
CITATION REPORT List of articles citing

DOI: 10.1002/bit.22003 Biotechnology and Bioengineering, 2008, 101, 209-28.

Source: https://exaly.com/paper-pdf/43432553/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
861	Exploitation of food feedstock and waste for production of biobutanol. 2009 , 27, 276-283		28
860	Strain improvement and process development for biobutanol production. 2009 , 3, 202-10		23
859	Synthetic biology and biomass conversion: a match made in heaven?. 2009 , 6 Suppl 4, S547-58		30
858	Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. 2009 , 75, 4653-6		113
857	Doubling the catabolic reducing power (NADH) output of Escherichia coli fermentation for production of reduced products. 2010 , 26, 45-51		14
856	Problems with the microbial production of butanol. 2009 , 36, 1127-38		214
855	Energy biotechnology with cyanobacteria. 2009 , 20, 257-63		201
854	Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. 2009 , 83, 415-23		238
853	Dark and acidic conditions for fermentative hydrogen production. 2009 , 34, 821-826		11
852	Synthetic metabolism: engineering biology at the protein and pathway scales. 2009, 16, 277-86		65
851	Plant biomass degradation by gut microbiomes: more of the same or something new?. 2009 , 20, 358-63	3	90
850	Heterologous expression and characterisation of a biosynthetic thiolase from Clostridium butyricum DSM 10702. 2009 , 45, 361-366		3
849	Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. 2009 , 4, 1432-40		108
848	New microbial fuels: a biotech perspective. 2009 , 12, 274-81		275
847	Metabolic Engineering for Alternative Fuels. 2009,		
846	Silicalite Pervaporation Membrane Exhibiting a Separation Factor of over 400 for Butanol. 2010 , 39, 13	12-13	1423
845	Systems biotechnology - Rational whole-cell biocatalyst and bioprocess design. 2010 , 10, 384-397		40

(2010-2010)

844	Systematic engineering of microorganisms to improve alcohol tolerance. 2010 , 10, 422-429	30
843	Biofuels from Lignocellulosic Biomass. 2010 , 19-41	19
842	Advanced biofuel production in microbes. 2010 , 5, 147-62	282
841	Bioengineering of microorganisms for Clto Clalcohols production. 2010 , 5, 1297-308	31
840	Fatty acid alkyl esters: perspectives for production of alternative biofuels. 2010 , 85, 1713-33	104
839	3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. 2010 , 86, 1155-64	130
838	Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. 2010 , 87, 1177-85	44
837	Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. 2010 , 87, 1303-15	262
836	A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. 2010 , 87, 2209-26	64
835	Development of flow cytometry technique for detection of thinning of peptidoglycan layer as a result of solvent production by Clostridium pasteurianum. 2010 , 55, 340-4	19
834	Synthetic biology for biofuels: Building designer microbes from the scratch. 2010 , 15, 11-21	29
833	The path to next generation biofuels: successes and challenges in the era of synthetic biology. 2010 , 9, 3	132
832	Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. 2010 , 28, 651-7	95
831	Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. <i>Biotechnology and Bioengineering</i> , 2010 , 105, 663-77 ^{4.9}	119
830	Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. 2010 , 363, 287-294	144
829	A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. 2010 , 12, 307-31	435
828	Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. 2010 , 12, 446-54	145
827	Biofuel production by in vitro synthetic enzymatic pathway biotransformation. 2010 , 21, 663-9	66

826	Construction of a butyrate-producing E. coli strain without the use of heterologous genes. 2010 , 46, 745-754	12
825	Biobutanol Production from Agri-Residues. 2010 , 457-477	
824	Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum. 2010 , 192, 4452-61	109
823	Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. 2010 , 2010, 761042	114
822	Bioreactor Systems for Biofuel/Bioelectricity Production. 2010 , 275-312	
821	Extremophiles in biofuel synthesis. 2010 , 31, 871-88	116
820	Chapter 14:Conversion of Carbohydrates to Liquid Fuels. 2010 , 365-381	2
819	Bioenergy and Biofuel from Biowastes and Biomass. 2010,	6
818	Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. 2010 , 9, 3046-61	107
817	Sustainable Biotechnology. 2010 ,	3
817 816	Sustainable Biotechnology. 2010 , Production of biofuels from synthesis gas using microbial catalysts. 2010 , 70, 57-92	3
ĺ		
816	Production of biofuels from synthesis gas using microbial catalysts. 2010 , 70, 57-92	33
816	Production of biofuels from synthesis gas using microbial catalysts. 2010 , 70, 57-92 Butanol production from the effluent of hydrogen fermentation. 2011 , 63, 1236-40 Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. 2011 ,	33
816 815 814	Production of biofuels from synthesis gas using microbial catalysts. 2010 , 70, 57-92 Butanol production from the effluent of hydrogen fermentation. 2011 , 63, 1236-40 Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. 2011 , 45, 132-8	33993
816 815 814 813	Production of biofuels from synthesis gas using microbial catalysts. 2010 , 70, 57-92 Butanol production from the effluent of hydrogen fermentation. 2011 , 63, 1236-40 Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. 2011 , 45, 132-8 Biofuels and Bioenergy. 2011 , 71-85	339932
816 815 814 813	Production of biofuels from synthesis gas using microbial catalysts. 2010, 70, 57-92 Butanol production from the effluent of hydrogen fermentation. 2011, 63, 1236-40 Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. 2011, 45, 132-8 Biofuels and Bioenergy. 2011, 71-85 Integrated Production and Separation. 2011, 579-590	3399321

808	Butanol Fuel from Biomass. 2011 , 571-586	11
807	Inactivation of E and C in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. 2011 , 193, 1414-26	69
806	Biobutanol. 2012 , 128, 85-100	12
805	Perspectives of Biobutanol Production and Use. 2011 ,	9
804	Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. 2011 , 7, 222-7	292
803	Progress in the production and application of n-butanol as a biofuel. 2011 , 15, 4080-4106	688
802	Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. 2011 , 13, 464-73	66
801	Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. 2011 , 22, 634-47	293
800	Metabolic engineering of microbial pathways for advanced biofuels production. 2011, 22, 775-83	281
799	Biowastes-to-biofuels. 2011 , 52, 1815-1828	225
798	A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. 2011 , 102, 9558-63	43
797	Synthetic biology: an emerging research field in China. 2011 , 29, 804-14	18
796	Prospects for microbial biodiesel production. 2011 , 6, 277-85	62
795	Opportunities for yeast metabolic engineering: Lessons from synthetic biology. 2011 , 6, 262-76	91
794	Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. 2011 , 6, 1348-57	91
793	Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. 2011 , 77, 2905-15	520
792	Simulation of the temperature-driven pervaporation of dilute 1-butanol aqueous mixtures through a PTMSP membrane in a cross-flow module. 2011 , 51, 542-554	35
791	Extension temperature of 60°C required for PCR amplification of large DNA fragments (>5 kb) from a low GC bacterium Clostridium acetobutylicum. 2011 , 27, 449-451	3

790	High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. 2011 , 90, 1681-90	183
789	Fermentative production of butanolthe industrial perspective. 2011 , 22, 337-43	560
788	Engineering strategy of yeast metabolism for higher alcohol production. 2011 , 10, 70	38
787	A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. 2011 , 5, 10	39
786	Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. 2011 , 5, 130	82
785	Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. 2011 , 12, 93	69
784	Exploring the potential of recovering 1-butanol from aqueous solutions by liquid demixing upon addition of carbohydrates or salts. 2011 , 86, 714-718	10
783	Selective separation of n-butanol from aqueous solutions by pervaporation using silicone rubber-coated silicalite membranes. 2011 , 86, 845-851	28
782	Study of in situ 1-butanol pervaporation from A-B-E fermentation using a PDMS composite membrane: validity of solution-diffusion model for pervaporative A-B-E fermentation. 2011 , 27, 111-20	41
781	Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 1757-65	93
78o	Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. 2011 , 102, 4241-50	124
779	Performance and spatial community succession of an anaerobic baffled reactor treating acetone-butanol-ethanol fermentation wastewater. 2011 , 102, 7407-14	39
778	Butanol production from thin stillage using Clostridium pasteurianum. 2011 , 102, 4934-7	82
777	Challenges in biobutanol production: How to improve the efficiency?. 2011 , 15, 964-980	353
776	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. 2011 , 13, 373-82	177
775	SpoIIE is necessary for asymmetric division, sporulation, and expression of sigmaF, sigmaE, and sigmaG but does not control solvent production in Clostridium acetobutylicum ATCC 824. 2011 , 193, 5130-7	43
774	Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. 2011 , 20, 1-15	75
773	Chemicals from Metabolic Pathways. 2011 , 7-62	5

(2012-2011)

772	Inactivation of I in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes I and I protein expression but does not block solvent formation. 2011 , 193, 2429-40	54
771	Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose. 2011 , 77, 4473-85	40
770	Corynebacterium glutamicum tailored for efficient isobutanol production. 2011 , 77, 3300-10	263
769	Draft genome sequence of butanol-acetone-producing Clostridium beijerinckii strain G117. 2012 , 194, 5470-1	18
768	Kinetic Studies on Biobutanol Recovery Process Using Adsorbent Resin. 2012, 45, 125-130	
767	Separation of Hemicellulose by Hot-Water Extraction from Woody Biomass. 2012 , 674-729	
766	Cyanobacterial biofuel production. 2012 , 162, 50-6	210
765	Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum. 2012 , 50, 1063-6	17
764	Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. 2012 , 30, 989-1000	128
763	Improving butanol fermentation to enter the advanced biofuel market. 2012 , 3,	33
762	Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. 2012 , 34, 1643-9	50
761	Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. 2012 , 78, 1416-23	190
760	The use of pretreated palm oil mill effluent for acetoneButanolEthanol fermentation by Clostridium saccharoperbutylacetonicum N1-4. 2012 , 14, 879-887	18
759	Engineering a homobutanol fermentation pathway in Escherichia coli EG03. 2012 , 39, 1101-7	11
758	A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicumcellular behavior in adaptation to n-butanol. 2012 , 161, 366-77	41
757	A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicumsolvent stress caused by a transient n-butanol pulse. 2012 , 161, 354-65	50
756	Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone-butanol-ethanol production. 2012 , 161, 147-52	13
755	Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation	120

754	Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). 2012 , 62, 1059-1070	26
753	Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. 2012 , 3,	187
75 ²	Shock tube study on the thermal decomposition of n-butanol. 2012 , 116, 9825-31	21
751	Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. 2012 , 194, 5413-22	57
750	Butanol production from lignocellulosics. 2012 , 34, 1415-34	85
749	The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. 2012 , 96, 749-61	83
748	Membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1-4 with 1-dodecanol as the extractant. 2012 , 116, 448-52	36
747	Microbial producers of butanol. 2012 , 48, 625-638	21
746	Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol. 2012 , 2, 44	41
745	Microbial engineering for the production of advanced biofuels. 2012 , 488, 320-8	824
745 744	Microbial engineering for the production of advanced biofuels. 2012 , 488, 320-8 Biofuels. 2012 , 7-66	824
		<u> </u>
744	Biofuels. 2012 , 7-66	1
744 743	Biofuels. 2012, 7-66 New insights into the butyric acid metabolism of Clostridium acetobutylicum. 2012, 96, 1325-39 Towards a Synthetic Biology of the Stress-Response and the Tolerance Phenotype: Systems Understanding and Engineering of the Clostridium acetobutylicum Stress-Response and Tolerance	1 46
744 743 742	Biofuels. 2012, 7-66 New insights into the butyric acid metabolism of Clostridium acetobutylicum. 2012, 96, 1325-39 Towards a Synthetic Biology of the Stress-Response and the Tolerance Phenotype: Systems Understanding and Engineering of the Clostridium acetobutylicum Stress-Response and Tolerance to Toxic Metabolites. 2012, 193-219	1 46 1
744 743 742 741	Biofuels. 2012, 7-66 New insights into the butyric acid metabolism of Clostridium acetobutylicum. 2012, 96, 1325-39 Towards a Synthetic Biology of the Stress-Response and the Tolerance Phenotype: Systems Understanding and Engineering of the Clostridium acetobutylicum Stress-Response and Tolerance to Toxic Metabolites. 2012, 193-219 The production of biofuels from carbonated beverages. 2012, 100, 47-51 Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. 2012,	1 46 1 22
744 743 742 741 740	Biofuels. 2012, 7-66 New insights into the butyric acid metabolism of Clostridium acetobutylicum. 2012, 96, 1325-39 Towards a Synthetic Biology of the Stress-Response and the Tolerance Phenotype: Systems Understanding and Engineering of the Clostridium acetobutylicum Stress-Response and Tolerance to Toxic Metabolites. 2012, 193-219 The production of biofuels from carbonated beverages. 2012, 100, 47-51 Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. 2012, 100, 3-9 Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving	1 46 1 22 118

(2012-2012)

736	Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. 2012 , 23, 364-81		310
735	Alternative biofuel production in non-natural hosts. 2012 , 23, 744-50		25
734	Recovery of n-butanol using ionic liquid-based pervaporation membranes. <i>Separation and Purification Technology</i> , 2012 , 97, 108-114	3.3	71
733	Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. 2012 , 28, 2963-71		28
732	Microbial Stress Tolerance for Biofuels. 2012 ,		4
731	Biotechnology in China III: Biofuels and Bioenergy. 2012 ,		4
730	Pre-optimization of Medium for Biobutanol Production by a New Isolate of Solvent-producing Clostridium. 2012 , 8,		20
729	Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. 2012 , 95, 1083-94		35
728	Use of proteomic tools in microbial engineering for biofuel production. 2012 , 834, 137-51		1
727	Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. 2012 , 7, 186-98		116
726	Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. 2012 , 7, 656-61		14
725	High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2746-56	1.9	176
724	Bio-based production of C2-C6 platform chemicals. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2437-59	l .9	291
723	Comparisons of existing pretreatment, saccharification, and fermentation processes for butanol production from agricultural residues. 2012 , 90, 745-761		33
722	Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. 2012 , 69, 2671-90		308
721	Enhancement of butanol production and reducing power using a two-stage controlled-pH strategy in batch culture of Clostridium acetobutylicum XY16. 2012 , 28, 2551-8		33
720	Oil palm empty fruit bunch as alternative substrate for acetone-butanol-ethanol production by Clostridium butyricum EB6. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 166, 1615-25	3.2	36
719	Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 166, 1896-907	3.2	53

718	Bioconversion of Butyric Acid to Butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in a Limited Nutrient Medium. <i>Bioenergy Research</i> , 2012 , 5, 287-293	3.1	56
717	Improvements in Biobutanol Fermentation and Their Impacts on Distillation Energy Consumption and Wastewater Generation. <i>Bioenergy Research</i> , 2012 , 5, 504-514	3.1	57
716	Rapid flow cytometric method for viability determination of solventogenic clostridia. 2012 , 57, 307-11		15
715	Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. 2012 , 94, 729-41		50
714	Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. 2012 , 94, 743-54		70
713	Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. 2012 , 35, 817-26		76
712	Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. 2012 , 39, 39-47		76
711	Extractive fermentation with non-ionic surfactants to enhance butanol production. 2012 , 40, 112-119		73
710	Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. 2012 , 104, 380-7		194
709	High yield bio-butanol production by solvent-producing bacterial microflora. 2012 , 113, 58-64		75
708	Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios. 2012 , 29, 485-93		41
707	Evaluation of solid phase extraction for downstream separation of propane-1,3-diol and butan-1-ol from fermentation broth. 2012 , 47, 1005-1010		9
706	Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: A useful tool for strain engineering. 2012 , 14, 59-67		45
705	Biobutanol: science, engineering, and economics. 2012 , 36, 277-323		120
704	Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. 2012 , 87, 334-340		57
703	Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 708-18	4.9	31
702	Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 913-21	4.9	55
701	Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. 2012 , 93, 1485-94		118

(2013-2013)

700	Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. 2013 , 6, 106	62
699	Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum. 2013 , 6, 50	63
698	Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. 2013 , 6, 48	63
697	Synthetic Biology for Biomass Conversion. 2013 , 115-140	2
696	Ultrasound-enhanced recovery of butanol/ABE by pervaporation. <i>Applied Biochemistry and Biotechnology</i> , 2013 , 171, 1159-69	5
695	A Highly Efficient NADH-dependent Butanol Dehydrogenase from High-butanol-producing Clostridium sp. BOH3. <i>Bioenergy Research</i> , 2013 , 6, 240-251	18
694	Acetone B utanol E thanol Production by Clostridium acetobutylicum ATCC 824 Using Sago Pith Residues Hydrolysate. <i>Bioenergy Research</i> , 2013 , 6, 321-328	32
693	Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. 2013 , 18, 266-271	9
692	Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. 2013 , 97, 7505-16	60
691	Prospective and development of butanol as an advanced biofuel. 2013 , 31, 1575-84	205
690	Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3	
	immobilized by surface adsorption. 2013 , 129, 321-8	54
689	Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. 2013 , 145, 204-9	28
689	Fermentation approach for enhancing 1-butanol production using engineered butanologenic	
	Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. 2013 , 145, 204-9 A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to	28
688	Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. 2013, 145, 204-9 A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-Ebutyrolactone. 2013, 4, 1414 Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE	28 67
688 687	Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. 2013, 145, 204-9 A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-Ebutyrolactone. 2013, 4, 1414 Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation. 2013, 147, 102-109	28 67 16
688 687 686	Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. 2013, 145, 204-9 A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-Ebutyrolactone. 2013, 4, 1414 Oil palm empty fruit bunch to biofuels and chemicals via SO2-ethanol-water fractionation and ABE fermentation. 2013, 147, 102-109 In vitro production of n-butanol from glucose. 2013, 20, 84-91 Butanol Production from Wheat Straw by Combining Crude Enzymatic Hydrolysis and Anaerobic	28 67 16

682	Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. 2013 , 12, 5302-12	44
681	Comparative phenotypic analysis and genome sequence of Clostridium beijerinckii SA-1, an offspring of NCIMB 8052. 2013 , 159, 2558-2570	15
68o	Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. 2013 , 34, 1983-94	24
679	Fundamentals and Application of New Bioproduction Systems. 2013,	O
678	Improved efficiency of butanol production by absorbent fermentation with a renewable carrier. 2013 , 6, 121	19
677	Improvement of butanol fermentation by supplementation of butyric acid produced from a brown alga. 2013 , 18, 1142-1150	12
676	Biobutanol as an alternative type of fuel. 2013 , 47, 366-382	15
675	Biobutanol: the outlook of an academic and industrialist. 2013 , 3, 24734	125
674	Membrane Bioreactors for Biofuel Production. 2013, 377-407	1
673	Biological Production of Butanol and Higher Alcohols. 2013 , 235-262	18
672	Discovery of a novel gene involved in autolysis of Clostridium cells. 2013, 4, 467-74	5
671	Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. 2013 , 34, 1995-2007	10
670	Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. 2013 , 6, 526-39	28
669	Redox potential control and applications in microaerobic and anaerobic fermentations. 2013 , 31, 257-65	157
668	Modeling of a Biobutanol Adsorption Process for Designing an Extractive Fermentor. 2013 , 52, 603-611	31
667	Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum. Biotechnology and Bioengineering, 2013 , 110, 887-97 4-9	35
666	Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations. 2013 , 93, 597-603	11
665	Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. 2013 , 78, 326-45	85

(2013-2013)

664	Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing. 2013 , 53, 307-14		27	
663	The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. 2013 , 140, 269-76		38	
662	Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. 2013 , 137, 254-60		44	
661	Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. 2013 , 143, 397-404		60	
660	Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. 2013 , 135, 372-8		30	
659	Enhancing butanol production with Clostridium pasteurianum CH4 using sequential glucose-glycerol addition and simultaneous dual-substrate cultivation strategies. 2013 , 135, 324-30		37	
658	Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. 2013 , 165, 18-21		53	
657	Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. 2013 , 130, 638-43		57	
656	Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. 2013 , 3, 143-155		35	
655	Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1066-77	4.9	95	
654	Synthetic biology and metabolic engineering approaches to produce biofuels. 2013, 113, 4611-32		135	
653	Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. 2013 , 8, 581-94		12	
652	Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1646-53	4.9	66	
651	GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. 2013 , 15, 196-205		92	
650	Microalgae-based carbohydrates for biofuel production. 2013 , 78, 1-10		458	
649	Recent advancements in various steps of ethanol, butanol, and isobutanol productions from woody materials. 2013 , 29, 297-310		27	
648	Biobutanol Production from Biomass. 2013 , 443-470		1	
647	Use of red algae, Ceylon moss (Gelidium amansii), hydrolyzate for clostridial fermentation. 2013 , 56, 38-42		16	

646	Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture. 2013 , 29, 1083-8	60
645	Engineering Clostridium acetobutylicum for alcohol production. 2013 , 166, 25-33	36
644	Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. 2013 , 97, 9355-63	33
643	Mathematical models of ABE fermentation: review and analysis. 2013 , 33, 419-47	40
642	Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism. 2013 , 449, 79-89	5
641	Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products. 2013 , 6, 4739-4768	61
640	Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. 2013 , 79, 6998-7005	45
639	Cell-free Biosystems in the Production of Electricity and Bioenergy. 2013 , 137, 125-52	4
638	Selection and optimization of a salting-out extraction system for recovery of biobutanol from fermentation broth. 2013 , 13, 464-471	26
637	Integrated processing for the separation of biobutanol. Part A: experimental investigation and process modelling. 2013 , 2,	2
636	Production of Butanol: A Biofuel. 2013 , 255-283	
635	Gas Fermentation for Commercial Biofuels Production. 2013,	15
634	Lignocellulosic Biomass Utilization Toward Biorefinery Using Meshophilic Clostridial Species. 2013,	
633	Production of Biofuels from Cellulose of Woody Biomass. 2013,	5
632	Effects of Chemical and Thermal Pretreatments on the Enzymatic Saccharification of Rice Straw for Sugars Production. 2013 , 9,	3
631	Upgrading the Hemicellulosic Fraction of Biomass into Biofuel. 2013 , 68, 663-680	9
630	Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks. 2013 , 1, 58-77	28
629	Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as carbon source in P2 medium. 2014 , 2014, 395754	22

628	Metabolic engineering of microorganisms for the production of higher alcohols. 2014 , 5, e01524-14	50
627	Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. 2014 , 7, 156	48
626	Thin-Shell Silk Cocoon (TSC) as a Nitrogen Source of ABE Fermentation by Clostridium acetobutylicum. 2014 , 705, 14-18	1
625	Genetic resources for advanced biofuel production described with the Gene Ontology. 2014 , 5, 528	17
624	Biobutanol production by a new local isolate of Clostridium acetobutylicum YM1. 2014,	1
623	An Overview of Existing Individual Unit Operations. 2014 , 3-36	15
622	Discovery of Clostrubin, an Exceptional Polyphenolic Polyketide Antibiotic from a Strictly Anaerobic Bacterium. 2014 , 126, 7990-7993	8
621	Performance, combustion and emission characteristics of a spark-ignition engine with simultaneous injection of n-butanol and gasoline in comparison to blended butanol and gasoline. 2014 , 38, 1060-1074	13
620	Rapid and reliable method for identification of associated endonuclease cleavage and recognition sites. 2014 , 58, 576-81	
619	Biofuels and Bioproducts Produced through Microbial Conversion of Biomass. 2014 , 71-93	13
618	Inhibition of cellulase, Eglucosidase, and xylanase activities and enzymatic hydrolysis of dilute acid pretreated wheat straw by acetone-butanol-ethanol fermentation products. 2014 , 33, 497-503	7
617	Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways. 2014 , 98, 9777-94	12
616	Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. 2014 , 13, 151	50
615	Feasibility study on microencapsulation of anaerobic Clostridium acetobutylicum ATCC 824 by emulsification method for application in biobutanol production. 2014 , 31, 469-78	3
614	Butanol Production from Soybean Hull and Soy Molasses by Acetone-Butanol-Ethanol Fermentation. 2014 , 25-41	10
613	Immobilisation of Clostridium spp. for production of solvents and organic acids. 2014 , 68, 1-14	23
612	Cloning, expression, purification, crystallization and X-ray crystallographic analysis of (S)-3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum. 2014 , 70, 485-8	2
611	Microbialn-butanol production from Clostridia to non-Clostridial hosts. 2014 , 14, 16-26	34

610	Engineering biofuel tolerance in non-native producing microorganisms. 2014, 32, 541-8		62
609	A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 172, 1818-31	3.2	13
608	Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. 2014 , 7, 22		18
607	Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 172, 3330-41	3.2	30
606	The use of (green field) biomass pretreatment liquor for fermentative butanol production and the catalytic oxidation of biobutanol. 2014 , 92, 1531-1538		13
605	Hydrogenation of butanal over silica-supported Shvo® catalyst and its use for the gas-phase conversion of propene to butanol via tandem hydroformylation and hydrogenation. 2014 , 311, 52-58		19
604	An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification. 2014 , 161, 29-39		170
603	Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. 2014 , 98, 5105-15		26
602	Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. 2014 , 53, 7856-9		46
601	Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. 2014 , 49, 1238-1244		39
600	Novel PTMSP-based membranes containing elastomeric fillers: Enhanced 1-butanol/water pervaporation selectivity and permeability. 2014 , 466, 322-330		58
599	Application of new metabolic engineering tools for Clostridium acetobutylicum. 2014 , 98, 5823-37		62
598	Isolation of a solventogenic Clostridium sp. strain: fermentation of glycerol to n-butanol, analysis of the bcs operon region and its potential regulatory elements. 2014 , 37, 1-9		10
597	Biotransformation of Waste Biomass into High Value Biochemicals. 2014,		29
596	K of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. 2014 , 196, 287-99		36
595	Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. 2014 , 49, 10-18		27
594	Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). 2014 ,		3
593	Separation and purification of biobutanol during bioconversion of biomass. <i>Separation and Purification Technology</i> , 2014 , 132, 513-540	8.3	117

592	Microbial diversity and biogenic methane potential of a thermogenic-gas coal mine. 2014 , 134-135, 96-107	35
591	Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. 2014 , 91, 220-230	22
590	AcetoneButanolathanol production by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methods using acorns and wood chips of Quercus acutissima as a carbon source. 2014 , 62, 286-292	27
589	Metabolic engineering of Escherichia coli for production of butyric acid. 2014 , 62, 4342-8	43
588	Modeling of liquid I Iquid equilibrium in the quinary system of water, acetone, n-butanol, ethanol, and ionic liquid. 2014 , 384, 114-121	12
587	Alcohol combustion chemistry. 2014 , 44, 40-102	534
586	Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process. 2014 , 169, 251-257	56
585	Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. 2014 , 32, 1245-1255	107
584	Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. 2014 , 169, 723-730	47
583	Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol@lycerol storage during long-term preservation. 2014 , 69, 192-197	19
582	Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. 2014 , 69, 175-182	39
581	Salting-Out Effect of Dipotassium Hydrogen Phosphate on the Recovery of Acetone, Butanol, and Ethanol from a Prefractionator. 2014 , 59, 1507-1514	46
580	Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by Clostridium acetobutylicum using cassava substrate. 2014 , 1,	15
579	Liquid Biofuels: Emergence, Development and Prospects. 2014 ,	1
578	Design and Economic Analysis of a Thermochemical Lignocellulosic Biomass-to-Butanol Process. 2014 , 53, 11427-11441	24
577	Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. 2014 , 163, 172-9	67
576	Sweet sorghum bagasse as an immobilized carrier for ABE fermentation by using Clostridium acetobutylicum ABE 1201. 2014 , 4, 21819-21825	35
575	Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803. 2014 , 7, 89	28

574	Engineering modular ester fermentative pathways in Escherichia coli. 2014 , 26, 77-88	62
573	Identification and assessment of the effects of yeast decarboxylases expressed in Escherichia coli for producing higher alcohols. 2014 , 117, 126-38	5
572	Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum. 2014 , 451, 431-5	10
57 ¹	A Second Generation Biofuel from Cellulosic Agricultural By-product Fermentation Using Clostridium Species for Electricity Generation. 2014 , 47, 310-315	31
570	Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. 2014 , 22, 60-8	69
569	Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. 2014 , 155, 220-8	40
568	Technical guide for genetic advancement of underdeveloped and intractable Clostridium. 2014, 32, 623-41	60
567	Isopropanol production with engineered Cupriavidus necator as bioproduction platform. 2014 , 98, 4277-90	74
566	Pervaporative concentration of biobutanol from ABE fermentation broths by Clostridium saccharoperbutylacetonicum using silicone rubber-coated silicalite-1 membranes. <i>Separation and Purification Technology</i> , 2014 , 132, 206-212	12
565	Process parameters for operating 1-butanol gas stripping in a fermentor. 2014 , 118, 558-64	20
564	A green process for the production of butanol from butyraldehyde using alcohol dehydrogenase: process details. 2014 , 4, 14597	5
563	Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. 2014 , 167, 198-205	61
562	Whole-Crop Biorenery. 2014 , 515-548	1
561	In situ cross-linked-PDMS/BPPO membrane for the recovery of butanol by pervaporation. 2014 , 131, n/a-n/a	3
560	An integrated approach: advances in the use of Clostridium for biofuel. 2015, 31, 69-81	2
559	Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. 2015 , 8, 166	24
558	Primary Metabolic Pathways and Metabolic Flux Analysis. 2015 , 39-96	1
557	Ethanol Recovery from Low-Concentration Aqueous Solutions Using Membrane Contactors with Ionic Liquids. 2015 , 22, 565-575	6

556	Commercial Development of Fermentation Processes. 2015 , 499-546	1
555	Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum. 2015 , 5, 16598	17
554	Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. 2015 , 8, 84	47
553	Designer Microorganisms for Optimized Redox Cascade Reactions IChallenges and Future Perspectives. 2015 , 357, 1587-1618	45
552	Molecular Solution Behaviour of an Intermediate Biofuel Feedstock: Acetone-Butanol-Ethanol (ABE). 2015 , 16, 3846-58	11
551	Antisense-RNA-Mediated Gene Downregulation in Clostridium pasteurianum. <i>Fermentation</i> , 2015 , 4.7	10
550	Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products. 2015 , 3, 24-36	43
549	Butanol Fermentation by Clostridium saccharobutylicum Based on Poplar Wood. 2015, 10,	2
548	Changes in membrane plasmalogens of Clostridium pasteurianum during butanol fermentation as determined by lipidomic analysis. 2015 , 10, e0122058	25
547	Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition. 2015 , 10, e0141160	31
546	Evaluation of system performance and microbial communities of albioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater. 2015 , 81, 311-24	81
545	Microbial Research in High-Value Biofuels. 2015 , 105-156	3
544	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing glucosidase. 2015 , 99, 6155-65	19
543	Enhanced production of butanol and isopropanol from sugarcane molasses using Clostridium beijerinckii optinoii. 2015 , 20, 871-877	16
542	Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. 2016 , 156, 293-321	9
541	Recent Advances in Biobutanol Production. 2015 , 11, 316-321	12
540	Bioenergy: Biofuels Process Technology. 2015 , 165-207	1
539	Metabolic engineering of clostridia for the production of chemicals. 2015 , 9, 211-225	36

538	AcetoneButanolBthanol production using pH control strategy and immobilized cells in an integrated fermentationBervaporation process. 2015 , 50, 614-622		25
537	Response Surface Methodology for Biobutanol Optimization Using Locally Isolated Clostridium acetobutylicum YM1. 2015 , 12, 1236-1243		4
536	Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. 2015 , 77, 447-455		79
535	Ausdehnung des Enzym-Universums: Zugang zu nicht-natflichen Reaktionen durch mechanismusgeleitete, gerichtete Evolution. 2015 , 127, 3408-3426		7 ²
534	Continuous lactose fermentation by Clostridium acetobutylicumassessment of solventogenic kinetics. 2015 , 180, 330-7		15
533	Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. 2015 , 81, 1452-62		31
532	Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. 2015 , 54, 3351-67		334
531	Optimizing Acid Hydrolysis of Jerusalem Artichoke-Derived Inulin for Fermentative Butanol Production. <i>Bioenergy Research</i> , 2015 , 8, 1148-1157	3.1	34
530	Integration of biocatalyst and process engineering for sustainable and efficientn-butanol production. 2015 , 15, 4-19		15
529	Introducing transglutaminase with its precursor region into Clostridium acetobutylicum improves its tolerance to oxidative stress and solvent production. 2015 , 50, 111-118		2
528	The role of water in catalytic biomass-based technologies to produce chemicals and fuels. 2015 , 247, 33-46		30
527	Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 2015 , 5, 401-410		16
526	Butanol Production from Leftover Beverages and Sport Drinks. <i>Bioenergy Research</i> , 2015 , 8, 369-379	3.1	28
525	Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. 2015 , 99, 1845-57		21
524	Metabolic engineering for the high-yield production of isoprenoid-based Clalcohols in E. coli. 2015 , 5, 11128		109
523	Impact of butyric acid on butanol formation by Clostridium pasteurianum. 2015 , 196, 153-9		20
522	Catalytic Upgrading of Bioethanol to Fuel Grade Biobutanol: A Review. 2015 , 54, 7181-7194		53
521	Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation. 2015 , 31, 1475-88		9

520	Bio-ethanol and bio-butanol production from orange peel waste. 2015 , 6, 55-61		42
519	Biobutanol production by a new aerotolerant strain of Clostridium acetobutylicum YM1 under aerobic conditions. <i>Fuel</i> , 2015 , 158, 855-863	7.1	16
518	Effect of hydrogen addition on the performance and emission parameters of an SI engine fueled with butanol blends at stoichiometric conditions. 2015 , 40, 9563-9569		38
517	Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. 2015 , 112, 8505-10		49
516	Impacts of Acetone B utanol E thanol (ABE) ratio on spray and combustion characteristics of ABEdiesel blends. 2015 , 149, 367-378		77
515	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. 2015 , 99, 4917-30		34
514	Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation. 2015 , 189, 131-137		61
513	Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli. 2015 , 204, 25-32		9
512	Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal. 2015 , 192, 287-95		21
511	Acidolysis of EO-4 Aryl-Ether Bonds in Lignin Model Compounds: A Modeling and Experimental Study. 2015 , 3, 1339-1347		33
510	The influence of the buffering capacity on the production of organic acids and alcohols from wastewater in anaerobic reactor. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 175, 2258-65	3.2	7
509	Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation. 2015 , 99, 5163-73		19
508	Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. 2015 , 17, 3047-3058		28
507	How can alcohol production be improved in carboxydotrophic clostridia?. 2015 , 50, 1047-1055		19
506	Microencapsulation of Clostridium acetobutylicum ATCC 824 spores in gellan gum microspheres for the production of biobutanol. 2015 , 32, 290-9		3
505	Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol fermenter. 2015 , 141, 116-21		14
504	Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes. 2015 , 160, 120-131		64
503	Exploring the inhibitory characteristics of acid hydrolysates upon butanol fermentation: A toxicological assessment. 2015 , 198, 571-6		19

502	Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. 2015, 6, 8410	43
501	4. Introduction to bioconversion and downstream processing: principles and process examples. 2015 , 81-108	1
500	Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. 2015 , 32, 1945-1959	88
499	Hydrophobic Hyflon AD/Poly(vinylidene fluoride) Membranes for Butanol Dehydration via Pervaporation. 2015 , 54, 11180-11187	21
498	Optimized Transformation of Newly Constructed Escherichia coli-Clostridia Shuttle Vectors into Clostridium beijerinckii. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 177, 226-36	5
497	Bio-butanol production from glycerol with Clostridium pasteurianum CH4: the effects of butyrate addition and in situ butanol removal via membrane distillation. 2015 , 8, 168	26
496	-Butanol derived from biochemical and chemical routes: A review. 2015 , 8, 1-9	159
495	Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes. 2015 , 81, 7187-200	18
494	Enhanced biobutanol production using novel clostridial fusants in simultaneous saccharification and fermentation of green renewable agriculture residues. 2015 , 9, 529-544	15
493	Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1. 2015 , 36, 65-72	12
492	Inoculum optimization of Clostridium beijerinckii for reproducible growth. 2015, 362,	14
491	Advances in Bioprocess Technology. 2015 ,	4
490	High butanol production by regulating carbon, redox and energy in Clostridia. 2015, 9, 317-323	19
489	Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using 13C tracer experiments. 2015 , 5, 8486-8495	18
488	Current status and prospects of industrial bio-production of n-butanol in China. 2015 , 33, 1493-501	118
487	Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. 2015 , 184, 379-385	86
486	King Grass: A promising material for the production of second-generation butanol. Fuel, 2015, 143, 399-408	31
485	Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. 2015 , 193, 108-19	28

(2015-2015)

484	Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. 2015 , 99, 1011-22		99
483	Microorganisms in Biorefineries. 2015 ,		3
482	Potential production platform of n-butanol in Escherichia coli. 2015 , 27, 76-82		69
481	Metabolic process engineering of Clostridium tyrobutyricum Eck-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 705-15	4.9	51
480	Sustainability metrics of 1-butanol. 2015 , 239, 7-10		61
479	Direct production of acetone B utanol B thanol from waste starch by free and immobilized Clostridium acetobutylicum. <i>Fuel</i> , 2015 , 142, 129-133	7.1	54
478	Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. 2015,		13
477	A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 120-8	4.9	15
476	Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. 2015 , 33, 1-7		65
475	Reversal of the Ebxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. 2015 , 4, 332-41		64
474	Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. 2015 , 119, 1-9		135
473	Biobutanol Production from Lignocellulosic Biomass: Prospective and Challenges. 2016 , 7,		22
472	Biotechnological Strategies for Advanced Biofuel Production: Enhancing Tolerance Phenotypes Through Genome-Scale Modifications. 2016 , 227-263		
471	Anaerobic Bio-reactor Modeling. 2016 , 38, 577-582		2
47°	A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. <i>Fermentation</i> , 2016 , 2, 13	4.7	28
469	Bioconversion of Pyruvate to -Butanol with Minimized Cofactor Utilization. <i>Frontiers in Bioengineering and Biotechnology</i> , 2016 , 4, 74	5.8	17
468	Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation. 2016 , 7, 702		70
467	Rebalancing Redox to Improve Biobutanol Production by. 2015 , 3,		9

466	Aadh2p: an Arxula adeninivorans alcohol dehydrogenase involved in the first step of the 1-butanol degradation pathway. 2016 , 15, 175	3
465	Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating strain from glycerol and polysaccharides. 2016 , 9, 220	31
464	Extremophiles and biotechnology: current uses and prospects. 2016 , 5,	108
463	Genetic Engineering In BioButanol Production And Tolerance. 2016 , 59,	6
462	Short communication: Modulation of the small intestinal microbial community composition over short-term or long-term administration with Lactobacillus plantarum ZDY2013. 2016 , 99, 6913-6921	20
461	Quest for sustainable bio-production and recovery of butanol as a promising solution to fossil fuel. 2016 , 40, 411-438	12
460	Biobutanol Production from Lignocellulosics. 2016 , 283-305	
459	Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. 2016 , 505-580	3
458	n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. 2016 , 363,	12
457	System-level modeling of acetone-butanol-ethanol fermentation. 2016 , 363,	7
456	Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. 2016 , 9, 69	33
455	Butanol production from organosolv treated spent mushroom substrate integrated with in situ biodiesel extraction. 2016 , 96, 656-661	11
454	Optimal design of an efficient, profitable and sustainable biorefinery producing acetone, butanol and ethanol: Influence of the in-situ separation on the purification structure. 2016 , 116, 195-209	18
453	Stable and enhanced gene expression in Clostridium acetobutylicum using synthetic untranslated regions with a stem-loop. 2016 , 230, 40-3	9
452	Alternative non-chromatographic method for alcohols determination in Clostridium acetobutylicum fermentations. 2016 , 126, 48-53	7
451	Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols. 2016 , 100, 4231-40	32
450	Enhanced butanol production from cassava with Clostridium acetobutylicum by genome shuffling. 2016 , 32, 53	17

448	Alkylation of Fatty Acids in Supercritical Alcohols. 2016 , 30, 4104-4111	9
447	Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. 2016 , 43, 915-25	16
446	Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation. 2016 , 9, 95	15
445	Fuel Class Higher Alcohols. 2016 , 29-57	5
444	Optimization of cellulase production by Penicillium sp. 2016 , 6, 162	39
443	Effect of butanol and salt concentration on solid-state nanopores resistance. 2016 , 2, 1225345	
442	Isobutylene-rich imidazolium ionomers for use in two-phase partitioning bioreactors. 2016 , 18, 6586-6595	3
441	Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to Saccharomyces cerevisiae using a tunable RNAi screening approach. 2016 , 100, 10005-10018	18
440	A re-look at the biochemical strategies to enhance butanol production. 2016 , 94, 187-200	41
439	Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. 2016 , 219, 158-168	99
438	CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. 2016 , 11, 961-72	114
437	Raman spectroscopy detects phenotypic differences among Escherichia coli enriched for 1-butanol tolerance using a metagenomic DNA library. 2016 , 11, 877-89	9
436	Comparison of fermentation by mono-culture and co-culture of oleaginous yeasts for ABE (acetone- butanol- ethanol) fermentation wastewater treatment. 2016 , 4, 3803-3809	9
435	Recycling of Solid Waste for Biofuels and Bio-chemicals. 2016 ,	6
434	Biofuel Production Technology and Engineering. 2016 , 275-299	
433	BiobutanolA Renewable Green Alternative of Liquid FuellFrom Algae. <i>Green Energy and</i> O.6	5
432	Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. 2016 , 100, 8255-71	39
431	Anaerobes in Biotechnology. 2016 ,	6

430	Butyric Acid. 2016 , 119-132	1
429	Comparative Study on Steam Reforming of Single- and Multicomponent Model Compounds of Biomass Fermentation for Producing Biohydrogen over Mesoporous Ni/MgO Catalyst. 2016 , 30, 8432-8440	7
428	A multicriteria comparison of utilizing sugar cane bagasse for methanol to gasoline and butanol production. 2016 , 95, 436-448	22
427	Enhancement of biobutanol production by electromicrobial glucose conversion in a dual chamber fermentation cell using C. pasteurianum. 2016 , 130, 165-175	25
426	Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. 2016 , 6, 26228	12
425	Self-regulated 1-butanol production in based on the endogenous fermentative control. 2016 , 9, 267	14
424	Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 1702-10	13
423	Quantitative proteomic analysis of the influence of lignin on biofuel production by Clostridium acetobutylicum ATCC 824. 2016 , 9, 113	18
422	Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. 2016 , 100, 9081-908	9 11
421	Saccharification of biopretreated paddy straw with indigenous holocellulase and fermentation with Saccharomyces cerevisiae LN1 under optimized conditions. 2016 , 1, 419-429	3
420	Partitioning of butanol between a hydrophobic ionic liquid and aqueous phase: Insights from Liquid Liquid Equilibria measurements and Molecular Dynamics simulations. 2016 , 425, 421-431	19
419	Biobutanol production from sugarcane bagasse hydrolysate generated with the assistance of gamma-valerolactone. 2016 , 51, 1538-1543	24
418	n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. 2016 , 9, 44	49
417	Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. 2016 , 15, 8	30
416	Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation. 2016 , 100, 7449-56	17
415	Cell growth behaviors of Clostridium acetobutylicum in a pervaporation membrane bioreactor for butanol fermentation. 2016 , 63, 101-5	12
414	Isolation, characterization, and optimization of an aerobic butanol-producing bacterium from Singapore. 2016 , 63, 86-91	6
413	Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. 2016 , 144, 139-144	37

(2016-2016)

412	Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. 2016 , 98, 217-226	54
411	One hundred years of clostridial butanol fermentation. 2016 , 363,	72
410	Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum. 2016 , 100, 1523-1529	14
409	A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. 2016 , 56, 116-132	121
408	Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. 2016 , 202, 214-9	27
407	Performance of fed-batch acetoneButanol@thanol (ABE) fermentation coupled with the integrated in situ extraction-gas stripping process and the fractional condensation. 2016 , 60, 119-123	22
406	Activation of immobilized Clostridium saccharoperbutylacetonicum N1-4 for butanol production under different oscillatory frequencies and chemical buffers. 2016 , 110, 129-135	6
405	Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. 2016 , 6, 33695-33704	18
404	Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. 2016 , 100, 3401-13	60
403	Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110. 2016 , 100, 4985-96	23
402	Frontiers in microbial 1-butanol and isobutanol production. 2016 , 363, fnw020	63
401	Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans. 2016 , 100, 3361-70	74
400	Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525. 2016 , 208, 73-80	35
399	High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose. 2016 , 122, 176-82	17
398	In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. 2016 , 39, 295-305	4
397	Improvement of butanol production from sweet sorghum juice by Clostridium beijerinckii using an orthogonal array design. 2016 , 79, 287-294	20
396	Gas strippingpervaporation hybrid process for energy-saving product recovery from acetoneButanol@thanol (ABE) fermentation broth. 2016 , 287, 1-10	98
395	Efficient acetoneButanolBthanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentationBervaporation coupled process. 2016 , 105, 90-96	23

394	Insights from genome of Clostridium butyricum INCQS635 reveal mechanisms to convert complex sugars for biofuel production. 2016 , 198, 115-27	3
393	Isolation of a Clostridium acetobutylicum strain and characterization of its fermentation performance on agricultural wastes. 2016 , 86, 459-465	27
392	Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. 2016 , 199, 228-234	60
391	Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation. 2016 , 121, 66-72	13
390	Influence of nutritional and operational parameters on the production of butanol or 1,3-propanediol from glycerol by a mutant Clostridium pasteurianum. 2017 , 34, 59-67	11
389	Solid-state fermentation of Moringa oleifera leaf meal using Bacillus pumilus CICC 10440. 2017 , 92, 2083-2089	97
388	Microbial electrosynthesis of solvents and alcoholic biofuels from nutrient waste: A review. 2017 , 5, 940-954	29
387	Integrated ABE fermentation-gas stripping process for enhanced butanol production from sugarcane-sweet sorghum juices. 2017 , 98, 153-160	42
386	Technoeconomic Study of Biobutanol AB Production. 1. Biomass Pretreatment and Hydrolysis. 2017 , 56, 1518-1524	10
385	Simplifying multidimensional fermentation dataset analysis and visualization: One step closer to capturing high-quality mutant strains. 2017 , 7, 39875	4
384	Design and Assessment of Advanced Thermochemical Plants for Second Generation Biobutanol Production Considering Mixed Alcohols Synthesis Kinetics. 2017 , 56, 1543-1558	7
383	H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. 2017 , 92, 712-731	73
382	Multiobjective Stochastic Optimization Approach Applied to a Hybrid Process ProductionBeparation in the Production of Biobutanol. 2017 , 56, 1823-1833	13
381	Improvement in energy recovery by dark fermentative biohydrogen followed by biobutanol production process using obligate anaerobes. 2017 , 42, 4880-4892	10
380	Fermentative production of butanol: Perspectives on synthetic biology. 2017 , 37, 210-221	82
379	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. 2017 , 101, 4327-4337	27
378	Effect of pH control on the anaerobic H-B-E fermentation of syngas in bioreactors. 2017 , 92, 1178-1185	26
377	Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. 2017 , 83,	57

(2017-2017)

376	production. 2017 , 584-585, 1121-1129	114
375	Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors. 2017 , 10, 162-174	15
374	Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass IA review. 2017 , 78, 1007-1032	87
373	Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. 2017 , 252, 1-10	31
372	Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids 🖪 Review. 2017 , 38, 97-110	14
371	Dynamic Nonlinear Feedback Control Applied to Improve Butanol Production by Clostridium acetobutylicum. 2017 , 15,	
370	Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach. 2017 , 198, 440-452	30
369	Utilization of Lignocellulosic Biomass for Biobutanol Production. 2017 , 247-263	1
368	Cellulosic biobutanol by Clostridia: Challenges and improvements. 2017 , 79, 1241-1254	66
367	Current advances on fermentative biobutanol production using third generation feedstock. 2017 , 35, 1049-1059	80
366	Co-fermentation of lignocellulose-based glucose and inhibitory compounds for lipid synthesis by Rhodococcus jostii RHA1. 2017 , 57, 159-166	14
365	Polycyclic aromatic hydrocarbons (PAHs) and soot formation in the pyrolysis of the butanol isomers. <i>Fuel</i> , 2017 , 197, 348-358	21
364	High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. 2017 , 33, 76	29
363	Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. 2017 , 235, 140-148	4
362	Optimal Planning of Feedstock for Butanol Production Considering Economic and Environmental Aspects. 2017 , 5, 4018-4030	30
361	Biomass Conversion Technologies: Biological/Biochemical Conversion of Biomass. 2017 , 99-111	4
360	Sustainable Biofuels Development in India. 2017,	9
359	Technological Advancements in Sustainable Production of Second Generation Ethanol Development: An Appraisal and Future Directions. 2017 , 299-336	4

358	Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19. 2017 , 12, 1600457		9
357	Synthetic Consortium of Escherichia coli for n-Butanol Production by Fermentation of the Glucose-Xylose Mixture. 2017 , 65, 10040-10047		27
356	Ferric iron and extracellular electron shuttling increase xylose utilization and butanol production during fermentation with multiple solventogenic bacteria. 2017 , 101, 8053-8061		8
355	The Impact of Microalgae in Food Science and Technology. 2017 , 94, 1333-1350		86
354	Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. 2017 , 263, 36-44		27
353	Conversion of food processing wastes to biofuel using clostridia. 2017 , 48, 135-143		12
352	Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. 2017 , 7, 11284		15
351	Cofactor engineering for more efficient production of chemicals and biofuels. 2017 , 35, 1032-1039		71
350	Ferrous Ion and Medium Composition Effects on Acidogenic Phase in Biobutanol Production from Molasses. 2017 , 877, 012072		O
349	Enhancement of solvent production by overexpressing key genes of the acetone-butanol-ethanol fermentation pathway in Clostridium saccharoperbutylacetonicum N1-4. 2017 , 245, 426-433		23
348	Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. <i>Energy and Environmental Science</i> , 2017 , 10, 2231-2244	35.4	88
347	Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis. 2017 , 12, 1700198		9
346	Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. 2017 , 42, 188	32-188	43 ³
345	Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. 2017 , 124, 498-505		15
344	Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7. 2017 , 244, 575-581		22
343	Effective production of n-butanol in Escherichia coli utilizing the glucoseglycerol mixture. 2017 , 81, 134-139		7
342	WITHDRAWN: Conversion of food processing wastes to biofuel using Clostridia. 2017,		
341	Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. 2017 , 243, 1000-1008		25

340	through consolidated bioprocessing. 2017 , 10, 118	47
339	Biobutanol [An impending biofuel for future: A review on upstream and downstream processing tecniques. 2017 , 68, 788-807	139
338	Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 374-383	40
337	Enhancing microbial production of biofuels by expanding microbial metabolic pathways. 2017 , 64, 606-619	5
336	Toward a sustainable biorefinery using high-gravity technology. 2017 , 11, 15-27	19
335	Effect of Media on Acetone-Butanol-Ethanol Fermentation by Isolated Clostridium spp 2017 , 138, 864-869	6
334	Using Glycerol as a Sole Carbon Source for Clostridium beijerinckii Fermentation. 2017, 138, 1105-1109	3
333	Phenols Removal from Hemicelluloses Pre-Hydrolysate by Laccase to Improve Butanol Production. <i>Fermentation</i> , 2017 , 3, 31	7
332	Sigma Factor Regulated Cellular Response in a Non-solvent Producing Degenerated Strain: A Comparative Transcriptome Analysis. 2017 , 8, 23	4
331	Bioproduction of Fuels: An Introduction. 2017 , 3-25	
331	Bioproduction of Fuels: An Introduction. 2017 , 3-25 Metabolic engineering of for production of n-butanol from crude glycerol. 2017 , 10, 173	34
		34
330	Metabolic engineering of for production of n-butanol from crude glycerol. 2017 , 10, 173	30
330	Metabolic engineering of for production of n-butanol from crude glycerol. 2017 , 10, 173 Enhanced butanol production by optimization of medium parameters using YM1. 2018 , 25, 1308-1321	30
330 329 328	Metabolic engineering of for production of n-butanol from crude glycerol. 2017 , 10, 173 Enhanced butanol production by optimization of medium parameters using YM1. 2018 , 25, 1308-1321 Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. 2018 , 36, 905-914 Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel	30
330 329 328 327	Metabolic engineering of for production of n-butanol from crude glycerol. 2017, 10, 173 Enhanced butanol production by optimization of medium parameters using YM1. 2018, 25, 1308-1321 Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. 2018, 36, 905-914 Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2018, 224, 552-559 7.1 Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from	30 21 54
330 329 328 327 326	Metabolic engineering of for production of n-butanol from crude glycerol. 2017, 10, 173 Enhanced butanol production by optimization of medium parameters using YM1. 2018, 25, 1308-1321 Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. 2018, 36, 905-914 Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. Fuel, 2018, 224, 552-559 7.1 Unravelling the influence of carbon dioxide on the adsorptive recovery of butanol from fermentation broth using ITQ-29 and ZIF-8. 2018, 20, 9957-9964	30 21 54

322	Separation of Butanol, Acetone, and Ethanol. 2018 , 255-285	8
321	Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. 2018 , 253, 343-354	70
320	Effects of nutritional enrichment on acid production from degenerated (non-solventogenic) Clostridium acetobutylicum strain M5. 2018 , 61, 469-472	8
319	Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum. 2018 , 154, 240-248	33
318	Extraction Rate and Energy Efficiency of Supercritical Carbon Dioxide Recovery of Higher Alcohols from Dilute Aqueous Solution. 2018 , 6, 683-693	9
317	Study on combustion and emission characteristics of a n-butanol engine with hydrogen direct injection under lean burn conditions. 2018 , 43, 7550-7561	17
316	Unique genetic cassettes in a contribute to simultaneous conversion of cellulose and monosugars into butanol. 2018 , 4, e1701475	28
315	Microalgae for biobutanol production (Fechnology evaluation and value proposition. 2018, 31, 367-376	36
314	Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of YM1. 2018 , 25, 339-348	41
313	The Draft Genome Sequence of Clostridium beijerinckii NJP7, a Unique Bacterium Capable of Producing Isopropanol-Butanol from Hemicellulose Through Consolidated Bioprocessing. 2018 , 75, 305-308	12
312	Hydrolytic pre-treatment methods for enhanced biobutanol production from agro-industrial wastes. 2018 , 249, 673-683	27
311	In situ biobutanol recovery from clostridial fermentations: a critical review. 2018 , 38, 469-482	29
310	Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. 2018 , 38, 529-540	20
309	Improved n-butanol production from lignocellulosic hydrolysate by Clostridium strain screening and culture-medium optimization. 2018 , 108, 157-166	29
308	Prospects of Solvent Tolerance in Butanol Fermenting Bacteria. 2018 , 249-264	3
307	One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. 2018 , 261, 44-50	23
306	Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products. 2018 , 24, 95-104	11
305	Metabolic engineering of microorganisms for biofuel production. 2018 , 82, 3863-3885	90

(2018-2018)

304	Diauxic growth of Clostridium acetobutylicum ATCC 824 when grown on mixtures of glucose and cellobiose. 2018 , 8, 85	8
303	Butanol production by Clostridium beijerinckii from pineapple waste juice. 2018, 153, 231-236	7
302	Recent Developments and Challenges of Acetone-Butanol-Ethanol Fermentation. 2018, 111-123	9
301	Exploitation of novel wild type solventogenic strains for butanol production. 2018, 11, 252	13
300	New contributions for industrial n-butanol fermentation: An optimized Clostridium strain and the use of xylooligosaccharides as a fermentation additive. 2018 , 119, 304-313	6
299	A Prospective Study on the Fermentation Landscape of Gaseous Substrates to Biorenewables Using Metabolic Model. 2018 , 9, 1855	4
298	Integrated Approach for the Valorization of Red Grape Pomace: Production of Oil, Polyphenols, and Acetone B utanol E thanol. 2018 , 6, 16279-16286	27
297	Characterization and genome analysis of a butanol-isopropanol-producing strain BGS1. 2018, 11, 280	26
296	Communication for a Collective Response to Environmental Stress. 2018 , 169-199	1
295	Thermopervaporative Removal of Isopropanol and Butanol from Aqueous Media Using Membranes Based on Hydrophobic Polysiloxanes. 2018 , 58, 975-982	7
294	A small-scale investigation process for the production of butanol using high-energy carbon heavy ion irradiation. 2018 , 18, 721-731	1
293	Enzymatic delignification and saccharification of Bambusa bambos for biobutanol production. 2018 , 125, 386-394	13
292	The Alcohol-to-Jet Conversion Pathway for Drop-In Biofuels: Techno-Economic Evaluation. 2018 , 11, 3728-3741	45
291	n-Butanol production in S. cerevisiae: co-ordinate use of endogenous and exogenous pathways. 2018 , 102, 9857-9866	24
290	Consolidated processing of biobutanol production from food wastes by solventogenic Clostridium sp. strain HN4. 2018 , 264, 148-153	30
289	Experimental investigation of the suitability of 1-butanol blended with biodiesel as an alternative biofuel in diesel engines. 2018 , 15, 72-77	18
288	Conceptual design of an extractive distillation process for the separation of azeotropic mixture of n-butanol-isobutanol-water. 2018 , 26, 2040-2047	6
287	Increasing of activity and thermostability of cold active butanol-tolerant endoglucanase from a marine sp. under high concentrations of butanol condition. 2018 , 8, 265	1

286	Exhaust emissions and performance of ternary iso-butanol B io-methanol g asoline and n-butanol B io-ethanol g asoline fuel blends in spark-ignition engines: Assessment and comparison. 2018 , 158, 830-844	49
285	Two stirred-tank bioreactors in series enable continuous production of alcohols from carbon monoxide with Clostridium carboxidivorans. 2018 , 41, 1403-1416	20
284	Liquid-liquid extraction, COSMO-SAC predictions and process flow sheeting of 1-butanol enhancement using mesitylene and oleyl alcohol. 2018 , 265, 824-839	16
283	Assessing the Effect of Pretreatments on the Structure and Functionality of Microbial Communities for the Bioconversion of Microalgae to Biogas. 2018 , 9, 1388	8
282	Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. 2018 ,	2
281	Biobutanol Production Using Recombinant Microorganisms. 2018 , 47-62	
280	Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway. 2018 , 102, 8107-8119	10
279	Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant XY16. 2018 , 11, 12	16
278	Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. 2018 , 84,	11
277	Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. 2018 , 41, 1195-1204	15
276	Process Energy Evaluation of Fuel Butanol Production from Sugar CaneBweet Sorghum Juices by AcetoneButanolEthanol Fermentation Associated with a Gas Stripping System. 2018 , 32, 9470-9477	3
275	Solvent production from xylose. 2018 , 102, 8707-8715	1
274	Developments in Fermentative Butanol Production as an Alternative Biofuel Source. 2018, 140,	3
273	Advanced bioprocessing strategies for biobutanol production from biomass. 2018 , 91, 1192-1204	53
272	Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. 2018 , 265, 128-138	35
271	Influence of gas-release strategies on the production of biohydrogen and biobutanol in ABE fermentation. 2019 , 1-7	1
270	A review on characteristics of food waste and their use in butanol production. 2019 , 34, 447-457	8
269	Genomic reconstruction of Iregulons in Clostridiales. 2019 , 20, 565	4

268	Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. 2019 , 12, 167	46
267	Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. 2019 , 12, 2529	15
266	Wide Scope Environmental Assessment of Biofuels. 2019 , 163-196	1
265	Metabolic engineering of for -butanol production from cellulose. 2019 , 12, 186	38
264	Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol. 2019 , 252, 113482	37
263	Lignocellulosic biomass from agro-industrial residues in South America: current developments and perspectives. 2019 , 13, 1505-1519	27
262	. 2019,	
261	Numerical simulation of NC spinning manufacturing on tantalum tungsten alloy cylinder part. 2019 , 1303, 012143	
260	Fracture-cave carbonate reservoir permeability modelling based on conventional log and well deliverability predication: A case study of the Amu Darya Gas field in Turkmenistan. 2019 , 349, 012041	
259	Current Status of Biotechnological Processes in the Biofuel Industries. 2019 , 47-69	2
258	Hybridization of sugar-carboxylate-syngas platforms for the production of bio-alcohols from lignocellulosic biomass (LCB) [A state-of-the-art review and recommendations. 2019 , 200, 112111	10
257	Isopropanol-butanol production from sugarcane and sugarcane-sweet sorghum juices by Clostridium beijerinckii DSM 6423. 2019 , 128, 105331	16
256	Effective continuous acetone-butanol-ethanol production with full utilization of cassava by immobilized symbiotic TSH06. 2019 , 12, 219	4
255	Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by DSM 525. 2019 , 4, 15521-15529	6
254	Domestication of the novel alcohologenic acetogen sp. AWRP: from isolation to characterization for syngas fermentation. 2019 , 12, 228	13
253	Potential of acetone-butanol-ethanol (ABE) as a biofuel. <i>Fuel</i> , 2019 , 242, 673-686 7.1	137
252	Emerging techniques in bioethanol production: from distillation to waste valorization. 2019 , 21, 1171-1185	53
251	Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. 2019 , 12,	62

250	Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production. 2019 , 10,	10
249	The draft genome sequence of sp. strain CT7, an isolate capable of producing butanol but not acetone and 1,3-propanediol from crude glycerol. 2019 , 9, 63	1
248	Production of butanol from biomass: recent advances and future prospects. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 20164-20182	30
247	Biobutanol: Research Breakthrough for its Commercial Interest. 2019 , 237-283	2
246	Potential and Prospects of Biobutanol Production from Agricultural Residues. 2019 , 285-318	2
245	Biosynthesis of Diverse Antimicrobial and Antiproliferative Acyloins in Anaerobic Bacteria. 2019 , 14, 1490-1497	11
244	Current challenges and advances in butanol production. 2019 , 225-256	2
243	Technological Barriers in Biobutanol Production. 2019 , 219-235	
242	Engineering Clostridium for improved solvent production: recent progress and perspective. 2019 , 103, 5549-5566	37
241	Genetic Engineering Applications to Improve Cellulase Production and Efficiency: Part II. 2019 , 227-260	1
240	Improved Biobutanol Production in 2-L Simultaneous Saccharification and Fermentation with Delayed Yeast Extract Feeding and in-situ Recovery. 2019 , 9, 7443	13
239	Biobutanol versus bioethanol in acetone B utanol B thanol technology A chemical and economical overview. 2019 , 83-99	1
238	Isolation of native Clostridia for utilization of agroindustrial cherry waste into butanol. 2019 , 43, 3313-3321	
237	Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separations. 2019 , 11, 13694-1370	0326
236	Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. 2019 , 5, e01401	17
235	Microwave assisted hydrothermal as greener pretreatment of brewer spent grains for biobutanol production. 2019 , 368, 1045-1055	58
234	Co-production of solvents and organic acids in butanol fermentation by in the presence of lignin-derived phenolics 2019 , 9, 6919-6927	13
233	Fermentation of Oil Extraction: Bioethanol, Acetone and Butanol Production. 2019 , 219-249	O

232	Fermentation processes for second-generation biofuels. 2019 , 241-272	7
231	Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. 2019 , 284, 415-423	43
230	Prospects of Renewable Bioprocessing in Future Energy Systems. 2019,	33
229	Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution. 2019 , 42, 583-592	7
228	Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads. 2019 , 36, 909-913	2
227	CRISPR-Cas9 nickase-assisted base editing in the solvent producer Clostridium beijerinckii. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 1475-1483	38
226	Butanol production by Clostridium. 2019 , 35-77	13
225	Acetone-butanol-ethanol solvents improved enzymatic hydrolysis of pretreated energy grass. <i>Fuel</i> , 2019 , 245, 406-412	7
224	Selective anaerobic fermentation of syngas into either C-C organic acids or ethanol and higher alcohols. 2019 , 280, 387-395	30
223	Biofuels and Bioenergy: Acetone and Butanol. 2019 , 79-100	3
222	Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. 2019 , 9, 962	18
221	Microbial communities from the Huaibei Coalfield alter the physicochemical properties of coal in methanogenic bioconversion. 2019 , 202, 85-94	12
220	Improved electrocompetence and metabolic engineering of reveals a new regulation pattern of glycerol fermentation. 2019 , 19, 412-422	7
219	Recovery of excreted n-butanol from genetically engineered cyanobacteria cultures: Process modelling to quantify energy and economic costs of different separation technologies. 2019 , 37, 92-102	13
218	Thermodynamics of clouding process in 1-butanol + water mixtures in the presence and absence of sugars. 2019 , 278, 164-174	3
217	Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis. 2019 , 127, 458-464	16
216	Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. 2019 , 52, 190-214	32
215	Simultaneous saccharification and fermentation of sago hampas into biobutanol by Clostridium acetobutylicum ATCC 824. 2019 , 7, 66-75	14

214	Recent trends in biobutanol production. 2019 , 35, 475-504		36
213	Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption. 2020 , 304, 109322		13
212	Enhanced hydrogen production by a sequential dark and photo fermentation process: Effects of initial feedstock composition, dilution and microbial population. 2020 , 147, 924-936		16
211	Bio-butanol recovery by adsorption/desorption processes. <i>Separation and Purification Technology</i> , 2020 , 235, 116145	8.3	15
210	Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines. 2020,		3
209	Comparison of acid-, alkaline-, and ionic liquid l reated Napier grass as an immobilization carrier for butanol production by Clostridium beijerinckii JCM 8026. 2020 , 10, 1071-1082		3
208	Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. 2020 , 119, 133-147		28
207	Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A H-magnetic resonance spectroscopy study. 2020 , 74, 77-83		8
206	Efficient butanol production under aerobic conditions by coculture of Clostridium acetobutylicum and Nesterenkonia sp. strain F. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 392-405	4.9	6
205	Control of solvent production by sigma-54 factor and the transcriptional activator AdhR in Clostridium beijerinckii. 2020 , 13, 328-338		5
204	Co-valorization of paper mill sludge and corn steep liquor for enhanced n-butanol production with Clostridium tyrobutyricum 日at1::adhE2. 2020 , 296, 122347		14
203	FE parametric study on the longitudinal tensile strength and damage mechanism of Z-pinned laminates. 2020 , 41, 585-599		4
202	Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. 2020 , 710, 136399		33
201	Biobutanol from lignocellulosic biomass: bioprocess strategies. 2020 , 169-193		9
200	Bioconversion of organosolv-treated bamboo into biobutanol integrated with on-site hydrolytic enzyme production. 2020 , 14, 117-126		2
199	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. 2020 , 5, 277-292		14
198	Enhancing xylose and glucose utilization as well as solvent production using a simplified three-electrode potentiostat system during Clostridium fermentation. 2020 , 47, 889-895		0
197	Engineering nature for gaseous hydrocarbon production. 2020 , 19, 209		5

(2020-2020)

196	Phenotypic and Genomic Analysis of NRRL B-598 Mutants With Increased Butanol Tolerance. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 598392	5.8	4
195	Optimization of n-butanol synthesis in Lactobacillus brevis via the functional expression of thl, hbd, crt and ter. 2020 , 47, 1099-1108		2
194	Microbial production of butanol from food industry waste. 2020 , 163-180		
193	Clostridium. 2020 , 477-491		Ο
192	Biomass coproducts utilization. 2020 , 153-197		
191	Bioprocess intensification for isopropanol, butanol and ethanol (IBE) production by fermentation from sugarcane and sweet sorghum juices through a gas stripping-pervaporation recovery process. <i>Fuel</i> , 2020 , 281, 118593	7.1	19
190	Enhanced aerobic conversion of starch to butanol by a symbiotic system of Clostridium acetobutylicum and Nesterenkonia. 2020 , 164, 107752		7
189	Milling byproducts are an economically viable substrate for butanol production using clostridial ABE fermentation. 2020 , 104, 8679-8689		2
188	Efficient, Simple Production of Corresponding Alcohols from Supplemented C2-C8 Carboxylic Acids in Escherichia coli Using Acyl-CoA Transferase from Megasphaera hexanoica. 2020 , 25, 599-606		4
187	Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. 2020 , 47, 753-787		20
186	Improved Butanol Production Using FASII Pathway in. 2020 , 9, 2390-2398		4
185	Enzymatic hydrolysis of cassava stems for butanol production of isolated Clostridium sp 2020 , 6, 196-20	01	4
184	Biotechnology for Biofuels: A Sustainable Green Energy Solution. 2020 ,		3
183	Multiproduct biorefinery optimal design: application to the acetone-butanol-ethanol system. 2020 , 75, 9		1
182	Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: An overview. 2020 , 393-446		9
181	Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of G117 and recombinant 1A1. 2020 , 11, e00137		9
180	Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. <i>Fermentation</i> , 2020 , 6, 58	4.7	13
179	High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. 2020 , 2, 45-53		4

178	Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. 2020 , 13, 39		36
177	Pyrolysis of biological wastes for bioenergy production: Thermo-kinetic studies with machine-learning method and Py-GC/MS analysis. <i>Fuel</i> , 2020 , 269, 117238	7.1	20
176	Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. 2020 , 36, 48		8
175	Present status and future prospect of genetic and metabolic engineering for biofuels from lignocellulosic biomass. 2020 , 37-46		O
174	A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. 2020 , 104, 5011-5023		18
173	Evaluation of Media Components and Process Parameters in a Sensitive and Robust Fed-Batch Syngas Fermentation System with Clostridium ljungdahlii. <i>Fermentation</i> , 2020 , 6, 61	4.7	12
172	Metabolic Engineering and Adaptive Evolution of To Increase Solvent Production from Corn Stover Hydrolysate. 2020 , 68, 7916-7925		4
171	Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in. 2020 , 86,		3
170	Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium. 2020 , 153, 522-529		28
169	Production of Butanol Directly from Hemicellulose through Secretory Expression of a Xylanase in Clostridium acetobutylicum. 2020 , 34, 3376-3382		4
168	Hydrogen production from dry spirulina algae with downstream feeding in microwave plasma reactor assisted under atmospheric pressure. 2020 , 93, 1597-1601		7
167	Substrate Analysis for Effective Biofuels Production. 2020,		1
166	Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane. 2020 , 10,		8
165	Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. 2021 , 12, 2145-2169		50
164	Efficient biobutanol production by acetone-butanol-ethanol fermentation from spent coffee grounds with microwave assisted dilute sulfuric acid pretreatment. 2021 , 320, 124348		17
163	A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine. 2021 , 135, 110079		58
162	Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. <i>Fuel</i> , 2021 , 285, 119052	7.1	27
161	Enhancing acetic acid and 5-hydroxymethyl furfural tolerance of C. saccharoperbutylacetonicum through adaptive laboratory evolution. 2021 , 101, 179-189		4

Bioenergy for better sustainability: technologies, challenges and prospect. **2021**, 43-66

159	Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. 2021 , 144, 105919	41
158	Butanol production from algal biomass by acetone-butanol-ethanol fermentation process. 2021 , 421-446	
157	Novel Methods Using an Arthrobacter sp. to Create Anaerobic Conditions for Biobutanol Production from Sweet Sorghum Juice by Clostridium beijerinckii. 2021 , 9, 178	2
156	Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. 2021 , 2290, 3-21	1
155	Hot and Cold Bacteria of Sikkim: Biodiversity and Enzymology. 2021 , 269-289	
154	Extraction and analysis of microbial terpenoids. 2021 , 185-212	
153	Quantitative proteomic analysis to reveal expression differences for butanol production from glycerol and glucose by Clostridium sp. strain CT7. 2021 , 20, 12	1
152	Culture condition modulation for the high-yield and high-specificity terpenoid production. 2021 , 133-156	
151	Economical Biofuel Production Strategies from Biomass Biowaste. 2021 , 1-22	
150	Simultaneous Fermentation of Mixed Sugar by a Newly Isolated Clostridium beijerinckii GSC1. 2021 , 26, 137-144	2
149	Capability of Immobilized Clostridium beijerinckii TISTR 1461 on Lotus Stalk Pieces to Produce Butanol from Sugarcane Molasses. 2021 , 9, 573	3
148	High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification. 2021 , 162, 113258	14
147	Efficient production of acetone butanol ethanol from sole fresh and rotten potatoes by various Clostridium strains. 1	О
146	Biocatalytic Conversion of Short-Chain Fatty Acids to Corresponding Alcohols in Escherichia coli. 2021 , 9, 973	0
145	Introduction to Biomass to Biofuels Technologies. 2021 , 1-38	
144	Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. 2021 , e2000451	2
143	Progress in the Use of Biobutanol Blends in Diesel Engines. 2021 , 14, 3215	9

142	Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step. 2021 , 329, 124929		6
141	Effects of Macrofaunal Recolonization on Biogeochemical Processes and Microbiota Mesocosm Study. 2021 , 13, 1599		О
140	Developing Clostridia as Cell Factories for Short- and Medium-Chain Ester Production. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 661694	5.8	1
139	A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. 2021 , 239, 114219		14
138	Adaptive laboratory evolution principles and applications in industrial biotechnology. 2021 , 54, 107795		12
137	A neutral red mediated electro-fermentation system of Clostridium beijerinckii for effective co-production of butanol and hydrogen. 2021 , 332, 125097		11
136	Comparison of different Vetiver grass pretreatment techniques and their impact on immobilized butanol production by Clostridium beijerinckii TISTR 1461. 2021 , 28, 9117-9134		2
135	Developing fourth-generation biofuels secreting microbial cell factories for enhanced productivity and efficient product recovery; a review. <i>Fuel</i> , 2021 , 298, 120858	7.1	5
134	Organic-waste-derived butyric acid-to-biodiesel supply-chain network: Strategic planning design using a deterministic snapshot model. 2021 , 293, 112848		6
133	Current Perspective of Sustainable Utilization of Agro Waste and Biotransformation of Energy in Mushroom. 2021 , 274-302		2
132	Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. <i>Separation and Purification Technology</i> , 2021 , 279, 119758	8.3	2
131	Biobutanol from lignocellulosic biomass and microalgae: scope, technology, and economics. 2021 , 163-2	223	3
130	Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review. 2020 ,		2
129	Essential process and key barriers for converting plant biomass into biofuels. 2021, 53-70		1
128	Industrial Waste Valorization. 2020 , 515-537		1
127	Fermentation. 185-203		5
126	Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. 2021 , 10, e1146		3
125	Biochemical Conversion of Biomass to Fuels. 2012 , 965-999		3

124	Biochemical Conversion of Biomass to Fuels. 2015 , 1-28	1
123	C3🗹4 Platform Chemicals Bioproduction Using Biomass. 2014 , 473-489	2
122	Butanol as a Drop-In Fuel: A Perspective on Production Methods and Current Status. <i>Green Energy and Technology</i> , 2020 , 371-398	О
121	Fuel Alcohols from Microalgae. <i>Green Energy and Technology</i> , 2016 , 143-154 0.6	1
120	Mechanisms and Applications of Microbial Solvent Tolerance. 2012 , 177-208	3
119	Biofuel Production from Agricultural WasteAn Economical Approach. 2020 , 65-80	2
118	A Spotlight on Butanol and Propanol as Next-Generation Synthetic Fuels. 2020 , 105-126	4
117	Technological Advancements in the Production and Application of Biomethanol. 2020 , 127-139	7
116	Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. 2020 , 197-219	1
115	Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. 2020 , 13-54	4
114	Algal Butanol Production. 2020 , 33-50	1
113	Valorization of food waste for bioethanol and biobutanol production. 2020 , 39-73	7
112	Biobutanol Production From Renewable Resources. 2016 , 1, 1-68	7
111	Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation. 2013 , 56, 334-341	7
110	BacilloFlex: A modular DNA assembly toolkit forBacillus subtilissynthetic biology.	3
109	Effect of Cysteine, Yeast Extract, pH Regulation and Gas Flow on Acetate and Ethanol Formation and Growth Profiles of Clostridium ljungdahlii Syngas Fermentation.	2
108	The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824. 2019 , 9, 142	7
107	Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7. 2020 , 7,	10

106	Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. 2010 , 5, e13033	119
105	Group II intron-anchored gene deletion in Clostridium. 2011 , 6, e16693	22
104	Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. 2012 , 7, e38815	23
103	COMPUTER RECOGNITION OF CHEMICAL SUBSTANCES BASED ON THEIR ELECTROPHYSIOLOGICAL CHARACTERISTICS. 2019 , 12, 5-28	5
102	Emission Benefits from the Use of Castor Oil in a Compression Ignition Engine Fuelled with Diesel-Ethanol Blends. 2018 , 6, 57-63	1
101	Alcohol-mediated Reduction of Biomass-derived Furanic Aldehydes via Catalytic Hydrogen Transfer. 2019 , 23, 2168-2179	6
100	The Effect of Different Carbon Sources on Biobutanol Production using Clostridium saccharoperbutylacetonicum N1-4. 2011 , 10, 280-285	22
99	Enhancement of Biobutanol Production by Butyric Acid Addition Using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). 2012 , 11, 326-332	8
98	Effects of Inoculum and Substrate Concentrations in Anaerobic Fermentation of Treated Rice Bran to Acetone, Butanol and Ethanol. 2012 , 2, 79-89	13
97	Date Fruit as Carbon Source in RCM-Modified Medium to Produce Biobutanol by Clostridium acetobutylicum NCIMB 13357. 2012 , 12, 1160-1165	12
96	Effect of some environmental parameters on biobutanol production by Clostridium acetobutylicum NCIMB 13357 in date fruit medium. 2013 , 16, 1145-51	8
95	Investigation of Biobutanol Efficiency of Chlorella sp. Cultivated in Municipal Wastewater. 2018 , 06, 40-50	7
94	Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth. 2016 , 31, 79-84	4
93	Citrulline deiminase pathway provides ATP and boosts growth of Clostridium carboxidivorans P7. 2021 , 14, 204	1
92	Recent progress on n-butanol production by lactic acid bacteria. 2021 , 37, 205	O
91	Synthetic co-culture of autotrophic Clostridium carboxidivorans and chain elongating Clostridium kluyveri monitored by flow cytometry. 2021 ,	3
90	Kinetic model of Clostridium beijerinckii's Acetone-Butanol-Ethanol fermentation considering metabolically diverse cell types. 2021 , 342, 1-12	
89	Enhanced production and in-situ removal of butanol during the fermentation of lignocellulosic hydrolysate of pineapple leaves. 2021 , 173, 114147	1

88	Anaerobic fermentation of pretreated food waste for butanol production by co-cultures assisted with in-situ extraction. 2021 , 16, 100852	О
87	Isolation and Characterization of n-Butanol Tolerant Microorganisms. 2014 , 1057-1066	
86	An Economic Assessment of Second-Generation Liquid Fuels Production Possibilities. 2014 , 135-148	
85	Quorum Sensing Systems in Clostridia. 2015 , 133-154	
84	Engineering Central Metabolism for Production of Higher Alcohol-based Biofuels. 2016 , 1-34	2
83	Bioproduction of Fuels: An Introduction. 2016 , 1-23	
82	Cell-free biosystems. 2016 , 465-483	
81	Crystal Structure of Thiolase from Clostridium butyricum. 2016 , 26, 353-358	1
80	Biochemical Conversion of Biomass to Fuels. 2017 , 1777-1811	0
79	The Development of Immobilization Matrices with Adjustable Density for Use in the Immobilization of Stationary-Phase Operating Microorganisms within Continuous Bioreactors. 2016 , 7, 378-382	1
78	Integrated Production and Separation ?. 2017 ,	
77	Further Extensions of Flexibility Analyses. 2017 , 215-226	
76	Integrated Production and Separation. 2019 , 651-662	
75	Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. 2019 , 13, 1429-1440	
74	METABOLIC ENGINEERING OF SOLVENTOGENIC CLOSTRIDIA. 2019 , 12, 29-41	0
73	Biofuel Synthesis by Extremophilic Microorganisms. 2020, 115-138	1
72	Inoculum Size and Age Studies on Single and Mixed Strain Fermentation of Grape Juice. 2020 , 14, 2137-2145	1
71	Butanol recovery Ionic liquids as green solvents.	1

70	Biobutanol, the forgotten biofuel candidate: latest research and future directions. 2022, 315-328		
69	Measuring Biomass-Derived Products in Biological Conversion and Metabolic Process. 2020 , 2096, 113	-124	
68	A short look at microbial producers of biobutanol: New trends, potentialities and limitations. 2020 , 24, 100-104		
67	Waste biomass to biobutanol: recent trends and advancements. 2022 , 393-423		O
66	Utilization of agricultural biomass for bio-butanol production. 2022 , 235-248		
65	Electroacupuncture modulates the intestinal microecology to improve intestinal motility in spinal cord injury rats. 2021 ,		4
64	NS-1 gen. nov., sp. nov., a Novel Deep-Sea Bacterium Possessing Diverse Carbohydrate Metabolic Pathways 2021 , 12, 725159		1
63	Biobutanol Production from Oil Palm Biomass. 2022 , 307-324		
62	High butanol/acetone ratio featured ABE production using mixture of glucose and waste Pichia pastoris medium-based butyrate fermentation supernatant 2022 , 45, 465		O
61	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy and Environmental Science,	35.4	7
60	Bioconversion of Malaysia Renewable Energy Resources to Biobutanol. <i>Green Energy and Technology</i> , 2022 , 117-146	0.6	O
59	Advances in microbial metabolic engineering for the production of butanol isomers (isobutanol and 1-butanol) from a various biomass. <i>Bioenergy Research</i> , 1	3.1	
58	Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched Frontiers in Bioengineering and Biotechnology, 2022 , 10, 828316	5.8	2
57	A novel integrated fermentation/recovery system for butanol production by Clostridium acetobutylicum. <i>Chemical Engineering and Processing: Process Intensification</i> , 2022 , 173, 108852	3.7	О
56	Butanol Production by a Novel Efficient Method Using Mixed Cultures of Clostridium beijerinckii and Arthrobacter sp. in Stirred-Tank and Gas-Lift Bioreactors. <i>Fermentation</i> , 2022 , 8, 160	4.7	
55	Corn Steep Liquor: Green Biological Resources for Bioindustry <i>Applied Biochemistry and Biotechnology</i> , 2022 , 1	3.2	2
54	Data_Sheet_1.DOCX. 2020 ,		
53	Data_Sheet_2.zip. 2020 ,		

52 Data_Sheet_1.docx. 2018,

	Data Charl 2 and 2040		
51	Data_Sheet_2.pdf. 2018 ,		
50	Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology. <i>The EuroBiotech Journal</i> , 2022 , 6, 49-60	1.5	O
49	Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. <i>Separation and Purification Technology</i> , 2022 , 121244	8.3	1
48	An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp <i>Environmental Science and Pollution Research</i> , 2022 ,	5.1	О
47	Current knowledge on cyanobacterial biobutanol production: advances, challenges, and prospects. <i>Reviews in Environmental Science and Biotechnology</i> , 1	13.9	1
46	Advances in metabolic engineering of cyanobacteria for production of biofuels. Fuel, 2022, 322, 124117	7.1	1
45	Application of proteomics and metabolomics in microbiology research. 2022 , 107-129		
44	Process intensification in biobutanol production. 2022 , 223-262		O
43	Concurrent reduction of CO2 and generation of biofuels by electrified microbial systemsBoncepts and perspectives. 2022 , 347-382		
42	Production of cellulosic butanol by clostridial fermentation: a superior alternative renewable liquid fuel. 2022 , 263-289		
41	Role of thermophilic cellulases and organisms in the conversion of biomass to biofuels. 2022 , 85-113		O
40	Biobutanol separation using ionic liquids as a green solvent. 2022 , 291-322		O
39	Bioinformatics and Metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.		
38	Butanol production from Thai traditional beverage (Sato) factory wastewater using newly isolated Clostridium beijerinckii CUEA02. 2022 , 187, 108648		O
37	Optimization studies about efficient biobutanol production from industrial tea waste by Clostridium beijerinckii. 2023 , 331, 125763		O
36	Long-chain alcohol production in open culture anaerobic fermentation. 2023 , 452, 139225		О
35	Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022\(\textbf{Q}050\). 2022 , 24, 6373-6405		1

34	Bioinformatics and Metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.	0
33	High-rate continuous n -butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single-pass fibrous-bed bioreactor.	O
32	An Alternative Approach to Improve the Butanol Production Efficiency from Sweet Sorghum Stem Juice Using Immobilized Cells Combined with an In Situ Gas Stripping System. 2022 , 8, 464	1
31	Integrated chemo- and biocatalytic processes: a new fashion toward renewable chemicals production from lignocellulosic biomass.	O
30	Genetic Manipulation of a Twin Clostridia Consortium for Co-production of n-Butanol and Isobutanol by Consolidated Bioprocessing.	0
29	Alternative Fuels for Agriculture Sustainability: Carbon Footprint and Economic Feasibility. 2022, 4, 993-1015	O
28	Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026.	0
27	Efficient co-production of fermentable sugars and biobutanol from corn stover based on a novel butyric acid pretreatment strategy. 2023 , 191, 115976	О
26	Biobutanol from agricultural and municipal solid wastes, techno-economic, and lifecycle analysis. 2023 , 171-198	0
25	Lignocellulosic bio-butanol production: challenges and solution. 2023 , 261-277	О
24	Bio-butanol production: scope, significance, and applications. 2023 , 1-45	0
23	Biobutanol fermentation research and development: feedstock, process and biofuel production. 2023 , 79-103	O
23		0
	2023 , 79-103	
22	2023, 79-103 Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol. 2023, 202, 362-369	0
22	Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol. 2023, 202, 362-369 Application of nanotechnology in biobutanol production. 2023, 363-379	0
22 21 20	Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol. 2023, 202, 362-369 Application of nanotechnology in biobutanol production. 2023, 363-379 Insights into metabolic engineering approaches for enhanced biobutanol production. 2023, 329-361	o o

CITATION REPORT

16	Circular Economy Potential of Microalgal Refinery. 2022 , 219-250	0
15	Promising Bioalcohols for Low-Emission Vehicles. 2023 , 16, 597	1
14	A Cellular Platform for Production of C4Monomers.	0
13	Bioinformatics and metabolic flux analysis highlight a new mechanism involved in lactate oxidation in Clostridium tyrobutyricum.	O
12	Clostridium beijerinckii strain degeneration is driven by the loss of Spo0A activity. 13,	0
11	Integrated biorefineries for the co-production of biofuels and high-value products. 2023 , 513-541	O
10	Biomass valorization to biobutanol. 2023 , 151-178	0
9	Electronic and surface engineering of Mo doped Ni@C nanocomposite boosting catalytic upgrading of aqueous bio-ethanol to bio-jet fuel precursors. 2023 , 461, 141888	O
8	Production of butyl butyrate from lignocellulosic biomass through Escherichia coli-Clostridium beijerinckii G117 co-culture. 2023 , 128, 58-67	0
7	Enhancing butanol production by Clostridium beijerinckii through cathodic electrofermentation approach. 2023 , 98, 856-864	O
6	Challenges in Biobutanol Fermentation and Separation. 2023, 87-110	0
5	The Preparation Processes and Influencing Factors of Biofuel Production from Kitchen Waste. 2023 , 9, 247	O
4	Production of indigo by recombinant bacteria. 2023 , 10,	0
3	DETERMINATION OF ENDOSPORE STRUCTURE AND VOLATILE COMPOUNDS OF CLOSTRIDIAL SPECIES DURING SPORULATION. 499-508	O
2	Biotechnological Approaches to Generate Biogenic Solvents and Energy Carriers from Renewable Resources. 2023 , 7, 96-120	0
1	An optimized reverse Ebxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae. 2023 , 16,	O