Complementarity effects through dietary mixing enhantinesect herbivore

Oecologia 156, 313-324

DOI: 10.1007/s00442-008-0973-6

Citation Report

#	Article	IF	CITATIONS
1	The significance of body size in the Orthoptera: a review. Journal of Orthoptera Research, 2008, 17, 117-134.	0.4	142
2	Diversity and beyond: plant functional identity determines herbivore performance. Journal of Animal Ecology, 2008, 77, 1047-1055.	1.3	27
3	Colour morph related performance in the meadow grasshopper <i>Chorthippus parallelus </i> (Orthoptera, Acrididae). Ecological Entomology, 2008, 33, 631-637.	1.1	8
4	Emission of Volatile Organic Compounds After Herbivory from Trifolium pratense (L.) Under Laboratory and Field Conditions. Journal of Chemical Ecology, 2009, 35, 1335-1348.	0.9	91
5	Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 2009, 36, 1459-1473.	1.4	38
6	Revisiting the dietary niche: When is a mammalian herbivore a specialist?. Integrative and Comparative Biology, 2009, 49, 274-290.	0.9	121
7	Factors affecting offspring body size in the solitary bee <i>Osmia bicornis</i> (Hymenoptera,) Tj ETQq0 0 0 rgBT /	Overlock 0.9	10 Tf 50 502 ⁻
8	Functional identity versus species richness: herbivory resistance in plant communities. Oecologia, 2010, 163, 707-717.	0.9	27
9	Tree diversity promotes insect herbivory in subtropical forests of southâ€east China. Journal of Ecology, 2010, 98, 917-926.	1.9	125
10	Effect of plant species loss on aphid–parasitoid communities. Journal of Animal Ecology, 2010, 79, 709-720.	1.3	60
11	Mechanisms linking plant species richness to foraging of a large herbivore. Journal of Applied Ecology, 2010, 47, 868-875.	1.9	74
12	Being a generalist herbivore in a diverse world: how do diets from different grasslands influence food plant selection and fitness of the grasshopper <i>Chorthippus parallelus</i> ?. Ecological Entomology, 2010, 35, 126-138.	1.1	52
13	Plant species richness in montane grasslands affects the fitness of a generalist grasshopper species. Ecology, 2010, 91, 1083-1091.	1.5	42
14	Stressing food plants by altering water availability affects grasshopper performance. Ecosphere, 2011, 2, art85.	1.0	31
15	Limited gene flow may enhance adaptation to local optima in isolated populations of the Roesel's bush cricket (<i>Metrioptera roeselii</i>). Journal of Evolutionary Biology, 2011, 24, 381-390.	0.8	15
16	Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass and Bioenergy, 2011, 35, 325-336.	2.9	79
17	Weak responses to dietary enrichment in a specialized aphid predator. Physiological Entomology, 2011, 36, 360-367.	0.6	3
18	Trophic transfer of biodiversity effects: functional equivalence of prey diversity and enrichment?. Ecology and Evolution, 2012, 2, 3110-3122.	0.8	9

#	ARTICLE	IF	CITATIONS
19	Influence of surrounding vegetation on insect herbivory: A matter of spatial scale and herbivore specialisation. Basic and Applied Ecology, 2012, 13, 458-465.	1.2	23
20	Sown grass strip—A stable habitat for grasshoppers (Orthoptera: Acrididae) in dynamic agricultural landscapes. Agriculture, Ecosystems and Environment, 2012, 159, 105-111.	2.5	25
21	Diversity protects plant communities against generalist molluscan herbivores. Ecology and Evolution, 2012, 2, 2460-2473.	0.8	20
22	The conceptual and practical implications of interpreting diet breadth mechanistically in generalist predatory insects. Biological Journal of the Linnean Society, 2012, 107, 737-763.	0.7	26
24	Genetic Diversity Increases Insect Herbivory on Oak Saplings. PLoS ONE, 2012, 7, e44247.	1.1	54
25	Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology, 2012, 22, 101-111.	0.6	72
26	Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia, 2012, 169, 477-487.	0.9	82
27	Variable host phenology does not pose a barrier to invasive weevils in a northern hardwood forest. Agricultural and Forest Entomology, 2012, 14, 276-285.	0.7	8
28	Plant–animal interactions in two forest herbs along a tree and herb diversity gradient. Plant Ecology and Diversity, 2013, 6, 205-216.	1.0	8
29	Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia, 2013, 173, 1459-1470.	0.9	69
30	Feeding and Survival ofOncideres pustulata(Coleoptera: Cerambycidae) Adults onAcacia farnesianaandLeucaena leucocephala(Fabaceae). Southwestern Entomologist, 2013, 38, 487-498.	0.1	1
31	Plant apparency, an overlooked driver of associational resistance to insect herbivory. Journal of Ecology, 2013, 101, 418-429.	1.9	210
32	Diet-mediated effects of specialized tansy aphids on survival and development of their predators: Is there any benefit of dietary mixing?. Biological Control, 2013, 65, 142-146.	1.4	15
33	Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species <i>Chorthippus parallelus</i> Royal Society Open Science, 2014, 1, 140133.	1.1	4
34	Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. Journal of Applied Ecology, 2014, 51, 134-141.	1.9	150
35	Invertebrate herbivory increases along an experimental gradient of grassland plant diversity. Oecologia, 2014, 174, 183-193.	0.9	63
36	Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties?. Journal of Animal Ecology, 2014, 83, 588-597.	1.3	123
37	Diversity matters: how bees benefit from different resin sources. Oecologia, 2014, 176, 943-953.	0.9	53

#	ARTICLE	IF	CITATIONS
38	Does insect herbivory on oak depend on the diversity of tree stands?. Basic and Applied Ecology, 2014, 15, 685-692.	1.2	19
39	Plant diversity effects on pollinating and herbivorous insects can be linked to plant stoichiometry. Basic and Applied Ecology, 2014, 15, 169-178.	1.2	24
40	Effects of Local Tree Diversity on Herbivore Communities Diminish with Increasing Forest Fragmentation on the Landscape Scale. PLoS ONE, 2014, 9, e95551.	1.1	9
41	Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos, 2015, 124, 1527-1535.	1.2	56
42	Seasonal Alterations in Host Range and Fidelity in the Polyphagous Mirid Bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE, 2015, 10, e0117153.	1.1	22
43	Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?. PLoS ONE, 2015, 10, e0132671.	1.1	15
44	Dietary and phylogenetic correlates of digestive trypsin activity in insect pests. Entomologia Experimentalis Et Applicata, 2015, 157, 123-151.	0.7	34
45	Abiotic, Biotic, and Evolutionary Control of the Distribution of C and N Isotopes in Food Webs. American Naturalist, 2015, 185, 169-182.	1.0	21
46	Increase of fast nutrient cycling in grassland microcosms through insect herbivory depends on plant functional composition and species diversity. Oikos, 2015, 124, 161-173.	1.2	18
47	Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera:) Tj ETQq $1\ 1\ 0.75$	84314 rgB 0.9	T /Overlock 1
48	Enhancing grasshopper (Orthoptera: Acrididae) communities in sown margin strips: the role of plant diversity and identity. Arthropod-Plant Interactions, 2015, 9, 333-346.	0.5	10
49	Spatial arrangement of canopy structure and land-use history alter the effect that herbivores have on plant growth. Ecosphere, 2015, 6, art193.	1.0	18
50	Defensive mixology: combining acquired chemicals towards defence. Functional Ecology, 2015, 29, 441-450.	1.7	29
51	Herbivore effect traits and their impact on plant community biomass: an experimental test using grasshoppers. Functional Ecology, 2015, 29, 650-661.	1.7	41
52	Behavioural and physiological plasticity of gypsy moth larvae to host plant switching. Entomologia Experimentalis Et Applicata, 2016, 158, 152-162.	0.7	13
53	Digestive Proteinases and Antioxidant Capacity fromPterophylla beltraniBolivar & Bolivar Fed Two Natural Diets. Southwestern Entomologist, 2016, 41, 613-624.	0.1	8
54	Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L Plant Science, 2016, 250, 1-9.	1.7	5
55	Neighbor palatability generates associational effects by altering herbivore foraging behavior. Ecology, 2016, 97, 2103-2111.	1.5	38

#	Article	IF	CITATIONS
56	Biological and ecological evidences suggest <i>Stipa krylovii</i> (Pooideae), contributes to optimal growth performance and population distribution of the grasshopper <i>Oedaleus asiaticus</i> Bulletin of Entomological Research, 2017, 107, 401-409.	0.5	13
57	The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere, 2017, 8, e01637.	1.0	21
58	Generalist social bees maximize diversity intake in plant speciesâ€rich and resourceâ€abundant environments. Ecosphere, 2017, 8, e01758.	1.0	42
59	Gut Transcriptome Analysis Shows Different Food Utilization Efficiency by the Grasshopper Oedaleous asiaticus (Orthoptera: Acrididae). Journal of Economic Entomology, 2017, 110, 1831-1840.	0.8	11
60	Ecological Stability of Mixed-Species Forests. , 2017, , 337-382.		78
61	Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands?. Basic and Applied Ecology, 2017, 20, 40-50.	1.2	13
62	Biology, physiology and gene expression of grasshopper Oedaleus asiaticus exposed to diet stress from plant secondary compounds. Scientific Reports, 2017, 7, 8655.	1.6	27
63	Linking primary producer diversity and food quality effects on herbivores: A biochemical perspective. Scientific Reports, 2017, 7, 11035.	1.6	37
64	Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere, 2017, 8, e01876.	1.0	26
65	Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 2017, 26, 3005-3035.	1.2	505
66	Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Current Forestry Reports, 2017, 3, 223-243.	3.4	279
67	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	1.2	307
68	High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms. BMC Ecology, 2017, 17, 20.	3.0	13
69	Impacts of plant diversity on arthropod communities and plant–herbivore network architecture. Ecosphere, 2017, 8, e01983.	1.0	31
70	Mixed artificial diets enhance the developmental and reproductive performance of the edible grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae). Applied Entomology and Zoology, 2018, 53, 237-242.	0.6	27
71	Roe deer prefer mixed-sex willow stands over monosexual stands but do not discriminate between male and female plants. Environmental and Experimental Botany, 2018, 146, 62-67.	2.0	9
72	Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic and Applied Ecology, 2018, 26, 50-63.	1.2	84
73	The fatty acid composition of edible grasshopper <i>Ruspolia differens</i> (Serville) (Orthoptera:) Tj ETQq1 1 0	.784314 rş	gBT_/Qverlock

#	Article	IF	Citations
74	Differential Response of Herbivores to Plant Defence. Reference Series in Phytochemistry, 2018, , 1-24.	0.2	1
75	The edible katydid <i><scp>R</scp>uspolia differens</i> is a selective feeder on the inflorescences and leaves of grass species. Entomologia Experimentalis Et Applicata, 2018, 166, 592-602.	0.7	15
76	Effect of insect herbivory on plant community dynamics under contrasting water availability levels. Journal of Ecology, 2018, 106, 1819-1828.	1.9	5
77	Divergent host plant utilization by adults and offspring is related to intraâ€plant variation in chemical defences. Journal of Animal Ecology, 2019, 88, 1789-1798.	1.3	8
78	Dietary Stress From Plant Secondary Metabolites Contributes to Grasshopper (Oedaleus asiaticus) Migration or Plague by Regulating Insect Insulin-Like Signaling Pathway. Frontiers in Physiology, 2019, 10, 531.	1.3	12
79	Yaks and sheep trigger different changes in the grasshopper assemblages of the Qilian Mountains via differentially altering plant assemblages. Ecological Entomology, 2019, 44, 800-809.	1.1	1
80	Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch. Oecologia, 2019, 189, 687-697.	0.9	15
81	Host plants of the nonâ€swarming edible bush cricketRuspolia differens. Ecology and Evolution, 2019, 9, 3899-3908.	0.8	14
82	Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. Journal of Ecology, 2019, 107, 1492-1505.	1.9	22
83	Ontogeny in the European earwig (Forficula auricularia) and grain crops interact to exacerbate feeding damage risk. Journal of Applied Entomology, 2020, 144, 605-615.	0.8	4
84	Juvenile Spider Mites Induce Salicylate Defenses, but Not Jasmonate Defenses, Unlike Adults. Frontiers in Plant Science, 2020, 11, 980.	1.7	5
85	Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic and Applied Ecology, 2021, 55, 110-123.	1.2	7
86	Performance of the African edible bushâ€cricket, <i>Ruspolia differens,</i> on single and mixed diets containing inflorescences of their host plant species. Entomologia Experimentalis Et Applicata, 2020, 168, 448-459.	0.7	10
87	Preferences and Performance of Erythroneura sudra (Homoptera: Cicadellidae) on Five Fruit Tree Species (Rosaceae). Environmental Entomology, 2020, 49, 931-937.	0.7	2
88	Artemisia frigida (Asterales: Asteraceae) Improves the Growth of Grasshopper Calliptamus abbreviatus and Increases the Risk of Damaging Populations. Journal of Economic Entomology, 2020, 113, 1195-1201.	0.8	0
89	Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Scientific Reports, 2020, 10, 3112.	1.6	39
90	Clonality as a key but overlooked driver of biotic interactions in plants. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 43, 125510.	1.1	31
91	Direct and indirect effects of plant diversity and phenoxy herbicide application on the development and reproduction of a polyphagous herbivore. Scientific Reports, 2020, 10, 7300.	1.6	11

#	ARTICLE	IF	CITATIONS
92	Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecology Letters, 2020, 23, 1073-1084.	3.0	23
93	The structure of plant–herbivore interaction networks varies along elevational gradients in the European Alps. Journal of Biogeography, 2021, 48, 465-476.	1.4	15
94	Predator Performance and Fitness Is Dictated by Herbivore Prey Type Plus Indirect Effects of their Host Plant. Journal of Chemical Ecology, 2021, 47, 877-888.	0.9	4
95	Tree diversity reduces the risk of bark beetle infestation for preferred conifer species, but increases the risk for less preferred hosts. Journal of Ecology, 2021, 109, 2649-2661.	1.9	20
96	Urbanization as a disrupter and facilitator of insect herbivore behaviors and life cycles. Current Opinion in Insect Science, 2021, 45, 97-105.	2.2	12
97	Dietary differences between grasshoppers are associated with life history tradeoffs in an alpine meadow. Ecological Research, 2021, 36, 842-853.	0.7	6
98	The Effect of Diet Mixing on a Nonselective Herbivore. PLoS ONE, 2016, 11, e0158924.	1.1	12
99	The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis. PLoS ONE, 2016, 11, e0165815.	1.1	41
100	Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment. PLoS ONE, 2016, 11, e0168751.	1.1	34
101	Diet alters performance and transcription patterns in Oedaleus asiaticus (Orthoptera: Acrididae) grasshoppers. PLoS ONE, 2017, 12, e0186397.	1.1	16
102	Are the growth and survival of Acheta domesticus comparable when reared on okara, waste vegetables and premium animal feed?. Journal of Insects As Food and Feed, 2020, 6, 161-168.	2.1	4
103	Experiments with <i>Lymantria dispar</i> larvae do not support the idea of physiological adjustment to host individuals by insect herbivores. Web Ecology, 2013, 13, 79-84.	0.4	2
104	Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory. PeerJ, 2013, 1, e93.	0.9	25
105	Mixed Diets Enhance Edible Grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae) Performance during Mass Rearing. , 0, , .		0
107	Differential Response of Herbivores to Plant Defence. Reference Series in Phytochemistry, 2020, , 77-100.	0.2	1
109	Patterns of Herbivory in Neotropical Forest Katydids as Revealed by DNA Barcoding of Digestive Tract Contents. Diversity, 2022, 14, 152.	0.7	3
110	Ant nest distribution and richness have opposite effects on a Neotropical plant with extrafloral nectaries. Ecological Entomology, 2022, 47, 626-635.	1.1	4
111	Insect herbivory on urban trees: Complementary effects of tree neighbours and predation., 0, 2, .		2

#	Article	IF	CITATIONS
112	Growth and Reproductive Performance of Edible Grasshopper (<i>Ruspolia differens</i>) on Different Artificial Diets. Journal of Economic Entomology, 2022, 115, 724-730.	0.8	5
113	Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient. Global Change Biology, 2022, 28, 4027-4040.	4.2	5
117	Efectos del manejo productivo de un sistema agroforestal en la diversidad de parasitoides asociados (Hymenoptera: Braconidae) en Yucatán, México. Biotecnia, 2022, 24, 155-161.	0.1	0
118	Development of a polyphagous leaf beetle on different host plant species and its detoxification of glucosinolates. Frontiers in Ecology and Evolution, $0,10,10$	1.1	1
119	Host-Specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet. Journal of Invertebrate Pathology, 2022, 194, 107818.	1.5	5
120	Disturbance of plateau zokor (Eospalax baileyi) mounds increase plant and soil macroinvertebrate richness by offering a diversified microenvironment. Ecological Engineering, 2022, 183, 106754.	1.6	3
121	Suitability of Amaranthaceae and Polygonaceae species as food source for the sugar beet weevil Asproparthenis punctiventris Germar. Journal of Plant Diseases and Protection, 0, , .	1.6	0
122	Introduction of nonâ€native <scp>Douglas</scp> fir reduces leaf damage on beech saplings and mature trees in European beech forests. Ecological Applications, 2023, 33, .	1.8	3
123	Changes in herbivory patterns and insect herbivore assemblages associated to canopy of Quercus laurina: importance of oak species diversity and foliar chemical defense. Trees - Structure and Function, 2023, 37, 699-715.	0.9	2
124	Influence of Wireworm Diet on its Susceptibility to and Control With the Entomopathogenic Fungus <i>Metarhizium brunneum</i> (Hypocreales: Clavicipitaceae) in Laboratory and Field Settings. Journal of Economic Entomology, 2023, 116, 108-118.	0.8	1