Distribution and activity of bats at local and landscape s gradient

Urban Ecosystems 11, 227-242

DOI: 10.1007/s11252-008-0055-x

Citation Report

#	Article	IF	CITATIONS
1	Relationship between urbanization and bat community structure in national parks of the southeastern U.S Urban Ecosystems, 2009, 12, 197-214.	2.4	29
2	Evaluación ecológica rápida de los quirópteros del parque ecológico de MontelÃbano, Córdoba, Colombia. Tropical Conservation Science, 2009, 2, 437-449.	1.2	6
3	Bat community structure within riparian areas of northwestern Georgia, USA. Folia Zoologica, 2010, 59, 192-202.	0.9	18
4	Bat Response to Woodland Restoration within Urban Forest Fragments. Restoration Ecology, 2010, 18, 914-923.	2.9	40
5	Responses of Bats to Forest Fragmentation in the Mississippi River Alluvial Valley, Arkansas, USA. Diversity, 2010, 2, 1146-1157.	1.7	2
6	Recruitment in a Colorado population of big brown bats: breeding probabilities, litter size, and first-year survival. Journal of Mammalogy, 2010, 91, 418-428.	1.3	37
7	Influence of wetland networks on bat activity in mixed-use landscapes. Biological Conservation, 2010, 143, 974-983.	4.1	59
8	Bats of the Cumberland Plateau and Ridge and Valley Provinces, Virginia. Southeastern Naturalist, 2011, 10, 515-528.	0.4	9
9	Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology, 2011, 76, 451-460.	1.5	29
10	Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA. Environmental Monitoring and Assessment, 2011, 173, 685-699.	2.7	34
11	Declines in summer bat activity in central New England 4Âyears following the initial detection of white-nose syndrome. Biodiversity and Conservation, 2011, 20, 2537-2541.	2.6	51
12	Bat ecology and public health surveillance for rabies in an urbanizing region of Colorado. Urban Ecosystems, 2011, 14, 665-697.	2.4	32
13	Bat distribution and activity in Montr $\tilde{\mathbb{A}}$ ©al Island green spaces: Responses to multi-scale habitat effects in a densely urbanized area. Ecoscience, 2011, 18, 9-17.	1.4	23
14	Relationship between land cover and insectivorous bat activity in an urban landscape. Urban Ecosystems, 2012, 15, 683-695.	2.4	55
15	Dynamic versus static occupancy: How stable are habitat associations through a breeding season?. Ecosphere, 2012, 3, 1-13.	2.2	17
16	Urbanization and the abundance and diversity of Prairie bats. Urban Ecosystems, 2012, 15, 87-102.	2.4	38
17	Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. Retrovirology, 2013, 10, 35.	2.0	45
18	Effects of urbanization on small-mammal communities and the population structure of synurbic species: an example of a medium-sized city. Canadian Journal of Zoology, 2013, 91, 554-561.	1.0	38

#	ARTICLE	IF	CITATIONS
19	Genetic structuring of northern myotis (Myotis septentrionalis) at multiple spatial scales. Acta Theriologica, 2014, 59, 223-231.	1.1	7
20	Comparison of Radio-Telemetric Home-Range Analysis and Acoustic Detection for Little Brown Bat Habitat Evaluation. Northeastern Naturalist, 2014, 21, 431-445.	0.3	15
21	Patch or mosaic: bat activity responds to fine-scale urban heterogeneity in a medium-sized city in the United States. Urban Ecosystems, 2014, 17, 1013-1031.	2.4	38
22	A mosaic of opportunities? Spatio-temporal patterns of bat diversity and activity in a strongly humanized Mediterranean wetland. European Journal of Wildlife Research, 2014, 60, 651-664.	1.4	16
23	Differential Responses to Woodland Character and Landscape Context by Cryptic Bats in Urban Environments. PLoS ONE, 2015, 10, e0126850.	2.5	30
24	Patterns of Bat Distribution and Foraging Activity in a Highly Urbanized Temperate Environment. PLoS ONE, 2016, 11, e0168927.	2.5	25
25	A macroecological perspective on strategic bat conservation in theÂU.S. National Park Service. Ecosphere, 2016, 7, e01576.	2.2	16
26	Bat Occurrence and Habitat Preference on the Delmarva Peninsula. Northeastern Naturalist, 2016, 23, 259-276.	0.3	6
27	Determinants of microbat communities in urban forest remnants: a rapid landscape scale assessment. Urban Ecosystems, 2016, 19, 1351-1371.	2.4	4
28	Bats and Water: Anthropogenic Alterations Threaten Global Bat Populations. , 2016, , 215-241.		48
29	Predicting the likely impact of urbanisation on bat populations using citizen science data, a case study for Norfolk, UK. Landscape and Urban Planning, 2017, 162, 44-55.	7.5	20
30	Bat richness and activity in heterogeneous landscapes: guild-specific and scale-dependent?. Landscape Ecology, 2017, 32, 295-311.	4.2	44
31	Manual analysis of recorded bat echolocation calls: summary, synthesis, and proposal for increased standardization in training practices. Canadian Journal of Zoology, 2018, 96, 505-512.	1.0	2
32	Roost selection by bats in buildings, Great Smoky Mountains National Park. Journal of Wildlife Management, 2018, 82, 424-434.	1.8	17
33	Male and female bats differ in their use of a large urban park. Journal of Urban Ecology, 2019, 5, .	1.5	7
34	The foraging activity of bats in managed pine forests of different ages. European Journal of Forest Research, 2019, 138, 383-396.	2.5	14
35	Life in a northern town: rural villages in the boreal forest are islands of habitat for an endangered bat. Ecosphere, 2019, 10, e02563.	2.2	17
36	Indiana bat roosting behavior differs between urban and rural landscapes. Urban Ecosystems, 2020, 23, 79-91.	2.4	11

3

#	Article	IF	CITATIONS
37	Composition and diversity of bat assemblages at Arabuko-Sokoke Forest and the adjacent farmlands, Kenya. Mammalia, 2020, 84, 121-135.	0.7	1
38	Modelling misclassification in multiâ€species acoustic data when estimating occupancy and relative activity. Methods in Ecology and Evolution, 2020, 11, 71-81.	5.2	17
39	The role of pteropodid bats in pollination of durian (Durio zibethinus) in managed orchards in suburban habitat of Thailand. Urban Ecosystems, 2020, 23, 97-106.	2.4	10
40	Size does matter: Passive sampling in urban parks of a regional bat assemblage. Urban Ecosystems, 2020, 23, 227-234.	2.4	6
41	Occupancy and Detectability of Northern Longâ€eared Bats in the Lake States Region. Wildlife Society Bulletin, 2020, 44, 732-740.	0.8	7
42	Seasonal Activity of Urban Bats Populations in Temperate Climate Zone—A Case Study from Southern Poland. Animals, 2021, 11, 1474.	2.3	3
43	White-nose syndrome-related changes to Mid-Atlantic bat communities across an urban-to-rural gradient. BMC Zoology, 2021, 6, .	1.0	9
44	Post-white-nose syndrome passive acoustic sampling effort for determining bat species occupancy within the mid-Atlantic region. Ecological Indicators, 2021, 125, 107489.	6.3	4
45	Whiteâ€nose Syndrome and Environmental Correlates to Landscapeâ€Scale Bat Presence. Wildlife Society Bulletin, 2021, 45, 410-421.	0.8	4
46	Bat activity patterns relative to temporal and weather effects in a temperate coastal environment. Global Ecology and Conservation, 2021, 30, e01769.	2.1	12
47	Patterns of Acoustical Activity of Bats Prior to and Following White-Nose Syndrome Occurrence. Journal of Fish and Wildlife Management, 2011, 2, 125-134.	0.9	72
48	Characteristics of the Home Range and Habitat Use of the Greater Horseshoe Bat (<i>Rhinolophus ferrumequinum</i>) in an Urban Landscape. Journal of Environmental Science International, 2018, 27, 665-675.	0.2	3
49	An Inventory of Chiropteran Fauna in Bhubaneswar City, Eastern India. HAYATI Journal of Biosciences, 2018, 25, 144.	0.4	1
50	Bats of the Boston Harbor Islands. Northeastern Naturalist, 2019, 25, 90.	0.3	2
51	Broad-scale geographic and temporal assessment of northern long-eared bat (Myotis septentrionalis) maternity colony-landscape association. Endangered Species Research, 2022, 47, 119-130.	2.4	7
52	Use of predictive distribution models to describe habitat selection by bats in Colorado, USA. Journal of Wildlife Management, 2022, 86, .	1.8	3
53	Can citizen science provide a solution for bat friendly planning?. Landscape and Urban Planning, 2022, 223, 104402.	7.5	1
55	Unique Land Cover Classification to Assess Day-Roost Habitat Selection of Northern Long-Eared Bats on the Coastal Plain of North Carolina, USA. Forests, 2022, 13, 792.	2.1	O

CITATION REPORT

#	Article	IF	CITATIONS
56	Roosting Behavior of Northern Long-Eared Bats (Myotis septentrionalis) in an Urban-Adjacent Forest Fragment. Forests, 2022, 13, 1972.	2.1	1
57	Landscape features drive insectivorous bat activity in Indian rice fields. Landscape Ecology, 2023, 38, 2931-2946.	4.2	0
58	Literature review of tri-colored bat natural history with implications to management. Frontiers in Conservation Science, $0,4,.$	1.9	0
59	Bat winter foraging habitat use in working forests: a multispecies spatial occupancy approach. Animal Conservation, 0, , .	2.9	0