Nonâ€bioengineered silk gland fibroin protein: Charact for potential tissue engineering applications

Biotechnology and Bioengineering 100, 1237-1250 DOI: 10.1002/bit.21835

Citation Report

#	Article	IF	CITATIONS
1	Nonâ€Bioengineered Silk Fibroin Protein 3D Scaffolds for Potential Biotechnological and Tissue Engineering Applications. Macromolecular Bioscience, 2008, 8, 807-818.	4.1	130
2	Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 2008, 33, 998-1012.	24.7	316
3	Silk fibroin/gelatin multilayered films as a model system for controlled drug release. European Journal of Pharmaceutical Sciences, 2009, 37, 160-171.	4.0	105
4	Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 2009, 30, 2956-2965.	11.4	490
5	Non-bioengineered silk gland fibroin micromolded matrices to study cell-surface interactions. Biomedical Microdevices, 2009, 11, 467-476.	2.8	16
6	Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels forÂcontrolled drug release. Biomaterials, 2009, 30, 2826-2836.	11.4	273
7	Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials, 2009, 30, 5170-5177.	11.4	64
8	Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Biomaterials, 2009, 30, 5019-5030.	11.4	115
9	Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomaterialia, 2009, 5, 2579-2590.	8.3	48
10	Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomaterialia, 2009, 5, 3007-3020.	8.3	186
11	Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology, 2009, 20, 355101.	2.6	121
12	Biospinning by silkworms: Silk fiber matrices for tissue engineering applications. Acta Biomaterialia, 2010, 6, 360-371.	8.3	71
13	Implication of Silk Film RGD Availability and Surface Roughness on Cytoskeletal Organization and Proliferation of Primary Rat Bone Marrow Cells. Tissue Engineering - Part A, 2010, 16, 2391-2403.	3.1	48
14	Morphology and tensile properties of silk fibers produced by uncommon Saturniidae. International Journal of Biological Macromolecules, 2010, 46, 419-424.	7.5	24
15	Silk Fibroin/Sodium Carboxymethylcellulose Blended Films for Biotechnological Applications. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 519-539.	3.5	24
16	Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma discharge. Applied Surface Science, 2011, 258, 126-135.	6.1	29
17	Preparation, characterization and in vitro study of biocompatible fibroin hydrogel. African Journal of Biotechnology, 2011, 10, 7878-7892.	0.6	18
18	Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 2011, 32, 8927-8937.	11.4	101

# 19	ARTICLE Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials, 2011, 32, 2149-2159.	IF 11.4	CITATIONS
20	Unique naturalâ€protein hollowâ€nanofiber membranes produced by weaver ants for medical applications. Biotechnology and Bioengineering, 2011, 108, 1726-1733.	3.3	15
21	Improved human tenocyte proliferation and differentiation <i>in vitro</i> by optimized silk degumming. Biomedical Materials (Bristol), 2011, 6, 035010.	3.3	19
22	Bioengineered natural textile fibres. , 2012, , 291-313.		0
23	Disposable Amperometric A-fetoprotein Immunosensor Based on the Biocompatible Silk Protein Membranes-Modified Indium Tin Oxide Electrodes. Analytical Letters, 2012, 45, 735-745.	1.8	2
24	Radio-frequency Ar plasma treatment on muga silk fiber: correlation between physicochemical and surface morphology. Journal of Theoretical and Applied Physics, 2012, 6, 39.	1.4	10
25	A novel method for the production and evaluation of hernia repair mesh in an in vitro environment. Tissue Engineering and Regenerative Medicine, 2012, 9, 116-127.	3.7	2
26	Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials, 2012, 33, 2673-2680.	11.4	210
27	Nonmulberry silk biopolymers. Biopolymers, 2012, 97, 455-467.	2.4	174
28	Tailoring Silk-Based Matrices for Tissue Regeneration. ACS Symposium Series, 2013, , 281-299.	0.5	1
29	Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromolecular Bioscience, 2013, 13, 984-1019.	4.1	81
30	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	8.3	79
31	In vitro characterization and ex vivo surgical evaluation of human hair keratin films in ocular surface reconstruction after sterilization processing. Journal of Materials Science: Materials in Medicine, 2013, 24, 221-230.	3.6	30
32	Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2392-2404.	4.0	77
33	Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. Journal of Molecular Liquids, 2013, 178, 5-14.	4.9	116
34	Engineered 3D Silkâ€Based Metastasis Models: Interactions Between Human Breast Adenocarcinoma, Mesenchymal Stem Cells and Osteoblastâ€Like Cells. Advanced Functional Materials, 2013, 23, 5249-5260.	14.9	43
35	An Emerging Functional Natural Silk Biomaterial from the only Domesticated Nonâ€mulberry Silkworm <i>Samia ricini</i> . Macromolecular Bioscience, 2013, 13, 1020-1035.	4.1	31
36	Bio-inspired fabrication of fibroin cryogels from the muga silkworm <i>Antheraea assamensis</i> for liver tissue engineering. Biomedical Materials (Bristol), 2013, 8, 055003.	3.3	39

#	Article	IF	CITATIONS
37	Silk for cardiac tissue engineering. , 2014, , 429-455.		4
38	Mineralization and Biocompatibility of Antheraea pernyi (A. pernyi) Silk Sericin Film for Potential Bone Tissue Engineering. Bio-Medical Materials and Engineering, 2014, 24, 815-824.	0.6	18
39	Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 2014, 39, 251-267.	24.7	364
40	Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1440-1457.	3.5	19
41	Development and characterization of cactus–dextrin– recombinant human epidermal growth factor based silk scaffold for wound dressing applications. Journal of Industrial Textiles, 2014, 43, 565-576.	2.4	8
42	Scaffolds: A Novel Carrier and Potential Wound Healer. Critical Reviews in Therapeutic Drug Carrier Systems, 2015, 32, 277-321.	2.2	38
43	Target Specific Delivery of Anticancer Drug in Silk Fibroin Based 3D Distribution Model of Bone–Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 2269-2279.	8.0	66
44	Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. International Journal of Biological Macromolecules, 2015, 76, 292-302.	7.5	68
45	Fabrication and characterization of silk fibroin/chitosan/Nano γ-alumina composite scaffolds for tissue engineering applications. RSC Advances, 2015, 5, 27558-27570.	3.6	27
46	Non-mulberry silk fibroin grafted PCL nanofibrous scaffold: Promising ECM for bone tissue engineering. European Polymer Journal, 2015, 71, 490-509.	5.4	64
47	Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: <i>in vitro</i> and <i>in vivo</i> studies. Biotechnology and Applied Biochemistry, 2015, 62, 785-794.	3.1	48
48	<i>In vitro</i> and <i>in vivo</i> evaluations of threeâ€dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Biotechnology and Applied Biochemistry, 2015, 62, 441-450.	3.1	45
49	Nanofibrous nonmulberry silk/ <scp>PVA</scp> scaffold for osteoinduction and osseointegration. Biopolymers, 2015, 103, 271-284.	2.4	40
51	Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnology Advances, 2016, 34, 845-858.	11.7	55
52	Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(É>-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering. Applied Materials Today, 2016, 5, 52-67.	4.3	43
53	Reloadable Silk-Hydrogel Hybrid Scaffolds for Sustained and Targeted Delivery of Molecules. Molecular Pharmaceutics, 2016, 13, 4066-4081.	4.6	24
54	Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. ACS Applied Materials & Interfaces, 2016, 8, 15874-15888.	8.0	78
55	Impact of BSA and casein on chemical modification of muga silk fiber. Journal of the Textile Institute, 2016, 107, 346-354.	1.9	6

CITATION REPORT

#	Article	IF	CITATIONS
56	Gentamicin sulfate-loaded porous natural rubber films for wound dressing. International Journal of Biological Macromolecules, 2016, 85, 634-644.	7.5	81
57	Non-mulberry silk fibroin grafted poly(ε-caprolactone) nanofibrous scaffolds mineralized by electrodeposition: an optimal delivery system for growth factors to enhance bone regeneration. RSC Advances, 2016, 6, 26835-26855.	3.6	18
58	Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Cell and Tissue Research, 2016, 363, 525-540.	2.9	44
59	In vitrotwo-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E216-E226.	2.7	20
60	Silk scaffolds in bone tissue engineering: An overview. Acta Biomaterialia, 2017, 63, 1-17.	8.3	236
61	Silk–Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials. ACS Applied Materials & Interfaces, 2017, 9, 31634-31644.	8.0	35
63	Chitosanâ€finished <i>Antheraea mylitta</i> silk fibroin nonwoven composite films for wound dressing. Journal of Applied Polymer Science, 2017, 134, .	2.6	12
64	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	11.7	320
65	Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2018, 82, 265-276.	7.3	34
66	Scaffold Development Using Biomaterials: A Review. Materials Today: Proceedings, 2018, 5, 12909-12919.	1.8	68
67	In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds. Advanced Healthcare Materials, 2018, 7, e1801092.	7.6	156
68	Tailoring the Interface of Biomaterials to Design Effective Scaffolds. Journal of Functional Biomaterials, 2018, 9, 50.	4.4	43
69	Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts. ACS Applied Materials & Interfaces, 2018, 10, 23560-23572.	8.0	64
70	Unusual Dynamics of Alanine Residues in Polyalanine Regions with Staggered Packing Structure of <i>Samia cynthia ricini</i> Silk Fiber in Dry and Hydrated States Studied by ¹³ C Solid-State NMR and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 6511-6520.	2.6	8
71	Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Materials Science and Engineering C, 2019, 103, 109688.	7.3	40
72	Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 2365-2381.	5.2	57
73	Water-Rinsed Nonmulberry Silk Film for Potential Tissue Engineering Applications. ACS Omega, 2019, 4, 3114-3121.	3.5	15
74	A collagen-coated sponge silk scaffold for functional meniscus regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 156-173.	2.7	34

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
75	Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomaterialia, 2020, 103, 24-51.	8.3	183
76	In vitro three-dimensional modeling for prostate cancer. , 2020, , 251-286.		0
77	Silkâ€Based Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e2000735.	7.6	35
78	Bioinspired super-tough and multifunctional soy protein-based material via a facile approach. Chemical Engineering Journal, 2021, 405, 126700.	12.7	14
79	Bioinspired Biomaterial Composite for Allâ€Waterâ€Based Highâ€Performance Adhesives. Advanced Science, 2021, 8, e2004786.	11.2	54
80	Implantation of multiscale silk fibers on poly (lactic acid) fibrous membrane for biomedical applications. Materials Today Chemistry, 2021, 21, 100494.	3.5	6
81	Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomedical Materials (Bristol), 2021, 16, 062002.	3.3	32
82	Microwave induced construction of multiple networks for multifunctional soy protein-based materials. Progress in Organic Coatings, 2021, 158, 106390.	3.9	4
84	Tissue Engineering: New Paradigm of Biomedicine. Biosciences, Biotechnology Research Asia, 2019, 16, 521-532.	0.5	9
85	Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. , 0, , .		78
87	Muga silk: Sustainable materials for emerging technology. , 2023, , 295-316.		0
89	Hydrophobic <i>Bombyx mori</i> Silk Fibroin: Routes to Functionalization with Alkyl Chains. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	0
90	Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels, 2023, 9, 987.	4.5	0
91	Nonmulberry silk-based biomaterials: biomedical applications, current status, and future perspective. , 2024, , 55-87.		0
92	Silk for cardiac tissue engineering. , 2024, , 567-600.		0