2009, 5 6331-6339.) 0,	1.8	14
21	Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer, 2009, 50, 4308-4316.		1.8	142
22	A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block cop in water. Polymer, 2009, 50, 6111-6120.	olymers	1.8	79
23	Characterization of cross-linked polyampholytic gelatin hydrogels through the rubber elastici thermodynamic swelling theories. Polymer, 2009, 50, 6065-6075.	ty and	1.8	40
24	New "smart―poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and a characterisation. Current Opinion in Colloid and Interface Science, 2009, 14, 438-450.	dvances in	3.4	192
25	Cytocompatibility of poly(1,2 propandiol methacrylate) copolymer hydrogels and conetwork without alkyl amine functionality. Biomaterials, 2009, 30, 2468-2478.	s with or	5.7	18
26	Swelling behaviour of thermo-sensitive hydrogels based on oligo(ethylene glycol) methacryla European Polymer Journal, 2009, 45, 3418-3425.	tes.	2.6	49
27	Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 2009, 25, 3163-316	7.	1.6	114
28	Controlled Release from Modified Amino Acid Hydrogels Governed by Molecular Size or Netw Dynamics. Langmuir, 2009, 25, 10285-10291.	ork	1.6	227
29	Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends in Food Science and Teo 2009, 20, 316-332.	chnology,	7.8	199
30	A new probe for targeting drug delivery system. Medical Hypotheses, 2009, 72, 43-44.		0.8	1
31	Smart inorganic/organic hybrid microgels: Synthesis and characterisation. Journal of Material Chemistry, 2009, 19, 8714.	;	6.7	121
32	Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. Lab on A Chip, 2 1773.	2009, 9,	3.1	133
34	Hydrogel Nanocomposites in Biology and Medicine: Applications and Interactions. , 2009, , 3	19-342.		7
35	Transient modeling for kinetic swelling/deswelling of the ionic-strength-sensitive hydrogel. European Physical Journal E, 2010, 31, 269-274.		0.7	14
36	Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers. Adv Polymer Science, 2010, , 65-93.	ances in	0.4	12
37	Development of bone substitute materials: from â€~biocompatible' to â€~instructive' Chemistry, 2010, 20, 8747.	, Journal of Materials	6.7	116

#	Article	IF	CITATIONS
38	Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 2010, 62, 83-99.	6.6	2,026
39	Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 149-173.	3.3	1,205
40	Supramolecular Hydrogels Exhibiting Fast In Situ Gel Forming and Adjustable Degradation Properties. Biomacromolecules, 2010, 11, 617-625.	2.6	80
41	Delivery of fullerene-containing complexes via microgel swelling and shear-induced release. International Journal of Pharmaceutics, 2010, 384, 9-14.	2.6	9
42	Hyperbranched poly(amine-ester) based hydrogels for controlled multi-drug release in combination chemotherapy. Biomaterials, 2010, 31, 5445-5454.	5.7	57
43	The effects of reaction conditions on block copolymerization of chitosan and poly(ethylene glycol). Carbohydrate Polymers, 2010, 81, 799-804.	5.1	12
44	Delivery of drug macromolecules from thermally responsive gel implants to the posterior eye. Chemical Engineering Science, 2010, 65, 5170-5177.	1.9	15
45	Entrapment of Saccharomyces cerevisiae cells in u.v. crosslinked hydroxyethylcellulose/poly(ethylene oxide) double-layered gels. Reactive and Functional Polymers, 2010, 70, 908-915.	2.0	10
46	Diffusion-transport properties of a polycomplex matrix system based on eudragit® EPO and Carbomer 940. Pharmaceutical Chemistry Journal, 2010, 44, 147-150.	0.3	11
47	Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. Journal of Controlled Release, 2010, 142, 221-228.	4.8	221
48	Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. Journal of Controlled Release, 2010, 146, 61-67.	4.8	96
49	Temperature Response of PNIPAM Derivatives at Planar Surfaces: Comparison between Polyelectrolyte Multilayers and Adsorbed Microgels. ChemPhysChem, 2010, 11, 3571-3579.	1.0	21
50	Injectable chitosanâ€based hydrogel for implantable drug delivery: Body response and induced variations of structure and composition. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1019-1027.	2.1	25
51	Time Controlled Protein Release from Layerâ€byâ€Layer Assembled Multilayer Functionalized Agarose Hydrogels. Advanced Functional Materials, 2010, 20, 247-258.	7.8	94
52	Design of Multiresponsive Hydrogel Particles and Assemblies. Advanced Functional Materials, 2010, 20, 1697-1712.	7.8	171
53	pHâ€sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. Journal of Applied Polymer Science, 2010, 115, 2050-2059.	1.3	28
54	Investigation of sorption/swelling characteristics of chemically crosslinked AAm/SMA hydrogels as biopotential sorbent. Journal of Applied Polymer Science, 2010, 117, 1787-1797.	1.3	7
55	Pectin grafted poly(<i>N</i> â€vinylpyrrolidone): Optimization and <i>in vitro</i> controllable theophylline drug release. Journal of Applied Polymer Science, 2010, 117, 1945-1954.	1.3	42

	CITATION I	REPORT	
# 56	ARTICLE Progress in Depsipeptideâ€Based Biomaterials. Macromolecular Bioscience, 2010, 10, 1008-1021.	IF 2.1	Citations 68
57	Some hydrogels having novel molecular structures. Progress in Polymer Science, 2010, 35, 332-337.	11.8	137
58	Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer, 2010, 51, 639-646.	1.8	115
59	Synthesis and characterization of novel pH-, ionic strength and temperature- sensitive hydrogel for insulin delivery. Polymer, 2010, 51, 1687-1693.	1.8	134
60	Effect of molecular architecture on the self-diffusion of polymers in aqueous systems: A comparison of linear, star, and dendritic poly(ethylene glycol)s. Polymer, 2010, 51, 2345-2350.	1.8	10
61	Multiresponsive polymeric particles with tunable morphology and properties based on acrylonitrile (AN) and 4-vinylpyridine (4-VP). Polymer, 2010, 51, 3156-3163.	1.8	36
62	Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery. International Journal of Pharmaceutics, 2010, 393, 97-104.	2.6	22
63	Release of paeonol-β-CD complex from thermo-sensitive poly(N-isopropylacrylamide) hydrogels. International Journal of Pharmaceutics, 2010, 402, 123-128.	2.6	32
64	Study on the sol–gel transition of xyloglucan hydrogels. Carbohydrate Polymers, 2010, 80, 555-562.	5.1	52
65	Hydrogel-based devices for biomedical applications. Sensors and Actuators B: Chemical, 2010, 147, 765-774.	4.0	368
66	A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules. Acta Biomaterialia, 2010, 6, 4650-4656.	4.1	46
67	Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials, 2010, 31, 1444-1452.	5.7	126
68	The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials, 2010, 31, 9527-9534.	5.7	157
69	Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydrate Polymers, 2010, 82, 181-188.	5.1	42
70	Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies, 2010, 21, 27-47.	1.6	308
71	Design and Application of Nanoscale Actuators Using Block-Copolymers. Polymers, 2010, 2, 454-469.	2.0	18
72	Swelling and Diffusion Characteristics of Hydrogels Synthesized from Diepoxy-terminated Poly(ethylene glycol)s and Aliphatic Polyamines. Soft Materials, 2010, 8, 288-306.	0.8	7
73	A Study on the Effect of Butyl Methacrylate Content on Swelling and Controlled-Release Behavior of Poly (Acrylamide-co-Butyl-Methacrylate-co-Acrylic Acid) Environment-Responsive Hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2010, 59, 757-776.	1.8	18

	CITATION REPORT		
Article		IF	CITATIONS
Evidence of Hydrophobic Interactions Controlling Mobile Ions Release from Smart Hyd Molecular Crystals and Liquid Crystals, 2010, 521, 265-271.	rogels.	0.4	8
Preparation and Release Properties of a pH-Tunable Carboxymethyl Cellulose Hydrogel Host/Guest Model. International Journal of Polymeric Materials and Polymeric Biomate 62-74.	/Methylene Blue rials, 2010, 60,	1.8	16
Bioactive Supramolecular Hydrogel with Controlled Dual Drug Release Characteristics. Biomacromolecules, 2010, 11, 2204-2212.		2.6	101
NMR Characterization of the Aggregation State of the Azo Dye Sunset Yellow in the Is Journal of Physical Chemistry B, 2010, 114, 10032-10038.	otropic Phase.	1.2	47
Cyclodextrin–dextran based in situ hydrogel formation: a carrier for hydrophobic dru Matter, 2010, 6, 85-87.	ıgs. Soft	1.2	79
Engineering hydrogels as extracellular matrix mimics. Nanomedicine, 2010, 5, 469-484	4.	1.7	734
Design of Renewable Hydrogel Release Systems from Fiberboard Mill Wastewater. Bio 2010, 11, 1406-1411.	macromolecules,	2.6	48
Biodegradable Hydrogels for Time-Controlled Release of Tethered Peptides or Proteins Biomacromolecules, 2010, 11, 496-504.		2.6	41
A Novel Method to Prepare 5-Fluorouracil, an Anti-cancer Drug, Loaded Microspheres f Poly(N-vinyl caprolactam-co-acrylamide) and Controlled Release Studies. Designed Mo Polymers, 2010, 13, 325-336.	rom nomers and	0.7	20
Resins with "Nano-Raisins― Langmuir, 2010, 26, 10243-10249.		1.6	15
Size-dependent release of fluorescent macromolecules and nanoparticles from radical hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 184-1	y cross-linked 92.	2.0	22
Mesoporous Hydrogels: Revealing Reversible Porosity by Cryoporometry, X-ray Scatter Adsorption. Langmuir, 2010, 26, 10158-10164.	ing, and Gas	1.6	36
Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs embryos. Soft Matter, 2010, 6, 3778.	in zebrafish	1.2	39

87	Aptamer-Functionalized In Situ Injectable Hydrogel for Controlled Protein Release. Biomacromolecules, 2010, 11, 2724-2730.	2.6	75
88	Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chemical Communications, 2010, 46, 1857-1859.	2.2	107
89	A hybrid particle–hydrogel composite for oligonucleotide-mediated pulsatile protein release. Soft Matter, 2010, 6, 4255.	1.2	46
90	Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter, 2010, 6, 2633.	1.2	140
91	Control of number density and swelling/shrinking behavior of P(NIPAM–AAc) particles at solid surfaces. Journal of Materials Chemistry, 2010, 20, 3502.	6.7	87

#

74

76

78

80

82

84

86

#	Article	IF	CITATIONS
92	Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter, 2011, 7, 8984.	1.2	60
93	The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter, 2011, 7, 1090-1099.	1.2	34
94	Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7, 6222.	1.2	170
95	Biodegradable oligo(amidoamine/β-amino ester) hydrogels for controlled insulin delivery. Soft Matter, 2011, 7, 2994.	1.2	45
96	Synthesis and characterization of nanogels of poly(N-isopropylacrylamide) by a combination of light and small-angle X-ray scattering. Physical Chemistry Chemical Physics, 2011, 13, 3108-3114.	1.3	28
98	Versatile Pectin Grafted Poly (N-isopropylacrylamide); Modulated Targeted Drug Release. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 493-502.	1.2	20
99	Smart Approach To Evaluate Drug Diffusivity in Injectable Agarâ´'Carbomer Hydrogels for Drug Delivery. Journal of Physical Chemistry B, 2011, 115, 2503-2510.	1.2	79
100	Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. Nanotechnology, 2011, 22, 245504.	1.3	27
101	Access to Nanostructured Hydrogel Networks through Photocured Body-Centered Cubic Block Copolymer Melts. Macromolecules, 2011, 44, 6557-6567.	2.2	21
102	Supramolecular Gelation of a Polymeric Prodrug for Its Encapsulation and Sustained Release. Biomacromolecules, 2011, 12, 3124-3130.	2.6	39
103	A Novel pH-Responsive Nanogel for the Controlled Uptake and Release of Hydrophobic and Cationic Solutes. Journal of Physical Chemistry C, 2011, 115, 16347-16353.	1.5	50
104	Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules, 2011, 44, 6629-6636.	2.2	221
105	Hydrogels in Tissue Engineering. , 2011, , 9-46.		8
106	Synthesis of Biodegradable Hydrogel Nanoparticles for Bioapplications Using Inverse Miniemulsion RAFT Polymerization. Macromolecules, 2011, 44, 7167-7175.	2.2	46
107	Surface Plasmon Spectroscopy of Goldâ^'Poly- <i>N</i> -isopropylacrylamide Coreâ^'Shell Particles. Langmuir, 2011, 27, 820-827.	1.6	87
108	Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opinion on Drug Delivery, 2011, 8, 485-504.	2.4	53
109	Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels. Soft Matter, 2011, 7, 1369-1377.	1.2	20
110	In situgelling formulation based on methylcellulose/pectin system for oral-sustained drug delivery to dysphagic patients. Drug Development and Industrial Pharmacy, 2011, 37, 790-797.	0.9	17

#	Article	IF	CITATIONS
111	Hydrogels for biomedical applications. Future Medicinal Chemistry, 2011, 3, 1877-1888.	1.1	62
112	Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chemical Reviews, 2011, 111, 4453-4474.	23.0	471
113	Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , .	0.7	15
114	Nanofibers Resulting from Cooperative Electrostatic and Hydrophobic Interactions between Peptides and Polyelectrolytes of Opposite Charge. Langmuir, 2011, 27, 14450-14459.	1.6	21
115	Polymer and Water Dynamics in Poly(vinyl alcohol)/Poly(methacrylate) Networks. A Molecular Dynamics Simulation and Incoherent Neutron Scattering Investigation. Polymers, 2011, 3, 1805-1832.	2.0	21
117	Porphyrin-Cross-Linked Hydrogel for Fluorescence-Guided Monitoring and Surgical Resection. Biomacromolecules, 2011, 12, 3115-3118.	2.6	75
118	pH-Responsive Hydrogel/Liposome Soft Nanocomposites For Tuning Drug Release. Biomacromolecules, 2011, 12, 3023-3030.	2.6	84
119	Organic bioelectronics in nanomedicine. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 276-285.	1.1	112
120	Preparation of Monodisperse Poly(<i>N</i> -isopropylacrylamide) Microgel Particles with Homogenous Cross-Link Density Distribution. Langmuir, 2011, 27, 7917-7925.	1.6	122
121	Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.	1.2	113
122	PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter, 2011, 7, 6375.	1.2	399
123	Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 1141-1159.	2.4	48
124	Injectable Microgel-Hydrogel Composites for Prolonged Small-Molecule Drug Delivery. Biomacromolecules, 2011, 12, 4112-4120.	2.6	186
125	Self-Assembled Prodrugs. , 2011, , 339-355.		3
126	Photocrosslinkable Polymers for Biomedical Applications. , 2011, , .		5
127	Hydrogels: Methods of Preparation, Characterisation and Applications. , 0, , .		125
128	Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. International Journal of Nanomedicine, 2011, 6, 2143.	3.3	100
129	Thermo-sensitive and photoluminescent hydrogels: Synthesis, characterization, and their drug-release property. Materials Science and Engineering C, 2011, 31, 1429-1435.	3.8	19

#	Article	IF	Citations
130	Unveiling the self-assembly behavior of copolymers of AAc and DMAPMA in situ to form smart hydrogels displaying nanogels-within-macrogel hierarchical morphology. Polymer, 2011, 52, 3800-3810.	1.8	18
131	Evaluation of redox-responsive disulfide cross-linked poly(hydroxyethyl methacrylate) hydrogels. Polymer, 2011, 52, 5262-5270.	1.8	27
132	Novel supramolecular gelation route to in situ entrapment and sustained delivery of plasmid DNA. Journal of Colloid and Interface Science, 2011, 364, 566-573.	5.0	30
133	Hydrogel containing l-valine residues as a platform for cisplatin chemotherapy. Colloids and Surfaces B: Biointerfaces, 2011, 88, 389-395.	2.5	20
134	Gelatin–pectin composite films from polyion-complex hydrogels. Food Hydrocolloids, 2011, 25, 61-70.	5.6	152
135	Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides. Biomaterials, 2011, 32, 6839-6849.	5.7	53
136	Degradable, injectable poly(N-isopropylacrylamide)-based hydrogels with low gelation concentrations for protein delivery application. Chemical Engineering Journal, 2011, 173, 241-250.	6.6	30
137	Mechanoresponsive polymer nanoparticles, nanofibers and coatings as drug carriers and components of microfluidic devices. Journal of Materials Chemistry, 2011, 21, 8269.	6.7	25
138	Chitosan-Derivative Based Hydrogels as Drug Delivery Platforms: Applications in Drug Delivery and Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 351-376.	0.7	6
139	Poly(<i>N</i> â€isopropylacrylamide) hydrogel: Effect of hydrophilicity on controlled release of ibuprofen at different pH. Journal of Applied Polymer Science, 2012, 124, 5079-5088.	1.3	6
140	Cytocompatible Poly(ethylene glycol)â€ <i>co</i> â€polycarbonate Hydrogels Crossâ€Linked by Copperâ€Free, Strainâ€Promoted Click Chemistry. Chemistry - an Asian Journal, 2011, 6, 2730-2737.	1.7	87
141	Nanostructured porous silicon–polymer-based hybrids: from biosensing to drug delivery. Nanomedicine, 2011, 6, 1755-1770.	1.7	103
142	Synthesis, characterization and swelling kinetics of thermoresponsive PAM-g-PVA/PVP semi-IPN hydrogels. Polymer Science - Series A, 2011, 53, 707-714.	0.4	11
143	Drug delivery systems for differential release in combination therapy. Expert Opinion on Drug Delivery, 2011, 8, 171-190.	2.4	83
144	Preparation, properties, and drug release of thermo- and pH-sensitive poly((2-dimethylamino)ethyl) Tj ETQq0 0 0 1523-1534.	rgBT /Ove 1.7	rlock 10 Tf 50 63
145	Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications. Pharmaceutical Research, 2011, 28, 1259-1272.	1.7	360
146	Controlled Delivery Systems: From Pharmaceuticals to Cells and Genes. Pharmaceutical Research, 2011, 28, 1241-1258.	1.7	50
147	Assembly of poly(N-isopropylacrylamide)-co-acrylic acid microgel thin films on polyelectrolyte multilayers: Effects of polyelectrolyte layer thickness, surface charge, and microgel solution pH. Colloid and Polymer Science, 2011, 289, 591-602.	1.0	29

#	Article	IF	CITATIONS
148	Different types of microfibrillated cellulose as filler materials in polysodium acrylate superabsorbents. Chinese Journal of Polymer Science (English Edition), 2011, 29, 407-413.	2.0	14
149	Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model. Analytical and Bioanalytical Chemistry, 2011, 399, 1233-1243.	1.9	12
150	Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 2011, 84, 533-538.	5.1	224
151	Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydrate Polymers, 2011, 86, 208-213.	5.1	45
152	On the measurement of fracture toughness of soft biogel. Polymer Engineering and Science, 2011, 51, 1078-1086.	1.5	25
153	Characterization of wellâ€defined poly(ethylene glycol) hydrogels prepared by thiolâ€ene chemistry. Journal of Polymer Science Part A, 2011, 49, 4044-4054.	2.5	58
154	Thermo―and pHâ€sensitive hydrogels based on 2â€(2â€methoxyethoxy)ethyl methacrylate and methacrylic acid. Polymer International, 2011, 60, 178-185.	1.6	16
155	Molding Micropatterns of Elasticity on PECâ€Based Hydrogels to Control Cell Adhesion and Migration. Advanced Engineering Materials, 2011, 13, B395.	1.6	18
156	Omnidirectional Printing of 3D Microvascular Networks. Advanced Materials, 2011, 23, H178-83.	11.1	635
158	Onâ€demand drug delivery from selfâ€assembled nanofibrous gels: A new approach for treatment of proteolytic disease. Journal of Biomedical Materials Research - Part A, 2011, 97A, 103-110.	2.1	37
159	Compressive stress–strain response of covalently crosslinked oxidizedâ€alginate/Nâ€succinylâ€chitosan hydrogels. Journal of Biomedical Materials Research - Part A, 2011, 99A, 367-375.	2.1	21
160	Swelling dynamics of IPN hydrogels including acrylamideâ€acrylic acidâ€chitosan and evaluation of their potential for controlled release of piperacillinâ€tazobactam. Journal of Applied Polymer Science, 2011, 120, 441-450.	1.3	18
161	Effect of hydrophobic comonomer content on assembling of poly (<i>N</i> â€isopropylacrylamide) and thermal properties. Journal of Applied Polymer Science, 2011, 120, 2346-2353.	1.3	7
162	Anionic polysaccharide hydrogels with thermosensitive properties. Carbohydrate Polymers, 2011, 83, 52-59.	5.1	17
163	Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydrate Polymers, 2011, 84, 1306-1313.	5.1	60
164	An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering. Acta Biomaterialia, 2011, 7, 2119-2130.	4.1	28
165	Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia, 2011, 7, 3123-3130.	4.1	59
166	Hydrazine-induced thermo-reversible optical shifts in silver–gelatin bionanocomposites. Chemical Physics Letters, 2011, 505, 37-41.	1.2	8

#	Article	IF	CITATIONS
167	Self-assembling polysaccharide systems based on cyclodextrin complexation: Synthesis, properties and potential applications in the biomaterials field. Comptes Rendus Chimie, 2011, 14, 167-177.	0.2	27
168	Effects of temperature on diffusion from PNIPA-based gels in a BioMEMS device for localized chemotherapy and hyperthermia. Materials Science and Engineering C, 2011, 31, 67-76.	3.8	23
169	The interactions between doxorubicin and amphiphilic and acidic Î ² -sheet peptides towards drug delivery hydrogels. Journal of Colloid and Interface Science, 2011, 360, 525-531.	5.0	29
170	Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 2011, 36, 981-1014.	11.8	2,262
171	Composite IPN ionic hydrogels based on polyacrylamide and dextran sulfate. Reactive and Functional Polymers, 2011, 71, 881-890.	2.0	40
172	Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer, 2011, 52, 676-682.	1.8	81
173	Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer, 2011, 52, 1217-1222.	1.8	39
174	Guest release and solution behavior of a hydrogen-bonding physical micelle during chemoresponsive shell disruption. Polymer, 2011, 52, 3405-3412.	1.8	4
175	Enhanced Mucoadhesive Capacity of Novel Co-polymers for Oral Protein Delivery. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2079-2095.	1.9	2
176	ANALYSIS OF THE KINETICS OF SHRINKING OF THE IONIC-STRENGTH-SENSITIVE HYDROGEL WITH A MULTI-PHYSICAL MODEL. International Journal of Applied Mechanics, 2011, 03, 313-334.	1.3	3
177	Tissue engineering applications of injectable biomaterials. , 2011, , 142-182.		8
178	Drug delivery applications of injectable biomaterials. , 2011, , 95-141.		4
179	Hydrogels in Biosensing Applications. , 2011, , 491-517.		6
180	Characterization and Degradation Behavior of Agar–Carbomer Based Hydrogels for Drug Delivery Applications: Solute Effect. International Journal of Molecular Sciences, 2011, 12, 3394-3408.	1.8	32
181	Characterization of cryogenically slightly crosslinked biomedical poly(vinyl alcohol) gels. Proceedings of the Estonian Academy of Sciences, 2012, 61, 228.	0.9	3
182	Preparation, characterisation and controlled drug release from thermosensitive hybrid hydrogels. Plastics, Rubber and Composites, 2012, 41, 13-17.	0.9	5
183	Multiple Stimuli-Responsive Hydrogels for Metal-Based Drug Therapy. Polymers, 2012, 4, 964-985.	2.0	12
184	Reservoir-Based Polymer Drug Delivery Systems. Journal of the Association for Laboratory Automation, 2012, 17, 50-58.	2.8	115

#	Article	IF	Citations
185	A controlled biochemical release device with embedded nanofluidic channels. Applied Physics Letters, 2012, 100, 153510.	1.5	12
186	Time Controlled Release of Arabinofuranosylcytosine (Ara-C) from Agarose Hydrogels using Layer-by-Layer Assembly: An In Vitro Study. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 439-463.	1.9	16
187	Estimation of the hydrodynamic screening length in \hat{I}^2 -carrageenan solutions using NMR diffusion measurements. Polymer Journal, 2012, 44, 901-906.	1.3	14
188	A pH-Sensitive Poly (2-(Acryloyloxy) Propanoic Acid) Hydrogel and its Drug Release Behaviors. Advanced Materials Research, 0, 455-456, 901-906.	0.3	0
189	Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1091-1106.	1.9	26
190	<i>Pseudomonas</i> sp. as a Source of Medium Chain Length Polyhydroxyalkanoates for Controlled Drug Delivery: Perspective. International Journal of Microbiology, 2012, 2012, 1-10.	0.9	24
191	Polyelectrolyte Multilayer Nanoshells With Hydrophobic Nanodomains for Delivery of Paclitaxel. , 2012, , .		0
192	Hydrogels in mucosal delivery. Therapeutic Delivery, 2012, 3, 535-555.	1.2	15
193	Thermo-Responsive Gels: Biodegradable Hydrogels from Enantiomeric Copolymers of Poly(lactide) and Poly(ethylene glycol). ACS Symposium Series, 2012, , 287-311.	0.5	2
194	Superhydrophobic Materials for Tunable Drug Release: Using Displacement of Air To Control Delivery Rates. Journal of the American Chemical Society, 2012, 134, 2016-2019.	6.6	223
195	Photocrosslinkable dextran hydrogel films as substrates for osteoblast and endothelial cell growth. Journal of Materials Chemistry, 2012, 22, 19590.	6.7	22
196	Designing Cell-Compatible Hydrogels for Biomedical Applications. Science, 2012, 336, 1124-1128.	6.0	1,606
197	Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery. International Journal of Pharmaceutics, 2012, 437, 51-56.	2.6	43
198	Injectable hydrogels for central nervous system therapy. Biomedical Materials (Bristol), 2012, 7, 024101.	1.7	198
199	Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths. Biomacromolecules, 2012, 13, 1828-1836.	2.6	77
200	Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release. Journal of Colloid and Interface Science, 2012, 387, 115-122.	5.0	30
201	Remotely triggered release from composite hydrogel sponges. Soft Matter, 2012, 8, 1811-1816.	1.2	23
202	Interconnected macroporous glycidyl methacrylate-grafted dextran hydrogels synthesised from hydroxyapatite nanoparticle stabilised high internal phase emulsion templates. Journal of Materials Chemistry, 2012, 22, 18824.	6.7	74

#	Article	IF	CITATIONS
203	Tailoring uptake and release of ATP by dendritic glycopolymer/PNIPAAm hydrogel hybrids: first approaches towards multicompartment release systems. New Journal of Chemistry, 2012, 36, 438-451.	1.4	32
204	<i>In vitro</i> and <i>in vivo</i> evaluation of a hydrogel-based prototype transdermal patch system of alfuzosin hydrochloride. Pharmaceutical Development and Technology, 2012, 17, 158-163.	1.1	12
205	Mechano-responsive hydrogels crosslinked by block copolymer micelles. Soft Matter, 2012, 8, 10233.	1.2	68
206	Novel solvent-free synthesis and modification of polyaspartic acid hydrogel. RSC Advances, 2012, 2, 11592.	1.7	12
207	Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. Journal of Materials Chemistry, 2012, 22, 16552.	6.7	155
208	Injectable hydrogel materials for spinal cord regeneration: a review. Biomedical Materials (Bristol), 2012, 7, 012001.	1.7	232
209	Effect of Peptide and Guest Charge on the Structural, Mechanical and Release Properties of Î ² -Sheet Forming Peptides. Langmuir, 2012, 28, 16196-16206.	1.6	63
210	Mechanically robust PEGDA–MSNs-OH nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering. Soft Matter, 2012, 8, 8981.	1.2	36
211	Engineering Surface Adhered Poly(vinyl alcohol) Physical Hydrogels as Enzymatic Microreactors. ACS Applied Materials & Interfaces, 2012, 4, 4981-4990.	4.0	21
212	Thermoreversible Poly(isopropyl lactate diol)-Based Polyurethane Hydrogels: Effect of Isocyanate on Some Physical Properties. Industrial & Engineering Chemistry Research, 2012, , 120911115023009.	1.8	2
213	Development of a Hybrid Dextrin Hydrogel Encapsulating Dextrin Nanogel As Protein Delivery System. Biomacromolecules, 2012, 13, 517-527.	2.6	86
214	A Thermosensitive Hydrogel Capable of Releasing bFGF for Enhanced Differentiation of Mesenchymal Stem Cell into Cardiomyocyte-like Cells under Ischemic Conditions. Biomacromolecules, 2012, 13, 1956-1964.	2.6	35
215	A Facile Approach for the Synthesis of Xylan-Derived Hydrogels. ACS Symposium Series, 2012, , 257-270.	0.5	0
216	Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012, 41, 2193-2221.	18.7	1,190
217	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
218	Photocrosslinking, micropatterning and cell adhesion studies of sodium hyaluronate with a trisdiazonium salt. Carbohydrate Polymers, 2012, 90, 419-430.	5.1	3
219	Rheological, water uptake and controlled release properties of a novel self-gelling aldehyde functionalized chitosan. Carbohydrate Polymers, 2012, 90, 894-900.	5.1	29
220	Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers. Carbohydrate Polymers, 2012, 90, 1386-1393.	5.1	40

ARTICLE IF CITATIONS # Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydrate Polymers, 221 5.1 21 2012, 90, 1614-1619. In situ pH maintenance for mammalian cell cultures in shake flasks and tissue culture flasks. 1.3 9 Biotechnology Progress, 2012, 28, 1605-1610. Facile and Efficient Fabrication of Photoresponsive Microgels via Thiol–Michael Addition. 223 2.0 39 Macromolecular Rapid Communications, 2012, 33, 1952-1957. Swelling behaviour and controlled drug release from cross-linked Î^e-carrageenan/NaCMC hydrogel by 224 1.2 diffusion mechanism. Journal of Microencapsulation, 2012, 29, 368-379. Thin Hydrogel Films for Optical Biosensor Applications. Membranes, 2012, 2, 40-69. 225 1.4 141 Biomimetic Polymers (for Biomedical Applications)., 2012, , 339-361. 228 Polymer Nanogels and Microgels., 2012, , 309-350. 17 Chitosan-Based Delivery System for Tissue Regeneration and Chemotherapy., 2012, , 321-343. 229 Indentation: A simple, nondestructive method for characterizing the mechanical and transport 230 1.2 52 properties of pH-sensitive hydrogels. Journal of Materials Research, 2012, 27, 152-160. Hydrogels as drug-delivery platforms: physicochemical barriers and solutions. Therapeutic Delivery, 1.2 2012, 3, 775-786. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose 232 3.6 49 hydrogel. International Journal of Biological Macromolecules, 2012, 51, 831-836. Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials, 2012, 116 33, 8928-8933. Thermorheological properties of a Carbopol gel under shear. Journal of Non-Newtonian Fluid 234 1.0 39 Mechanics, 2012, 183-184, 14-24. One-Step Synthesis of Biodegradable Curcumin-Derived Hydrogels as Potential Soft Tissue Fillers after 2.6 Breast Cancer Surgery. Biomacromolecules, 2012, 13, 2279-2286. Injectable, Mixed Natural-Synthetic Polymer Hydrogels with Modular Properties. Biomacromolecules, 236 2.6 145 2012, 13, 369-378. Anticancer Drug-Loaded Gliadin Nanoparticles Induce Apoptosis in Breast Cancer Cells. Langmuir, 2012, 28, 8216-8223. Fabrication of pH-sensitive graphene oxide–drug supramolecular hydrogels as controlled release 238 6.7 138 systems. Journal of Materials Chemistry, 2012, 22, 24856. 239 Hydrogels as Intracellular Depots for Drug Delivery. Molecular Pharmaceutics, 2012, 9, 196-200. 2.3

#	Article	IF	CITATIONS
240	Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid and Polymer Science, 2012, 290, 1575-1582.	1.0	15
241	Micro-DSC, rheological and NMR investigations of the gelation of gallic acid and xyloglucan. Soft Matter, 2012, 8, 7258.	1.2	14
242	Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery. Materials, 2012, 5, 85-107.	1.3	49
243	Review: Cyclodextrin Inclusion Complexes Probed by NMR Techniques. , 0, , .		19
244	Thermosensitive Polymeric Hydrogels As Drug Delivery Systems. Current Medicinal Chemistry, 2012, 20, 79-94.	1.2	189
245	Sky-white Temperature/pH-sensitive Nanocomposite Microgels with Lower Size and Good Temperature-Sensitivity. Polymers and Polymer Composites, 2012, 20, 111-116.	1.0	0
246	Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers. Materials, 2012, 5, 684-698.	1.3	20
247	Physicochemical characterization and drug release properties of PDMAEMA/OSA Semiâ€IPN hydrogels with microporous structure. Polymers for Advanced Technologies, 2012, 23, 389-397.	1.6	7
248	Biohybrid nanogels by crosslinking of ovalbumin with reactive starâ€₽EGs in W/O emulsions. Journal of Polymer Science Part A, 2012, 50, 4288-4299.	2.5	9
249	Injectable hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 881-903.	2.4	146
250	Characterization of Mass and Swelling of Hydrogel Microstructures using MEMS Resonant Mass Sensor Arrays. Small, 2012, 8, 2555-2562.	5.2	19
251	Preparation of poly(acrylic acid)–graphite oxide superabsorbent nanocomposites. Journal of Materials Chemistry, 2012, 22, 4811.	6.7	66
252	Nanomaterials for Ocular Drug Delivery. Macromolecular Bioscience, 2012, 12, 608-620.	2.1	153
253	Biodegradable pHâ€Dependent Thermoâ€5ensitive Hydrogels for Oral Insulin Delivery. Macromolecular Chemistry and Physics, 2012, 213, 713-719.	1.1	7
254	The application of digital image techniques to determine the large stress–strain behaviors of soft materials. Polymer Engineering and Science, 2012, 52, 826-834.	1.5	25
255	Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. Journal of Biomaterials Applications, 2012, 27, 311-321.	1.2	80
256	Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nature Materials, 2012, 11, 344-352.	13.3	138
257	Mechanical Properties of End-Linked PEG/PDMS Hydrogels. Macromolecules, 2012, 45, 6104-6110.	2.2	85

#	Article	IF	CITATIONS
258	Nanoemulsion Composite Microgels for Orthogonal Encapsulation and Release. Advanced Materials, 2012, 24, 3838-3844.	11.1	50
259	Thermosensitive chitosan hydrogel for implantable drug delivery: Blending PVA to mitigate body response and promote bioavailability. Journal of Applied Polymer Science, 2012, 125, 2092-2101.	1.3	23
260	Functional nanoporous membranes for drug delivery. Journal of Materials Chemistry, 2012, 22, 14814.	6.7	148
261	Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery. Pharmaceutical Research, 2012, 29, 902-921.	1.7	109
262	Efficient immobilization of lipase from Candida rugosa by entrapment into poly(N-isopropylacrylamide-co-itaconic acid) hydrogels under mild conditions. Polymer Bulletin, 2012, 69, 347-361.	1.7	9
263	Controlling the properties of poly(amino ester urethane)–poly(ethylene glycol)–poly(amino ester) Tj ETQq1 1 290, 1077-1086.	0.78431 1.0	4 rgBT /Over 20
264	Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomaterialia, 2012, 8, 1838-1848.	4.1	281
265	An in situ cross-linking hybrid hydrogel for controlled release of proteins. Acta Biomaterialia, 2012, 8, 1703-1709.	4.1	34
266	Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomaterialia, 2012, 8, 2185-2192.	4.1	127
267	Impact of magnetic nanofillers in the swelling and release properties of κ-carrageenan hydrogel nanocomposites. Carbohydrate Polymers, 2012, 87, 328-335.	5.1	77
268	Amphiphilic and thermosensitive copolymers based on pullulan and Jeffamine®: Synthesis, characterization and physicochemical properties. Carbohydrate Polymers, 2012, 87, 1522-1531.	5.1	46
269	Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydrate Polymers, 2012, 88, 270-281.	5.1	92
270	Multi-responsive carboxymethyl polysaccharide crosslinked hydrogels containing Jeffamine side-chains. Carbohydrate Polymers, 2012, 89, 578-585.	5.1	32
271	Functional polymeric nanoparticles for dexamethasone loading and release. Colloids and Surfaces B: Biointerfaces, 2012, 93, 59-66.	2.5	41
272	Thermogelling polymers composed of poly(cyclohexylenedimethylene adipate) and poly(ethylene) Tj ETQq0 0 0 rg	gBT /Overl 2.6	ock 10 Tf 50
273	Dual roles of hyaluronic acids in multilayer films capturing nanocarriers for drug-eluting coatings. Biomaterials, 2012, 33, 5468-5477.	5.7	29
274	Enhancing water permeability of fouling-resistant POSS–PEGM hydrogels using â€~addition–extraction' of sacrificial additives. Journal of Membrane Science, 2012, 401-402, 306-312.	4.1	29
	Swalling and diffusion of DNIDA based gals for localized chemotherapy and hyperthermin. Metarials		

275	Swelling and diffusion of PNIPA-based gels for localized chemotherapy and hyperthermia. Materials Science and Engineering C, 2012, 32, 24-30.	3.8	15
-----	---	-----	----

#	Article	IF	CITATIONS
276	Release of Ftorafur from pH-sensitive hydrogels with hyperbranched poly(4-vinylbenzyl chloride) moieties. Materials Science and Engineering C, 2012, 32, 953-960.	3.8	10
277	Self-folding devices and materials for biomedical applications. Trends in Biotechnology, 2012, 30, 138-146.	4.9	227
278	Amphiphilic block copolymer surface composition: Effects of spin coating versus spray coating. Polymer, 2012, 53, 1321-1327.	1.8	14
279	Poly-Ñ"-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 2012, 158, 15-33.	4.8	794
280	Polyelectrolyte multilayer nanoshells with hydrophobic nanodomains for delivery of Paclitaxel. Journal of Controlled Release, 2012, 159, 403-412.	4.8	36
281	In situ forming implants — an attractive formulation principle for parenteral depot formulations. Journal of Controlled Release, 2012, 161, 668-679.	4.8	239
282	Thermodynamics of deformation and swelling of crosslinked polymers under small deformations. Polymer Science - Series A, 2012, 54, 240-247.	0.4	3
283	Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. Journal of Biomedical Materials Research - Part A, 2012, 100A, 776-785.	2.1	48
284	"Oneâ€step―Preparation of Thiolâ€Ene Clickable PEGâ€Based Thermoresponsive Hyperbranched Copolymer for In Situ Crosslinking Hybrid Hydrogel. Macromolecular Rapid Communications, 2012, 33, 120-126.	2.0	84
285	Evolutionâ€Based Design of an Injectable Hydrogel. Advanced Functional Materials, 2012, 22, 529-537.	7.8	77
286	Reversible Control of Electrochemical Properties Using Thermallyâ€Responsive Polymer Electrolytes. Advanced Materials, 2012, 24, 886-889.	11.1	54
287	Controlled release of nutrients to mammalian cells cultured in shake flasks. Biotechnology Progress, 2012, 28, 188-195.	1.3	17
288	Synthesis and degradation of agar arbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science, 2012, 123, 398-408.	1.3	12
289	Synthesis and characterization of pHâ€sensitive crosslinked (NIPAâ€ <i>co</i> â€AAC) nanohydrogels copolymer. Journal of Applied Polymer Science, 2012, 124, 1947-1955.	1.3	16
290	Photoâ€crossâ€linked biodegradable thermo―and pHâ€responsive hydrogels for controlled drug release. Journal of Applied Polymer Science, 2012, 123, 2923-2932.	1.3	18
291	Development and characterization of thermosensitive hydrogels based on poly(<i>N</i> â€isopropylacrylamide) and calcium alginate. Journal of Applied Polymer Science, 2012, 124, 890-903.	1.3	33
292	Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. Journal of Materials Science: Materials in Medicine, 2012, 23, 25-35.	1.7	40
293	PEG-based bioresponsive hydrogels with redox-mediated formation and degradation. Journal of Materials Science: Materials in Medicine, 2012, 23, 697-710.	1.7	16

#	Article	IF	CITATIONS
294	Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels. European Polymer Journal, 2013, 49, 2504-2510.	2.6	34
295	Asymptotic solutions and new insights for cylinder and core–shell polymer gels in a solvent. Soft Matter, 2013, 9, 8664.	1.2	10
296	Detailed investigation of gel–sol transition temperature of κ-carrageenan studied by DSC, TMA and FBM. Journal of Thermal Analysis and Calorimetry, 2013, 114, 895-901.	2.0	20
297	Infection-Responsive Drug Delivery from Urinary Biomaterials Controlled by a Novel Kinetic and Thermodynamic Approach. Pharmaceutical Research, 2013, 30, 857-865.	1.7	24
298	Boronic acid-containing hydrogels: synthesis and their applications. Chemical Society Reviews, 2013, 42, 8106.	18.7	368
299	Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Advances, 2013, 3, 10828.	1.7	50
300	Preparation of polyacrylamide based microgels with different charges for drug encapsulation. European Polymer Journal, 2013, 49, 1479-1486.	2.6	8
301	Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter, 2013, 9, 2869.	1.2	49
302	Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids and Surfaces B: Biointerfaces, 2013, 111, 755-763.	2.5	128
303	Study of the interaction between modified cyclodextrin and octopriox : potential applications in drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 351-361.	0.9	1
304	Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes. Nanoscale, 2013, 5, 6758.	2.8	31
305	Photochemical crosslinking of hyaluronic acid confined in nanoemulsions: towards nanogels with a controlled structure. Journal of Materials Chemistry B, 2013, 1, 3369.	2.9	46
306	Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, 2013, , .	0.6	58
307	Development of Hydrophobized Alginate Hydrogels for the Vessel-Simulating Flow-Through Cell and Their Usage for Biorelevant Drug-Eluting Stent Testing. AAPS PharmSciTech, 2013, 14, 1209-1218.	1.5	18
308	Starch-Based Hydrogels: Present Status and Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 411-420.	1.8	223
309	Mechanical Properties of Polymer Gels with Bimodal Distribution in Strand Length. Macromolecules, 2013, 46, 7027-7033.	2.2	29
310	Hyaluronic Acid Catechol: A Biopolymer Exhibiting a pHâ€Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering. Advanced Functional Materials, 2013, 23, 1774-1780.	7.8	246
311	Microstructure characterization through mechanical, electrokinetic and spectroscopic methods of polyampholyte gelatin hydrogels crosslinked with poly(vinyl alcohol). Polymer, 2013, 54, 2706-2716.	1.8	6

#	Article	IF	CITATIONS
312	A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes. Advanced Functional Materials, 2013, 23, 3628-3637.	7.8	87
313	Investigation of the Diels–Alder reaction as a cross-linking mechanism for degradable poly(ethylene) Tj ETQq1 1	0.784314 2.9	မ က္ဆBT /Ove
314	Prodrugs forming multifunctional supramolecular hydrogels for dual cancer drug delivery. Journal of Materials Chemistry B, 2013, 1, 5532.	2.9	42
315	Catanionic Gels Based on Cholic Acid Derivatives. Langmuir, 2013, 29, 12342-12351.	1.6	33
316	Peptide-Functionalized Oxime Hydrogels with Tunable Mechanical Properties and Gelation Behavior. Biomacromolecules, 2013, 14, 3749-3758.	2.6	102
317	Poly(ethylene glycol)–poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. Journal of Controlled Release, 2013, 172, 715-729.	4.8	150
318	Diffusion in hydrogel-supported phospholipid bilayer membranes. Journal of Fluid Mechanics, 2013, 723, 352-373.	1.4	2
319	Polymer siRNA conjugates synthesised by controlled radical polymerisation. European Polymer Journal, 2013, 49, 2861-2883.	2.6	12
320	Macroscale delivery systems for molecular and cellular payloads. Nature Materials, 2013, 12, 1004-1017.	13.3	251
321	Temperature-Responsive Graft Copolymer Hydrogels for Controlled Swelling and Drug Delivery. Soft Materials, 2013, 11, 294-304.	0.8	29
322	Drug absorption and release properties of crosslinked hydrogels based on diepoxy-terminated poly(ethylene glycol)s and aliphatic polyamines — a study on the effect of the gel molecular structure. Materials Science and Engineering C, 2013, 33, 1307-1314.	3.8	16
323	Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomaterialia, 2013, 9, 8815-8822.	4.1	28
324	Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose, 2013, 20, 1669-1677.	2.4	67
325	Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. Journal of Polymer Research, 2013, 20, 1.	1.2	54
326	Mechanical Behavior of Thermoresponsive Hydrogel Embedded with Gold Nanoshell. BioNanoScience, 2013, 3, 348-355.	1.5	1
327	Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polymer Chemistry, 2013, 4, 337-342.	1.9	65
328	Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli. Biomacromolecules, 2013, 14, 3338-3345.	2.6	303
329	Tuning Organogel Properties by Controlling the Organic-Phase Composition. Industrial & Engineering Chemistry Research, 2013, 52, 14185-14191.	1.8	17

#	Article	IF	CITATIONS
330	Targeted Drug Delivery: Multifunctional Nanoparticles and Direct Micro-Drug Delivery to Tumors. , 2013, , 391-416.		5
331	Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization. Journal of Controlled Release, 2013, 172, 30-37.	4.8	35
332	Injectable biodegradable hydrogels: progress and challenges. Journal of Materials Chemistry B, 2013, 1, 5371.	2.9	242
333	Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers. Journal of Materials Chemistry B, 2013, 1, 6302.	2.9	92
334	pH-responsive physical gels from poly(meth)acrylic acid-containing crosslinked particles: the relationship between structure and mechanical properties. Journal of Materials Chemistry B, 2013, 1, 4065.	2.9	31
335	The influence of pH and ionic strength on the swelling of dense protein particles. Soft Matter, 2013, 9, 4598.	1.2	36
336	The synthesis and lectin-binding properties of novel mannose-functionalised polymers. RSC Advances, 2013, 3, 15435.	1.7	7
337	Sequential thermo-induced self-gelation and acid-triggered self-release process of drug-conjugated nanoparticles: a strategy for the sustained and controlled drug delivery to tumors. Journal of Materials Chemistry B, 2013, 1, 4667.	2.9	24
338	State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 322-335.	1.7	126
339	Preparation of polyacrylamide/graphite oxide superabsorbent nanocomposites with salt tolerance and slow release properties. Journal of Applied Polymer Science, 2013, 129, 2328-2334.	1.3	15
340	The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter, 2013, 9, 826-833.	1.2	233
341	Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. Journal of Biotechnology, 2013, 163, 243-249.	1.9	106
342	Tuning drug release from smart microgel–hydrogel composites via cross-linking. Journal of Colloid and Interface Science, 2013, 392, 422-430.	5.0	60
343	Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polymer Chemistry, 2013, 4, 1826.	1.9	43
344	Sequential interpenetrating poly(ethylene glycol) hydrogels prepared by UVâ€initiated thiol–ene coupling chemistry. Journal of Polymer Science Part A, 2013, 51, 363-371.	2.5	21
345	Hydration studies in polymer hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 159-175.	2.4	48
346	Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer, 2013, 54, 1786-1793.	1.8	126
347	Formulation of saquinavir mesylate loaded microparticle by counterion induced aggregation method: Approach by hyperosmotic technique. Drug Invention Today (discontinued), 2013, 5, 259-266.	0.6	5

	CIAIO		
#	Article	IF	Citations
348	Organized polysaccharide fibers as stable drug carriers. Carbohydrate Polymers, 2013, 94, 209-215.	5.1	17
349	Toward mucoadhesive hydrogel formulations for the management of xerostomia: The physicochemical, Biological, and Pharmacological Considerations. Journal of Biomedical Materials Research - Part A, 2013, 101, 3327-3338.	2.1	13
350	Thermoresponsive transition of a PEO-b-PNIPAM copolymer: From hierarchical aggregates to well defined ellipsoidal vesicles. Polymer, 2013, 54, 6373-6380.	1.8	31
351	Thermoresponsive copolymer microgels. Journal of Materials Chemistry B, 2013, 1, 5874.	2.9	70
352	Redox-active injectable gel using thermo-responsive nanoscale polyion complex flower micelle for noninvasive treatment of local inflammation. Journal of Controlled Release, 2013, 172, 914-920.	4.8	45
353	Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: Tailoring particle size by interfacial tension control. Polymer, 2013, 54, 5499-5510.	1.8	59
354	Tough interpenetrating Pluronic F127/polyacrylic acid hydrogels. Polymer, 2013, 54, 2979-2987.	1.8	34
355	Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. Polymer, 2013, 54, 2174-2182.	1.8	54
356	Injectable Superparamagnets: Highly Elastic and Degradable Poly(<i>N</i> -isopropylacrylamide)–Superparamagnetic Iron Oxide Nanoparticle (SPION) Composite Hydrogels. Biomacromolecules, 2013, 14, 644-653.	2.6	107
357	Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials, 2013, 34, 3141-3149.	5.7	25
358	One-step fabrication of core–shell structured alginate–PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomaterials Science, 2013, 1, 486.	2.6	48
359	Liposomal Templating, Association with Mammalian Cells, and Cytotoxicity of Poly(vinyl alcohol) Physical Hydrogel Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 514-522.	1.2	6
360	Alginateâ€Based Microcapsules with a Molecule Recognition Linker and Photosensitizer for the Combined Cancer Treatment. Chemistry - an Asian Journal, 2013, 8, 736-742.	1.7	29
361	Preparation and characterization of hydrogels based on homopolymeric fractions of sodium alginate and PNIPAAm. Carbohydrate Polymers, 2013, 92, 157-166.	5.1	37
362	Mobility of Green Fluorescent Protein in Hydrogelâ€Based Drugâ€Delivery Systems Studied by Anisotropy and Fluorescence Recovery After Photobleaching. Macromolecular Bioscience, 2013, 13, 215-226.	2.1	11
363	Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 2013, 91, 7-13.	5.1	121
364	PLA Microspheres-Embedded PVA Hydrogels Prepared by Gamma-Irradiation and Freeze-Thaw Methods as Drug Release Carriers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 28-33.	1.8	25
365	Injectable and Thermoresponsive Self-Assembled Nanocomposite Hydrogel for Long-Term Anticancer Drug Delivery. Langmuir, 2013, 29, 3721-3729.	1.6	105

#	Αρτιςι ε	IF	CITATIONS
" 366	Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. International Journal of Biological Macromolecules, 2013, 59, 119-124.	3.6	68
367	Designing degradable hydrogels for orthogonal control of cell microenvironments. Chemical Society Reviews, 2013, 42, 7335-7372.	18.7	590
368	Transdermal drug delivery of paroxetine through lipid-vesicular formulation to augment its bioavailability. International Journal of Pharmaceutics, 2013, 443, 307-317.	2.6	60
369	Injectable and Biodegradable Supramolecular Hydrogels by Inclusion Complexation between Poly(organophosphazenes) and ݱ-Cyclodextrin. Macromolecules, 2013, 46, 2715-2724.	2.2	72
370	Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Materials Science and Engineering C, 2013, 33, 2958-2966.	3.8	143
371	Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2013, 65, 1172-1187.	6.6	450
372	Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Advanced Drug Delivery Reviews, 2013, 65, 1188-1203.	6.6	168
373	pH-Controlled Nanoaggregation in Amphiphilic Polymer Co-networks. ACS Nano, 2013, 7, 2693-2704.	7.3	31
374	Hydrogels: an interesting strategy for smart drug delivery. Therapeutic Delivery, 2013, 4, 157-160.	1.2	22
375	Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 2013, 46, 4095-4104.	2.2	114
376	Synthesis, characterization, and swelling kinetics of pHâ€responsive and temperatureâ€responsive carboxymethyl chitosan/polyacrylamide hydrogels. Journal of Applied Polymer Science, 2013, 129, 806-814	1.3	33
378	Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. Journal of Materials Chemistry B, 2013, 1, 3410.	2.9	86
379	Reversible maleimide–thiol adducts yield glutathione-sensitive poly(ethylene glycol)–heparin hydrogels. Polymer Chemistry, 2013, 4, 133-143.	1.9	150
380	A Stiff Injectable Biodegradable Elastomer. Advanced Functional Materials, 2013, 23, 1527-1533.	7.8	54
381	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	2.8	610
382	Biofabrication of Hydrogel Constructs. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 225-254.	0.6	7
383	Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles. Chemical Communications, 2013, 49, 5082.	2.2	22
384	Variations in polyethylene glycol brands and their influence on the preparation process of hydrogel microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1215-1218.	2.0	3

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
385	Formulations for trans-tympanic antibiotic delivery. Biomaterials, 2013, 34, 1281-1288.	5.7	54
386	Bioresorbable Surface-Adhered Enzymatic Microreactors Based on Physical Hydrogels of Poly(vinyl) Tj ETQq1	1 0.784314 1.6	rgBT /Overloo
387	Mechanics of pH-Responsive Hydrogel Capsules. Langmuir, 2013, 29, 9814-9823.	1.6	50
388	Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy. Nanoscale, 2013, 5, 9902.	2.8	30
389	In Situ Size Exclusion Chromatographic NMR of Sunset Yellow FCF in Solution. Journal of Physical Chemistry C, 2013, 117, 17503-17508.	1.5	6
390	Preparation and characterization of gelatin hydrogel support for immobilization of <i>Candida Rugosa </i> lipase. Artificial Cells, Nanomedicine and Biotechnology, 2013, 41, 145-151.	1.9	28
391	Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers. Polymer, 2013, 54, 210-222.	1.8	47
392	Comparison Effects and Dielectric Properties of Different Dose Methylene-Blue-Doped Hydrogels. Journal of Physical Chemistry B, 2013, 117, 8931-8938.	1.2	33
393	Albumin-Conjugated pH/Thermo Responsive Poly(amino urethane) Multiblock Copolymer as an Injectable Hydrogel for Protein Delivery. Macromolecular Bioscience, 2013, 13, 1195-1203.	2.1	24
394	Effects of Polymer and Salt Concentration on the Structure and Properties of Triblock Copolymer Coacervate Hydrogels. Macromolecules, 2013, 46, 1512-1518.	2.2	113
395	Current advances of chemical and physical starchâ€based hydrogels. Starch/Staerke, 2013, 65, 82-88.	1.1	60
396	Integration of Biosensors and Drug Delivery Technologies for Early Detection and Chronic Management of Illness. Sensors, 2013, 13, 7680-7713.	2.1	56
397	Ultra Small Angle X-Ray Scattering Characterization of Temperature-Sensitive Ferrogels Prepared Using Magnetic Nanoparticles. Materials Research Society Symposia Proceedings, 2013, 1453, 40.	0.1	0
398	Thermo-responsive metallo-supramolecular gels based on terpyridine end-functionalized amphiphilic diblock copolymers. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	1
399	Synthetic and Performance Research on the New Type Hydrogel with Acrylic Acid and Acrylamide Unit. Advanced Materials Research, 0, 864-867, 690-693.	0.3	0
400	International Symposium on Biomedical Engineering and Medical Physics, 10-12 October, 2012, Riga, Latvia. IFMBE Proceedings, 2013, , .	0.2	2
401	Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review). International Journal of Molecular Medicine, 2013, 32, 763-767.	1.8	140
402	Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems. Journal of Micromechanics and Microengineering, 2013, 23, 035012.	1.5	8

#	Article	IF	CITATIONS
403	The effects of 5-fluorouracil on flexor tendon healing by using a biodegradable gelatin, slow releasing system: experimental study in a hen model. Journal of Hand Surgery: European Volume, 2013, 38, 651-657.	0.5	31
404	A versatile characterization of poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) hydrogels for composition, mechanical strength, and rheology. EXPRESS Polymer Letters, 2013, 7, 95-105.	1.1	20
405	Preparation of a Sustained Release Drug Delivery System for Dexamethasone by a Thermosensitive, In Situ Forming Hydrogel for Use in Differentiation of Dental Pulp. ISRN Pharmaceutics, 2013, 2013, 1-6.	1.0	8
406	Tailored Macromolecules Versus Nanoparticles as Additives for Mechanical Reinforcement of NCO-sP(EO-stat-PO) Hydrogels. , 2013, , 77-89.		1
407	Structure of polymer and particle aggregates in hydrogel composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 421-429.	2.4	14
408	Injectable biomimetic hydrogels for soft tissue repair. , 2013, , 276-300.		0
409	An interplay between electrostatic and polar interactions in peptide hydrogels. Biopolymers, 2013, 100, 174-183.	1.2	17
410	3â€D Interdigitated electrodes for uniform stimulation of electroâ€responsive hydrogels for biomedical applications. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1523-1528.	2.4	3
411	Microstructured, Functional PVA Hydrogels through Bioconjugation with Oligopeptides under Physiological Conditions. Small, 2013, 9, 942-950.	5.2	61
412	Hydrogels for controlled pulmonary delivery. Therapeutic Delivery, 2013, 4, 1293-1305.	1.2	18
414	Effect of number of grindings of attapulgite on enhanced swelling properties of the superabsorbent nanocomposites. Journal of Composite Materials, 2013, 47, 969-978.	1.2	12
415	Fracture Behavior of Two Highly Stretchable Double Network Hydrogels. International Journal of Polymer Analysis and Characterization, 2013, 18, 504-509.	0.9	2
416	- Polymeric Nanoparticles for Drug Delivery. , 2013, , 144-173.		0
417	Physio-chemico-thermo-mechanical properties of selected biodegradable polymers. Green Materials, 2013, 1, 191-200.	1.1	7
418	Can Immunobiotics Benefi cially Modulate Hemato-Immune Responses in Immunocompromised Hosts?. , 2013, , 291-308.		3
419	Swelling behavior of poly (2-hydroxyethyl methacrylate) copolymer gels. MATEC Web of Conferences, 2013, 5, 04008.	0.1	2
420	Dendrimeric Systems and Their Applications in Ocular Drug Delivery. Scientific World Journal, The, 2013, 2013, 1-13.	0.8	69
421	Biofunctionalization of Hydrogels for Engineering the Cellular Microenvironment. , 2014, , 315-348.		3

#	Article	IF	CITATIONS
422	Montmorillonite Loaded Highly Swollen AAm/AMPS Hydrogels and Semi-IPNs with PEG as a Novel Composite Polymeric Sorbent for Water and Dye Sorption. Polymer-Plastics Technology and Engineering, 2014, 53, 1259-1271.	1.9	8
424	Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles. Biomicrofluidics, 2014, 8, 064112.	1.2	21
425	Cyclic Swelling as a Phenomenon Inherent to Biodegradable Polyesters. Journal of Pharmaceutical Sciences, 2014, 103, 3560-3566.	1.6	4
426	Polymeric drug careers through covalent attachment and encapsulation for controlled delivery purposes. International Journal of Plastics Technology, 2014, 18, 333-336.	2.9	0
427	Evaluation of Thermal Gelation of F-127 in a Non-Aqueous Solvent and its Suitability as a Support Material for Additive Manufacturing. Advanced Materials Research, 0, 911, 226-231.	0.3	1
428	Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of <i>Candida rugosa</i> Lipase under Mild Conditions. BioMed Research International, 2014, 2014, 1-9.	0.9	7
429	Nanoparticle based Drug Delivery Systems for Treatment of Infectious Diseases. , 2014, , .		34
430	Investigation of hydrogel membranes containing a combination of timolol maleate and brimonidine tartrate for ocular delivery. Asian Journal of Pharmaceutics (discontinued), 2014, 8, 259.	0.4	2
431	Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit. , 2014, , .		0
432	Nanotechnological Strategies for Vaginal Administration of Drugs—A Review. Journal of Biomedical Nanotechnology, 2014, 10, 2218-2243.	0.5	31
433	Development and <i>in vitro</i> evaluation of a buccal drug delivery system based on preactivated thiolated pectin. Drug Development and Industrial Pharmacy, 2014, 40, 1530-1537.	0.9	27
434	Hydrogel Materials. , 2014, , 225-264.		0
435	<i>In situ</i> gelling polysaccharideâ€based hydrogel for cell and drug delivery in tissue engineering. Journal of Applied Polymer Science, 2014, 131, .	1.3	32
436	Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polymer Chemistry, 2014, 5, 4227-4234.	1.9	51
437	Poly(ethylene glycol) Hydrogels with Adaptable Mechanical and Degradation Properties for Use in Biomedical Applications. Macromolecular Bioscience, 2014, 14, 687-698.	2.1	50
439	Drug Delivery. , 2014, , .		22
440	Characterization of protein release from poly(ethylene glycol) hydrogels with crosslink density gradients. Journal of Biomedical Materials Research - Part A, 2014, 102, 487-495.	2.1	37
441	Thermoresponsive hydrogels from BSA esterified with low molecular weight PEG. Journal of Applied Polymer Science, 2014, 131, .	1.3	9

#	Article	IF	CITATIONS
442	Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	87
443	Fabrication of N-isopropylacrylamide (NIPAAM) based micro-hydrogel using UV LED microscope. , 2014, ,		1
444	Formulation and evaluation of stimuli-sensitive hydrogels of timolol maleate and brimonidine tartrate for the treatment of glaucoma. International Journal of Pharmaceutical Investigation, 2014, 4, 112.	0.2	32
445	Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery. Polymers, 2014, 6, 1312-1332.	2.0	51
446	Cyclodextrin-based hydrogels toward improved wound dressings. Critical Reviews in Biotechnology, 2014, 34, 328-337.	5.1	42
447	Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. Comptes Rendus Chimie, 2014, 17, 49-61.	0.2	65
448	Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration. Drug Development and Industrial Pharmacy, 2014, 40, 1264-1275.	0.9	10
449	Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Materials Science and Engineering C, 2014, 42, 219-226.	3.8	35
450	Thermo- and pH-sensitive hydrogels containing the β-cyclodextrin moiety for controlled protein release. Monatshefte Für Chemie, 2014, 145, 39-46.	0.9	5
451	Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers, 2014, 99, 31-38.	5.1	209
452	Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 2014, 39, 169-188.	2.8	248
453	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	3.1	99
454	Microneedle-Assisted Permeation of Lidocaine Carboxymethylcellulose with Gelatine Co-polymer Hydrogel. Pharmaceutical Research, 2014, 31, 1170-1184.	1.7	46
455	Scaffolds for tissue engineering of cardiac valves. Acta Biomaterialia, 2014, 10, 2877-2893.	4.1	147
456	Graphene-polymer nanocomposites for structural and functional applications. Progress in Polymer Science, 2014, 39, 1934-1972.	11.8	922
457	Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. International Journal of Biological Macromolecules, 2014, 67, 22-27.	3.6	103
458	A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. Journal of Materials Chemistry B, 2014, 2, 1988.	2.9	52
459	Biocatalytic polymer thin films: optimization of the multilayered architecture towards in situ synthesis of anti-proliferative drugs. Nanoscale, 2014, 6, 4131.	2.8	16

ARTICLE IF CITATIONS Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive 460 1.5 70 polymer nanofibres for tissue regeneration. Interface Focus, 2014, 4, 20130050. In Vitro, In Vivo, and In Silico Evaluation of the Bioresponsive Behavior of an Intelligent Intraocular 1.7 Implant. Pharmaceutical Research, 2014, 31, 607-634. Gel-sol evolution of cyclodextrin-based nanosponges: role of the macrocycle size. Journal of 462 0.9 15 Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 77-83. Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly(N-isopropylacrylamide) and poly(sodium acrylate) hydrogels. Colloid and Polymer Science, 2014, 292, 485-492. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) 464 3.8 17 injectable gels. Materials Science and Engineering C, 2014, 37, 20-27. Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 2014, 243, 572-590. 6.6 764 Externally addressable hydrogel nanocomposites for biomedical applications. Current Opinion in 466 3.8 42 Chemical Engineering, 2014, 4, 1-10. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue 5.7 629 engineering. Biomaterials, 2014, 35, 4969-4985. Antibiotic-containing polymers for localized, sustained drug delivery. Advanced Drug Delivery 468 109 6.6 Reviews, 2014, 78, 77-87. Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer 84 nanocomposite. Sensors and Actuators B: Chemical, 2014, 190, 270-278. Preparation and characterization of double crosslinked hydrogel films from carboxymethylchitosan 470 5.151 and carboxymethylcellulose. Carbohydrate Polymers, 2014, 110, 113-120. An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the 471 1.2 nanomedicine structure. Soft Matter, 2014, 10, 1767. pH and glutathion-responsive hydrogel for localized delivery of paclitaxel. Colloids and Surfaces B: 472 2.5 31 Biointerfaces, 2014, 116, 247-256. Injectable Hydrogels from Triblock Copolymers of Vitamin Eâ€Functionalized Polycarbonate and Poly(ethylene glycol) for Subcutaneous Delivery of Antibodies for Cancer Therapy. Advanced Functional Materials, 2014, 24, 1538-1550. 474 Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. 475 11.8 193 Progress in Polymer Science, 2014, 39, 1235-1265. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double 130 hydroxide as drug delivery systems. Journal of Polymer Research, 2014, 21, 1. Tunable Porous Hydrogels from Cocontinuous Polymer Blends. Macromolecules, 2014, 47, 3068-3075. 477 2.234 Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic) Tj ETQq1 1 0.784314 rgBT /Qyerlock 478

#	Article	IF	CITATIONS
479	High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydrate Polymers, 2014, 101, 272-280.	5.1	126
480	Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique. Carbohydrate Polymers, 2014, 102, 598-605.	5.1	39
481	Differentiation of neuronal stem cells into motor neurons using electrospun poly-l-lactic acid/gelatin scaffold. Biomaterials, 2014, 35, 664-674.	5.7	121
482	Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Advances, 2014, 4, 10815.	1.7	193
483	Facile fabrication of novel pH-sensitive poly(aspartic acid) hydrogel by crosslinking nanofibers. Materials Letters, 2014, 132, 393-396.	1.3	24
484	A multi-photoresponsive supramolecular hydrogel with dual-color fluorescence and dual-modal photodynamic action. Journal of Materials Chemistry B, 2014, 2, 3443-3449.	2.9	36
485	Enzymatically Cross-Linked Hyperbranched Polyglycerol Hydrogels as Scaffolds for Living Cells. Biomacromolecules, 2014, 15, 3881-3890.	2.6	38
486	Design and Viscoelastic Properties of <scp>PDMA</scp> / <scp>S</scp> ilica Assemblies in Aqueous Media. Macromolecular Symposia, 2014, 337, 58-73.	0.4	6
487	Dilute Self-Healing Hydrogels of Silk-Collagen-Like Block Copolypeptides at Neutral pH. Biomacromolecules, 2014, 15, 699-706.	2.6	54
488	Catalyst-mediated yet catalyst-free hydrogels formed by interfacial chemical activation. Chemical Communications, 2014, 50, 2869-2872.	2.2	30
489	Supramolecular polymer networks of building blocks prepared via RAFT polymerization. Polymer Chemistry, 2014, 5, 2142.	1.9	18
490	Controlled delivery of dexamethasone to the intestine from poly(vinyl alcohol)–poly(acrylic acid) microspheres containing drug-cyclodextrin complexes: influence of method of preparation of inclusion complex. RSC Advances, 2014, 4, 24222.	1.7	17
491	Photo-triggerable hydrogel–nanoparticle hybrid scaffolds for remotely controlled drug delivery. Journal of Materials Chemistry B, 2014, 2, 7685-7693.	2.9	42
492	Controlling uniformity of photopolymerized microscopic hydrogels. Lab on A Chip, 2014, 14, 1551-1563.	3.1	29
493	Metal and light free "click―hydrogels for prevention of post-operative peritoneal adhesions. Polymer Chemistry, 2014, 5, 2018-2026.	1.9	50
494	Dually degradable click hydrogels for controlled degradation and protein release. Journal of Materials Chemistry B, 2014, 2, 5511-5521.	2.9	61
495	Doxycycline and oxytetracycline loading of a zwitterionic amphoteric surfactant-gel and their controlled release. Physical Chemistry Chemical Physics, 2014, 16, 23096-23107.	1.3	17
496	Silica nanoparticles as tracers of the gelation dynamics of a natural biopolymer physical gel. Soft Matter, 2014, 10, 4547.	1.2	44

#	Article	IF	CITATIONS
497	Designing Injectable, Covalently Cross‣inked Hydrogels for Biomedical Applications. Macromolecular Rapid Communications, 2014, 35, 598-617.	2.0	147
498	Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 12320-12364.	7.2	1,447
499	Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. MedChemComm, 2014, 5, 1602-1618.	3.5	74
500	Evidence for the existence of crosslinked crystalline domains within cyclodextrin-based supramolecular hydrogels through sol–gel replication. RSC Advances, 2014, 4, 8200.	1.7	22
501	Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. European Polymer Journal, 2014, 60, 247-254.	2.6	58
502	Intercalation of 5-fluorouracil into ZnAl hydrotalcite-like nanoparticles: Preparation, characterization and drug release. Applied Clay Science, 2014, 101, 320-326.	2.6	9
503	Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone)-block-poly(N-isopropylacrylamide) triblock copolymers. European Polymer Journal, 2014, 61, 23-32.	2.6	21
504	Stimuli-Induced Release of Compounds from Elastin Biomimetic Matrix. Biomacromolecules, 2014, 15, 416-422.	2.6	25
505	Characterization of Biodegradable Polyurethane Nanoparticles and Thermally Induced Self-Assembly in Water Dispersion. ACS Applied Materials & amp; Interfaces, 2014, 6, 5685-5694.	4.0	79
506	Novel Functionalization of Discrete Polymeric Biomaterial Microstructures for Applications in Imaging and Three-Dimensional Manipulation. ACS Applied Materials & Interfaces, 2014, 6, 14477-14485.	4.0	11
507	Synthesis, Chloramphenicol Uptake, and In Vitro Release of Poly(AMPS–TEA-Co-AAm) Gels with Affinity for Both Water and Alcohols. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 73-79.	1.8	6
508	Injectable, in situ gelling, cyclodextrin–dextran hydrogels for the partitioning-driven release of hydrophobic drugs. Journal of Materials Chemistry B, 2014, 2, 5157.	2.9	52
509	Injectable Biocompatible and Biodegradable pH-Responsive Hollow Particle Gels Containing Poly(acrylic acid): The Effect of Copolymer Composition on Gel Properties. Biomacromolecules, 2014, 15, 1814-1827.	2.6	52
510	Nanostructured Hydrogels. , 2014, , 325-355.		15
511	Synthesis and photopolymerisation of maleic polyvinyl alcohol based hydrogels for bone tissue engineering. Journal of Polymer Research, 2014, 21, 1.	1.2	4
512	Tunable Temperature-Responsive Supramolecular Hydrogels Formed by Prodrugs As a Codelivery System. ACS Applied Materials & Interfaces, 2014, 6, 10623-10630.	4.0	90
513	Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angewandte Chemie - International Edition, 2014, 53, 1746-1754.	7.2	516
514	Controlled Drug Release from the Aggregation–Disaggregation Behavior of pH-Responsive Microgels. ACS Applied Materials & Interfaces, 2014, 6, 13749-13756.	4.0	52

#	Article	IF	CITATIONS
515	Thermoresponsive hydrogels from alginate-based graft copolymers. European Polymer Journal, 2014, 61, 33-44.	2.6	73
516	Composite wound dressing for drug release. Fibers and Polymers, 2014, 15, 1422-1428.	1.1	19
517	Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. International Journal of Pharmaceutics, 2014, 472, 262-275.	2.6	182
518	Polymeric Hydrogel Nanocapsules: A Thermo and pH Dual-responsive Carrier for Sustained Drug Release. Nano-Micro Letters, 2014, 6, 200-208.	14.4	26
520	Probing the Internal Morphology of Injectable Poly(oligoethylene glycol methacrylate) Hydrogels by Light and Small-Angle Neutron Scattering. Macromolecules, 2014, 47, 6017-6027.	2.2	16
521	Tuning Gelation Time and Morphology of Injectable Hydrogels Using Ketone–Hydrazide Cross-Linking. Biomacromolecules, 2014, 15, 781-790.	2.6	92
522	A microfluidic method to measure small molecule diffusion in hydrogels. Materials Science and Engineering C, 2014, 35, 322-334.	3.8	16
523	Smart hydrogels as functional biomimetic systems. Biomaterials Science, 2014, 2, 603-618.	2.6	193
524	Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chemical Communications, 2014, 50, 7052-7055.	2.2	35
525	Synthesis and Characterization of a POSS-PEG Macromonomer and POSS-PEG-PLA Hydrogels for Periodontal Applications. Biomacromolecules, 2014, 15, 666-679.	2.6	45
526	Electrical characterization of polymer composite gel under biasing as polar medium. Ionics, 2014, 20, 529-534.	1.2	16
527	Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system. Biomaterials, 2014, 35, 1989-2000.	5.7	45
528	A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chemical Science, 2014, 5, 1054.	3.7	88
529	pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydrate Polymers, 2014, 112, 627-637.	5.1	179
530	Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI. Macromolecular Bioscience, 2014, 14, 1205-1214.	2.1	12
531	Inner Structure of Adsorbed Ionic Microgel Particles. Langmuir, 2014, 30, 7168-7176.	1.6	42
532	Enzyme Prodrug Therapy Engineered into Biomaterials. Advanced Functional Materials, 2014, 24, 5202-5210.	7.8	23
533	Characterization of Heterogeneous Polyacrylamide Hydrogels by Tracking of Single Quantum Dots. Macromolecules, 2014, 47, 741-749.	2.2	57

#	Article	IF	CITATIONS
534	Pdâ€Porphyrinâ€Crossâ€Linked Implantable Hydrogels with Oxygenâ€Responsive Phosphorescence. Advanced Healthcare Materials, 2014, 3, 891-896.	3.9	46
535	Thiolated human serum albumin cross-linked dextran hydrogels as a macroscale delivery system. Soft Matter, 2014, 10, 4869-4874.	1.2	16
536	Swelling properties of amino acid containing cross-linked polymeric organogels and their respective polyelectrolytic hydrogels with pH and salt responsive property. Polymer, 2014, 55, 5425-5434.	1.8	39
537	Thermoresponsive aggregation of PS–PNIPAM–PS triblock copolymer: A combined study of light scattering and small angle neutron scattering. European Polymer Journal, 2014, 56, 59-68.	2.6	43
539	Microstructure and inter-molecular forces involved in gelation-like protein hydrolysate from neutrase-treated male gonad of scallop (Patinopecten yessoensis). Food Hydrocolloids, 2014, 40, 245-253.	5.6	43
540	A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells. Carbohydrate Polymers, 2014, 101, 1033-1042.	5.1	27
541	Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydrate Polymers, 2014, 102, 159-166.	5.1	115
543	Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Acta Biomaterialia, 2014, 10, 2125-2132.	4.1	26
544	Silk fibroin aerogels for drug delivery applications. Journal of Supercritical Fluids, 2014, 91, 84-89.	1.6	95
545	Augmenting protein release from layer-by-layer functionalized agarose hydrogels. Carbohydrate Polymers, 2014, 103, 377-384.	5.1	18
546	Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery. International Journal of Pharmaceutics, 2014, 470, 107-119.	2.6	21
547	Facile method to prepare self-healable PVA hydrogels with high water stability. Materials Letters, 2014, 122, 227-229.	1.3	21
548	High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharmaceutical Development and Technology, 2014, 19, 651-661.	1.1	50
549	Multistimuliâ€Responsive Supramolecular Gels: Design Rationale, Recent Advances, and Perspectives. ChemPhysChem, 2014, 15, 2421-2430.	1.0	77
552	A Repertoire of Peptide Tags for Controlled Drug Release from Injectable Noncovalent Hydrogel. Biomacromolecules, 2014, 15, 2058-2066.	2.6	20
553	Injectable poly(oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: Physicochemical and biological responses. Acta Biomaterialia, 2014, 10, 4143-4155.	4.1	59
554	Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polymer Degradation and Stability, 2014, 107, 166-177.	2.7	67
555	Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharmaceutica Sinica B, 2014, 4, 26-36.	5.7	33

#	Article	IF	Citations
556	Preparation and characterization of methotrexate-loaded microcapsules. Pharmaceutical Development and Technology, 2014, 19, 42-47.	1.1	7
557	Composite Hydrogel Materials. Chromatographic Science, 2014, , 1-38.	0.1	0
558	Dynamic Properties of Water Confined in Sephadex G15 Gel by Quasi-Elastic Neutron Scattering and Neutron Spin Echo Measurements. Bulletin of the Chemical Society of Japan, 2014, 87, 603-608.	2.0	6
559	Cyclodextrin-based biodegradable polymer stars: synthesis and fluorescence studies. Green Materials, 2014, 2, 31-42.	1.1	7
560	Nanosensors for Biomedicine. Frontiers in Nanobiomedical Research, 2014, , 413-451.	0.1	0
561	Molecularly Imprinted Polymers for Water Polishing. , 2014, , 218-231.		0
562	Tracer Diffusion in Heterogeneous Polymer Networks. Macromolecular Chemistry and Physics, 2014, 215, 2097-2111.	1.1	10
563	Exploring poly(vinyl alcohol) hydrogels containing drug–cyclodextrin complexes as controlled drug delivery systems. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
564	Self-linked polymer gels [based on hyaluronic acid and poly (itaconic anhydride-co-3, 9-divinyl-2, 4, 8,) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
565	Microwaveâ€Assisted Preparation of Hydrogelâ€Forming Microneedle Arrays for Transdermal Drug Delivery Applications. Macromolecular Materials and Engineering, 2015, 300, 586-595.	1.7	73
566	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
567	Interpenetrating Polymer Networks (IPNs): Hydrophillic and Hydrophobic System Applications. , 2015, , 4094-4119.		0
568	Microgels: Drug Uptake and Release Behavior. , 0, , 4690-4700.		1
570	The Human Skin and Hydration. , 2015, , 51-80.		1
572	Tuning methods and mechanical modelling of hydrogels. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 140-154.	0.7	3
574	Fabrication of Polyethylene Glycolâ€Based Hydrogel Microspheres Through Electrospraying. Macromolecular Materials and Engineering, 2015, 300, 823-835.	1.7	28
575	pH/temperature double responsive behaviors and mechanical strength of laponite-crosslinked poly(DEA- <i>co</i> -DMAEMA) nanocomposite hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 876-884.	2.4	34
576	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	3.9	50

#	Article	IF	CITATIONS
577	3D-Printed Drug/Cell Carrier Enabling Effective Release of Cyclosporin a for Xenogeneic Cell-Based Therapy. Cell Transplantation, 2015, 24, 2513-2525.	1.2	21
578	Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: A study in rat. Journal of Biomedical Materials Research - Part A, 2015, 103, 3273-3283.	2.1	16
579	Protein Compatibility of Selected Crossâ€linking Reactions for Hydrogels. Macromolecular Bioscience, 2015, 15, 405-413.	2.1	40
580	Poly(anhydrideâ€ester) and Poly(Nâ€vinylâ€2â€pyrrolidone) Blends: Salicylic Acidâ€Releasing Blends with Hydrogelâ€Like Properties that Reduce Inflammation. Macromolecular Bioscience, 2015, 15, 342-350.	2.1	20
581	Injectable, Poreâ€Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Advanced Healthcare Materials, 2015, 4, 2677-2687.	3.9	92
582	Mechanically Strong Microstructured Hydrogels Based on Reactive Starâ€Shaped Prepolymers. Macromolecular Symposia, 2015, 358, 148-156.	0.4	2
583	Biodegradable and stimuli sensitive amphiphilic graft copolymers and their sol–gel phase transition behavior. Polymers for Advanced Technologies, 2015, 26, 399-407.	1.6	8
584	Synthesis and characterization of interpenetrating polymer network based on sodium alginate and methacrylic acid and potential application for immobilization of TiO ₂ nanoparticles. Polymer Engineering and Science, 2015, 55, 2511-2518.	1.5	8
585	Analysis of Healing Effect of Alginate Sulfate Hydrogel Dressing Containing Antimicrobial Peptide on Wound Infection Caused by Methicillin-Resistant Staphylococcus aureus. Jundishapur Journal of Microbiology, 2015, 8, e28320.	0.2	27
586	Hydrogels for ocular drug delivery and tissue engineering. BioImpacts, 2015, 5, 159-164.	0.7	67
587	Development and Characterization of SMEDDS Based Thermally Triggered In Situ Gelling Intramuscular Implant for Sustained Release of Rifampicin. Recent Patents on Nanomedicine, 2015, 5, 38-47.	0.5	1
588	Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. International Journal of Nanomedicine, 2015, 10, 7291.	3.3	49
589	Improvements in Topical Ocular Drug Delivery Systems: Hydrogels and Contact Lenses. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 683.	0.9	30
590	Synthesis and Properties of New "Stimuli―Responsive Nanocomposite Hydrogels Containing Silver Nanoparticles. Gels, 2015, 1, 117-134.	2.1	32
591	Grafting Techniques towards Production of Peptide-Tethered Hydrogels, a Novel Class of Materials with Biomedical Interest. Gels, 2015, 1, 194-218.	2.1	14
592	Drug Carrier for Photodynamic Cancer Therapy. International Journal of Molecular Sciences, 2015, 16, 22094-22136.	1.8	190
593	Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications. Journal of Functional Biomaterials, 2015, 6, 849-862.	1.8	18
594	Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs. Molecules, 2015, 20, 20397-20408.	1.7	157

#	Article	IF	CITATIONS
595	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	1.9	297
596	Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors, 2015, 15, 16281-16313.	2.1	140
597	Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BioMed Research International, 2015, 2015, 1-22.	0.9	60
598	Analgesic Effect of Intra-Articular Injection of Temperature-Responsive Hydrogel Containing Bupivacaine on Osteoarthritic Pain in Rats. BioMed Research International, 2015, 2015, 1-9.	0.9	38
599	History and Applications of Hydrogels. Journal of Biomedical Sciencies, 2015, 04, .	0.3	115
600	Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release. International Journal of Polymer Science, 2015, 2015, 1-15.	1.2	141
602	A pH-sensitive and biodegradable supramolecular hydrogel constructed from a PEGylated polyphosphoester-doxorubicin prodrug and α-cyclodextrin. Polymer Chemistry, 2015, 6, 5009-5014.	1.9	44
603	Modeling of Drug Release from a Novel Temperature-Responsive Phase-Transient Drug Delivery System in Cylindrical Coordinates. Journal of Macromolecular Science - Physics, 2015, 54, 450-468.	0.4	3
604	Nanotechnological Approaches to Therapeutic Delivery Using Elastin-Like Recombinamers. Bioconjugate Chemistry, 2015, 26, 1252-1265.	1.8	21
605	Pain management via local anesthetics and responsive hydrogels. Therapeutic Delivery, 2015, 6, 165-176.	1.2	32
606	Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug. Nanoscale, 2015, 7, 12051-12060.	2.8	44
607	Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS Nano, 2015, 9, 5772-5781.	7.3	43
608	Preparation, antimicrobial and release behaviors of nisin-poly (vinyl alcohol)/wheat gluten/ZrO2 nanofibrous membranes. Journal of Materials Science, 2015, 50, 5068-5078.	1.7	35
609	Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. , 2015, , .		13
610	Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation. ACS Applied Materials & Materials	4.0	199
611	pH-sensitive interpenetrating network hydrogels based on pachyman and its carboxymethylated derivatives for oral drug delivery. Journal of Polymer Research, 2015, 22, 1.	1.2	7
612	Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids and Surfaces B: Biointerfaces, 2015, 128, 140-148.	2.5	75
613	Hydrogels in ophthalmic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 227-238.	2.0	166

#	Article	IF	CITATIONS
614	Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Applied Clay Science, 2015, 112-113, 44-52.	2.6	52
615	Tough and fully recoverable hydrogels. Journal of Materials Chemistry B, 2015, 3, 5284-5290.	2.9	35
616	Polymeric Supramolecular Hydrogels as Materials for Medicine. Series in Bioengineering, 2015, , 151-185.	0.3	1
617	Design and development of two component hydrogel ejector. , 2015, , .		0
618	Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers and Polymers, 2015, 16, 2165-2176.	1.1	18
619	Swelling Kinetic Study of Poly(Vinyl Alcohol)/Poly(Î ³ -Glutamic Acid) Blend Hydrogel. Advanced Materials Research, 0, 1095, 423-426.	0.3	0
620	Multiscale electrochemistry of hydrogels embedding conductive nanotubes. Chemical Science, 2015, 6, 3900-3905.	3.7	8
621	Thermorheological Characterization of Elastoviscoplastic Carbopol Ultrez 20 Gel. Journal of Engineering Materials and Technology, Transactions of the ASME, 2015, 137, .	0.8	11
622	Homogeneous deposition of particles by absorption on hydrogels. Europhysics Letters, 2015, 112, 48004.	0.7	15
623	Advanced Therapeutic Dressings for Effective Wound Healing—A Review. Journal of Pharmaceutical Sciences, 2015, 104, 3653-3680.	1.6	607
624	In-Situ Gelling Polymers. Series in Bioengineering, 2015, , .	0.3	3
625	Synthesis and Characterization of a Library of Inâ€Situ Curing, Nonswelling Ethoxylated Polyol Thiolâ€ene Hydrogels for Tailorable Macromolecule Delivery. Advanced Materials, 2015, 27, 65-72.	11.1	70
626	Composite hydrogel-loaded alumina membranes for nanofluidic molecular filtration. Journal of Membrane Science, 2015, 477, 151-156.	4.1	15
627	Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride]. Materials Chemistry and Physics, 2015, 152, 69-76.	2.0	13
628	Molecularly Engineered Dualâ€Crosslinked Hydrogel with Ultrahigh Mechanical Strength, Toughness, and Good Selfâ€Recovery. Advanced Materials, 2015, 27, 2054-2059.	11.1	711
629	Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Materials and Structures, 2015, 24, 035021.	1.8	41
630	Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors. Biomaterials, 2015, 49, 113-124.	5.7	19
631	Physically-strengthened collagen bioactive nanocomposite gels for bone: A feasibility study. Tissue Engineering and Regenerative Medicine, 2015, 12, 90-97.	1.6	16

#	Article	IF	CITATIONS
632	Delivery systems for the treatment of degenerated intervertebral discs. Advanced Drug Delivery Reviews, 2015, 84, 172-187.	6.6	89
633	Temperature-responsive bending of a bilayer gel. International Journal of Solids and Structures, 2015, 56-57, 20-28.	1.3	46
634	Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal, 2015, 72, 698-716.	2.6	148
635	A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials, 2015, 45, 1-9.	5.7	46
636	Biodegradable Tetra-PEG Hydrogels as Carriers for a Releasable Drug Delivery System. Bioconjugate Chemistry, 2015, 26, 270-278.	1.8	56
637	Nanostructural heterogeneity in polymer networks and gels. Polymer Chemistry, 2015, 6, 5515-5528.	1.9	185
638	Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release. Journal of Materials Science: Materials in Medicine, 2015, 26, 5328.	1.7	11
639	Topical Lyogel Containing Corticosteroid Decreases IgE Expression and Enhances the Therapeutic Efficacy Against Atopic Eczema. AAPS PharmSciTech, 2015, 16, 656-663.	1.5	8
640	A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: Synthesis and characterization of physical and toxicological properties. Journal of Controlled Release, 2015, 208, 76-84.	4.8	48
641	Enabling Surgical Placement of Hydrogels Through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions. Annals of Biomedical Engineering, 2015, 43, 2569-2576.	1.3	20
642	Aptamers Selected by Cell-SELEX for Theranostics. , 2015, , .		10
643	Microfluidic Synthesis of Biodegradable Polyethylene-Glycol Microspheres for Controlled Delivery of Proteins and DNA Nanoparticles. ACS Biomaterials Science and Engineering, 2015, 1, 157-165.	2.6	35
644	Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(<i>N</i> -isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release. ACS Applied Materials & Interfaces, 2015, 7, 14338-14351.	4.0	117
645	Partitioning of coomassie brilliant blue into DMAEMA containing poly(HEMA)-based hydrogels. European Polymer Journal, 2015, 72, 438-450.	2.6	11
646	One-pot microfluidic fabrication of graphene oxide-patched hollow hydrogel microcapsules with remarkable shell impermeability. Chemical Communications, 2015, 51, 12756-12759.	2.2	18
647	Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.	5.7	65
648	Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter, 2015, 11, 5905-5917.	1.2	21
649	Thermo-responsive hydrogels withN-isopropylacrylamide/acrylamide interpenetrating networks for controlled drug release. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 917-930.	1.9	9
#	Article	IF	CITATIONS
-----	--	-----	-----------
650	Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions. ACS Applied Materials & Interfaces, 2015, 7, 16694-16705.	4.0	52
651	Synthesis and characterization of a photocrosslinkable chitosan–gelatin hydrogel aimed for tissue regeneration. RSC Advances, 2015, 5, 63478-63488.	1.7	65
652	The Relationship between the Hydrophilicity and Surface Chemical Composition Microphase Separation Structure of Multicomponent Silicone Hydrogels. Journal of Physical Chemistry B, 2015, 119, 9780-9786.	1.2	19
653	Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. Materials, 2015, 8, 1778-1816.	1.3	78
654	Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. Journal of Materials Chemistry B, 2015, 3, 5511-5522.	2.9	41
655	Fabrication and properties of a supramolecular hybrid hydrogel doped with CdTe quantum dots. RSC Advances, 2015, 5, 58746-58754.	1.7	19
656	pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine. International Journal of Biological Macromolecules, 2015, 79, 856-863.	3.6	69
657	Supramolecular Fmoc-valyl based nanoassemblies for delivery of mitoxantrone into HeLa cells. Journal of Drug Delivery Science and Technology, 2015, 29, 107-116.	1.4	4
658	Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnology Advances, 2015, 33, 1310-1326.	6.0	67
659	Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Advances, 2015, 5, 35469-35486.	1.7	138
660	Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods, 2015, 84, 60-69.	1.9	63
661	Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. Reactive and Functional Polymers, 2015, 91-92, 1-10.	2.0	52
662	Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 11-17.	2.0	50
663	Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2015, 7, 9399-9409.	4.0	127
664	Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network. Polymer Bulletin, 2015, 72, 1663-1681.	1.7	19
665	Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 339-353.	1.9	9
666	An eco-friendly synthesis of modified poly(vinyl alcohol)-graft-lactic acid by curing method. Journal of Thermal Analysis and Calorimetry, 2015, 120, 929-936.	2.0	3
667	Structure, swelling and mechanical behavior of a cationic full-IPN hydrogel reinforced with modified nanoclay. Iranian Polymer Journal (English Edition), 2015, 24, 379-388.	1.3	11

#	Article	IF	CITATIONS
668	Systemic modulation of the stability of pluronic hydrogel by a small amount of graphene oxide. Colloids and Surfaces B: Biointerfaces, 2015, 128, 515-521.	2.5	20
669	Stimuli-responsive microgel-based etalons for optical sensing. RSC Advances, 2015, 5, 44074-44087.	1.7	57
670	Aptamer-Based Hydrogels and Their Applications. , 2015, , 163-195.		2
671	Soft nanofluidics governing minority ion exclusion in charged hydrogels. Soft Matter, 2015, 11, 4081-4090.	1.2	7
672	A supramolecular two-photon-active hydrogel platform for direct bioconjugation under near-infrared radiation. Journal of Materials Chemistry B, 2015, 3, 1313-1320.	2.9	11
673	Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9, 4686-4697.	7.3	624
674	Drug delivery from gelatin-based systems. Expert Opinion on Drug Delivery, 2015, 12, 1547-1563.	2.4	237
675	Design and Synthesis of Nonionic Copolypeptide Hydrogels with Reversible Thermoresponsive and Tunable Physical Properties. Biomacromolecules, 2015, 16, 1331-1340.	2.6	61
676	Effect of rat bone marrow derived–stem cell delivery from serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone tissue regeneration using a nude mouse critical-sized calvarial defect model. Journal of Bioactive and Compatible Polymers, 2015, 30, 188-208.	0.8	9
677	Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids, 2015, 50, 159-165.	5.6	77
678	Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomaterialia, 2015, 20, 51-59.	4.1	59
679	Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients. Chemical Communications, 2015, 51, 7451-7454.	2.2	57
680	Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films. Cellulose, 2015, 22, 1911-1929.	2.4	49
681	Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. European Polymer Journal, 2015, 72, 602-619.	2.6	184
682	Local immunotherapy via delivery of interleukin-10 and transforming growth factor β antagonist for treatment of chronic kidney disease. Journal of Controlled Release, 2015, 206, 131-139.	4.8	60
683	Photoswitchable Membranes Based on Peptideâ€Modified Nanoporous Anodic Alumina: Toward Smart Membranes for Onâ€Demand Molecular Transport. Advanced Materials, 2015, 27, 3019-3024.	11.1	38
684	Vibrational heat capacity of Poly(N-isopropylacrylamide). Polymer, 2015, 63, 108-115.	1.8	16
686	Swelling Behavior of Hydrogels within Auxetic Polytetrafluoroethylene Jacket. Polymer-Plastics Technology and Engineering, 2015, 54, 1787-1793.	1.9	2

#	Article	IF	CITATIONS
687	An injectable drug-loaded hydrogel using a "clickable―amphiphilic triblock copolymer as a precursor. Polymer Chemistry, 2015, 6, 8240-8243.	1.9	13
688	Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods. Journal of Functional Foods, 2015, 19, 182-193.	1.6	87
689	Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study. International Journal of Pharmaceutics, 2015, 495, 651-659.	2.6	36
690	Rayleigh–Benard convection in Herschel–Bulkley fluid. Journal of Non-Newtonian Fluid Mechanics, 2015, 226, 32-45.	1.0	33
691	Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis. Analytica Chimica Acta, 2015, 887, 245-252.	2.6	33
692	Supramolecular polycationic hydrogels with high swelling capacity prepared by partial methacrylation of polyethyleneimine. RSC Advances, 2015, 5, 88866-88875.	1.7	14
693	Long-acting bioactive composition based on chitosan and taxifolin. Inorganic Materials: Applied Research, 2015, 6, 479-484.	0.1	8
694	Quality by Design Coupled with Near Infrared in Formulation of Transdermal Glimepiride Liposomal Films. Journal of Pharmaceutical Sciences, 2015, 104, 2062-2075.	1.6	37
695	Reductant-triggered rapid self-gelation and biological functionalization of hydrogels. Polymer Chemistry, 2015, 6, 8275-8283.	1.9	16
696	Synthesis & characterization of iron-carboxylate nanoscale metal organic frameworks for drug delivery. , 2015, , .		Ο
697	Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs. International Journal of Pharmaceutics, 2015, 494, 264-270.	2.6	37
698	Structured microparticles with tailored properties produced by membrane emulsification. Advances in Colloid and Interface Science, 2015, 225, 53-87.	7.0	57
699	Preparation of a mixed-matrix hydrogel of vorinostat for topical administration on the rats as experimental model. European Journal of Pharmaceutical Sciences, 2015, 78, 255-263.	1.9	6
700	The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses. Acta Biomaterialia, 2015, 26, 184-194.	4.1	37
701	Hydrogel beads from sugar cane bagasse and palm kernel cake, and the viability of encapsulated Lactobacillus acidophilus. E-Polymers, 2015, 15, 411-418.	1.3	15
702	Injectable Interpenetrating Network Hydrogels via Kinetically Orthogonal Reactive Mixing of Functionalized Polymeric Precursors. ACS Macro Letters, 2015, 4, 1104-1109.	2.3	34
703	Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. Journal of Materials Chemistry B, 2015, 3, 8010-8019.	2.9	111
704	The Diels–Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 438-453.	2.0	164

#	Article	IF	CITATIONS
705	The Effect of Swelling Ratio on the Coulter Underestimation of Hydrogel Microsphere Diameters. Tissue Engineering - Part C: Methods, 2015, 21, 1246-1250.	1.1	5
706	Hydrogels for central nervous system therapeutic strategies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 905-916.	1.0	14
707	Effect of functional groups on physicochemical and mechanical behavior of biocompatible macroporous hydrogels. Reactive and Functional Polymers, 2015, 97, 77-85.	2.0	30
708	Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. ACS Applied Materials & Interfaces, 2015, 7, 26050-26062.	4.0	81
709	Synthesis and swelling properties of silk sericin-g-poly(acrylic acid/attapulgite) composite superabsorbent. Polymer Bulletin, 2015, 72, 487-501.	1.7	18
710	A novel pHâ€responsive interpolyelectrolyte hydrogel complex for the oral delivery of levodopa. Part II: Characterization and formulation of an IPECâ€based tablet matrix. Journal of Biomedical Materials Research - Part A, 2015, 103, 1085-1094.	2.1	2
711	A Fast and Activatable Cross‣inking Strategy for Hydrogel Formation. Advanced Materials, 2015, 27, 1235-1240.	11.1	38
712	The concept of self-assembling and the interactions involved. , 2015, , 1-20.		0
713	Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015, 65, 252-267.	2.6	1,905
714	Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter, 2015, 11, 1214-1225.	1.2	58
715	Thermosensitive block copolymer hydrogels based on poly(É›â€caprolactone) and polyethylene glycol for biomedical applications: State of the art and future perspectives. Journal of Biomedical Materials Research - Part A, 2015, 103, 1276-1290.	2.1	67
716	Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 74, 136-141.	3.6	164
717	Hydrolytically Degradable Polyrotaxane Hydrogels for Drug and Cell Delivery Applications. Biomacromolecules, 2015, 16, 389-403.	2.6	25
718	pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. International Journal of Pharmaceutics, 2015, 478, 496-503.	2.6	36
719	Rational design of a hexapeptide hydrogelator for controlled-release drug delivery. Journal of Materials Chemistry B, 2015, 3, 759-765.	2.9	32
720	Temperatureâ€responsiveness and sustained delivery properties of macroporous PEGâ€ <i>co</i> â€PNIPAAmâ€ <i>co</i> â€PCL hydrogels. Polymer Engineering and Science, 2015, 55, 223-230. 	1.5	6
721	Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications. Radiation Physics and Chemistry, 2015, 106, 404-412.	1.4	14
722	Injectable and photocross-linkable gels based on gellan gum methacrylate: A new tool for biomedical application. International Journal of Biological Macromolecules, 2015, 72, 1335-1342.	3.6	53

#	Article	IF	CITATIONS
723	Kinetic release studies of nitrogen-containing bisphosphonate from gum acacia crosslinked hydrogels. International Journal of Biological Macromolecules, 2015, 73, 115-123.	3.6	46
724	Absorption of whey protein isolated (WPI)-stabilized β-Carotene emulsions by oppositely charged oxidized starch microgels. Food Research International, 2015, 67, 315-322.	2.9	38
725	Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Applied Microbiology and Biotechnology, 2015, 99, 623-636.	1.7	123
726	Cucurbituril-based supramolecular engineered nanostructured materials. Organic and Biomolecular Chemistry, 2015, 13, 330-347.	1.5	98
727	Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 73, 109-114.	3.6	164
728	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	2.2	131
729	Advances and new technologies applied in controlled drug delivery system. Research on Chemical Intermediates, 2015, 41, 2165-2200.	1.3	33
730	Bionanocomposites based on alginate and chitosan/layered double hydroxide with ciprofloxacin drug: Investigation of structure and controlled release properties. Polymer Composites, 2015, 36, 1819-1825.	2.3	26
731	Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide. Soft Matter, 2015, 11, 331-342.	1.2	25
732	Optimization of microwave assisted Maillard reaction to fabricate and evaluate corn fiber gum-chitosan IPN films. Food Hydrocolloids, 2015, 44, 260-276.	5.6	26
733	Stimuli-Responsive Hydrogels Bearing amino acid Residues: a Potential Platform for Future Therapies. Journal of Biomedical Engineering and Medical Devices, 2016, 01, .	0.1	4
734	In Situâ€Forming Crossâ€linking Hydrogel Systems: Chemistry and Biomedical Applications. , 0, , .		9
735	An Engineering Point of View on the Use of the Hydrogels for Pharmaceutical and Biomedical Applications. , 2016, , .		2
736	Swellable Hydrogel-based Systems for Controlled Drug Delivery. , 0, , .		22
737	Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells International, 2016, 2016, 1-14.	1.2	46
738	Synthesis of Potato Starch-Acrylic-Acid Hydrogels by Camma Radiation and Their Application in Dye Adsorption. International Journal of Polymer Science, 2016, 2016, 1-11.	1.2	43
739	Sustained Release of Protein Therapeutics from Subcutaneous Thermosensitive Biocompatible and Biodegradable Pentablock Copolymers (PTSgels). Journal of Drug Delivery, 2016, 2016, 1-15.	2.5	9
740	Biocatalytic membrane reactors (BMR). ChemistrySelect, 2016, 1, .	0.7	3

	Стато	n Report	
# 741	ARTICLE Nanoparticle and Targeted Systems for Colon Cancer Therapy. , 2016, , 695-713.	IF	CITATIONS
742	Polvelectrolyte Hydrogel Platforms for the Delivery of Antidepressant Drugs. Gels. 2016. 2. 24.	2.1	13
	Commential Hadranda for Dana Demonstration Maturials 2016 0.267		110
743	Composite Hydrogels for Bone Regeneration. Materials, 2016, 9, 267.	1.3	112
744	Marine Origin Polysaccharides in Drug Delivery Systems. Marine Drugs, 2016, 14, 34.	2.2	205
745	Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Marine Drugs, 2016, 14, 42.	2.2	408
746	Ionically Crosslinked Chitosan Hydrogels for the Controlled Release of Antimicrobial Essential Oils and Metal Ions for Wound Management Applications. Medicines (Basel, Switzerland), 2016, 3, 8.	0.7	21
747	Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels. Molecules, 2016, 21, 786.	1.7	99
748	A Thixotropic Polyglycerol Sebacate-Based Supramolecular Hydrogel as an Injectable Drug Delivery Matrix. Polymers, 2016, 8, 130.	2.0	50
749	A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers, 2016, 8, 359.	2.0	70
750	Drug-releasing textiles. , 2016, , 119-154.		8
751	Degradable hydrogel systems for biomedical applications. , 2016, , 173-188.		18
752	Cellulose-Derivatives-Based Hydrogels as Vehicles for Dermal and Transdermal Drug Delivery. , 0, , .		17
753	Response surface based co-optimization of release kinetics and mucoadhesive strength for an oral mucoadhesive tablet of cefixime trihydrate. Bulletin of Faculty of Pharmacy, Cairo University, 2016, 54, 227-235.	0.2	12
754	Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. International Journal of Biological Macromolecules, 2016, 91, 1110-1119.	3.6	103
755	Injectable Hydrogels for Biomedical Applications. , 2016, , 33-96.		3
756	A Supramolecular Shearâ€Thinning Antiâ€Inflammatory Steroid Hydrogel. Advanced Materials, 2016, 28, 6680-6686.	11.1	43
757	Cationic hybrids from poly(<scp>N,N</scp> â€dimethylaminoethyl methacrylate) covalently crosslinked with chloroalkyl silicone derivatives effective in binding anionic dyes. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
758	Thermoâ€responsive hydrogels from celluloseâ€based polyelectrolytes and catanionic vesicles for biomedical application. Journal of Biomedical Materials Research - Part A, 2016, 104, 1668-1679.	2.1	15

#	Article	IF	CITATIONS
759	Calcium carbonate hydrogel construct with cynnamaldehyde incorporated to control inflammation during surgical procedure. Journal of Biomedical Materials Research - Part A, 2016, 104, 768-774.	2.1	12
760	Hydrogels based on schiff base formation between an aminoâ€containing polyphosphazene and aldehyde functionalizedâ€dextrans. Journal of Polymer Science Part A, 2016, 54, 2984-2991.	2.5	19
761	Synthesis and characterization of Schiff base contained dextran microgels in water-in-oil inverse microemulsion. Carbohydrate Polymers, 2016, 152, 156-162.	5.1	50
762	Hierarchical mesoporous silica nanoparticles for tailorable drug release. International Journal of Pharmaceutics, 2016, 511, 65-72.	2.6	26
763	Novel hemocompatible nanocomposite hydrogels crosslinked with methacrylated gelatin. RSC Advances, 2016, 6, 43663-43671.	1.7	34
764	Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery. Macromolecular Bioscience, 2016, 16, 1188-1199.	2.1	24
765	Novel polyurethaneâ€based thermosensitive hydrogels as drug release and tissue engineering platforms: design and <i>in vitro</i> characterization. Polymer International, 2016, 65, 756-769.	1.6	43
766	Bioâ€Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation. Advanced Functional Materials, 2016, 26, 3612-3620.	7.8	122
767	Improvement in Mechanical Performance of Anionic Hydrogels Using Fullâ€interpenetrating Polymer Network Reinforced with Graphene Oxide Nanosheets. Advances in Polymer Technology, 2016, 35, 386-395.	0.8	7
768	<i>In situ</i> incorporation of monodisperse drug nanoparticles into hydrogel scaffolds for hydrophobic drug release. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
769	Fabrication of Hydrogel Particles of Defined Shapes Using Superhydrophobicâ€Hydrophilic Micropatterns. Advanced Materials, 2016, 28, 7613-7619.	11.1	83
770	Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology, 2016, 27, 315105.	1.3	47
771	Programmable DNA Hydrogels Assembled from Multidomain DNA Strands. ChemBioChem, 2016, 17, 1156-1162.	1.3	49
772	Hydrogels for Drug Delivery. , 2016, , 191-224.		0
773	Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Scientific Reports, 2016, 6, 37949.	1.6	39
774	Ionizing Radiation Effects in Polymers. , 2016, , .		16
775	NanoCrystalline Cellulose, an environmental friendly nanoparticle for pharmaceutical application – A quick study. MATEC Web of Conferences, 2016, 60, 01006.	0.1	5
776	Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromolecular Research, 2016, 24, 1115-1125.	1.0	16

#	Article	IF	CITATIONS
777	A comparative release study of curcumin and diclofenac sodium from genipin cross-linked composite hydrogel. , 2016, , .		2
778	Controlled Drug Release Formulation by Sequential Crosslinking of Multilayered Electrospun Gelatin Nanofiber Mat. MRS Advances, 2016, 1, 2107-2113.	0.5	8
779	Thermoresponsive Toughening in LCST-Type Hydrogels: Comparison between Semi-Interpenetrated and Grafted Networks. Macromolecules, 2016, 49, 9568-9577.	2.2	36
780	Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques. Journal of Chemical Physics, 2016, 144, 204903.	1.2	6
781	Poly(vinyl alcohol) Physical Hydrogels: Matrix-Mediated Drug Delivery Using Spontaneously Eroding Substrate. Journal of Physical Chemistry B, 2016, 120, 5916-5926.	1.2	45
782	Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS Applied Materials & Interfaces, 2016, 8, 10070-10087.	4.0	313
783	Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. Journal of Materials Chemistry B, 2016, 4, 3232-3238.	2.9	28
784	Regeneration strategies after the adult mammalian central nervous system injury—biomaterials. International Journal of Energy Production and Management, 2016, 3, 115-122.	1.9	11
785	Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications. Soft Matter, 2016, 12, 5529-5536.	1.2	24
786	Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydrate Polymers, 2016, 151, 189-197.	5.1	107
787	Periadventitial drug delivery for the prevention of intimal hyperplasia following open surgery. Journal of Controlled Release, 2016, 233, 174-180.	4.8	37
788	Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Properties. Macromolecules, 2016, 49, 4295-4306.	2.2	49
789	Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy. Acta Biomaterialia, 2016, 41, 253-263.	4.1	55
790	Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. Langmuir, 2016, 32, 5573-5579.	1.6	13
791	5-Flurouracil microencapsulation and impregnation in hyaluronic acid hydrogel as composite drug delivery system for ocular fibrosis. Cogent Medicine, 2016, 3, 1182108.	0.7	5
792	PFS- <i>b</i> -PNIPAM: A First Step toward Polymeric Nanofibrillar Hydrogels Based on Uniform Fiber-Like Micelles. Macromolecules, 2016, 49, 4265-4276.	2.2	28
793	Synthesis, characterization, properties of N-succinyl chitosan-g-poly (methacrylic acid) hydrogels and inÂvitro release of theophylline. Polymer, 2016, 92, 36-49.	1.8	77
794	Insight into hydrogels. Designed Monomers and Polymers, 2016, 19, 456-478.	0.7	78

#	Article	IF	CITATIONS
795	Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chemical Science, 2016, 7, 4557-4562.	3.7	72
796	Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter, 2016, 12, 4611-4620.	1.2	27
797	Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties. Chemistry of Materials, 2016, 28, 3406-3415.	3.2	206
798	Biodegradable graphene oxide and polyaptamer DNA hybrid hydrogels for implantable drug delivery. Carbon, 2016, 105, 14-22.	5.4	33
799	Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEC-acetal-PCL-acetal-) ₃ and α-cyclodextrin for pH-triggered drug delivery. RSC Advances, 2016, 6, 40858-40868.	1.7	18
800	Encapsulated Hydrogels by E-beam Lithography and Their Use in Enzyme Cascade Reactions. Langmuir, 2016, 32, 4043-4051.	1.6	16
801	Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Therapeutic Delivery, 2016, 7, 257-278.	1.2	94
802	Numerical and Analytical Modeling to Determine Performance Tradeoffs in Hydrogel-Based pH Sensors. IEEE Transactions on Electron Devices, 2016, 63, 2524-2530.	1.6	5
803	Polymerization of Hydrogel Network on Microfiber Surface: Synthesis of Hybrid Water-Absorbing Matrices for Biomedical Applications. ACS Biomaterials Science and Engineering, 2016, 2, 887-892.	2.6	18
804	An In-depth Analysis of the Mechanical, Electrical, and Drug Release Properties of Gelatin–Starch Phase-Separated Hydrogels. Polymer-Plastics Technology and Engineering, 2016, 55, 1731-1742.	1.9	4
805	Engineering Approaches for Understanding Osteogenesis: Hydrogels as Synthetic Bone Microenvironments. Hormone and Metabolic Research, 2016, 48, 726-736.	0.7	7
806	Molecular level investigation on the interaction of pluronic F127 and human intestinal bile salts using excited state prototropism of 1-naphthol. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 61-67.	1.7	10
807	Tetra-sensitive graft copolymer gels with high volume changes. RSC Advances, 2016, 6, 34809-34817.	1.7	8
808	Formation of Chitosan-Based Hydrogels Network. , 2016, , 189-244.		2
809	Polymer Gels as EAPs: Materials. , 2016, , 27-52.		1
810	Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomedical Materials (Bristol), 2016, 11, 045011.	1.7	39
811	Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. International Journal of Biological Macromolecules, 2016, 93, 75-86.	3.6	84
812	Ophthalmic Drug Delivery: Hybrid Polymeric Hydrogels. , 0, , 5742-5758.		0

ARTICLE IF CITATIONS # Oneâ€Pot Automated Synthesis of Quasi Triblock Copolymers for Selfâ€Healing Physically Crosslinked 813 2.0 17 Hydrogels. Macromolecular Rapid Communications, 2016, 37, 1682-1688. Polyanions effectively prevent protein conjugation and activity loss during hydrogel cross-linking. 814 4.8 9 Journal of Controlled Release, 2016, 238, 92-102. An Injectable Hydrogel Prepared Using a PEG/Vitamin E Copolymer Facilitating Aqueous-Driven 815 29 2.6 Gelation. Biomacromolecules, 2016, 17, 3648-3658. Temporal control of xyloglucan self-assembly into layered structures by radiation-induced 5.1 degradation. Carbohydrate Polymers, 2016, 152, 382-390. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC 817 1.7 9 Advances, 2016, 6, 94661-94668. Double stimuli-responsive polymer systems: How to use crosstalk between pH- and thermosensitivity for drug depots. European Polymer Journal, 2016, 84, 54-64. 2.6 819 Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 2016, 116, 12536-12563. 23.0 247 Micelles: Micellar Nanoparticles., 2016, , 568-573. The rheological injectability of N-succinyl-chitosan solutions. Carbohydrate Polymers, 2016, 151, 821 5.1 2 1082-1090 PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as 3.6 134 drug carrier. International Journal of Biological Macromolecules, 2016, 93, 1317-1327. A bio-inspired hybrid nanosack for graft vascularization at the omentum. Acta Biomaterialia, 2016, 41, 823 4.1 10 224-234. Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications. 824 2.6 Biomacromolecules, 2016, 17, 3714-3723. Preparation and Timed Release Properties of Self-Rupturing Gels. ACS Applied Materials & amp; 825 4.0 10 Interfaces, 2016, 8, 29015-29024. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Advanced Materials, 2016, 28, 10244-10249. 11.1 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. Journal 827 2.9 64 of Materials Chemistry B, 2016, 4, 7521-7539. Dynamic light scattering of nano-gels of xanthan gum biopolymer in colloidal dispersion. Journal of 4.4 Advanced Research, 2016, 7, 635-641. 829 Macromolecule and Particle Dynamics in Confined Media. Macromolecules, 2016, 49, 5755-5772. 2.2105 Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan 5.1 microgels. Carbohydrate Polymers, 2016, 152, 792-801.

#	Article	IF	CITATIONS
831	Macromolecular Decoration of Nanoparticles for Guiding Self&;#x02010;Assembly in 2D and 3D. , 0, , 159-192.		7
832	Anionic amphiphilic model conetworks synthesized by end-linking of tetra-arm copolymers. Polymer, 2016, 100, 134-142.	1.8	3
833	Super Stable and Tough Hydrogel Containing Covalent, Crystalline, and Ionic Cross‣inks. Macromolecular Chemistry and Physics, 2016, 217, 32-38.	1.1	17
834	A Novel Cheap and Easy to Handle Protein Hydrogel for 3D Cell Culture Applications: A High Stability Matrix with Tunable Elasticity and Cell Adhesion Properties. ChemistrySelect, 2016, 1, 1353-1360.	0.7	9
835	Design of Injectable Materials to Improve Stem Cell Transplantation. Current Stem Cell Reports, 2016, 2, 207-220.	0.7	134
836	Polyethylene glycol and poly(vinyl alcohol) hydrogels treated with photo-initiated chemical vapor deposition. Canadian Journal of Chemistry, 2016, 94, 744-750.	0.6	14
837	Static and dynamic behaviour of responsive graphene oxide–poly(N-isopropyl acrylamide) composite gels. Soft Matter, 2016, 12, 7166-7173.	1.2	12
838	Structure and Property Modications by Ion Implantation in Metal Oxide Thin Solid Films Suitable for Gas Sensing Applications. , 2016, , 240-285.		1
839	Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy. RSC Advances, 2016, 6, 79307-79316.	1.7	30
840	Electrospinning applications from diagnosis to treatment of diabetes. RSC Advances, 2016, 6, 83638-83655.	1.7	49
841	Trapping It Softly: Ultrasoft Zirconium Metallogels for Macromolecule Entrapment and Reconfiguration. ACS Macro Letters, 2016, 5, 904-908.	2.3	8
842	Solvato-morphologically controlled, reversible NIPAAm hydrogel photoactuators. RSC Advances, 2016, 6, 83296-83302.	1.7	15
843	Novel gelatin-polyoxometalate based self-assembled pH responsive hydrogels: formulation and <i>in vitro</i> characterization. Designed Monomers and Polymers, 2016, 19, 697-705.	0.7	13
845	Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. Biomacromolecules, 2016, 17, 2839-2848.	2.6	87
846	"Smart―drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium–biopolymer chemistry. Chemical Communications, 2016, 52, 11151-11154.	2.2	60
847	Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. Colloid and Polymer Science, 2016, 294, 1623-1632.	1.0	18
848	Cyclodextrin-Containing Hydrogel Networks. , 0, , 2243-2258.		4
849	Keratin: Functional Biomaterials. , 0, , 4245-4262.		0

#	Article	IF	Citations
850	Modelling and predicting the interactions between oppositely and variously charged polyelectrolytes by frontal analysis continuous capillary electrophoresis. Soft Matter, 2016, 12, 9728-9737.	1.2	15
852	Improved topical delivery of tacrolimus: A novel composite hydrogel formulation for the treatment of psoriasis. Journal of Controlled Release, 2016, 242, 16-24.	4.8	56
853	Hydrogels based on collagen and fibrin – frontiers and applications. BioNanoMaterials, 2016, 17, 3-12.	1.4	43
854	A pHâ€Responsive Hydrogel Based on a Tumorâ€Targeting Mesoporous Silica Nanocomposite for Sustained Cancer Labeling and Therapy. Macromolecular Rapid Communications, 2016, 37, 1533-1539.	2.0	42
855	Highly Flexible and Resilient Elastin Hybrid Cryogels with Shape Memory, Injectability, Conductivity, and Magnetic Responsive Properties. Advanced Materials, 2016, 28, 7758-7767.	11.1	149
856	Polymer Gels as EAPs: Materials. , 2016, , 1-27.		0
857	Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine, 2016, 11, 1689-1713.	1.7	31
858	Pseudopeptideâ€Based Hydrogels Trapping Methylene Blue and Eosinâ€Y. Chemistry - A European Journal, 2016, 22, 12106-12112.	1.7	19
859	Functional PEG building blocks via copolymerization of ethylene carbonate and tert-butyl glycidyl ether. Polymer Chemistry, 2016, 7, 5050-5059.	1.9	4
860	Guest–matrix interactions affect the solvation of cyclodextrin-based polymeric hydrogels: a UV Raman scattering study. Soft Matter, 2016, 12, 8861-8868.	1.2	11
861	Quantitative X-ray microscopic analysis of individual thermoresponsive microgel particles in aqueous solution. RSC Advances, 2016, 6, 98228-98233.	1.7	3
862	Nanotechnology and Nanomaterials in Ophthalmic Drug Delivery. , 2016, , 83-109.		7
863	Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions. Journal of the American Chemical Society, 2016, 138, 16112-16119.	6.6	105
864	Formation of porous hydrogels by self-assembly of photo-cross-linkable triblock copolymers in the presence of homopolymers. Polymer, 2016, 106, 152-158.	1.8	8
865	Treatment of otitis media by transtympanic delivery of antibiotics. Science Translational Medicine, 2016, 8, 356ra120.	5.8	61
866	Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers. Macromolecular Rapid Communications, 2016, 37, 1593-1597.	2.0	15
867	Spatiotemporal Programing for the On-Demand Release of Bupivacaine Based on an Injectable Composite Hydrogel. Journal of Pharmaceutical Sciences, 2016, 105, 3634-3644.	1.6	10
868	Dextrin. , 2016, , 2634-2649.		7

#	Article	IF	CITATIONS
869	Self-folding hydrogel bilayer for enhanced drug loading, encapsulation, and transport. , 2016, 2016, 2103-2106.		6
870	Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion. International Journal of Pharmaceutics, 2016, 515, 467-475.	2.6	44
871	Triggered Copolypeptide Hydrogel Degradation Using Photolabile Lysine Protecting Groups. ACS Macro Letters, 2016, 5, 1253-1256.	2.3	31
872	Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016, 1, .	23.3	2,817
873	"A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide― Scientific Reports, 2016, 6, 31167.	1.6	78
874	Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications. Journal of Materials Chemistry B, 2016, 4, 7506-7520.	2.9	44
875	Cell-laden microfluidic microgels for tissue regeneration. Lab on A Chip, 2016, 16, 4482-4506.	3.1	133
876	Cyclic β-(1→3) (1→6) glucan/carrageenan hydrogels for wound healing applications. RSC Advances, 2016, 6, 98545-98553.	1.7	35
877	Physically cross-linked pH-responsive chitosan-based hydrogels with enhanced mechanical performance for controlled drug delivery. RSC Advances, 2016, 6, 106035-106045.	1.7	43
878	Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Scientific Reports, 2016, 6, 29978.	1.6	65
879	An In Situ Gelling Drug Delivery System for Improved Recovery after Spinal Cord Injury. Advanced Healthcare Materials, 2016, 5, 1513-1521.	3.9	31
880	Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: A review of recent research developments. Trends in Food Science and Technology, 2016, 54, 114-126.	7.8	67
881	Design of hydrogels for delayed antibody release utilizing hydrophobic association and Diels–Alder chemistry in tandem. Journal of Materials Chemistry B, 2016, 4, 3398-3408.	2.9	26
882	Antimicrobial hydrogels based on autoclaved poly(vinyl alcohol) and poly(methyl vinyl) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10 Tf 50 22
883	Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering, 2016, , .	0.8	18
884	Structural hydrogels. Polymer, 2016, 98, 516-535.	1.8	105
885	Cyclodextrin-Mediated Hierarchical Self-Assembly and Its Potential in Drug Delivery Applications. Journal of Pharmaceutical Sciences, 2016, 105, 2570-2588.	1.6	53
886	Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering C, 2016, 68, 964-981.	3.8	225

#	Article	IF	CITATIONS
887	Programmable biomaterials for dynamic and responsive drug delivery. Experimental Biology and Medicine, 2016, 241, 1127-1137.	1.1	9
888	"Missing Tooth―Multidomain Peptide Nanofibers for Delivery of Small Molecule Drugs. Biomacromolecules, 2016, 17, 2087-2095.	2.6	51
889	Investigation of silk sericin conformational structure for fabrication into porous scaffolds with poly(vinyl alcohol) for skin tissue reconstruction. European Polymer Journal, 2016, 81, 43-52.	2.6	19
890	Characterization of alginate-brushite in-situ hydrogel composites. Materials Science and Engineering C, 2016, 67, 502-510.	3.8	22
891	Multi-stimuli-responsive semi-IPN cryogels with native and anionic potato starch entrapped in poly(N,N-dimethylaminoethyl methacrylate) matrix and their potential in drug delivery. Reactive and Functional Polymers, 2016, 105, 66-77.	2.0	61
892	Proof-of-Concept of Polymeric Sol-Gels in Multi-Drug Delivery and Intraoperative Image-Guided Surgery for Peritoneal Ovarian Cancer. Pharmaceutical Research, 2016, 33, 2298-2306.	1.7	17
893	Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discovery Today, 2016, 21, 1521-1531.	3.2	28
894	Silk-Elastinlike Protein Polymer Liquid Chemoembolic for Localized Release of Doxorubicin and Sorafenib. Molecular Pharmaceutics, 2016, 13, 2736-2748.	2.3	35
895	Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomedical Materials (Bristol), 2016, 11, 035017.	1.7	51
896	Soft hydrogels interpenetrating silicone—A polymer network for drugâ€releasing medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 402-410.	1.6	25
897	Nanochitosan and the Skin. SpringerBriefs in Bioengineering, 2016, , 69-78.	0.8	2
898	Interpenetrating polymer networks of poly(methacrylic acid) and polyacrylamide: synthesis, characterization and potential application for sustained drug delivery. RSC Advances, 2016, 6, 64239-64246.	1.7	6
899	Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules. ACS Applied Materials & Interfaces, 2016, 8, 4323-4335.	4.0	25
900	Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Materials Science and Engineering C, 2016, 62, 927-942.	3.8	142
901	Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. International Journal of Pharmaceutics, 2016, 500, 11-19.	2.6	42
902	Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 259-267.	1.5	46
903	PEG-Thiol based hydrogels with controllable properties. European Polymer Journal, 2016, 74, 1-12.	2.6	35
904	A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polymer-Plastics Technology and Engineering, 2016, 55, 54-70.	1.9	90

ARTICLE IF CITATIONS Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan 905 4.1 80 hydrogels for tissue engineering applications. Acta Biomaterialia, 2016, 30, 188-198. Light-responsive <i>in situ</i> forming injectable implants for effective drug delivery to the posterior 2.4 segment of the eye. Expert Opinion on Drug Delivery, 2016, 13, 953-962. Nano-film coatings onto collagen hydrogels with desired drug release. Journal of Industrial and 907 2.9 43 Engineering Chemistry, 2016, 36, 326-333. Mechanically Tunable Curcumin Incorporated Polyurethane Hydrogels as Potential Biomaterials. 908 Chemistry of Materials, 2016, 28, 2120-2130. Graphene Oxideâ€"Poly(ethylene glycol) methyl ether methacrylate Nanocomposite Hydrogels. 909 1.1 12 Macromolecular Chemistry and Physics, 2016, 217, 101-107. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Engineering - Part A, 2016, 22, 665-679. 1.6 Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Advances, 2016, 6, 14692-14704. 911 1.7 29 Zwitterionic cryogels for sustained release of proteins. RSC Advances, 2016, 6, 29608-29611. 1.7 Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne–Azide 914 2.6 46 Cycloaddition (SPAAC). Biomacromolecules, 2016, 17, 1093-1100. Injectable peptide hydrogels for controlled-release of opioids. MedChemComm, 2016, 7, 542-549. 3.5 Continuum theory of swelling material surfaces with applications to thermo-responsive gel 916 membranes and surface mass transport. Journal of the Mechanics and Physics of Solids, 2016, 89, 2.320 96-109. Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage. Annals of 1.3 Biomedical Engineering, 2016, 44, 1863-1880. Kinetic modeling of the copolymerization of acrylic acid and trimethylolpropane triacrylate over pre 918 2.6 3 and post-gelation periods. European Polymer Journal, 2016, 74, 264-278. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic 919 2.6 Stability. Biomacromolecules, 2016, 17, 437-445. Carbon dots incorporated polymeric hydrogels as multifunctional platform for imaging and 920 2.570 induction of apoptosis in lung cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 141, 242-252. Natural Hydrogels., 2016, , 1-16. Controlling Hydrogel Biodegradability., 2016, , 131-173. 922 1 Ibuprofen-conjugated hyaluronate/polygalacturonic acid hydrogel for the prevention of epidural 1.2 19 fibrosis. Journal of Biomaterials Applications, 2016, 30, 1589-1600.

#	Article	IF	CITATIONS
924	pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds. Biomacromolecules, 2016, 17, 1425-1436.	2.6	19
925	Pharmaceutical Applications of Natural Polymers. , 2016, , 263-313.		3
926	Controlling the resolution and duration of pulsatile release from injectable magnetic â€~plum-pudding' nanocomposite hydrogels. RSC Advances, 2016, 6, 15770-15781.	1.7	15
927	Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Annals of Biomedical Engineering, 2016, 44, 2049-2061.	1.3	183
928	Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme. Polymer, 2016, 83, 111-115.	1.8	12
929	Graphene oxide-based composite hydrogels with self-assembled macroporous structures. RSC Advances, 2016, 6, 3561-3570.	1.7	47
930	Tough dual nanocomposite hydrogels with inorganic hybrid crosslinking. Soft Matter, 2016, 12, 1649-1654.	1.2	36
931	Enhanced Mechanical Properties in Cellulose Nanocrystal–Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking. Biomacromolecules, 2016, 17, 649-660.	2.6	175
932	The metamorphosis of vascular stents: passive structures to smart devices. RSC Advances, 2016, 6, 2835-2853.	1.7	7
933	Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 2016, 138, 704-717.	6.6	776
934	Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomedical Materials (Bristol), 2016, 11, 014104.	1.7	82
935	Fabrication of thermosensitive hydrogel-supported Ni nanoparticles with tunable catalytic activity for 4-nitrophenol. Journal of Materials Science, 2016, 51, 3200-3210.	1.7	10
936	Prolonged Release of Bioactive Model Proteins from Anionic Microgels Fabricated with a New Microemulsion Approach. Pharmaceutical Research, 2016, 33, 879-892.	1.7	8
937	Poly (caprolactone) microparticles and chitosan thermogels based injectable formulation of etoricoxib for the potential treatment of osteoarthritis. Materials Science and Engineering C, 2016, 61, 534-544.	3.8	37
938	Oleogels: a promising tool for delivery of hydrophobic bioactive molecules. Therapeutic Delivery, 2016, 7, 1-3.	1.2	42
939	Formulation and rheological evaluation of ethosome-loaded carbopol hydrogel for transdermal application. Drug Development and Industrial Pharmacy, 2016, 42, 1315-1324.	0.9	43
940	Tuning the Mechanical Properties of Hydrogel Core–Shell Particles by Inwards Interweaving Self-Assembly. ACS Applied Materials & Interfaces, 2016, 8, 1493-1500.	4.0	17
941	In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochemical Engineering Journal, 2016, 105, 481-488.	1.8	70

#	Article	IF	CITATIONS
942	Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties. Soft Matter, 2016, 12, 1200-1209.	1.2	18
943	Diffusion and controlled release characteristics of pH-sensitive poly(2-(dimethyl amino)ethyl) Tj ETQq1 1 0.78431 Polymeric Biomaterials, 2016, 65, 134-142.	4 rgBT /O ⁻ 1.8	verlock 10 T 14
944	Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydrate Polymers, 2016, 136, 570-580.	5.1	84
945	Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Materials Science and Engineering C, 2016, 59, 19-29.	3.8	25
946	Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials, 2016, 75, 91-101.	5.7	45
947	Development of chemically cross-linked hydrophilic–hydrophobic hydrogels for drug delivery applications. European Polymer Journal, 2016, 75, 25-35.	2.6	15
948	Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydrate Polymers, 2016, 136, 1338-1347.	5.1	93
949	Sodium alginate and gelatin hydrogels: Viscosity effect on hydrophobic drug release. Materials Letters, 2016, 164, 76-79.	1.3	57
950	Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. Carbohydrate Polymers, 2016, 136, 19-29.	5.1	12
951	Characterization and biocompatibility of injectable microspheres-loaded hydrogel for methotrexate delivery. Carbohydrate Polymers, 2016, 136, 516-526.	5.1	26
953	Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1212-1221.	1.9	13
954	Composites of electrospunâ€fibers and hydrogels: A potential solution to current challenges in biological and biomedical field. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 640-656.	1.6	79
955	Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Advanced Drug Delivery Reviews, 2016, 96, 40-53.	6.6	62
956	Strategies for neurotrophinâ€3 and chondroitinase ABC release from freezeâ€cast chitosan–alginate nerveâ€guidance scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 285-294.	1.3	28
957	Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Critical Reviews in Food Science and Nutrition, 2017, 57, 1377-1393.	5.4	83
958	Impact of particle elasticity on particle-based drug delivery systems. Advanced Drug Delivery Reviews, 2017, 108, 51-67.	6.6	302
959	Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech, 2017, 18, 671-685.	1.5	3
960	Functional calcium phosphate composites in nanomedicine. Advances in Colloid and Interface Science, 2017, 244, 281-295.	7.0	52

#	Article	IF	CITATIONS
961	Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 112-126.	6.6	366
962	Effects of precursor composition and mode of crosslinking on mechanical properties of graphene oxide reinforced composite hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 282-293.	1.5	27
963	Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1530-1544.	1.1	61
964	Thermo-reversible sol–gel transition of aqueous solutions of patchy polymers. RSC Advances, 2017, 7, 5101-5110.	1.7	12
965	Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Science Robotics, 2017, 2, .	9.9	131
966	Self-Standing Carbon Nitride-Based Hydrogels with High Photocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 2029-2034.	4.0	69
967	Scattering perspectives on nanostructural inhomogeneity in polymer network gels. Progress in Polymer Science, 2017, 66, 1-21.	11.8	73
968	Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel. Journal of Physical Chemistry B, 2017, 121, 800-814.	1.2	29
969	Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate. International Journal of Biological Macromolecules, 2017, 97, 218-227.	3.6	67
970	Restoring Fertility with Cryopreserved Prepubertal Testicular Tissue: Perspectives with Hydrogel Encapsulation, Nanotechnology, and Bioengineered Scaffolds. Annals of Biomedical Engineering, 2017, 45, 1770-1781.	1.3	30
971	Citric acid crosslinked β -cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydrate Polymers, 2017, 164, 339-348.	5.1	109
972	Fabrication of Super Extensible and Highly Tough Graphene Composite Hydrogels by Thermal Treatment Strategy for the Mixture of Tannin and Graphene Oxide. Macromolecular Chemistry and Physics, 2017, 218, 1600549.	1.1	6
973	Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-g-collagen. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1665-1674.	1.9	20
974	Nanogel-Integrated pH-Responsive Composite Hydrogels for Controlled Drug Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 370-380.	2.6	78
975	A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. European Polymer Journal, 2017, 88, 373-392.	2.6	327
976	Nonmonotonic swelling of agaroseâ€carbopol hybrid hydrogel: Experimental and theoretical analysis. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 444-454.	2.4	5
977	Optical Waveguideâ€Enhanced Diffraction for Observation of Responsive Hydrogel Nanostructures. Macromolecular Chemistry and Physics, 2017, 218, 1600400.	1.1	9
978	Physical gelation of supramolecular hydrogels cross-linked by metal-ligand interactions: Dynamic light scattering and microrheological studies. Polymer, 2017, 128, 363-372.	1.8	17

#	Article	IF	CITATIONS
979	Coassembly Modulated pHâ€Responsive Hydrogel for Dye Absorption and Release. Macromolecular Chemistry and Physics, 2017, 218, 1600560.	1.1	15
980	Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbohydrate Polymers, 2017, 166, 281-290.	5.1	39
981	Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Materials Science and Engineering C, 2017, 75, 478-486.	3.8	42
982	Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization. Carbohydrate Polymers, 2017, 166, 183-194.	5.1	103
983	On glioblastoma and the search for a cure: where do we stand?. Cellular and Molecular Life Sciences, 2017, 74, 2451-2466.	2.4	56
985	PoroViscoElastic model to describe hydrogels' behavior. Materials Science and Engineering C, 2017, 76, 102-113.	3.8	37
986	Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery. Materials Science and Engineering C, 2017, 76, 242-248.	3.8	53
987	Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydrate Polymers, 2017, 168, 320-326.	5.1	251
988	Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?. Advanced Healthcare Materials, 2017, 6, 1601130.	3.9	135
989	pH-responsive drug release from dependal-M loaded polyacrylamide hydrogels. Journal of Science: Advanced Materials and Devices, 2017, 2, 45-50.	1.5	32
990	Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm- co -AAc) IPN hydrogels using response surface methodology and artificial neural networks. Materials Science and Engineering C, 2017, 75, 425-432.	3.8	32
991	Preparation of hydroxyapatite hydrogel for bone-like materials via novel self-initiated photocatalytic polymerization. Materials Letters, 2017, 193, 142-145.	1.3	8
992	Gelatin‑î⁰-carrageenan polyelectrolyte complex hydrogel compositions for the design and development of extended-release pellets. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 812-823.	1.8	17
993	Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery, 2017, 24, 539-557.	2.5	319
994	Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Biomaterials Science, 2017, 5, 698-706.	2.6	21
995	Porous Inorganic Drug Delivery Systems—a Review. AAPS PharmSciTech, 2017, 18, 1507-1525.	1.5	63
996	Novel hydrogels containing Nafion and poly(ethylene oxide) based block copolymers. Polymer, 2017, 114, 73-78.	1.8	5
997	Effect of internal architecture on microgel deformation in microfluidic constrictions. Soft Matter, 2017, 13, 1920-1928.	1.2	22

#	Article	IF	CITATIONS
998	Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. European Polymer Journal, 2017, 89, 211-220.	2.6	34
999	Phototunable Thermoplastic Elastomer Hydrogel Networks. Macromolecules, 2017, 50, 1331-1341.	2.2	13
1000	<i>In Vivo</i> Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel. Biomacromolecules, 2017, 18, 994-1001.	2.6	25
1001	Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells. Scientific Reports, 2017, 7, 37626.	1.6	15
1003	Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. Journal of Materials Chemistry B, 2017, 5, 3488-3497.	2.9	27
1004	Diffusion of rigid nanoparticles in crowded polymer-network hydrogels: dominance of segmental density over crosslinking density. Colloid and Polymer Science, 2017, 295, 1371-1381.	1.0	8
1005	Direct Synthesis of Dextran-Based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical Biofilms. ACS Applied Materials & Interfaces, 2017, 9, 15975-15985.	4.0	74
1006	Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Advances, 2017, 7, 21252-21257.	1.7	41
1007	Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Progress in Polymer Science, 2017, 71, 1-25.	11.8	379
1008	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177.	5.0	66
1008 1009	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182.	5.0	66 4
1008 1009 1010	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631.	5.0 3.2	66 4 1,056
1008 1009 1010 1011	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 2017, 525, 226-236.	5.0 3.2 2.6	66 4 1,056 38
1008 1009 1010 1011 1012	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177.Nanostructured nanoparticles for improved drug delivery., 2017, , 149-182.Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631.Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 2017, 525, 226-236.A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chemical Communications, 2017, 53, 5989-5992.	5.0 3.2 2.6 2.2	66 4 1,056 38 25
1008 1009 1010 1011 1012	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 2017, 525, 226-236. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chemical Communications, 2017, 53, 5989-5992. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Drug Development and industrial Pharmacy, 2017, 43, 1656-1668.	5.0 3.2 2.6 2.2 0.9	 66 4 1,056 38 25 25
1008 1009 1010 1011 1012 1013	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 2017, 525, 226-236. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chemical Communications, 2017, 53, 5989-5992. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Drug Development and Industrial Pharmacy, 2017, 43, 1656-1668. Interconnectivity imaged in three dimensions: Nano-particulate silica-hydrogel structure revealed using electron tomography. Micron, 2017, 100, 91-105.	5.0 3.2 2.6 2.2 0.9 1.1	 66 4 1,056 38 25 25 6
1008 1009 1010 1011 1012 1013 1015	Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. Journal of Colloid and Interface Science, 2017, 503, 168-177. Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 2017, 29, 4609-4631. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. International Journal of Pharmaceutics, 2017, 525, 226-236. A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand. Chemical Communications, 2017, 53, 5989-5992. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Drug Development and Industrial Pharmacy, 2017, 43, 1656-1668. Interconnectivity imaged in three dimensions: Nano-particulate silica-hydrogel structure revealed using electron tomography. Micron, 2017, 100, 91-105. Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release. Journal of the American Chemical Society, 2017, 139, 7522-7532.	5.0 3.2 2.6 2.2 0.9 1.1 6.6	 66 4 1,056 38 25 25 6 269

#	Article	IF	CITATIONS
1017	Nanoparticle Coupling to Hydrogel Networks: New Insights from Electroacoustic Spectroscopy. Macromolecules, 2017, 50, 4030-4038.	2.2	12
1018	Poly(2-oxazoline) hydrogels by photoinduced thiol-ene "click―reaction using different dithiol crosslinkers. Journal of Polymer Research, 2017, 24, 1.	1.2	20
1019	Temperature induced multiple structure transformation and aggregation behaviors of amphiphilic acrylicpimaric acid polyglycol ester in water. Polymer, 2017, 118, 49-57.	1.8	5
1020	Design of nonionic micelle-laden polysaccharide hydrogels for controlled delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2017, 526, 455-465.	2.6	7
1021	Novel model of orthotopic U-87 MG glioblastoma resection in athymic nude mice. Journal of Neuroscience Methods, 2017, 284, 96-102.	1.3	33
1022	Bio-Orthogonal Cross-Linking Chemistry Enables <i>In Situ</i> Protein Encapsulation and Provides Sustained Release from Hyaluronic Acid Based Hydrogels. Molecular Pharmaceutics, 2017, 14, 1961-1968.	2.3	32
1023	Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 2017, 249, 290-307.	7.0	120
1024	DHA and I -carnitine loaded chitosan hydrogels as delivery systems for topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 525, 85-92.	2.3	15
1025	Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydrate Polymers, 2017, 172, 175-183.	5.1	52
1026	Preparation and evaluation of PLGA nanoparticle-loaded biodegradable light-responsive injectable implants as a promising platform for intravitreal drug delivery. Journal of Drug Delivery Science and Technology, 2017, 40, 142-156.	1.4	23
1027	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
1028	Dual responsive hydrogels based on functionalized mesoporous silica nanoparticles as an injectable platform for tumor therapy and tissue regeneration. Journal of Materials Chemistry B, 2017, 5, 5968-5973.	2.9	22
1029	Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chemical Reviews, 2017, 117, 8447-8480.	23.0	439
1030	Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proceedings of the United States of America, 2017, 114, 5647-5652.	3.3	370
1032	Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Scientific Reports, 2017, 7, 1952.	1.6	126
1033	F127DA micelle cross-linked PAACA hydrogels with highly stretchable, puncture resistant and self-healing properties. RSC Advances, 2017, 7, 29489-29495.	1.7	16
1034	Cold Chain-Free Storable Hydrogel for Infant-Friendly Oral Delivery of Amoxicillin for the Treatment of Pneumococcal Pneumonia. ACS Applied Materials & amp; Interfaces, 2017, 9, 18440-18449.	4.0	10
1035	Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnology Advances, 2017, 35, 521-529.	6.0	118

#	Article	IF	CITATIONS
1036	Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. Small, 2017, 13, 1700646.	5.2	57
1037	Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomaterialia, 2017, 58, 44-53.	4.1	97
1038	Microfluidic fabrication of polyethylene glycol microgel capsules with tailored properties for the delivery of biomolecules. Biomaterials Science, 2017, 5, 1549-1557.	2.6	64
1039	Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture. Chemical Communications, 2017, 53, 6756-6759.	2.2	17
1040	pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomaterialia, 2017, 58, 168-180.	4.1	436
1042	Bioengineered liposome–scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 2017, 8, 425-445.	1.2	20
1043	Synthesis of Oil-Laden Poly(ethylene glycol) Diacrylate Hydrogel Nanocapsules from Double Nanoemulsions. Langmuir, 2017, 33, 6116-6126.	1.6	18
1044	Review: Emerging strategies for antimicrobial drug delivery to the ocular surface: Implications for infectious keratitis. Ocular Surface, 2017, 15, 670-679.	2.2	42
1045	Highly Stretchable and Highly Resilient Polymer–Clay Nanocomposite Hydrogels with Low Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 22223-22234.	4.0	65
1046	Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation. International Journal of Biological Macromolecules, 2017, 102, 258-265.	3.6	62
1047	Unravelling a Direct Role for Polysaccharide β‣trands in the Higher Order Structure of Physical Hydrogels. Angewandte Chemie - International Edition, 2017, 56, 4603-4607.	7.2	27
1048	Thermosensitive hydrogel loaded with chitosan-carbon nanotubes for near infrared light triggered drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 154, 253-262.	2.5	95
1049	Mechanistic Insights into the Directed Assembly of Hydrogel Blocks Mediated by Polyelectrolytes or Microgels. Langmuir, 2017, 33, 3864-3870.	1.6	3
1050	Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. Polymer Reviews, 2017, 57, 505-556.	5.3	31
1051	Rapid preparation of polysaccharide hydrogel capsule free of organic reagents to control drug release. Materials Letters, 2017, 197, 156-159.	1.3	3
1052	Nonswellable Injectable Hydrogels Self-Assembled Through Non-Covalent Interactions. ChemistrySelect, 2017, 2, 3009-3013.	0.7	7
1053	Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Medical Hypotheses, 2017, 103, 5-9.	0.8	23
1054	Stereocomplex poly(lactic acid) nanocoated chitosan microparticles for the sustained release of hydrophilic drugs. Materials Science and Engineering C, 2017, 76, 1129-1135.	3.8	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1055	"Takeaway―drug delivery: A new nanomedical paradigm. Nano Research, 2017, 1	0, 2234-2243.	5.8	4
1056	Unravelling a Direct Role for Polysaccharide βâ€Strands in the Higher Order Structure Hydrogels. Angewandte Chemie, 2017, 129, 4674-4678.	of Physical	1.6	8
1057	Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepare freeze-thawing and anneal-swelling. Materials Science and Engineering C, 2017, 77, 10	ed by 117-1026.	3.8	105
1058	Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hip rahmnoides L. extract in a rat model. International Journal of Biological Macromolecule 586-593.	pophae s, 2017, 99,	3.6	44
1059	Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug Polymer Chemistry, 2017, 8, 5071-5076.	g carrier.	1.9	61
1060	A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and ga oligonucleotide release for modulation of gene expression in osteoarthritis. Journal of Release, 2017, 253, 153-159.	apmer Controlled	4.8	47
1061	Tough, rapid-recovery composite hydrogels fabricated via synergistic core–shell micr bonding and Fe ³⁺ coordination cross-linking. Soft Matter, 2017, 13, 2654	ogel covalent I-2662.	1.2	18
1062	Mixed Reversible Covalent Crosslink Kinetics Enable Precise, Hierarchical Mechanical Tu Hydrogel Networks. Advanced Materials, 2017, 29, 1605947.	uning of	11.1	121
1063	Preparation and characterization of nanocellulose reinforced semi-interpenetrating pol network of chitosan hydrogel. Cellulose, 2017, 24, 2215-2228.	ymer	2.4	148
1064	Control of gelation, degradation and physical properties of polyethylene glycol hydrog the chemical and physical identity of the crosslinker. Journal of Materials Chemistry B, 2679-2691.	els through 2017, 5,	2.9	57
1065	Evaluation of Intracameral Pentablock Copolymer Thermosensitive Gel for Sustained D the Anterior Chamber of the Eye. Journal of Ocular Pharmacology and Therapeutics, 20	rug Delivery to 117, 33, 353-360.	0.6	7
1066	Can self-assembled hydrogels composed of aromatic amino acid derivatives function a carriers?. New Journal of Chemistry, 2017, 41, 308-315.	s drug delivery	1.4	16
1067	A methylcellulose and collagen based temperature responsive hydrogel promotes enca cell viability and proliferation in vitro. Drug Delivery and Translational Research, 2017, 2	psulated stem 7, 132-146.	3.0	24
1068	Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled dr carrier. Carbohydrate Polymers, 2017, 158, 51-57.	ug delivery	5.1	123
1069	Sustained tobramycin release from polyphosphate double network hydrogels. Acta Bio 50, 484-492.	materialia, 2017,	4.1	15
1070	Unified solution for poroelastic oscillation indentation on gels for spherical, conical and cylindrical indenters. Soft Matter, 2017, 13, 852-861.	đ	1.2	38
1071	Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregat Controlled Release, 2017, 246, 71-78.	ion. Journal of	4.8	11
1072	Thermoresponsive Semi-IPN Hydrogel Microfibers from Continuous Fluidic Processing Elasticity and Fast Actuation. ACS Applied Materials & Interfaces, 2017, 9, 901-90	with High 8.	4.0	99

#	Article	IF	CITATIONS
1073	Lithography-based methods to manufacture biomaterials at small scales. Journal of Science: Advanced Materials and Devices, 2017, 2, 1-14.	1.5	84
1074	Amphiphilic Copolymers Capable of Concomitant Release of HNO and Small Molecule Organics. ACS Macro Letters, 2017, 6, 46-49.	2.3	7
1075	Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Advances, 2017, 7, 588-594.	1.7	51
1076	Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. Journal of Materials Chemistry B, 2017, 5, 731-741.	2.9	125
1077	Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science, 2017, 240, 31-59.	7.0	196
1078	Stimuli-Responsive Polymer Materials for Creation of Biointerfaces. , 2017, , 229-253.		0
1079	Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. Polymer, 2017, 109, 38-48.	1.8	39
1080	Engineered Hydrogels for Local and Sustained Delivery of RNAâ€Interference Therapies. Advanced Healthcare Materials, 2017, 6, 1601041.	3.9	79
1081	Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-10.	1.9	58
1082	Thermogelling, ABC Triblock Copolymer Platform for Resorbable Hydrogels with Tunable, Degradationâ€Mediated Drug Release. Advanced Functional Materials, 2017, 27, 1704107.	7.8	49
1083	Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science and Technology, 2017, 70, 69-81.	7.8	267
1084	Pre-clinical evaluation of a themosensitive gel containing epothilone B and mTOR/Hsp90 targeted agents in an ovarian tumor model. Journal of Controlled Release, 2017, 268, 176-183.	4.8	35
1085	Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes. Nano Letters, 2017, 17, 6487-6495.	4.5	111
1086	Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Materials Horizons, 2017, 4, 1020-1040.	6.4	144
1087	A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2173-2184.	1.0	20
1088	Supertough Hybrid Hydrogels Consisting of a Polymer Doubleâ€Network and Mesoporous Silica Microrods for Mechanically Stimulated Onâ€Demand Drug Delivery. Advanced Functional Materials, 2017, 27, 1703826.	7.8	60
1089	Abiotic streamers in a microfluidic system. Soft Matter, 2017, 13, 8698-8705.	1.2	14
1090	Heterofunctional Poly(ethylene glycol) (PEG) Macroinitiator Enabling Controlled Synthesis of ABC Triblock Copolymers. Macromolecules, 2017, 50, 8390-8397.	2.2	12

#	Article	IF	CITATIONS
1091	Liquid Marble as Bioreactor for Engineering Three-Dimensional Toroid Tissues. Scientific Reports, 2017, 7, 12388.	1.6	30
1092	Biocompatible Tough Hydrogels via Micellar Copolymerization of NIPAM and Stearyl Acrylate: Synthesis and Characterization. Key Engineering Materials, 0, 748, 96-102.	0.4	1
1093	3D Microtissues for Injectable Regenerative Therapy and High-throughput Drug Screening. Journal of Visualized Experiments, 2017, , .	0.2	3
1094	Therapeuticâ€Gasâ€Responsive Hydrogel. Advanced Materials, 2017, 29, 1702859.	11.1	51
1095	A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid–gelatin hydrogel for bone regeneration. Journal of Biomaterials Applications, 2017, 32, 433-445.	1.2	39
1096	Embedding Well-Defined Responsive Hydrogels with Nanocontainers: Tunable Materials from Telechelic Polymers and Cyclodextrins. ACS Omega, 2017, 2, 6658-6667.	1.6	26
1097	Enzymatic hydrogelation of self-assembling peptide I ₄ K ₂ and its antibacterial and drug sustained-release activities. RSC Advances, 2017, 7, 48631-48638.	1.7	21
1098	Injectable hydrogels for ophthalmic applications. Journal of Controlled Release, 2017, 268, 212-224.	4.8	87
1099	Multi-component hybrid hydrogels – understanding the extent of orthogonal assembly and its impact on controlled release. Chemical Science, 2017, 8, 6981-6990.	3.7	55
1100	Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 2017, 177, 443-450.	5.1	72
1101	Surface Engineering: Incorporation of Bioactive Compound. Nanomedicine and Nanotoxicology, 2017, , 111-143.	0.1	1
1102	Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydrate Polymers, 2017, 176, 392-401.	5.1	189
1103	Influences of neutralization of superabsorbent hydrogel from hydroxyethyl cellulose on water swelling capacities. AIP Conference Proceedings, 2017, , .	0.3	6
1104	Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on A Chip, 2017, 17, 3331-3337.	3.1	11
1106	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7
1107	Hybrid mesoporous silica nanocarriers with thermovalve-regulated controlled release. Nanoscale, 2017, 9, 13485-13494.	2.8	43
1108	Crosslinking method of hyaluronic-based hydrogel for biomedical applications. Journal of Tissue Engineering, 2017, 8, 204173141772646.	2.3	256
1109	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	3.9	38

#	Article	IF	CITATIONS
1110	Magnetic nanohydrogel obtained by miniemulsion polymerization of poly(acrylic acid) grafted onto derivatized dextran. Carbohydrate Polymers, 2017, 178, 378-385.	5.1	11
1111	Spatially-resolved soft materials for controlled release – hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel. Chemical Science, 2017, 8, 7218-7227.	3.7	57
1112	An automated system for performing continuous viscosity <i>versus</i> temperature measurements of fluids using an Ostwald viscometer. Review of Scientific Instruments, 2017, 88, 095101.	0.6	17
1113	Injectable Stem Cell Laden Open Porous Microgels That Favor Adipogenesis: In Vitro and in Vivo Evaluation. ACS Applied Materials & Interfaces, 2017, 9, 34751-34761.	4.0	30
1114	Cu(II)-CMC: a mild, efficient and recyclable catalyst for the oxidative alkyne homocoupling reaction. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 549-554.	0.3	2
1115	Modeling drug release through stimuli responsive polymer hydrogels. International Journal of Pharmaceutics, 2017, 532, 502-510.	2.6	17
1116	Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Journal of Materials Chemistry B, 2017, 5, 7756-7767.	2.9	12
1117	Chitosan-based self-healing hydrogel for bioapplications. Chinese Chemical Letters, 2017, 28, 2053-2057.	4.8	59
1118	In Situ Dual Cross-Linking of Neat Biogel with Controlled Mechanical and Delivery Properties. Molecular Pharmaceutics, 2017, 14, 3609-3616.	2.3	7
1119	A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response. Biomaterials, 2017, 147, 26-38.	5.7	43
1121	Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomaterialia, 2017, 62, 42-63.	4.1	352
1122	Effects of solution pH on ion distribution and drug release behaviors of a weak polyelectrolyte hydrogel. Polymer International, 2017, 66, 1662-1668.	1.6	3
1123	Preparation, properties and formation mechanism of cellulose/polyvinyl alcohol bio-composite hydrogel membranes. New Journal of Chemistry, 2017, 41, 6564-6573.	1.4	36
1124	Origin of nanostructural inhomogeneity in polymer-network gels. Polymer Chemistry, 2017, 8, 4472-4487.	1.9	100
1125	The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polymer Chemistry, 2017, 8, 4659-4672.	1.9	52
1126	Impermeable Robust Hydrogels via Hybrid Lamination. Advanced Healthcare Materials, 2017, 6, 1700520.	3.9	58
1127	Time ontrollable Lipophilicâ€Ðrug Release System Designed by Loading Lipid Nanoparticles into Polysaccharide Hydrogels. Macromolecular Bioscience, 2017, 17, 1700045.	2.1	13
1128	Liquid–solid phase transition of physical hydrogels subject to an externally applied electro-chemo-mechanical coupled field with mobile ionic species. Physical Chemistry Chemical	1.3	11

#	Article	IF	CITATIONS
1129	Controlling Adult Stem Cell Behavior Using Nanodiamond-Reinforced Hydrogel: Implication in Bone Regeneration Therapy. Scientific Reports, 2017, 7, 6577.	1.6	73
1130	Evaluation of chemical modified hydrogel formulation for topical suitability. International Journal of Biological Macromolecules, 2017, 105, 1310-1314.	3.6	11
1131	Rhodamine-loaded surface modified mesoporous silica particles embedded into a thermoresponsive composite hydrogel for prolonged release. European Polymer Journal, 2017, 95, 358-367.	2.6	11
1132	A Hydrogel/Carbonâ€Nanotube Needleâ€Free Device for Electrostimulated Skin Drug Delivery. ChemPhysChem, 2017, 18, 2715-2723.	1.0	21
1133	Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen–nanodiamond hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7218-E7225.	3.3	20
1134	Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144, 60-72.	5.7	111
1135	Correlation between collective and molecular dynamics in pH-responsive cyclodextrin-based hydrogels. Physical Chemistry Chemical Physics, 2017, 19, 22555-22563.	1.3	13
1136	Ultrastretchable, Self-Healable Hydrogels Based on Dynamic Covalent Bonding and Triblock Copolymer Micellization. ACS Macro Letters, 2017, 6, 881-886.	2.3	149
1137	Triggerable tough hydrogels for gastric resident dosage forms. Nature Communications, 2017, 8, 124.	5.8	106
1138	Injectable hydrogels for treatment of osteoarthritis – A rheological study. Colloids and Surfaces B: Biointerfaces, 2017, 159, 477-483.	2.5	29
1139	Hydrogels: Stimuli Responsive to on-Demand Drug Delivery Systems. , 2017, , 117-130.		4
1140	Drug-Loaded Supramolecular Gels Prepared in a Microfluidic Platform: Distinctive Rheology and Delivery through Controlled Far-from-Equilibrium Mixing. ACS Omega, 2017, 2, 8849-8858.	1.6	14
1143	Effect of Glycosylation Degree of Quercetin on Its <i>In Vitro</i> Bioaccessibility in Food Grade Organogels. International Journal of Food Engineering, 2017, 13, .	0.7	6
1144	Supramolecular Organogels Prepared from Pillar[5]arene-Functionalized Conjugated Polymers. Macromolecules, 2017, 50, 9144-9150.	2.2	44
1145	Storage stability of biodegradable polyethylene glycol microspheres. Materials Research Express, 2017, 4, 105403.	0.8	6
1146	Temperature and pH responsive 3D printed scaffolds. Journal of Materials Chemistry B, 2017, 5, 9514-9521.	2.9	80
1147	Nanostructure of Fully Injectable Hydrazone–Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 42179-42191.	4.0	14
1148	Simultaneous Measurements of Geometric and Viscoelastic Properties of Hydrogel Microbeads Using Continuousâ€Flow Microfluidics with Embedded Electrodes. Small, 2017, 13, 1702821.	5.2	19

#	Article	IF	Citations
1149	Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release <i>via</i> host–guest interaction. Chemical Communications, 2017, 53, 12450-12453.	2.2	53
1150	Gentamicin-Loaded Polysaccharide Membranes for Prevention and Treatment of Post-operative Wound Infections in the Skeletal System. Pharmaceutical Research, 2017, 34, 2075-2083.	1.7	16
1151	The mechanical properties of polymer–colloid hybrid hydrogels. Soft Matter, 2017, 13, 4786-4790.	1.2	8
1152	Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid. International Journal of Biological Macromolecules, 2017, 105, 463-470.	3.6	72
1153	Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnology Reports (Amsterdam, Netherlands), 2017, 15, 84-91.	2.1	200
1154	Preparation and inÂvitro assessment of wet-spun gemcitabine-loaded polymeric fibers: Towards localized drug delivery for the treatment of pancreatic cancer. Pancreatology, 2017, 17, 795-804.	0.5	23
1155	Smart, programmable and responsive injectable hydrogels for controlled release of cargo osteoporosis drugs. Scientific Reports, 2017, 7, 4743.	1.6	31
1156	Kinetic and theoretical studies of novel biodegradable thermo-sensitive xerogels based on PEC/PVP/silica for sustained release of enrofloxacin. Applied Surface Science, 2017, 425, 282-290.	3.1	8
1157	Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: Rheology, preparation and characterization. Polymer, 2017, 123, 55-64.	1.8	44
1158	Theranostic Prodrug Vesicles for Imaging Guided Codelivery of Camptothecin and siRNA in Synergetic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 23536-23543.	4.0	46
1159	Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 271-282.	2.0	42
1160	Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery. Molecular Pharmaceutics, 2017, 14, 2740-2748.	2.3	40
1161	Production of chitosan-based hydrogels for biomedical applications. , 2017, , 295-319.		20
1162	Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opinion on Biological Therapy, 2017, 17, 49-62.	1.4	29
1163	Multifunctional sensors based on silicone hydrogel and their responses to solvents, <scp>pH</scp> and solution composition. Polymer International, 2017, 66, 566-572.	1.6	8
1164	Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced Drug Delivery Reviews, 2017, 108, 68-82.	6.6	84
1165	Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed <scp>l</scp> -glutamic acid and <scp>l</scp> -lysine polypeptide for site-specific drug delivery. Journal of Materials Chemistry B, 2017, 5, 935-943.	2.9	76
1166	Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Advanced Healthcare Materials, 2017, 6, 1600791.	3.9	21

	CITATION RE	CITATION REPORT	
# 1167	ARTICLE Combined therapy using low level laser and chitosan-policaju hydrogel for wound healing. International Journal of Biological Macromolecules, 2017, 95, 268-272.	IF 3.6	Citations
1168	Instantaneous coprecipitation of polymer/drug microparticles using the supercritical assisted injection in a liquid antisolvent. Journal of Supercritical Fluids, 2017, 120, 151-160.	1.6	16
1169	Stimuli-Responsive Interfaces. , 2017, , .		3
1170	Beyond bread and beer: whole cell protein extracts from baker's yeast as a bulk source for 3D cell culture matrices. Applied Microbiology and Biotechnology, 2017, 101, 1907-1917.	1.7	7
1171	Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 38-50.	2.0	53
1172	Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. Journal of Controlled Release, 2017, 259, 149-159.	4.8	84
1173	Injectable hydrogels as a delivery system for bone regeneration. , 2017, , 241-271.		4
1174	Injectable poly(ethylene glycol) hydrogels for sustained doxorubicin release. Polymers for Advanced Technologies, 2017, 28, 35-40.	1.6	13
1175	Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology. Journal of NeuroImmune Pharmacology, 2017, 12, 84-98.	2.1	50
1176	Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 192-198.	2.3	9
1177	Fabrication methods of biopolymeric microgels and microgel-based hydrogels. Food Hydrocolloids, 2017, 62, 262-272.	5.6	90
1178	Recent advances and perspectives in topical oral anesthesia. Expert Opinion on Drug Delivery, 2017, 14, 673-684.	2.4	47
1179	Reactiveâ€Oxygenâ€Speciesâ€Responsive Drug Delivery Systems: Promises and Challenges. Advanced Science, 2017, 4, 1600124.	5.6	455
1180	In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels. Carbohydrate Polymers, 2017, 155, 182-191.	5.1	107
1181	Factors affecting microstructure, physicochemical and textural properties of a novel Gum tragacanth-PVA blend cryogel. Carbohydrate Polymers, 2017, 155, 475-482.	5.1	34
1182	Hydrogel films and microcapsules based on soy protein isolate combined with alginate. Journal of Applied Polymer Science, 2017, 134, .	1.3	20
1183	Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opinion on Drug Delivery, 2017, 14, 879-895.	2.4	76
1184	Enhancing effect of γ-cyclodextrin on wound dressing properties of sacran hydrogel film. International Journal of Biological Macromolecules, 2017, 94, 181-186.	3.6	17

# 1185	ARTICLE Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Advances in Colloid and Interface Science, 2017, 244, 132-163.	IF 7.0	Citations 63
1186	Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomaterialia, 2017, 49, 89-100.	4.1	33
1187	Detection of Reactive Oxygen Species by a Carbon-Dot–Ascorbic Acid Hydrogel. Analytical Chemistry, 2017, 89, 830-836.	3.2	60
1188	Spherically Symmetric Solvent is Sufficient to Explain the LCST Mechanism in Polymer Solutions. Macromolecular Theory and Simulations, 2017, 26, 1600073.	0.6	4
1189	Construction and characterization of a pure protein hydrogel for drug delivery application. International Journal of Biological Macromolecules, 2017, 95, 294-298.	3.6	32
1191	Alginate/gelatine hydrogels: characterisation and application of antioxidant release. Green Materials, 2017, 5, 153-164.	1.1	25
1192	Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine, 2017, 6, 44.	1.7	703
1193	Chitosan-based scaffolds for growth factor delivery. , 2017, , 175-207.		7
1194	Synthesis and characterisations of temperature-responsive drug delivery hydrogel for medical applications. , 2017, , .		0
1195	Glycerol gelatin for 3D-printing of implants using a paste extrusion technique. Current Directions in Biomedical Engineering, 2017, 3, 389-392.	0.2	3
1196	Controlled Release of Strontium through Neutralization Reaction within a Methoxy(Polyethylene) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
1197	Stimuli-Responsive Systems with Diverse Drug Delivery and Biomedical Applications: Recent Updates and Mechanistic Pathways. Critical Reviews in Therapeutic Drug Carrier Systems, 2017, 34, 209-255.	1.2	21
1198	Marine Polysaccharides as Multifunctional Pharmaceutical Excipients. , 0, , .		2
1199	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2017, , .		1
1200	Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Frontiers in Pharmacology, 2017, 8, 245.	1.6	78
1201	Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Advanced Pharmaceutical Bulletin, 2017, 7, 515-530.	0.6	304
1202	Visible Light-Cured Glycol Chitosan Hydrogel Containing a Beta-Cyclodextrin-Curcumin Inclusion Complex Improves Wound Healing In Vivo. Molecules, 2017, 22, 1513.	1.7	45
1203	Toxicity, Biocompatibility, pH-Responsiveness and Methotrexate Release from PVA/Hyaluronic Acid Cryogels for Psoriasis Therapy. Polymers, 2017, 9, 123.	2.0	24

# 1204	ARTICLE A Cationic Smart Copolymer for DNA Binding. Polymers, 2017, 9, 576.	IF 2.0	CITATIONS
1205	Transparent Low Molecular Weight Poly(Ethylene Glycol) Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs. Polymers, 2017, 9, 639.	2.0	29
1206	Nanostructured therapeutic systems with bioadhesive and thermoresponsive properties. , 2017, , 313-342.		16
1207	Perspectives on Biomedical Applications of Ulvan. , 2017, , 305-330.		13
1208	Hierarchical Self-Assembly of Amino Acid Derivatives into Enzyme-Responsive Luminescent Gel. Chemosensors, 2017, 5, 6.	1.8	2
1209	Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels, 2017, 3, 6.	2.1	658
1210	Recent Advances in Hydrogel-Based Drug Delivery for Melanoma Cancer Therapy: A Mini Review. Journal of Drug Delivery, 2017, 2017, 1-9.	2.5	55
1211	4.14 Rational and Combinatorial Methods to Create Designer Protein Interfaces â~†. , 2017, , 221-247.		1
1212	On-chip detection of gel transition temperature using a novel micro-thermomechanical method. PLoS ONE, 2017, 12, e0183492.	1.1	3
1213	Self-initiated Photocatalytic Polymerization of Tough and Flexible Polyacrylamide Hydrogel/Polymeric Semiconductor C ₃ N ₄ Composites. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 425-429.	0.1	7
1214	Promising biocompatible hydrogels of crosslinked polyelectrolytes for biomedical applications. Current Directions in Biomedical Engineering, 2017, 3, 695-698.	0.2	2
1215	Chitosan, Chitosan Derivatives and their Biomedical Applications. , 0, , .		28
1216	Cucurbit[n]urils. , 2017, , 405-434.		7
1217	Hydrogels and Their Combination with Liposomes, Niosomes, or Transfersomes for Dermal and Transdermal Drug Delivery. , 0, , .		9
1218	Composites of hydrogels and nanoparticles. , 2017, , 107-138.		3
1219	Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation. Polymers, 2017, 9, 443.	2.0	11
1220	Biomimetic Polymers (for Biomedical Applications). , 2017, , .		0
1221	Topical Nanoemulgel: A Novel Pathway for Investigating Alopecia. Journal of Nanomedicine & Nanotechnology, 2017, 08, .	1.1	6

#	Article	IF	CITATIONS
1222	Thermoresponsive graphene oxide – starch micro/nanohydrogel composite as biocompatible drug delivery system. BioImpacts, 2017, 7, 167-175.	0.7	23
1223	Hydrogels for Topical Nitric Oxide Delivery. , 2017, , 313-330.		6
1224	Phenylboronic Acid Functionalized Polycarbonate Hydrogels for Controlled Release of Polymyxin B in <i>Pseudomonas Aeruginosa</i> Infected Burn Wounds. Advanced Healthcare Materials, 2018, 7, e1701388.	3.9	36
1225	Fast swelling behaviors of thermosensitive poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€methacryloxyethyltrimethyl ammonium) Tj ETQq1 1 0.784314 Science, 2018, 135, 46375.	rgBT /Ove	erlock 10 Tf 5
1226	Influence of Poly(lactic acid) Layer on the Physical and Antibacterial Properties of Dry Bacterial Cellulose Sheet for Potential Acute Wound Healing Materials. Fibers and Polymers, 2018, 19, 263-271.	1.1	28
1227	Drug delivery and epimorphic salamander-type mouse regeneration: A full parts and labor plan. Advanced Drug Delivery Reviews, 2018, 129, 254-261.	6.6	8
1228	Characterization of poly-d-mannuronate and poly-l-guluronate block fractions from sodium alginate and preparation of hydrogels with poly(vinylalcohol). International Journal of Biological Macromolecules, 2018, 111, 935-946.	3.6	12
1229	Acrylic acid grafted tamarind kernel polysaccharide-based hydrogel for bone tissue engineering in absence of any osteo-inducing factors. Connective Tissue Research, 2018, 59, 111-121.	1.1	10
1230	Impact of synthetic canine cerumen on in vitro penetration of auricular skin of dogs by florfenicol, terbinafine, and betamethasone acetate. American Journal of Veterinary Research, 2018, 79, 333-341.	0.3	1
1231	Liposome Crosslinked Polyacrylamide/DNA Hydrogel: a Smart Controlledâ€Release System for Small Molecular Payloads. Small, 2018, 14, e1704039.	5.2	88
1232	Behavior of In Situ Cross‣inked Hydrogels with Rapid Gelation Kinetics on Contact with Physiological Fluids. Macromolecular Chemistry and Physics, 2018, 219, 1700584.	1.1	11
1233	A Review About the Drug Delivery from Microsponges. AAPS PharmSciTech, 2018, 19, 1501-1511.	1.5	24
1234	Semi-interpenetrating network hyaluronic acid microgel delivery systems in micro-flow. Journal of Colloid and Interface Science, 2018, 519, 174-185.	5.0	17
1235	Programmable hydrogels. Biomaterials, 2018, 178, 663-680.	5.7	73
1236	Structural, macro- and micro-mechanical properties of supramolecular bi-component l-Lysine-sodium tetraphenyl borate based hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 366-377.	2.3	5
1237	The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. FA¬toterapA¬A¢, 2018, 127, 212-219.	1.1	21
1238	Synthesis of pectin-N, N-dimethyl acrylamide hydrogel by gamma radiation and application in drug delivery (<i>in vitro</i>). Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 369-376.	1.2	20
1240	Tuning the Mechanical Properties of BIEEâ€Crosslinked Semiâ€Interpenetrating, Doubleâ€Hydrophilic Hydrogels. Macromolecular Materials and Engineering, 2018, 303, 1700643.	1.7	2

#		IE	CITATION
π 1241	Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. , 2018, , 1-20.		1
1242	Anhydrous polymerâ€based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnology and Bioengineering, 2018, 115, 2000-2012.	1.7	20
1243	Lectin-Functionalized Composite Hydrogels for "Capture-and-Killing―of Carbapenem-Resistant <i>Pseudomonas aeruginosa</i> . Biomacromolecules, 2018, 19, 2472-2482.	2.6	17
1244	Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes. Biosensors and Bioelectronics, 2018, 112, 162-169.	5.3	4
1245	Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. International Journal of Industrial Chemistry, 2018, 9, 39-52.	3.1	32
1246	Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials, 2018, 178, 527-545.	5.7	43
1247	Electrically Triggered Small Molecule Release from Poly(<i>N</i> -Isopropylacrylamide- <i>co</i> -Acrylic Acid) Microgel-Modified Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 13124-13129.	4.0	22
1248	The multiple functions of melatonin in regenerative medicine. Ageing Research Reviews, 2018, 45, 33-52.	5.0	70
1249	Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydrate Polymers, 2018, 194, 69-79.	5.1	61
1250	Polymerization-Induced Phase Separation Formation of Structured Hydrogel Particles via Microfluidics for Scar Therapeutics. Scientific Reports, 2018, 8, 2245.	1.6	22
1251	Triple network hydrogels (TN gels) prepared by a one-pot, two-step method with high mechanical properties. RSC Advances, 2018, 8, 6789-6797.	1.7	13
1252	Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide. Journal of the Royal Society Interface, 2018, 15, 20170949.	1.5	15
1253	Advanced Microengineered Lung Models for Translational Drug Discovery. SLAS Discovery, 2018, 23, 777-789.	1.4	24
1254	Design and Application of Injectable Gels in Tissue Engineering and Drug Delivery. Gels Horizons: From Science To Smart Materials, 2018, , 311-339.	0.3	0
1255	Improved magnetic regulation of delivery profiles from ferrogels. Biomaterials, 2018, 161, 179-189.	5.7	47
1256	A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 2018, 8, 7533-7549.	1.7	548
1257	Imprinted Polymeric Gels for Pharmaceutical and Biomedical Purposes. Gels Horizons: From Science To Smart Materials, 2018, , 153-183.	0.3	0
1258	Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects. Soft Matter, 2018, 14, 1976-1991.	1.2	38

#	Article	IF	CITATIONS
1259	Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. Soft Matter, 2018, 14, 2068-2076.	1.2	13
1260	Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device. Drug Development and Industrial Pharmacy, 2018, 44, 1070-1077.	0.9	2
1262	Synthesis and evaluation of a superabsorbent-fertilizer composite for maximizing the nutrient and water use efficiency in forestry plantations. Journal of Environmental Management, 2018, 210, 239-254.	3.8	18
1263	Hydrogel formulations for biologicals: current spotlight from a commercial perspective. Therapeutic Delivery, 2018, 9, 221-230.	1.2	13
1264	Hydrogels: Promising Energy Storage Materials. ChemistrySelect, 2018, 3, 1309-1320.	0.7	11
1265	Selfâ€Organized Porous Titaniumâ€Chitosan Hybrid Materials with Tunable Functions. ChemNanoMat, 2018, 4, 353-360.	1.5	7
1266	Physical Polyurethane Hydrogels via Charge Shielding through Acids or Salts. Macromolecular Rapid Communications, 2018, 39, e1700711.	2.0	4
1267	Multivalent Polyaspartamide Cross-Linker for Engineering Cell-Responsive Hydrogels with Degradation Behavior and Tunable Physical Properties. Biomacromolecules, 2018, 19, 691-700.	2.6	26
1268	Developing an analytical solution for photo-sensitive hydrogel bilayers. Journal of Intelligent Material Systems and Structures, 2018, 29, 1953-1963.	1.4	11
1269	Advances in Carbon Nanotubes–Hydrogel Hybrids in Nanomedicine for Therapeutics. Advanced Healthcare Materials, 2018, 7, e1701213.	3.9	143
1270	Coordination-Triggered Hierarchical Folate/Zinc Supramolecular Hydrogels Leading to Printable Biomaterials. ACS Applied Materials & Interfaces, 2018, 10, 4530-4539.	4.0	91
1271	Injectable, Self-Healing, and Stress Sustainable Hydrogel of BSA as a Functional Biocompatible Material for Controlled Drug Delivery in Cancer Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 3321-3330.	3.2	56
1272	Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats. AAPS PharmSciTech, 2018, 19, 1320-1336.	1.5	49
1273	Hydrogels based on poly(methyl vinyl ether-co-maleic acid) and Tween 85 for sustained delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2018, 538, 147-158.	2.6	40
1274	Topological Structure of Networks Formed from Symmetric Four-Arm Precursors. Macromolecules, 2018, 51, 1224-1231.	2.2	72
1275	Controlling Cell Behavior on Silk Nanofiber Hydrogels with Tunable Anisotropic Structures. ACS Biomaterials Science and Engineering, 2018, 4, 933-941.	2.6	34
1276	Biomedical Applications of Recombinant Silkâ€Based Materials. Advanced Materials, 2018, 30, e1704636.	11.1	216
1277	Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	2

#	Article	IF	CITATIONS
1278	Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons, 2018, 5, 162-183.	6.4	54
1279	Novel organic/inorganic hybrid flower-like structure of selenium nanoparticles stabilized by pullulan derivatives. Carbohydrate Polymers, 2018, 184, 9-19.	5.1	34
1280	Near-Infrared Light Induced Phase Transition of Biodegradable Composites for On-Demand Healing and Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 4131-4139.	4.0	22
1281	Temperatureâ€Responsive Electrophoretic Deposition of Sulfoneâ€Containing Nonionic Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Chemistry and Physics, 2018, 219, 1700468.	1.1	3
1282	Dynamically Cross-Linked Self-Assembled Thermoresponsive Microgels with Homogeneous Internal Structures. Langmuir, 2018, 34, 1601-1612.	1.6	25
1283	An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Materials Science and Engineering C, 2018, 86, 129-143.	3.8	85
1284	Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. Journal of Oral Biology and Craniofacial Research, 2018, 8, 126-133.	0.8	50
1285	Periadventitial local drug delivery to target restenosis. Vascular Pharmacology, 2018, 107, 12-19.	1.0	7
1286	Nonlinear measures and modeling to examine the role of physical and chemical crosslinking in poly(vinyl alcohol)-based crosslinked systems. Rheologica Acta, 2018, 57, 181-195.	1.1	7
1287	Phase-field model for liquid–solid phase transition of physical hydrogel in an ionized environment subject to electro–chemo–thermo–mechanical coupled field. International Journal of Solids and Structures, 2018, 138, 134-143.	1.3	11
1288	Main-chain polyacetal conjugates with HIF-1 inhibitors: temperature-responsive, pH-degradable drug delivery vehicles. Journal of Materials Chemistry B, 2018, 6, 666-674.	2.9	13
1289	Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Transactions, 2018, 47, 2114-2133.	1.6	195
1290	Dielectric relaxation of interfacial polarizable molecules in chitosan ice-hydrogel materials. Journal of Materiomics, 2018, 4, 35-43.	2.8	4
1291	Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124, 95-103.	2.0	59
1292	Comparing laser diffraction and optical microscopy for characterizing superabsorbent polymer particle morphology, size, and swelling capacity. Journal of Applied Polymer Science, 2018, 135, 46055.	1.3	14
1293	Future Perspective on the Smart Delivery of Biomolecules. From Biomaterials Towards Medical Devices, 2018, , 363-371.	0.0	2
1294	Fast Thermoresponsive Optical Membrane Using Hydrogels Embedded in Macroporous Silicon. , 2018, 2, 1-4.		12
1295	Bionanocomposites based on mesoporous silica and alginate for enhanced drug delivery. Carbohydrate Polymers, 2018, 196, 126-134.	5.1	43

#	Article	IF	CITATIONS
1296	Effect of polymer concentration on structure and rheology of poly (sodium acrylate) hydrogels. AIP Conference Proceedings, 2018, , .	0.3	2
1298	Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 2762-2776.	2.1	70
1299	Polyhistidineâ€Based Metal Coordination Hydrogels with Physiologically Relevant pH Responsiveness and Enhanced Stability through a Novel Synthesis. Macromolecular Rapid Communications, 2018, 39, e1800109.	2.0	19
1300	Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Delivery, 2018, 25, 1080-1090.	2.5	49
1301	The preparations of novel cellulose/phenylboronic acid composite intelligent bio-hydrogel and its glucose, pH-responsive behaviors. Carbohydrate Polymers, 2018, 195, 349-355.	5.1	44
1302	Ionic effects on the mechanical and swelling properties of a poly(acrylic acid/acrylamide) double crosslinking hydrogel. New Journal of Chemistry, 2018, 42, 9151-9158.	1.4	37
1303	Osmolality predictive models of different polymers as tools in parenteral and ophthalmic formulation development. International Journal of Pharmaceutics, 2018, 543, 190-200.	2.6	7
1304	Soft Micro- and Nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 53-75.	7.5	145
1305	Synthesis of PEOâ€based physical gels with tunable viscoelastic properties. Journal of Polymer Science Part A, 2018, 56, 1033-1038.	2.5	13
1306	Composite Hydrogels Using Bioinspired Approach with in Situ Fast Gelation and Self-Healing Ability as Future Injectable Biomaterial. ACS Applied Materials & Interfaces, 2018, 10, 11950-11960.	4.0	43
1307	Encapsulation of ionic nanoparticles produces reactive oxygen species (ROS)-responsive microgel useful for molecular detection. Chemical Communications, 2018, 54, 4329-4332.	2.2	11
1308	Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 2018, 8, 42-55.	1.7	356
1309	Modulation of functional pendant chains within poly(ethylene glycol) hydrogels for refined control of protein release. Scientific Reports, 2018, 8, 4315.	1.6	20
1310	Biomaterials for drug delivery patches. European Journal of Pharmaceutical Sciences, 2018, 118, 49-66.	1.9	98
1311	A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. Journal of the Mechanics and Physics of Solids, 2018, 116, 239-266.	2.3	48
1312	In situ forming injectable hydrogels for drug delivery and wound repair. Advanced Drug Delivery Reviews, 2018, 127, 167-184.	6.6	547
1313	Nanofibered Gelatinâ€Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced Healthcare Materials, 2018, 7, e1700895.	3.9	20
1314	Lignin-Containing Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 4821-4828.	3.2	155
#	Article	IF	CITATIONS
------	--	-----	-----------
1315	Tough high modulus hydrogels derived from carbon-nitride <i>via</i> an ethylene glycol co-solvent route. Soft Matter, 2018, 14, 2655-2664.	1.2	28
1316	Synthesis and Characterization of Biodegradable Hydrogels for Oral Delivery of 5â€Fluorouracil Targeted to Colon: Screening with Preliminary In Vivo Studies. Advances in Polymer Technology, 2018, 37, 221-229.	0.8	49
1317	Fabrication of pHâ€Responsive Hydrogel and Its In Vitro and In Vivo Evaluation. Advances in Polymer Technology, 2018, 37, 290-304.	0.8	28
1318	Hydrogels of poly(2â€hydroxyethyl methacrylate) reinforced with nanocrystalline cellulose as candidates for biomaterials. Polymer Composites, 2018, 39, E278.	2.3	12
1319	Magnetic nanoparticle containing thiolâ€ene crosslinked hydrogels for controlled and targeted release of hydrophobic drugs. Polymer Composites, 2018, 39, E200.	2.3	8
1320	Nanotechnology application to local anaesthesia (LA). Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 355-360.	1.9	23
1321	PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization. Pharmaceutical Development and Technology, 2018, 23, 751-760.	1.1	62
1322	Preparation and characterization of alginate-PVA-based semi-IPN: controlled release pH-responsive composites. Polymer Bulletin, 2018, 75, 1075-1099.	1.7	60
1323	Rate of fatty acid transport in glassy biopolymers: A free volume based predictive approach. Food Hydrocolloids, 2018, 78, 128-131.	5.6	2
1324	Controlled drug delivery of ciprofloxacin from ultrasonic hydrogel. E-Polymers, 2018, 18, 187-195.	1.3	15
1325	Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. Colloids and Surfaces B: Biointerfaces, 2018, 161, 129-138.	2.5	75
1326	Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft. Carbohydrate Polymers, 2018, 180, 216-225.	5.1	35
1327	Anisotrope Hydrogele – Synthese und Anwendungen. Angewandte Chemie, 2018, 130, 2558-2570.	1.6	24
1328	Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 2018, 16, 113-146.	8.3	207
1329	Controlled release of an optically active compound by hydrogels of acrylic acid and its online detection. Canadian Journal of Chemical Engineering, 2018, 96, 1221-1227.	0.9	2
1330	Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules. Langmuir, 2018, 34, 978-990.	1.6	20
1331	Pectinâ€[(3â€acrylamidopropyl) trimethylammonium chlorideâ€ <i>co</i> â€acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. Journal of Applied Polymer Science, 2018, 135, 45906.	1.3	34
1332	Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydrate Polymers, 2018, 181, 1169-1179.	5.1	72

ARTICLE IF CITATIONS Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. International 1333 3.6 58 Journal of Biological Macromolecules, 2018, 107, 1261-1269. Synthesis of Anisotropic Hydrogels and Their Applications. Angewandte Chemie - International Edition, 1334 7.2 287 2018, 57, 2532-2543. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. 1335 5.173 Carbohydrate Polymers, 2018, 179, 59-70. Polysaccharide-based Fibers and Composites., 2018,,. 1336 Effect of Molecular Weight of Poly(Ethylene Glycol) Dicarboxylate on the Properties of Cross-Linked Hydrogel Film as an Antiadhesion Barriér. Polymer-Plastics Technology and Engineering, 2018, 57, 1337 1.9 2 1393-1399. Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: Ambient release, drug release, and enantiopreferential release. Talanta, 2018, 177, 66-73. 1338 Living Bioelectronics: Strategies for Developing an Effective Longâ€Term Implant with Functional 1339 7.8 60 Neural Connections. Advanced Functional Materials, 2018, 28, 1702969. Investigation of micromechanical properties of hard sphere filled composite hydrogels by atomic force microscopy and finite element simulations. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 496-504. 1340 1.5 16 Injectable hydrogels for delivering biotherapeutic molecules. International Journal of Biological 1341 170 3.6 Macromolecules, 2018, 110, 17-29. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polymer Chemistry, 2018, 9, 1342 1.9 28 228-235. Dynamic and Responsive Growth Factor Delivery from Electrospun and Hydrogel Tissue Engineering 1343 3.9 54 Materials. Advanced Healthcare Materials, 2018, 7, 1700836. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Advanced Healthcare 1344 3.9 143 Materials, 2018, 7, 1700927. Poly(vinyl alcohol)â€based electrospun nanofibers for the sustained release of celecoxib: 1345 2.3 5 Characterization and evaluation of drug release mechanism. Polymer Composites, 2018, 39, E221. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process 1346 5.1 for potential biomedical applications. Carbohydrate Polymers, 2018, 181, 1194-1205. Development of visible-light responsive and mechanically enhanced "smart―UCST interpenetrating 1347 1.2 29 network hydrogels. Soft Matter, 2018, 14, 151-160. Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. Journal of 1348 1.4 34 Drug Delivery Science and Technology, 2018, 44, 153-171. Intracellular production of hydrogels and syntheticÂRNA granules by multivalent 1349 13.3106 molecular Âinteractions. Nature Materials, 2018, 17, 79-89. Thermosensitive hydrogels a versatile concept adapted to vaginal drug delivery. Journal of Drug 2.1 Targeting, 2018, 26, 533-550.

#	Article	IF	CITATIONS
1351	Preparation and characterization of maleoylagarose/PNIPAAm graft copolymers and formation of polyelectrolyte complexes with chitosan. Carbohydrate Polymers, 2018, 182, 81-91.	5.1	18
1352	Electrically controlled release of ibuprofen from conductive poly(3-methoxydiphenylamine)/crosslinked pectin hydrogel. European Journal of Pharmaceutical Sciences, 2018, 112, 20-27.	1.9	39
1353	Preparations, properties, and formation mechanism of novel cellulose hydrogel membrane based on ionic liquid. Journal of Applied Polymer Science, 2018, 135, 45488.	1.3	26
1354	Drug-eluting silicone hydrogel for therapeutic contact lenses: Impact of sterilization methods on the system performance. Colloids and Surfaces B: Biointerfaces, 2018, 161, 537-546.	2.5	30
1355	PEO-PPO-PEO surfactant exfoliated graphene cyclodextrin drug carriers for photoresponsive release. Materials Chemistry and Physics, 2018, 205, 154-163.	2.0	10
1356	Effect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P(NIPAAm–clay) hydrogels. Polymer Composites, 2018, 39, E386.	2.3	8
1357	Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. Applied Sciences (Switzerland), 2018, 8, 2446.	1.3	18
1358	Mechanics and Thermodynamics of Deformation for a Liquid-Sarurated Elastic Materials in the Approximation of Small Deformations. Mechanics of Solids, 2018, 53, 164-176.	0.3	2
1359	RECENT ADVANCES IN HYDROGELS FOR BIOMEDICAL APPLICATIONS. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 62.	0.3	10
1360	Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polymer Science - Series A, 2018, 60, 707-722.	0.4	33
1361	Estudio de la capacidad de absorción en hidrogeles semi-interpenetrados de poliacrilamida/poli(hidroxibutirato-co-hidroxivalerato). Revista Colombiana De Quimica, 2018, 47, 5-12.	0.2	3
1362	A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(ethylene glycol) Diacrylate Blend. Materials, 2018, 11, 2454.	1.3	31
1363	Uptake and release of photosensitizers in a hydrogel for applications in photodynamic therapy: the impact of structural parameters on intrapolymer transport dynamics. RSC Advances, 2018, 8, 41624-41632.	1.7	11
1364	The sol–gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels. Soft Matter, 2018, 14, 9393-9401.	1.2	12
1365	Synthesis of a biodegradable interpenetrating polymer network of Av-cl-poly(AA-ipn-AAm) for malachite green dye removal: kinetics and thermodynamic studies. RSC Advances, 2018, 8, 41920-41937.	1.7	16
1366	pH-responsive and porous vancomycin-loaded PLGA microspheres: evidence of controlled and sustained release for localized inflammation inhibition <i>in vitro</i> . RSC Advances, 2018, 8, 37424-37432.	1.7	17
1367	Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly(methyl vinyl) Tj ETQq0 0	0 rgBT /Ov £2	verlock 10 Tf

1368	Photolithographically assembled polyelectrolyte complexes as shape-directing templates for thermoreversible gels. Journal of Materials Chemistry B, 2018, 6, 7594-7604.	2.9	2
------	---	-----	---

#	Article	IF	CITATIONS
1369	The encapsulation and release properties of poly(ethylen oxide)/poly(acrylic acid) micelles with respect to α-tocopheryl acetate. Molecular Crystals and Liquid Crystals, 2018, 672, 18-32.	0.4	0
1370	Guar-Based Injectable Thermoresponsive Hydrogel as a Scaffold for Bone Cell Growth and Controlled Drug Delivery. ACS Omega, 2018, 3, 15158-15167.	1.6	31
1371	Control releasing 5-aminosalicylic acid using pH-sensitive hydrogel with novel albumin cross-linker. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 92, 411-417.	0.9	2
1372	Computational Study of DNA-Cross-Linked Hydrogel Formation for Drug Delivery Applications. Macromolecules, 2018, 51, 9758-9768.	2.2	11
1373	Biomaterials for Stem Cell Therapy for Cardiac Disease. Advances in Experimental Medicine and Biology, 2018, 1064, 181-193.	0.8	4
1374	A Chemo-Mechatronic Origami Device for Chemical Sensing. , 2018, , .		1
1375	Differential orientation and conformation of surface-bound keratinocyte growth factor on (hydroxyethyl)methacrylate, (hydroxyethyl)methacrylate/methyl methacrylate, and (hydroxyethyl)methacrylate/methacrylic acid hydrogel copolymers. Biointerphases, 2018, 13, 06E406.	0.6	5
1376	Single bead investigation of a clinical drug delivery system – A novel release mechanism. Journal of Controlled Release, 2018, 292, 235-247.	4.8	15
1377	pH-Responsive Biocompatible Nanocomposite Hydrogels for Therapeutic Drug Delivery. ACS Applied Bio Materials, 2018, 1, 1810-1822.	2.3	42
1378	Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. Polymers, 2018, 10, 1188.	2.0	10
1379	Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs, 2018, 205, 372-395.	1.3	34
1380	Assembly of Conducting Polymer and Biohydrogel for the Release and Real-Time Monitoring of Vitamin K3. Gels, 2018, 4, 86.	2.1	8
1381	Advanced Hydrogel Structures. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
1382	Performance of polyacrylamide and poly(acrylamide/sodium acrylate) hydrogel-coated mesh for separation of oil/water mixtures. Journal of Water Process Engineering, 2018, 26, 62-71.	2.6	19
1383	Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 4266-4277.	2.6	41
1384	Synthesis, Characterization and Drug Loading of Multiresponsive p[NIPAm-co-PEGMA] (core)/p[NIPAm-co-AAc] (Shell) Nanogels with Monodisperse Size Distributions. Polymers, 2018, 10, 309.	2.0	14
1385	Microwave-assisted synthesis of biodegradable interpenetrating polymer network of aloe vera–poly(acrylic acid-co-acrylamide) for removal of malachite green dye: equilibrium, kinetics and thermodynamic studies. Iranian Polymer Journal (English Edition), 2018, 27, 913-926.	1.3	17
1386	Bioengineering a novel 3D in vitro model of gastric mucosa for stomach permeability studies. Acta Biomaterialia, 2018, 82, 68-78.	4.1	14

#	Article	IF	CITATIONS
1387	Dipeptideâ€functionalized MILâ€101(Fe) as efficient material for ibuprofen delivery. Applied Organometallic Chemistry, 2018, 32, e4552.	1.7	11
1389	Effect of embedded polyelectrolyte chains on microstructure of polyacrylamide hydrogels. AIP Conference Proceedings, 2018, , .	0.3	0
1390	UV Light–Responsive Peptideâ€Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromolecular Rapid Communications, 2018, 39, e1800588.	2.0	85
1391	Mechanically tough and recoverable hydrogels via dual physical crosslinkings. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1294-1305.	2.4	16
1392	High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties. Polymers, 2018, 10, 1025.	2.0	23
1393	An Additive Manufacturing Technique for the Facile and Rapid Fabrication of Hydrogel-based Micromachines with Magnetically Responsive Components. Journal of Visualized Experiments, 2018, , .	0.2	8
1394	In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2137-2153.	1.9	43
1395	Polymeric Nanocarriers for the Delivery of Antimalarials. Molecules, 2018, 23, 2527.	1.7	39
1396	Applications of Hydrogels. Polymers and Polymeric Composites, 2018, , 1-39.	0.6	0
1397	Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. Polymers and Polymeric Composites, 2018, , 1-28.	0.6	1
1398	Polysaccharide-Based Superabsorbents: Synthesis, Properties, and Applications. Polymers and Polymeric Composites, 2018, , 1-39.	0.6	0
1399	Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer Journal, 2018, 109, 402-434.	2.6	147
1400	Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels. Gels, 2018, 4, 72.	2.1	35
1401	Lipid Nanoparticles and Their Hydrogel Composites for Drug Delivery: A Review. Pharmaceuticals, 2018, 11, 118.	1.7	65
1402	Soy Protein-Based Composite Hydrogels: Physico-Chemical Characterization and In Vitro Cytocompatibility. Polymers, 2018, 10, 1159.	2.0	14
1404	Sorption Properties of Clay and Pectin-Containing Hydrogels. , 0, , .		2
1405	Cellulose-Based Hydrogels as Biomaterials. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
1406	Cell Encapsulation. Polymers and Polymeric Composites, 2018, , 1-51.	0.6	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1407	Thermoresponsive Gel Drug Delivery for Retina and Posterior Segment Disease. , 2018, , 3	97-409.		1
1408	Reversible Condensation of Mucins into Nanoparticles. Langmuir, 2018, 34, 13615-13625	5.	1.6	20
1409	Aptamer Functionalized DNA Hydrogel for Wise-Stage Controlled Protein Release. Applied (Switzerland), 2018, 8, 1941.	Sciences	1.3	21
1410	Leeches-Inspired Hydrogel–Elastomer Integration Materials. ACS Applied Materials &am 2018, 10, 40238-40245.	ıp; Interfaces,	4.0	22
1411	Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter, 2018, 14, 7731-7739.		1.2	11
1412	Polymersome–hydrogel composites with combined quick and long-term antibacterial ac Journal of Materials Chemistry B, 2018, 6, 6311-6321.	ctivities.	2.9	38
1413	Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics,	2018, 10, 145.	2.0	28
1414	Towards Developing Bioresponsive, Self-Assembled Peptide Materials: Dynamic Morpholo Fractal Nature of Nanostructured Matrices. Materials, 2018, 11, 1539.	gy and	1.3	8
1415	Hydrogels in Regenerative Medicine. , 2018, , .			3
1416	Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with t properties for tissue engineering. Biomaterials Science, 2018, 6, 2938-2950.	unable	2.6	83
1417	Glyoxylamide-based self-assembly hydrogels for sustained ciprofloxacin delivery. Journal o Chemistry B, 2018, 6, 6089-6098.	f Materials	2.9	16
1418	Influence of Sulfurâ€Containing Diamino Acid Structure on Covalently Crosslinked Copoly Hydrogels. Chemistry - an Asian Journal, 2018, 13, 3547-3553.	ypeptide	1.7	11
1420	Gelatin-based porous silicon hydrogel composites for the controlled release of tramadol. Polymer Journal, 2018, 108, 485-497.	uropean	2.6	24
1421	Chaperone Copolymer-Assisted Aptamer-Patterned DNA Hydrogels for Triggering Spatiote Release of Protein. ACS Applied Bio Materials, 2018, 1, 1206-1214.	emporal	2.3	10
1422	Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted delivery and gene delivery in cancer cells. , 2018, , 243-275.	drug		5
1423	The chitosan hydrogels: from structure to function. New Journal of Chemistry, 2018, 42, 1	17162-17180.	1.4	113
1424	Hydrogels, DNA, and RNA polypeptides for the preparation of biomaterials. , 2018, , 85-10)4.		8
1425	Recent advances in applying nanotechnologies for cancer immunotherapy. Journal of Con Release, 2018, 288, 239-263.	trolled	4.8	60

#	Article	IF	CITATIONS
1426	Curcumin incorporated PVAâ€borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate. Journal of Applied Polymer Science, 2018, 135, 46734.	1.3	40
1427	Emerging Technology in Medical Applications of Hydrogel. Gels Horizons: From Science To Smart Materials, 2018, , 197-218.	0.3	2
1428	Tunicate cellulose nanocrystal reinforced polyacrylamide hydrogels with tunable mechanical performance. Cellulose, 2018, 25, 6561-6570.	2.4	19
1429	Structural and molecular response in cyclodextrin-based pH-sensitive hydrogels by the joint use of Brillouin, UV Raman and Small Angle Neutron Scattering techniques. Journal of Molecular Liquids, 2018, 271, 738-746.	2.3	6
1430	Hydrogel-nanoparticle composites for drug delivery. , 2018, , 229-254.		3
1431	Biomimetic delivery of signals for bone tissue engineering. Bone Research, 2018, 6, 25.	5.4	178
1432	Lotus leaf-inspired design of calcium alginate particles with superhigh drug encapsulation efficiency and pH responsive release. Colloids and Surfaces B: Biointerfaces, 2018, 172, 464-470.	2.5	10
1433	Shape changing hydrogels and their applications as soft actuators. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1314-1324.	2.4	69
1434	Gelatin-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	3
1435	Alginate hydrogel beads as a carrier of low density lipoprotein/pectin nanogels for potential oral delivery applications. International Journal of Biological Macromolecules, 2018, 120, 859-864.	3.6	48
1436	Collagen/Heparin Biâ€Affinity Multilayer Modified Collagen Scaffolds for Controlled bFGF Release to Improve Angiogenesis In Vivo. Macromolecular Bioscience, 2018, 18, e1800086.	2.1	25
1437	Intelligent Hydrogels as Drug Delivery Systems. Gels Horizons: From Science To Smart Materials, 2018, , 1-28.	0.3	1
1438	Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing. , 2018, 59, 2069.		33
1439	Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions. European Polymer Journal, 2018, 105, 85-94.	2.6	55
1440	Bioactive hydrogels for bone regeneration. Bioactive Materials, 2018, 3, 401-417.	8.6	370
1441	Injectable nanocomposite analgesic delivery system for musculoskeletal pain management. Acta Biomaterialia, 2018, 74, 280-290.	4.1	15
1442	Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal, 2018, 104, 184-193.	2.6	47
1443	Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose. Carbohydrate Polymers, 2018, 196, 414-421.	5.1	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1444	Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochimica Acta, 201	8, 281, 429-436.	2.6	43
1445	Photo-Cross-Linked Self-Assembled Poly(ethylene oxide)-Based Hydrogels Containing H with Dynamic and Permanent Cross-Links. ACS Macro Letters, 2018, 7, 683-687.	lybrid Junctions	2.3	13
1446	Stimuli sensitive ocular drug delivery systems. , 2018, , 211-270.			10
1447	Recent progress of poly (N-isopropylacrylamide) hybrid hydrogels: synthesis, fundamen applications – review. Soft Materials, 2018, 16, 228-247.	tals and	0.8	17
1448	Polyethersulfone/poly(acrylic acid) composite hydrogel membrane reservoirs for contro of cationic drug formulations. Polymer, 2018, 147, 56-66.	illed delivery	1.8	9
1449	Fabrication and Printing of Multi-material Hydrogels. , 2018, , 397-430.			0
1450	Poly(allylamine)/tripolyphosphate coacervates enable high loading and multiple-month weakly amphiphilic anionic drugs: an <i>in vitro</i> study with ibuprofen. RSC Advance 19409-19419.	release of 15, 2018, 8,	1.7	17
1451	Poly(vinyl diaminotriazine): From Molecular Recognition to Highâ€Strength Hydrogels. Macromolecular Rapid Communications, 2018, 39, e1800190.		2.0	10
1452	Proton Transfer Hydrogels: Versatility and Applications. Journal of the American Chemic 2018, 140, 6700-6709.	cal Society,	6.6	37
1454	Covalently functionalized amide cross-linked hydrogels from primary amines and polye acyltrifluoroborates (PEC-KATs). Journal of Materials Chemistry B, 2018, 6, 4775-4782.	thylene glycol	2.9	28
1455	Graphene as a Material $\hat{a} \in$ '' An Overview of Its Properties and Characteristics and Devel for Practical Applications. , 2018, , .	opment Potential		14
1456	Chitosan based hydrogels and their applications for drug delivery in wound dressings: A Carbohydrate Polymers, 2018, 199, 445-460.	A review.	5.1	553
1457	Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Character Application Prospects. Polymers and Polymeric Composites, 2018, , 1-41.	ization, and	0.6	2
1458	Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for o poorly soluble drugs. International Journal of Biological Macromolecules, 2018, 118, 78	lelivery of 3-791.	3.6	83
1459	Crosslinked gelatin hydrogels as carriers for controlled heparin release. Materials Letter 375-378.	⁻ s, 2018, 228,	1.3	22
1460	Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals. Environr Chemistry for A Sustainable World, 2018, , .	nental	0.3	16
1461	Smart polymeric gels. , 2018, , 179-230.			2
1462	Supramolecular Liquid Crystals Based on Cyclodextrins. Environmental Chemistry for A World, 2018, , 183-240.	Sustainable	0.3	3

#	Article	IF	CITATIONS
1463	Synthetic polymeric gel. , 2018, , 55-90.		15
1464	Particle-loaded gels. , 2018, , 143-178.		0
1465	Antimicrobial polymeric gels. , 2018, , 357-371.		0
1466	Hydrogel nanocomposite for controlled drug release. , 2018, , 575-588.		4
1467	From Batch to Continuous Precipitation Polymerization of Thermoresponsive Microgels. ACS Applied Materials & Interfaces, 2018, 10, 24799-24806.	4.0	61
1468	Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. Journal of Molecular Liquids, 2018, 266, 425-440.	2.3	40
1469	Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. Materials Science and Engineering C, 2018, 92, 143-150.	3.8	27
1470	Recent Innovations in Drug Delivery for Retinal Diseases. Advances in Ophthalmology and Optometry, 2018, 3, 155-183.	0.3	1
1471	Polymer nanocomposites: Insights on rheology, percolation and molecular mobility. Polymer, 2018, 153, 52-60.	1.8	29
1472	Gamma radiative fabrication of semi interpenetrating network film: Optimization, characterization and investigation as colon, intestine specific drug release device. Vacuum, 2018, 156, 357-369.	1.6	6
1473	Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5499-5529.	2.9	78
1474	Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	8
1475	Polymeric Gels: Vehicles for Enhanced Drug Delivery Across Skin. Gels Horizons: From Science To Smart Materials, 2018, , 343-375.	0.3	1
1476	Modeling the mechanics and the transport phenomena in hydrogels. Computer Aided Chemical Engineering, 2018, 42, 357-383.	0.3	10
1477	Evaluation of 25% Poloxamer As a Slow Release Carrier for Morphine in a Rat Model. Frontiers in Veterinary Science, 2018, 5, 19.	0.9	3
1478	Milligels Synthesis and Characterization: Mebeverine Hydrochloride Uptake and Release. , 2018, , 372-377.		0
1479	Functional Microgels: Recent Advances in Their Biomedical Applications. Small, 2018, 14, e1801724.	5.2	111
1480	Physical nanocomposite hydrogels filled with low concentrations of TiO2 nanoparticles: Swelling, networks parameters and cell retention studies. Materials Science and Engineering C. 2018, 92, 769-778.	3.8	32

ARTICLE IF CITATIONS Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207. 111 1481 3.6 The quest for mechanically and biologically functional soft biomaterials via soft network 1482 6.6 composites. Advanced Drug Delivery Reviéws, 2018, 132, 214-234. Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. Polymers and 1483 0.6 1 Polymeric Composites, 2018, , 1-29. Polysaccharide Containing Gels for Pharmaceutical Applications. Gels Horizons: From Science To 1484 0.3 Smart Materials, 2018, , 231-278. Hybrid hydrogel systems of micelles of drug anion containing ionic liquid and biopolymers: Rheological behavior and drug release. Colloids and Surfaces A: Physicochemical and Engineering 1485 2.3 13 Aspects, 2018, 555, 668-678. Gemcitabine hydrochloride microspheres used for intravesical treatment of superficial bladder cancer: a comprehensive in vitro/ex vivo/in vivo evaluation. Drug Design, Development and Therapy, 2018, Volume 12, 1959-1975. Journey into Bone Models: A Review. Genes, 2018, 9, 247. 1487 1.0 80 Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. 1488 1.8 332 International Journal of Molecular Sciences, 2018, 19, 195. Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and 1489 Sustained Expression of Exogenous Proteins in Cells. International Journal of Molecular Sciences, 1.8 25 2018, 19, 1313. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of 1.8 Functional Biomaterials, 2018, 9, 13. Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing 1491 1.3 44 Technologies. Materials, 2018, 11, 302. In-Silico Design, Synthesis and Evaluation of a Nanostructured Hydrogel as a Dimethoate Removal Agent. Nanomaterials, 2018, 8, 23. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from 1493 2.0 94 Biodegradable Polymers. Pharmaceutics, 2018, 10, 16. Integrated Oxidized-Hyaluronic Acid/Collagen Hydrogel with Î²-TCP Using Proanthocyanidins as a 1494 29 Crosslinker for Drug Delivery. Pharmaceutics, 2018, 10, 37. In Situ-Based Gels for Nose to Brain Delivery for the Treatment of Neurological Diseases. 1495 2.0 77 Pharmaceutics, 2018, 10, 40. Poly(carbonate urethane)-Based Thermogels with Enhanced Drug Release Efficacy for 1496 2.0 Chemotherapeutic Applications. Polymers, 2018, 10, 89. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications 1497 2.0112 in Textile Based Transdermal Therapy. Polymers, 2018, 10, 480. Supramolecular Hydrogel Based on pNIPAm Microgels Connected via Host–Guest Interactions. 1498 Polymers, 2018, 10, 566.

	CHATION	REPORT	
#	Article	IF	CITATIONS
1499	pH-Responsive Hybrid Hydrogels as Antibacterial and Drug Delivery Systems. Polymers, 2018, 10, 660.	2.0	55
1500	Bioinspired navigation in shape morphing micromachines for autonomous targeted drug delivery. , 2018, , .		2
1501	Application of Polymerization Activator in the Course of Synthesis of N-Isopropylacrylamide Derivatives for Thermally Triggered Release of Naproxen Sodium. Materials, 2018, 11, 261.	1.3	2
1502	Oleogels. , 2018, , 231-249.		12
1503	Biodegradable superabsorbents: Methods of preparation and application $\hat{a} \in A$ review. , 2018, , 307-322.		10
1504	Targeted Treatment of Ischemic and Fibrotic Complications of Myocardial Infarction Using a Dual-Delivery Microgel Therapeutic. ACS Nano, 2018, 12, 7826-7837.	7.3	63
1505	A Micellar-Hydrogel Nanogrid from a UV Crosslinked Inulin Derivative for the Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs. Pharmaceutics, 2018, 10, 97.	2.0	10
1506	Elastin-like materials for tissue regeneration and repair. , 2018, , 309-327.		8
1507	Integrative control of mechanical and degradation properties of in situ crosslinkable polyamine-based hydrogels for dual-mode drug release kinetics. Polymer, 2018, 145, 272-280.	1.8	21
1508	Fabrication of Nanoemulsions by Membrane Emulsification. , 2018, , 287-346.		4
1509	H2S Delivery from Aromatic Peptide Amphiphile Hydrogels. Methods in Molecular Biology, 2018, 1758, 193-208.	0.4	0
1510	Preparation of Gallic Acid – Anhydride Conjugate and Evaluation of Prodrug Release Through Pva-Based Hydrogel. Pharmaceutical Chemistry Journal, 2018, 52, 139-144.	0.3	0
1511	Injectable Hydrogels for Cardiac Tissue Engineering. Macromolecular Bioscience, 2018, 18, e1800079.	2.1	172
1512	Efficient loading of ophthalmic drugs with poor loadability into contact lenses using functional comonomers. Biomaterials Science, 2018, 6, 2639-2646.	2.6	15
1513	Biodegradable Hydrogels for Controlled Drug Delivery. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	2
1514	Robotic microplate voltammetry for real-time hydrogel drug release testing. Analytica Chimica Acta, 2018, 1041, 33-39.	2.6	12
1515	TiO2 as Photosensitizer and Photoinitiator for Synthesis of Photoactive TiO2-PEGDA Hydrogel Without Organic Photoinitiator. Frontiers in Chemistry, 2018, 6, 340.	1.8	27
1516	Development of PVA/Fe3O4 as Smart Magnetic Hydrogels for Biomedical Applications. , 2018, , .		5

#	Article	IF	CITATIONS
1517	Polymers and hydrogels for local nucleic acid delivery. Journal of Materials Chemistry B, 2018, 6, 5651-5670.	2.9	31
1518	Hydrazone-Linkage-Based Self-Healing and Injectable Xanthan–Poly(ethylene glycol) Hydrogels for Controlled Drug Release and 3D Cell Culture. ACS Applied Materials & Interfaces, 2018, 10, 30936-30945.	4.0	88
1519	Synthesis, optimization, and evaluation of polyvinyl alcoholâ€based hydrogels as controlled combinatorial drug delivery system for colon cancer. Advances in Polymer Technology, 2018, 37, 3348-3363.	0.8	24
1520	Superabsorbent. , 0, , .		4
1521	Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and inÂvitro release of hydrophobic quercetin. Polymer, 2018, 147, 108-120.	1.8	75
1522	High strength and anti-fatigue nanocomposite hydrogels prepared via self-initiated free radical polymerization triggered by daylight. New Journal of Chemistry, 2018, 42, 11796-11803.	1.4	15
1523	Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. Journal of Agricultural and Food Chemistry, 2018, 66, 6940-6967.	2.4	208
1524	Design of Hollow Hyaluronic Acid Cylinders for Sustained Intravitreal Protein Delivery. Journal of Pharmaceutical Sciences, 2018, 107, 2354-2365.	1.6	9
1525	Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydrate Polymers, 2018, 197, 497-507.	5.1	59
1526	New Treatment Modalities for the Management of Peritoneal Metastases. , 2018, , 469-506.		4
1527	Advances in Biomaterials for Drug Delivery. Advanced Materials, 2018, 30, e1705328.	11.1	565
1528	Hydrogels for biomedical applications. , 2018, , 403-438.		32
1529	Self-Assembled Peptide and Protein Nanofibers for Biomedical Applications. , 2018, , 569-598.		11
1530	An alginate-based hydrogel composite obtained by UV radiation and its release of 5-fluorouracil. Polymer Bulletin, 2019, 76, 1167-1182.	1.7	9
1531	The effect of complexation with cyclodextrins on the antioxidant and antimicrobial activity of ellagic acid. Pharmaceutical Development and Technology, 2019, 24, 410-418.	1.1	42
1532	Development of external coincidence ERDA: Hydrogen analysis of moist samples. Nuclear Instruments & Methods in Physics Research B, 2019, 450, 304-309.	0.6	1
1533	Development of gelatin hydrogel pads incorporated with Eupatorium adenophorum essential oil as antibacterial wound dressing. Polymer Bulletin, 2019, 76, 701-724.	1.7	28
1534	pHâ€sensitive hydrogel based on carboxymethyl chitosan/sodium alginate and its application for drug delivery. Journal of Applied Polymer Science, 2019, 136, 46911.	1.3	36

#	Article	IF	CITATIONS
1535	Differences in Zwitterionic Sulfobetaine and Carboxybetaine Dextran-Based Hydrogels. Langmuir, 2019, 35, 1475-1482.	1.6	15
1536	Preparation, characterization and controlled-release property of Fe3+ cross-linked hydrogels based on peach gum polysaccharide. Food Hydrocolloids, 2019, 87, 260-269.	5.6	37
1537	Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 2019, 59, 3468-3497.	5.4	161
1538	Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Advanced Drug Delivery Reviews, 2019, 149-150, 95-106.	6.6	52
1539	An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS PharmSciTech, 2019, 20, 281.	1.5	37
1540	Softâ€Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications. Advanced Healthcare Materials, 2019, 8, e1900506.	3.9	95
1541	A Mixed Thermosensitive Hydrogel System for Sustained Delivery of Tacrolimus for Immunosuppressive Therapy. Pharmaceutics, 2019, 11, 413.	2.0	19
1542	Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery. Carbohydrate Polymers, 2019, 225, 115207.	5.1	86
1543	<i>In situ</i> composite ion-triggered gellan gum gel incorporating amino methacrylate copolymer microparticles: a therapeutic modality for buccal applicability. Pharmaceutical Development and Technology, 2019, 24, 1258-1271.	1.1	15
1544	Self-curing super-stretchable polymer/microgel complex coacervate gels without covalent bond formation. Chemical Science, 2019, 10, 8832-8839.	3.7	15
1545	HYDROGEL: AN UPDATED PRIMER. Journal of Critical Reviews, 0, , 1-10.	0.7	10
1546	Preparation and characterization of chitosan based hydrogels containing cyclodextrin inclusion compounds or nanoemulsions of thyme oil. Polymer International, 2019, 68, 1891-1902.	1.6	35
1547	Materials as Bioinks and Bioink Design. , 2019, , 67-100.		7
1548	Injectable thermosensitive gels for the localized and controlled delivery of biomolecules in tissue engineering/regenerative medicine. Biomedical Science and Engineering, 2019, 3, .	0.0	8
1549	Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharmaceutical Journal, 2019, 27, 990-999.	1.2	155
1550	Characterising the throat diameter of through-pores in network structures using a percolation criterion. Molecular Physics, 2019, 117, 3614-3622.	0.8	1
1551	Tailoring the Chemical Modification of Chitosan Hydrogels to Fine-Tune the Release of a Synergistic Combination of Chemotherapeutics. Biomacromolecules, 2019, 20, 3126-3141.	2.6	25
1552	Stimuli-Responsive Hydrogels: An Interdisciplinary Overview. , 0, , .		11

#	Article	IF	CITATIONS
1553	Flow induced stability of pluronic hydrogels: Injectable and unencapsulated nucleus pulposus replacement. Acta Biomaterialia, 2019, 96, 295-302.	4.1	16
1554	Sewing Hydrogels: Adhesion of Hydrogels Utilizing in Situ Polymerization of Linear Polymers inside Gel Networks. Macromolecules, 2019, 52, 5690-5697.	2.2	22
1555	Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123670.	2.3	21
1556	Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123709.	2.3	71
1557	Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules, 2019, 24, 2547.	1.7	115
1558	Sodium alginate in drug delivery and biomedical areas. , 2019, , 59-100.		27
1559	An ingenious non-spherical mesoporous silica nanoparticle cargo with curcumin induces mitochondria-mediated apoptosis in breast cancer (MCF-7) cells. Oncotarget, 2019, 10, 1193-1208.	0.8	31
1560	Thermal- and salt-activated shape memory hydrogels based on a gelatin/polyacrylamide double network. RSC Advances, 2019, 9, 18619-18626.	1.7	26
1561	Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly(<i>N</i> -isopropylacrylamide) Nanogels. Journal of Physical Chemistry B, 2019, 123, 6303-6313.	1.2	24
1562	Comparison of the Efficacy and Safety Profiles of a Mixed â€~PF-72' and â€~0.75% Ropivacaine HCl' Versu â€~0.75% Ropivacaine HCl' and No Treatment Group: A Randomized, Single-Blind, Single-Institution Pilot Study. Journal of Korean Society of Spine Surgery, 2019, 26, 11.	is a 0.1	1
1563	Microbial exopolisaccharides for biomedical applications. , 2019, , 165-219.		3
1564	Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydrate Polymers, 2019, 223, 115045.	5.1	46
1565	Influence of ions to modulate hydrazone and oxime reaction kinetics to obtain dynamically cross-linked hyaluronic acid hydrogels. Polymer Chemistry, 2019, 10, 4322-4327.	1.9	20
1566	Superstrong and Tough Hydrogel through Physical Cross-Linking and Molecular Alignment. Biomacromolecules, 2019, 20, 4476-4484.	2.6	83
1567	Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 2019, 52, 3244-3253.	7.6	392
1568	Polyethyleneâ€Glycolâ€Based Thermoreversible Biscarbamate Hydrogels and Metallogels Synthesized through Nonâ€Isocyanate Route. ChemistrySelect, 2019, 4, 11052-11060.	0.7	6
1569	A review on recent development of theoretical modeling of hydrogel phase behavior subject to mechanics and multiphysics coupled effects. Mechanics of Soft Materials, 2019, 1, 1.	0.4	1
1570	Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds. Polymer, 2019, 184, 121882.	1.8	34

#	Article	IF	CITATIONS
1572	Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants, 2019, 8, 462.	2.2	31
1573	Cold atmospheric plasma surface nanoengineered carboxymethyl cellulose hydrogels as oral ibuprofen carriers. SN Applied Sciences, 2019, 1, 1.	1.5	3
1574	Aptamer-Functionalized Fibrin Hydrogel Improves Vascular Endothelial Growth Factor Release Kinetics and Enhances Angiogenesis and Osteogenesis in Critically Sized Cranial Defects. ACS Biomaterials Science and Engineering, 2019, 5, 6152-6160.	2.6	23
1575	Gel composition and brine concentration effect on hydrogel dehydration subjected to uniaxial compression. Journal of Petroleum Science and Engineering, 2019, 182, 106358.	2.1	12
1576	Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 41640-41648.	4.0	9
1577	Effect of nanodiamond surface chemistry on adsorption and release of tiopronin. Diamond and Related Materials, 2019, 100, 107590.	1.8	29
1578	Multiple Physically Cross-Linked F127â^î±-CD Hydrogels: Preparation, Sol–Gel Transformation, and Controlled Release of 5-Fluorouracil. ACS Applied Bio Materials, 2019, 2, 527-532.	2.3	11
1579	Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(ethylene) Glycol Diacrylate (PEGDA) Hydrogels. Materials, 2019, 12, 3381.	1.3	16
1580	Screening and optimization through response surface methodology for synthesis of pH, temperature and saltâ€sensitive <i>Aloe vera</i> –acrylic acidâ€based biodegradable hydrogel: Its evaluation as dye adsorbent. Polymer Engineering and Science, 2019, 59, 2323-2334.	1.5	10
1581	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
1582	Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules, 2019, 20, 4258-4271.	2.6	38
1583	Swelling thermodynamics and phase transitions of polymer gels. Nano Futures, 2019, 3, 042001.	1.0	22
1585	One-Step Preparation of Nickel Nanoparticle-Based Magnetic Poly(Vinyl Alcohol) Gels. Coatings, 2019, 9, 744.	1.2	8
1586	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11, .	3.8	202
1588	Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. International Journal of Pharmaceutics, 2019, 572, 118799.	2.6	41
1589	Injectable Hydrogel through Hydrophobic Grafting on Chitosan for Controlled Drug Delivery. ACS Applied Bio Materials, 2019, 2, 5415-5426.	2.3	35
1590	Thermodynamic and Kinetic Investigation of Water Absorption by PAM Composite Hydrogel. , 2019, , .		6
1591	Structural changes and crosslinking modulated functional properties of oxi-HA/ADH hydrogels useful for regenerative purposes. European Polymer Journal, 2019, 121, 109288.	2.6	13

#	Article	IF	CITATIONS
1594	Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. European Polymer Journal, 2019, 120, 109217.	2.6	18
1595	Selfâ€Assembly of PEGylated Diphenylalanines into Photoluminescent Fibrillary Aggregates. ChemPhysChem, 2019, 20, 2774-2782.	1.0	22
1596	Dual-Action Pesticide Carrier That Continuously Induces Plant Resistance, Enhances Plant Anti-Tobacco Mosaic Virus Activity, and Promotes Plant Growth. Journal of Agricultural and Food Chemistry, 2019, 67, 10000-10009.	2.4	39
1597	Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomaterialia, 2019, 97, 216-229.	4.1	15
1598	In Situ Forming Depot as Sustained-Release Drug Delivery Systems. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 93-136.	1.2	32
1599	Film Dressings Based on Hydrogels: Simultaneous and Sustained-Release of Bioactive Compounds with Wound Healing Properties. Pharmaceutics, 2019, 11, 447.	2.0	30
1600	Nucleic Acid-Based Dual Cross-Linked Hydrogels for <i>in Situ</i> Tissue Repair via Directional Stem Cell Migration. ACS Applied Materials & amp; Interfaces, 2019, 11, 34621-34633.	4.0	27
1601	Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics, 2019, 11, 448.	2.0	86
1602	Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy. , 2019, 7, 238.		33
1603	Biotechnical Properties of Poly(HEMA- <i>co</i> -HPMA) Hydrogels Are Governed by Distribution among Water States. ACS Biomaterials Science and Engineering, 2019, 5, 4994-5004.	2.6	14
1604	Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Acta Biomaterialia, 2019, 99, 211-219.	4.1	7
1605	A highly efficient thermo responsive palladium nanoparticles incorporated guar gum hydrogel for effective catalytic reactions. Carbohydrate Polymers, 2019, 226, 115289.	5.1	22
1606	Construction of a biomimetic chemokine reservoir stimulates rapid in situ wound repair and regeneration. International Journal of Pharmaceutics, 2019, 570, 118648.	2.6	10
1607	A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. Soft Matter, 2019, 15, 7117-7121.	1.2	9
1608	Synthesis and Characterisation of Novel Temperature and pH Sensitive Physically Cross-Linked Poly (N-vinylcaprolactam-co-itaconic Acid) Hydrogels for Drug Delivery. Gels, 2019, 5, 41.	2.1	22
1609	Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 37147-37155.	4.0	81
1610	Synthesis and characterization of gold/silica hybrid nanoparticles incorporated gelatin methacrylate conductive hydrogels for H9C2 cardiac cell compatibility study. Composites Part B: Engineering, 2019, 177, 107415.	5.9	51
1611	Utilization of NaHCO3 as Foam Additive in Synthesis of Superporous Hydrogels. Materials Today: Proceedings, 2019, 17, 995-1000.	0.9	2

#	Article	IF	CITATIONS
1612	A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy "Click― Chemistry and N-Alkylation Reaction. Polymers, 2019, 11, 1491.	2.0	19
1613	Preparation and applications of peptide-based injectable hydrogels. RSC Advances, 2019, 9, 28299-28311.	1.7	54
1614	Versatile biomanufacturing through stimulus-responsive cell–material feedback. Nature Chemical Biology, 2019, 15, 1017-1024.	3.9	50
1616	Effect of Structure Heterogeneity on Mechanical Performance of Physical Polyampholytes Hydrogels. Macromolecules, 2019, 52, 7369-7378.	2.2	42
1617	Novel Nanocomposites Based on Functionalized Magnetic Nanoparticles and Polyacrylamide: Preparation and Complex Characterization. Nanomaterials, 2019, 9, 1384.	1.9	19
1618	First Aldol Cross-Linked Hyaluronic Acid Hydrogel: Fast and Hydrolytically Stable Hydrogel with Tissue Adhesive Properties. ACS Applied Materials & Interfaces, 2019, 11, 38232-38239.	4.0	34
1619	Direct Observation of Spatiotemporal Heterogeneous Gelation by Rotational Tracking of a Single Anisotropic Nanoprobe. ACS Nano, 2019, 13, 11334-11342.	7.3	22
1620	How small can poly(N-isopropylacrylamide) nanogels be prepared by controlling the size with surfactant?. Journal of Colloid and Interface Science, 2019, 557, 793-806.	5.0	18
1621	Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. Journal of Drug Delivery Science and Technology, 2019, 54, 101241.	1.4	11
1622	Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Development and Industrial Pharmacy, 2019, 45, 1862-1870.	0.9	10
1623	Non-thermal plasma assisted surface nano-textured carboxymethyl guar gum/chitosan hydrogels for biomedical applications. RSC Advances, 2019, 9, 1705-1716.	1.7	19
1624	A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive. Journal of Materials Chemistry B, 2019, 7, 1741-1752.	2.9	38
1625	Biocatalytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone. International Journal of Biological Macromolecules, 2019, 128, 681-691.	3.6	18
1626	Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 181-191.	1.9	85
1627	Selfâ€Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromolecular Rapid Communications, 2019, 40, e1800837.	2.0	183
1628	Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. Journal of Controlled Release, 2019, 297, 60-70.	4.8	106
1629	CO2 Sequestration by Bile Salt Aqueous Solutions and Formation of Supramolecular Hydrogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 3949-3955.	3.2	17
1631	Poly (N-isopropylacrylamide) based hydrogels as novel precipitation and stabilization media for solid lipid nanoparticles (SLNs). Journal of Colloid and Interface Science, 2019, 541, 454-460.	5.0	16

#	Article	IF	CITATIONS
1632	An injectable sulfonated reversible thermal gel for therapeutic angiogenesis to protect cardiac function after a myocardial infarction. Journal of Biological Engineering, 2019, 13, 6.	2.0	19
1633	Polyhydroxyalkanoates Applications in Drug Carriers. , 2019, , 77-124.		6
1634	Atomic force microscopy-indentation demonstrates that alginate beads are mechanically stable under cell culture conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 61-69.	1.5	18
1635	Surfactant-free fabrication of pNIPAAm microgels in microfluidic devices. Journal of Materials Research, 2019, 34, 206-213.	1.2	11
1636	Logical stimuli-triggered delivery of small molecules from hydrogel biomaterials. Biomaterials Science, 2019, 7, 542-546.	2.6	33
1637	Logical design and application of prodrug platforms. Polymer Chemistry, 2019, 10, 306-324.	1.9	58
1638	Modulating stiffness with photo-switchable supramolecular hydrogels. Polymer Chemistry, 2019, 10, 467-472.	1.9	48
1639	Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels. ACS Macro Letters, 2019, 8, 705-713.	2.3	106
1640	Evaluation of proanthocyanidin-crosslinked sericin/alginate blend for ketoprofen extended release. Advanced Powder Technology, 2019, 30, 1531-1543.	2.0	24
1641	Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 2019, 62, 610-619.	8.2	99
1642	In Situ Forming, Dual-Crosslink Network, Self-Healing Hydrogel Enabled by a Bioorthogonal Nopoldiol–Benzoxaborolate Click Reaction with a Wide pH Range. Chemistry of Materials, 2019, 31, 4092-4102.	3.2	64
1643	Carbon-based hydrogels: synthesis and their recent energy applications. Journal of Materials Chemistry A, 2019, 7, 15491-15518.	5.2	124
1644	Gum ghatti based hydrogel: Microwave synthesis, characterization, 5-Fluorouracil encapsulation and â€ĩin vitro' drug release evaluation. Carbohydrate Polymers, 2019, 222, 114979.	5.1	41
1645	Antibacterial-Agent-Immobilized Gelatin Hydrogel as a 3D Scaffold for Natural and Bioengineered Tissues. Gels, 2019, 5, 32.	2.1	3
1646	Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites, 2019, , 719-747.	0.6	2
1647	Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chemical Engineering Journal, 2019, 375, 122022.	6.6	44
1648	A review on latest innovations in natural gums based hydrogels: Preparations & applications. International Journal of Biological Macromolecules, 2019, 136, 870-890.	3.6	204
1649	Ocular Drug Delivery: A Special Focus on the Thermosensitive Approach. Nanomaterials, 2019, 9, 884.	1.9	36

		CITATION RE	PORT	
#	Article		IF	Citations
1650	Interpenetrating polysaccharide networks as oral drug delivery modalities. , 2019, , 319	9-338.		0
1651	Synthesis of poly(acrylic acid)–Fe ³⁺ /gelatin/poly(vinyl alcohol) tripleâ€ supramolecular hydrogels with high toughness, high strength and selfâ€healing proper International, 2019, 68, 1710-1721.	network ties. Polymer	1.6	27
1652	Layered Double Hydroxide-Decorated Hydrogel for Biomedical Applications. , 2019, , 36	67-383.		1
1653	Hybrid hydrogels for biomedical applications. Current Opinion in Chemical Engineering 143-157.	, 2019, 24,	3.8	131
1654	Mucoadhesive thermosensitive hydrogel for the intra-tumoral delivery of immunomodulin vivo evidence of adhesion by means of non-invasive imaging techniques. Internation Pharmaceutics, 2019, 567, 118421.	ılatory agents, al Journal of	2.6	13
1655	Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to r ulcerative colitis. International Journal of Biological Macromolecules, 2019, 136, 83-96	nanage	3.6	45
1656	Mimicking the Dissolution Mechanisms of pHâ€Responsive Drug Release Formulations Simulations. Advanced Theory and Simulations, 2019, 2, 1900053.	in Atomistic MD	1.3	6
1657	Extending the Phantom Network Theory to Account for Cooperative Effect of Defects. Macromolecular Symposia, 2019, 385, 1900010.		0.4	6
1658	Nanostructuring lipid carriers using Ridolfia segetum (L.) Moris essential oil. Materials S Engineering C, 2019, 103, 109804.	Science and	3.8	24
1659	Advances in Biomaterials and Technologies for Vascular Embolization. Advanced Mater e1901071.	ials, 2019, 31,	11.1	133
1660	Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery app Discovery Today, 2019, 24, 1575-1586.	lications. Drug	3.2	101
1661	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.		8.3	82
1662	Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applicati bench-to-bedside manufacturing considerations. Journal of Controlled Release, 2019, 3	ions, and 306, 29-39.	4.8	97
1663	Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Migration. Advanced Healthcare Materials, 2019, 8, e1801553.	: Cell	3.9	61
1664	Hydrogel Synthesis and Design. Polymers and Polymeric Composites, 2019, , 239-278.		0.6	4
1665	PVA Cryogel as model hydrogel for iontophoretic transdermal drug delivery investigation Comparison with PAA/PVA and PAA/PVP interpenetrating networks. Colloids and Surface Biointerfaces, 2019, 180, 441-448.	ons. ces B:	2.5	41
1666	An Injectable ROSâ€Responsive Selfâ€Healing Hydrogel Based on tetraâ€poly(ethylene 1900106.	≥) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf 1.1	50 107 Td (g 9
1667	Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulati Macromolecular Research, 2019, 27, 764-771.	on.	1.0	5

#	Article	IF	CITATIONS
1668	Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11259-11264.	3.3	95
1669	Altering the release of tobramycin by incorporating poly(ethylene glycol) into model silicone hydrogel contact lens materials. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1115-1141.	1.9	5
1670	NMR cryoporometry of polymers: Cross-linking, porosity and the importance of probe liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 256-263.	2.3	13
1671	Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon, 2019, 5, e01688.	1.4	58
1672	Hydrogel-based transparent soils for root phenotyping in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11063-11068.	3.3	58
1673	Enhancing cell seeding and osteogenesis of MSCs on 3D printed scaffolds through injectable BMP2 immobilized ECM-Mimetic gel. Dental Materials, 2019, 35, 990-1006.	1.6	48
1674	Macroscale biomaterials strategies for local immunomodulation. Nature Reviews Materials, 2019, 4, 379-397.	23.3	172
1675	Synergistic Tricolor Emission-Based White Light from Supramolecular Organic–Inorganic Hybrid Gel. Langmuir, 2019, 35, 6453-6459.	1.6	11
1676	Numerical Estimates of the Topological Effects in the Elasticity of Gaussian Polymer Networks and Their Exact Theoretical Description. Macromolecules, 2019, 52, 3244-3251.	2.2	27
1677	Exploring the cell–protein–mineral interfaces: Interplay of silica (nano)rods@collagen biocomposites with human dermal fibroblasts. Materials Today Bio, 2019, 1, 100004.	2.6	7
1678	One-step wettability patterning of PDMS microchannels for generation of monodisperse alginate microbeads by in Situ external gelation in double emulsion microdroplets. Sensors and Actuators B: Chemical, 2019, 291, 418-425.	4.0	48
1679	Charge and Peptide Concentration as Determinants of the Hydrogel Internal Aqueous Environment. Materials, 2019, 12, 832.	1.3	7
1680	Clinical Translation of Nanomaterials. , 2019, , 75-111.		0
1681	Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels. Colloids and Interfaces, 2019, 3, 42.	0.9	5
1682	Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and â€~smart' derivatives. European Polymer Journal, 2019, 117, 165-178.	2.6	168
1683	A review on recent advancements in ophthalmology devices: Currently in market and under clinical trials. Journal of Drug Delivery Science and Technology, 2019, 52, 334-345.	1.4	10
1684	Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydrate Polymers, 2019, 218, 355-370.	5.1	146
1685	Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. , 2019, , 293-329.		8

#	Article	IF	CITATIONS
1686	PLGA scaffolds: building blocks for new age therapeutics. , 2019, , 155-201.		3
1687	Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application. , 2019, , 97-119.		15
1688	Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 196-204.	1.5	47
1689	Tissue Response and Biodistribution of Injectable Cellulose Nanocrystal Composite Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 2235-2246.	2.6	46
1690	Dual Aptamer-Functionalized in Situ Injectable Fibrin Hydrogel for Promotion of Angiogenesis via Codelivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor-BB. ACS Applied Materials & Interfaces, 2019, 11, 18123-18132.	4.0	54
1691	Stimulusâ€Responsive Hydrogel for Ophthalmic Drug Delivery. Macromolecular Bioscience, 2019, 19, e1900001.	2.1	42
1692	Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Scientific Reports, 2019, 9, 6402.	1.6	96
1693	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	3.6	39
1694	Novel dehydropeptide-based magnetogels containing manganese ferrite nanoparticles as antitumor drug nanocarriers. Physical Chemistry Chemical Physics, 2019, 21, 10377-10390.	1.3	17
1695	Ultrasonic Generation of Pulsatile and Sequential Therapeutic Delivery Profiles from Calcium-Crosslinked Alginate Hydrogels. Molecules, 2019, 24, 1048.	1.7	19
1696	A green strategy to endow superabsorbents with stretchability and self-healability. Chemical Engineering Journal, 2019, 370, 274-286.	6.6	14
1697	Injectable microgel–hydrogel composites "plum pudding gels†new system for prolonged drug delivery. , 2019, , 343-372.		8
1698	Supramolecular phenoxy-alkyl maleate-based hydrogels and their enzyme/pH-responsive curcumin release. New Journal of Chemistry, 2019, 43, 5559-5567.	1.4	14
1699	Efficient weapon for protracted warfare to malaria: A chondroitin sulfate derivates-containing injectable, ultra-long-lasting meshy-gel system. Carbohydrate Polymers, 2019, 214, 131-141.	5.1	7
1700	Preparation of thermosensitive biodegradable hydrogel using poly(5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxymethyl]-5-methyl-1,3-dioxa-2-one) derivatives. Materialia, 2019, 5, 100178.	1.3	11
1701	Stimuli-responsive injectable cellulose thixogel for cell encapsulation. International Journal of Biological Macromolecules, 2019, 130, 1009-1017.	3.6	28
1702	Homogeneous hydrogels made with acrylic acid, acrylamide and chemically functionalized carbon nanotubes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 417-428.	1.2	3
1703	Design and Applications of Photoresponsive Hydrogels. Advanced Materials, 2019, 31, e1807333.	11.1	353

#	ARTICLE	IF	CITATIONS
 1704	Magneto- and photo-responsive hydrogels from the co-assembly of peptides, cyclodextrins, and superparamagnetic nanoparticles. Faraday Discussions, 2019, 219, 220-228.	1.6	23
1705	Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Advanced Drug Delivery Reviews, 2019, 149-150, 19-48.	6.6	31
1706	Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Molecular Pharmaceutics, 2019, 16, 2011-2020.	2.3	42
1707	Hydrogel Dressings for Advanced Wound Management. Current Medicinal Chemistry, 2019, 25, 5782-5797.	1.2	165
1708	Printing Hydrogels and Elastomers in Arbitrary Sequence with Strong Adhesion. Advanced Functional Materials, 2019, 29, 1901721.	7.8	101
1709	Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends in Food Science and Technology, 2019, 86, 465-478.	7.8	26
1710	Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2019, 267, 47-61.	7.0	286
1711	Advances in atom-transfer radical polymerization for drug delivery applications. European Polymer Journal, 2019, 115, 45-58.	2.6	39
1712	Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. Journal of Controlled Release, 2019, 300, 141-153.	4.8	56
1713	Sterilization Procedure for Temperature-Sensitive Hydrogels Loaded with Silver Nanoparticles for Clinical Applications. Nanomaterials, 2019, 9, 380.	1.9	21
1714	Electrophoretic fabrication of an active and selective wrinkle surface on hydrogels. Chemical Communications, 2019, 55, 4170-4173.	2.2	14
1715	Biomaterial surfaces self-defensive against bacteria by contact transfer of antimicrobials. Biomaterials, 2019, 204, 25-35.	5.7	24
1716	A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid and Polymer Science, 2019, 297, 705-717.	1.0	26
1717	Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 2899-2910.	2.9	54
1718	Dynamics of water and xanthan chains in hydrogels studied by NMR relaxometry and their influence on drug release. International Journal of Pharmaceutics, 2019, 563, 373-383.	2.6	25
1719	Polymers for extended-release administration. Biomedical Microdevices, 2019, 21, 45.	1.4	21
1720	Redox Polyion Complex Micelle-Based Injectable Hydrogel as Local Reactive Oxygen Species Scavenging Therapeutics. ACS Symposium Series, 2019, , 287-307.	0.5	1
1721	Cell Encapsulation. Polymers and Polymeric Composites, 2019, , 377-427.	0.6	2

#	Article	IF	CITATIONS
1722	Polysaccharide-Based Hybrid Self-Healing Hydrogel Supports the Paracrine Response of Mesenchymal Stem Cells. ACS Applied Bio Materials, 2019, 2, 2013-2027.	2.3	35
1723	Applications of Hydrogels. Polymers and Polymeric Composites, 2019, , 453-490.	0.6	16
1724	Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review. European Polymer Journal, 2019, 116, 106-116.	2.6	21
1725	Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 2365-2381.	2.6	57
1726	Electrodeposition-based rapid bioprinting of 3D-designed hydrogels with a pin art device. Biofabrication, 2019, 11, 035018.	3.7	13
1727	Advanced Hydrogel Structures. Polymers and Polymeric Composites, 2019, , 279-305.	0.6	1
1728	Targeting drug delivery within the suprachoroidal space. Drug Discovery Today, 2019, 24, 1654-1659.	3.2	24
1729	Sustained Releasing of Methotrexate from Injectable and Thermosensitive Chitosan–Carbon Nanotube Hybrid Hydrogels Effectively Controls Tumor Cell Growth. ACS Omega, 2019, 4, 4040-4048.	1.6	59
1730	Revisiting the Elasticity Theory for Real Gaussian Phantom Networks. Macromolecules, 2019, 52, 1685-1694.	2.2	57
1731	Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures. International Journal of Biological Macromolecules, 2019, 130, 88-98.	3.6	32
1732	Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge. , 2019, , 805-853.		3
1733	Drug Delivery: Polymers in the Development of Controlled Release Systems. Polymers and Polymeric Composites, 2019, , 1-29.	0.6	2
1734	Membrane Emulsification in Pharmaceutics and Biotechnology. , 2019, , 167-222.		3
1735	Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. Journal of Inorganic Biochemistry, 2019, 194, 19-25.	1.5	22
1736	Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles. Journal of Materials Chemistry B, 2019, 7, 2151-2161.	2.9	45
1737	Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, 2019, 11, 275.	2.0	142
1738	Transformer Hydrogels: A Review. Advanced Materials Technologies, 2019, 4, 1900043.	3.0	207
1739	Pluronic F127 gels fabricated by thiol–ene click chemistry: preparation, gelation dynamics, swelling behaviors and mechanical properties. Polymer Bulletin, 2019, 76, 6049-6061.	1.7	8

#	Article	lF	CITATIONS
1740	P-NIPAM in water–acetone mixtures: experiments and simulations. Physical Chemistry Chemical Physics, 2019, 21, 5106-5116.	1.3	17
1741	Hydrogel-Based Drug Delivery for Lung Cancer. , 2019, , 293-310.		1
1742	Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnology Advances, 2019, 37, 444-458.	6.0	32
1743	Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings. European Polymer Journal, 2019, 114, 72-80.	2.6	28
1744	Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 152-161.	1.5	14
1745	Direct Monitoring of Microgel Formation during Precipitation Polymerization of <i>N</i> -Isopropylacrylamide Using in Situ SANS. ACS Omega, 2019, 4, 3690-3699.	1.6	21
1746	Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomaterialia, 2019, 88, 15-31.	4.1	127
1747	Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 2019, 24, 603.	1.7	439
1748	Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Materials Science and Engineering C, 2019, 99, 805-815.	3.8	95
1749	Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; <i>in vitro</i> /i>/i>/i>/iv/ <i>and histopathological studies. Drug Development and Industrial Pharmacy, 2019, 45, 922-936.</i>	0.9	40
1750	Nanovector-Mediated Drug Delivery in Spinal Cord Injury: A Multitarget Approach. ACS Chemical Neuroscience, 2019, 10, 1173-1182.	1.7	20
1751	Emerging Biomedical Applications of Algal Polysaccharides. Current Pharmaceutical Design, 2019, 25, 1335-1344.	0.9	23
1752	Bio-hydrogel for Prolonged Controlled Gastro-retentive Drug Dispenser. , 2019, , .		0
1753	Developments in Bio-Inspired Nanomaterials for Therapeutic Delivery to Treat Hearing Loss. Frontiers in Cellular Neuroscience, 2019, 13, 493.	1.8	26
1754	Effect of Silica Nanoparticles on Wear Mechanism of Alginate-Polyacrylamide Hydrogel Matrix as a Load-Bearing Biomaterial. Key Engineering Materials, 2019, 823, 15-20.	0.4	4
1755	Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polymer Chemistry, 2019, 10, 6360-6367.	1.9	16
1756	Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules, 2019, 24, 4345.	1.7	11
1757	Molecular Dynamics Validation and Applications of the Maximum Entropy Homogenization Procedure for Predicting the Elastic Properties of Gaussian Polymer Networks. Macromolecules, 2019, 52, 9445-9455.	2.2	15

		CITATION F	Report	
#	Article		IF	Citations
1758	Effects of vitamin D ₃ release from 3D printed calcium phosphate scaffolds o and osteoclast cell proliferation for bone tissue engineering. RSC Advances, 2019, 9, 348	n osteoblast 47-34853.	1.7	10
1759	Effect of water concentration on the shock response of polyethylene glycol diacrylate (PE hydrogels: A molecular dynamics study. Journal of the Mechanical Behavior of Biomedical 2019, 90, 30-39.	GDA) Materials,	1.5	17
1760	Molecular dynamics of the diffusion of natural bioactive compounds from high-solid biopo matrices for the design of functional foods. Food Hydrocolloids, 2019, 88, 301-319.	olymer	5.6	16
1761	Chemical modification of alginate with cysteine and its application for the removal of Pb(aqueous solutions. International Journal of Biological Macromolecules, 2019, 129, 1056-1	l) from .068.	3.6	35
1762	Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer 2019, 88, 220-240.	Science,	11.8	260
1763	Voltammetric and electrosynthetic triggered gel formation. Electrochimica Acta, 2019, 29	96, 1095-1101.	2.6	1
1764	Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanopart hybrid systems for specific medical applications. International Journal of Biological Macron 2019, 126, 193-208.	1 :icles as molecules,	3.6	41
1765	Synthesis and rheological characterization of a novel thermostable quick setting composi hydrogel of gellan and pullulan. International Journal of Biological Macromolecules, 2019, 979-988.	te 125,	3.6	36
1766	Cartilage-targeting dexamethasone prodrugs increase the efficacy of dexamethasone. Jou Controlled Release, 2019, 295, 118-129.	rnal of	4.8	45
1767	The production and application of hydrogels for wound management: A review. European Journal, 2019, 111, 134-151.	Polymer	2.6	193
1768	Meningeal inflammatory response and fibrous tissue remodeling around intracortical imp vivo two-photon imaging study. Biomaterials, 2019, 195, 111-123.	ants: An in	5.7	37
1769	Morpholino Oligonucleotide Cross-Linked Hydrogels as Portable Optical Oligonucleotide Biosensors. ACS Sensors, 2019, 4, 185-191.		4.0	14
1770	Influence of Hydrophobic Cross-Linkers on Carboxybetaine Copolymer Stimuli Response a Biological Properties. Langmuir, 2019, 35, 1631-1641.	nd Hydrogel	1.6	17
1771	Drug and Gene Delivery for Regenerative Engineering. , 2019, , 565-583.			1
1772	Nanoparticle eluting-angioplasty balloons to treat cardiovascular diseases. International Jo Pharmaceutics, 2019, 554, 212-223.	ournal of	2.6	25
1773	In vitro genotoxicity assessment of an oxidized dextrinâ€based hydrogel for biomedical a Journal of Applied Toxicology, 2019, 39, 639-649.	oplications.	1.4	7
1774	Casein-based hydrogel carrying insulin: preparation, in vitro evaluation and in vivo assessr Journal of Pharmaceutical Investigation, 2019, 49, 635-641.	nent.	2.7	18
1775	Interpenetrating thermophobic and thermophilic dual responsive networks. Journal of Pol Science Part A, 2019, 57, 539-544.	ymer	2.5	4

#	Article	IF	CITATIONS
1776	Photoâ€Induced Hydrogel Formation Based on gâ€C ₃ N ₄ Nanosheets with Selfâ€Crossâ€Linked 3D Framework for UV Protection Application. Macromolecular Materials and Engineering, 2019, 304, 1800500.	1.7	26
1777	Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydrate Polymers, 2019, 206, 854-862.	5.1	45
1778	Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydrate Polymers, 2019, 206, 749-756.	5.1	33
1779	Improved Efficacy of Antibody Cancer Immunotherapeutics through Local and Sustained Delivery. ChemBioChem, 2019, 20, 747-753.	1.3	12
1780	Revisiting the insights and applications of protein engineered hydrogels. Materials Science and Engineering C, 2019, 95, 312-327.	3.8	17
1781	Synthesis of polyhedral oligomeric silsesquioxane nanoâ€crosslinked poly(ethylene glycol)â€based hybrid hydrogels for drug delivery and antibacterial activity. Polymer International, 2019, 68, 667-674.	1.6	24
1782	Triiodothyronine impregnated alginate/gelatin/polyvinyl alcohol composite scaffold designed for exudate-intensive wound therapy. European Polymer Journal, 2019, 110, 252-264.	2.6	28
1783	Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs. Soft Robotics, 2019, 6, 150-159.	4.6	25
1784	Photopolymerized Micelle‣aden Hydrogels Can Simultaneously Form and Encapsulate Nanocrystals to Improve Drug Substance Solubility and Expedite Drug Product Design. Small, 2019, 15, e1803372.	5.2	20
1785	Beta-glucan and arabinogalactan-based xerogels for abuse-deterrent opioid formulations. European Journal of Pharmaceutical Sciences, 2019, 129, 132-139.	1.9	7
1786	Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. Polymers and Polymeric Composites, 2019, , 1103-1130.	0.6	2
1787	Cellulose-Based Hydrogels as Biomaterials. Polymers and Polymeric Composites, 2019, , 1177-1203.	0.6	2
1788	Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. Polymers and Polymeric Composites, 2019, , 1205-1233.	0.6	2
1789	Polysaccharide-Based Superabsorbents: Synthesis, Properties, and Applications. Polymers and Polymeric Composites, 2019, , 1393-1431.	0.6	10
1790	Biodegradable Hydrogels for Controlled Drug Delivery. Polymers and Polymeric Composites, 2019, , 1433-1472.	0.6	2
1791	Gelatin-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 1601-1641.	0.6	12
1792	Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects. Polymers and Polymeric Composites, 2019, , 155-195.	0.6	4
1793	Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. Medicines (Basel, Switzerland), 2019, 6, 7.	0.7	47

#	Article	IF	Citations
1794	Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromolecular Research, 2019, 27, 396-403.	1.0	14
1795	Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 174-183.	2.0	45
1796	Alginate-Based Delivery Systems for Bevacizumab Local Therapy: InÂVitro Structural Features and Release Properties. Journal of Pharmaceutical Sciences, 2019, 108, 1559-1568.	1.6	18
1797	A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective. Macromolecular Bioscience, 2019, 19, e1800458.	2.1	36
1798	Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. Journal of Polymer Research, 2019, 26, 1.	1.2	19
1799	Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 2019, 209, 130-144.	5.1	647
1800	Osmosis effect on protein sustained release of Agarose hydrogel for anti-friction performance. Tribology International, 2019, 132, 108-117.	3.0	7
1801	Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabinoxylan grafted acrylic acid copolymer. Drug Development and Industrial Pharmacy, 2019, 45, 754-766.	0.9	26
1802	Injectable Slippery Lubricant-Coated Spiky Microparticles with Persistent and Exceptional Biofouling-Resistance. ACS Central Science, 2019, 5, 250-258.	5.3	15
1803	Development of gelatin/chitosan/PVA hydrogels: Thermal stability, water state, viscoelasticity, and cytotoxicity assays. Journal of Applied Polymer Science, 2019, 136, 47149.	1.3	66
1804	Thermoresponsive Drug Delivery Systems, Characterization, and Applications. , 2019, , 351-373.		1
1805	Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. International Journal of Biological Macromolecules, 2019, 121, 1061-1069.	3.6	58
1806	Hydrogel Nanocomposite Systems. , 2019, , 81-131.		13
1807	Microfluidic fabrication of wrinkled protein microcapsules and their nanomechanical properties affected by protein secondary structure. Journal of Food Engineering, 2019, 246, 102-110.	2.7	18
1808	Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 122, 320-328.	3.6	74
1809	Degradable and Injectable Hydrogel for Drug Delivery in Soft Tissues. Biomacromolecules, 2019, 20, 149-163.	2.6	85
1810	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
1811	Natural hydrogels for cartilage regeneration: Modification, preparationÂand application. Journal of Orthopaedic Translation, 2019, 17, 26-41	1.9	94

#	Article	IF	CITATIONS
1812	Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. Journal of Porous Materials, 2019, 26, 881-901.	1.3	59
1813	A pH-Responsive Molecularly Imprinted Hydrogel for Dexamethasone Release. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 659-666.	1.9	23
1814	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
1815	Background-Free Fluorescence-Decay-Time Sensing and Imaging of pH with Highly Photostable Diazaoxotriangulenium Dyes. Analytical Chemistry, 2019, 91, 808-816.	3.2	24
1816	General Principle for Fabricating Natural Globular Protein-Based Double-Network Hydrogels with Integrated Highly Mechanical Properties and Surface Adhesion on Solid Surfaces. Chemistry of Materials, 2019, 31, 179-189.	3.2	102
1817	Controlled delivery of ibuprofen from poly(vinyl alcohol)â~poly(ethylene glycol) interpenetrating polymeric network hydrogels. Journal of Pharmaceutical Analysis, 2019, 9, 108-116.	2.4	36
1818	Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydrate Polymers, 2019, 204, 131-141.	5.1	52
1819	Controlled release of Montelukast Sodium from pH-sensitive injectable hydrogels. Polymer-Plastics Technology and Materials, 2019, 58, 948-956.	0.6	0
1820	Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 2019, 205, 106-116.	5.1	162
1821	Controlled release of cephradine by biopolymers based target specific crosslinked hydrogels. International Journal of Biological Macromolecules, 2019, 121, 104-112.	3.6	39
1822	Effects of high temperature and ultraviolet radiation on polymer composites. , 2019, , 407-426.		26
1823	Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. Journal of Pharmaceutical Investigation, 2019, 49, 215-228.	2.7	28
1824	Medical Applications of Polymer/Functionalized Nanoparticle Systems. , 2019, , 381-404.		3
1825	Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Materials Science and Engineering C, 2019, 95, 409-421.	3.8	43
1826	Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science, 2019, 31, 398-411.	1.6	85
1827	Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Reviews in Biomedical Engineering, 2019, 12, 333-351.	13.1	38
1828	Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 442-451.	1.8	15
1829	Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Delivery and Translational Research, 2019, 9, 595-614.	3.0	55

#	Article	IF	CITATIONS
1830	Stimuliâ€responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1527.	3.3	231
1831	Emerging role of nanomedicine in the treatment of neuropathic pain. Journal of Drug Targeting, 2020, 28, 11-22.	2.1	9
1832	Polymeric microgels for bone tissue engineering applications – a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 381-397.	1.8	31
1833	In vitro toxicity assessment of hydrogel patches obtained by cationâ€induced crossâ€linking of rodâ€like cellulose nanocrystals. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 687-697.	1.6	18
1834	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
1835	pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polymer Bulletin, 2020, 77, 1255-1279.	1.7	9
1836	Polyamide fabric coated with a dihydroxyacetone-loaded chitosan hydrogel for a cosmeto-textile application. Journal of Industrial Textiles, 2020, 50, 526-542.	1.1	3
1837	Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1-20.	1.8	163
1838	Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition, 2020, 60, 1651-1666.	5.4	113
1839	Ascorbic acid derivative-loaded modified aspasomes: formulation, <i>in vitro, ex vivo</i> and clinical evaluation for melasma treatment. Journal of Liposome Research, 2020, 30, 54-67.	1.5	31
1840	Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances, 2020, 42, 107370.	6.0	78
1841	Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polymer Bulletin, 2020, 77, 3989-4010.	1.7	34
1842	Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery. Journal of Inorganic and Organometallic Polymers and Materials. 2020. 30. 1339-1351.	1.9	40
1843	Poly(ethylene glycol) Composite Hydrogels with Natural Zeolite as Filler for Controlled Delivery Applications. Macromolecular Research, 2020, 28, 211-220.	1.0	11
1844	Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. I. Rheology and microscopy studies. Journal of Colloid and Interface Science, 2020, 564, 499-509.	5.0	13
1845	Chitosan-based hydrogels loading with thyme oil cyclodextrin inclusion compounds: From preparation to characterization. European Polymer Journal, 2020, 122, 109303.	2.6	40
1846	Tunable, Functional Diblock Copolypeptide Hydrogels Based on Methionine Homologs. Macromolecular Bioscience, 2020, 20, 1900243.	2.1	4
1847	Tunable Two-Compartment On-Demand Sustained Drug Release Based on Lipid Gels. Journal of Pharmaceutical Sciences, 2020, 109, 1059-1067.	1.6	7

#	Article	IF	CITATIONS
1848	Naturally biomimicked smart shape memory hydrogels for biomedical functions. Chemical Engineering Journal, 2020, 379, 122430.	6.6	112
1849	Lidocaine Microemulsion-Laden Organogels as Lipid-Based Systems for Topical Delivery. Journal of Pharmaceutical Innovation, 2020, 15, 521-534.	1.1	16
1850	Practical approaches on the long-acting injections. Journal of Pharmaceutical Investigation, 2020, 50, 147-157.	2.7	32
1851	Glucosamineâ€grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 990-999.	1.6	19
1852	Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules, 2020, 21, 152-162.	2.6	10
1853	Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques. Research on Chemical Intermediates, 2020, 46, 409-428.	1.3	22
1854	In situ facile-forming chitosan hydrogels with tunable physicomechanical and tissue adhesive properties by polymer graft architecture. Carbohydrate Polymers, 2020, 229, 115538.	5.1	24
1855	Hydrogel microparticles for biomedical applications. Nature Reviews Materials, 2020, 5, 20-43.	23.3	646
1856	Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications. ACS Biomaterials Science and Engineering, 2020, 6, 277-287.	2.6	25
1857	Nanotechnology platforms for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1590.	3.3	82
1858	Preparation of hydrogels based on natural polymers via chemical reaction and cross-Linking. , 2020, , 91-118.		9
1859	A review of current and future food applications of natural hydrocolloids. International Journal of Food Science and Technology, 2020, 55, 1389-1406.	1.3	71
1860	Temperature/pH/magnetic tripleâ€sensitive nanogel–hydrogel nanocomposite for release of anticancer drug. Polymer International, 2020, 69, 156-164.	1.6	19
1861	Enhanced mechanical properties and selfâ€healing behavior of PNIPAM nanocomposite hydrogel by using POSS as a physical crosslinker. Journal of Applied Polymer Science, 2020, 137, 48486.	1.3	14
1862	Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110601.	2.5	36
1863	Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomaterials Science and Engineering, 2020, 6, 298-307.	2.6	21
1864	Xanthan Gum–Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers, 2020, 12, 99.	2.0	60
1865	Hybrid Erythrocyte Liposomes: Functionalized Red Blood Cell Membranes for Molecule Encapsulation. Advanced Biology, 2020, 4, e1900185.	3.0	17

#	Article	IF	CITATIONS
1866	PCL microsphere/PEGâ€based composite hydrogels for sustained release of methadone hydrochloride. Journal of Applied Polymer Science, 2020, 137, 48967.	1.3	15
1867	Hydrogels for Medical and Environmental Applications. Small Methods, 2020, 4, 1900735.	4.6	71
1868	pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. International Journal of Biological Macromolecules, 2020, 148, 302-315.	3.6	22
1869	Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Materials Horizons, 2020, 7, 762-786.	6.4	130
1870	Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion. Applied Mathematics and Mechanics (English Edition), 2020, 41, 409-424.	1.9	11
1871	Tough hydrogel module towards an implantable remote and controlled release device. Biomaterials Science, 2020, 8, 960-972.	2.6	19
1872	Soft temperature-responsive microgels of complex shape in stop-flow lithography. Lab on A Chip, 2020, 20, 285-295.	3.1	34
1873	Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
1874	High-strength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124402.	2.3	65
1875	Simultaneously improved strength and toughness in \hat{I}^e -carrageenan/polyacrylamide double network hydrogel via synergistic interaction. Carbohydrate Polymers, 2020, 230, 115596.	5.1	27
1876	A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 2020, 317, 347-374.	4.8	53
1877	Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR). ACS Applied Materials & Interfaces, 2020, 12, 5413-5419.	4.0	20
1878	<i>In situ</i> synthesis of protein-loaded hydrogels <i>via</i> biocatalytic ATRP. Polymer Chemistry, 2020, 11, 1525-1532.	1.9	11
1879	Rapid photothermal actuation of light-addressable, arrayed hydrogel columns in a macroporous silicon membrane. Sensors and Actuators A: Physical, 2020, 301, 111729.	2.0	9
1880	Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels. ACS Applied Polymer Materials, 2020, 2, 1031-1042.	2.0	39
1881	Mechanically Reinforced Injectable Hydrogels. ACS Applied Polymer Materials, 2020, 2, 1016-1030.	2.0	54
1882	Computational-Based Design of Hydrogels with Predictable Mesh Properties. ACS Biomaterials Science and Engineering, 2020, 6, 308-319.	2.6	19
1883	A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs. International Journal of Pharmaceutics, 2020, 575, 118845.	2.6	30

#	Article	IF	Citations
1884	Aqueous-Phase Synthesis of Hyaluronic Acid-Based Hydrogel Nanoparticles for Molecular Storage and Enzymatic Release. ACS Applied Polymer Materials, 2020, 2, 342-350.	2.0	5
1885	Specialty Tough Hydrogels and Their Biomedical Applications. Advanced Healthcare Materials, 2020, 9, e1901396.	3.9	120
1886	Ecoâ€Friendly Synthesis of Hydrogels from Starch, Citric Acid, and Itaconic Acid: Swelling Capacity and Metal Chelation Properties. Starch/Staerke, 2020, 72, 1900008.	1.1	12
1887	Multifunctional temperatureâ€responsive polymers as advanced biomaterials and beyond. Journal of Applied Polymer Science, 2020, 137, 48770.	1.3	47
1888	Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery. Carbohydrate Research, 2020, 487, 107889.	1.1	36
1889	Facile Preparation of Carboxymethyl Cellulose/Cu Bio-Nanocomposite Hydrogels for Controlled Release of Ibuprofen. Regenerative Engineering and Translational Medicine, 2020, 6, 115-124.	1.6	16
1890	Ionic equilibria and swelling of soft permeable particles in electrolyte solutions. Soft Matter, 2020, 16, 929-938.	1.2	6
1891	Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129498.	1.1	8
1892	Polymeric Nanoparticles. , 2020, , 303-324.		23
1893	Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomaterialia, 2020, 102, 315-325.	4.1	16
1894	Pyreneâ€based fluorescent supramolecular hydrogel: scaffold for nanoparticle synthesis. Journal of Physical Organic Chemistry, 2020, 33, e4026.	0.9	7
1895	Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers, 2020, 12, 2261.	2.0	34
1896	EXTRACTION, MODIFICATION, AND CHARACTERIZATION OF NATURAL POLYMERS USED IN TRANSDERMAL DRUG DELIVERY SYSTEM: AN UPDATED REVIEW. Asian Journal of Pharmaceutical and Clinical Research, 0, , 10-20.	0.3	4
1897	Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Advanced Drug Delivery Reviews, 2020, 160, 186-198.	6.6	56
1898	Injectable corilagin/low molecular weight chitosan/PLGA-PEG-PLGA thermosensitive hydrogels for localized cancer therapy and promoting drug infiltration by modulation of tumor microenvironment. International Journal of Pharmaceutics, 2020, 589, 119772.	2.6	22
1899	LCST polymers: Thermoresponsive nanostructured assemblies towards bioapplications. Polymer, 2020, 211, 123146.	1.8	95
1900	Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Accounts of Chemical Research, 2020, 53, 2521-2533.	7.6	81
1901	A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering. Acta Biomaterialia, 2020, 118, 100-112.	4.1	23

#	Article	IF	CITATIONS
1902	Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. Journal of Controlled Release, 2020, 328, 985-999.	4.8	33
1903	Nanodelivery of Resveratrol-Loaded PLGA Nanoparticles for Age-Related Macular Degeneration. AAPS PharmSciTech, 2020, 21, 291.	1.5	41
1904	Application of Hydrogel-Based Delivery System in Endometrial Repair. ACS Applied Bio Materials, 2020, 3, 7278-7290.	2.3	14
1905	Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine. Drug Delivery and Translational Research, 2021, 11, 1983-1993.	3.0	21
1906	Construction and Functional Properties of Multifunctional Chitosan Hydrogel. Polymer Science - Series A, 2020, 62, 494-501.	0.4	0
1907	Stereocomplexation of Poly(lactic acid) and Chemical Crosslinking of Ethylene Glycol Dimethacrylate (EGDMA) Double-Crosslinked Temperature/pH Dual Responsive Hydrogels. Polymers, 2020, 12, 2204.	2.0	10
1908	Mechanical enhancement of hydrophobically associating hydrogels by solvent-regulated phase separation. Polymer, 2020, 210, 123042.	1.8	20
1909	Controlled release of ciprofloxacin and ceftriaxone from a single ototopical administration of antibiotic-loaded polymer microspheres and thermoresponsive gel. PLoS ONE, 2020, 15, e0240535.	1.1	9
1910	Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: Comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application. Chemistry and Physics of Lipids, 2020, 233, 104981.	1.5	18
1911	A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 246-265.	1.8	26
1912	Advanced Polymer-Based Drug Delivery Strategies for Meniscal Regeneration. Tissue Engineering - Part B: Reviews, 2021, 27, 266-293.	2.5	7
1913	Effect of galactose side-chain on the self-assembly of xyloglucan macromolecule. Carbohydrate Polymers, 2020, 246, 116577.	5.1	25
1914	Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly(N-isopropylacrylamide). Carbohydrate Polymers, 2020, 248, 116764.	5.1	21
1915	Acrylic acid/acrylamide based hydrogels and its properties - A review. Polymer Degradation and Stability, 2020, 180, 109308.	2.7	142
1916	Evaluating effect of alginate/chitosan hydrogel containing 4-Methylcatechol on peripheral nerve regeneration in rat model. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1248-1257.	1.8	13
1917	Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels, 2020, 6, 20.	2.1	34
1918	Geometry Control of Wrinkle Structures Aligned on Hydrogel Surfaces. Langmuir, 2020, 36, 1467-1473.	1.6	15
1919	Mussel-Inspired Biocompatible PAADOPA/PAAm Hydrogel Adhesive for Amoxicillin Delivery. Industrial & & & & & & & & & & & & & & & & & & &	1.8	14

#	Article	IF	Citations
1920	Photoresponsive hybrid hydrogel with a dual network of agarose and a self-assembling peptide. Soft Matter, 2020, 16, 7299-7304.	1.2	25
1921	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie, 2020, 132, 14764-14771.	1.6	5
1922	Microparticles. , 2020, , 431-451.		2
1923	Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance. Polymers, 2020, 12, 2561.	2.0	9
1924	Thermosensitive hydrogels for local delivery of 5-fluorouracil as neoadjuvant or adjuvant therapy in colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 154-164.	2.0	28
1925	Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. Materials, 2020, 13, 5270.	1.3	96
1926	Formation and Stability of Smooth Thin Films with Soft Microgels Made of Poly(N-Isopropylacrylamide) and Poly(Acrylic Acid). Polymers, 2020, 12, 2638.	2.0	6
1927	Porous Nanocomposites with Monolayer Nano-SiO2 Coated Skeleton from Interfacial Nanoparticle-Anchored Cocontinuous Polymer Blends. ACS Applied Polymer Materials, 2020, 2, 5735-5742.	2.0	8
1928	Calcium peroxide-mediated <i>in situ</i> formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. Journal of Materials Chemistry B, 2020, 8, 11033-11043.	2.9	23
1929	Alignment of magnetic particles in hydrogel matrix: A novel anisotropic magnetic hydrogels for soft robotics. Journal of Intelligent Material Systems and Structures, 2021, 32, 1432-1440.	1.4	6
1930	Creating Structured Hydrogel Microenvironments for Regulating Stem Cell Differentiation. Gels, 2020, 6, 47.	2.1	13
1931	Plasma-Activated Polyvinyl Alcohol Foils for Cell Growth. Coatings, 2020, 10, 1083.	1.2	3
1932	pH-Sensitive Biomaterials for Drug Delivery. Molecules, 2020, 25, 5649.	1.7	104
1933	Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels. Materials, 2020, 13, 3277.	1.3	12
1934	Preparation of crystalline nanocellulose/hydroxypropyl β cyclodextrin/carboxymethyl cellulose polyelectrolyte complexes and their controlled release of neohesperidin-copper (II) in vitro. International Journal of Biological Macromolecules, 2020, 163, 1518-1528.	3.6	25
1935	The effect of hydrogen bonding on diffusion and permeability in UV-cured Polyacrylate-based networks for controlled release. Journal of Controlled Release, 2020, 327, 150-160.	4.8	12
1936	Hybrid Antimicrobial Hydrogel as Injectable Therapeutics for Oral Infection Ablation. Biomacromolecules, 2020, 21, 3945-3956.	2.6	49
1937	On an effective approach to improve the properties and the drug release of chitosan-based microparticles. International Journal of Biological Macromolecules, 2020, 163, 393-401.	3.6	11

#	Article	IF	CITATIONS
1938	Intravitreal hydrogels for sustained release of therapeutic proteins. Journal of Controlled Release, 2020, 326, 419-441.	4.8	76
1939	pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 712.	2.0	17
1940	Ion Exchange Controlled Drug Release from Polymerized Ionic Liquids. Macromolecular Bioscience, 2020, 20, e2000152.	2.1	17
1941	Biomaterial Based Strategies for Engineering New Lymphatic Vasculature. Advanced Healthcare Materials, 2020, 9, e2000895.	3.9	15
1942	Alginate-based hydrogel systems for drug releasing in wound healing. , 2020, , 323-358.		27
1943	Medical application of exopolymers produced by marine bacteria. Bulletin of the National Research Centre, 2020, 44, .	0.7	12
1944	Smart soft photonic dressing toward fast drug release and visualized self-monitoring. Journal of Colloid and Interface Science, 2020, 580, 681-689.	5.0	14
1945	Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .	1.2	40
1946	Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation. Macromolecular Bioscience, 2020, 20, 2000085.	2.1	14
1947	Hydrogel-based ocular drug delivery systems for hydrophobic drugs. European Journal of Pharmaceutical Sciences, 2020, 154, 105503.	1.9	53
1948	Fabrication of three-dimensional calcium alginate hydrogels using sacrificial templates of sugar. Journal of Bioscience and Bioengineering, 2020, 130, 539-544.	1.1	14
1949	β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 2020, 248, 116811.	5.1	35
1950	Topological adhesion II. Stretchable adhesion. Extreme Mechanics Letters, 2020, 40, 100891.	2.0	25
1951	The gamut of perspectives, challenges, and recent trends for <i>in situ</i> hydrogels: a smart ophthalmic drug delivery vehicle. Biomaterials Science, 2020, 8, 4665-4691.	2.6	15
1952	Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation. Polymers, 2020, 12, 1712.	2.0	13
1953	Design of Thermoresponsive Polyamine Cross-Linked Perfluoropolyether Hydrogels for Imaging and Delivery Applications. ACS Medicinal Chemistry Letters, 2020, 11, 2032-2040.	1.3	8
1954	Dynamic,3DSchiff base networks for medical applications. Journal of Applied Polymer Science, 2020, 137, 49756.	1.3	3
1955	Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 2020, 164, 4613-4627.	3.6	92

#	Article	IF	CITATIONS
1956	Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics, 2020, 12, 748.	2.0	25
1957	Manipulating the Deformation of Swelling Hydrogel Models by Microparticles. Multiscale Science and Engineering, 2020, 2, 107-113.	0.9	0
1958	Synthesis of polyacrylamide (PAM) beads in microreactors. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108105.	1.8	13
1959	Characterization of <i>N</i> -phenylmaleimide-terminated poly(ethylene glycol)s and their application to a tetra-arm poly(ethylene glycol) gel. Soft Matter, 2020, 16, 10869-10875.	1.2	8
1960	Synthesis of three-dimensional hydrogels based on poly(glycidyl methacrylate-alt-maleic anhydride): Characterization and study of furosemide drug release. Arabian Journal of Chemistry, 2020, 13, 8723-8733.	2.3	8
1961	Shear sensitive injectable hydrogels of cross-linked tragacanthic acid for ocular drug delivery: Rheological and biological evaluation. International Journal of Biological Macromolecules, 2020, 165, 2789-2804.	3.6	17
1962	Polyelectrolyte multilayers for drug delivery. , 2020, , 183-209.		4
1963	Effects of intraperitoneal injection of magnetic graphene oxide on the improvement of acute liver injury induced by CCl4. Biomaterials Research, 2020, 24, 14.	3.2	13
1964	Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 2020, 25, 3981.	1.7	246
1966	Comb Architecture to Control the Selective Diffusivity of a Double Network Hydrogel. ACS Applied Polymer Materials, 2020, 2, 5269-5277.	2.0	7
1967	Degradation-Dependent Protein Release from Enzyme Sensitive Injectable Glycol Chitosan Hydrogel. Tissue Engineering - Part A, 2021, 27, 867-880.	1.6	13
1968	Nanostructured Biomaterials for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 922.	2.0	72
1969	Histopathological Evaluation of Spinal Cord with Experimental Traumatic Injury Following Implantation of a Controlled Released Drug Delivery System of Chitosan Hydrogel Loaded with Selenium Nanoparticle. Biological Trace Element Research, 2021, 199, 2677-2686.	1.9	11
1970	Conducting polymer hydrogels for electrically responsive drug delivery. Journal of Controlled Release, 2020, 328, 192-209.	4.8	67
1971	Zero-order drug delivery: State of the art and future prospects. Journal of Controlled Release, 2020, 327, 834-856.	4.8	126
1972	Highâ€throughput, aseptic production of injectable <scp>Tetraâ€PEG</scp> hydrogel microspheres for delivery of releasable covalently bound drugs. Engineering Reports, 2020, 2, e12213.	0.9	7
1973	Malleable Hydrogel Embedded with Micellar Cargoâ€Expellers as a Prompt Transdermal Patch. Advanced Healthcare Materials, 2020, 9, e2000876.	3.9	13
1974	The application of three-dimensional cell culture in clinical medicine. Biotechnology Letters, 2020, 42, 2071-2082.	1.1	5
#	Article	IF	CITATIONS
------	--	------	-----------
1975	Hydrogel – based biopolymers for regenerative medicine applications: a critical review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 155-172.	1.8	19
1976	Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment. Drug Delivery and Translational Research, 2021, 11, 1288-1300.	3.0	26
1977	Controlling Helical Pitch of Chiral Supramolecular Nanofibers Composed of Two Amphiphiles. Bulletin of the Chemical Society of Japan, 2020, 93, 1150-1154.	2.0	7
1978	Reduction Triggered <i>In Situ</i> Polymerization in Living Mice. Journal of the American Chemical Society, 2020, 142, 15575-15584.	6.6	42
1979	Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter, 2020, 16, 10065-10095.	1.2	62
1980	Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004407.	7.8	142
1981	Fracture of Polymer Networks Containing Topological Defects. Macromolecules, 2020, 53, 7346-7355.	2.2	29
1982	3D Nanostructures for Tissue Engineering, Cancer Therapy, and Gene Delivery. Journal of Nanomaterials, 2020, 2020, 1-24.	1.5	45
1983	3-Dimensional membrane capsules: Synthesis modulations for the remediation of environmental pollutants – A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1092-1153.	6.6	6
1984	Application of Poly(N-isopropylacrylamide) As Thermosensitive Smart Materials. Journal of Physics: Conference Series, 2020, 1676, 012063.	0.3	12
1985	Photothermally Active Cryogel Devices for Effective Release of Antimicrobial Peptides: On-Demand Treatment of Infections. ACS Applied Materials & Interfaces, 2020, 12, 56805-56814.	4.0	22
1986	Antibacterial Properties and pH Sensitive Swelling of Insitu Formed Silver-Curcumin Nanocomposite Based Chitosan Hydrogel. Polymers, 2020, 12, 2451.	2.0	35
1987	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	23.0	299
1988	Degradation of methoxy-poly (ethylene glycol)-block-poly(α-carboxyl-ε-caprolactone)/magnetite nanocomposites inÂvitro polymer degradation and stability. Polymer Degradation and Stability, 2020, 177, 109191.	2.7	5
1989	Effects of the Starch Types and the Grafting Conditions on the In Vitro Mucoadhesiveness of the Starchâ€ <i>graft</i> â€Poly(Methacrylic Acid) Hydrogels. Starch/Staerke, 2020, 72, 1900266.	1.1	7
1990	Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 7536-7562.	3.2	293
1991	Double-network gels as polyelectrolyte gels with salt-insensitive swelling properties. Soft Matter, 2020, 16, 5487-5496.	1.2	11
1992	Simulation of interpenetrating networks microgel synthesis. Soft Matter, 2020, 16, 4858-4865.	1.2	7

#	Article	IF	CITATIONS
1993	Synthesis of Polymers Containing Potassium Acyltrifluoroborates (KATs) and Postâ€polymerization Ligation and Conjugation. Angewandte Chemie - International Edition, 2020, 59, 14656-14663.	7.2	18
1994	Sustained Drug-Releasing Systems Using Temperature-Responsive Injectable Polymers Containing Liposomes. ACS Symposium Series, 2020, , 35-45.	0.5	3
1995	Graphene oxide-incorporated hydrogels for biomedical applications. Polymer Journal, 2020, 52, 823-837.	1.3	78
1996	Exogenous Signaling Molecules Released from Aptamer-Functionalized Hydrogels Promote the Survival of Mesenchymal Stem Cell Spheroids. ACS Applied Materials & Interfaces, 2020, 12, 24599-24610.	4.0	15
1997	Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. Scientific Reports, 2020, 10, 7120.	1.6	15
1998	Niosomes: Do They Increase the Potency of Topical Natamycin Ketorolac Formula in Treating Aspergillus Keratitis? An Experimental Study. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 545-554.	0.6	2
1999	Nanocellulose and nanohydrogel matrices as sustainable biomass materials: structure, properties, present status, and future prospects in construction and other engineering. , 2020, , 177-195.		2
2000	Recent developments in nanocellulose and nanohydrogel matrices—towards stem cell research and development. , 2020, , 315-328.		2
2001	Biofunctional hydrogels based on host–guest interactions. Polymer Journal, 2020, 52, 839-859.	1.3	45
2002	Zinc Oxide Nanoparticles Functionalized on Hydrogel Grafted Silk Fibroin Fabrics as Efficient Composite Dressing. Biomolecules, 2020, 10, 710.	1.8	39
2003	The effect of print speed and material aging on the mechanical properties of a self-healing nanocomposite hydrogel. Additive Manufacturing, 2020, 35, 101253.	1.7	4
2004	Nanoparticle–hydrogel superstructures for biomedical applications. Journal of Controlled Release, 2020, 324, 505-521.	4.8	117
2005	Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. , 2020, , 617-649.		5
2006	Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment. Journal of Controlled Release, 2020, 324, 532-544.	4.8	17
2007	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
2008	A novel pH-sensitive and magnetic starch-based nanocomposite hydrogel as a controlled drug delivery system for wound healing. Polymer Degradation and Stability, 2020, 179, 109255.	2.7	41
2009	Mechanical versus calorimetric glass transition temperature in the diffusion of nicotinic acid from a condensed gelatin/glucose syrup system. Food Hydrocolloids, 2020, 109, 106046.	5.6	6
2010	Phosphonium versus Ammonium Compact Polyelectrolyte Complex Networks with Alginate—Comparing Their Properties and Cargo Encapsulation. Langmuir, 2020, 36, 8253-8264.	1.6	3

# 2011	ARTICLE <p>Healthcare Applications of pH-Sensitive Hydrogel-Based Devices: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 3887-3901.	IF 3.3	Citations
2012	Synthesis and Evaluation of a Thermoresponsive Degradable Chitosan-Grafted PNIPAAm Hydrogel as a "Smart―Gene Delivery System. Materials, 2020, 13, 2530.	1.3	22
2013	Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.	2.0	43
2014	Development of zinc-loaded nanoparticle hydrogel made from sugarcane bagasse for special medical application. Journal of Material Cycles and Waste Management, 2020, 22, 1723-1733.	1.6	15
2015	Starch as oral colon-specific nano- and microparticulate drug carriers. , 2020, , 287-330.		5
2016	Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. International Journal of Biological Macromolecules, 2020, 160, 795-805.	3.6	38
2017	Chitosan hydrogels for sustained drug delivery. Journal of Controlled Release, 2020, 326, 150-163.	4.8	239
2018	Thermosensitive Micellar Hydrogels as Vehicles to Deliver Drugs With Different Wettability. Frontiers in Bioengineering and Biotechnology, 2020, 8, 708.	2.0	20
2019	Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters, 2020, 39, 100813.	2.0	29
2020	Comparative study of robotic artificial actuators and biological muscle. Advances in Mechanical Engineering, 2020, 12, 168781402093340.	0.8	41
2021	Self healing hydrogels: A new paradigm immunoadjuvant for delivering peptide vaccine. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111171.	2.5	19
2022	Modification of relevant polymeric materials for medical applications and devices. Medical Devices & Sensors, 2020, 3, e10073.	2.7	4
2023	Some cetyltrimethylammonium bromide modified polysaccharide supports as sustained release systems for curcumin. International Journal of Biological Macromolecules, 2020, 154, 361-370.	3.6	24
2024	Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates. Materials Advances, 2020, 1, 34-44.	2.6	14
2025	Poly(ethylene glycol)â€interpenetrated genipinâ€crosslinked chitosan hydrogels: Structure, pH responsiveness, gelation kinetics, and rheology. Journal of Applied Polymer Science, 2020, 137, 49259.	1.3	19
2026	Temperature- and pH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Materials Science and Engineering C, 2020, 111, 110862.	3.8	129
2027	Hydrogel Biomaterials for Application in Ocular Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 228.	2.0	122
2028	Noble Metals and Soft Bio-Inspired Nanoparticles in Retinal Diseases Treatment: A Perspective. Cells, 2020, 9, 679.	1.8	34

#	Article	IF	CITATIONS
2029	Probing the microenvironment of polyacrylamide hydrogel matrix using turbidity and fluorescence recovery after photobleaching: One versus Two phases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124618.	2.3	7
2030	Developing Continuous Submicron-Scale Conductive Interpenetrating Hydrogel Network in Polyethylene Matrices through Controlled Crazing and Polymerization. Industrial & Engineering Chemistry Research, 2020, 59, 6609-6616.	1.8	2
2031	Magnetic proline-based ionic liquid surfactant as a nano-carrier for hydrophobic drug delivery. Journal of Materials Chemistry B, 2020, 8, 3050-3057.	2.9	30
2032	Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 69.	2.0	37
2033	A PEGDA/DNA Hybrid Hydrogel for Cell-Free Protein Synthesis. Frontiers in Chemistry, 2020, 8, 28.	1.8	26
2034	Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads. Journal of Applied Polymer Science, 2020, 137, 49177.	1.3	17
2035	Multi-stimuli responsive nanogel/hydrogel nanocomposites based on κ-carrageenan for prolonged release of levodopa as model drug. International Journal of Biological Macromolecules, 2020, 153, 180-189.	3.6	42
2036	Fabrication of Hydrogels via Host–Guest Polymers as Highly Efficient Organic Dye Adsorbents for Wastewater Treatment. ACS Omega, 2020, 5, 5470-5479.	1.6	20
2037	Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability. Polymer Chemistry, 2020, 11, 2339-2345.	1.9	24
2038	Designing a novel and versatile multi-layered nanofibrous structure loaded with MTX and 5-FU for the targeted delivery of anticancer drugs. Polymer Degradation and Stability, 2020, 179, 109275.	2.7	18
2039	In Situâ€Forming Glucoseâ€Responsive Hydrogel from Hyaluronic Acid Modified with a Boronic Acid Derivative. Macromolecular Chemistry and Physics, 2020, 221, 2000055.	1.1	12
2040	Thiolated cyclodextrins: New perspectives for old excipients. Coordination Chemistry Reviews, 2020, 420, 213433.	9.5	22
2041	Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 2020, 34, 100914.	6.2	125
2042	"Dumb―pH-Independent and Biocompatible Hydrogels Formed by Copolymers of Long-Chain Alkyl Glycidyl Ethers and Ethylene Oxide. Biomacromolecules, 2020, 21, 3152-3162.	2.6	8
2043	Localised delivery of quercetin by thermo-sensitive PLGA-PEG-PLGA hydrogels for the treatment of brachial plexus avulsion. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1010-1021.	1.9	18
2044	Intelligent drug delivery systems. , 2020, , 163-184.		0
2045	A dual pH and redox-responsive Ag/AgO/carboxymethyl chitosan composite hydrogel for controlled dual drug delivery. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1706-1721.	1.9	8
2046	Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 2020, 420, 213432.	9.5	116

ARTICLE IF CITATIONS Controlled release of anti-cancer drug from the shell and hollow cavities of poly(N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation 2047 20 2.6 chain transfer polymerization. European Polymer Journal, 2020, 135, 109877. Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020, 2048 2.2 49 53, 5116-5126. Evaluation of the thermal antinociceptive effects of subcutaneous administration of butorphanol tartrate or butorphanol tartrate in a sustained-release poloxamer 407 gel formulation to 2049 0.33 orange-winged Amazon parrots (Amazona amazonica). American Journal of Veterinary Research, 2020, 81, 543-550 lodine ions sensing based on fluorescence quenching method and hydrogel fiber doped with 2050 fluorescein. Optics Communications, 2020, 475, 126225. Citric acid crosslinked natural bi-polymer-based composite hydrogels: Effect of polymer ratio and 2051 2.0 27 beta-cyclodextrin on hydrogel microstructure. Reactive and Functional Polymers, 2020, 154, 104682. Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, 2020, , . 0.8 Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)- microparticles via membrane 2053 emulsification: Influence of process and formulation parameters on structural and functional 0.9 15 properties. Materials Today Communications, 2020, 24, 100967. CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. 2054 4.6 26 Theranostics, 2020, 10, 2215-2228. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through 2055 3.6 75 ocular route. International Journal of Biological Macromolecules, 2020, 150, 559-572. Interpenetrating Polymer Network: Biomedical Applications., 2020, , . Material, Immunological, and Practical Perspectives on Eye Drop Formulation. Advanced Functional 2057 7.8 16 Materials, 2020, 30, 1908476. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert 2058 Opinion on Drug Delivery, 2020, 17, 495-509. Controlled Release of 5â€Fluorouracil from Alginate Hydrogels by Cold HMDSOâ^ Plasma Surface 2059 0.7 13 Engineering. ChemistrySelect, 2020, 5, 2168-2178. Intranasal delivery system of bacterial antigen using thermosensitive hydrogels based on a Pluronic-Gantrez conjugate. International Journal of Pharmaceutics, 2020, 579, 119154. 2060 2.6 Thermoresponsive poly(N-isopropylacrylamide) copolymer networks for galantamine hydrobromide 2061 7 1.0 delivery. Colloid and Polymer Science, 2020, 298, 377-384. Investigations of the Influences of Processing Conditions on the Properties of Spray Dried Chitosan-Tripolyphosphate Particles loaded with Theophylline. Scientific Reports, 2020, 10, 1155. 2062 Designer DNA–silica/carbon nanotube nanocomposites for traceable and targeted drug delivery. 2063 2.9 35 Journal of Materials Chemistry B, 2020, 8, 2250-2255. Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. International Journal of Biological 2064 Macromolecules, 2020, 153, 364-372.

#	Article	IF	CITATIONS
2065	Mitigation of shock loading on structures using aqueous methylcellulose solution. International Journal of Impact Engineering, 2020, 140, 103547.	2.4	4
2066	Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701.	7.3	113
2067	Recent Advances in Mechano-Responsive Hydrogels for Biomedical Applications. ACS Applied Polymer Materials, 2020, 2, 1092-1107.	2.0	59
2068	An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Molecules, 2020, 25, 756.	1.7	45
2069	Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chemical Society Reviews, 2020, 49, 433-464.	18.7	517
2070	In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. International Journal of Biological Macromolecules, 2020, 148, 501-509.	3.6	144
2071	Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. Journal of Drug Delivery Science and Technology, 2020, 56, 101530.	1.4	54
2072	Selfâ€healing injectable gelatin hydrogels for localized therapeutic cell delivery. Journal of Biomedical Materials Research - Part A, 2020, 108, 1112-1121.	2.1	55
2073	Engineered Dynamic Boronate Ester-Mediated Self-Healable Biocompatible G-Quadruplex Hydrogels for Sustained Release of Vitamins. Langmuir, 2020, 36, 1574-1584.	1.6	42
2074	Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules, 2020, 25, 516.	1.7	64
2075	Strategies toward development of biodegradable hydrogels for biomedical applications. Polymer-Plastics Technology and Materials, 2020, 59, 911-927.	0.6	10
2076	A review on grafting of hydroxyethylcellulose for versatile applications. International Journal of Biological Macromolecules, 2020, 150, 289-303.	3.6	33
2077	Thermosensitive Hydrogel Based on Poly(2-Ethyl-2-Oxazoline)–Poly(D,L-Lactide)–Poly(2-Ethyl-2-Oxazoline) for Sustained Salmon Calcitonin Delivery. AAPS PharmSciTech, 2020, 21, 71.	1.5	10
2078	Prolonged Local In Vivo Delivery of Stimuliâ€Responsive Nanogels That Rapidly Release Doxorubicin in Tripleâ€Negative Breast Cancer Cells. Advanced Healthcare Materials, 2020, 9, e1901101.	3.9	36
2079	Conversion of an Injectable MMP-Degradable Hydrogel into Core-Cross-Linked Micelles. Biomacromolecules, 2020, 21, 1739-1751.	2.6	16
2080	Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules, 2020, 53, 682-692.	2.2	20
2081	Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. Tissue Engineering - Part B: Reviews, 2020, 26, 230-248.	2.5	153
2082	A novel dual action monolithic thermosetting hydrogel loaded with lidocaine and metronidazole as a potential treatment for alveolar osteitis. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 85-94.	2.0	8

#	Article	IF	CITATIONS
2083	Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogelâ€Based Bioinks. Advanced Healthcare Materials, 2020, 9, e1901648.	3.9	190
2084	How to Design Both Mechanically Strong and Self-Healable Hydrogels?. Advances in Polymer Science, 2020, , 21-62.	0.4	8
2085	New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 2020, 25, 1539.	1.7	161
2086	Research progress in bio-based self-healing materials. European Polymer Journal, 2020, 129, 109651.	2.6	71
2087	Hyaluronic acid microneedlesâ€laden collagen cryogel plugs for ocular drug delivery. Journal of Applied Polymer Science, 2020, 137, 49285.	1.3	23
2088	Drug Release from Polymer Thin Films and Gel Pellets: Insights from Programmed Microplate Electroanalysis. ChemPlusChem, 2020, 85, 627-633.	1.3	4
2089	Encapsulation of diagnostic dyes in the polysaccharide matrix modified by carbon nanotubes. Russian Chemical Bulletin, 2020, 69, 590-595.	0.4	14
2090	A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone. Biomedical Engineering Letters, 2020, 10, 309-319.	2.1	53
2091	Formulation development and characterization. , 2020, , 43-70.		0
2092	Structuring hydrophobic domains in Poly(N-isopropylacrylamide-co-Methacrylic acid) hydrogels. European Polymer Journal, 2020, 131, 109695.	2.6	3
2093	Commercial hydrogels for biomedical applications. Heliyon, 2020, 6, e03719.	1.4	266
2094	Composite hydrogels reinforced by cellulose-based supramolecular filler. Polymer Degradation and Stability, 2020, 177, 109157.	2.7	22
2095	Configuration ontrolled Crystal and/or Gel Formation of Protected d â€Glucosamines Supported by Promiscuous Interaction Surfaces and a Conformationally Heterogeneous Solution State. Chemistry - A European Journal, 2020, 26, 11643-11655.	1.7	3
2096	Hyaluronic acid—Based wound dressings: A review. Carbohydrate Polymers, 2020, 241, 116364.	5.1	387
2097	Thermodynamic framework for switching the lower critical solution temperature of thermo-sensitive particle gels in aqueous solvent. Polymer, 2020, 195, 122428.	1.8	17
2098	Injectable and Self-Healing Nanocomposite Hydrogels with Ultrasensitive pH-Responsiveness and Tunable Mechanical Properties: Implications for Controlled Drug Delivery. Biomacromolecules, 2020, 21, 2409-2420.	2.6	107
2099	Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement. Polymers, 2020, 12, 799.	2.0	3
2100	An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 574-584.	1.8	52

		ION REPORT	
#	Article	IF	CITATIONS
2101	Synthesis and characterization of carbomer-based hydrogels for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 743-753.	1.8	5
2102	Hesperidin promotes peripheral nerve regeneration based on tissue engineering strategy using alginate/chitosan hydrogel: <i>inÂvitro</i> and <i>inÂvivo</i> study. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 299-308.	1.8	20
2103	Highly stretchable, smooth, and biodegradable hydrogel films based on chitosan as safety food packaging. Polymers and Polymer Composites, 2021, 29, 563-573.	1.0	10
2104	Graphene-laden hydrogels: A strategy for thermally triggered drug delivery. Materials Science and Engineering C, 2021, 118, 111353.	3.8	22
2105	Injectable <i>in-situ</i> gel depot system for targeted delivery of biologics to the retina. Journal of Drug Targeting, 2021, 29, 46-59.	2.1	7
2106	Experimental models of glaucoma filtration surgery. Acta Ophthalmologica, 2021, 99, 9-15.	0.6	9
2107	A nonlinear visco-poroelasticity model for transversely isotropic gels. Meccanica, 2021, 56, 1483-1504.	1.2	5
2108	On-demand release of CO2 from photothermal hydrogels for accelerating skin wound healing. Chemical Engineering Journal, 2021, 403, 126353.	6.6	38
2109	A novel Î ³ -PGA composite gellan membrane containing glycerol for guided bone regeneration. Materials Science and Engineering C, 2021, 118, 111404.	3.8	14
2110	The intrasulcular application effect of bisphosphonate hydrogel toward osteoclast activity and relapse movement. Saudi Dental Journal, 2021, 33, 292-298.	0.5	8
2111	Nanoporous silicon microparticles embedded into oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for enhanced controlled drug delivery. Microporous and Mesoporous Materials, 2021, 310, 110634.	2.2	14
2112	Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials, 2021, 266, 120477.	5.7	44
2113	Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case. Journal of Drug Delivery Science and Technology, 2021, 61, 101886.	1.4	9
2114	Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1669.	3.3	29
2115	3D integration of pH-cleavable drug-hydrogel conjugates on magnetically driven smart microtransporters. Materials and Design, 2021, 197, 109212.	3.3	14
2116	Patient-Friendly, Olfactory-Targeted, Stimuli-Responsive Hydrogels for Cerebral Degenerative Disorders Ensured > 400% Brain Targeting Efficiency in Rats. AAPS PharmSciTech, 2021, 22, 6.	1.5	10
2117	Hydrogelâ€Forming Microneedles: Current Advancements and Future Trends. Macromolecular Bioscience, 2021, 21, e2000307.	2.1	160
2118	Hydrogelâ€Based Diffractive Optical Elements (hDOEs) Using Rapid Digital Photopatterning. Advanced Optical Materials, 2021, 9, 2001217.	3.6	34

#	Article	IF	CITATIONS
2119	Effect of network connectivity on the mechanical and transport properties of block copolymer gels. Journal of Polymer Science, 2021, 59, 34-42.	2.0	7
2121	pH-responsive injectable polysaccharide hydrogels with self-healing, enhanced mechanical properties based on POSS. Reactive and Functional Polymers, 2021, 158, 104773.	2.0	14
2122	Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers. Materials Science and Engineering C, 2021, 118, 111467.	3.8	15
2123	Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomaterialia, 2021, 121, 250-262.	4.1	25
2124	Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Advances in Colloid and Interface Science, 2021, 288, 102316.	7.0	46
2125	A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEC-based hydrogels for antibacterial and catalytical applications. Polymer Testing, 2021, 101, 106909.	2.3	10
2126	Preparation of cellulose-based hydrogel: a review. Journal of Materials Research and Technology, 2021, 10, 935-952.	2.6	243
2127	Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 2021, 138, 50376.	1.3	187
2128	Polymeric biomaterials inspired by marine mussel adhesive proteins. Reactive and Functional Polymers, 2021, 159, 104802.	2.0	12
2129	Bioinspired double network hydrogels: from covalent double network hydrogels <i>via</i> hybrid double network hydrogels to physical double network hydrogels. Materials Horizons, 2021, 8, 1173-1188.	6.4	230
2130	Nanogel Encapsulated Hydrogels As Advanced Wound Dressings for the Controlled Delivery of Antibiotics. Advanced Functional Materials, 2021, 31, 2006453.	7.8	58
2131	Nanocellulose in biomedical and biosensing applications: A review. International Journal of Biological Macromolecules, 2021, 166, 587-600.	3.6	62
2132	Engineering Biofunctional Enzymeâ€Mimics for Catalytic Therapeutics and Diagnostics. Advanced Functional Materials, 2021, 31, 2007475.	7.8	47
2133	Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystals for local cisplatin delivery. Carbohydrate Polymers, 2021, 255, 117332.	5.1	36
2134	Ocular films versus film-forming liquid systems for enhanced ocular drug delivery. Drug Delivery and Translational Research, 2021, 11, 1084-1095.	3.0	13
2135	Synthesis of new bioâ€based hydrogels derived from bile acids by freeâ€radical photoâ€polymerization. Polymers for Advanced Technologies, 2021, 32, 220-227.	1.6	11
2136	Stimuliâ€Sensitive Selfâ€Assembled Tubules Based on Lysineâ€Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry - A European Journal, 2021, 27, 692-704.	1.7	3
2137	More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomaterials Science, 2021, 9, 391-405.	2.6	19

#	Article	IF	CITATIONS
2138	Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. Regenerative Engineering and Translational Medicine, 2021, 7, 91-114.	1.6	51
2139	Low-pressure nitrogen and ammonia plasma treatment on carboxymethyl guar gum/PVA hydrogels: impact on drug delivery, biocompatibility and biodegradability. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 75-89.	1.8	13
2140	Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model. Drug Delivery, 2021, 28, 520-529.	2.5	6
2141	Emerging Nano-Based Drug Delivery Approach for Cancer Therapeutics. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 271-293.	0.3	2
2142	A comparative study of tough hydrogen bonding dissipating hydrogels made with different network structures. Nanoscale Advances, 2021, 3, 2934-2947.	2.2	14
2143	Biopolymeric hydrogels prepared via click chemistry as carriers of therapeutic modalities. , 2021, , 463-499.		0
2144	Soft microrobotics. Advances in Chemical Engineering, 2021, 57, 1-44.	0.5	3
2145	Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. Journal of Materials Chemistry B, 2021, 9, 7100-7116.	2.9	21
2146	Bioplastics Used for Controlled Drug Delivery. , 2021, , .		0
2147	Hybrid Nanohydrogels: Design and Applications. Gels Horizons: From Science To Smart Materials, 2021, , 135-150.	0.3	1
2148	Multifunctional materials based on smart hydrogels for biomedical and 4D applications. , 2021, , 407-467.		2
2149	Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles. , 2021, , 297-339.		2
2150	Constitutive modeling of strain-dependent bond breaking and healing kinetics of chemical polyampholyte (PA) gel. Soft Matter, 2021, 17, 4161-4169.	1.2	6
2151	Hydrogel Composite Films for Wound Healing. , 2021, , 887-904.		2
2152	Present and future prospective of lignin-based materials in biomedical fields. , 2021, , 395-424.		2
2153	Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete <i>inÂvitro</i> and <i>inÂvivo</i> toxicity analyses. Drug Delivery, 2021, 28, 1080-1092.	2.5	9
2154	Modified Biochanin A Release from Dual pH- and Thermo-Responsive Copolymer Hydrogels. Polymers, 2021, 13, 426.	2.0	8
2155	Encountering the Survival Strategies Using Various Nano Assemblages. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 159-187.	0.3	0

ARTICLE IF CITATIONS Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in 2156 1.9 43 Medicine. Nanomaterials, 2021, 11, 278. Hydrogels based on gum ghatti., 2021, , 327-356. Processing strategies of chitosan-built nano-hydrogel as smart drug carriers., 2021, , 467-490. 2158 1 Synthesis and characterization of photopolymerizable hydrogels based on poly (ethylene glycol) for biomedical applications. Journal of Applied Polymer Science, 2021, 138, 50489. Effect of Dehydrothermal Treatment on the Mechanical Properties and Biocompatibility of Plaster of 2160 Paris–CaCO3 Hydrogel Loaded With Cinnamaldehyde for Biomedical Purposes. Natural Product 0.2 0 Communications, 2021, 16, 1934578X2098460. Optimized ciprofloxacin release from citric acid crosslinked starch-PVA hydrogel film: modelling 1.2 with mixture design. Journal of Polymer Research, 2021, 28, 1. Biodegradable hydrogels., 2021,, 395-419. 2162 11 Green Hydrogels. Materials Horizons, 2021, , 225-249. 0.3 2163 Graphitic Carbon Nitride-polymer Hybrids: A Winâ€"Win Combination with Advanced Properties for 2164 0.2 0 Different Applications. RSC Nanoscience and Nanotechnology, 2021, , 174-220. A review of the properties and applications of bioadhesive hydrogels. Polymer Chemistry, 2021, 12, 1.9 3721-3739. Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2022, , 2166 0 128-157. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Critical 2167 5.4 Reviews in Food Science and Nutrition, 2022, 62, 3817-3832. Biomaterials and Its Advances for Delivering Anticancer Drugs. Gels Horizons: From Science To Smart 2168 0.3 0 Materials, 2021, , 21-56. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical 2169 18.7 23 and other applications. Chemical Society Reviews, 2021, 50, 7779-7819. <i>In vitro</i> study of alginate–gelatin scaffolds incorporated with silica NPs as injectable, 2170 29 1.7 biodegradable hydrogels. RSC Advances, 2021, 11, 16688-16697. A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel 2171 1.9 cross-linker. Polymer Chemistry, 2021, 12, 2404-2420. Load-bearing hydrogels ionically reinforced through competitive ligand exchanges. Biomaterials 2172 2.6 4 Science, 2021, 9, 6753-6762. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials 2173 Science and Engineering, 2021, , 211-252.

		CITATION RE	EPORT	
#	ARTICLE		IF	Citations
2174	Effect of Alkyl Chain Length on Adsorption and Release of Hydrophobic Drug to/from Hydrophobically-modified Gelatin Hydrogel. MATEC Web of Conferences, 2021, 333, 110)08.	0.1	1
2175	Emerging Trends in the Synthesis, Properties and Applications of Nanogels Derived from Collagen and Gelatin. Gels Horizons: From Science To Smart Materials, 2021, , 59-79.	Pullulan,	0.3	0
2176	Self-Healing Hydrogels for Analyte Sensing. , 2021, , .			0
2177	3D bioprinting. , 2021, , 599-633.			5
2178	Potential Advanced Drug Delivery Systems Based on Hydrogels in 3D Printing Technology Treatment. Materials Forming, Machining and Tribology, 2021, , 323-348.	/ for Cancer	0.7	0
2179	Applications of alginate-based bionanocomposites in drug delivery. , 2021, , 399-416.			3
2180	Polysaccharide-based polymeric gels as drug delivery vehicles. , 2021, , 283-325.			2
2181	Novel Hydrogels of Chitosan and Poly(vinyl alcohol) Reinforced with Inorganic Particles o Glass. Polymers, 2021, 13, 691.	f Bioactive	2.0	14
2182	Challenges of Dissolution Methods Development for Soft Gelatin Capsules. Pharmaceutic 214.	xs, 2021, 13,	2.0	20
2183	Review on the advancements of magnetic gels: towards multifunctional magnetic liposon composites for biomedical applications. Advances in Colloid and Interface Science, 2021,	ne-hydrogel 288, 102351.	7.0	35
2184	A poroelastic master curve for timeâ€dependent and multiscale mechanics of hydrogels. Materials Research, 2021, 36, 2582-2590.	Journal of	1.2	8
2185	RSM-CCD optimized microwave assisted synthesis of chitosan and sodium alginate based nanocomposite containing inclusion complexes of Î ² -cyclodextrin and amlodipine besylat sustained drug delivery systems. Journal of Drug Delivery Science and Technology, 2021,] e for 61, 102325.	1.4	39
2186	Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends Drug Delivery and Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 202	in Anticancer 21, 9, 630943.	2.0	63
2187	Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond fro Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer. Macromolecular Resea 29, 140-148.	m arch, 2021,	1.0	8
2188	Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43, 101	182.	2.0	8
2189	Wielding the Doubleâ€Edged Sword of Inflammation: Building Biomaterialâ€Based Strate Immunomodulation in Ischemic Stroke Treatment. Advanced Functional Materials, 2021,	egies for 31, 2010674.	7.8	10
2190	Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Materials (Bristol), 2021, 16, 022004.	ical	1.7	37
2191	Cyclic Thiosulfinates as a Novel Class of Disulfide Cleavable Cross-Linkers for Rapid Hydro Synthesis. Bioconjugate Chemistry, 2021, 32, 584-594.	gel	1.8	10

#	Article	IF	CITATIONS
2192	Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release, 2021, 330, 470-482.	4.8	90
2193	Structural characterization and developability assessment of sustained release hydrogels for rapid implementation during preclinical studies. European Journal of Pharmaceutical Sciences, 2021, 158, 105689.	1.9	8
2194	Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano, 2021, 15, 3900-3926.	7.3	28
2195	Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Delivery and Translational Research, 2021, 11, 1634-1654.	3.0	33
2196	Drug penetration in pediatric brain tumors: Challenges and opportunities. Pediatric Blood and Cancer, 2021, 68, e28983.	0.8	10
2197	Physicochemical modification of hydroxylated polymers to develop thermosensitive double network hydrogels. Journal of Applied Polymer Science, 2021, 138, 50778.	1.3	2
2198	A freeze-thawing method applied to the fabrication of 3-d curdlan/polyvinyl alcohol hydrogels as scaffolds for cell culture. International Journal of Biological Macromolecules, 2021, 174, 101-109.	3.6	26
2199	Nanoindentation for Monitoring the Time-Variant Mechanical Strength of Drug-Loaded Collagen Hydrogel Regulated by Hydroxyapatite Nanoparticles. ACS Omega, 2021, 6, 9269-9278.	1.6	12
2200	Recent Advances in Fiber–Hydrogel Composites for Wound Healing and Drug Delivery Systems. Antibiotics, 2021, 10, 248.	1.5	33
2201	Development of a Mechanically Strong Nondegradable Protein Hydrogel with a Spongeâ€Like Morphology. Macromolecular Bioscience, 2021, 21, e2000396.	2.1	9
2202	Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels. European Polymer Journal, 2021, 147, 110306.	2.6	16
2203	Polymer-matrix stabilized metal nanoparticles: Synthesis, characterizations and insight into molecular interactions between metal ions, atoms and polymer moieties. Journal of Molecular Liquids, 2021, 325, 115135.	2.3	17
2204	Research on Preparation of 5-ASA Colon-Specific Hydrogel Delivery System without Crosslinking Agent by Mechanochemical Method. Pharmaceutical Research, 2021, 38, 693-706.	1.7	11
2205	Etodolac nanosuspension based gel for enhanced dermal delivery: <i>inÂvitro</i> and <i>inÂvivo</i> evaluation. Journal of Microencapsulation, 2021, 38, 218-232.	1.2	11
2206	Poly(Vinyl Alcohol) Cryogel Membranes Loaded with Resveratrol as Potential Active Wound Dressings. AAPS PharmSciTech, 2021, 22, 109.	1.5	18
2207	Self-assembling micellar system based on Pluronic and pyrazole-dithiocarbazate-conjugate stimulates production of nitric oxide from macrophages. Colloids and Interface Science Communications, 2021, 41, 100378.	2.0	5
2208	Injectable DMEM-induced phenylboronic acid-modified hyaluronic acid self-crosslinking hydrogel for potential applications in tissue repair. Carbohydrate Polymers, 2021, 258, 117663.	5.1	25
2209	Experimental Verification of the Balance between Elastic Pressure and Ionic Osmotic Pressure of Highly Swollen Charged Gels. Gels, 2021, 7, 39.	2.1	6

	CITA	tion Report	
#	ARTICLE Kinetic Pelease Studies of Antibiotic Patches for Local Transdermal Delivery Pharmaceutics 2021, 13	IF	Citations
2210	613.	2.0	32
2211	Polyphenols against infectious diseases: Controlled release nano-formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 161, 66-79.	2.0	17
2212	Integrin receptor mediated pH-responsive nano-hydrogel based on histidine-modified poly(aminoethyl) Tj Technology, 2021, 62, 102402.	i ETQq0 0 0 rgBT /0 1.4	Overlock 10 17
2213	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
2214	Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100012.	3.9	47
2215	Strontium ranelate-laden near-infrared photothermal-inspired methylcellulose hydrogel for arthritis treatment. Materials Science and Engineering C, 2021, 123, 111980.	3.8	25
2216	The effect of ion pairs on coacervate-driven self-assembly of block polyelectrolytes. Journal of Chemical Physics, 2021, 154, 144903.	1.2	5
2217	A one-pot synthesis of thermosensitive PNIPAAM interpenetration polymer networks(IPN) hydrogels. Jcis Open, 2021, 1, 100002.	1.5	5
2218	Ultralight and Mechanically Robust Fibrous Sponges Tailored by Semi-Interpenetrating Polymer Networks for Warmth Retention. ACS Applied Materials & Interfaces, 2021, 13, 18165-18174.	4.0	19
2219	Targeting drug delivery with light: A highly focused approach. Advanced Drug Delivery Reviews, 2021, 171, 94-107.	6.6	90
2220	Conductive GelMA–Collagen–AgNW Blended Hydrogel for Smart Actuator. Polymers, 2021, 13, 121	7. 2.0	12
2221	Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-18.	1.8	3
2222	Development of a Cleavable Biotinâ€Drug Conjugate Hydrogelator for the Controlled and Dual Delivery of Anticancer Drugs. ChemistrySelect, 2021, 6, 3256-3261.	0.7	2
2223	Recent Advances in Design Strategies for Tough and Stretchable Hydrogels. ChemPlusChem, 2021, 86, 601-611.	1.3	17
2224	Facile synthesis and application of aluminum oxide nanoparticle based biodegradable film. Polymer Composites, 2021, 42, 3899-3910.	2.3	4
2225	A rechargeable drug delivery system based on <scp>pNIPAM</scp> hydrogel for the local release of curcumin. Journal of Applied Polymer Science, 2021, 138, 51167.	1.3	23
2226	Hydrogels as potential drug-delivery systems: network design and applications. Therapeutic Delivery, 2021, 12, 375-396.	1.2	35
2227	Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication, 2021, 13, 035044.	3.7	13

#	Article	IF	CITATIONS
2228	Injectability of Biosynthetic Hydrogels: Consideration for Minimally Invasive Surgical Procedures and 3D Bioprinting. Advanced Functional Materials, 2021, 31, 2100628.	7.8	24
2229	Smart and Functionalized Development of Nucleic Acidâ€Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. Advanced Science, 2021, 8, 2100216.	5.6	38
2230	Assessing monocyte phenotype in poly(γ-glutamic acid) hydrogels formed by orthogonal thiol–norbornene chemistry. Biomedical Materials (Bristol), 2021, 16, 045027.	1.7	5
2231	2â€Hydroxyethyl Methacrylate Hydrogels for Local Drug Delivery: Study of Topotecan and Vincristine Sorption/Desorption Kinetics and Polymerâ€Drug Interaction by ATRâ€FTIR Spectroscopy. Macromolecular Chemistry and Physics, 2021, 222, 2100086.	1.1	13
2232	Hydrogels: A Promising Vehicle for the Topical Management of Atopic Dermatitis. Advanced Therapeutics, 2021, 4, 2100028.	1.6	12
2233	In Vitro Bioaccessibility Assessment as a Tool to Predict the Toxicity of Bioremediation Products. IOP Conference Series: Earth and Environmental Science, 2021, 761, 012027.	0.2	2
2234	Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination. ACS Applied Materials & Interfaces, 2021, 13, 25663-25673.	4.0	21
2235	Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 688477.	2.0	29
2236	Native Spider Silk-Based Antimicrobial Hydrogels for Biomedical Applications. Polymers, 2021, 13, 1796.	2.0	9
2237	Microfabrication of cellulose nanofiber-reinforced hydrogel by multiphoton polymerization. Scientific Reports, 2021, 11, 10892.	1.6	3
2238	Tunable macroporous D-galactose based hydrogels for controlled release of a hydrophilic drug. European Polymer Journal, 2021, 150, 110409.	2.6	18
2239	Hydrogels in the treatment of rheumatoid arthritis: drug delivery systems and artificial matrices for dynamic in vitro models. Journal of Materials Science: Materials in Medicine, 2021, 32, 74.	1.7	20
2240	Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Advances in Colloid and Interface Science, 2021, 292, 102408.	7.0	22
2241	Oxygen releasing hydrogels for beta cell assisted therapy. International Journal of Pharmaceutics, 2021, 602, 120595.	2.6	9
2242	Preparation and In Vitro Evaluation of Aspartic/Alginic Acid Based Semi-Interpenetrating Network Hydrogels for Controlled Release of Ibuprofen. Gels, 2021, 7, 68.	2.1	18
2243	Synthesis of carboxymethyl Xanthan/ double-walled carbon nanotube hybrid hydrogel nanocomposite for transdermal release of drug. Soft Materials, 0, , 1-15.	0.8	4
2244	A Review of Design and Fabrication Methods for Nanoparticle Network Hydrogels for Biomedical, Environmental, and Industrial Applications. Advanced Functional Materials, 2021, 31, 2102355.	7.8	46
2245	An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. Journal of Polymers and the Environment, 2022, 30, 19-50.	2.4	58

#	Article	IF	CITATIONS
2246	Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. Polysaccharides, 2021, 2, 519-537.	2.1	8
2247	Formulation of Novel Wound Healing Hydrogel Using Extracts of Padina Tetrastromatica and Determining its Antibacterial Activity against Wound Pathogens. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2021, 23, 966-982.	0.1	0
2248	Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials, 2021, 11, 1656.	1.9	27
2249	Design and Use of a Thermogelling Methylcellulose Nanoemulsion to Formulate Nanocrystalline Oral Dosage Forms. Advanced Materials, 2021, 33, e2008618.	11.1	11
2250	Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers, 2021, 13, 2086.	2.0	64
2251	Permeation of polyethylene glycols across the tympanic membrane. Giant, 2021, 6, 100057.	2.5	4
2252	Development of cress seed gum hydrogel and investigation of its potential application in the delivery of curcumin. Journal of the Science of Food and Agriculture, 2021, 101, 6505-6513.	1.7	26
2253	Ultrasound-assisted synthesis of MIL-88(Fe) coordinated to carboxymethyl cellulose fibers: A safe carrier for highly sustained release of tetracycline. International Journal of Biological Macromolecules, 2021, 181, 937-944.	3.6	42
2254	Oxi-HA/ADH Hydrogels: A Novel Approach in Tissue Engineering and Regenerative Medicine. Polysaccharides, 2021, 2, 477-496.	2.1	7
2255	On shockwave propagation and attenuation in poly(ethylene glycol) diacrylate hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104423.	1.5	3
2256	Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomaterials Science and Engineering, 2021, 7, 4102-4127.	2.6	64
2257	Alginate hydrogels functionalized with βâ€cyclodextrin as a local paclitaxel delivery system. Journal of Biomedical Materials Research - Part A, 2021, 109, 2625-2639.	2.1	18
2258	Engineered nanocellulose-based hydrogels for smart drug delivery applications. International Journal of Biological Macromolecules, 2021, 181, 275-290.	3.6	55
2259	Tailoring Therapeutic Responses via Engineering Microenvironments with a Novel Synthetic Fluid Gel. Advanced Healthcare Materials, 2021, 10, 2100622.	3.9	3
2260	Protein-Based Nanohydrogels for Bioactive Delivery. Frontiers in Chemistry, 2021, 9, 573748.	1.8	32
2261	Preparation, Properties and Cell Biocompatibility of Room Temperature LCST-Hydrogels Based on Thermoresponsive PEO Stars. Gels, 2021, 7, 84.	2.1	2
2262	A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. International Journal of Biological Macromolecules, 2021, 182, 1179-1191.	3.6	27
2263	Cryogel biomaterials for neuroscience applications. Neurochemistry International, 2021, 147, 105012.	1.9	24

#	Article	IF	CITATIONS
2264	Salinity durable self-healing hydrogels as functional biomimetic systems based on the intercalation of polymer ions into mica. Polymer, 2021, 228, 123870.	1.8	2
2265	Drug delivery to the pediatric upper airway. Advanced Drug Delivery Reviews, 2021, 174, 168-189.	6.6	2
2266	Magnetic-responsive hydrogels: From strategic design to biomedical applications. Journal of Controlled Release, 2021, 335, 541-556.	4.8	72
2267	Microfluidic fabrication of imageable and resorbable polyethylene glycol microspheres for catheter embolization. Journal of Biomedical Materials Research - Part A, 2022, 110, 131-142.	2.1	5
2268	Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules, 2021, 54, 7125-7133.	2.2	12
2269	Effects of synthesis-solvent polarity on the physicochemical and rheological properties of poly(N-isopropylacrylamide) (PNIPAm) hydrogels. Journal of Materials Research and Technology, 2021, 13, 769-786.	2.6	14
2270	Polysaccharide-Peptides-Based Microgels: Characterization, In Vitro Digestibility, and Rheological Behavior of their Suspensions. Food Biophysics, 2021, 16, 440-450.	1.4	3
2271	A Simple Way to Synthesize a Protective "Skin―around Any Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 37645-37654.	4.0	18
2272	Locust bean gumâ€polyvinyl alcohol hydrogels: Synthesis, characterization, swelling behaviors, and mathematical models. Journal of Applied Polymer Science, 2022, 139, 51498.	1.3	10
2273	Bioactive Films from Willow Bark Extract and Nanocellulose Double Network Hydrogels. Frontiers in Chemical Engineering, 2021, 3, .	1.3	7
2274	Hydrogel foams from liquid foam templates: Properties and optimisation. Advances in Colloid and Interface Science, 2021, 294, 102478.	7.0	24
2275	Bioactive Hydrogels: Design and Characterization of Cellulose-Derived Injectable Composites. Materials, 2021, 14, 4511.	1.3	7
2276	Anticancer Effect of Alginate-chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Current Drug Delivery, 2022, 19, 600-613.	0.8	15
2277	Glassy Polymers—Diffusion, Sorption, Ageing and Applications. Coatings, 2021, 11, 1049.	1.2	12
2278	Extended-release of therapeutic microRNA via a host-guest supramolecular hydrogel to locally alleviate renal interstitial fibrosis. Biomaterials, 2021, 275, 120902.	5.7	13
2279	Transpiration through hydrogels. Journal of Fluid Mechanics, 2021, 925, .	1.4	9
2280	Evaluating Release Kinetics from Alginate Beads Coated with Polyelectrolyte Layers for Sustained Drug Delivery. ACS Applied Bio Materials, 2021, 4, 6719-6731.	2.3	17
2281	Molecular Descriptor Analysis of Certain Isomeric Natural Polymers. Journal of Chemistry, 2021, 2021, 1-26.	0.9	4

#	Article	IF	CITATIONS
2282	Opportunities and challenges of hydrogel microspheres for tendon–bone healing after anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 289-301.	1.6	9
2283	Fabrication and Characterization of Porous Flow-Assembled Chitosan Membranes in Microfluidics. IFMBE Proceedings, 2022, , 383-392.	0.2	0
2284	Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Critical Reviews in Food Science and Nutrition, 2023, 63, 1187-1207.	5.4	14
2285	Hybrid Selfâ€Assembled Gel Beads for Tuneable pHâ€Controlled Rosuvastatin Delivery. Chemistry - A European Journal, 2021, 27, 13203-13210.	1.7	9
2286	Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. Beilstein Journal of Nanotechnology, 2021, 12, 808-862.	1.5	22
2287	Fabrication and In Vitro Evaluation of pH-Sensitive Polymeric Hydrogels as Controlled Release Carriers. Gels, 2021, 7, 110.	2.1	14
2288	White-Light-Emitting Supramolecular Polymer Gel Based on β-CD and NDI Host-Guest Inclusion Complex. Polymers, 2021, 13, 2762.	2.0	4
2289	Preliminary Animal Study on Bone Formation Ability of Commercialized Particle-Type Bone Graft with Increased Operability by Hydrogel. Materials, 2021, 14, 4464.	1.3	4
2290	Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydrate Polymers, 2021, 266, 118104.	5.1	29
2291	Advances in versatile anti-swelling polymer hydrogels. Materials Science and Engineering C, 2021, 127, 112208.	3.8	93
2292	Closed-Loop Controlled Photopolymerization of Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 40365-40378.	4.0	8
2293	Dualâ€Crosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	11.1	73
2294	Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. International Journal of Pharmaceutics, 2021, 606, 120954.	2.6	34
2295	Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS Applied Bio Materials, 2021, 4, 7342-7365.	2.3	14
2296	Modulation of Conductivity of Alginate Hydrogels Containing Reduced Graphene Oxide through the Addition of Proteins. Pharmaceutics, 2021, 13, 1473.	2.0	5
2297	Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property. International Journal of Biological Macromolecules, 2021, 192, 350-359.	3.6	23
2298	Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels, 2021, 7, 153.	2.1	45
2299	Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug. International Journal of Pharmaceutics, 2021, 606, 120925.	2.6	19

#	Article	IF	CITATIONS
2300	Fabrication and characterisation of a wound dressing composed of polyvinyl alcohol and quince seed mucilage. Journal of Wound Care, 2021, 30, XIIIi-XIIIx.	0.5	5
2301	PF-127 based vildagliptin loaded polymeric hydrogels prepared by aqueous polymerization technique for treatment of diabetes mellitus. Journal of Polymer Research, 2021, 28, 1.	1.2	1
2302	Silver nanoparticles as an effective antimicrobial against otitis media pathogens. AICHE Journal, 2021, 67, e17468.	1.8	6
2303	Injectable Micelle-Incorporated Hydrogels for the Localized Chemo-Immunotherapy of Breast Tumors. ACS Applied Materials & Interfaces, 2021, 13, 46270-46281.	4.0	11
2304	Affinity-Controlled Double-Network Hydrogel Facilitates Long-Term Release of Anti-Human Papillomavirus Protein. Biomedicines, 2021, 9, 1298.	1.4	9
2305	Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111850.	2.5	16
2306	Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology. , 2022, 232, 107990.		44
2307	Polymeric materials reinforced by noncovalent aggregates of polymer chains. Aggregate, 2021, 2, e109.	5.2	28
2308	Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021, 26, 5905.	1.7	388
2309	Thermally tunable hydrogel crosslinking mediated by temperature sensitive liposome. Biomedical Materials (Bristol), 2021, 16, 065026.	1.7	2
2310	Preparation of hydroxybutyl starch with a high degree of substitution and its application in temperature-sensitive hydrogels. Food Chemistry, 2021, 355, 129472.	4.2	20
2311	Preparation and characterization of methylene bisacrylamide crosslinked pectin/acrylamide hydrogels. Polymer Bulletin, 2022, 79, 7655-7677.	1.7	12
2312	Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: A review. Journal of Industrial and Engineering Chemistry, 2021, 101, 307-323.	2.9	31
2313	Nonlinear poroviscoelastic behavior of gelatin-based hydrogel. Journal of the Mechanics and Physics of Solids, 2022, 158, 104650.	2.3	11
2314	Improving the Antitumor Activity and Bioavailability of Sonidegib for the Treatment of Skin Cancer. Pharmaceutics, 2021, 13, 1560.	2.0	17
2315	<scp>Nanocarrierâ€hydrogel</scp> composite delivery systems for precision drug release. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1756.	3.3	40
2316	Dual Cross-Linked Chitosan/PVA Hydrogels Containing Silver Nanoparticles with Antimicrobial Properties. Pharmaceutics, 2021, 13, 1461.	2.0	42
2317	Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics, 2021, 10, 1094.	1.5	17

#	Article	IF	CITATIONS
2318	In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. International Journal of Biological Macromolecules, 2021, 188, 501-511.	3.6	34
2319	Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage. Carbohydrate Polymers, 2021, 269, 118318.	5.1	9
2320	Discerning the self-healing, shear-thinning characteristics and therapeutic efficacy of hydrogel drug carriers migrating through constricted microchannel resembling blood microcapillary. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127070.	2.3	6
2321	Ultrasound-triggered nicotine release from nicotine-loaded cellulose hydrogel. Ultrasonics Sonochemistry, 2021, 78, 105710.	3.8	12
2322	Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioactive Materials, 2021, 6, 3692-3704.	8.6	67
2323	Local delivery strategies to restore immune homeostasis in the context of inflammation. Advanced Drug Delivery Reviews, 2021, 178, 113971.	6.6	17
2324	Diffusion-controlled release of the theranostic protein-photosensitizer Azulitox from composite of Fmoc-Phenylalanine Fibrils encapsulated with BSA hydrogels. Journal of Biotechnology, 2021, 341, 51-62.	1.9	3
2325	Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111989.	2.5	6
2326	Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydrate Polymers, 2021, 272, 118459.	5.1	33
2327	Poly(allylamine)/tripolyphosphate coacervates for encapsulation and long-term release of cetylpyridinium chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127490.	2.3	5
2328	Formulation of pH responsive multilamellar vesicles for targeted delivery of hydrophilic antibiotics. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112043.	2.5	10
2329	Novel graphene oxide loaded sodium alginate hydrogels cross-linked with tetraethyl orthosilicate for cephradine release analysis. Journal of Drug Delivery Science and Technology, 2021, 66, 102784.	1.4	7
2330	Modified hydroxyapatite nanoparticles reinforced nanocomposite hydrogels based on gelatin/oxidized alginate via Schiff base reaction. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100056.	1.6	16
2331	The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. Journal of Molecular Liquids, 2021, 343, 117598.	2.3	5
2332	Influence of water content on the mechanical behavior of gelatin based hydrogels: Synthesis, characterization, and modeling. International Journal of Solids and Structures, 2021, 233, 111219.	1.3	27
2333	Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Materials, 2022, 8, 267-295.	8.6	153
2334	Challenges and recent trends with the development of hydrogel fiber for biomedical applications. Chemosphere, 2022, 287, 131956.	4.2	18
2335	Sodium alginate-chitosan nanocomposite as a novel carrier agent for cinnamaldehyde: characterisation and release studies. IOP Conference Series: Materials Science and Engineering, 2020, 980. 012017.	0.3	1

# 2336	ARTICLE Stimuli-responsive Drug Delivery Hydrogels. RSC Soft Matter, 2021, , 542-565.	IF 0.2	Citations 3
2337	Production of hydrogel microparticles in microfluidic devices: a review. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	20
2338	Composite hydrogels of pectin and alginate. , 2021, , 507-533.		0
2339	Optimizing the heterogeneous network structure to achieve polymer nanocomposites with excellent mechanical properties. Physical Chemistry Chemical Physics, 2021, 23, 4437-4452.	1.3	4
2340	Synthesis, Structural Modification and Physiochemical Response of Chitosan Built Nanohydrogel for Control Drug Delivery Applications. Gels Horizons: From Science To Smart Materials, 2021, , 263-280.	0.3	0
2341	The impact of substitution of two hydrophobic moieties on the properties of guar gum based hydrogels. Pigment and Resin Technology, 2021, ahead-of-print, .	0.5	0
2342	Photosensitizer-loaded hydrogels for photodynamic inactivation of multirestistant bacteria in wounds. RSC Advances, 2021, 11, 7600-7609.	1.7	15
2343	Tailored natural polymers: a useful eco-friendly sustainable tool for the mitigation of emerging pollutants: a review. International Journal of Environmental Science and Technology, 2021, 18, 2491-2510.	1.8	14
2344	Selective and Improved Photoannealing of Microporous Annealed Particle (MAP) Scaffolds. ACS Biomaterials Science and Engineering, 2021, 7, 422-427.	2.6	14
2345	Progress on Preparation of pH/Temperature-Sensitive Intelligent Hydrogels and Applications in Target Transport and Controlled Release of Drugs. International Journal of Polymer Science, 2021, 2021, 1-14.	1.2	20
2346	Gel-based delivery of neurotherapeutics via naso-brain pathways. , 2021, , 225-245.		0
2347	Synthesis and efficacy of norfloxacin loaded onto magnetic hydrogel nanocomposites. RSC Advances, 2021, 11, 30183-30194.	1.7	5
2348	Cancer theranostic platforms based on injectable polymer hydrogels. Biomaterials Science, 2021, 9, 3543-3575.	2.6	16
2349	Mucoadhesive Poloxamer-Based Hydrogels for the Release of HP-β-CD-Complexed Dexamethasone in the Treatment of Buccal Diseases. Pharmaceutics, 2021, 13, 117.	2.0	16
2350	Synthesis-Structure Relationship of Chitosan Based Hydrogels. Advances in Polymer Science, 2021, , 105-129.	0.4	6
2351	Tissue engineering applications. , 2021, , 323-347.		0
2352	Effect of Pluronic F127 on the 3D pore morphology of poly(N â€isopropylacrylamide―co â€acrylic acid) hydrogels and their nitric oxide release from Sâ€nitrosoglutathione. Journal of Applied Polymer Science, 2020, 137, 49056.	1.3	8
2353	Dual Stimuliâ€Responsive Selfâ€Assembly Behavior of a Tailorâ€Made ABCâ€Type Amphiphilic Triâ€Block Copolymer. Journal of Polymer Science, 2020, 58, 843-851.	2.0	4

#	Article	IF	Citations
2354	Antimicrobial Hydrogels: Key Considerations and Engineering Strategies for Biomedical Applications. , 2020, , 511-542.		6
2355	The Future of Glass-ionomers. , 2016, , 125-148.		1
2356	Fabrication and Printing of Multi-material Hydrogels. , 2016, , 1-34.		3
2357	Functional Nanofibers Containing Cyclodextrins. , 2018, , 29-62.		2
2358	Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. , 2019, , 3503-3522.		4
2359	Polymeric Hydrogel: A Flexible Carrier System for Drug Delivery. Gels Horizons: From Science To Smart Materials, 2018, , 141-184.	0.3	2
2360	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	0.8	10
2361	Chitosan-Based Hydrogels for Drug Delivery. , 2019, , 163-190.		4
2362	Fabrication Technology of Chitosan-Based IPN: Drug Delivery Application. , 2020, , 55-78.		3
2363	Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels. Pharmaceutical Research, 2017, 34, 1728-1740.	1.7	37
2364	Nanocomposite hydrogels for tissue engineering applications. , 2020, , 499-528.		5
2365	General introduction on sustainable nanocellulose and nanohydrogel matrices. , 2020, , 1-31.		5
2366	The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties. International Journal of Biological Macromolecules, 2020, 159, 557-569.	3.6	35
2367	Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution. Polymer, 2017, 121, 55-63.	1.8	64
2368	Characterization of High Molecular Weight Multi-Arm Functionalized PEG–Maleimide for Protein Conjugation by Charge-Reduction Mass Spectrometry Coupled to Two-Dimensional Liquid Chromatography. Analytical Chemistry, 2020, 92, 8584-8590.	3.2	7
2369	Cationic, Anionic, and Amphoteric Dual pH/Temperature-Responsive Degradable Microgels via Self-Assembly of Functionalized Oligomeric Precursor Polymers. Macromolecules, 2021, 54, 351-363.	2.2	15
2370	Towards Cyclodextrin-Based Supramolecular Materials. RSC Polymer Chemistry Series, 2016, , 154-177.	0.1	4
2371	Nanogels in the Diagnosis and Treatment of Tuberculosis. RSC Smart Materials, 2017, , 53-76.	0.1	1

#	Article	IF	CITATIONS
2372	Injectable Nanogels in Drug Delivery. RSC Smart Materials, 2017, , 181-209.	0.1	1
2373	Overview of Antimicrobial Resistance and Nanoparticulate Drug Delivery Approach to Combat Antimicrobial Resistance. Biomaterials Science Series, 2019, , 481-516.	0.1	1
2374	Magnetic Resonance Micro-imaging of Hydrogels. New Developments in NMR, 2020, , 110-173.	0.1	1
2375	CHAPTER 19. Elastin-like Hydrogels and Self-assembled Nanostructures for Drug Delivery. RSC Smart Materials, 2013, , 180-198.	0.1	3
2376	CHAPTER 20. Multiple Stimuli-responsive Hydrogels Based on α-Amino Acid Residues for Drug Delivery. RSC Smart Materials, 2013, , 199-227.	0.1	1
2377	Synthesis of co-polymeric network of carbopol-g-methacrylic acid nanogels drug carrier system for gastro-protective delivery of ketoprofen and its evaluation. Polymer-Plastics Technology and Materials, 2020, 59, 1109-1123.	0.6	10
2378	Chitosan-Based Gels: Drug Delivery Systems. , 0, , 1546-1577.		1
2379	Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication, 2021, 13, 015005.	3.7	49
2381	Kinetics of Polyelectrolyte Gels. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	20
2382	Nonlinear Visco-Poroelasticity of Gels With Different Rheological Parts. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	13
2383	Surface-Mediated Drug Delivery. Regenerative Medicine, Artificial Cells and Nanomedicine, 2013, , 195-217.	0.7	2
2384	Metformin-loaded Citric Acid Cross-linked Agarose Films in the Prevention of Postoperative Abdominal Adhesion. Anatomy & Biological Anthropology, 2019, 32, 129.	0.1	2
2385	Prodrugs and Bioconjugate Hydrogels: A Valuable Strategy for the Prolonged-Delivery of Drugs. , 2017, , 88-112.		1
2386	Characterization of Macroporous Gels. , 2009, , 211-235.		2
2387	Effect of Chemical Crosslinking on Properties of Polymer Microbeads: A Review. Canadian Chemical Transactions, 0, , 473-485.	0.2	30
2388	Substrate Mediated Enzyme Prodrug Therapy. PLoS ONE, 2012, 7, e49619.	1.1	21
2389	Hyaluronidase Modulates Inflammatory Response and Accelerates the Cutaneous Wound Healing. PLoS ONE, 2014, 9, e112297.	1.1	55
2390	Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy. PLoS ONE, 2015, 10, e0141237.	1.1	7

#	Article	IF	CITATIONS
2391	Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model. PLoS ONE, 2017, 12, e0186784.	1.1	10
2392	Mechanical and Swelling Properties of Poly (vinyl alcohol) and Hyaluronic Acid Gels used in Biomaterial Systems - a Comparative Study. Defence Science Journal, 2014, 64, 222-229.	0.5	16
2393	Stimuli-responsive Hydrogels for Textile Functionalisation: A Review. Tekstilec, 2017, 60, 76-96.	0.3	12
2394	Fmoc-diphenylalanine-based hydrogels as a potential carrier for drug delivery. E-Polymers, 2020, 20, 458-468.	1.3	18
2395	Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery. Advanced Pharmaceutical Bulletin, 2017, 7, 11-20.	0.6	31
2396	Preparation and Characterization of Silk Fibroin Nanoparticles as a Potential Drug Delivery System for 5-Fluorouracil. Advanced Pharmaceutical Bulletin, 2019, 9, 601-608.	0.6	30
2397	Physical Properties of Radiation-Crosslinked Polyvinyl Alcohol-Polyethylene Glycol Hydrogels from the Viewpoint of Their Application as Medical Dressings. Ukrainian Journal of Physics, 2017, 62, 402-412.	0.1	5
2398	A poroelastic master curve for time-dependent and multiscale mechanics of hydrogels. Journal of Materials Research, 2021, 36, 1-9.	1.2	1
2399	Sustained-Release Injectable Hydrogel Formulations for Administration of Sodium Salicylate in Broiler Chickens. , 2018, 32, 294.		1
2400	Similarity in Linear Viscoelastic Behaviors of Network Formation and Degradation Processes. Nihon Reoroji Gakkaishi, 2020, 48, 191-198.	0.2	2
2401	Hydrogels: a smart drug delivery device. Asian Pacific Journal of Health Sciences, 2014, , 92-105.	0.0	4
2403	Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Current Medicinal Chemistry, 2019, 26, 2430-2455.	1.2	60
2404	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	1.2	32
2405	Natural Hydrogels Applied in Photodynamic Therapy. Current Medicinal Chemistry, 2020, 27, 2681-2703.	1.2	7
2406	Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1190-1232.	1.1	19
2407	Syringeable Self-Assembled Cyclodextrin Gels for Drug Delivery. Current Topics in Medicinal Chemistry, 2014, 14, 494-509.	1.0	27
2408	The Patenting and Technological Trends in Candidiasis Treatment: A Systematic Review (2014-2018). Current Topics in Medicinal Chemistry, 2019, 19, 2629-2639.	1.0	5
2409	Microemulsions Based Transdermal Drug Delivery Systems. Current Drug Discovery Technologies, 2014, 11, 169-180.	0.6	19

#	Article	IF	CITATIONS
2410	Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery. Recent Patents on Drug Delivery and Formulation, 2020, 13, 291-300.	2.1	15
2411	Sertaconazole-Loaded Cyclodextrin - Polysaccharide Hydrogels as Antifungal Devices§. Open Drug Delivery Journal, 2009, 3, 1-9.	2.0	20
2412	Development of Capsaicin Loaded Hydrogel Beads for <i>In vivo</i> Lipid Lowering Activities of Hyperlipidemic Rats. Drug Delivery Letters, 2019, 9, 108-115.	0.2	3
2413	Solubility Enhancement of Simvastatin through Surfactant Addition for Development of Hydrophobic Drug-Loaded Gelatin Hydrogel. Indonesian Journal of Chemistry, 2019, 19, 920.	0.3	4
2414	Innovations in Poly(Vinyl Alcohol) Derived Nanomaterials. Advances in Materials Science, 2020, 20, 5-22.	0.4	8
2415	New Horizons in Hydrogels for Methotrexate Delivery. Gels, 2021, 7, 2.	2.1	20
2416	SYNTHESIS AND CHARACTERIZATION OF ORGANIC-INORGANIC HYBRID HYDROGELS BASED ON OCTAVINYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANE AND <i>N</i> -ISOPROPYLACRYLAMIDE COPOLYMER. Acta Polymerica Sinica, 2010, 010, 1023-1029.	0.0	1
2417	Biomaterials-based Hydrogels and their Drug Delivery Potentialities. International Journal of Pharmacology, 2017, 13, 864-873.	0.1	17
2418	Oral Delivery of Insulin for Treatment of Diabetes: Classical Challenges and Current Opportunities. Journal of Medical Sciences (Faisalabad, Pakistan), 2015, 15, 209-220.	0.0	13
2419	Collagen for brain repair: therapeutic perspectives. Neural Regeneration Research, 2018, 13, 595.	1.6	46
2420	Polymer Nanoparticles: Newer Strategies towards Targeted Cancer Therapy. , 2013, 03, .		5
2421	Polymers in Drug Delivery. Journal of Biosciences and Medicines, 2016, 04, 69-84.	0.1	51
2422	Modular Hydrogels for Drug Delivery. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 185-199.	1.0	53
2423	Miscibility Behavior of Polyacrylamides Poly(Ethylene Glycol) Blends: Flory Huggins Interaction Parameter Determined by Thermal Analysis. Journal of Modern Physics, 2013, 04, 45-51.	0.3	6
2424	Cross-Linked Alginate Film Pore Size Determination Using Atomic Force Microscopy and Validation Using Diffusivity Determinations. Journal of Surface Engineered Materials and Advanced Technology, 2013, 03, 1-12.	0.2	28
2425	Hydrogel Fibre: Future Material of Interest for Biomedical Applications. Journal of Textile Science and Technology, 2019, 05, 92-107.	0.2	6
2426	Coronary Angiography for Follow-up of Heart Transplant Recipients: Usefulness of the Gensini Score. Experimental and Clinical Transplantation, 2020, 18, 99-104.	0.2	3
2427	Physicochemical Characteristics of Fe ₃ O ₄ Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery. Asian Pacific Journal of Cancer Prevention, 2014, 15, 49-54.	0.5	66

#	Article	IF	CITATIONS
2428	Superporous Hydrogel Composites of Acrylamide Using Starch-silicone Dioxide Coprecipitate as Composite Agent. British Journal of Pharmaceutical Research, 2014, 4, 338-351.	0.4	2
2429	Derivatisation of Cashew Gum via Cross-linking with Citric Acid: Characterisation and Preliminary Evaluation of Tableting Properties. British Journal of Pharmaceutical Research, 2015, 6, 22-34.	0.4	3
2430	Derivatisation of Cashew Gum by Esterification Using Citric Acid and Glycerol. British Journal of Pharmaceutical Research, 2015, 6, 155-165.	0.4	2
2431	Fabrication of Chitosan-Based Biomaterials: Techniques and Designs. , 2021, , 455-518.		4
2432	lan Situ Tissue Engineering: A New Dimension. , 2021, , 325-350.		2
2433	Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. Journal of Materials Chemistry B, 2022, 10, 170-203.	2.9	60
2434	pH-Sensitive silica-based core–shell nanogel prepared via RAFT polymerization: investigation of the core size effect on the release profile of doxorubicin. New Journal of Chemistry, 2021, 45, 21824-21833.	1.4	6
2435	Biphasic Porous Structures formed by Monomer/Water Interface Stabilization with Colloidal Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2100991.	1.9	4
2436	Quantification and characterization of water within drug-eluting beads. Polymer, 2021, 235, 124287.	1.8	4
2437	Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomaterialia, 2022, 137, 20-43.	4.1	18
2438	Effect of crosslink-induced heterogeneities on the transport and deformation behavior of hydrophilic ionic polymer membranes. Polymer Journal, 0, , .	1.3	1
2439	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	7.8	10
2440	Cisplatin uptake and release assessment from hydrogel synthesized in acidic and neutral medium: An experimental and molecular dynamics simulation study. Journal of Molecular Liquids, 2021, 344, 117890.	2.3	16
2442	The Impact of Improving Dermal Permeation on the Efficacy and Targeting of Liposome Nanoparticles as a Potential Treatment for Breast Cancer. Pharmaceutics, 2021, 13, 1633.	2.0	9
2443	Advances in Hyaluronicâ€Acidâ€Based (Nano)Devices for Cancer Therapy. Macromolecular Bioscience, 2022, 22, e2100304.	2.1	16
2444	Layer-by-Layer Fabrication of Hydrogel Microsystems for Controlled Drug Delivery From Untethered Microrobots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 692648.	2.0	3
2445	Perspective Insights to Bio-Nanomaterials for the Treatment of Neurological Disorders. Frontiers in Bioengineering and Biotechnology, 2021, 9, 724158.	2.0	17
2446	Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 2021, 7, 182.	2.1	101

#	Article	IF	CITATIONS
2447	Emulsions of hydrolyzable oils for the zero-order release of hydrophobic drugs. Journal of Controlled Release, 2021, 339, 498-505.	4.8	17
2448	Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology, 2021, 66, 102914.	1.4	68
2449	Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. Journal of Drug Delivery Science and Technology, 2021, 66, 102896.	1.4	2
2450	The influence of composition of poly(n-isopropylacrylamide-co-itaconic acid) hydrogel on immobilized Candida rugosa lipase activity. Hemijska Industrija, 2008, 62, 339-344.	0.3	1
2451	Cytotoxicity Evaluation on Hydrogels for Medical Devices based on the International Organization for Standardization. Journal of Korean Pharmaceutical Sciences, 2009, 39, 127-131.	0.1	1
2452	The mechanical behavior and elastic response of a non-uniformly swollen cylindrical sample of polymer gel with axisymmetrical distribution of a solvent. Computational Continuum Mechanics, 2012, 5, 178-183.	0.1	0
2453	Enzymatically Triggered in situ Gel-Forming Biomaterials for Regenerative Medicine. , 2012, , 111-126.		0
2454	Comportamiento reológico de geles biodegradables para aplicacions en medicina regenerativa. Biomecánica, 2012, 20, .	0.1	0
2455	Development of Poly(Vinyl Alcohol) Cryo-Systems with Medicines and Their Comparative Study of Antimicrobial Activity and Cytotoxicity. IFMBE Proceedings, 2013, , 113-118.	0.2	0
2456	Liposomal Gels in Enhancing Skin Delivery of Drugs. , 2015, , 329-341.		5
2457	ESTUDO EXPERIMENTAL E MODELAGEM MATEMÃTICA DA COPOLIMERIZAÇÃO DE ÃCIDO ACRÃLICO COM TRIMETILOLPROPANO TRIACRILATO INCLUINDO O PERÃODO DE PÓS-GELIFICAÇÃO. , 0, , .		0
2458	Field-Based Simulations of Nanostructured Polyelectrolyte Gels. , 2016, , 1-9.		0
2460	Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device. Korean Chemical Engineering Research, 2015, 53, 740-745.	0.2	0
2461	Hydrogels: Smart Cationic Interpenetrating Networks. , 0, , 4011-4024.		0
2462	Novel Method to Monitor the De-Swelling of PNIPAAm Hydrogels of Different Cross-Link Density. American Journal of Analytical Chemistry, 2016, 07, 306-317.	0.3	0
2463	Barriers to Glaucoma Drug Delivery and Resolving the Challenges Using Nanotechnology. , 2016, , 389-406.		1
2464	Liver trauma: An Insight into Therapeutic Approach. Journal of Nanotechnology and Materials Science, 2016, 3, 1-3.	0.1	0
2465	Hyaluronic Acid: Regenerative Medicine and Drug Delivery. , 0, , 3778-3788.		0

#	Article	IF	CITATIONS
2466	Hydrogels, Multi-Component Anionic: Swelling and Controlled Release. , 0, , 3951-3969.		0
2467	Emerging Technologies of Polymers for Nanomedicine Applications. , 2016, , 1-19.		0
2468	Self-Healing Hydrogels as Biomedical Scaffolds for Cell, Gene and Drug Delivery. Research & Reviews Journal of Material Sciences, 2017, 05, .	0.1	0
2469	FORMULATION DEVELOPMENT AND EVALUATION OF AN IN SITU OPHTHALMIC GELLING SYSTEM OF BRIMONIDINE TARTRATE AND TIMOLOL MALEATE FOR THE TREATMENT OF GLAUCOMA. Indian Drugs, 2017, 54, 76-78.	0.1	0
2472	Molecularly Imprinted Hydrogels for the Selective Release of Therapeutics. , 2017, , 64-87.		0
2473	Molecularly Imprinted Hydrogels for the Selective Release of Therapeutics. , 2017, , 64-87.		Ο
2474	Vesicles, Micelles and Cyclodextrins Immobilized into Hydrogel: Multi-component Devices for Controlled Drug Delivery. , 2017, , 52-63.		0
2475	Hydrogels for Vaginal Drug Delivery. , 2017, , 259-302.		0
2476	Design of Stimuli-Responsive Drug Delivery Hydrogels: Synthesis and Applications. , 2017, , 1-23.		0
2477	Nanocomposite Hydrogels as Drug Delivery Systems. , 2017, , 24-51.		0
2478	Hydrogels for Vaginal Drug Delivery. , 2017, , 259-302.		0
2479	Biopolymer-based Interpenetrating Network Hydrogels for Oral Drug Delivery. , 2017, , 197-233.		0
2480	Primjena polimera u farmaceutskoj industriji. Kemija U Industriji, 2017, 66, 505-518.	0.2	0
2481	Tailored Hydrogel Microbeads of Sodium Carboxymethylcellulose as a Carrier to Deliver Mefenamic Acid: Transmucosal Administration. Jundishapur Journal of Natural Pharmaceutical Products, 2017, In Press, .	0.3	1
2482	Polysaccharide-Based Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , 147-229.	0.3	3
2483	Swelling Behavior and Drug Release of Interpenetrating Network Composed of PVA and Chitosan. Ibn Al-Haitham Journal for Pure and Applied Sciences, 2018, 31, 145.	0.1	1
2484	Sustained-Release Injectable Hydrogel Formulations for Administration of Sodium Salicylate in Broiler Chickens. , 2018, 32, 294.		0
2485	NON-ACETYLATED HEMICELLULOSE-BASED HYDROGEL PREPARATION FOR SUSTAINED AND TARGETED DELIVERY OF DRUGS. Journal of Innovation in Applied Research, 2018, 1, 1.	0.0	Ο

#	Article	IF	CITATIONS
2486	Chitosan-Based Interpenetrating Polymer Networks: Drug Delivery Application. , 2019, , 269-295.		3
2487	Chapter 6. Cucurbituril-assisted Supramolecular Polymeric Hydrogels. RSC Smart Materials, 2019, , 120-148.	0.1	2
2488	PLASMIDS - VECTORS FOR GENE THERAPY. Postepy Mikrobiologii, 2019, 56, 214-225.	0.1	2
2489	Fabrication and Characterizations of Interpenetrating Polymer Network Hydrogel Membrane Containing Hydrogel Beads. Membrane Journal, 2019, 29, 231-236.	0.2	0
2492	Application of Gellan Gum-Based Scaffold for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2020, 1249, 15-37.	0.8	3
2493	Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity. Journal of Physics Condensed Matter, 2020, 33, 084002.	0.7	12

2494 ĐžĐ¡ĐžĐ'Đ›Đ~Đ'ĐžĐ¡Đ¢Đ† ĐœĐžĐ›Đ•ĐšĐ£Đ›Đ⁻ĐĐĐŽ-ĐœĐĐ¡ĐžĐ'ОГĐž ĐОЗĐŸĐžĐ"ІĐ›Đ£ Đ**Đ**›Đ£ĐžĐĐ•Đ**;**ЇĐĐ'ĐœĐ†Đ

2495	Compressive failure of hydrogel spheres. Journal of Materials Research, 2020, 35, 1227-1235.	1.2	11
2496	Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Current Medicinal Chemistry, 2020, 27, 3463-3498.	1.2	3
2497	Gelatin and Glycerine-Based Bioadhesive Vaginal Hydrogel. Current Drug Delivery, 2020, 17, 303-311.	0.8	9
2498	In situ Crosslinking System of Gelatin with Acrylated β-cyclodextrin Towards the Fabrication of Hydrogels for Sustained Drug Release. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 597-608.	0.4	2
2499	Swelling and inflation of a toroidal gel balloon. International Journal of Non-Linear Mechanics, 2021, 138, 103838.	1.4	0
2500	Chitosanâ€Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. Starch/Staerke, 2024, 76, 2100150.	1.1	10
2501	Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance. ACS Applied Materials & Interfaces, 2021, 13, 51403-51413.	4.0	9
2502	3D printing nanocomposite hydrogels with lattice vascular networks using stereolithography. Journal of Materials Research, 2021, 36, 4249-4261.	1.2	14
2503	Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polymer Bulletin, 2022, 79, 9199-9219.	1.7	8
2504	Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea. Chemical and Pharmaceutical Bulletin, 2021, 69, 1131-1135.	0.6	2
2505	Hydrogels: A Novel Drug Delivery System. Journal of Biomedical Research & Environmental Sciences, 2020, 1, 439-451.	0.1	4

			UKI	
#	Article		IF	CITATIONS
2506	Effect of Starch Oxidation Degree on the Properties of Hydrogels from Dialdehyde Starch and Polyvinyl Alcohol. Advances in Science, Technology and Engineering Systems, 2020, 5, 1372-1380.		0.4	0
2507	Synthesis and characterization of a novel pH-responsive drug-releasing nanocomposite hydrogel for skin cancer therapy and wound healing. Journal of Materials Chemistry B, 2021, 9, 9533-9546.		2.9	21
2508	Hydrogels for pulmonary drug delivery. , 2020, , 441-474.			1
2509	Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes. , 2020, , 371-391			2
2510	Hyaluronic acid–based hydrogels for tissue engineering. , 2020, , 551-565.			5
2511	Tailor-made polysaccharide-based hydrogels for biomedical applications. , 2020, , 101-132.			2
2512	Use of nanoscale-delivery systems in tissue/organ regeneration. , 2020, , 113-162.			0
2513	Lignocellulosics and Their Use in Functional Materials and Nanotechnology. , 2020, , 1-16.			0
2514	Visible Light-Curable Hydrogel Systems for Tissue Engineering and Drug Delivery. Advances in Experimental Medicine and Biology, 2020, 1249, 85-93.		0.8	8
2515	pH Sensed Interpenetrating Polymeric Network: Application in Drug Delivery. , 2020, , 119-141.			1
2517	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .		1.2	35
2518	State-of-the-Art Irradiation Technology for Polymeric Hydrogel Fabrication and Application in Drug Release System. Frontiers in Materials, 2021, 8, .		1.2	7
2519	A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines, 2021, 9, 1612.		1.4	22
2520	Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. Pharmaceutics, 2021, 13, 1840.		2.0	36
2521	Peptide hydrogels for affinityâ€controlled release of therapeutic cargo: Current and potential strategies. Journal of Peptide Science, 2022, 28, e3377.		0.8	16
2523	Synthesis and Applications of Hydrogels in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry 2020, 20, 1431-1446.	<i>)</i> ,	0.9	4
2524	Structural-rheological properties of systems based on polymeric hydrogels and anionic surfactants. , 2020, 64, 551-557.		0.0	0
2526	Hyaluronic acid-based hydrogels loaded with chemoattractant and anticancer drug – new formulation for attracting and tackling glioma cells. Soft Matter, 2021, 17, 10846-10861.		1.2	9

#	Article	IF	CITATIONS
2527 2528	Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing.	4.8	4
2529	Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications. Optics and Laser Technology, 2022, 147, 107626.	2.2	43
2530	Tunable Hydrogels with Improved Viscoelastic Properties from Hybrid Polypeptides. Macromolecules, 2021, 54, 10786-10800.	2.2	10
2531	Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels, 2021, 7, 207.	2.1	32
2532	Facile Preparation of Drug-Releasing Supramolecular Hydrogel for Preventing Postoperative Peritoneal Adhesion. ACS Applied Materials & Interfaces, 2021, 13, 56881-56891.	4.0	17
2533	Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effect. Pharmaceutics, 2021, 13, 1968.	2.0	13
2534	Thermosensitive Polyester Hydrogel for Application of Immunosuppressive Drug Delivery System in Skin Allograft. Gels, 2021, 7, 229.	2.1	5
2535	Polysaccharide-based hydrogels crosslink density equation: A rheological and LF-NMR study of polymer-polymer interactions. Carbohydrate Polymers, 2022, 277, 118895.	5.1	26
2536	Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. International Journal of Energy Production and Management, 2021, 8, rbab060.	1.9	36
2537	Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines, 2021, 9, 1694.	1.4	19
2538	A review on carboxylic acid crossâ€iinked polyvinyl alcohol: Properties and applications. Polymer Engineering and Science, 2022, 62, 225-246.	1.5	65
2539	Study the Effects of Supramolecular Interaction on Diffusion Kinetics in Hybrid Hydrogels of Zwitterionic Polymers and CNTs. Macromolecular Chemistry and Physics, 0, , 2100348.	1.1	3
2540	Polymer Nanofibers for Biomedical Applications: Advances in Electrospinning. Current Applied Polymer Science, 2021, 4, 190-209.	0.2	2
2541	New Hydrogel Network Based on Alginate and a Spiroacetal Copolymer. Gels, 2021, 7, 241.	2.1	5
2542	Multiple Stimuliâ€Responsive MXeneâ€Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small, 2022, 18, e2104368.	5.2	104
2544	Formulation and In vitro Percutaneous Permeation and Skin accumulation of Voriconazole Microemulsified Hydrogel. Asian Journal of Pharmacy and Technology, 2021, , 267-272.	0.2	1
2545	Reversible Shielding and Immobilization of Liposomes and Viral Vectors by Tailored Antibodyâ€Ligand Interactions. Small, 2022, 18, e2105157.	5.2	3

#	Article	IF	CITATIONS
2546	Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. International Journal of Pharmaceutics, 2022, 612, 121368.	2.6	15
2547	Development and Evaluation of Clove and Cinnamon Supercritical Fluid Extracts-Loaded Emulgel for Antifungal Activity in Denture Stomatitis. Gels, 2022, 8, 33.	2.1	8
2548	Injectable glycol chitosan thermogel formulation for efficient inner ear drug delivery. Carbohydrate Polymers, 2022, 278, 118969.	5.1	15
2549	Factors influencing the swelling behaviour of polymethyl vinyl ether-co-maleic acid hydrogels crosslinked by polyethylene glycol. Journal of Drug Delivery Science and Technology, 2022, 68, 103080.	1.4	4
2550	Magnetically responsive hydrophobic pockets for on–off drug release. Materials Today Chemistry, 2022, 23, 100702.	1.7	5
2551	Magnetoâ€/ electroâ€responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 2022, 26, 101306.	2.3	70
2552	Preparation of silane-dispersed graphene crosslinked vinyl carboxymethyl chitosan temperature-responsive hydrogel with antibacterial properties. International Journal of Biological Macromolecules, 2022, 200, 99-109.	3.6	14
2553	Glass transition effects on the molecular transport of caffeine from condensed k-carrageenan/polydextrose systems. Food Hydrocolloids, 2022, 126, 107401.	5.6	3
2554	Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly (vinyl alcohol) Based Hydrogels for Drug Delivery System. Journal of the Korean Wood Science and Technology, 2020, 48, 431-449.	0.8	2
2556	Optical Hydrogel Detector for pH Measurements. Biosensors, 2022, 12, 40.	2.3	7
2557	Hydrogels. , 2022, , 221-242.		0
2558	Clinical translation of long-acting drug delivery formulations. Nature Reviews Materials, 2022, 7, 406-420.	23.3	60
2559	Hierarchy of relaxation times in supramolecular polymer model networks. Physical Chemistry Chemical Physics, 2022, 24, 4859-4870.	1.3	2
2560	The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds. Materials Science and Engineering C, 2022, 133, 112632.	3.8	4
2561	Hydrogels differentiated by length scales: A review of biopolymer-based hydrogel preparation methods, characterization techniques, and targeted applications. European Polymer Journal, 2022, 163, 110935.	2.6	25
2562	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	2.0	14
2563	3D printed cellulose based product applications. Materials Chemistry Frontiers, 2022, 6, 254-279.	3.2	25
2564	Nanostructured Lipid Carriers-Hydrogels System for Drug Delivery: Nanohybrid Technology Perspective. Molecules, 2022, 27, 289.	1.7	17

ARTICLE IF CITATIONS Metal substrate catalysis in the confined space for platinum drug delivery. Chemical Science, 2021, 13, 2565 3.7 5 59-67. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological 2566 Application. Pharmaceutics, 2022, 14, 141. Adsorption and Sustained Delivery of Small Molecules from Nanosilicate Hydrogel Composites. 2567 1.7 5 Pharmaceuticals, 2022, 15, 56. Multicompartment Hydrogels. Macromolecular Rapid Communications, 2022, 43, e2100895. 2568 2.0 Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and 2569 6.4 75 applications. Materials Horizons, 2022, 9, 1356-1386. Hydrogels and Cubic Liquid Crystals for Non-Invasive Sampling of Low-Molecular-Weight 2570 Biomarkers—An Explorative In Vivo Study. Pharmaceutics, 2022, 14, 313. Constructing an on-demand drug release system composed of thermosensitive PPP hydrogel and drug-laden alginate/graphene microspheres to treat tumorous defect. Journal of Materials Science, 2571 1.7 3 2022, 57, 4754-4770. Transport phenomena in drug delivery membrane systems., 2022, , 231-245. Novel hydrophobically modified agarose cryogels fabricated using dimethyl sulfoxide. Journal of 2573 7 1.1 Bioscience and Bioengineering, 2022, 133, 390-395. Fenugreek seed mucilage grafted poly methacrylate pH-responsive hydrogel: A promising tool to enhance the oral bioavailability of methotrexate. International Journal of Biological Macromolecules, 2022, 202, 332-344. 2574 3.6 Characterization of cubosomes immobilized in hydrogels of hyaluronic acid and their use for 2575 12 2.5 diclofenac controlled delivery. Colloids and Surfáces B. Biointérfaces, 2022, 212, 112352. Injectable Extracellular Matrix Microparticles Promote Heart Regeneration in Mice with Postâ€ischemic Heart Injury. Advanced Healthcare Materials, 2022, 11, e2102265. Thermoresponsive Hydrogels Reinforced with Supramolecular Cellulose Filler. Chemistry Letters, 2577 0.7 2 2022, 51, 145-148. Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromolecular Bioscience, 2578 2.1 2022, , 2100453. Adhesive hydrogels with toughness, stretchability, and conductivity performances for motion 2579 0 1.7 monitoring. Polymer Bulletin, 0, , 1. Labâ€onâ€aâ€Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. 2580 11.1 48 Advanced Materials, 2022, 34, e2108389. Phosphorogenic Iridium(III) <i>bis</i>à€Tetrazine Complexes for Bioorthogonal Peptide Stapling, 2581 Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Angewandte 1.6 5 Chemie, 2022, 134, . Challenges in delivering therapeutic peptides and proteins: A silk-based solution. Journal of 4.8 28 Controlled Release, 2022, 345, 176-189.

		15	0
#	ARTICLE Phosphorogenic Iridium(III) <i>bis</i> â€Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels, Angewandte	۱۲ 7 2	CITATIONS
2000	Chemie - International Edition, 2022, 61, .	1.2	20
2584	A hydrogel sheet mask with tea tree essential oil entrapment and targeted dose delivery capability. Materials Today: Proceedings, 2022, , .	0.9	4
2585	Marine Polysaccharides for Skin Drug Delivery: Hydrogels and Microneedle Solutions. , 2022, , 209-250.		1
2586	Stimuli-Responsive Hydrogels in Drug Delivery. , 2022, , 75-103.		2
2587	Cellulose: a fascinating biopolymer for hydrogel synthesis. Journal of Materials Chemistry B, 2022, 10, 1923-1945.	2.9	60
2588	Chitosan based injectable hydrogels for smart drug delivery applications. Sensors International, 2022, 3, 100168.	4.9	21
2589	Radiation synthesis of poly(N-vinyl pyrrolidonechitosanitaconic acidZnO) nanocomposite hydrogel for antimicrobial activity and controlled release of amoxicillin. Polymers and Polymer Composites, 2022, 30, 096739112210878.	1.0	4
2590	Ion-Triggered Hydrogels Self-Assembled from Statistical Copolypeptides. ACS Macro Letters, 2022, 11, 323-328.	2.3	6
2591	4D printing of core–shell hydrogel capsules for smart controlled drug release. Bio-Design and Manufacturing, 2022, 5, 294-304.	3.9	28
2592	Miconazole Nitrate–Loaded Solid Lipid Nanoparticle-Based Hydrogel Ameliorate Candida albicans Induced Mycoses in Experimental Animals. BioNanoScience, 2022, 12, 512.	1.5	4
2593	Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 2662.	1.8	23
2594	Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers, 2022, 14, 785.	2.0	10
2595	PROBLEMS OF THE MECHANICS OF POLYMER GELS WITH UNILATERAL CONSTRAINTS. Mechanics of Solids, 2022, 57, 292-306.	0.3	1
2596	Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers, 2022, 14, 1012.	2.0	54
2597	Recent Developments and Current Applications of Hydrogels in Osteoarthritis. Bioengineering, 2022, 9, 132.	1.6	12
2598	Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2022, 37, 85-97.	0.8	4
2600	On Computation of Entropy Measures and Molecular Descriptors for Isomeric Natural Polymers. Journal of Mathematics, 2022, 2022, 1-27.	0.5	3
2601	Light-induced synthesis and characterization of "Clickable―polyacrylamide hydrogels. European Polymer Journal, 2022, 167, 111062	2.6	9

#	Article	IF	CITATIONS
2602	Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics, 2022, 14, 574.	2.0	23
2603	Optimization of the Elasticity and Adhesion of Catechol- or Dopamine-Loaded Gelatin Gels under Oxidative Conditions. Gels, 2022, 8, 210.	2.1	5
2604	Implantation of injectable SF hydrogel with sustained hydrogen sulfide delivery reduces neuronal pyroptosis and enhances functional recovery after severe intracerebral hemorrhage. , 2022, 135, 212743.		11
2605	Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels, 2022, 8, 167.	2.1	75
2606	Hydrogel Biomaterials for Drug Delivery: Mechanisms, Design, and Drugs. , 0, , .		2
2607	Graphene Oxide-Based Multi-Component Antimicrobial Hydrogels. Bulletin of the Chemical Society of Japan, 2022, 95, 713-720.	2.0	3
2608	On physical analysis of topological indices via curve fitting for natural polymer of cellulose network. European Physical Journal Plus, 2022, 137, 410.	1.2	8
2609	Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan. Polymers, 2022, 14, 1209.	2.0	3
2610	A Bi‣ayer Hydrogel Cardiac Patch Made of Recombinant Functional Proteins. Advanced Materials, 2022, 34, e2201411.	11.1	24
2611	Safety, efficacy and delivery of multiple nucleoside analogs via drug encapsulated carbon (DECON) based sustained drug release platform. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 150-159.	2.0	1
2612	Synthesis of Bioactive Materials by In Situ One-Step Direct Loading of Syzygium aromaticum Essential Oil into Chitosan-Based Hydrogels. Gels, 2022, 8, 225.	2.1	11
2613	Novel porphyrin-containing hydrogels obtained by frontal polymerization: Synthesis, characterization and optical properties. Polymer, 2022, 247, 124785.	1.8	9
2614	Nutraceutical Concepts and Dextrin-Based Delivery Systems. International Journal of Molecular Sciences, 2022, 23, 4102.	1.8	18
2615	Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Advanced Drug Delivery Reviews, 2022, 183, 114161.	6.6	21
2616	Role of Polymer Concentration and Crosslinking Density on Release Rates of Small Molecule Drugs. International Journal of Molecular Sciences, 2022, 23, 4118.	1.8	17
2617	Injectable immunogel based on polymerized phenylboronic acid and mannan for cancer immunotherapy. Journal of Controlled Release, 2022, 345, 138-146.	4.8	7
2618	A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Materials Today Chemistry, 2022, 24, 100789.	1.7	21
2619	Effectiveness of a Nanohydroxyapatite-Based Hydrogel on Alveolar Bone Regeneration in Post-Extraction Sockets of Dogs with Naturally Occurring Periodontitis. Veterinary Sciences, 2022, 9, 7.	0.6	3

#	Article	IF	Citations
2621	Delayed Swelling and Dissolution of Hydrophobically Associated Hydrogel Coatings by Dilute Aqueous Surfactants. ACS Applied Polymer Materials, 2022, 4, 250-259.	2.0	3
2622	Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons. ACS Applied Materials & Interfaces, 2022, 14, 4479-4489.	4.0	28
2623	Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells, 2022, 11, 116.	1.8	9
2624	In Vitro Wound Dressing Stack Model as a First Step to Evaluate the Behavior of Dressing Materials in Wound Bed—An Assessment of Mass Transport Phenomena in Hydrogel Wound Dressings. Materials, 2021, 14, 7702.	1.3	1
2625	Drug-Induced Phase Separation in Polyelectrolyte Microgels. Gels, 2022, 8, 4.	2.1	6
2627	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	7.1	274
2628	Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 252-270.	1.8	2
2629	New materials and their application in the design and production of high-performance textile products. Journal of Textile Engineering & Fashion Technology, 2021, 7, 195-202.	0.1	0
2630	Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications. Polymers, 2021, 13, 4423.	2.0	12
2631	Development of di(2â€ethylhexyl) phthalateâ€containing thioglycolic acid immobilized chitosan mucoadhesive gel as an alternative hormone therapy for menopausal syndrome. Bioengineering and Translational Medicine, 2022, 7, .	3.9	7
2632	Dual crosslinking hydrogels with tunable injectability and stability for bone repair. Journal of Materials Chemistry B, 2022, 10, 4386-4394.	2.9	5
2633	Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomaterials Science and Engineering, 2022, 8, 1763-1790.	2.6	37
2634	45S5 Bioglass® works synergistically with siRNA to downregulate the expression of matrix metalloproteinase-9 in diabetic wounds. Acta Biomaterialia, 2022, 145, 372-389.	4.1	21
2635	Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 869984.	2.2	21
2636	Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. Nanomaterials, 2022, 12, 1376.	1.9	9
2637	Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: a review. Journal of Materials Science, 2022, 57, 8041-8063.	1.7	15
2638	Design of a new light curable starch-based hydrogel drug delivery system to improve the release rate of quercetin as a poorly water-soluble drug. European Journal of Pharmaceutical Sciences, 2022, 174, 106191.	1.9	10
2648	Alginate-Based Hydrogels and Tubes, as Biological Macromolecule-Based Platforms for Peripheral Nerve Tissue Engineering: A Review. Annals of Biomedical Engineering, 2022, 50, 628-653.	1.3	32
#	Article	IF	CITATIONS
------	---	------	-----------
2649	Self-assembled polyelectrolyte complexes of chitosan and fucoidan for sustained growth factor release from PRP enhance proliferation and collagen deposition in diabetic mice. Drug Delivery and Translational Research, 2022, 12, 2838-2855.	3.0	7
2650	PEGDA hydrogel structure from semi-dilute concentrations: insights from experiments and molecular simulations. Soft Matter, 2022, 18, 3565-3574.	1.2	9
2652	Role of stereocomplex in advancing mass transport and thermomechanical properties of polylactide. Green Chemistry, 2022, 24, 3416-3432.	4.6	14
2653	Controlled Drug Delivery Systems. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 184-204.	0.2	0
2654	Understanding Hydrogels and Insight on the Latest Hydrogel Applications in Pharmaceutical and Allied Sciences. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 281-308.	0.2	0
2655	Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Current Neuropharmacology, 2023, 21, 493-516.	1.4	15
2656	Recent Updates on Supramolecularâ€Based Drug Delivery – Macrocycles and Supramolecular Gels. Chemical Record, 2022, 22, e202200053.	2.9	16
2657	Robust gelatin hydrogels for local sustained release of bupivacaine following spinal surgery. Acta Biomaterialia, 2022, 146, 145-158.	4.1	5
2658	NOVEL APPROACHES IN OCULAR DRUG DELIVERY-A REVOLUTION. International Journal of Applied Pharmaceutics, 0, , 1-11.	0.3	1
2659	Discovery of protein-based natural hydrogel from the girdle of the â€~sea cockroach' <i>Chiton articulatus</i> (Chitonida: Chitonidae). PeerJ, 2022, 10, e13386.	0.9	1
2660	Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. International Journal of Pharmaceutics, 2022, 621, 121786.	2.6	15
2661	Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydrate Polymers, 2022, 291, 119585.	5.1	28
2662	A DFT approach towards therapeutic potential of phosphorene as a novel carrier for the delivery of felodipine (cardiovascular drug). Computational and Theoretical Chemistry, 2022, 1212, 113724.	1.1	7
2663	The influence of poly(allylamine hydrochloride) hydrogel crosslinking density on its thermal and phosphate binding properties. International Journal of Pharmaceutics, 2022, 621, 121806.	2.6	3
2664	Multiphysics modeling and experiments on ultrasound-triggered drug delivery from silk fibroin hydrogel for Wilms tumor. International Journal of Pharmaceutics, 2022, 621, 121787.	2.6	22
2665	Magnetically Actuated Medical Robots: An in vivo Perspective. Proceedings of the IEEE, 2022, 110, 1028-1037.	16.4	36
2666	3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials. 3D Printing and Additive Manufacturing, 2023, 10, 1101-1109.	1.4	0
2667	Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Advanced Drug Delivery Reviews, 2022, 187, 114342.	6.6	29

		CITATION REPORT		
#	Article		IF	CITATIONS
2668	Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels, 20)22, 8, 306.	2.1	3
2669	Design of hydrogel–microgel composites with tailored small molecule release profiles Materials Chemistry B, 2022, , .	s. Journal of	2.9	1
2670	Generation of Selfâ€Assembled Structures Composed of Amphipathic, Charged Tripept Intracellular Delivery of Proâ€Apoptotic Chemotherapeutics. Israel Journal of Chemistry	ides for , 2022, 62, .	1.0	3
2671	A review on hydrogels classification and recent developments in biomedical application International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1059	s. 9-1069.	1.8	14
2673	Leveraging Affinity Interactions to Prolong Drug Delivery of Protein Therapeutics. Pharr 2022, 14, 1088.	naceutics,	2.0	7
2674	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Ph From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	nysical Network:	2.6	11
2675	Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion Nanocomposites. Journal of Physical Chemistry B, 2022, 126, 4132-4142.	in Hydrogel	1.2	14
2676	Role of nanomaterials with special reference to pharmaceutical technology. Internation Health Sciences, 0, , 7210-7227.	al Journal of	0.0	0
2677	Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Water/Acetone Atmosphere: Water Hydration and Co-nonsolvency-Triggered Film Contraction. Langmuir, 2022, 38,	Modulation of 6934-6948.	1.6	7
2678	Formulation of the Polymeric Double Networks (DNs) for Biomedical Applications with Physicochemical Properties to Resemble a Biological Tissue. Sustainable Chemistry, 202	22, 3, 248-258.	2.2	0
2679	Polyelectrolyte Complex-Covalent Interpenetrating Polymer Network Hydrogels. Macro 2022, 55, 4481-4491.	molecules,	2.2	10
2680	In vitroâ€studies of adenosine‷βâ€cyclodextrin inclusion complexes loaded into chit and bentoniteâ€based nanocomposite optimized by RSM as a sustained release systen Polymer Science, 2022, 139, .	osan, sodium alginate 1. Journal of Applied	1.3	0
2681	Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration. R Functional Polymers, 2022, 177, 105313.	eactive and	2.0	14
2684	Biomass-derived isosorbide-based thermoresponsive hydrogel for drug delivery. Soft Ma 4963-4972.	atter, 2022, 18,	1.2	6
2685	Applications of nanocrystals for antimicrobials. , 2022, , 367-399.			0
2686	Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therap Delivery and Translational Research, 2023, 13, 54-78.	ies. Drug	3.0	4
2687	In Vitro Evaluation of Smart and pH-Sensitive Chondroitin Sulfate/Sodium Polystyrene S Hydrogels for Controlled Drug Delivery. Gels, 2022, 8, 406.	Sulfonate	2.1	6
2688	pH-Responsive Hydrogel Beads Based on Alginate, κ-Carrageenan and Poloxamer for Er Curcumin, Natural Bioactive Compound, Encapsulation and Controlled Release Efficien 2022, 27, 4045.	ihanced cy. Molecules,	1.7	14

#	Article	IF	CITATIONS
2689	Fabrication, characterization and toxicological evaluation of polyethylene glycol/sodium polystyrene sulfonate hydrogels for controlled delivery of Acetaminophen. Journal of Materials Research and Technology, 2022, 19, 3073-3087.	2.6	3
2690	Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels, 2022, 8, 364.	2.1	22
2691	Controlled drug delivery: "A review on the applications of smart hydrogel― Materials Today: Proceedings, 2022, , .	0.9	3
2692	A Lattice Kinetic Monte Carlo method to study drug release from swelling porous delivery systems. Physica A: Statistical Mechanics and Its Applications, 2022, 603, 127775.	1.2	2
2693	Microfluidics Fabrication of Micrometer‣ized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	22
2695	Natural-based biomaterials for drug delivery wound healing patches. , 2022, , 51-73.		1
2696	Recent advances in various stimuli-responsive hydrogels: from synthetic designs to emerging healthcare applications. Materials Chemistry Frontiers, 2022, 6, 2338-2385.	3.2	36
2697	Algae-based biomaterials for biomedicines. , 2022, , 251-276.		0
2698	PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health, 2022, 8, 172-180.	0.2	4
2699	Nanocarriers System for Vitamin D as Nutraceutical in Type 2 Diabetes: A Review. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 427-436.	0.1	0
2700	Synthesis and Gelling Performances of 4-Biphenylcarboxy Protected Dipeptide. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
2701	Influence of Gel Stage from Cellulose Dissolution in NaOH-Water System on the Performances of Cellulose Allomorphs-Based Hydrogels. Gels, 2022, 8, 410.	2.1	4
2702	Transient swelling of cylindrical hydrogels under coupled extension-torsion: Analytical and 3D FEM solutions. Journal of Intelligent Material Systems and Structures, 2023, 34, 415-424.	1.4	2
2703	Recent progress in therapeutic strategies and biomimetic nanomedicines for rheumatoid arthritis treatment. Expert Opinion on Drug Delivery, 0, , 1-16.	2.4	8
2704	A two-phase model that unifies and extends the classical models of membrane transport. Science, 2022, 377, 186-191.	6.0	22
2705	Protein and polypeptide mediated delivery to the eye. Advanced Drug Delivery Reviews, 2022, 188, 114441.	6.6	13
2706	Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
2707	Carbon quantum dots improve the mechanical behavior of polyvinyl alcohol/polyethylene glycol hydrogel. Journal of Applied Polymer Science, 2022, 139, .	1.3	7

#	ARTICLE	IF	CITATIONS
2708	Tutorial Review. Advanced Materials Technologies, 2023, 8, .	3.0	10
2709	Deciphering the focuses and trends in skin regeneration research through bibliometric analyses. Frontiers in Medicine, 0, 9, .	1.2	2
2710	EQUILIBRIUM OF POLYMER GELS IN THE FIELD OF BODY FORCES. Mechanics of Solids, 2022, 57, 683-700.	0.3	0
2711	Hydrogels: Smart Materials in Drug Delivery. , 0, , .		1
2712	updated overview. International Journal of Health Sciences, 0, , 9610-9618.	0.0	0
2713	Photo-responsive hydrogel-based re-programmable metamaterials. Scientific Reports, 2022, 12, .	1.6	10
2714	Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels. Gels, 2022, 8, 477.	2.1	5
2715	Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels, 2022, 8, 454.	2.1	54
2716	A review on facile synthesis of nanoparticles made from biomass wastes. Nanotechnology for Environmental Engineering, 2022, 7, 783-796.	2.0	3
2717	Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels, 2022, 8, 529.	2.1	25
2718	ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery. Briefings in Bioinformatics, 2022, 23, .	3.2	1
2719	Inflammation-triggered dual release of nitroxide radical and growth factor from heparin mimicking hydrogel-tissue composite as cardiovascular implants for anti-coagulation, endothelialization, anti-calcification. Biomaterials, 2022, 289, 121761.	5.7	17
2720	Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics, 2022, 14, 1781.	2.0	13
2721	Injectable Hybrid-Crosslinked Hydrogels as Fatigue-Resistant and Shape-Stable Skin Depots. Biomacromolecules, 2022, 23, 3698-3712.	2.6	7
2722	Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. Chemical Record, 2022, 22, .	2.9	8
2723	Investigating the Kinetics and Structure of Network Formation in Ultraviolet-Photopolymerizable Starch Nanogel Network Hydrogels via Very Small-Angle Neutron Scattering and Small-Amplitude Oscillatory Shear Rheology. Macromolecules, 2022, 55, 7303-7317.	2.2	2
2724	Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio, 2022, 16, 100407.	2.6	9
2725	MAGL inhibitor NanoMicellar formulation (MAGL-NanoMicellar) for the development of an antiglaucoma eye drop. International Journal of Pharmaceutics, 2022, 625, 122078.	2.6	3

#	Article	IF	CITATIONS
2726	Towards a chemo-mechanical coupled theory of physical hydrogel for sol–gel transition identified by crosslink density. International Journal of Solids and Structures, 2022, 254-255, 111921.	1.3	0
2727	Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical Reviews in Food Science and Nutrition, 2024, 64, 2130-2156.	5.4	9
2728	Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics, 2022, 14, 1909.	2.0	14
2729	Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 1-32.	1.8	16
2730	Reprogramming dysfunctional dendritic cells by a versatile metabolism nano-intervenor for enhancing cancer combinatorial immunotherapy. Nano Today, 2022, 46, 101618.	6.2	5
2731	Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. Journal of Controlled Release, 2022, 350, 538-568.	4.8	5
2732	Injectable amphiphilic hydrogel systems from the self-assembly of partially alkylated poly(2-dimethyl) Tj ETQq0 0 European Polymer Journal, 2022, 179, 111559.	O rgBT /Ov 2.6	verlock 10 Tf 0
2733	Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. International Journal of Biological Macromolecules, 2022, 220, 1277-1286.	3.6	68
2734	Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydrate Polymers, 2022, 298, 120077.	5.1	12
2735	Hydrogel based 3D printing: Bio ink for tissue engineering. Journal of Molecular Liquids, 2022, 367, 120390.	2.3	12
2736	Carboxymethylated polysaccharides in drug delivery. , 2023, , 63-81.		1
2737	Cellulose composites containing active constituents of coffee and tea: a prospective novel wound dressing. Materials Advances, 2022, 3, 7463-7483.	2.6	4
2738	Modeling of stimuli-responsive hydrogels: a transient analysis. , 2022, , 223-268.		0
2739	Structure, controlled release mechanisms and health benefits of pectins as an encapsulation material for bioactive food components. Food and Function, 2022, 13, 10870-10881.	2.1	8
2740	Development of a hydrocolloid bio-ink for 3D bioprinting. Biomaterials Science, 2022, 10, 6707-6717.	2.6	7
2741	Ultrasound triggered nanovescicular drug delivery systems. , 2022, , 403-418.		0
2742	Effective pH-regulated release of covalently conjugated antibiotics from antibacterial hydrogels. Polymer Chemistry, 2022, 13, 5234-5242.	1.9	2
2743	Mechanical characterization of hydrogels. , 2022, , 1-24.		0

ARTICLE IF CITATIONS Fatigue of hydrogels. , 2022, , 119-138. 1 2744 Self-healing polyacrylamide (PAAm) gels at room temperature based on complementary guanine and 2745 1.2 cytosine base pairs. Soft Matter, 2022, 18, 7394-7401. 2746 Molecular Communication Transmitter Architectures for the Internet of Bio-Nano Things., 2022, , . 0 The Molecular and Functional Changes of Neural Stem Cells in Alzheimer's Disease: Can They be 2747 Reinvigorated to Conduct Neurogenesis. Current Stem Cell Research and Therapy, 2023, 18, 580-594. Anisotropic Muscle-like Conductive Composite Hydrogel Reinforced by Lignin and Cellulose 2748 3.2 18 Nanofibrils. ACS Sustainable Chemistry and Engineering, 2022, 10, 12993-13003. Fabrication and Characterization of Chicken- and Bovine-Derived Chondroitin Sulfate/Sodium 2.1 Alginate Hybrid Hydrogels. Gels, 2022, 8, 620. Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatologic 2750 0.8 4 Therapy, 2022, 35, . Solvent types used for the preparation of hydrogels determine their mechanical properties and influence cell viability through gelatine and calcium ions release. Journal of Biomedical Materials 1.6 Research - Part B Applied Biomaterials, 2023, 111, 314-330. Nonwoven Membranes with Infrared Light-Controlled Permeability. ACS Applied Materials & amp; 2752 4.0 3 Interfaces, 2022, 14, 42558-42567. Investigation of Hydronium Diffusion in Poly(vinyl alcohol) Hydrogels: A Critical First Step to Describe Acid Transport for Encapsulated Bioremediation. ACS ES&T Engineering, 2022, 2, 1896-1908. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue 2754 2.0 11 Regeneration. Polymers, 2022, 14, 3791. Injectable Hydrogel-Based Combination Cancer Immunotherapy for Overcoming Localized Therapeutic Efficacy. Pharmaceutics, 2022, 14, 1908. lonogels Derived from Fluorinated Ionic Liquids to Enhance Aqueous Drug Solubility for Local Drug 2757 2.1 0 Administration. Gels, 2022, 8, 594. Therapeutic application of hydrogels for bone-related diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, . Preparation, In Vitro Characterization, and Cytotoxicity Evaluation of Polymeric pH-Responsive 2759 2.0 6 Hydrogels for Controlled Drug Release. Pharmaceutics, 2022, 14, 1864. Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the 2760 2.0 Chemical-Physical Properties. Polymers, 2022, 14, 3624. Near-infrared light-responsive and antibacterial injectable hydrogels with antioxidant activity based 2761 on a Dopamine-functionalized Gellan Gum for wound healing. International Journal of Pharmaceutics, 2.6 7 2022, 627, 122257. Preparation and Evaluation of a Sulfadimethoxineâ€Conjugated Hydrogel Based on 2762 <i>N</i>â€isopropylacrylamide as a Sustained Release Drug Delivery System. ChemistrySelect, 2022, 7, .

#	Article	IF	Citations
2763	Cellulose and lignin as propitious candidates for preparation of hydrogels for pharmaceutical applications. Materials Today Communications, 2022, 33, 104617.	0.9	3
2764	Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. International Journal of Biological Macromolecules, 2022, 222, 830-843.	3.6	22
2765	Phenol release from pNIPAM hydrogels: scaling molecular dynamics simulations with dynamical density functional theory. Soft Matter, 0, , .	1.2	0
2766	SYNTHESIS AND PROPERTIES OF CROSS-LINKED HYDROGELS BASED ON CHITOSAN AND POLYACRYLAMIDE. Polymer Journal, 2022, 44, 214-221.	0.3	1
2767	Insights into current directions of protein and peptide-based hydrogel drug delivery systems for inflammation. Polymer Bulletin, 2023, 80, 9409-9436.	1.7	4
2768	A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 730-756.	1.6	4
2769	Cytotoxicity and Biocompatibility of Biobased Materials. , 2023, , 17-34.		0
2770	Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. International Journal of Molecular Sciences, 2022, 23, 12174.	1.8	8
2771	Carboxymethyl cellulose-based semi-IPN hydrogel nanocomposite with improved physicochemical and mechanical properties. Journal of Polymer Research, 2022, 29, .	1.2	5
2772	Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Current Drug Targets, 2023, 24, 13-40.	1.0	1
2773	Rate-Independent Self-Healing Double Network Hydrogels Using a Thixotropic Sacrificial Network. Macromolecules, 2022, 55, 9547-9557.	2.2	13
2774	Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics, 2022, 14, 2293.	2.0	7
2775	Electrically Induced Bursting of Aqueous Capsules Made from Biopolymers: â€~Switching On' the Release of Payloads. Advanced Functional Materials, 2022, 32, .	7.8	2
2776	Application of "Click―Chemistry in Biomedical Hydrogels. ACS Omega, 2022, 7, 36918-36928.	1.6	31
2777	Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy. Nanomaterials, 2022, 12, 3706.	1.9	11
2778	Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers, 2022, 14, 4539.	2.0	19
2779	Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 47323-47344.	4.0	17
2780	Effect of cellulose nanocrystals on rheology, liquid crystal, and delivery behavior of metronidazole poloxamer-based in-situ dental medication. Cellulose, 2022, 29, 9511-9529.	2.4	3

#	Article	IF	CITATIONS
2781	Synthesis, properties, and applications of chitosan hydrogels as anti-inflammatory drug delivery system. Journal of Porous Materials, 2023, 30, 655-670.	1.3	9
2782	Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels, 2022, 8, 706.	2.1	16
2783	An Alternative Carbon Source from Cassava Residue Saccharification Liquid for In-Situ Fabrication of Polysaccharide Macromolecule/Bacterial Cellulose Composite Hydrogel: A Comparative Study. Sustainability, 2022, 14, 14277.	1.6	1
2784	A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles. Journal of Controlled Release, 2022, 351, 883-895.	4.8	13
2785	Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Advanced Drug Delivery Reviews, 2022, 191, 114579.	6.6	11
2786	Exploration of connexin-43 modulating, multifunctional silver nanocluster-hydrogel system for theranostic management of cancer. Materials Today Chemistry, 2022, 26, 101213.	1.7	1
2787	Glycidyl Cinnamate: Copolymerization with Glycidyl Ethers, Inâ€Situ NMR Kinetics, and Photocrosslinking. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	0
2788	Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. Journal of Drug Delivery Science and Technology, 2022, 78, 103988.	1.4	13
2789	Selfâ^'Assembling Anchorage of Hyaluronic Acid on the Nanoparticle Surface Confers Superiority of Triple Negative Breast Cancer Treatment. Pharmaceutics, 2022, 14, 2461.	2.0	5
2790	Mutual Jellification of Two Bactericidal Cationic Polymers: Synthesis and Physicochemical Characterization of a New Two-Component Hydrogel. Pharmaceutics, 2022, 14, 2444.	2.0	3
2792	Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. Journal of Drug Delivery Science and Technology, 2022, 78, 103936.	1.4	12
2793	Exploration of hemocompatibility and intratumoral accumulation of paclitaxel after loco-regional administration of thermoresponsive hydrogel composed of poloxamer and xanthan gum: An application to dose-dense chemotherapy. International Journal of Biological Macromolecules, 2023, 226, 746-759.	3.6	5
2794	Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology, 2023, 79, 104018.	1.4	9
2795	Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: A structure and biological assessment study. Journal of Colloid and Interface Science, 2023, 634, 300-313.	5.0	12
2796	Studies on release kinetics of curcumin from alginate dialdehyde hydrogel. AIP Conference Proceedings, 2022, , .	0.3	0
2797	Design and evaluation of ocular hydrogel containing combination of ofloxacin and dexamethasone for the treatment of conjunctivitis. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0
2798	Advancing drug delivery to articular cartilage: From single to multiple strategies. Acta Pharmaceutica Sinica B, 2023, 13, 4127-4148.	5.7	5
2799	Biopolymer derived superabsorbent for environmental sustainability: A review. Environmental Quality Management, 2022, 32, 177-185.	1.0	2

#	Article	IF	CITATIONS
2800	3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis. Acta Biomaterialia, 2023, 157, 137-148.	4.1	7
2801	Fabricación de membranas sensibles al cambio de pH para posibles usos en tratamiento de heridas cutáneas. Revista Ion, 2022, 35, .	0.1	0
2802	A Self-Forming Hydrogel from a Bactericidal Copolymer: Synthesis, Characterization, Biological Evaluations and Perspective Applications. International Journal of Molecular Sciences, 2022, 23, 15092.	1.8	2
2803	Selfâ€Forming Norborneneâ€Tetrazine Hydrogels with Independently Tunable Properties. Macromolecular Bioscience, 2023, 23, .	2.1	2
2804	Peptide-Based Biopolymers in Biomedicine and Biotechnology. , 2023, , 1-18.		0
2805	Formulation and rheological evaluation of liposomes-loaded carbopol hydrogels based on thermal waters. Drug Development and Industrial Pharmacy, 2022, 48, 635-645.	0.9	2
2806	Rutin Nanocrystals with Enhanced Anti-Inflammatory Activity: Preparation and Ex Vivo/In Vivo Evaluation in an Inflammatory Rat Model. Pharmaceutics, 2022, 14, 2727.	2.0	9
2807	pH-Responsive, Thermo-Resistant Poly(Acrylic Acid)-g-Poly(boc-L-Lysine) Hydrogel with Shear-Induced Injectability. Gels, 2022, 8, 817.	2.1	3
2808	A new mathematical model derived from transient (creep) analysis to estimate the vaginal retention of semi-solid dosage forms. International Journal of Pharmaceutics, 2022, , 122521.	2.6	0
2809	Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts. Chemistry and Chemical Technology, 2022, 16, 555-563.	0.2	0
2810	Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass. Food Hydrocolloids for Health, 2022, , 100114.	1.6	2
2811	Multilayered "SMART―hydrogel systems for on-site drug delivery applications. Journal of Drug Delivery Science and Technology, 2023, 80, 104111.	1.4	3
2812	Xylan-Based Hydrogels: A Polymeric Carrier for Sustained and Targeted Delivery of Drugs. , 0, , .		0
2813	Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003–2022). Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
2814	Implantable and in-vivo shape-recoverable nanocellulose-hyaluronic acid composite hydrogel. Carbohydrate Polymers, 2023, 305, 120540.	5.1	8
2815	Microsponges: An Emerging Formulation Tool for Topical Drug Delivery. Pharmacophore, 2022, 13, 20-34.	0.2	1
2816	Improve Hydrogel Adhesion by Introducing Pillar Structures at the Interface. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	2
2817	Degradable and Tunable Keratin-fibrinogen Hydrogel as Controlled Release System for Skin Tissue Regeneration. Journal of Bionic Engineering, 2023, 20, 1049-1059.	2.7	3

#	Article	IF	CITATIONS
2818	Electron Beam Irradiation Cross-Linked Hydrogel Patches Loaded with Red Onion Peel Extract for Transdermal Drug Delivery: Formulation, Characterization, Cytocompatibility, and Skin Permeation. Gels, 2023, 9, 52.	2.1	0
2819	Towards the personalization of gelatin-based 3D patches: a tunable porous carrier for topical applications. Drug Delivery and Translational Research, 0, , .	3.0	0
2820	Hydrogel Formulations of Antibacterial Pyrazoles Using a Synthesized Polystyrene-Based Cationic Resin as a Gelling Agent. International Journal of Molecular Sciences, 2023, 24, 1109.	1.8	4
2821	Construction of nanohydrogels for enhanced delivery of hydrophilic and hydrophobic drugs and improving chemotherapy efficacy. European Polymer Journal, 2023, 186, 111838.	2.6	3
2822	Poly(<i>N</i> -allyl acrylamide) as a Reactive Platform toward Functional Hydrogels. ACS Macro Letters, 2023, 12, 79-85.	2.3	7
2823	Double Stimuli-Responsive di- and Triblock Copolymers of Poly(N-isopropylacrylamide) and Poly(1-vinylimidazole): Synthesis and Self-Assembly. International Journal of Molecular Sciences, 2023, 24, 879.	1.8	0
2824	Single-Component Physical Hydrogels of Dendritic Molecules. Journal of Composites Science, 2023, 7, 26.	1.4	3
2825	Biobased polymers from lignocellulosic sources. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	3
2826	A Brief Review on Hydrogel. Research Journal of Topical and Cosmetic Sciences, 2022, , 99-100.	0.1	2
2828	Impact of graphene oxide lateral dimensions on the properties of methacrylated gelatin nanocomposite hydrogels. Journal of Materials Chemistry B, 2023, 11, 1987-1997.	2.9	2
2829	Micelleâ€crosslinked hydrogels with stretchable, selfâ€healing, and selectively adhesive properties: Random copolymers work as dynamic yet selfâ€sorting domains. Aggregate, 2023, 4, .	5.2	4
2830	CO2 supercritical extraction and microencapsulation of oleoresins from rosehip fruits for getting powders with multiple applications. Current Research in Food Science, 2023, 6, 100449.	2.7	6
2831	Tools and techniques for characterizing sustainable hydrogels. , 2023, , 47-77.		1
2832	Xanthan Gum-Based Drug Delivery Systems for Respiratory Diseases. , 2023, , 279-295.		1
2833	Sustainable hydrogels in food packaging systems. , 2023, , 355-374.		0
2834	Neural Drug Delivery. , 2023, , 651-691.		0
2835	Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. Journal of Functional Biomaterials, 2023, 14, 55.	1.8	23
2836	Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules, 2023, 13, 205.	1.8	5

#	Article	IF	CITATIONS
2837	Coupled Chemo-Mechanical Swelling Behavior of PH-Sensitive Hollow Cylinder Hydrogels under Extension–Torsion and Internal Pressure: Analytical and 3D FEM Solutions. International Journal of Applied Mechanics, 2023, 15, .	1.3	3
2838	Nanohydrogels for achieving green economy. , 2023, , 113-136.		0
2839	Hydrogel-based Treatment Strategies to Accelerate Diabetic Foot Ulcer Healing. Current Diabetes Reviews, 2023, 19, .	0.6	0
2840	Thermosensitive Biodegradable Hydrogels for Local and Controlled Cerebral Delivery of Proteins: MRI-Based Monitoring of <i>In Vitro</i> and <i>In Vivo</i> Protein Release. ACS Biomaterials Science and Engineering, 0, , .	2.6	1
2841	Alginate Based Interpenetrating Polymer Network (IPN) in Drug Delivery and Biomedical Applications. , 2023, , 135-153.		0
2842	Accelerating Payload Release from Complex Coacervates through Mechanical Stimulation. Polymers, 2023, 15, 586.	2.0	0
2843	Sustained Release of Tacrolimus Embedded in a Mixed Thermosensitive Hydrogel for Improving Functional Recovery of Injured Peripheral Nerves in Extremities. Pharmaceutics, 2023, 15, 508.	2.0	2
2844	Nanostructured Poly(ethylene glycol) Diacrylate-Based Hydrogels Printed by Focused Electron Beam-Induced Deposition: Implications for Nanosensors. ACS Applied Nano Materials, 2023, 6, 2366-2373.	2.4	0
2845	Curcumin Release from Biomaterials for Enhanced Tissue Regeneration Following Injury or Disease. Bioengineering, 2023, 10, 262.	1.6	6
2846	Synthesis and Evaluation of Rutin–Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants, 2023, 12, 552.	2.2	11
2847	Development of Thiol-Maleimide hydrogels incorporating graphene-based nanomaterials for cancer chemo-photothermal therapy. International Journal of Pharmaceutics, 2023, 635, 122713.	2.6	10
2848	NIR-light-responsive chemo-photothermal hydrogel system with controlled DOX release and photothermal effect for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131407.	2.3	3
2849	Polymerized stimuli-responsive microgels for the removal of organic dye from water. Journal of Molecular Liquids, 2023, 375, 121267.	2.3	4
2850	Reversible Molecular Capture and Release in Microfluidics by Host–Guest Interactions in Hydrogel Microdots. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
2851	Dual crosslinked injectable protein-based hydrogels with cell anti-adhesive properties. Biomedical Materials (Bristol), 2023, 18, 025012.	1.7	0
2852	Visible light laser direct-writing of high-resolution, biocompatible, super-multifunctional and tough hydrogels without photoinitiators in 30Ås. , 2023, 147, 213318.		1
2853	Applications of functionally-adapted hydrogels in tendon repair. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	3
2854	Impact of Poly (Vinyl Alcohol) on The Thermogelation Property and Drug Release Profile of Ophthalmic Formulations Based on Poloxamer 407. ChemistrySelect, 2023, 8, .	0.7	2

#	Article	IF	CITATIONS
2855	Injectable Thermosensitive Nanocomposites Based on Poly(<i>N</i> -vinylcaprolactam) and Silica Particles for Localized Release of Hydrophilic and Hydrophobic Drugs. Langmuir, 2023, 39, 2380-2388.	1.6	0
2856	Freeze–thaw hydrogel fabrication method: basic principles, synthesis parameters, properties, and biomedical applications. Materials Research Express, 2023, 10, 024003.	0.8	19
2857	Vitreous Substitutes from Bench to the Operating Room in a Translational Approach: Review and Future Endeavors in Vitreoretinal Surgery. International Journal of Molecular Sciences, 2023, 24, 3342.	1.8	1
2858	Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomaterials Science, 2023, 11, 2726-2737.	2.6	2
2859	Hydrogel-mediated drug delivery for treating stroke. Chinese Chemical Letters, 2023, 34, 108205.	4.8	9
2860	Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels, 2023, 9, 161.	2.1	22
2861	Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Delivery and Translational Research, 2023, 13, 1436-1455.	3.0	6
2862	Conformation of Network Strands in Polymer Gels. ACS Macro Letters, 2023, 12, 325-330.	2.3	6
2863	A constitutive model for elastomers tailored by ionic bonds and entanglements. Mechanics of Materials, 2023, 179, 104604.	1.7	2
2864	Antiinflammatory activity of herbal bioactive-based formulations for topical administration. , 2023, , 245-277.		0
2865	Improving quercetin anticancer activity through a novel polyvinylpyrrolidone/polyvinyl alcohol/TiO2 nanocomposite. Journal of Drug Delivery Science and Technology, 2023, 81, 104304.	1.4	15
2866	Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS Omega, 2023, 8, 8960-8976.	1.6	10
2867	Nanoâ€Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway: Review Article. Chemistry and Biodiversity, 2023, 20, .	1.0	6
2868	Synthesis of biodegradable carboxymethyl cellulose film-loaded magnesium nanoparticles. Emergent Materials, 2023, 6, 561-571.	3.2	3
2869	Injectable Self-Healing Adhesive Natural Glycyrrhizic Acid Bioactive Hydrogel for Bacteria-Infected Wound Healing. ACS Applied Materials & Interfaces, 2023, 15, 17562-17576.	4.0	21
2870	Preparation of Cellulose Hydrogels and Hydrogel Nanocomposites Reinforced by Crystalline Cellulose Nanofibers (CNFs) as a Water Reservoir for Agriculture Use. ACS Applied Polymer Materials, 2023, 5, 2895-2904.	2.0	10
2871	Development of a Supramolecular Hydrogel for Intraperitoneal Injections. Macromolecular Bioscience, 2024, 24, .	2.1	3
2872	Analysis of diffusion of plant metabolites from polyethylene glycol hydrogels using free volume theory. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 0	1.0	1

#	Article	IF	Citations
2873	Hydrogels—A Promising Materials for 3D Printing Technology. Gels, 2023, 9, 260.	2.1	16
2874	A gradient four-layered gelatin methacrylate/agarose construct as an injectable scaffold for mimicking osteochondral tissue. Journal of Materials Science, 2023, 58, 5735-5755.	1.7	4
2875	Optimization of phosphorus-loaded Ni–ZnO crosslinked carboxy methyl cellulose-based biodegradable nanocomposite hydrogel beads for the slow release of P, Ni and Zn: a kinetic approach. New Journal of Chemistry, 2023, 47, 8200-8213.	1.4	3
2876	The Use of Hydrogels for the Treatment of Bone Osteosarcoma via Localized Drug-Delivery and Tissue Regeneration: A Narrative Review. Gels, 2023, 9, 274.	2.1	1
2877	Experimental Demonstration of Compact Polymer Mass Transfer Device Manufactured by Additive Manufacturing with Hydrogel Integration to Bio-Mimic the Liver Functions. Bioengineering, 2023, 10, 416.	1.6	0
2878	An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. Livers, 2023, 3, 161-189.	0.8	5
2879	Conducting gelatin/PAM DN hydrogels with high mechanical properties prepared using the photoinduced one-pot method for strain sensors. New Journal of Chemistry, 2023, 47, 8050-8061.	1.4	3
2880	3D printed superparamagnetic stimuli-responsive starfish-shaped hydrogels. Heliyon, 2023, 9, e14682.	1.4	7
2881	Wood Biorefineries. Springer Handbooks, 2023, , 1713-1751.	0.3	0
2882	Large amplitude oscillatory shear studies on dense PNIPAM microgel colloidal glasses. Colloid and Polymer Science, 0, , .	1.0	0
2883	Hydrophobized Hydrogels: Construction Strategies, Properties, and Biomedical Applications. Advanced Functional Materials, 2023, 33, .	7.8	7
2884	An injectable chitosan/laponite hydrogel synthesized via hybrid crossâ€linking system: A smart platform for cartilage regeneration. Polymers for Advanced Technologies, 2023, 34, 2298-2311.	1.6	3
2885	Simple, Rapid, and Largeâ€6cale Fabrication of Multiâ€Branched Hydrogels Based on Viscous Fingering for Cell Culture Applications. Macromolecular Bioscience, 0, , .	2.1	0
2886	Advanced Formulation Approaches for Proteins. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
2887	Materials for Controlled Release of Local Anesthetics. ChemMedChem, 2023, 18, .	1.6	1
2888	Topical effect of polyherbal flowers extract on xanthan gum hydrogel patch—induced wound healing activity in human cell lines and male BALB/c mice. Biomedical Materials (Bristol), 2023, 18, 035016.	1.7	2
2889	Chitosan-based hydrogels for wound healing: correspondence. International Journal of Surgery, 2023, 109, 1821-1822.	1.1	5
2890	Tellurium-containing polymers: Recent developments and trends. Progress in Polymer Science, 2023, 141, 101678.	11.8	5

		CITATION REPORT		
#	Article		IF	Citations
2891	Current advances in nanodrug delivery systems for malaria prevention and treatment.	, 2023, 18, .		1
2892	Colloidal curcumin-laden pH-responsive hydrogels: A promising approach to enhance s dissolution, and permeation of hydrophobic drug. Journal of Drug Delivery Science and 2023, 84, 104471.	olubility, Technology,	1.4	0
2893	Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. Jo Molecular Graphics and Modelling, 2023, 122, 108497.	urnal of	1.3	0
2900	Peptide-Based Biopolymers in Biomedicine and Biotechnology. , 2023, , 1117-1134.			0
2903	Therapeutic polymer gel system in neural tissue engineering. , 2023, , 151-172.			0
2909	Hydrogels and Nanohydrogels. , 2023, , 140-182.			0
2922	Bio-based Versus Petro-based Superabsorbent Polymers. Engineering Materials, 2023,	, 51-65.	0.3	0
2924	Alginate-based nanocomposite hydrogels for antimicrobial and antibiofilm applications 363-385.	. , 2023, ,		1
2930	Hydrogels: Definition, History, Classifications, Formation, Constitutive Characteristics, Applications. , 2023, , 1-25.	and		0
2931	Toxicity, Regulatory Considerations, and Commercialization Aspects of Multi-compone 2023, , 604-635.	nt Hydrogels. ,		0
2938	An Overview on the Pharmaceutical Applications of Nanocellulose. Composites Scienc Technology, 2023, , 395-411.	e and	0.4	0
2949	Therapeutic Potentials of Hydrogel and Nanogel in CNS Disorders. , 0, , .			0
2950	Ultrasound-triggered drug delivery. , 2023, , 577-591.			0
2954	Crosslinking of Starch. , 2023, , 103-125.			1
2965	Heparin-based nanocomposite hydrogels. , 2024, , 233-248.			0
2977	Bio-inspired drug delivery systems. , 2023, , 683-702.			0
2982	Peptide-Based Therapeutics and Drug Delivery Systems. , 2023, , 173-211.			0
2989	Hydrogels for Cardiac Restorative Support: Relevance of Gelation Mechanisms for Pros Clinical Use. Current Heart Failure Reports, 2023, 20, 519-529.	pective	1.3	1

D

		CITATION REPORT		
#	Article		IF	CITATIONS
3002	Hydrogels and nanogels as a promising carrier for drug delivery. , 0, , .			0
3010	Stimuli-Responsive Interfaces. ACS Symposium Series, 0, , 149-194.		0.5	0
3024	Influence of embedded polyelectrolyte on the structure and dynamics of polyacrylamid AIP Conference Proceedings, 2023, , .	e hydrogels.	0.3	0
3026	Recent trends on hydrogel development and sustainable applications: a bibliometric an concise review. Polymer Bulletin, O, , .	alysis and	1.7	0
3031	Versatile Hydrogels in Regenerative Medicine. , 2023, , 61-166.			0
3034	A nIR fluorescent single walled carbon nanotube sensor for broad-spectrum diagnostics Diagnostics, 2024, 3, 203-217.	s. Sensors &	1.9	2
3050	Cellulose Nanocrystals-Based Hydrogels for Drug Delivery. , 2024, , 50-68.			0
3052	Nanomaterials in drug delivery. , 2024, , 297-319.			0
3053	Hydrogel-based nanomedicines for cancer immunotherapy. , 2024, , 139-174.			0
3057	Controlled Release of Curcumin from Hydrogels: Biomedical Applications with a Focus on Neurodegenerative Diseases. , 2023, , 403-436.	on		0
3059	Physical processes of obtaining gels and hydrogels from natural polymers. , 2024, , 41-7	73		0
3080	Brief Introduction and Various Crosslinking Approaches. , 2024, , 1-27.			0