Silencing α-Synuclein Gene Expression Enhances Tyro Cells

Neurochemical Research 33, 1401-1409 DOI: 10.1007/s11064-008-9599-7

Citation Report

#	Article	IF	CITATIONS
1	Semi-quantitative analysis of α-synuclein in subcellular pools of rat brain neurons: An immunogold electron microscopic study using a C-terminal specific monoclonal antibody. Brain Research, 2008, 1244, 40-52.	1.1	112
2	Serine 129 Phosphorylation Reduces the Ability of α-Synuclein to Regulate Tyrosine Hydroxylase and Protein Phosphatase 2A in Vitro and in Vivo. Journal of Biological Chemistry, 2010, 285, 17648-17661.	1.6	105
3	In Vivo RNAi-Mediated α-Synuclein Silencing Induces Nigrostriatal Degeneration. Molecular Therapy, 2010, 18, 1450-1457.	3.7	173
4	α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in Neurosciences, 2010, 33, 559-568.	4.2	233
6	The role of alpha-synuclein in neurotransmission and synaptic plasticity. Journal of Chemical Neuroanatomy, 2011, 42, 242-248.	1.0	170
7	Different sub-cellular localization of alpha-synuclein in the C57BLJ mouse's central nervous system by two novel monoclonal antibodies. Journal of Chemical Neuroanatomy, 2011, 41, 97-110.	1.0	45
8	Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson's disease in rats. Neurochemistry International, 2011, 58, 839-849.	1.9	34
9	Tiny non-coding RNAs in Parkinson's disease: Implications, expectations and hypes. Neurochemistry International, 2011, 59, 759-769.	1.9	7
10	Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Research, 2011, 1394, 1-13.	1.1	45
11	Phosphorylation of α-synuclein upregulates tyrosine hydroxylase activity in MN9D cells. Acta Histochemica, 2011, 113, 32-35.	0.9	29
12	Increase expression of α-synuclein in aged human brain associated with neuromelanin accumulation. Journal of Neural Transmission, 2011, 118, 1575-1583.	1.4	33
13	Functional Alterations to the Nigrostriatal System in Mice Lacking All Three Members of the Synuclein Family. Journal of Neuroscience, 2011, 31, 7264-7274.	1.7	158
14	Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson's disease. Brain, 2011, 134, 3290-3298.	3.7	133
15	Mechanisms of dopamine quantal size regulation. Frontiers in Bioscience - Landmark, 2012, 17, 2740.	3.0	21
16	RNA interference targeting α-synuclein attenuates methamphetamine-induced neurotoxicity in SH-SY5Y cells. Brain Research, 2013, 1521, 59-67.	1.1	43
17	Models of α-synuclein aggregation in Parkinson's disease. Acta Neuropathologica Communications, 2014, 2, 176.	2.4	91
18	Association of glycogen synthase kinase-3β with Parkinson's disease (Review). Molecular Medicine Reports, 2014, 9, 2043-2050.	1.1	83
19	Squamosamide derivative FLZ protected tyrosine hydroxylase function in a chronic MPTP/probenecid mouse model of Parkinson's disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388,	1.4	8

#	Article	IF	CITATIONS
20	Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140187.	1.8	12
21	Protein Phosphatase 2A is Involved in the Tyrosine Hydroxylase Phosphorylation Regulated by α-Synuclein. Neurochemical Research, 2015, 40, 428-437.	1.6	14
22	Effects of methylmercury on dopamine release in MN9D neuronal cells. Toxicology Mechanisms and Methods, 2015, 25, 637-644.	1.3	9
23	The contribution of alpha synuclein to neuronal survival and function – Implications for Parkinson's disease. Journal of Neurochemistry, 2016, 137, 331-359.	2.1	186
24	Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics, 2016, 17, 145-157.	0.7	56
25	Levodopa (L-DOPA) attenuates endoplasmic reticulum stress response and cell death signaling through DRD2 in SH-SY5Y neuronal cells under α-synuclein-induced toxicity. Neuroscience, 2017, 358, 336-348.	1.1	18
26	Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease. Frontiers in Neuroscience, 2018, 12, 80.	1.4	255
27	Effect of Majun Baladur on life span, climbing ability, oxidative stress and dopaminergic neurons in the transgenic Drosophila model of Parkinson's disease. Heliyon, 2019, 5, e01483.	1.4	5
28	Role of tangeritin against cognitive impairments in transgenic Drosophila model of Parkinson's disease. Neuroscience Letters, 2019, 705, 112-117.	1.0	11
29	Tyrosine hydroxylase phosphorylation <i>inÂvivo</i> . Journal of Neurochemistry, 2019, 149, 706-728.	2.1	56
30	Neurons and Glia Interplay in α-Synucleinopathies. International Journal of Molecular Sciences, 2021, 22, 4994.	1.8	28
31	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	3.9	75
32	Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. Journal of Neurochemistry, 2021, 158, 960-979.	2.1	22
33	Probiotics and the Treatment of Parkinson's Disease: An Update. Cellular and Molecular Neurobiology, 2022, 42, 2449-2457.	1.7	14
34	Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 691136.	1.8	41
36	Kits for RNA Extraction, Isolation, and Purification. Materials and Methods, 0, 2, .	0.0	4
37	Cell Culture Media: A Review. Materials and Methods, 0, 3, .	0.0	130
38	The Role of Alpha-Synuclein in Melanin Synthesis in Melanoma and Dopaminergic Neuronal Cells. PLoS ONE, 2012, 7, e45183.	1.1	81

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	A Synopsis on the Role of Tyrosine Hydroxylase in Parkinson's Disease. CNS and Neurological Disorders - Drug Targets, 2012, 11, 395-409.	0.8	111
40	Dopaminergic Dysfunction in Experimental Hepatic Encephalopathy. , 0, , .		0
41	Milieu de culture: Une Revue. Materials and Methods, 0, fr3, .	0.0	0
42	细èfžåŸ¹å»åŸ≊ĩ¼šç»¼è¿°. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn3, .	0.0	0
44	Anti-Parkinsonian effect of Mucuna pruriens and Ursolic acid on GSK3β/Calcium signaling in neuroprotection against Rotenone-induced Parkinsonism. Phytomedicine Plus, 2022, 2, 100343.	0.9	3
45	Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease. Journal of Molecular Biology, 2023, 435, 167992.	2.0	13
46	Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. International Journal of Molecular Sciences, 2023, 24, 5618.	1.8	3
47	Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of	1.4	0