On the role of surface energy and surface stress in phas

Progress in Materials Science 53, 481-527 DOI: 10.1016/j.pmatsci.2007.09.001

Citation Report

#	ARTICLE	IF	CITATIONS
1	Modeling size and surface effects on ZnS phase selection. Chemical Physics Letters, 2008, 455, 202-206.	2.6	29
-			_,
2	Melting of surface layers of nanoparticles: Landau model. Materials Chemistry and Physics, 2008, 112, 226-229.	4.0	23
3	Size-dependent surface stress, surface stiffness, and Young's modulus of hexagonal prism [111] β-SiC nanowires. Journal of Applied Physics, 2008, 103, .	2.5	91
4	Solute drag or diffusion processes in a migrating thick interface. Philosophical Magazine Letters, 2008, 88, 415-420.	1.2	2
5	Effect of surface morphology and temperature on the structural stability of nanoscale wavy films. Nanotechnology, 2008, 19, 315702.	2.6	2
6	The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. Journal of Applied Physics, 2008, 104, .	2.5	259
7	Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures. Nanotechnology, 2009, 20, 425303.	2.6	26
8	Phase Transformations of Nanocrystalline Martensitic Materials. MRS Bulletin, 2009, 34, 814-821.	3.5	128
9	Deformation, stress state and thermodynamic force for a growing void in an elastic–plastic material. International Journal of Plasticity, 2009, 25, 1819-1832.	8.8	33
10	Computational study of the surface properties of aluminum nanoparticles. Surface Science, 2009, 603, 2042-2046.	1.9	58
11	Effect of hydrostatic pressure on self-diffusion in metal nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1738-1740.	2.7	2
12	A finite element framework for continua with boundary energies. Part I: The two-dimensional case. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2198-2208.	6.6	77
13	Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres. Acta Materialia, 2009, 57, 1912-1919.	7.9	28
14	Vacancy-driven stress relaxation in layers. Acta Materialia, 2009, 57, 4649-4657.	7.9	19
15	Surface Energy of Nanostructural Materials with Negative Curvature and Related Size Effects. Chemical Reviews, 2009, 109, 4221-4247.	47.7	211
16	Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations. Journal of the Electrochemical Society, 2009, 156, A927.	2.9	126
17	Dynamic Properties of the Group 14 Zintl Ions and Their Derivatives. Structure and Bonding, 2010, , 59-89.	1.0	12
18	Concept of reversible cleavage in surface tension of solids. Protection of Metals and Physical Chemistry of Surfaces, 2010, 46, 21-26.	1.1	9

ATION REDO

#	Article	IF	CITATIONS
19	Effect of lattice strain on the kinetics of hydride formation in metal nanoparticles. Chemical Physics Letters, 2010, 492, 77-81.	2.6	10
20	Substitutional diffusion in multicomponent solids with non-ideal sources and sinks for vacancies. Acta Materialia, 2010, 58, 2698-2707.	7.9	31
21	Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171, 86-89.	3.5	53
22	Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory. Journal of the Mechanics and Physics of Solids, 2010, 58, 390-408.	4.8	45
23	A finite element framework for continua with boundary energies. Part II: The three-dimensional case. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 755-765.	6.6	84
24	Stresses in hollow nanoparticles. International Journal of Solids and Structures, 2010, 47, 2799-2805.	2.7	26
25	On thermomechanical solids with boundary structures. International Journal of Solids and Structures, 2010, 47, 3245-3253.	2.7	61
26	Surface Tension and Energy in Multivariant Martensitic Transformations: Phase-Field Theory, Simulations, and Model of Coherent Interface. Physical Review Letters, 2010, 105, 165701.	7.8	117
27	Laplace's law and the interfacial momentum source in two-phase models. Physical Review E, 2010, 81, 066306.	2.1	1
28	Synchrotron x-ray diffraction measurements of strain in metallic nanoparticles with oxide shells. Journal Physics D: Applied Physics, 2010, 43, 075301.	2.8	9
29	Curvature-induced excess surface energy of fullerenes: Density functional theory and Monte Carlo simulations. Physical Review B, 2010, 81, .	3.2	27
30	Viscous State Effect on the Activity of Fe Nanocatalysts. ACS Nano, 2010, 4, 6950-6956.	14.6	27
31	Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics, 2010, 18, 509-517.	3.9	26
32	Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy. International Journal of Materials Research, 2011, 102, 652-665.	0.3	58
33	Shell-Models for Multi-Layer Carbon Nano-Particles. Advanced Structured Materials, 2011, , 585-602.	0.5	3
34	Shell-like Structures. Advanced Structured Materials, 2011, , .	0.5	23
35	Size-Dependent Crystalline to Amorphous Uphill Phase Transformation of Hydroxyapatite Nanoparticles. Crystal Growth and Design, 2011, 11, 45-52.	3.0	16
36	Effects of size and surface on the elasticity of silicon nanoplates: Molecular dynamics and semi-continuum approaches. Thin Solid Films, 2011, 520, 391-399.	1.8	43

#	ARTICLE	IF	CITATIONS
37	Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion.	4.8	51
38	Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. International Journal of Engineering Science, 2011, 49, 1244-1255.	5.0	204
39	Surface stress effects on the free vibration behavior of nanoplates. International Journal of Engineering Science, 2011, 49, 1204-1215.	5.0	143
40	The Mie-Grüneisen equation of state for metal nanoparticles. European Physical Journal B, 2011, 79, 321-325.	1.5	9
41	Thermodynamics and kinetics of nanovoid nucleation inside elastoplastic material. Acta Materialia, 2011, 59, 7051-7059.	7.9	11
42	Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Archives of Toxicology, 2011, 85, 751-773.	4.2	72
43	Stress development during reaction of metallic nanospheres with gas. Acta Materialia, 2011, 59, 61-67.	7.9	16
44	Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 2011, 24, 52-82.	1.9	274
45	A finite element framework for continua with boundary energies. Part III: The thermomechanical case. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 1963-1977.	6.6	30
46	Modeling of excess vacancy annihilation at different types of sinks. Acta Materialia, 2011, 59, 3463-3472.	7.9	101
47	Surface eigen-displacement and surface Poisson's ratios of solids. Acta Materialia, 2011, 59, 4437-4447.	7.9	27
48	Prediction of formation of cubic boron nitride by construction of temperature–pressure phase diagram at the nanoscale. Journal of Solid State Chemistry, 2011, 184, 1598-1602.	2.9	16
49	On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles. International Journal of Materials Research, 2011, 102, 1-5.	0.3	10
50	Modelling of Reaction of Metallic Nanospheres with Gas. Solid State Phenomena, 0, 172-174, 1028-1037.	0.3	1
51	Hydroxyapatite Nanopowder Synthesis with a Programmed Resorption Rate. Journal of Nanomaterials, 2012, 2012, 1-9.	2.7	17
52	Asymmetric Hysteresis in Nanoscopic Single-Metal Hydrides: Palladium Nanorings. Journal of Physical Chemistry C, 2012, 116, 21201-21207.	3.1	22
53	Numerical modelling of thermomechanical solids with mechanically energetic (generalised) Kapitza interfaces. Computational Materials Science, 2012, 65, 542-551.	3.0	35
54	Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Philosophical Magazine, 2012, 92, 3540-3563.	1.6	31

ARTICLE IF CITATIONS # Synthesis of polysucrose-based nanoparticles by a one-step method. Carbohydrate Polymers, 2012, 88, 10.2 5 55 1227-1232. A deformational and configurational framework for geometrically non-linear continuum thermomechanics coupled to diffusion. International Journal of Non-Linear Mechanics, 2012, 47, 2.6 215-227. Thermodynamics and kinetics of nucleation of a spherical gas bubble inside an elastoplastic material 57 8.8 5 due to sublimation. International Journal of Plasticity, 2012, 34, 12-40. Sublimation, chemical decomposition, and melting inside an elastoplastic material: General continuum thermodynamic and kinetic theory. International Journal of Plasticity, 2012, 34, 41-60. Misinterpretation of the Shuttleworth equation. Scripta Materialia, 2012, 66, 627-629. 59 5.2 17 Surface free energy and surface stress as elastic components of the surface tension of condensed 1.1 matter. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 27-41. Rigid frictionless indentation on elastic half space with influence of surface stresses. International 61 5.0 58 Journal of Engineering Science, 2013, 71, 15-35. Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. Ácta Materialia, 2013, 61, 1773-1784. Geometrically nonlinear higher-gradient elasticity with energetic boundaries. Journal of the 63 4.8 179 Mechanics and Physics of Solids, 2013, 61, 2381-2401. A phase-field model for systems with coupled large deformation and mass transport. Journal of the 64 4.8 Mechanics and Physics of Solids, 2013, 61, 1281-1294. A nanoscale shape memory oxide. Nature Communications, 2013, 4, 2768. 12.8 65 95 A variational approach to grooving and wetting. Acta Materialia, 2013, 61, 1581-1591. Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta 67 8.3 59 Biomaterialia, 2013, 9, 5531-5543. Computational Thermomechanics with Boundary Structures., 2013, , 179-191. Interface stress for nonequilibrium microstructures in the phase field approach: Exact analytical 69 3.2 28 results. Physical Review B, 2013, 87, . Micro-to-macro transitions for continua with surface structure at the microscale. International 48 Journal of Solids and Structures, 2013, 50, 2561-2572. Manipulation of Phase and Microstructure at Nanoscale for SiC in Molten Salt Synthesis. Chemistry 71 6.7 45 of Materials, 2013, 25, 2021-2027. Postbuckling characteristics of nanobeams based on the surface elasticity theory. Composites Part B: 64 Engineering, 2013, 55, 240-246.

#	Article	IF	Citations
73	A new computational treatment of reactive diffusion in binary systems. Computational Materials Science, 2013, 78, 39-46.	3.0	14
74	Driving forces for interface kinetics and phase field models. International Journal of Solids and Structures, 2013, 50, 2424-2436.	2.7	17
75	Nanoparticle Fundamentals. Interface Science and Technology, 2013, 19, 1-84.	3.3	9
76	Understanding Diffusion-Induced-Stresses in Lithium Ion Battery Electrodes. , 2013, , 203-215.		1
77	Thermodynamically consistent phase field approach to phase transformations with interface stresses. Acta Materialia, 2013, 61, 4305-4319.	7.9	63
78	Phase transformations in Au(Fe) nano- and microparticles obtained by solid state dewetting of thin Au–Fe bilayer films. Acta Materialia, 2013, 61, 5130-5143.	7.9	30
79	Numerical modelling of thermomechanical solids with highly conductive energetic interfaces. International Journal for Numerical Methods in Engineering, 2013, 93, 551-574.	2.8	23
80	Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review. Applied Mechanics Reviews, 2013, 65, .	10.1	147
81	Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. International Journal of Nanomedicine, 2013, 8, 653.	6.7	49
82	Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery. International Journal of Nanomedicine, 2013, 8, 2859.	6.7	19
83	Interfaces endowed with nonconstant surface energies revisited with the d'Alembert–Lagrange principle. Mathematics and Mechanics of Complex Systems, 2014, 2, 23-43.	0.9	8
84	Unambiguous Gibbs dividing surface for nonequilibrium finite-width interface: Static equivalence approach. Physical Review B, 2014, 89, .	3.2	17
85	Formation of bubbles by hydrogen attack and elastic–plastic deformation of the matrix. International Journal of Plasticity, 2014, 63, 110-123.	8.8	16
86	Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 015013.	2.0	6
87	Simple views on surface stress and surface energy concepts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 013002.	1.5	26
88	Growth limit of carbon onions – A continuum mechanical study. International Journal of Solids and Structures, 2014, 51, 706-715.	2.7	13
89	On the bending and buckling behaviors of Mindlin nanoplates considering surface energies. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57, 126-137.	2.7	41
90	Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	45

#	Article	IF	CITATIONS
91	Microstructure-based multiphysics modeling for semiconductor integration and packaging. Science Bulletin, 2014, 59, 1696-1708.	1.7	2
92	Physical Metallurgy of Nanocrystalline Metals. , 2014, , 2707-2805.		7
93	Solid state transitions of Bi ₂ O ₃ nanoparticles. Journal of Materials Research, 2014, 29, 1383-1392.	2.6	23
94	Size Effect on the Short Range Order and the Crystallization of Nanosized Amorphous Alumina. Crystal Growth and Design, 2014, 14, 3983-3989.	3.0	34
95	First order derivatives of thermodynamic functions under assumption of no chemical changes revisited. Journal of Computational Science, 2014, 5, 597-602.	2.9	5
96	Phase field approach to martensitic phase transformations with large strains and interface stresses. Journal of the Mechanics and Physics of Solids, 2014, 70, 154-189.	4.8	83
97	Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Composite Structures, 2014, 116, 552-561.	5.8	64
98	Surface stress effect on the pull-in instability of circular nanoplates. Acta Astronautica, 2014, 102, 140-150.	3.2	55
100	Thermodynamically consistent phase field theory of phase transformations with anisotropic interface energies and stresses. Physical Review B, 2015, 92, .	3.2	9
101	Tissue growth controlled by geometric boundary conditions: a simple model recapitulating aspects of callus formation and bone healing. Journal of the Royal Society Interface, 2015, 12, 20150108.	3.4	3
102	Size effect of the surface energy density of nanoparticles. Surface Science, 2015, 636, 19-24.	1.9	86
103	Pseudoelasticity effect in amorphous—crystalline Ti _{40.7} Hf _{9.5} Ni _{44.8} Cu ₅ shape memory alloy. Smart Materials and Structures, 2015, 24, 045013.	3.5	9
104	Relaxation of a precipitate misfit stress state by creep in the matrix. International Journal of Plasticity, 2015, 64, 164-176.	8.8	16
105	Grain size effect on the martensitic transformation temperatures of nanocrystalline NiTi alloy. Smart Materials and Structures, 2015, 24, 072001.	3.5	22
106	Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect. Journal of Mechanical Science and Technology, 2015, 29, 1151-1161.	1.5	15
107	Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals withÂdifferent size and shape. Nature Materials, 2015, 14, 1236-1244.	27.5	160
108	Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity. Journal of Applied Physics, 2015, 118, .	2.5	9
109	The α ↔ γ transformation in Fe and Fe–Au thin films, micro- and nanoparticles – an in situ study. Acta Materialia, 2015, 98, 343-354.	7.9	16

	Сітатіо	n Report	
#	Article	IF	CITATIONS
110	Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds. The Open Orthopaedics Journal, 2016, 10, 900-919.	0.2	25
111	Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Materials and Design, 2016, 105, 341-351.	7.0	63
112	Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation. Journal of the Mechanics and Physics of Solids, 2016, 91, 94-125.	4.8	42
113	Phase Transformations in Au-Fe Particles and Thin Films: Size Effects at the Micro- and Nano-scales. Jom, 2016, 68, 1335-1342.	1.9	10
114	Atomic-Scale Structure and Stability of the Low-Index Surfaces of Pyrochlore Oxides. Journal of Physical Chemistry C, 2016, 120, 10485-10499.	3.1	19
115	Size-Dependent Vacancy Concentration in Nickel, Copper, Gold, and Platinum Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 17613-17619.	3.1	14
116	Coherent energetic interfaces accounting for in-plane degradation. International Journal of Fracture, 2016, 202, 135-165.	2.2	6
117	Thermodynamic aspects of capillarity and electrocapillarity of solid interfaces. Journal of Solid State Electrochemistry, 2016, 20, 2929-2950.	2.5	10
118	Non-circular nano-inclusions with interface effects that achieve uniform internal strain fields in an elastic plane under anti-plane shear. Archive of Applied Mechanics, 2016, 86, 1295-1309.	2.2	23
119	Stress relaxation by power-law creep during growth of a misfitting precipitate. International Journal of Solids and Structures, 2016, 96, 74-80.	2.7	2
120	Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. International Journal of Mechanical Sciences, 2016, 107, 170-179.	6.7	40
121	The influence of surface boundary conditions on the phonon contribution to the melting temperature of nanoparticles. Physica B: Condensed Matter, 2016, 481, 133-136.	2.7	2
122	Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. International Journal of Engineering Science, 2016, 99, 92-106.	5.0	50
123	Modeling concepts for intermetallic titanium aluminides. Progress in Materials Science, 2016, 81, 55-124.	32.8	304
124	Precipitate growth in multi-component systems with stress relaxation by diffusion and creep. International Journal of Plasticity, 2016, 82, 112-126.	8.8	23
125	A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses. Physical Chemistry Chemical Physics, 2016, 18, 12183-12203.	2.8	20
126	A Novel Beam-Elastic Substrate Model with Inclusion of Nonlocal Elasticity and Surface Energy Effects. Arabian Journal for Science and Engineering, 2016, 41, 4099-4113.	1.1	5
127	Martensitic phase transformations in shape memory alloy: phase field modeling with surface tension effect. Computational Materials Science, 2016, 115, 137-144.	3.0	36

#	Article	IF	CITATIONS
128	Elastic layer under axisymmetric surface loads and influence of surface stresses. Applied Mathematical Modelling, 2016, 40, 1532-1553.	4.2	26
131	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	4.3	53
132	Influence of surface energy on the nanoindentation response of elastically-layered viscoelastic materials. International Journal of Mechanics and Materials in Design, 2016, 12, 193-209.	3.0	9
133	Calibration of phase field parameters demonstrated on kinetics of a shrinking single grain. Philosophical Magazine Letters, 2017, 97, 92-100.	1.2	0
134	Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films. Advanced Functional Materials, 2017, 27, 1604944.	14.9	107
135	Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. Nanoscale, 2017, 9, 9973-9986.	5.6	249
136	Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction. Journal of Physical Chemistry C, 2017, 121, 18202-18213.	3.1	67
137	Dynamic instability and bifurcation of electrically actuated circular nanoplate considering surface behavior and small scale effect. International Journal of Mechanical Sciences, 2017, 126, 12-23.	6.7	15
138	Can Silver Be Alloyed with Bismuth on Nanoscale? An Optical and Structural Approach. Journal of Physical Chemistry C, 2017, 121, 940-949.	3.1	10
139	Gurtin-Murdoch surface elasticity theory revisit: An orbital-free density functional theory perspective. Journal of the Mechanics and Physics of Solids, 2017, 109, 178-197.	4.8	24
140	Thermodynamic Treatment of Diffusive Phase Transformation (Reactive Diffusion). , 2017, , 391-434.		0
141	Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments. Acta Mechanica, 2017, 228, 3789-3810.	2.1	27
142	Size, shape and temperature dependent surface energy of binary alloy nanoparticles. Applied Surface Science, 2017, 426, 1094-1099.	6.1	29
143	Size Dependency in the Axial Postbuckling Behavior of Nanopanels Made of Functionally Graded Material Considering Surface Elasticity. Arabian Journal for Science and Engineering, 2017, 42, 4617-4633.	3.0	21
144	Interfacial stresses within boundary between martensitic variants: Analytical and numerical finite strain solutions for three phase field models. Acta Materialia, 2017, 139, 174-187.	7.9	23
145	Phase-field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. simulations of phase transformations Si I <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML">< mml:mo>â†"</mml:math> Si II. International Journal of Plasticity, 2018,	8.8	20
146	Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains. Journal of the Mechanics and Physics of Solids, 2018, 113, 162-196.	4.8	37
147	Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior. Geophysical Journal International, 2018, 212, 345-388.	2.4	18

	СПАПО	N REPORT	
#	Article	IF	CITATIONS
148	Multi-phase-field method for surface tension induced elasticity. Physical Review B, 2018, 97, .	3.2	8
149	Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 2018, 30, 1703862.	21.0	403
150	Surface plasticity: theory and computation. Computational Mechanics, 2018, 62, 617-634.	4.0	4
151	Surface energy of nanoparticles – influence of particle size and structure. Beilstein Journal of Nanotechnology, 2018, 9, 2265-2276.	2.8	130
152	Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy. Physical Review Letters, 2018, 120, 225502.	7.8	85
153	Flexural responses of nanobeams with coupled effects of nonlocality and surface energy. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1771-1793.	1.6	7
154	6.3 The Elusive Interphase/Interface in Polymer Nanocomposites. , 2018, , 52-72.		3
155	Phase field-elasticity analysis of austenite–martensite phase transformation at the nanoscale: Finite element modeling. Computational Materials Science, 2018, 154, 41-52.	3.0	31
156	Modeling of Phase Equilibria in Ni-H: Bridging the Atomistic with the Continuum Scale. Metals, 2018, 8, 280.	2.3	4
157	Size-dependent stress intensity factors in a gradient elastic double cantilever beam with surface effects. Archive of Applied Mechanics, 2018, 88, 1815-1828.	2.2	1
158	Axisymmetric Boussinesq problem of a transversely isotropic half space with surface effects. Mathematics and Mechanics of Solids, 2019, 24, 1425-1437.	2.4	11
159	Investigation of the residual stresses effect on the magnetic properties of CuO nanoparticles synthesized in a low-pressure arc discharge plasma. Journal of Magnetism and Magnetic Materials, 2019, 490, 165492.	2.3	14
160	Determining phase transition using potential energy distribution and surface energy of Pd nanoparticles. Computational Materials Science, 2019, 170, 109187.	3.0	8
161	Effects of surface/interface stress on phonon properties and thermal conductivity in AlN/GaN/AlN heterostructural nanofilms. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	8
162	Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences, 2019, 20, 162.	4.1	143
163	Orthorhombic distortion in Au nanoparticles induced by high pressure. CrystEngComm, 2019, 21, 3451-3459.	2.6	7
164	A Phase-Field Approach to Eulerian Interfacial Energies. Archive for Rational Mechanics and Analysis, 2019, 234, 351-373.	2.4	13
165	Liquid inclusions in soft materials: Capillary effect, mechanical stiffening and enhanced electromechanical response. Journal of the Mechanics and Physics of Solids, 2019, 127, 332-357.	4.8	36

#	ARTICLE	IF	CITATIONS
166	Surface Energy and Nanoscale Mechanics. , 2019, , 1-26.		0
167	Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Applied Mathematical Modelling, 2019, 66, 195-226.	4.2	72
168	Morphology Transformation of Chalcogenide Nanoparticles Triggered by Cation Exchange Reactions. Chemistry of Materials, 2019, 31, 268-276.	6.7	12
169	Axisymmetric indentation problem of a transversely isotropic elastic medium with surface stresses. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 609-619.	2.1	0
170	The Emergence of Complexity from a Simple Model for Tissue Growth. Journal of Statistical Physics, 2020, 180, 459-473.	1.2	4
171	Influence of Interfacial Stress on Microstructural Evolution in NiAl Alloys. JETP Letters, 2020, 112, 173-179.	1.4	33
172	Boundary layer modeling of surface residual tension in postbuckling behavior of axially loaded silicon panels at nanoscale embedded in elastic foundations. Mechanics Based Design of Structures and Machines, 2020, , 1-18.	4.7	18
173	Good or evil: what is the role of water in crystallization of organometal halide perovskites?. Nanoscale Horizons, 2020, 5, 1147-1154.	8.0	11
174	Investigation of the Quenching Rate Effect on the Ferromagnetic Properties of CuO Nanoparticles. Jom, 2020, 72, 3952-3957.	1.9	0
175	Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials, 2020, 10, 484.	4.1	44
176	Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction. Journal of Physical Chemistry Letters, 2020, 11, 3005-3013.	4.6	12
177	Effects of interfacial stress in phase field approach for martensitic phase transformation in NiAl shape memory alloys. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	28
178	Electrostatic-field-triggered stress in the lithiation of carbon-coated silicon. Journal of Power Sources, 2020, 459, 228100.	7.8	1
179	Densification mechanism of the ultra-fast sintering dense alumina. AIP Advances, 2020, 10, .	1.3	5
180	Phase transformations, fracture, and other structural changes in inelastic materials. International Journal of Plasticity, 2021, 140, 102914.	8.8	37
181	Surface Energy of Curved Surface Based on Lennard-Jones Potential. Nanomaterials, 2021, 11, 686.	4.1	10
182	On the role of interfacial elasticity in morphological instability of a heteroepitaxial interface. Continuum Mechanics and Thermodynamics, 2021, 33, 2095-2107.	2.2	10
183	Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation, Nanomaterials, 2021, 11, 926	4.1	11

#	Article	IF	CITATIONS
184	Role of elastic strain energy in spheroidal precipitates revisited. Mechanics of Materials, 2021, 155, 103781.	3.2	5
185	Multi-functionalization Strategies Using Nanomaterials: A Review and Case Study in Sensing Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 323-347.	4.9	23
186	A novel hybrid method for the calculation of methane hydrate–water interfacial tension along the three-phase (hydrate–liquid water–vapor) equilibrium line. Journal of Chemical Physics, 2021, 155, 024702.	3.0	5
187	Atomic mixed-mode cohesive-zone dual constitutive laws of impurity-embrittled grain boundaries in polycrystalline solids via nanoscale field projection method. Journal of the Mechanics and Physics of Solids, 2021, 152, 104453.	4.8	0
188	Surface stress of gold nanoparticles revisited. International Journal of Solids and Structures, 2021, 224, 111044.	2.7	9
189	A nonlocal operator method for finite deformation higher-order gradient elasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113963.	6.6	23
190	Prediction of the surface and interface stress of metallic elements. Vacuum, 2021, 192, 110428.	3.5	5
191	Surface Energy and Nanoscale Mechanics. , 2020, , 1949-1974.		5
192	Reestimating the surface stress and solid–liquid interface energy of semiconductors. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1
193	Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 090202.	0.5	2
194	Homogenization of Surface Energy and Elasticity for Highly Rough Surfaces. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	3
195	Combustion Behavior and Mechanism of Cu ₄₆ Zr ₄₆ Al ₈ Bulk Metallic Glass in Oxygen-Enriched Environments. SSRN Electronic Journal, 0, , .	0.4	0
196	Synthesis of photoluminescent polycrystalline SiC nanostructures via a modified molten salt shielded method. Ceramics International, 2022, 48, 12342-12349.	4.8	7
197	Cylindrical compressible liquid inclusion with surface effects. Journal of the Mechanics and Physics of Solids, 2022, 161, 104813.	4.8	14
198	Combustion Behavior and Mechanism of Cu46zr46al8 Bulk Metallic Glass in Oxygen-Enriched Environments. SSRN Electronic Journal, 0, , .	0.4	0
199	Invariant surface elastic properties in FCC metals and their correlation to bulk properties revealed by machine learning methods. Journal of the Mechanics and Physics of Solids, 2022, 163, 104852.	4.8	3
200	Ultrafast high-temperature sintering of barium titanate ceramics with colossal dielectric constants. Journal of the European Ceramic Society, 2022, 42, 4934-4943.	5.7	17
201	Combustion behavior and mechanism of Cu46Zr46Al8 bulk metallic glass in oxygen-enriched environments. Corrosion Science, 2022, 204, 110415.	6.6	5

#	Article	IF	CITATIONS
202	On Interfacial Energy, Elastic Energy, Morphology and Stability of Strained Coherent Nano-Particles Upon Their Nucleation and Coarsening in a Solid Matrix. SSRN Electronic Journal, 0, , .	0.4	0
203	Spinâ€&tate Modulation in Fe ^{II} â€Based Hofmannâ€Type Coordination Polymers: From Molecules to Materials. Chemical Record, 2022, 22, .	5.8	8
204	Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Materials Today Bio, 2022, 16, 100349.	5.5	23
205	Mechanical Behavior of Polymer Nanocomposites via Atomistic Simulations: Conformational Heterogeneity and the Role of Strain Rate. Journal of Physical Chemistry B, 2022, 126, 7429-7444.	2.6	2
206	Circumventing thermodynamics to synthesize highly metastable perovskites: nano eggshells of SnHfO ₃ . Nanoscale Advances, 2022, 4, 5320-5329.	4.6	2
207	Fully coupled segregation and precipitation kinetics model with ab initio input for the Fe-Au system. Acta Materialia, 2023, 244, 118577.	7.9	4
208	Sensitive SERS detection of pesticide residues in beverages based on an extraction integrated plasmonic platform. Sensors and Actuators B: Chemical, 2023, 376, 133042.	7.8	3
209	On shape forming by contractile filaments in the surface of growing tissues. , 2023, 2, .		1
210	Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg ₂ Si. Nanotechnology, 2023, 34, 155601.	2.6	6
211	Power-Delay Area-Efficient Processing-In-Memory Based on Nanocrystalline Hafnia Ferroelectric Field-Effect Transistors. ACS Applied Materials & Interfaces, 2023, 15, 1463-1474.	8.0	3
212	Agglomeration of particles stored in a box. FirePhysChem, 2023, , .	3.4	0
213	Competitive electronic and steric effects in spin-state modulation of a 3D-Hofmann framework and its extension toward nanoscale. Journal of Materials Chemistry C, O, , .	5.5	1
214	Grain boundary- and triple junction-induced martensitic transformations: A phase-field study of effects of grain boundary width and energy. International Journal of Solids and Structures, 2023, 277-278, 112308.	2.7	1
215	Interfacial Energy of Strained Coherent Interfaces and a New Design Rule To Select Phase Combinations for In Situ Coherent Nanocomposites. Langmuir, 2023, 39, 6316-6323.	3.5	0
216	Geoenvironmental properties of a Cr(VI)-contaminated soil treated by alkali-activated GGBS under freeze-thaw cycles: Insights into Cr species transformation and microscopic mechanism. Science of the Total Environment, 2023, 903, 166450.	8.0	0
217	Continuum Mechanics Applied for Studying Instabilities in Nanoparticles. Advanced Structured Materials, 2023, , 429-456.	0.5	0
218	Utilizing nanotechnology and advanced machine learning for early detection of gastric cancer surgery. Environmental Research, 2024, 245, 117784.	7.5	0
219	Interplay of surface and bulk elasticity in morphological stability of ultra-thin film coatings. Continuum Mechanics and Thermodynamics, 0, , .	2.2	0

		CITATION REPORT		
#	Article		IF	CITATIONS
220	Surface thermodynamics of yttrium titanate pyrochlore nanomaterials. Nanoscale, 2024	ł, 16, 5421-5432.	5.6	0
221	Densification and microstructure evolution of NaNbO3 ceramic via ultrafast high-tempe sintering. Ceramics International, 2024, 50, 18907-18914.	rature	4.8	0
222	Heterogeneous interface engineering of bionic corn-structured ternary nanocomposites excellent low-frequency microwave absorption. Materials Today Physics, 2024, 42, 1013	; for 390.	6.0	0