Bile duct proliferation in Jag1/fringe heterozygous mice the alagille syndrome hepatic phenotype

Hepatology 48, 1989-1997

DOI: 10.1002/hep.22538

Citation Report

#	Article	IF	CITATIONS
1	Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Developmental Dynamics, 2009, 238, 1803-1812.	1.8	41
2	The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis. Cell, 2009, 137, 1124-1135.	28.9	914
3	Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Developmental Biology, 2009, 329, 400-409.	2.0	43
4	Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology, 2010, 20, 931-949.	2.5	67
5	Roles of Glycosylation in Notch Signaling. Current Topics in Developmental Biology, 2010, 92, 131-164.	2.2	118
6	Role of glycosylation of Notch in development. Seminars in Cell and Developmental Biology, 2010, 21, 638-645.	5.0	80
7	Notch Signaling in Cardiac Development and Disease. Current Topics in Developmental Biology, 2010, 92, 333-365.	2.2	74
8	The role of stem cells in liver repair and fibrosis. International Journal of Biochemistry and Cell Biology, 2011, 43, 222-229.	2.8	67
9	Molecular mechanisms of bile duct development. International Journal of Biochemistry and Cell Biology, 2011, 43, 257-264.	2.8	77
10	Protein O-fucosyltransferase 1 (Pofut1) regulates lymphoid and myeloid homeostasis through modulation of Notch receptor ligand interactions. Blood, 2011, 117, 5652-5662.	1.4	93
11	LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochemical Journal, 2011, 434, 49-60.	3.7	70
12	Regulation of mammalian Notch signaling and embryonic development by the protein <i>O</i> -glucosyltransferase Rumi. Development (Cambridge), 2011, 138, 1925-1934.	2.5	155
13	Alagille Syndrome. Pediatric and Adolescent Medicine, 2012, , 50-63.	0.4	1
14	Notch signaling in human development and disease. Seminars in Cell and Developmental Biology, 2012, 23, 450-457.	5.0	286
15	Alagille Syndrome and Wilson Disease in Siblings: A Diagnostic Conundrum. Canadian Journal of Gastroenterology & Hepatology, 2012, 26, 330-332.	1.7	2
16	Mutations in vacuolar H+-ATPase subunits lead to biliary developmental defects in zebrafish. Developmental Biology, 2012, 365, 434-444.	2.0	27
17	Gene expression profiling of HGF/Met activation in neonatal mouse heart. Transgenic Research, 2013, 22, 579-593.	2.4	12
18	Origins and functions of liver myofibroblasts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 948-954.	3.8	114

#	Article	IF	Citations
19	A Critical Role for Notch Signaling in the Formation of Cholangiocellular Carcinomas. Cancer Cell, 2013, 23, 784-795.	16.8	169
20	Hepatocyte Polarity., 2013, 3, 243-287.		236
21	Differentiation of progenitors in the liver: a matter of local choice. Journal of Clinical Investigation, 2013, 123, 1867-1873.	8.2	100
22	Activation of Notch Signaling Is Required for Cholangiocarcinoma Progression and Is Enhanced by Inactivation of p53 In Vivo. PLoS ONE, 2013, 8, e77433.	2.5	52
23	Regenerative toxicology: the role of stem cells in the development of chronic toxicities. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 39-50.	3.3	12
24	The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB Journal, 2014, 28, 603-614.	0.5	34
25	What Have We Learned from Glycosyltransferase Knockouts in Mice?. Journal of Molecular Biology, 2016, 428, 3166-3182.	4.2	74
26	Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology, 2016, 63, 550-565.	7.3	83
27	Deciphering the Fringe-Mediated Notch Code: Identification of Activating and Inhibiting Sites Allowing Discrimination between Ligands. Developmental Cell, 2017, 40, 193-201.	7.0	137
28	Alagille Syndrome: Genetics and Functional Models. Current Pathobiology Reports, 2017, 5, 233-241.	3.4	32
29	Development of the liver: Insights into organ and tissue morphogenesis. Journal of Hepatology, 2018, 68, 1049-1062.	3.7	160
30	Cholangiopathies – Towards a molecular understanding. EBioMedicine, 2018, 35, 381-393.	6.1	29
31	Alagille Syndrome. Clinics in Liver Disease, 2018, 22, 625-641.	2.1	103
32	Genetics of Alagille Syndrome. , 2018, , 33-48.		3
33	Radical and lunatic fringes modulate notch ligands to support mammalian intestinal homeostasis. ELife, $2018, 7, .$	6.0	23
34	Regulation of Notch Function by O-Glycosylation. Advances in Experimental Medicine and Biology, 2018, 1066, 59-78.	1.6	47
35	Alagille syndrome mutation update: Comprehensive overview of <i>JAG1</i> nd <i>NOTCH2</i> mutation frequencies and insight into missense variant classification. Human Mutation, 2019, 40, 2197-2220.	2.5	84
36	The Roles of Notch Signaling in Liver Development and Disease. Biomolecules, 2019, 9, 608.	4.0	57

#	ARTICLE	IF	Citations
37	Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 497-511.	17.8	73
38	Human Liver Regeneration: An Etiology Dependent Process. International Journal of Molecular Sciences, 2019, 20, 2332.	4.1	31
39	Mouse Models for Diseases in the Cholangiocyte Lineage. Methods in Molecular Biology, 2019, 1981, 203-236.	0.9	4
40	Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. International Journal of Cancer, 2019, 144, 2440-2452.	5.1	19
41	Canonical Notch ligands and Fringes have distinct effects on NOTCH1 and NOTCH2. Journal of Biological Chemistry, 2020, 295, 14710-14722.	3.4	36
42	A novel JAG1 mutation causing Alagille syndrome presenting with giant hepatic nodules and discordant phenotype in monozygotic twins. Medicina ClÃnica (English Edition), 2020, 155, 507-509.	0.2	0
43	Alagille Syndrome: Diagnostic Challenges and Advances in Management. Diagnostics, 2020, 10, 907.	2.6	25
44	Multifaceted regulation of Notch signaling by glycosylation. Glycobiology, 2021, 31, 8-28.	2.5	27
45	Diseases related to Notch glycosylation. Molecular Aspects of Medicine, 2021, 79, 100938.	6.4	22
46	Alagille Syndrome. , 2021, , 222-241.		2
47	Alagille syndrome and non-syndromic paucity of the intrahepatic bile ducts. Translational Gastroenterology and Hepatology, 2021, 6, 22-22.	3.0	10
48	Alagille Syndrome: A Focused Review on Clinical Features, Genetics, and Treatment. Seminars in Liver Disease, 2021, 41, 525-537.	3.6	29
49	The developmental origins of Notch-driven intrahepatic bile duct disorders. DMM Disease Models and Mechanisms, $2021,14,$	2.4	3
50	O-Fucosylation of Proteins., 2021,, 182-203.		0
51	Pediatric Cholestatic Syndromes. , 2012, , 1223-1256.		1
52	A novel JAG1 mutation causing Alagille syndrome presenting with giant hepatic nodules and discordant phenotype in monozygotic twins. Medicina ClĀnica, 2020, 155, 507-509.	0.6	1
53	Bile Ducts in Regenerative Liver Nodules of Alagille Patients Are Not the Result of Genetic Mosaicism. Journal of Pediatric Gastroenterology and Nutrition, 2015, 61, 91-93.	1.8	8
54	Microarray Data Reveal Relationship between Jag1 and Ddr1 in Mouse Liver. PLoS ONE, 2013, 8, e84383.	2.5	4

#	Article	IF	CITATIONS
55	Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle. PLoS ONE, 2016, 11, e0157845.	2.5	76
57	Fringe (UDP-GlcNAc: O-Fucosylpeptide ß1,3 N-Acetylglucosaminyltransferase). , 2014, , 265-274.		0
59	Role of YAP1 Signaling in Biliary Development, Repair, and Disease. Seminars in Liver Disease, 2022, 42, 017-033.	3.6	7
60	A novel JAG1 frameshift variant causing Alagille syndrome with incomplete penetrance. Clinical Biochemistry, 2022, , .	1.9	3
61	Clinical and Genetic Characteristics of Alagille Syndrome in Adults. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	1.4	0
62	Fringe GlcNAc-transferases differentially extend O-fucose on endogenous NOTCH1 in mouse activated T cells. Journal of Biological Chemistry, 2022, 298, 102064.	3.4	9
63	Fringe family genes and their modulation of Notch signaling in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188746.	7.4	5
65	Clinical and genetic analysis in Chinese children with Alagille syndrome. BMC Pediatrics, 2022, 22, .	1.7	1
66	Regenerative failure of intrahepatic biliary cells in Alagille syndrome rescued by elevated Jagged/Notch/Sox9 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	8
68	Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2024, 19, 319-344.	22.4	0
69	JAG1 Variants Confer Genetic Susceptibility to Thyroid Dysgenesis and Thyroid Dyshormonogenesis in 813 Congenital Hypothyroidism in China. International Journal of General Medicine, 0, Volume 17, 885-894.	1.8	0