Generating Natural Language specifications from UML

Requirements Engineering 13, 1-18 DOI: 10.1007/s00766-007-0054-0

Citation Report

#	Article	IF	CITATIONS
1	A cognitive semantics for the association construct. Requirements Engineering, 2008, 13, 167-186.	2.1	3
2	Verbalising R2ML Rules into SBVR. , 2008, , .		1
3	A semiotic analysis of unified modeling language graphical notations. Requirements Engineering, 2009, 14, 15-26.	2.1	17
4	On the generation of requirements specifications from software engineering models: A systematic literature review. Information and Software Technology, 2009, 51, 1291-1307.	3.0	90
5	4.5.1 Requirements Analysis and Modeling Process (RAMP) for the Development of Complex Systems. Incose International Symposium, 2010, 20, 557-579.	0.2	3
6	From UML/OCL to SBVR specifications: A challenging transformation. Information Systems, 2010, 35, 417-440.	2.4	62
7	Survey on System Behavior Specification for Extending ProjectIT-RSL. , 2010, , .		0
8	Summarizing software concerns. , 2010, , .		7
9	Managing Consistency between Textual Requirements, Abstract Interactions and Essential Use Cases. , 2010, , .		16
11	Inferring specifications for resources from natural language API documentation. Automated Software Engineering, 2011, 18, 227-261.	2.2	17
12	Natural language generation from class diagrams. , 2011, , .		35
13	Generating Natural Language Texts from Business Process Models. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2012, , 64-79.	0.2	33
14	Synchronizing domain models with natural language specifications. , 2012, , .		3
15	Using machine learning to enhance automated requirements model transformation. , 2012, , .		5
16	Detection of naming convention violations in process models for different languages. Decision Support Systems, 2013, 56, 310-325.	3.5	42
17	A complete set of guidelines for naming UML conceptual schema elements. Data and Knowledge Engineering, 2013, 88, 60-74.	2.1	5
18	Consistent stakeholder modifications of formal models via a natural language representation. , 2013, ,		0
19	Software Requirements Elicitation – A Controlled Experiment to Measure the Impact of a Native Natural Language. , 2013, , .		2

ITATION REDOD

#	ARTICLE	IF	CITATIONS
20	End-user installation of heterogeneous home automation systems using pen and paper interfaces and dynamically generated documentation. , 2014, , .		3
21	Semantic Web Based Context-Adaptable Generation of Product Specific Documentation. , 2014, , .		1
22	Improvement Methods for Software Requirement Specifications: A Mapping Study. , 2014, , .		10
23	From requirements to UML models and back: how automatic processing of text can support requirements engineering. Software Quality Journal, 2014, 22, 121-149.	1.4	27
24	A requirements engineering methodology combining models and controlled natural language. , 2014, , \cdot		22
25	Supporting Process Model Validation through Natural Language Generation. IEEE Transactions on Software Engineering, 2014, 40, 818-840.	4.3	65
26	Resolving ambiguity in natural language specification to generate UML diagrams for requirements specification. International Journal of Software Engineering Technology and Applications, 2015, 1, 308.	0.3	2
28	Automated goal detection from natural language constraints. , 2016, , .		0
29	Automatic class description generation. , 2016, , .		2
30	Comparing textual descriptions to process models – The automatic detection of inconsistencies. Information Systems, 2017, 64, 447-460.	2.4	43
31	What is a Good Textual Representation of Activity Diagrams in Requirements Documents?. , 2017, , .		2
32	Method Execution Reports: Generating Text and Visualization to Describe Program Behavior. , 2017, , .		12
33	Multi-View and Multi-Language Description Generation for Cross-Department Medical Diagnosis Processes. IEEE Access, 2018, 6, 76741-76753.	2.6	3
34	Exploranative Code Quality Documents. IEEE Transactions on Visualization and Computer Graphics, 2019, 26, 1-1.	2.9	7
35	Improving Traceability Links Recovery in Process Models Through an Ontological Expansion of Requirements. Lecture Notes in Computer Science, 2019, , 261-275.	1.0	3
36	An Empirical Study on Assessing the Quality of Use Case Metrics. , 2019, , .		0
37	A Semi-automated generation of Entity-Relationship Diagram based on Morphosyntactic Tagging from the Requirements Written in a Serbian Natural Language. , 2019, , .		3
38	Enhancing the extraction of SBVR business vocabularies and business rules from UML use case diagrams with natural language processing. , 2019, , .		3

CITATION REPORT

#	Article	IF	CITATIONS
39	Toward a better integration of requirements and modelâ€based specifications. Systems Engineering, 2020, 23, 751-769.	1.6	3
40	Supporting the Process of Learning and Teaching Process Models. IEEE Transactions on Learning Technologies, 2020, 13, 552-566.	2.2	8
41	Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case. Journal of Systems and Software, 2020, 163, 110519.	3.3	13
42	Automated Java exceptions explanation using natural language generation techniques. Computer Applications in Engineering Education, 2020, 28, 626-644.	2.2	0
43	CORG: A Component-Oriented Synthetic Textual Requirements Generator. Lecture Notes in Computer Science, 2021, , 54-70.	1.0	2
45	Modeling Class Diagram using NLP in Object-Oriented Designing. , 2021, , .		3
46	Enhancing software model encoding for feature location approaches based on machine learning techniques. Software and Systems Modeling, 2022, 21, 399-433.	2.2	2
47	A review of the generation of requirements specification in natural language using objects UML models and domain ontology. Procedia Computer Science, 2021, 189, 328-334.	1.2	6
48	Discovering Data Models from Event Logs. Lecture Notes in Computer Science, 2020, , 62-76.	1.0	7
49	Detecting Inconsistencies Between Process Models and Textual Descriptions. Lecture Notes in Computer Science, 2015, , 90-105.	1.0	27
51	Aligning Textual and Graphical Descriptions of Processes Through ILP Techniques. Lecture Notes in Computer Science, 2017, , 413-427.	1.0	16
52	Introducing Collaboration for Locating Features in Models: Approach and Industrial Evaluation. Lecture Notes in Computer Science, 2017, , 114-131.	1.0	3
53	Begriffliche Grundlagen. EXamen Press, 2010, , 19-68.	0.0	2
54	An Eclipse Plugin for Validating Names in UML Conceptual Schemas. Lecture Notes in Computer Science, 2011, , 323-327.	1.0	3
55	An Approach for Synchronizing UML Models and Narrative Text in Literate Modeling. Lecture Notes in Computer Science, 2012, , 595-608.	1.0	2
56	Enforcement of Conceptual Schema Quality Issues in Current Integrated Development Environments. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 626-640.	0.2	6
57	An Approach to Support Process Model Validation based on Text Generation. Emisa Forum, 2013, 33, 7-20.	0.0	7
58	Natural language processing-enhanced extraction of SBVR business vocabularies and business rules from UML use case diagrams. Data and Knowledge Engineering, 2020, 128, 101822.	2.1	25

CITATION REPORT

#	Article	IF	CITATIONS
59	Textual Requirement Analysis for UML Diagram Extraction by using NLP. International Journal of Computer Applications, 2012, 50, 42-46.	0.2	11
60	Generating UML Diagrams from Natural Language Specifications. International Journal of Applied Information Systems, 2012, 1, 19-23.	0.1	47
61	Support of Scenario Creation by Generating Event Lists from Conceptual Models. , 2015, , .		1
62	Creating and Updating Personalized and Verbalized Business Process Descriptions. Lecture Notes in Business Information Processing, 2013, , 191-205.	0.8	1
63	The Impact of Native Language on Use Case Modeling : A Controlled Experiment. Journal of Software, 2013, 8, .	0.6	2
64	Requirement Elicitation Using Business Process Models. Lecture Notes in Business Information Processing, 2015, , 67-81.	0.8	1
65	Natural Language Generation for Declarative Process Models. Lecture Notes in Business Information Processing, 2015, , 3-19.	0.8	0
66	BePT., 2019, , .		1
67	Class Diagram Generation from Text Requirements: An Application of Natural Language Processing. Signals and Communication Technology, 2021, , 55-79.	0.4	0
68	Leveraging execution traces to enhance traceability links recovery in BPMN models. Information and Software Technology, 2022, 146, 106873.	3.0	0
69	Work-In-Progress: Converting textual software engineering class diagram exercises to UML models. , 2022, , .		1
70	RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements Models. , 2022, , .		0
72	RM2Doc. , 2022, , .		6
73	Combining OCL and natural language. , 2022, , .		1
74	ReqGen: Keywords-Driven Software Requirements Generation. Mathematics, 2023, 11, 332.	1.1	3
75	On-Demand Security Requirements Synthesis with Relational Generative Adversarial Networks. , 2023, , .		0
76	A Model Checking Based Software Requirements Specification Approach for Embedded Systems. , 2023, ,		0
77	Model-Driven Approach for Automatic Model Information Aggregation in Structured Documents. , 2023, , .		0