Regenerative Medicine and Stem Cell Based Drug Disco

Angewandte Chemie - International Edition 47, 5718-5738 DOI: 10.1002/anie.200700724

Citation Report

#	Article	IF	CITATIONS
1	Stem cell markers: Insights from membrane proteomics?. Proteomics, 2008, 8, 4946-4957.	1.3	25
3	Controlling Cell Fate In Vivo. ChemBioChem, 2009, 10, 2308-2310.	1.3	9
4	From human somatic stem cells to human iPS cells – State of the art and future needs. ISBT Science Series, 2009, 4, 286-292.	1.1	0
5	Environmental epigenetic modifications and reprogramming-recalcitrant genes. Stem Cell Research, 2010, 4, 157-164.	0.3	17
6	Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death and Differentiation, 2010, 17, 1230-1237.	5.0	42
7	Large-Scale Glycomics for Discovering Cancerâ€Associated N-Glycans by Integrating Glycoblotting and Mass Spectrometry. Methods in Enzymology, 2010, 478, 109-125.	0.4	13
8	Threshold in Stage-specific Embryonic Glycotypes Uncovered by a Full Portrait of Dynamic N-Glycan Expression during Cell Differentiation. Molecular and Cellular Proteomics, 2010, 9, 523-537.	2.5	53
9	Hydrogels in Spinal Cord Injury Repair Strategies. ACS Chemical Neuroscience, 2011, 2, 336-345.	1.7	142
10	Smart Approach To Evaluate Drug Diffusivity in Injectable Agarâ^'Carbomer Hydrogels for Drug Delivery. Journal of Physical Chemistry B, 2011, 115, 2503-2510.	1.2	79
11	Synthesis and characterization of lanthanum bonded agar-carbomer hydrogel: a promising tool for biomedical research. Journal of Rare Earths, 2011, 29, 259-264.	2.5	4
12	In situ agar–carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 2011, 65, 1688-1692.	1.3	21
13	Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery. Chemical Papers, 2011, 65, .	1.0	3
14	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124
15	Non-Viral Gene Delivery to Mesenchymal Stem Cells: Methods, Strategies and Application in Bone Tissue Engineering and Regeneration. Current Gene Therapy, 2011, 11, 46-57.	0.9	132
16	Characterization and Degradation Behavior of Agar–Carbomer Based Hydrogels for Drug Delivery Applications: Solute Effect. International Journal of Molecular Sciences, 2011, 12, 3394-3408.	1.8	32
17	Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. PLoS ONE, 2012, 7, e46550.	1.1	48
18	Networking Properties of Cyclodextrin-Based Cross-Linked Polymers Probed by Inelastic Light-Scattering Experiments. Journal of Physical Chemistry B, 2012, 116, 5323-5327.	1.2	58
19	Chemical engineering approach to regenerative medicine. Chemical Papers, 2012, 66, .	1.0	0

ITATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Synthesis and degradation of agarâ€carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science, 2012, 123, 398-408.	1.3	12
21	A library of tunable agarose carbomerâ€based hydrogels for tissue engineering applications: The role of crossâ€linkers. Journal of Applied Polymer Science, 2012, 123, 2211-2221.	1.3	22
22	Mechanism of the oxidative degradation of dibenzoazepine derivatives via manganese(III) complexes in acidic phosphate media. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 1-16.	0.8	1
23	Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: effect of water confinement. Soft Matter, 2013, 9, 6457.	1.2	39
24	Small Molecule–Based Approaches to Adult Stem Cell Therapies. Annual Review of Pharmacology and Toxicology, 2013, 53, 107-125.	4.2	27
25	The Pharmacology of Regenerative Medicine. Pharmacological Reviews, 2013, 65, 1091-1133.	7.1	48
26	Connection between the vibrational dynamics and the crossâ€linking properties in cyclodextrinsâ€based polymers. Journal of Raman Spectroscopy, 2013, 44, 1457-1462.	1.2	36
27	Direct evidence of gel–sol transition in cyclodextrin-based hydrogels as revealed by FTIR-ATR spectroscopy. Soft Matter, 2014, 10, 2320-2326.	1.2	29
28	Vibrational Density of States and Elastic Properties of Cross-Linked Polymers: Combining Inelastic Light and Neutron Scattering. Journal of Physical Chemistry B, 2014, 118, 624-633.	1.2	27
29	Carboxymethylcellulose (CMC) formed nanogels with branched poly(ethyleneimine) (bPEI) for inhibition of cytotoxicity in human MSCs as a gene delivery vehicles. Carbohydrate Polymers, 2015, 122, 265-275.	5.1	32
30	Thermal fluctuations in chemically cross-linked polymers of cyclodextrins. Soft Matter, 2015, 11, 2183-2192.	1.2	17
31	Polymeric scaffolds as stem cell carriers in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1093-1119.	1.3	41
32	High-performance beating pattern function of human induced pluripotent stem cell-derived cardiomyocyte-based biosensors for hERG inhibition recognition. Biosensors and Bioelectronics, 2015, 67, 146-153.	5.3	45
33	A possible role of stem cells in nasal polyposis. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1868-1873.	2.7	14
34	Bioengineering Bone Tissue with 3D Printed Scaffolds in the Presence of Oligostilbenes. Materials, 2020, 13, 4471.	1.3	18
35	Chapter 4. Chemical Biology of Stem Cell Modulation. RSC Drug Discovery Series, 2010, , 97-150.	0.2	0