Electrospinning jets and polymer nanofibers

Polymer 49, 2387-2425 DOI: 10.1016/j.polymer.2008.02.002

Citation Report

#	Article	IF	CITATIONS
1	Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer, 2008, 49, 4723-4732.	3.8	484
2	Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions. Polymer International, 2008, 57, 1363-1368.	3.1	36
3	Electrospun nanofibers from a porous hollow tube. Polymer, 2008, 49, 4226-4229.	3.8	198
4	Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer, 2008, 49, 5284-5293.	3.8	34
5	Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes. European Polymer Journal, 2008, 44, 3963-3968.	5.4	31
6	Hierarchically Ordered Polymer Nanofibers via Electrospinning and Controlled Polymer Crystallization. Macromolecules, 2008, 41, 9516-9521.	4.8	87
7	Absorption-induced Deformations of Nanofiber Yarns and Nanofibrous Webs. Materials Research Society Symposia Proceedings, 2008, 1129, 1.	0.1	1
8	Controlling Liquid Release by Compressing Electrospun Nanowebs. Journal of Engineered Fibers and Fabrics, 2009, 4, 155892500900400.	1.0	1
9	Electrospun jets launched from polymeric bubbles. Journal of Engineered Fibers and Fabrics, 2009, 4, 155892500900400.	1.0	8
10	Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres. Beilstein Journal of Organic Chemistry, 2009, 5, 58.	2.2	32
11	Caracterização de filmes de PVDF-β obtidos por diferentes técnicas. Polimeros, 2009, 19, 183-189.	0.7	12
12	Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. Journal of Applied Physics, 2009, 106, .	2.5	60
13	Comparisons of fibers properties between vertical and horizontal type electrospinning systems. , 2009, , .		11
14	Electrochemical Properties of MnO[sub x]–RuO[sub 2] Nanofiber Mats Synthesized by Co-Electrospinning. Electrochemical and Solid-State Letters, 2009, 12, A225.	2.2	33
15	Conducting nanofibres produced by electrospinning. Journal of Physics: Conference Series, 2009, 183, 012020.	0.4	10
16	Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Biofabrication, 2009, 1, 015001.	7.1	72
17	Electrospinning and its influence on the structure of polymeric nanofibers. , 2009, , 460-483.		2
18	Electrospinning of beta silicon carbide nanofibers. Materials Letters, 2009, 63, 2361-2364.	2.6	36

#	Article	IF	CITATIONS
19	Gallic Acidâ€Loaded Electrospun Poly(<scp>L</scp> â€Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 2009, 210, 814-822.	2.2	46
20	Effect of Processing Variables on the Morphology of Electrospun Poly[(lactic acid)â€ <i>co</i> â€(glycolic) Tj ET	Qq1 ₃ 1 ₆ 0.78	84314 rgBT /(
21	Prediction of water retention capacity of hydrolysed electrospun polyacrylonitrile fibers using statistical model and artificial neural network. Journal of Applied Polymer Science, 2009, 113, 3397-3404.	2.6	22
22	Nanofiber coating of surfaces for intensification of drop or spray impact cooling. International Journal of Heat and Mass Transfer, 2009, 52, 5814-5826.	4.8	78
23	Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology. Fibers and Polymers, 2009, 10, 167-176.	2.1	39
24	Electrospun poly(<scp>L</scp> â€lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering. Polymer International, 2010, 59, 227-235.	3.1	15
25	Electrospinning of poly(vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydrate Research, 2009, 344, 2496-2501.	2.3	100
26	Nanocoating on filaments by electrospinning. Surface and Coatings Technology, 2009, 204, 621-628.	4.8	17
27	Electrospun 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) fiberÂmats and their potential for use as bone scaffolds. Polymer, 2009, 50, 1548-1558.	3.8	37
28	Corona discharge from electrospinning jet of poly(ethylene oxide) solution. Polymer, 2009, 50, 1835-1837.	3.8	35
29	Composite nanofibers of conducting polymers and hydrophobic insulating polymers: Preparation and sensing applications. Polymer, 2009, 50, 3292-3301.	3.8	88
30	Dispersions of carbon nanotubes in sulfonated poly[bis(benzimidazobenzisoquinolinones)] and their proton-conducting composite membranes. Polymer, 2009, 50, 3600-3608.	3.8	28
31	Electrospinning nanoribbons of a bioengineered silk-elastin-like protein (SELP) from water. Polymer, 2009, 50, 5828-5836.	3.8	57
32	Bubble-electrospinning for fabricating nanofibers. Polymer, 2009, 50, 5846-5850.	3.8	139
33	Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC. Polymer, 2009, 50, 6340-6349.	3.8	26
34	Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning. Langmuir, 2009, 25, 9454-9462.	3.5	293
35	Axisymmetric instabilities in electrospinning of highly conducting, viscoelastic polymer solutions. Physics of Fluids, 2009, 21, .	4.0	42
36	Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: Synthesis, Characterization, and Potential Environmental Applications. Journal of Physical Chemistry C, 2009, 113, 18062-18068.	3.1	123

#ARTICLEIFCITATIONS37Fabrication of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747 Td (fluorideâ^ trifluoroethylene)/Poly(3,4-ethylene-toxythiopher 4.8)3138Novel Delivery System for the Bioregulatory Agent Nitric Oxide. Chemistry of Materials, 2009, 21,
5032-5041.6.73239Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first) Tj ETQq0 0 0 rgBT /Overlock 10 Tf
210110

40	Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization. ACS Applied Materials & Interfaces, 2009, 1, 2491-2501.	8.0	150
41	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	3.2	34
43	Electrospinning of Poly(alkoxyphenylenevinylene) and Methanofullerene Nanofiber Blends. ACS Applied Materials & Interfaces, 2009, 1, 1958-1965.	8.0	18
44	Wettability of Electrospun Poly(vinylpyrrolidone)â^'Titania Fiber Mats on Glass and ITO Substrates in Aqueous Media. ACS Applied Materials & Interfaces, 2009, 1, 2325-2331.	8.0	20
45	Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties. ACS Nano, 2009, 3, 1151-1159.	14.6	236
46	Preparation of Polyacrylamide Nanofibers by Electrospinning. Advanced Materials Research, 0, 87-88, 433-438.	0.3	1
47	Properties of Electrospinning Jets. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	0
49	Electrohydrodynamic instability of a charged liquid jet in the presence of an axial magnetic field. Physics of Fluids, 2010, 22, .	4.0	18
50	Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 2010, 28, 325-347.	11.7	3,936
51	Arranging junctions for nanofibers. Nanoscale, 2010, 2, 218-221.	5.6	17
52	Gallium arsenide (GaAs) nanofibers by electrospinning technique as future energy server materials. Fibers and Polymers, 2010, 11, 384-390.	2.1	9
53	Inkjet printing for flexible electronics: Materials, processes and equipments. Science Bulletin, 2010, 55, 3383-3407.	1.7	249
54	Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. Journal of Materials Science, 2010, 45, 6283-6312.	3.7	213
55	Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1312-1320.	4.0	96
56	<i>In vitro</i> biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1216-1225.	4.0	31

#	Article	IF	CITATIONS
57	Preparation and properties of electrospun PAN/Fe ₃ O ₄ magnetic nanofibers. Journal of Applied Polymer Science, 2010, 115, 1781-1786.	2.6	40
58	Self synthesize of silver nanoparticles in/on polyurethane nanofibers: Nanoâ€biotechnological approach. Journal of Applied Polymer Science, 2010, 115, 3189-3198.	2.6	37
59	Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles. Journal of Applied Polymer Science, 2010, 116, 1967-1976.	2.6	36
60	Optimization of electrospinning an SUâ€8 negative photoresist to create patterned carbon nanofibers and nanobeads. Journal of Applied Polymer Science, 2010, 118, 405-412.	2.6	16
61	Fabrication of continuous aligned polyvinylpyrrolidone fibers via electrospinning by elimination of the jet bending instability. Journal of Applied Polymer Science, 2010, 116, 3676-3681.	2.6	6
62	Preparation and characterization of the electrospun nanofibers loaded with clarithromycin. Journal of Applied Polymer Science, 2010, 118, 346-352.	2.6	24
63	Influence of collecting velocity on fiber orientation, morphology and tensile properties of electrospun PPESK fabrics. Journal of Applied Polymer Science, 2010, 118, 2236-2243.	2.6	1
64	Experimental investigation of the governing parameters in the electrospinning of poly(3â€hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 2010, 118, 2682-2689.	2.6	24
65	Effect of nonsolvent on morphologies of polyamide 6 electrospun fibers. Journal of Applied Polymer Science, 2010, 118, 3005-3012.	2.6	15
66	Electrospun Hybrid Soy Protein/PVA Fibers. Macromolecular Materials and Engineering, 2010, 295, 763-773.	3.6	67
67	Nanofibers by Green Electrospinning of Aqueous Suspensions of Biodegradable Block Copolyesters for Applications in Medicine, Pharmacy and Agriculture. Macromolecular Rapid Communications, 2010, 31, 2077-2083.	3.9	66
68	Electrospun Silk Material Systems for Wound Healing. Macromolecular Bioscience, 2010, 10, 246-257.	4.1	114
69	Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers. Polymer, 2010, 51, 547-553.	3.8	10
70	A novel method of selecting solvents for polymer electrospinning. Polymer, 2010, 51, 1654-1662.	3.8	269
71	Preparation of the thermally stable conducting polymer PEDOT – Sulfonated poly(imide). Polymer, 2010, 51, 1231-1236.	3.8	56
72	Electrospinning and characterization of highly sulfonated polystyrene fibers. Polymer, 2010, 51, 1983-1989.	3.8	45
73	Orientation analysis of individual electrospun PE nanofibers by transmission electron microscopy. Polymer, 2010, 51, 2383-2389.	3.8	65
74	Barb formation in electrospinning: Experimental and theoretical investigations. Polymer, 2010, 51, 2769-2778.	3.8	12

#	Article	IF	CITATIONS
75	Template-assisted assembly of electrospun fibers. Polymer, 2010, 51, 3244-3248.	3.8	46
76	Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: The effects of molecular motion and conformation in solutions. Polymer, 2010, 51, 2887-2896.	3.8	28
77	Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer, 2010, 51, 4928-4936.	3.8	117
78	Ion-assisted collection of Nylon-4,6 electrospun nanofibers. Polymer, 2010, 51, 5221-5228.	3.8	12
79	Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydrate Polymers, 2010, 82, 524-527.	10.2	116
80	In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal, 2010, 46, 428-440.	5.4	59
81	Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. European Polymer Journal, 2010, 46, 1194-1202.	5.4	35
82	Electrospinning to Forcespinningâ,,¢. Materials Today, 2010, 13, 12-14.	14.2	328
83	Morphology and physical properties of a novel Ramieâ€PU blended nonwoven by electrospinning: The effect of cosolvent ratio. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1-14.	2.1	2
84	Multiâ€jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition. Polymer International, 2010, 59, 1606-1615.	3.1	79
85	Carbendazimâ€loaded electrospun poly(vinyl alcohol) fiber mats and release characteristics of carbendazim therefrom. Polymers for Advanced Technologies, 2011, 22, 1366-1374.	3.2	8
86	Effect of applied voltage on surface and volume charge density of the jet in electrospinning of polyacrylonitrile solutions. Polymer Engineering and Science, 2010, 50, 1372-1376.	3.1	13
87	Structural and Electrical Properties of Nbâ€Doped Anatase TiO ₂ Nanowires by Electrospinning. Journal of the American Ceramic Society, 2010, 93, 4096-4102.	3.8	85
88	Keratin-based Nanofibres. , 0, , .		15
89	Experimental Investigation on the Multiple Jets from a Single Droplet by Electrospinning. Advanced Materials Research, 0, 129-131, 365-369.	0.3	1
90	Transversal electrostatic strength of patterned collector affecting alignment of electrospun nanofibers. Applied Physics Letters, 2010, 96, .	3.3	22
91	On the measured current in electrospinning. Journal of Applied Physics, 2010, 107, 044306.	2.5	46
92	Electrospinning jets as X-ray sources at atmospheric conditions. Europhysics Letters, 2010, 92, 47002.	2.0	1

#	Article	IF	CITATIONS
93	Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. Journal of Materials Chemistry, 2010, 20, 8776.	6.7	58
94	Experiment and simulation of coiled nanofiber deposition behavior from near-field electrospinning. , 2010, , .		6
95	Electrospinning of Technical Lignins for the Production of Fibrous Networks. Journal of Wood Chemistry and Technology, 2010, 30, 315-329.	1.7	133
96	Electrospinning of Concentrated Polymer Solutions. Macromolecules, 2010, 43, 10743-10746.	4.8	57
97	Drop Impact, Spreading, Splashing, and Penetration into Electrospun Nanofiber Mats. Langmuir, 2010, 26, 9516-9523.	3.5	117
98	Fabrications of Poly(vinylidenefluoride-co-hexafluoropropylene) Nanofibers Containing Inorganic Filler by Electrospinning Technique and Its Application to Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2010, 519, 234-244.	0.9	12
99	Multifunctional Electrospun Fabrics via Layer-by-Layer Electrostatic Assembly for Chemical and Biological Protection. Chemistry of Materials, 2010, 22, 1429-1436.	6.7	73
100	Electrospun Polyacrylonitrile Nanofibrous Membranes Tailored for Acetylcholinesterase Immobilization. Journal of Bioactive and Compatible Polymers, 2010, 25, 40-57.	2.1	26
101	Syndiotactic Polystyrene Nanofibers Obtained from High-Temperature Solution Electrospinning Process. Macromolecules, 2010, 43, 2371-2376.	4.8	27
102	Solution-Electrospun Isotactic Polypropylene Fibers: Processing and Microstructure Development during Stepwise Annealing. Macromolecules, 2010, 43, 9022-9029.	4.8	36
103	Influence of Counteranion on the Thermal and Solution Behavior of Poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rg	gBT /Overlo 4.8	ock 10 Tf 50
104	Resins with "Nano-Raisins― Langmuir, 2010, 26, 10243-10249.	3.5	15
105	Crystalline Block Copolymer Decorated, Hierarchically Ordered Polymer Nanofibers. Macromolecules, 2010, 43, 9918-9927.	4.8	58
106	Electrospinning Mechanism for Producing Nanoscale Polymer Fibers. Journal of Macromolecular Science - Physics, 2010, 49, 122-131.	1.0	33
107	Do Electrospun Polymer Fibers Stick?. Langmuir, 2010, 26, 14188-14193.	3.5	34
108	Properties of composite films of titania nanofibers and Safranin O dye. Synthetic Metals, 2010, 160, 2564-2572.	3.9	8
109	Electrospun nanofibers for neural tissue engineering. Nanoscale, 2010, 2, 35-44.	5.6	328
110	Controlling the architecture of nanofiberâ€coated microfibers using electrospinning. Journal of Applied Polymer Science, 2010, 118, 511-517.	2.6	9

#		IE	CITATIONS
# 111	The Effect of Organic/Inorganic Hybridization on the Structures of Nanofibers. Journal of Industrial	2.4	3
112	Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2010, 2, 3619-3627.	8.0	332
113	Nanostructured Macromolecules. , 2010, , 1-78.		2
114	A Solution Selection Model for Coaxial Electrospinning and Its Application to Nanostructured Hydrogen Storage Materials. Journal of Physical Chemistry C, 2010, 114, 21201-21213.	3.1	66
115	Coaxially Electrospun PVDFâ^'Teflon AF and Teflon AFâ^'PVDF Coreâ^'Sheath Nanofiber Mats with Superhydrophobic Properties. Langmuir, 2010, 26, 12483-12487.	3.5	83
116	Nanopottery: Coiling of Electrospun Polymer Nanofibers. Nano Letters, 2010, 10, 2138-2140.	9.1	85
117	Precision deposition of a nanofibre by near-field electrospinning. Journal Physics D: Applied Physics, 2010, 43, 415501.	2.8	119
118	Nanostructured Nb ₂ O ₅ Polymorphs by Electrospinning for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2010, 114, 664-671.	3.1	320
119	Si[sub 6]H[sub 12]/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes. Electrochemical and Solid-State Letters, 2010, 13, A143.	2.2	24
120	Buckling nanofiber on patterned substrate from near-field electrospinning. , 2010, , .		1
121	Electrospun Antibacterial Chitosan/Poly (Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles. Advanced Materials Research, 2010, 152-153, 1333-1336.	0.3	1
122	Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal. Journal of Materials Chemistry, 2010, 20, 6866.	6.7	73
123	Nanoporous artificial proboscis for probing minute amount of liquids. Nanoscale, 2011, 3, 4685.	5.6	38
124	Preparation and photoluminescence (PL) performance of a nanoweb of P3HT nanofibers with diameters below 100 nm. Journal of Materials Chemistry, 2011, 21, 14231.	6.7	39
125	Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter, 2011, 7, 10241.	2.7	64
126	Preparation of Aligned Polysulfonamide Nanofibers by Magnetic Electrospinning. Advanced Materials Research, 2011, 332-334, 363-366.	0.3	1
127	A novel electrohydrodynamic printing jet head with retractable needle. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 85-88.	0.1	0
128	Properties of PVA/HfO ₂ Hybrid Electrospun Fibers and Calcined Inorganic HfO ₂ Fibers. Journal of Physical Chemistry C, 2011, 115, 5535-5544.	3.1	23

#	Article	IF	Citations
129	Electrospinning and Polymer Nanofibers: Process Fundamentals. , 2011, , 497-512.		11
130	Preparation and optical properties of red, green and blue afterglow electrospun nanofibers. Journal of Materials Chemistry, 2011, 21, 2194-2203.	6.7	61
131	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
132	Thorny Devil Nanotextured Fibers: The Way to Cooling Rates on the Order of 1 kW/cm ² . Langmuir, 2011, 27, 215-226.	3.5	76
133	Nitric Oxide-Releasing Electrospun Polymer Microfibers. ACS Applied Materials & Interfaces, 2011, 3, 426-432.	8.0	47
134	Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning. Nano Letters, 2011, 11, 1831-1837.	9.1	209
135	Study on Technological Parameters Effecting on Fiber Diameter of Melt Electrospinning. Advanced Materials Research, 2011, 332-334, 1550-1556.	0.3	2
136	Liquid Crystals in Novel Geometries Prepared by Microfluidics and Electrospinning. Molecular Crystals and Liquid Crystals, 2011, 549, 69-77.	0.9	29
137	Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules, 2011, 12, 2617-2625.	5.4	255
138	Handbook of Atomization and Sprays. , 2011, , .		331
139	An Overview of Electrospray Applications in MEMS and Microfluidic Systems. Journal of Microelectromechanical Systems, 2011, 20, 1241-1249.	2.5	31
141	Bending and Buckling Instabilities of Free Liquid Jets: Experiments and General Quasi-One-Dimensional Model. , 2011, , 55-73.		4
142	Carbon Nanofibers Decorated with Poly(furfuryl alcohol)-Derived Carbon Nanoparticles and Tetraethylorthosilicate-Derived Silica Nanoparticles. Langmuir, 2011, 27, 14627-14631.	3.5	18
143	Electrospinning: designed architectures for energy conversion and storage devices. Energy and Environmental Science, 2011, 4, 4761.	30.8	654
144	Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials, 2011, 12, 013002.	6.1	283
145	Perspective of Recent Progress in Immobilization of Enzymes. ACS Catalysis, 2011, 1, 956-968.	11.2	428
146	Fabrication of one dimensional superfine polymer fibers by double-spinning. Journal of Materials Chemistry, 2011, 21, 13159.	6.7	51
147	Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Physical Review E, 2011, 84, 036310.	2.1	74

#	Article	IF	CITATIONS
148	Nonisothermal drop impact and evaporation on polymer nanofiber mats. Physical Review E, 2011, 83, 036305.	2.1	51
149	Enrichment of Cu(II), Ni(II), and Pb(II) in Aqueous Solutions Using Electrospun Polysulfone Nanofibers Functionalized with 1-[Bis[3-(Dimethylamino)-propyl]amino]-2-propanol. Analytical Letters, 2011, 44, 1855-1867.	1.8	7
150	Preparation of Hydrolyzed Electrospun Polyacrylonitrile Fiber Mats as Chelating Substrates: A Case Study on Copper(II) Ions. Industrial & Engineering Chemistry Research, 2011, 50, 11912-11921.	3.7	56
151	High strain sustaining, nitrile rubber based, large-area, superhydrophobic, nanostructured composite coatings. Composites Part A: Applied Science and Manufacturing, 2011, 42, 979-985.	7.6	33
152	Highly Hydrophobic Electrospun Fiber Mats from Polyisobutylene-Based Thermoplastic Elastomers. Biomacromolecules, 2011, 12, 1795-1799.	5.4	42
153	Synthesis and antibacterial performance of size-tunable silver nanoparticles with electrospun nanofiber composites. Synthetic Metals, 2011, 161, 2124-2128.	3.9	32
154	Electrospun Fibers for Drug Delivery. , 2011, , 445-462.		7
155	A Synthetic Polypeptide Electrospun Biomaterial. ACS Applied Materials & Interfaces, 2011, 3, 2994-3001.	8.0	22
156	New Methods to Electrospin Nanofibers. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	1.0	8
157	Formation of Nano-Fibre MD Membranes. , 2011, , 163-187.		1
158	IMPACT OF ELECTRORHEOLOGICAL BEHAVIOUR OF PVB SOLUTIONS ON THE PROCESS OF ELECTROSPINNING. , 2011, , .		0
159	Buckling of an electrically charged liquid jet. Doklady Physical Chemistry, 2011, 441, 227-229.	0.9	4
160	Fabrication of cellulase protein fibers through concentric electrospinning. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 1-5.	1.8	9
161	Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet. Polymer, 2011, 52, 4303-4318.	3.8	59
162	Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer, 2011, 52, 4600-4609.	3.8	54
163	A fundamental study of chitosan/PEO electrospinning. Polymer, 2011, 52, 4813-4824.	3.8	315
164	Electrospun polylactic acid and cassava starch fiber by conjugated solvent technique. Materials Letters, 2011, 65, 985-987.	2.6	34
165	Preparation of melamine microfibers by reaction electrospinning. Materials Letters, 2011, 65, 1079-1081.	2.6	19

#	Article	IF	CITATIONS
166	Formation and morphological stability of polybutadiene rubber fibers prepared through combination of electrospinning and in-situ photo-crosslinking. Materials Letters, 2011, 65, 3076-3079.	2.6	33
167	Application of empirical modelling in multi-layers membrane manufacturing. Computers and Chemical Engineering, 2011, 35, 2248-2256.	3.8	17
168	Electrospinning of food-grade polysaccharides. Food Hydrocolloids, 2011, 25, 1393-1398.	10.7	176
169	Mechanoresponsive polymer nanoparticles, nanofibers and coatings as drug carriers and components of microfluidic devices. Journal of Materials Chemistry, 2011, 21, 8269.	6.7	25
170	Melt Electrospinning. Chemistry - an Asian Journal, 2011, 6, 44-56.	3.3	260
171	The potential of electrospinning in rapid manufacturing processes. Virtual and Physical Prototyping, 2011, 6, 63-77.	10.4	16
172	Study of release speeds and bacteria inhibiting capabilities of drug delivery membranes fabricated via electrospinning by observing bacteria growth curves. Journal of Materials Science: Materials in Medicine, 2011, 22, 571-577.	3.6	6
173	How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. Journal of Polymer Research, 2011, 18, 111-123.	2.4	78
174	Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polymers for Advanced Technologies, 2011, 22, 310-317.	3.2	371
175	Electrospinning of polyacrylonitrile solutions containing diluted sodiumthiocyanate. Polymer Engineering and Science, 2011, 51, 1122-1129.	3.1	7
176	Electrospinning formaldehyde rosslinked zein solutions. Polymer International, 2011, 60, 537-542.	3.1	13
177	Improving Polymer Nanofiber Quality Using a Modified Coâ€exial Electrospinning Process. Macromolecular Rapid Communications, 2011, 32, 744-750.	3.9	68
178	Thermally Tunable Surface Wettability of Electrospun Fiber Mats: Polystyrene/Poly(<i>N</i> â€isopropylacrylamide) Blended versus Crosslinked Poly[(<i>N</i> â€isopropylacrylamide)â€ <i>co</i> â€(methacrylic acid)]. Macromolecular Rapid Communications, 2011, 32, 1716-1721.	3.9	32
179	Coarseâ€Grained Simulations of Model Polymer Nanofibres. Macromolecular Theory and Simulations, 2011, 20, 305-319.	1.4	26
180	Electrospun composite nanofibers of poly (vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 187 Td (fluorideâ€ŧr 2011, 119, 3640-3644.	ifluoroeth 2.6	ylene)/polyaı 5
181	Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. Journal of Applied Polymer Science, 2011, 120, 752-758.	2.6	30
182	Production of hydrophobic surfaces in biodegradable and biocompatible polymers using polymer solution electrospinning. Journal of Applied Polymer Science, 2011, 120, 1520-1524.	2.6	6
183	Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl) Tj ETQq1 1 0.78431	14 rgBT /O	verlock 10 T 24

#	Article	IF	CITATIONS
184	Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydrate Polymers, 2011, 86, 1410-1416.	10.2	50
185	Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 48-54.	4.7	129
186	Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon, 2011, 49, 1710-1719.	10.3	297
187	Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties. European Polymer Journal, 2011, 47, 911-924.	5.4	31
188	Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. European Polymer Journal, 2011, 47, 1402-1409.	5.4	139
189	Absorption and transport properties of ultra-fine cellulose webs. Journal of Colloid and Interface Science, 2011, 353, 290-293.	9.4	35
190	Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer, 2011, 52, 1612-1618.	3.8	137
191	Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties. Polymer, 2011, 52, 2263-2275.	3.8	43
192	Magnetic polyacrylonitrile-Fe@FeO nanocomposite fibers - Electrospinning, stabilization and carbonization. Polymer, 2011, 52, 2947-2955.	3.8	90
193	Spontaneous core-sheath formation in electrospun nanofibers. Polymer, 2011, 52, 2869-2876.	3.8	14
194	Studies on the electrospun Nylon 6 nanofibers from polyelectrolyte solutions: 1. Effects of solution concentration and temperature. Polymer, 2011, 52, 3127-3136.	3.8	54
195	Electrospun nanofibers for microfluidic analytical systems. Polymer, 2011, 52, 3413-3421.	3.8	27
196	Release kinetics and cellular profiles for bFGF-loaded electrospun fibers: Effect of the conjugation density and molecular weight of heparin. Polymer, 2011, 52, 3357-3367.	3.8	24
197	Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core–shell fibres. Polymer, 2011, 52, 3603-3610.	3.8	68
198	Parameter dependence of conic angle of nanofibres during electrospinning. Journal Physics D: Applied Physics, 2011, 44, 435401.	2.8	16
199	Electrospinning: Distribution of charges in liquid jets. Journal of Applied Physics, 2011, 110, 124910.	2.5	7
200	Electrospun metal oxides nanostructures for energy related devices. , 2011, , .		1
201_	Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011, 5, 13403.	2.4	340 _

#	Article	IF	CITATIONS
202	Fabrication of Self-Assembled Three-Dimensional Fibrous Stackings by Electrospinning. Materials Science Forum, 0, 688, 95-101.	0.3	15
203	Whipping instability characterization of an electrified visco-capillary jet. Journal of Fluid Mechanics, 2011, 671, 226-253.	3.4	52
204	Electrospun Europium Complex/Polymer Composite Microfibers and Its Modified Photoluminescence Properties. Materials Science Forum, 2011, 688, 74-79.	0.3	3
205	Optically responsive liquid crystal microfibers for display and nondisplay applications. Proceedings of SPIE, 2011, , .	0.8	4
206	Electrospun cerium nitrate/polymer composite fibres: synthesis, characterization and fibre-division model. Chinese Physics B, 2011, 20, 048101.	1.4	14
207	Effect of Fiber Diameter on Thermal Conductivity of the Electrospun Carbon Nanofiber Mats. Advanced Materials Research, 0, 332-334, 672-677.	0.3	5
208	A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution. EXPRESS Polymer Letters, 2011, 5, 732-741.	2.1	54
209	Impedance Characteristics of Electrospun Nylon-6/TiO ₂ Nanocomposite for Humidity Sensor. Key Engineering Materials, 0, 471-472, 542-547.	0.4	4
210	Multiblock Polyurethanes Based on Biodegradable Amphiphilic Poly(Îμ-caprolactone)/ Poly(ethylene) Tj ETQqO 0 0 Engineering, 2011, 3, .	rgBT /Ove 0.9	erlock 10 Tf : 6
211	Preparation of Curled Microfibers by Electrospinning with Tip Collector. Chinese Physics Letters, 2011, 28, 056801.	3.3	18
212	Notice of Retraction: Chemo-Enzymatic Synthesis of Nanofiber Membrane with Glucose by Electrospinning. , 2011, , .		0
213	Production of Helical Polymer Microfibers by Electrospinning. Materials Science Forum, 0, 688, 250-254.	0.3	0
214	A Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH Oscillation. Polymers, 2011, 3, 405-412.	4.5	33
215	Effect of Changing Solvents on Poly(-Caprolactone) Nanofibrous Webs Morphology. Journal of Nanomaterials, 2011, 2011, 1-10.	2.7	71
216	Study on the Morphologies and Formational Mechanism of Poly(hydroxybutyrate-co-hydroxyvalerate) Ultrafine Fibers by Dry-Jet-Wet-Electrospinning. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	6
217	Highly piezoelectric biocompatible and soft composite fibers. Applied Physics Letters, 2012, 100, .	3.3	37
218	Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors. Applied Physics Letters, 2012, 100, .	3.3	40
219	Optimizing fiber cross-sectional shape for improving stability of air–water interface over superhydrophobic fibrous coatings. Applied Physics Letters, 2012, 100, 193104.	3.3	6

	CITATION	REPORT	
#	Article	IF	CITATIONS
220	High-speed jetting and spray formation from bubble collapse. Physical Review E, 2012, 85, 015303.	2.1	16
221	A Novel Approach to Prepare CaCO3/Polyvinylpyrrolidone (PVP) Composite Nanofibers. Journal of Macromolecular Science - Physics, 2012, 51, 2133-2140.	1.0	0
222	LiFePO4 – 3D carbon nanofiber composites as cathode materials for Li-ions batteries. Journal of Applied Physics, 2012, 111, .	2.5	44
223	Electrospinning of Gelatin/PEO Blends: Influence of Process Parameters in the Nanofiber Properties. Macromolecular Symposia, 2012, 319, 230-234.	0.7	10
224	Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties. Chinese Physics B, 2012, 21, 097805.	1.4	8
225	Polymer nanofibers prepared by low-voltage near-field electrospinning. Chinese Physics B, 2012, 21, 048102.	1.4	24
226	The Processing Parameters of Polyacrlonitrile Electrospinning Filament Assembly with Parallel Alignment. Advanced Materials Research, 2012, 528, 223-228.	0.3	0
227	Fabrication of Nanofibers by Low-Voltage Near-Field Electrospinning. Advanced Materials Research, 2012, 486, 60-64.	0.3	6
228	Electrospun Composite Nanofibers and Polymer Composites. , 2012, , 301-349.		13
229	Effect of fiber orientation on shape and stability of air–water interface on submerged superhydrophobic electrospun thin coatings. Journal of Applied Physics, 2012, 111, .	2.5	43
230	Electrospun capric acid/polyethylene terephthalate composite nanofibres for storage and retrieval of thermal energy. Materials Research Innovations, 2012, 16, 429-437.	2.3	5
231	PHOTOCATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS OVER ELECTROSPUN ACTIVATED TIO2/CARBON NANOFIBER COMPOSITE. International Journal of Modern Physics Conference Series, 2012, 05, 622-629.	0.7	2
232	Electrospun Fibers of Poly(Vinylidene Fluoride-Trifluoroethylene)/Poly(3-Hexylthiophene) Blends from Tetrahydrofuran. Ferroelectrics, 2012, 432, 41-48.	0.6	9
233	Silk nanofibre arranging improves its fibre mat transparency. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 57-61.	0.9	4
234	Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1242-1262.	3.3	182
235	Superhydrophobic Materials for Tunable Drug Release: Using Displacement of Air To Control Delivery Rates. Journal of the American Chemical Society, 2012, 134, 2016-2019.	13.7	223
236	Preparation and Characterization of Caffeic Acid-Grafted Electrospun Poly(<scp> </scp> -Lactic Acid) Fiber Mats for Biomedical Applications. ACS Applied Materials & Interfaces, 2012, 4, 3031-3040.	8.0	34
238	Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles Incorporated GTR Membranes. , 2012, , 151-170.		0

#	Article	IF	CITATIONS
239	Colloidâ€Electrospinning: Fabrication of Multicompartment Nanofibers by the Electrospinning of Organic or/and Inorganic Dispersions and Emulsions. Macromolecular Rapid Communications, 2012, 33, 1978-1995.	3.9	116
240	Impact Damage Resistance and Tolerance of Polymer Nanofiber Interleaved Composite Laminates. , 2012, , .		6
241	Imidazole-functionalized polymer microspheres and fibers – useful materials for immobilization of oxovanadium(iv) catalysts. Journal of Materials Chemistry, 2012, 22, 5792.	6.7	28
242	Recent advances in nanofibre fabrication techniques. Textile Reseach Journal, 2012, 82, 129-147.	2.2	288
243	Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. Journal of Applied Physics, 2012, 111, .	2.5	141
244	Investigations of the structural evolution of electrospun nanofibers using atomic force microscopy. RSC Advances, 2012, 2, 11104.	3.6	8
245	Photoluminescence and phosphorescence from MCM-48 nanoparticle-embedded composite nanofibers prepared by electrospinning. RSC Advances, 2012, 2, 11207.	3.6	4
246	Composition and properties of polyacrylonitrile solutions for nanofibre electrospinning processes. Fibre Chemistry, 2012, 44, 221-226.	0.2	1
247	Functional nanofibers for drug delivery applications. , 2012, , 153-170.		15
248	Morphological and Rheological Insights on Polyimide Chain Entanglements for Electrospinning Produced Fibers. Journal of Physical Chemistry B, 2012, 116, 9082-9088.	2.6	32
249	Functional Films of Polymer-Nanocomposites by Electrospinning for Advanced Electronics, Clean Energy Conversion, and Storage. Advanced Materials Research, 0, 545, 21-26.	0.3	0
250	Electrospun Fibers and Tissue Engineering. Journal of Biomedical Nanotechnology, 2012, 8, 1-9.	1.1	108
251	Porphyrin-Containing Electrospun Nanofibers: Positional Control of Porphyrin Molecules in Nanofibers and Their Catalytic Application. ACS Applied Materials & Interfaces, 2012, 4, 5453-5457.	8.0	41
252	Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning. Materials and Manufacturing Processes, 2012, 27, 1318-1323.	4.7	78
253	Efficient Catalytic Reduction of Hexavalent Chromium Using Palladium Nanoparticle-Immobilized Electrospun Polymer Nanofibers. ACS Applied Materials & Interfaces, 2012, 4, 3054-3061.	8.0	179
254	Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl. Macromolecules, 2012, 45, 6527-6537.	4.8	42
255	Garland formation process in electrospinning. Polymer, 2012, 53, 3629-3635.	3.8	16
256	Modeling resistance of nanofibrous superhydrophobic coatings to hydrostatic pressures: The role of microstructure. Physics of Fluids, 2012, 24, .	4.0	35

		Report	
#	Article	IF	CITATIONS
257	Post-Assembly Derivatization of Electrospun Nanofibers via Strain-Promoted Azide Alkyne Cycloaddition. Journal of the American Chemical Society, 2012, 134, 17274-17277.	13.7	60
258	In vitro biocompatibility study of electrospun copolymer ethylene carbonate-É>-caprolactone and vascular endothelial growth factor blended nanofibrous scaffolds. Applied Surface Science, 2012, 258, 2301-2306.	6.1	14
259	A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Current Applied Physics, 2012, 12, 1387-1412.	2.4	583
260	Electrospinning. , 2012, , 769-775.		2
261	New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. Journal of the Royal Society Interface, 2012, 9, 2551-2562.	3.4	58
262	Charge Transport through Electrospun SnO ₂ Nanoflowers and Nanofibers: Role of Surface Trap Density on Electron Transport Dynamics. Journal of Physical Chemistry C, 2012, 116, 22112-22120.	3.1	43
263	Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	2.7	22
264	Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials. Biomacromolecules, 2012, 13, 1606-1614.	5.4	26
265	Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors and Actuators B: Chemical, 2012, 171-172, 580-587.	7.8	234
266	Nanostructured Electrospun Fibers. , 2012, , 187-210.		3
267	Electrostatic RF MEMS Switches. , 2012, , 783-783.		0
268	Systematic Study of the Structure–Property Relationships of Branched Hierarchical TiO ₂ /ZnO Nanostructures. ACS Applied Materials & Interfaces, 2012, 4, 6917-6926.	8.0	63
269	Luminescence of EPDM rubber ultrafine fibers containing nanodispersed Eu-complexes. Journal of Rare Earths, 2012, 30, 860-865.	4.8	5
270	Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Advanced Drug Delivery Reviews, 2012, 64, 1129-1141.	13.7	145
271	Functionalization of electrospun β-cyclodextrin/polyacrylonitrile (PAN) with silver nanoparticles: Broad-spectrum antibacterial property. Applied Surface Science, 2012, 261, 499-503.	6.1	44
272	Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability. Polymer Degradation and Stability, 2012, 97, 2037-2051.	5.8	43
273	Electrospinning of biodegradable polylactide/hydroxyapatite nanofibers: Study on the morphology, crystallinity structure and thermal stability. Polymer Degradation and Stability, 2012, 97, 2052-2059.	5.8	82
274	Interpretation and use of glints from an electrospinning jet of polymer solutions. Polymer, 2012, 53, 4241-4253.	3.8	13

	CITATION	Report	
# 275	ARTICLE Hierarchical polystyrene patterns produced by electrospinning, Polymer, 2012, 53, 4254-4261.	IF 3.8	CITATIONS
276	Porous microfibers by the electrospinning of amphiphilic graft copolymer solutions with multi-walled carbon nanotubes. Polymer, 2012, 53, 5523-5539.	3.8	29
277	High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning. Energy and Environmental Science, 2012, 5, 5401-5407.	30.8	133
278	Electrospun nanofibers in drug delivery: recent developments and perspectives. Therapeutic Delivery, 2012, 3, 515-533.	2.2	71
279	Structure and morphology of electrospun collagen blends. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 202-213.	0.9	4
280	Electrospraying and Electrospinning of Chocolate Suspensions. Food and Bioprocess Technology, 2012, 5, 2285-2300.	4.7	48
281	Electrospun nanostructures based on polyurethane/MWCNTs for strain sensing applications. Fibers and Polymers, 2012, 13, 1126-1131.	2.1	16
282	Microstructure and mechanical properties of polyurethane fibrous membrane. Fibers and Polymers, 2012, 13, 1239-1248.	2.1	5
283	Enzyme Immobilization via Electrospinning. Topics in Catalysis, 2012, 55, 1057-1069.	2.8	55
284	A Computer-Controlled Near-Field Electrospinning Setup and Its Graphic User Interface for Precision Patterning of Functional Nanofibers on 2D and 3D Substrates. Journal of the Association for Laboratory Automation, 2012, 17, 302-308.	2.8	13
285	Fabrication of nanoscale glass fibers by electrospinning. Applied Physics Letters, 2012, 100, 063114.	3.3	16
286	Correlation of polymer-like solution behaviors with electrospun fiber formation of hydroxypropyl-β-cyclodextrin and the adsorption study on the fiber. Physical Chemistry Chemical Physics, 2012, 14, 9729.	2.8	51
287	Tunable bead-on-string microstructures fabricated by mechano-electrospinning. Journal Physics D: Applied Physics, 2012, 45, 405301.	2.8	26
288	Switchable and responsive liquid crystal-functionalized microfibers produced via coaxial electrospinning. Proceedings of SPIE, 2012, , .	0.8	3
290	Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. Journal of Polymer Research, 2012, 19, 1.	2.4	12
291	Electrowetting-on-Dielectric (EWOD). , 2012, , 789-789.		0
292	Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies. , 0, , .		29
293	Permeability of Electrospun Superhydrophobic Nanofiber Mats. Journal of Nanotechnology, 2012, 2012, 1-7.	3.4	20

	CHATION REF	ORI	
#	Article	IF	CITATIONS
294	Morphology and Surface Properties of Poly (L-lactic acid)/Captopril Composite Nanofiber Membranes. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	1.0	6
295	Eletrofiação de polÃmeros em solução: parte II: aplicações e perspectivas. Polimeros, 2012, 22, 178-185.	0.7	13
296	Coiled Fibers of Poly (Amide-Co-Imide) PAI and Poly (Trimellitic Anhydride Chloride-Co-4, 4'-Methylene) Tj ETQq0 0 155892501200702.	0 rgBT /0 1.0	verlock 10 T 0
297	Eletrofiação de PolÃmeros em Solução: parte I: fundamentação TeÃf³rica. Polimeros, 2012, 22, 170-177	7.0.7	33
298	Preparation of electrospun electroactive POMA fiber mats. Polymer International, 2012, 61, 213-221.	3.1	2
299	Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polymers for Advanced Technologies, 2012, 23, 262-271.	3.2	24
300	Threeâ€Dimensional Electrospun Alginate Nanofiber Mats via Tailored Charge Repulsions. Small, 2012, 8, 1928-1936.	10.0	155
301	Carbon Nanofibers Prepared via Electrospinning. Advanced Materials, 2012, 24, 2547-2566.	21.0	686
302	Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. Journal of Materials Chemistry, 2012, 22, 4855.	6.7	41
303	Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale, 2012, 4, 2134.	5.6	121
304	Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter, 2012, 8, 8302.	2.7	49
305	Release Profiles of Tricalcium Phosphate Nanoparticles from Poly(<scp>L</scp> â€ŀactic acid) Electrospun Scaffolds with Single Component, Core–Sheath, or Porous Fiber Morphologies: Effects on hASC Viability and Osteogenic Differentiation. Macromolecular Bioscience, 2012, 12, 893-900.	4.1	37
306	Preparation of Ultrafine Ethylene/Propylene/Diene Terpolymer Rubber Fibers by Coaxial Electrospinning. Macromolecular Materials and Engineering, 2012, 297, 298-302.	3.6	11
307	Structuring and Molding of Electrospun Nanofibers: Effect of Electrical and Topographical Local Properties of Microâ€Patterned Collectors. Macromolecular Materials and Engineering, 2012, 297, 958-968.	3.6	27
308	Water‣table Nonwovens Composed of Electrospun Fibers from Aqueous Dispersions by Photoâ€Cross‣inking. Macromolecular Materials and Engineering, 2012, 297, 532-539.	3.6	15
309	Electrospinning of Prolamin Proteins in Acetic Acid: The Effects of Protein Conformation and Aggregation in Solution. Macromolecular Materials and Engineering, 2012, 297, 902-913.	3.6	60
310	Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chemical Society Reviews, 2012, 41, 4560.	38.1	282
311	New method of producing aligned electrospun poly(2-acrylamido-2-methylpropanesulphonic) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T

#	Article	IF	CITATIONS
312	Electrospinning versus fibre production methods: from specifics to technological convergence. Chemical Society Reviews, 2012, 41, 4708.	38.1	548
313	Electrospinning and Imaging. Advanced Engineering Materials, 2012, 14, B266.	3.5	17
314	Interactions of Fibroblasts with Different Morphologies Made of an Engineered Spider Silk Protein. Advanced Engineering Materials, 2012, 14, B67.	3.5	76
315	Oneâ€step fabrication of branched poly(vinyl alcohol) nanofibers by magnetic coaxial electrospinning. Journal of Applied Polymer Science, 2012, 125, 1425-1429.	2.6	1
316	Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior. Journal of Applied Polymer Science, 2012, 126, E89.	2.6	28
317	Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. Journal of Materials Chemistry, 2012, 22, 9138.	6.7	129
318	Nanofibrous Structure of Chitosan for Biomedical Applications. Journal of Nanomedicine & Biotherapeutic Discovery, 2012, 02, .	0.6	11
319	Co-axial electrospinning with sodium thiocyanate solution for preparing polyacrylonitrile nanofibers. Journal of Polymer Research, 2012, 19, 1.	2.4	6
320	Comparison of two electrospinning processes in obtaining finer polymer nanofibers. Fibers and Polymers, 2012, 13, 450-455.	2.1	10
321	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	10.4	59
322	Experimental investigation on flow modes of electrospinning. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 644-652.	3.4	7
323	UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: Effect of irradiation time and incorporated cellulose nanocrystals. Carbohydrate Polymers, 2012, 87, 1779-1786.	10.2	59
324	Coaxial electrospinning with sodium dodecylbenzene sulfonate solution for high quality polyacrylonitrile nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 161-168.	4.7	57
325	Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Composites Part B: Engineering, 2012, 43, 15-21.	12.0	50
326	Localization of nanofibers on polymer surface using interface transfer technique. Composites Part B: Engineering, 2012, 43, 1218-1223.	12.0	11
327	Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework. Composites Part B: Engineering, 2012, 43, 2382-2388.	12.0	44
328	Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dental Materials, 2012, 28, 703-721.	3.5	555
329	Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. International Journal of Pharmaceutics, 2012, 427, 379-384.	5.2	179

#	Article	IF	CITATIONS
330	Contact angles of drops on curved superhydrophobic surfaces. Journal of Colloid and Interface Science, 2012, 367, 472-477.	9.4	39
331	Electrospinning preparation and photoluminescence properties of poly (methyl methacrylate)/Eu3+ ions composite nanofibers and nanoribbons. Materials Research Bulletin, 2012, 47, 321-327.	5.2	15
332	Hydrophilic-modified polyurethane nanofibre scaffolds for culture of hyperthermophiles. Materials Letters, 2012, 72, 88-91.	2.6	3
333	Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Materials Letters, 2012, 74, 247-249.	2.6	47
334	Hybrid nanofibrous mats with remarkable solvent and temperature resistance produced by electrospinning technique. Materials Letters, 2012, 78, 139-142.	2.6	8
335	Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. Journal of Solid State Chemistry, 2012, 186, 261-267.	2.9	168
336	Characteristics of the breakup and fragmentation of an electrohydrodynamic melt jet. Particuology, 2012, 10, 255-265.	3.6	3
337	Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 2012, 97, 747-754.	5.8	78
338	Mechanical properties of polymer nanofibers revealed by interaction with streamsÂof air. Polymer, 2012, 53, 782-790.	3.8	18
339	Synthesis and solution rheology of adenine-containing polyelectrolytes for electrospinning. Polymer, 2012, 53, 1437-1443.	3.8	6
340	Ultrafine electrospun nanofiber created from cross-linked polyimide solution. Polymer, 2012, 53, 2217-2222.	3.8	25
341	Electrospun zein fibers using glyoxal as the crosslinking reagent. Journal of Applied Polymer Science, 2012, 123, 2651-2661.	2.6	22
342	Preparation of tunable emissive poly(ethylene oxide) nanofibers by doping with TPP and DCM. Macromolecular Research, 2012, 20, 212-215.	2.4	3
343	Catalytic oxidation of thioanisole using oxovanadium(IV)â€functionalized electrospun polybenzimidazole nanofibers. Journal of Applied Polymer Science, 2013, 127, 4719-4725.	2.6	16
344	Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Industrial Crops and Products, 2013, 41, 198-202.	5.2	74
345	Oxovanadium(IV)-containing poly(styrene-co-4′-ethenyl-2-hydroxyphenylimidazole) electrospun nanofibers for the catalytic oxidation of thioanisole. Journal of Molecular Catalysis A, 2013, 379, 94-102.	4.8	16
346	Green synthesis of antibacterial chitosan films loaded with silver nanoparticles. Chinese Journal of Polymer Science (English Edition), 2013, 31, 984-993.	3.8	12
347	Controlled formation of poly(ε-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process. European Polymer Journal, 2013, 49, 1331-1336.	5.4	37

#	Article	IF	CITATIONS
348	Electrospinning multi-layered nano-solenoid and reticular micro-tubular structure on a microfiber. Materials Letters, 2013, 98, 153-156.	2.6	5
349	Transfer printing and patterning of stretchable electrospun film. Thin Solid Films, 2013, 544, 152-156.	1.8	8
350	Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 365-385.	3.5	64
351	The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications. Journal of Materials Science, 2013, 48, 7812-7826.	3.7	34
352	Electrohydrodynamic direct-writing. Nanoscale, 2013, 5, 12007.	5.6	202
353	Electrospun poly(É›-caprolactone)/nanoclay nanofibrous mats for tissue engineering. Fibers and Polymers, 2013, 14, 957-964.	2.1	13
354	Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric) Tj ETQq0 0 0 rg 2013, 33, 4444-4452.	gBT /Overl 7.3	ock 10 Tf 50 54
355	Recent progress in interfacial toughening and damage selfâ€healing of polymer composites based on electrospun and solutionâ€blown nanofibers: An overview. Journal of Applied Polymer Science, 2013, 130, 2225-2237.	2.6	79
356	Rheological aspect on electrospinning of polyamide 6 solutions. European Polymer Journal, 2013, 49, 3619-3629.	5.4	19
357	Electrospun nylon-4,6 nanofibers: solution rheology and Brill transition. Colloid and Polymer Science, 2013, 291, 2337-2344.	2.1	10
358	One-Dimensional Inorganic Nanomaterials for Energy Storage and Production. , 2013, , 317-341.		1
359	NO decomposition by CO over Pd catalyst supported on TiO2 nanofibers. Chemical Engineering Journal, 2013, 225, 340-349.	12.7	28
360	Graphite-Nanoplatelet-Decorated Polymer Nanofiber with Improved Thermal, Electrical, and Mechanical Properties. ACS Applied Materials & Interfaces, 2013, 5, 7758-7764.	8.0	78
361	Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation. Journal of Materials Research, 2013, 28, 2339-2350.	2.6	40
362	Nano hydroxyapatite–polysulfone coating on Ti-6Al-4V substrate by electrospinning. International Journal of Materials Research, 2013, 104, 1254-1262.	0.3	5
363	The research and preparation of a bi-layer biodegradable external sheath with directional drug release profiles for vein graft. Applied Surface Science, 2013, 284, 819-825.	6.1	4
364	Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs. Textile Reseach Journal, 2013, 83, 1452-1466.	2.2	100
365	Crosslinked PVAL nanofibers with enhanced longâ€ŧerm stability prepared by singleâ€step electrospinning. Polymers for Advanced Technologies, 2013, 24, 421-429.	3.2	6

#	Article	IF	CITATIONS
366	Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles. Polymer, 2013, 54, 2364-2372.	3.8	87
367	Adsorption and separation of platinum and palladium by polyamine functionalized polystyrene-based beads and nanofibers. Minerals Engineering, 2013, 53, 256-265.	4.3	51
368	Novel Synthesis and Characterization of Nanostructured Materials. Engineering Materials, 2013, , .	0.6	42
369	Absolute and convective instability of a charged viscoelastic liquid jet. Journal of Non-Newtonian Fluid Mechanics, 2013, 196, 58-69.	2.4	29
370	Pool boiling on nano-textured surfaces. International Journal of Heat and Mass Transfer, 2013, 62, 99-111.	4.8	82
371	Simultaneous Electrospinning and Electrospraying: A Straightforward Approach for Fabricating Hierarchically Structured Composite Membranes. ACS Applied Materials & Interfaces, 2013, 5, 10090-10097.	8.0	56
372	Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. International Journal of Pharmaceutics, 2013, 458, 99-103.	5.2	67
373	Preparation of magnetic polyvinyl alcohol composite nanofibers with homogenously dispersed nanoparticles and high water resistance. Textile Reseach Journal, 2013, 83, 510-518.	2.2	24
374	Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning. Polymer, 2013, 54, 6045-6051.	3.8	28
375	Three-dimensional coating of nanofibers on surfaces of poorly conductive objects. Polymer, 2013, 54, 6702-6708.	3.8	3
376	Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning. Polymer, 2013, 54, 6752-6759.	3.8	17
377	Electrospun polycaprolactone/polyglyconate blends: Miscibility, mechanical behavior, and degradation. Polymer, 2013, 54, 6824-6833.	3.8	28
378	Preparation and Optimization of Silver Nanoparticles Embedded Electrospun Membrane for Implant Associated Infections Prevention. ACS Applied Materials & Interfaces, 2013, 5, 11014-11021.	8.0	40
379	Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. Journal of Materials Science, 2013, 48, 8308-8319.	3.7	24
380	Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 25576.	3.6	65
381	Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. International Journal of Biological Macromolecules, 2013, 55, 176-184.	7.5	44
382	Morphological aspects of polymer fiber mats obtained by air flow rotary-jet spinning. Fibers and Polymers, 2013, 14, 1526-1534.	2.1	20
383	4-Dibenzocyclooctynol (DIBO) as an initiator for poly(Îμ-caprolactone): copper-free clickable polymer and nanofiber-based scaffolds. Polymer Chemistry, 2013, 4, 2215.	3.9	35

#	Article	IF	CITATIONS
384	Tenside-Free Biodegradable Polymer Nanofiber Nonwovens by "Green Electrospinning― Macromolecules, 2013, 46, 7034-7042.	4.8	22
385	Fabrication of Fluorescent Polymer Crossbar Arrays and Microropes v <i>ia</i> Centrifugal Electrospinning. Advanced Materials Research, 0, 785-786, 517-522.	0.3	2
386	Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation. New Journal of Chemistry, 2013, 37, 2917.	2.8	30
387	Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Advances, 2013, 3, 15783.	3.6	86
388	Synthesis, Characteristics, and Applications of Intrinsically Light-Emitting Polymer Nanostructures. Advances in Polymer Science, 2013, , 201-244.	0.8	4
389	Physical structure behavior to wettability of electrospun poly(lactic acid)/polysaccharide composite nanofibers. Advanced Composite Materials, 2013, 22, 401-409.	1.9	4
390	pH-dependent adhesion of mycobacteria to surface-modified polymer nanofibers. Journal of Materials Chemistry B, 2013, 1, 6608.	5.8	4
391	Smart surface treatments for textiles for protection. , 2013, , 87-126.		3
392	Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization. Journal of Power Sources, 2013, 222, 410-416.	7.8	159
393	Water–diesel secondary dispersion separation using superhydrophobic tubes of nanofibers. Separation and Purification Technology, 2013, 104, 81-88.	7.9	52
394	Electrospinning and additive manufacturing: converging technologies. Biomaterials Science, 2013, 1, 171-185.	5.4	207
395	Electrospinning coreâ€shell nanofibers for interfacial toughening and selfâ€healing of carbonâ€fiber/epoxy composites. Journal of Applied Polymer Science, 2013, 129, 1383-1393.	2.6	152
396	Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers, 2013, 94, 147-153.	10.2	198
397	Coaxialâ€electrospinning as a new method to study confined crystallization of polymer. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 376-383.	2.1	28
398	Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Materials Science and Engineering C, 2013, 33, 4002-4008.	7.3	56
399	Modified electrospun polymer nanofibers as affinity membranes: The effect of pre-spinning modification versus post-spinning modification. European Polymer Journal, 2013, 49, 3814-3824.	5.4	11
400	Recent advances in Iow ost carbon fiber manufacture from lignin. Journal of Applied Polymer Science, 2013, 130, 713-728.	2.6	542
401	Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers. Macromolecules, 2013, 46, 9473-9493.	4.8	236

#	Article	IF	CITATIONS
402	Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers. European Polymer Journal, 2013, 49, 33-40.	5.4	29
403	Thermo-mechanical behavior of electrospun thermoplastic polyurethane nanofibers. European Polymer Journal, 2013, 49, 3851-3856.	5.4	24
404	Molecular scale imaging and observation of electron beam-induced changes of polyvinylidene fluoride molecules in electrospun nanofibers. Polymer, 2013, 54, 3745-3756.	3.8	10
405	Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer, 2013, 54, 363-371.	3.8	13
406	Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds. Journal of Chromatography A, 2013, 1299, 110-117.	3.7	31
407	Modified electric fields to control the direction of electrospinning jets. Polymer, 2013, 54, 1397-1404.	3.8	24
408	Random nanowires of nickel doped TiO ₂ with high surface area and electron mobility for high efficiency dye-sensitized solar cells. Dalton Transactions, 2013, 42, 1024-1032.	3.3	45
410	Highly Efficient Wettability Control via Three-Dimensional (3D) Suspension of Titania Nanoparticles in Polystyrene Nanofibers. ACS Applied Materials & Interfaces, 2013, 5, 1232-1239.	8.0	48
411	Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties. Journal of Materials Chemistry C, 2013, 1, 351-358.	5.5	15
412	Functional materials by electrospinning of polymers. Progress in Polymer Science, 2013, 38, 963-991.	24.7	784
413	Synthesis, characterization and electrospinning of new thermoplastic carboxymethyl cellulose (TCMC). Chemical Engineering Journal, 2013, 215-216, 709-720.	12.7	47
414	Electrospun Bio-Nanocomposite Scaffolds for Bone Tissue Engineering by Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Applied Materials & Interfaces, 2013, 5, 3847-3854.	8.0	292
415	LiCoPO4—3D carbon nanofiber composites as possible cathode materials for high voltage applications. Electrochimica Acta, 2013, 95, 38-42.	5.2	37
416	Direct piezoelectric responses of soft composite fiber mats. Applied Physics Letters, 2013, 102, .	3.3	29
417	Electrospinning with Condensed Tannins: Effects on Co-spinning with Zein. Journal of Wood Chemistry and Technology, 2013, 33, 197-207.	1.7	2
418	Carbon Nanomaterials for Implant Dentistry and Bone Tissue Engineering. , 2013, , 359-388.		0
419	Synthesis and electrochemical characterisation of electrospun lithium titanate ultrafine fibres. Journal of Materials Science, 2013, 48, 5827-5832.	3.7	16
420	Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 2013, 5, 7041.	5.6	97

#	Article	IF	CITATIONS
421	Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites. Nano Letters, 2013, 13, 3915-3922.	9.1	58
422	The influence of salt and solvent concentrations on electrospun polyvinylpyrrolidone fiber diameters and bead formation. Polymer, 2013, 54, 2166-2173.	3.8	46
423	Fabrication of Si-nozzles for parallel mechano-electrospinning direct writing. Journal Physics D: Applied Physics, 2013, 46, 255301.	2.8	19
424	Morphology and Photocatalytic Property of Hierarchical Polyimide/ZnO Fibers Prepared via a Direct Ion-exchange Process. ACS Applied Materials & Interfaces, 2013, 5, 5617-5622.	8.0	95
425	Antibacterial activity of photocatalytic electrospun titania nanofiber mats and solution-blown soy protein nanofiber mats decorated with silver nanoparticles. Catalysis Communications, 2013, 34, 35-40.	3.3	49
426	Preparation and Characterization of Kraft Lignin-Based Moisture-Responsive Films with Reversible Shape-Change Capability. Biomacromolecules, 2013, 14, 2354-2363.	5.4	65
427	Fabrication of nanofiber meltblown membranes and their filtration properties. Journal of Membrane Science, 2013, 427, 336-344.	8.2	221
428	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	3.3	67
429	Modification of Novel Conductive PEDOT:Sulfonated Polyimide Nano-Thin Films by Anionic Surfactant and Poly(vinyl alcohol) for Electronic Applications. Journal of Electronic Materials, 2013, 42, 3471-3480.	2.2	5
430	Genistein-Modified Poly(ethylene oxide)/Poly(<scp>d</scp> , <scp>l</scp> -lactic acid) Electrospun Mats with Improved Antioxidant and Anti-inflammatory Properties. Biomacromolecules, 2013, 14, 1423-1433.	5.4	20
431	Coaxial electrospinning using a concentric Teflon spinneret to prepare biphasic-release nanofibers of helicid. RSC Advances, 2013, 3, 17775.	3.6	36
432	Lignin-Derived Fused Electrospun Carbon Fibrous Mats as High Performance Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12275-12282.	8.0	282
433	Moisture Condensation Behavior of Hierarchically Carbon Nanotube-Grafted Carbon Nanofibers. ACS Applied Materials & Interfaces, 2013, 5, 11115-11122.	8.0	8
434	Study on Taylor Cone and Trajectory of Spinning Jet by Altering the Properties of Negative Electrode. Advanced Materials Research, 2013, 796, 317-322.	0.3	0
435	Postelectrospinning "Click―Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules, 2013, 46, 9515-9525.	4.8	49
436	The Importance of Crosslinking and Glass Transition Temperature for the Mechanical Strength of Nanofibers Obtained by Green Electrospinning. Macromolecular Materials and Engineering, 2013, 298, 439-446.	3.6	7
437	Fabrication of Nanofiber Microarchitectures Localized within Hydrogel Microparticles and Their Application to Protein Delivery and Cell Encapsulation. Advanced Functional Materials, 2013, 23, 591-597.	14.9	51
438	Synthesis and characterization of novel ultrathin polyimide fibers via sol–gel process and electrospinning. Journal of Applied Polymer Science, 2013, 128, 1274-1281.	2.6	12

ARTICLE IF CITATIONS # Development of zein-based heat-management structures for smart food packaging. Food 439 10.7 77 Hydrocolloids, 2013, 30, 182-191. Producing Polymer Fibers by Electrospinning in Supercritical Fluids. Journal of Chemistry, 2013, 2013, 1.9 1-6. Assembly of Oriented Ultrafine Polymer Fibers by Centrifugal Electrospinning. Journal of 441 2.7 24 Nanomaterials, 2013, 2013, 1-9. Metal adsorption behavior of 2,4-dinitrophenyl hydrazine modified polyacrylonitrile nanofibers. 442 EXPRESS Polymer Letters, 2013, 7, 832-841. Aligned Nanofiber Arrays and Twisted Nanofiber Ropes via Electrospinning with Two Frames 443 0.3 4 Collector. Advanced Materials Research, 0, 690-693, 523-526. A Mucoadhesive Electrospun Nanofibrous Matrix for Rapid Oramucosal Drug Delivery. Journal of 2.7 Nanomaterials, 2013, 2013, 1-19. 445 Hierarchically Structured Electrospun Fibers. Polymers, 2013, 5, 19-44. 4.5 117 Experimental Study on Falling Process of Melt Electrospinning Fiber. Key Engineering Materials, 2013, 446 0.4 561, 36-40. Activated Carbon Nanofibers as High Capacity Anodes for Lithium-Ion Batteries. ECS Journal of Solid 447 1.8 26 State Science and Technology, 2013, 2, M3074-M3077. Effect of bipolar configuration on morphology of electrospun webs. Journal of the Textile Institute, 448 1.9 2013, 104, 1071-1079 Effect of Different Factors on Falling Process of Melt Electrospinning Jet. Materials Science Forum, 449 4 0.3 2013, 745-746, 407-411. Liquid crystal functionalization of electrospun polymer fibers. Journal of Polymer Science, Part B: 2.1 49 Polymer Physics, 2013, 51, 855-867. Morphology and Core Continuity of Liquidâ€Crystalâ€Functionalized, Coaxially Electrospun Fiber Mats 451 3.6 18 Tuned via the Polymer Sheath Solution. Macromolecular Materials and Engineering, 2013, 298, 583-589. Piezoelectric performance of aligned PVDF nanofibers fabricated by electrospinning and mechanical spinning., 2013,,. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibers and Microparticles 453 2.7 32 for Thermal Insulation. Journal of Nanomaterials, 2013, 2013, 1-8. Controlled Polymerization and Polymeric Structures. Advances in Polymer Science, 2013, , . 454 The internal structure of suspensions in uniaxial elongation. Journal of Applied Physics, 2013, 113, . 455 2.56 Properties of electrospun poly(vinyl alcohol) hydrogel nanofibers crosslinked with 1,2,3,4â€butanetetracarboxylic acid. Journal of Applied Polymer Science, 2013, 129, 3140-3149.

#	Article	IF	CITATIONS
457	Protein-Based Textiles: Bio-Inspired and Bio-Derived Materials for Medical and Non-Medical Applications. Journal of Chemical and Biological Interfaces, 2013, 1, 25-34.	0.3	14
458	Dynamics of electrospinning of poly(caprolactone) via a multiâ€nozzle spinneret connected to a twin screw extruder and properties of electrospun fibers. Polymer Engineering and Science, 2013, 53, 1463-1474.	3.1	18
459	Development of magnetic fabrics with tunable hydrophobicity. Journal of Applied Polymer Science, 2013, 130, 2352-2358.	2.6	9
460	Caracterização morfológica de nanomembranas de poliamida-66 dopadas com grafeno obtidas por electrospinning. Polimeros, 2013, 23, 74-81.	0.7	2
461	Current State-of-the-Art of Engineered Collagen Based Bone Biomimetics. Current Tissue Engineering, 2013, 2, 51-77.	0.2	0
462	Photocatalytic Performance of TiO2 Nanofibers as a Function of Fiber Diameter Using TiCl2 as a Precursor. Journal of Materials, 2013, 2013, 1-8.	0.1	1
463	Polymer physics and rheology. , 0, , 25-62.		0
464	Additional methods and materials used to form micro- and nanofibers. , 0, , 262-296.		0
465	Electrospinning of micro- and nanofibers. , 0, , 179-261.		7
466	The Multifaceted Potential of Electro-spinning in Regenerative Medicine. Pharmaceutical Nanotechnology, 2014, 2, 23-34.	1.5	29
467	Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conference Series: Materials Science and Engineering, 2014, 59, 012003.	0.6	33
468	Fabrication and Characterization of Zinc Oxide-Based Electrospun Nanofibers for Mechanical Energy Harvesting. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, .	0.8	19
469	Structure evolution of electrospun nanofibers probed by in-situ synchrotron X-ray scattering. Journal of Polymer Research, 2014, 21, 1.	2.4	0
470	Effect of sonication treatment on electrospinnability of high-viscosity PAN solution and mechanical performance of microfiber mat. Iranian Polymer Journal (English Edition), 2014, 23, 947-953.	2.4	15
471	A comparative study of jet formation in nozzle―and nozzleâ€less centrifugal spinning systems. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1547-1559.	2.1	52
472	Scaffold Design and Fabrication. , 2014, , 311-346.		32
473	Rheological Features of Fiber Spinning from Polyacrylonitrile Solutions in an Electric Field. Structure and Properties. Fibre Chemistry, 2014, 46, 151-160.	0.2	16
474	Branching effect and morphology control in electrospun PbZr _{0.52} Ti _{0.48} O ₃ nanofibers. Journal of Materials Research, 2014, 29, 1721-1729.	2.6	21

#	Article	IF	CITATIONS
475	Multicomponent Nanofibers via Electrospinning of Polymers and Colloidal Dispersions for Environmental and Optical Applications. Nanostructure Science and Technology, 2014, , 403-431.	0.1	2
476	Fabrication and Formation Mechanism of Electrospun Spatially Defined Fibrous Patterning Structures on Conductive and Insulating Substrates. Key Engineering Materials, 0, 609-610, 842-848.	0.4	2
477	Regulating surface wettability of PEO/PLLA composite electrospun nanofibrous membrane for liquid phase filtration. , 2014, , .		0
479	Drug Loading and Release from Electrospun Biodegradable Nanofibers. Journal of Biomedical Nanotechnology, 2014, 10, 2173-2199.	1.1	79
480	Solvent-Free Aqueous Dispersions of Block Copolyesters for Electrospinning of Biodegradable Nonwoven Mats for Biomedical Applications. Macromolecular Materials and Engineering, 2014, 299, 1445-1454.	3.6	8
482	Approaching Sensitivity of Tens of Ions Using Atomically Precise Cluster–Nanofiber Composites. Analytical Chemistry, 2014, 86, 10996-11001.	6.5	38
483	Threeâ€dimensional trajectory of electrospun polymer solution jet using digital holographic microscopy. Polymer Engineering and Science, 2014, 54, 1765-1773.	3.1	4
484	Novel routes to epoxy functionalization of PHA-based electrospun scaffolds as ways to improve cell adhesion. Journal of Polymer Science Part A, 2014, 52, 816-824.	2.3	19
485	Indium phosphide nanofibers prepared by electrospinning method: Synthesis and characterization. Crystal Research and Technology, 2014, 49, 303-308.	1.3	8
486	Ultrathin Fibers from Electrospinning Experiments under Driven Fast-Oscillating Perturbations. Physical Review Applied, 2014, 2, .	3.8	10
487	Predicting the electrospinnability of polymer solutions with electromechanical simulation. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
488	Strain rate effects on symmetric diblock copolymer liquid bridges: Order-induced stability of polymer fibres. European Physical Journal E, 2014, 37, 100.	1.6	1
490	Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. Journal of Polymer Research, 2014, 21, 1.	2.4	25
491	Fabrication of nanofibers with ultrahigh production by a facile high pressure air-jet atomized electrospinning. Fibers and Polymers, 2014, 15, 2283-2289.	2.1	4
492	Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Research Letters, 2014, 9, 522.	5.7	58
493	Lignin-based Carbon Fibers. Materials and Energy, 2014, , 25-47.	2.5	2
494	Electrospun Polymer Fibers for Electronic Applications. Materials, 2014, 7, 906-947.	2.9	99
495	Electrical Properties of Electrospun Flexible and Stretchable PVDF/PANI Nanoropes. Applied Mechanics and Materials, 0, 687-691, 4218-4222.	0.2	Ο

		CITATION REPORT		
#	Article		IF	CITATIONS
496	Study of polycaprolactone wet electrospinning process. EXPRESS Polymer Letters, 202	14, 8, 554-564.	2.1	43
497	Short electrospun composite nanofibers: Effects of nanoparticle concentration and su on fiber length. Current Applied Physics, 2014, 14, 761-767.	rface charge	2.4	7
498	Electrospinning and electrospraying techniques: Potential food based applications. Tre Science and Technology, 2014, 38, 21-33.	nds in Food	15.1	482
499	Fabrication of nanofibers by a modified air-jet electrospinning method. Iranian Polymer (English Edition), 2014, 23, 13-25.	Journal	2.4	13
500	A mathematical model of external electrostatic field of a special collector for electrosp nanofibers. Journal of Electrostatics, 2014, 72, 161-165.	inning of	1.9	10
501	Relationship between surface concentration of amphiphilic quaternary ammonium bio electrospun polymer fibers and biocidal activity. Reactive and Functional Polymers, 20	cides in 14, 77, 39-46.	4.1	37
502	Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functiona nanofibers for potential diagnosis of halitosis and lung cancer. Sensors and Actuators 2014, 193, 574-581.	ılized WO3 B: Chemical,	7.8	210
503	Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, a Prospects. Macromolecular Bioscience, 2014, 14, 772-792.	and Future	4.1	455
504	Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified p composite nanofiber adsorbent prepared by electrospinning. Applied Surface Science,	oolyacrylonitrile 2014, 293, 336-344.	6.1	84
505	Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous sili European Polymer Journal, 2014, 54, 71-78.	ca particles.	5.4	15
506	A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN na composite fabrics. International Journal of Advanced Manufacturing Technology, 2014	nofibril -, 70, 1731-1738.	3.0	5
507	Antimicrobial activity of electrospun polyurethane nanofibers containing composite m Korean Journal of Chemical Engineering, 2014, 31, 855-860.	aterials.	2.7	9
508	Electrohydrodynamic direct-writing of three-dimensional multi-loop nanofibrous coils. Physics A: Materials Science and Processing, 2014, 116, 171-177.	Applied	2.3	21
509	Recent advances in flexible and stretchable electronic devices via electrospinning. Jour Materials Chemistry C, 2014, 2, 1209-1219.	nal of	5.5	144
511	Fabrication of high performance chitosan/polyvinyl alcohol nanofibrous mat with cont morphology and optimised diameter. Canadian Journal of Chemical Engineering, 2014	colled , 92, 1008-1015.	1.7	18
512	Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydrate Polyn 110-118.	ners, 2014, 107,	10.2	36
513	Predicting poly(vinyl pyrrolidone)'s solubility parameter and systematic investigation c parameters of electrospinning with response surface methodology. Journal of Applied Science, 2014, 131, .	of the Polymer	2.6	25
514	NaF-loaded core–shell PAN–PMMA nanofibers as reinforcements for Bis-GMA/TEG resins. Materials Science and Engineering C, 2014, 34, 262-269.	DMA restorative	7.3	23

#	Article	IF	CITATIONS
515	Electrically pressure sensitive poly(vinylidene fluoride)/polypyrrole electrospun mats. RSC Advances, 2014, 4, 15749-15758.	3.6	99
516	A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method. ACS Nano, 2014, 8, 4782-4789.	14.6	94
517	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	7.3	116
518	The storage stability of polyvinylbutyral solutions from an electrospinnability standpoint. Polymer Degradation and Stability, 2014, 105, 134-139.	5.8	22
519	Preparation and Characterization of Interconnected, Kraft Ligninâ€≺scp>Based Carbon Fibrous Materials by Electrospinning. Macromolecular Materials and Engineering, 2014, 299, 540-551.	3.6	122
520	Polymer extension flows and instabilities. Progress in Polymer Science, 2014, 39, 959-978.	24.7	67
521	Synthesis, Characterization, and Photocatalytic Properties of Ag/TiO ₂ Composite Nanofibers Prepared by Electrospinning. Journal of Dispersion Science and Technology, 2014, 35, 777-782.	2.4	11
522	Recent progress in antireflection and self-cleaning technology – From surface engineering to functional surfaces. Progress in Materials Science, 2014, 61, 94-143.	32.8	350
523	Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Computing and Applications, 2014, 25, 767-777.	5.6	60
524	Drop impact cooling enhancement on nano-textured surfaces. Part I: Theory and results of the ground (1g) experiments. International Journal of Heat and Mass Transfer, 2014, 70, 1095-1106.	4.8	42
525	Poly(É›-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. Journal of Macromolecular Science - Physics, 2014, 53, 781-799.	1.0	18
526	Melt electrospinning in a parallel electric field. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 946-952.	2.1	21
527	Wettability of Electrospun Films of Microphase-Separated Block Copolymers with 3,3,3-Trifluoropropyl Substituted Siloxane Segments. Journal of Physical Chemistry C, 2014, 118, 26671-26682.	3.1	31
528	Core/shell-like structured ultrafine branched nanofibers created by electrospinning. Polymer Journal, 2014, 46, 792-799.	2.7	23
529	Imaging, spectroscopic, mechanical and biocompatibility studies of electrospun Tecoflex® EG 80A nanofibers and composites thereof containing multiwalled carbon nanotubes. Applied Surface Science, 2014, 321, 205-213.	6.1	17
530	Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering. Biofabrication, 2014, 6, 035005.	7.1	19
531	Preparation and Characterization of Model Catalysts for the HCl Oxidation Reaction. RSC Catalysis Series, 2014, , 198-224.	0.1	0
532	Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and <i>In Vitro</i> evaluation. Journal of Applied Polymer Science, 2014, 131, .	2.6	54

#	Article	IF	CITATIONS
533	Surface morphology of electrospun PLA fibers: mechanisms of pore formation. RSC Advances, 2014, 4, 44082-44088.	3.6	62
534	Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale, 2014, 6, 8283-8291.	5.6	78
535	Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning. European Polymer Journal, 2014, 61, 72-82.	5.4	11
536	Fundamental Science of Carbon Materials. , 2014, , 17-217.		14
537	Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 2014, 6, 3289.	5.6	129
538	Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale, 2014, 6, 7792.	5.6	77
539	Piezoelectric fiber mats containing polar rod-shaped pigment particles. RSC Advances, 2014, 4, 44223-44228.	3.6	6
540	Synthesis and Structural Characterization of Group 4 Metal Carboxylates for Nanowire Production. Inorganic Chemistry, 2014, 53, 12449-12458.	4.0	10
541	MgO-embedded fibre-based substrate as an effective sorbent for toxic organophosphates. RSC Advances, 2014, 4, 15727-15735.	3.6	8
542	Reinforcement of Nafion into polyacrylonitrile (PAN) to fabricate them into nanofiber mats by electrospinning: characterization of enhanced mechanical and adsorption properties. RSC Advances, 2014, 4, 39110.	3.6	26
543	Influence of Die Geometry on Fiber Motion and Fiber Attenuation in the Melt-Blowing Process. Industrial & Engineering Chemistry Research, 2014, 53, 12866-12871.	3.7	17
544	Electrospinning Bioactive Supramolecular Polymers from Water. Biomacromolecules, 2014, 15, 1323-1327.	5.4	54
545	An electrorheological investigation of PVB solutions in connection with their electrospinning qualities. Polymer Testing, 2014, 39, 115-121.	4.8	17
546	High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sensors and Actuators A: Physical, 2014, 219, 123-127.	4.1	75
547	An Alternative Electrospinning Approach With Varying Electric Field for 2-D-Aligned Nanofibers. IEEE Nanotechnology Magazine, 2014, 13, 101-108.	2.0	27
548	Assessment of material blending distribution for electrospun nanofiber membrane by Fourier transform infrared (FT-IR) microspectroscopy and image cluster analysis. Infrared Physics and Technology, 2014, 66, 141-145.	2.9	4
549	Homoclinic complexity in the localised buckling of an extensible conducting rod in a uniform magnetic field. Physica D: Nonlinear Phenomena, 2014, 284, 42-52.	2.8	0
550	Selective removal of mercury ions using thymine-grafted electrospun polymer nanofibers. New Journal of Chemistry, 2014, 38, 1533-1539.	2.8	27

#	Article	IF	CITATIONS
551	Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Advances, 2014, 4, 12188.	3.6	24
552	Ultrathin core–sheath fibers for liposome stabilization. Colloids and Surfaces B: Biointerfaces, 2014, 122, 630-637.	5.0	10
553	Atmospheric negative corona discharge using Taylor cone as a liquid cathode. Japanese Journal of Applied Physics, 2014, 53, 026001.	1.5	18
554	Novel Organic Solvent Free Micro-/Nano-fibrillar, Nanoporous Scaffolds for Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 416-423.	3.4	8
555	High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. Journal of Power Sources, 2014, 270, 526-535.	7.8	113
556	Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. Journal of Materials Chemistry A, 2014, 2, 6578-6588.	10.3	175
557	Toward Nanoscale Three-Dimensional Printing: Nanowalls Built of Electrospun Nanofibers. Langmuir, 2014, 30, 1210-1214.	3.5	71
558	Electrospun composite poly(lactic acid)/polyaniline nanofibers fromÂlow concentrations in CHCl3: Making a biocompatible polyesterÂelectro-active. Polymer, 2014, 55, 5727-5733.	3.8	20
559	Study of electrospun polycarbosilane (PCS) nanofibrous web by needle-less technique. Fashion and Textiles, 2014, 1, .	2.4	3
560	Synthetic adhesive attachment discs inspired by spider's pyriform silk architecture. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 553-560.	2.1	17
561	Whipping of electrified liquid jets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13763-13767.	7.1	39
562	Recent Progress on the Fabrication of Ultrafine Polyamide-6 Based Nanofibers Via Electrospinning: A Topical Review. Nano-Micro Letters, 2014, 6, 89-107.	27.0	39
563	From macro to micro: structural biomimetic materials by electrospinning. RSC Advances, 2014, 4, 39704-39724.	3.6	55
564	Phase transition of syndiotactic polypropylene in electrospun nanofibers during progressive heating. Colloid and Polymer Science, 2014, 292, 1277-1287.	2.1	1
565	Preparation of a thermo- and pH-sensitive nanofibrous scaffold with embedded chitosan-based nanoparticles and its evaluation as a drug carrier. Cellulose, 2014, 21, 2497-2509.	4.9	8
566	Fabrication of micro-structures of poly [(R)-3-hydroxybutyric acid] by electro-spraying/-spinning: understanding the influence of polymer concentration and solvent type. Journal of Materials Science, 2014, 49, 4246-4260.	3.7	13
567	Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy and Environmental Science, 2014, 7, 3192-3222.	30.8	271
568	Needleless emulsion electrospinning for scalable fabrication of core–shell nanofibers. Journal of Applied Polymer Science, 2014, 131,	2.6	21

#	Article	IF	CITATIONS
569	Unique electrospun fiber properties obtained by blending elastin-like peptides and highly-ionized peptides. Polymer, 2014, 55, 2163-2169.	3.8	7
570	Novel elastic nanofibers of syndiotactic polypropylene obtained from electrospinning. European Polymer Journal, 2014, 54, 181-189.	5.4	10
571	Fiber spiral motion in a swirl die melt-blowing process. Fibers and Polymers, 2014, 15, 553-559.	2.1	14
572	Electrohydrodynamic Jet Process for Pore-Structure-Controlled 3D Fibrous Architecture As a Tissue Regenerative Material: Fabrication and Cellular Activities. Langmuir, 2014, 30, 8551-8557.	3.5	30
573	Theoretical selection of solvent for production of electrospun PMMA fibers with wrinkled surfaces. RSC Advances, 2014, 4, 27914.	3.6	15
574	Wetting of nanofiber yarns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 22-30.	4.7	16
575	Correlation of Elongational Fluid Properties to Fiber Diameter in Electrospinning of Softwood Kraft Lignin Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 2697-2705.	3.7	53
576	Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1434-1444.	3.4	77
577	Ultra-high proton conduction in electrospun sulfonated polyimide nanofibers. RSC Advances, 2014, 4, 20005-20009.	3.6	36
578	The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber. Chemical Engineering Journal, 2014, 244, 540-551.	12.7	47
579	Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones. Applied Surface Science, 2014, 307, 566-575.	6.1	14
580	Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Advanced Drug Delivery Reviews, 2014, 69-70, 254-269.	13.7	85
581	High performance supercapacitor electrodes from electrospun nickel oxide nanowires. Journal of Alloys and Compounds, 2014, 610, 143-150.	5.5	137
582	On the effect of non-carbon nanostructured supports on the stability of Pt nanoparticles during voltage cycling: A study of TiO2 nanofibres. Journal of Power Sources, 2014, 257, 147-155.	7.8	61
583	Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin. Carbon, 2014, 66, 705-712.	10.3	51
584	Rapid prototyping of a miniaturized Electrospinning setup for the production of polymer nanofibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
585	Numerical Study on the Solution Blowing Annular Jet and Its Correlation with Fiber Morphology. Industrial & Engineering Chemistry Research, 2014, 53, 2830-2838.	3.7	30
586	Chemical treatments for improving adhesion between electrospun nanofibers and fabrics. Journal of Applied Polymer Science, 2014, 131, .	2.6	15

#	Article	IF	CITATIONS
587	Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. European Polymer Journal, 2014, 55, 222-234.	5.4	51
588	Imparting Superhydrophobicity to Biodegradable Poly(lactide- <i>co</i> -glycolide) Electrospun Meshes. Biomacromolecules, 2014, 15, 2548-2554.	5.4	32
589	Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomaterialia, 2014, 10, 3733-3746.	8.3	95
590	Electrospinning of Nafion and polyvinyl alcohol into nanofiber membranes: A facile approach to fabricate functional adsorbent for heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 236-243.	4.7	36
591	Annealing effects on mechanical properties and shape memory behaviors of silicone-coated elastomeric polycaprolactone nanofiber filaments. Materials Letters, 2014, 131, 128-131.	2.6	12
592	Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 2014, 39, 862-890.	24.7	623
593	Preparation of Perfluorosulfonate Ionomeric Hollow Thin Fibers by Two-Fluid Electrospinning. Kobunshi Ronbunshu, 2014, 71, 319-324.	0.2	3
594	Electrospun Fibrous Scaffolds of Poly(glycerol-dodecanedioate) for Engineering Neural Tissues From Mouse Embryonic Stem Cells. Journal of Visualized Experiments, 2014, , .	0.3	5
595	Raft-polymerization Of Styreneâ \in "kinetics And Mechanism. , 2014, , 21-48.		0
596	Chapter 9: Cell Behavior on Electrospun Scaffolds: Factors at Play on Nanoscale. Frontiers in Nanobiomedical Research, 2014, , 393-434.	0.1	1
597	Reinforcement of Polymers by Flax Fibers: Role of Interfaces. , 2014, , 100-125.		0
598	Electrospinning Process: A Comprehensive Review and Update. , 2014, , 1-108.		0
599	Construction and Characterization of a Novel Vocal Fold Bioreactor. Journal of Visualized Experiments, 2014, , e51594.	0.3	8
600	Recent progress in electrospun nanofibers: Reinforcement effect and mechanical performance. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1171-1212.	2.1	66
601	Fundamentals of Electrospinning. , 2015, , 1-28.		2
602	Sub-micron sized saccharide fibres via electrospinning. Electrospinning, 2015, 1, 1-9.	1.6	3
603	An Electrostatic Spinning Technology with Improved Functionality for the Manufacture of Nanomaterials from Solutions. Nanomaterials and Nanotechnology, 2015, 5, 17.	3.0	16
605	Note: Non-invasive optical method for rapid determination of alignment degree of oriented nanofibrous layers. Review of Scientific Instruments, 2015, 86, 106111.	1.3	0

#	Article	IF	CITATIONS
606	Surface Tension Triggered Wetting and Point of Care Sensor Design. Advanced Healthcare Materials, 2015, 4, 1654-1657.	7.6	4
607	A comparative study on electrosprayed, layerâ€byâ€layer, and chemically grafted nanomembranes loaded with iron oxide nanoparticles. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
608	Superamphiphobic Coatings with High Transmittance: Structure, Fabrication, and Perspective. Advanced Materials Interfaces, 2015, 2, 1500196.	3.7	16
609	Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 2015, 132, .	2.6	33
610	Hydrothermal Growth of Agâ€Doped ZnO Nanoparticles on Electrospun Cellulose Nanofibrous Mats for Catechol Detection. Electroanalysis, 2015, 27, 1490-1497.	2.9	9
611	Rationalization of specific structure formation in electrospinning process: Study on nanoâ€fibrous <scp>PCL</scp> ―and <scp>PLGA</scp> â€based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 3927-3939.	4.0	11
612	The influence of solution parameters on the electrospinning intensity from foamed surface. Journal of Applied Polymer Science, 2015, 132, .	2.6	8
613	Effects of Chitosan Concentration on the Protein Release Behaviour of Electrospun Poly(<mml:math) 1<="" etqq1="" td="" tj=""><td>0.784314 2.7</td><td>t rgBT /Over 17</td></mml:math)>	0.784314 2.7	t rgBT /Over 17
614	OPTIMIZATION OF ELECROSPINNING OF PVDF SCAFFOLDS FABRICATION USING RESPONSE SURFACE METHOD. Jurnal Teknologi (Sciences and Engineering), 2015, 75, .	0.4	1
615	Cellulose Nanocrystals: Dispersion in Co-Solvent Systems and Effects on Electrospun Polyvinylpyrrolidone Fiber Mats. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	9
617	Effects of Electrospinning Solution Properties on Formation of Beads in Tio2 Fibers with PdO Particles. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	14
618	Nanofiber formation in the presence of an external magnetic field in electrospinning. Journal of Polymer Engineering, 2015, 35, 587-596.	1.4	8
620	Green Electrospinning and Crosslinking of Polyvinyl Alcohol/Citric Acid. Journal of Nano Research, 0, 32, 32-42.	0.8	27
621	Controlled Release of Dexamethasone in PCL/Silk Fibroin/Ascorbic Acid Nanoparticles for the Initiation of Adipose Derived Stem Cells into Osteogenesis. Journal of Drug Metabolism & Toxicology, 2015, 06, .	0.1	11
622	Polymer Nanofibers Reinforced with Cellulose Nanocrystals. , 2015, , 323-341.		1
623	Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Applied Materials & Interfaces, 2015, 7, 13538-13546.	8.0	173
624	A novel approach to improving the quality of chitosan blended yarns using static theory. Textile Reseach Journal, 2015, 85, 1022-1034.	2.2	34
625	Effect of electric field on gas-assisted melt differential electrospinning with hollow disc electrode. Journal of Polymer Engineering, 2015, 35, 61-70.	1.4	13

#	Article	IF	CITATIONS
626	Effect of ultrasonic vibration on the morphology of bubble-electrospun nanofibers. Fibers and Polymers, 2015, 16, 2432-2436.	2.1	6
627	Eu doped Si-oxynitride fluorescent nanofibrous inorganic membranes with high flexibility. RSC Advances, 2015, 5, 101287-101292.	3.6	3
628	Effective method for highâ€ŧhroughput manufacturing of ultrafine fibres via needleless centrifugal spinning. Micro and Nano Letters, 2015, 10, 81-84.	1.3	19
629	Fabrication of continuous electrospun filaments with potential for use as medical fibres. Biofabrication, 2015, 7, 025006.	7.1	55
630	Redox reaction mediated direct synthesis of hierarchical flower-like CuO spheres anchored on electrospun poly(vinylidene difluoride) fiber surfaces at low temperatures. RSC Advances, 2015, 5, 100228-100234.	3.6	7
631	Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors. Nanoscale Research Letters, 2015, 10, 475.	5.7	30
632	Nanomaterials for Functional Textiles and Fibers. Nanoscale Research Letters, 2015, 10, 501.	5.7	219
633	Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 187-202.	4.8	180
634	Performances of a portable electrospinning apparatus. Biotechnology Letters, 2015, 37, 1107-1116.	2.2	48
635	Electrospinning polyelectrolyte complexes: pH-responsive fibers. Soft Matter, 2015, 11, 1739-1747.	2.7	49
636	Detection of a Dynamic Cone-Shaped Meniscus on the Surface of Fluids in Electric Fields. Physical Review Letters, 2015, 114, 054501.	7.8	11
637	Effects of chemical composition and post-spinning stretching process on the morphological, structural, and thermo-chemical properties of electrospun polyacrylonitrile copolymer precursor nanofibers. Polymer, 2015, 61, 20-28.	3.8	27
638	Post-Electrospinning "Triclick―Functionalization of Degradable Polymer Nanofibers. ACS Macro Letters, 2015, 4, 207-213.	4.8	48
639	Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 2015, 5, 14345-14350.	3.6	182
640	Design and synthesis of polyimide – Gold nanofibers with tunable optical properties. European Polymer Journal, 2015, 64, 10-20.	5.4	22
641	Fabricating electrospun nanofibers with antimicrobial capability: A facile route to recycle biomass tar. Fuel, 2015, 150, 123-130.	6.4	21
642	Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydrate Polymers, 2015, 125, 206-213.	10.2	133
643	Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator. Nanoscale, 2015, 7, 5603-5606.	5.6	22
ARTICLE IF CITATIONS Bioinspired Design of an Immobilization Interface for Highly Stable, Recyclable Nanosized Catalysts. 8.0 42 644 ACS Applied Materials & amp; Interfaces, 2015, 7, 14415-14422. Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. Journal of 645 5.5 29 Materials Chemistry C, 2015, 3, 8979-8985. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid. 646 5.475 Biomacromolecules, 2015, 16, 2529-2536. Embedded capacitor applications of graphene oxide reinforced poly(3,4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) composites. Journal of Materials 647 Sciénce: Materials in Électronics, 2015, 26, 5896-5909. Surface hydro-properties of electrospun fiber mats. Fibers and Polymers, 2015, 16, 1578-1586. 648 2.1 18 High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. 649 5.6 Nanoscale, 2015, 7, 13410-13415. Electrospinning superhydrophobicâ€"superoleophilic fibrous PVDF membranes for high-efficiency 650 2.6 154 water–oil separation. Materials Letters, 2015, 160, 423-427. Electrospun carbon nitride supported on poly(vinyl) alcohol as an electrocatalyst for oxygen 3.6 14 reduction reactions. RSC Advances, 2015, 5, 69378-69387. 652 Nanoparticles: Blood Components Interactions., 2015, , 1352-1360. 1 Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as 8.0 58 Antimicrobial Materials. ACS Applied Materials & amp; Interfaces, 2015, 7, 15108-15116. Constitution of a visual detection system for lead(<scp>ii</scp>) on polydiacetylene–glycine 10.3 654 39 embedded nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 9722-9730. Natural Rubber., 2015, , 1377-1382. 656 Nanofibers and Electrospinning., 2015, 1323-1337. 8 Synthesis and Adsorption Application of In Situ Photo-Cross-Linked Electrospun Poly(Vinyl) Tj ETQq1 1 0.784314 rgBJ /Overlock 10 T Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal 658 3.0 51 disease. Journal of Drug Delivery Science and Technology, 2015, 30, 408-416. Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases, 2015, 10, 011006. Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of 660 2.9 224 Electrospun Polystyrene Fibers. Materials, 2015, 8, 2718-2734. Sub-ms dynamics of the instability onset of electrospinning. Soft Matter, 2015, 11, 3424-3431.

#	Article	IF	CITATIONS
662	Analytical – FE simulation of a multi-jet electrospinning process to predict material flow. Simulation Modelling Practice and Theory, 2015, 52, 135-148.	3.8	3
663	Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction. Materials Science and Engineering C, 2015, 51, 346-355.	7.3	51
664	Dynamic assembly of electrically conductive PEDOT:PSS nanofibers in electrospinning process studied by high speed video. Synthetic Metals, 2015, 203, 107-116.	3.9	32
665	A novel Bi-processing technique for metal matrix nanocomposites. International Journal of Advanced Manufacturing Technology, 2015, 78, 907-915.	3.0	5
666	Electrospinning-induced preferred dipole orientation in PVDF fibers. Journal of Materials Science, 2015, 50, 4342-4347.	3.7	86
667	Efficiency of Microfiltration Systems for the Removal of Bacterial and Viral Contaminants from Surface and Rainwater. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	36
668	Food Nanoscience and Nanotechnology. Food Engineering Series, 2015, , .	0.7	14
669	Electrospun Cellulose Composite Nanofibers. , 2015, , 191-227.		8
670	Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges. Molecular Physics, 2015, 113, 848-853.	1.7	12
671	Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy and Environmental Science, 2015, 8, 1660-1681.	30.8	362
672	Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning. Polymer, 2015, 66, 268-276.	3.8	37
673	Vertical rod method for electrospinning polymer fibers. Polymer, 2015, 65, 26-33.	3.8	35
674	Novel electrical conductive hybrid nanostructures based on <scp>PA</scp> 6/ <scp>MWCNT_{COOH}</scp> electrospun nanofibers and anchored <scp>MWCNT_{COOH}</scp> . Polymer Engineering and Science, 2015, 55, 1263-1272.	3.1	8
675	Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. Journal of Materials Chemistry B, 2015, 3, 2147-2162.	5.8	45
676	3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds. MRS Bulletin, 2015, 40, 119-126.	3.5	69
677	Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers. Drug Development and Industrial Pharmacy, 2015, 41, 1829-1834.	2.0	12
678	Controlled synthesis of amphiphilic graft copolymer for superhydrophobic electrospun fibres with effective surface fluorine enrichment: the role of electric field and solvent. RSC Advances, 2015, 5, 82789-82799.	3.6	14

#	Article	IF	CITATIONS
680	Effect of spatial restrictions at the nanometer scale on structuring in glassy and crystalline polymers. Polymer Science - Series A, 2015, 57, 515-551.	1.0	8
681	Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. European Polymer Journal, 2015, 71, 440-450.	5.4	53
682	Synthesis and characterization of electrospun superconducting (La,Sr)CuO ₄ nanowires and nanoribbons. Materials Research Express, 2015, 2, 095022.	1.6	18
683	Microscopy analysis and production rate data for needleless vertical rods electrospinning parameters. Data in Brief, 2015, 5, 41-44.	1.0	7
684	Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Langmuir, 2015, 31, 12993-13002.	3.5	72
685	On-surface synthesis of metal nanostructures on solid and hydrated polymer nanofibers coated with polydopamine. Journal of Industrial and Engineering Chemistry, 2015, 30, 220-224.	5.8	16
686	Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting. Langmuir, 2015, 31, 12455-12463.	3.5	25
687	Rapid response of thermo-sensitive hydrogels with porous structures. Applied Physics Letters, 2015, 106, .	3.3	32
688	Catalytic activity of trypsin entrapped in electrospun poly(ϵ-caprolactone) nanofibers. Enzyme and Microbial Technology, 2015, 79-80, 8-18.	3.2	37
689	Ribbon-like and spontaneously folded structures of tungsten oxide nanofibers fabricated via electrospinning. RSC Advances, 2015, 5, 69534-69542.	3.6	13
690	Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal. Fibers and Polymers, 2015, 16, 1925-1934.	2.1	123
691	Use of Triazolinedione Click Chemistry for Tuning the Mechanical Properties of Electrospun SBS-Fibers. Macromolecules, 2015, 48, 6474-6481.	4.8	36
692	Materials design towards sport textiles with low-friction and moisture-wicking dual functions. Materials and Design, 2015, 88, 82-87.	7.0	62
693	In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. ACS Applied Materials & Interfaces, 2015, 7, 19672-19683.	8.0	123
694	Conductive PANI fibers and determining factors for the electrospinning window. Polymer, 2015, 77, 143-151.	3.8	42
695	Nanofiber-Reinforced Elastomers. , 2015, , 1320-1323.		0
696	New Synthetic Carbon Allotropes. , 2015, , 1382-1392.		1
697	Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu2+ removal. Fibers and Polymers, 2015, 16, 2215-2222.	2.1	13

#	Article	IF	CITATIONS
698	Star-like breakup of polymeric drops in electrical field. Journal of Non-Newtonian Fluid Mechanics, 2015, 226, 46-59.	2.4	6
699	A comparison of centrifugally-spun and electrospun regenerated silk fibroin nanofiber structures and properties. RSC Advances, 2015, 5, 98553-98558.	3.6	26
700	Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics, 2015, 17, 2960-2986.	2.8	151
701	Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Textile Reseach Journal, 2015, 85, 356-368.	2.2	60
702	Multi-jet electrospinning via auxiliary electrode. Materials Letters, 2015, 141, 153-156.	2.6	43
703	Electrospun poly(acrylic acid)/lysine fibers and the interactive effects of moisture, heat, and crossâ€ink density on their behavior. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
704	Fabrication of various micro/nano structures by modified near-field electrospinning. AIP Advances, 2015, 5, .	1.3	38
705	Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs. Chemical Engineering Journal, 2015, 263, 62-70.	12.7	96
706	A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E116-E123.	2.7	77
707	Hierarchical SiO ₂ @Bi ₂ O ₃ core/shell electrospun fibers for infrared stealth camouflage. Journal of Materials Chemistry C, 2015, 3, 345-351.	5.5	54
708	Evaluation of thermally crosslinkable chitosan-based nanofibrous mats for the removal of metal ions. Carbohydrate Polymers, 2015, 116, 249-254.	10.2	33
709	Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydrate Polymers, 2015, 115, 485-493.	10.2	50
710	Transport properties of electrospun fibrous membranes with controlled anisotropy. Journal of Membrane Science, 2015, 473, 237-244.	8.2	37
711	Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Progress in Polymer Science, 2015, 43, 48-95.	24.7	152
712	The Effect of Processing Parameters on Formation of Lignosulfonate Fibers Produced using Electrospinning Technology. BioResources, 2016, 11, .	1.0	13
713	A colorimetric probe for the detection of Ni2+ in water based on Ag-Cu alloy nanoparticles hosted in electrospun nanofibres. Water S A, 2016, 42, 408.	0.4	1
714	Nanofibers in Cosmetics. , 0, , .		6
715	Nickel Based Electrospun Materials with Tuned Morphology and Composition. Nanomaterials, 2016, 6, 236.	4.1	16

#	Article	IF	CITATIONS
716	Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli. Materials, 2016, 9, 297.	2.9	19
717	Quasi-Optical Terahertz Microfluidic Devices for Chemical Sensing and Imaging. Micromachines, 2016, 7, 75.	2.9	8
718	Nanofibrous Composite Materials Integrating Nano/Micro Particles between the Fibres. Journal of Membrane Science & Technology, 2016, 06, .	0.5	0
719	Recent Trends in Electrospinning of Polymer Nanofibers and their Applications as Templates for Metal Oxide Nanofibers Preparation. , 0, , .		7
720	Electrospinning Functional Polyacrylonitrile Nanofibers with Polyaniline, Carbon Nanotubes, and Silver Nitrate as Additives. , 0, , .		5
721	Electrospinning in Tissue Engineering. , 0, , .		6
722	Design and implementation of an electrospinning system. , 2016, , 359-396.		2
723	Fabrication, Morphology Control, and Electroless Metal Deposition of Electrospun ABS Fibers. Macromolecular Materials and Engineering, 2016, 301, 895-901.	3.6	7
724	Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds. International Journal of Biological Macromolecules, 2016, 92, 321-328.	7.5	72
725	Poly(lactic acid)/poly(3â€hexylthiophene) composite nanofiber fabrication for electronic applications. Polymer International, 2016, 65, 503-507.	3.1	16
726	Directional selfâ€assembly by electrospun wet fibers. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
727	Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 2016, 146, 532-543.	5.0	419
728	Nanofiberâ€Based Hydrocolloid from Colloid Electrospinning Toward Next Generation Wound Dressing. Macromolecular Materials and Engineering, 2016, 301, 818-826.	3.6	34
729	Fabrication of Electrospun Polymer Fibers with Nonspherical Crossâ€Sections Using a Nanopressing Technique. Macromolecular Rapid Communications, 2016, 37, 239-245.	3.9	4
730	Electric Field Effects. , 2016, , 19-28.		3
731	Rapid mixing of viscous liquids by electrical coiling. Scientific Reports, 2016, 6, 19606.	3.3	10
732	Ecotoxicology of Carbon Nanotubes Toward Amphibian Larvae. , 2016, , 931-940.		0
733	Electric Double Layer Capacitor. , 2016, , 948-948.		Ο

ARTICLE IF CITATIONS # Thermoadhesive Material Based on Electrospun Phenolformaldehyde Resins for Creating Multilayered 734 0.2 1 Composites. Fibre Chemistry, 2016, 48, 230-234. Electrospinning optimization and characterization of Chitosan/Alginate/Polyvinyl alcohol 0.4 nanofibers. AIP Conference Proceedings, 2016, , . Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research and Therapy, 2016, 7, 736 5.5 99 188. Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 2016, 13, 663-676. A new strain sensor based on electrospinning and thin film technologies., 2016,,. 738 5 Removal of Th(IV), Ni(II)and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent 2.7 modified with aminopropyltriethoxysilane. Research on Chemical Intermediates, 2016, 42, 4055-4076. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: 740 Current stateâ€ofâ€theâ€art, emerging directions and future trends. Nanomedicine: Nanotechnology, 3.3 93 Biology, and Medicine, 2016, 12, 2181-2200. Fabrication and chemical crosslinking of electrospun trans-polyisoprene nanofiber nonwoven. 3.8 Chinese Journal of Polymer Science (English Edition), 2016, 34, 697-708. A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: By in situ 742 6.1 31 hydrothermal approach. Applied Surface Science, 2016, 385, 417-425. Morphology control of bi-component polymer nanofibers produced by gas jet process. Polymer, 2016, 743 3.8 24 93, 142-151. Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on 744 5.8 37 polymeric biomaterial substrates. Journal of Materials Chemistry B, 2016, 4, 4244-4257. Spiral formation at the microscale by $\hat{1}^{4}$ -pyro-electrospinning. Soft Matter, 2016, 12, 5542-5550. 745 28 Fabrication of TiO2/ZnO composite nanofibers with enhanced photocatalytic activity. Journal of 746 2.2 15 Materials Science: Materials in Electronics, 2016, 27, 7834-7838. Manufacture of electrospun all-aqueous poly(vinyl alcohol)/cellulose nanocrystal composite nanofibrous mats with enhanced properties through controlling fibers arrangement and microstructure. Polymer, 2016, 92, 25-35. 747 3.8 Macrostructure of Polyacrylonitrile Nanofibers Produced by Electrospinning. Fibre Chemistry, 2016, 748 0.2 5 47, 362-366. Solution-blown nanofiber mats from fish sarcoplasmic protein. Polymer, 2016, 93, 78-87. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell 751 3.8 30 capture applications. Chinese Journal of Polymer Science (English Edition), 2016, 34, 755-765. Study the molecular structure of poly(ε-caprolactone)/graphene oxide and graphene nanocomposite 3.1 nanofibers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 484-492.

#	Article	IF	CITATIONS
753	Lignin-Based Composite Carbon Nanofibers. , 2016, , 167-194.		12
754	Modeling electrospun nanofibers: An overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 901-915.	3.4	26
755	Nano-size Polymers. , 2016, , .		16
756	Dynamic mesh refinement for discrete models of jet electro-hydrodynamics. Journal of Computational Science, 2016, 17, 325-333.	2.9	12
757	Fabrication of aligned nanofibers by electric-field-controlled electrospinning: insulating-block method. Nanotechnology, 2016, 27, 435301.	2.6	18
758	Investigation of microporous composite scaffolds fabricated by embedding sacrificial polyethylene glycol microspheres in nanofibrous membrane. Composites Part A: Applied Science and Manufacturing, 2016, 91, 20-29.	7.6	16
759	Morphologies of electrospun fibers of lignin in poly(ethylene oxide)/N,Nâ€dimethylformamide. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
760	Directed Assembly of Soft Anisotropic Nanoparticles by Colloid Electrospinning. Macromolecular Rapid Communications, 2016, 37, 1598-1602.	3.9	1
761	Advances in electrospinning: The production and application of nanofibres and nanofibrous structures. Textile Progress, 2016, 48, 119-219.	2.0	30
762	Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature. Liquid Crystals, 2016, 43, 1986-2001.	2.2	73
763	Investigation of structural, electronic and optical properties of pure and Agâ€doped TiO ₂ nanofibers fabricated by electrospinning. Crystal Research and Technology, 2016, 51, 65-73.	1.3	8
764	Cellular activity of <scp>W</scp> harton's <scp>J</scp> ellyâ€derived mesenchymal stem cells on electrospun fibrous and solventâ€cast film scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 218-226.	4.0	25
765	Recent Applications of Coaxial and Emulsion Electrospinning Methods in the Field of Tissue Engineering. BioResearch Open Access, 2016, 5, 212-227.	2.6	84
766	Comparison of Electrospinning and Gas Jet Fiber Processes for Fabrication of Bi omponent Polymer Nanofibers from Single Solutions. Macromolecular Symposia, 2016, 369, 8-13.	0.7	8
767	Simultaneous specific heat and thermal conductivity measurement of individual nanostructures. Semiconductor Science and Technology, 2016, 31, 084005.	2.0	8
768	Electrospinning—Commercial Applications, Challenges and Opportunities. , 2016, , 309-342.		13
769	Fibre pulsing during melt electrospinning writing. BioNanoMaterials, 2016, 17, .	1.4	109
770	Electrospun homogeneous silk fibroin/poly (É>-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering. Journal of Biomaterials Applications, 2016, 31, 421-437.	2.4	19

#	Article	IF	CITATIONS
771	A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641.	5.0	40
772	Electrospun polyimide nanofibers and their applications. Progress in Polymer Science, 2016, 61, 67-103.	24.7	332
773	Electrospinning of biodegradable poly-3-hydroxybutyrate. Effect of the characteristics of the polymer solution. Russian Journal of Physical Chemistry B, 2016, 10, 830-838.	1.3	14
774	Online Measurement of Electrospinning Jet Velocity of Polyvinyl Alcohol. International Polymer Processing, 2016, 31, 285-291.	0.5	5
775	Effect of a Primary Aromatic Amine on Properties and Structure of HDPE. , 2016, , 25-38.		0
776	Critical Conversion of Crosslinked Epoxyamine Polymers. , 2016, , 39-54.		0
777	Deformation Electromagnetic Anisotropy of Various Physical States of Highly Cross-Linked Polymers. , 2016, , 55-64.		0
778	Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector. Chinese Physics B, 2016, 25, 078106.	1.4	2
779	Morphology control in polymer blend fibers—a high throughput computing approach. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 065012.	2.0	5
780	Solvent-induced crystallization of electrospun syndiotactic polystyrene nanofibers and its reversible desorption/sorption of volatile organic vapors. Journal of Polymer Research, 2016, 23, 1.	2.4	7
781	Low-Voltage Continuous Electrospinning Patterning. ACS Applied Materials & Interfaces, 2016, 8, 32120-32131.	8.0	75
782	Numerical modeling and experimental study of solution-blown nonwovens formed on a rotating drum. Polymer, 2016, 105, 255-263.	3.8	13
783	Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs, 2016, 202, 116-135.	2.3	43
784	Electrospun nanofibre bundles and yarns for tissue engineering applications: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 987-998.	1.8	36
785	Chapter 1 Multifunctional Coatings for Solar Energy Applications. , 2016, , 1-88.		0
786	Molecular and Structural Properties of Spider Silk. , 2016, , 445-487.		4
787	Synthesis and characterisation of ceramic core/shell nanofibres via single stage coâ€axial electrospinning. Micro and Nano Letters, 2016, 11, 707-711.	1.3	3
788	Multilayered Composite Filtering Material Based on a Nanofibrous Fluoropolymer Membrane. Fibre Chemistry, 2016, 48, 224-229.	0.2	1

#	Article	IF	CITATIONS
789	Numerical simulation of electrified jets: An application to electrospinning. AIP Conference Proceedings, 2016, , .	0.4	0
790	Rapid fabrication of poly(ε aprolactone) nanofibers using needleless alternating current electrospinning. Journal of Applied Polymer Science, 2016, 133, .	2.6	32
791	Effect of humidity and benign solvent composition on electrospinning of collagen nanofibrous sheets. Materials Letters, 2016, 181, 136-139.	2.6	26
792	Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications. RSC Advances, 2016, 6, 53882-53893.	3.6	68
793	Electrocatalytic activity of electrospun carbon nitride-polyacrylonitrile nanofiber towards oxygen reduction reactions. Journal of Electroanalytical Chemistry, 2016, 775, 198-204.	3.8	13
794	Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. Journal of Industrial and Engineering Chemistry, 2016, 39, 127-135.	5.8	75
795	Mathematical modeling of a whipping instability of an electrically charged liquid jet. Applied Mathematical Modelling, 2016, 40, 9565-9583.	4.2	21
796	Comparison of electrospun and conventional LiFePO4/C composite cathodes for Li-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 98-104.	3.5	7
797	Improvement in electrocatalytic activity of oxygen reduction reaction of electrospun carbon nitride/polyacrylonitrile nanofibers by addition of carbon black and Nafion® fillers. International Journal of Hydrogen Energy, 2016, 41, 11624-11633.	7.1	9
798	Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution. Journal of Electronic Materials, 2016, 45, 2291-2298.	2.2	8
799	Syndiotactic polypropylene nanofibers obtained from solution electrospinning process at ambient temperature. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
800	Tara tannin as active ingredient in electrospun fibrous delivery system. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
801	Electrospinning of poly(εâ€caprolactone) solutions containing graphene oxide: Effects of graphene oxide content and oxidation level. Polymer Composites, 2016, 37, 131-140.	4.6	30
802	Short communication: Electrospinning of casein/pullulan blends for food-grade applications. Journal of Dairy Science, 2016, 99, 1837-1845.	3.4	50
803	Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydrate Polymers, 2016, 140, 299-307.	10.2	75
804	Electrospinning ultrathin continuous cellulose acetate fibers for high-flux water filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 21-29.	4.7	47
805	Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science, 2016, 56, 116-166.	24.7	381
806	Fabrication of polyvinylidene fluoride tree-like nanofiber via one-step electrospinning. Materials and Design, 2016, 92, 95-101.	7.0	92

#	Article	IF	CITATIONS
807	Electrospun Fibers for Spinal Cord Injury Research and Regeneration. Journal of Neurotrauma, 2016, 33, 1405-1415.	3.4	78
808	Long-Term Sustained Ciprofloxacin Release from PMMA and Hydrophilic Polymer Blended Nanofibers. Molecular Pharmaceutics, 2016, 13, 295-305.	4.6	80
809	Facile synthesis of Ca0.68Si9Al3(ON)16:Eu2+ microbelts mat with the enhanced fluorescence and mechanical performance. Journal of Solid State Chemistry, 2016, 233, 374-380.	2.9	2
810	Solvent-free electrospinning of UV curable polymer microfibers. RSC Advances, 2016, 6, 29423-29427.	3.6	26
811	Water droplet spreading and imbibition on superhydrophilic poly(butylene terephthalate) melt-blown fiber mats. Chemical Engineering Science, 2016, 146, 104-114.	3.8	56
812	Electrospun nanofiber-reinforced polypropylene composites: Nucleating ability of nanofibers. Composites Science and Technology, 2016, 126, 1-8.	7.8	22
813	Modeling effects of fiber rigidity on thickness and porosity of virtual electrospun mats. Materials and Design, 2016, 96, 27-35.	7.0	19
814	Dual-emitting fluorescent chemosensor based on resonance energy transfer from poly(arylene ether) Tj ETQq1 1 C 337-344.).784314 ı 7.8	rgBT /Overlo 37
815	Electrospun thermo-responsive nanofibers of poly(hydroxyethylacrylate-co-coumaryl) Tj ETQq0 0 0 rgBT /Overlock 2016, 495, 1-10.	10 Tf 50 4 4.7	427 Td (acry 5
816	Single-step electrospinning of multi walled carbon nanotubes – Poly(3-octylthiophene) hybrid nano-fibers. Polymer, 2016, 86, 15-21.	3.8	28
817	Enhancing the Electrospinnability of Low Molecular Weight Polymers Using Small Effective Cross-Linkers. Macromolecules, 2016, 49, 891-899.	4.8	32
818	Weaving nanofibers by altering counter-electrode electrostatic signals. Journal of Aerosol Science, 2016, 95, 67-72.	3.8	7
819	Electrospinning of well-aligned fiber bundles using an End-point Control Assembly method. European Polymer Journal, 2016, 77, 54-64.	5.4	24
820	Honey/Chitosan Nanofiber Wound Dressing Enriched with <i>Allium sativum</i> and <i>Cleome droserifolia</i> : Enhanced Antimicrobial and Wound Healing Activity. ACS Applied Materials & Interfaces, 2016, 8, 6379-6390.	8.0	254
821	Developing composite nanofibre fabrics using electrospinning, ultrasonic sewing, and laser cutting technologies. International Journal of Fashion Design, Technology and Education, 2016, 9, 192-200.	1.6	6
822	Influence of calcination temperature on the surface area of submicron-sized Al2O3 electrospun fibers. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	9
823	Continuous bundles of aligned electrospun PAN nano-fiber using electrostatic spiral collector and converging coil. Polymer, 2016, 84, 52-58.	3.8	19
824	Pd–Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. Journal of Industrial and Engineering Chemistry, 2016, 33, 91-98.	5.8	62

#	Article	IF	CITATIONS
825	Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. European Polymer Journal, 2016, 74, 279-286.	5.4	82
826	Trains of Taylor bubbles over hot nano-textured mini-channel surface. International Journal of Heat and Mass Transfer, 2016, 93, 827-833.	4.8	14
827	Functional nanofibers for separation of rhodium(III) and iridium(IV) chlorido species. Minerals Engineering, 2016, 87, 32-44.	4.3	12
828	Crystallization and stability of electrospun ribbon- and cylinder-shaped tungsten oxide nanofibers. Ceramics International, 2016, 42, 388-395.	4.8	23
829	Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polymer Journal, 2016, 48, 51-58.	2.7	42
830	Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale, 2016, 8, 120-128.	5.6	45
831	Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet. Materials and Design, 2016, 89, 109-115.	7.0	57
832	Vanadium complexes supported on organic polymers as sustainable systems for catalytic oxidations. Inorganica Chimica Acta, 2017, 455, 415-428.	2.4	41
833	Preparation and characterization of microporous sodium poly(aspartic acid) nanofibrous hydrogel. Journal of Porous Materials, 2017, 24, 75-84.	2.6	13
834	Dynamics and Feedback Control of Electrospinning Processes. IEEE Transactions on Control Systems Technology, 2017, 25, 611-618.	5.2	11
835	Fibrous Proteins: Structures and Mechanisms. Sub-Cellular Biochemistry, 2017, , .	2.4	13
836	Design and Fabrication of Fibrous Nanomaterials Using Pull Spinning. Macromolecular Materials and Engineering, 2017, 302, 1600404.	3.6	41
837	Properties of Engineered and Fabricated Silks. Sub-Cellular Biochemistry, 2017, 82, 527-573.	2.4	10
838	Tuning Composition of Electrospun ZnO/CuO Nanofibers: Toward Controllable and Efficient Solar Photocatalytic Degradation of Organic Pollutants. Journal of Physical Chemistry C, 2017, 121, 3327-3338.	3.1	117
839	Effect of annealing on the mechanical properties and the degradation of electrospun polydioxanone filaments. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 67, 127-134.	3.1	32
840	Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. Journal of Materials Chemistry A, 2017, 5, 3091-3128.	10.3	406
841	Morphological traits essential to electrospun and grafted Nylonâ€6 nanofiber membranes for capturing submicron simulated exhaled breath aerosols. Journal of Applied Polymer Science, 2017, 134, .	2.6	11
842	Voltammetric cadmium(II) sensor based onÂa fluorine doped tin oxide electrode modified with polyamide 6/chitosan electrospun nanofibers and gold nanoparticles. Mikrochimica Acta, 2017, 184, 1077-1084.	5.0	25

		CITATION REPORT		
#	Article		IF	CITATIONS
843	Highly sticky surfaces made by electrospun polymer nanofibers. RSC Advances, 2017,	7, 5836-5842.	3.6	22
844	Alignment of electrospun fibers using the whipping instability. Materials Letters, 2017	, 193, 248-250.	2.6	22
845	Investigation on compound field of electrospinning and melt blowing for producing na International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 282-286	inofibers. 5.	2.8	5
846	Effect of collector design on the morphological properties of polycaprolactone electro Materials Letters, 2017, 193, 154-157.	spun fibers.	2.6	64
847	Improvement in characteristics of a Nafion membrane by proton conductive nanofiber applications. Journal of Membrane Science, 2017, 530, 65-72.	s for fuel cell	8.2	58
848	Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electroche electrodes. RSC Advances, 2017, 7, 12351-12358.	emical device	3.6	21
849	Oral bioavailability enhancement of flubendazole by developing nanofibrous solid dosa Drug Development and Industrial Pharmacy, 2017, 43, 1126-1133.	age forms.	2.0	22
850	Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics Condensed 29, 133003.	Matter, 2017,	1.8	140
851	Near-Field Electrospinning: Progress and Applications. Journal of Physical Chemistry C, 8663-8678.	2017, 121,	3.1	166
852	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 20	17,,281-311.		27
853	Photochemical Activation of Electrospun In ₂ O ₃ Nanofibers High-Performance Electronic Devices. ACS Applied Materials & Interfaces, 2017, 9	for 9, 10805-10812.	8.0	66
855	Pectins functionalized biomaterials; a new viable approach for biomedical applications International Journal of Biological Macromolecules, 2017, 101, 254-272.	: A review.	7.5	228
856	Nano-grained SnO2/Li4Ti5O12 composite hollow fibers via sol-gel/ electrospinning as a for Li- ion batteries. Materials Today Energy, 2017, 4, 14-24.	anode material	4.7	18
857	3D Composite Assemblies of Microparticles and Nanofibers for Tailored Wettability an Drug Delivery. Macromolecular Materials and Engineering, 2017, 302, 1600458.	d Controlled	3.6	18
858	Additive manufacturing of polymer melts for implantable medical devices and scaffold Biofabrication, 2017, 9, 012002.	s.	7.1	145
859	The role of cellulose nanocrystals incorporation route in waterborne polyurethane for j of electrospun nanocomposites mats. Carbohydrate Polymers, 2017, 166, 146-155.	preparation	10.2	24
860	One-Step Electrospinning To Produce Nonsolvent-Induced Macroporous Fibers with Ul Adsorption Capability. Macromolecules, 2017, 50, 2528-2534.	trahigh Oil	4.8	102
861	Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Par Fabrication, morphological characterization, and in situ performance. Journal of Power 2017, 352, 272-280.	t I. Sources,	7.8	35

#	Article	IF	CITATIONS
862	Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles. Materials and Design, 2017, 126, 73-84.	7.0	54
863	Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal. Fibers and Polymers, 2017, 18, 483-492.	2.1	20
864	Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. BioMedical Engineering OnLine, 2017, 16, 40.	2.7	67
865	Application of miscibility analysis and determination of Soluplus solubility map for development of carvedilol-loaded nanofibers. International Journal of Pharmaceutics, 2017, 533, 445-454.	5.2	17
866	Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 2017, 9, 18199-18206.	8.0	20
867	Effect of Electrode Distance on Jetting Behavior of Non-Particle Nano Ag Conductive Ink in Electrohydrodynamic Micro Jet Printing. Materials Science Forum, 2017, 893, 118-121.	0.3	1
868	Manufacturing functionalized mono-crystalline diamond containing electrospun fibers reinforced epoxy composites with improved mechanical characteristics. Diamond and Related Materials, 2017, 76, 90-96.	3.9	8
869	Effect of thermomechanical post-processing on chain orientation and crystallinity of electrospun P(VDF-TrFE) nanofibers. Polymer, 2017, 118, 223-235.	3.8	30
870	Nanoporous nanocomposite membranes via hybrid twin-screw extrusion—multijet electrospinning. Nanotechnology, 2017, 28, 025301.	2.6	5
872	Solvent-free electrospinning: opportunities and challenges. Polymer Chemistry, 2017, 8, 333-352.	3.9	65
873	Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Materials Science and Engineering C, 2017, 80, 371-378.	7.3	84
874	Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1001-1008.	3.8	18
875	Optimization and characterization of electrospun chitosan/poly(vinyl alcohol) nanofibers as a phenol adsorbent via response surface methodology. Polymers for Advanced Technologies, 2017, 28, 1872-1878.	3.2	11
876	Preparation and characterization of polymerâ€īi ₃ C ₂ T _{<i>x</i>} (MXene) composite nanofibers produced via electrospinning. Journal of Applied Polymer Science, 2017, 134, 45295.	2.6	114
877	Perceived color of undoped electrospun polyacrylonitrile nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1278-1285.	2.1	5
878	Comparison of electrospun and solvent cast polylactic acid (PLA)/poly(vinyl alcohol) (PVA) inserts as potential ocular drug delivery vehicles. Materials Science and Engineering C, 2017, 77, 895-903.	7.3	59
879	Estimating the Degree of Polymer Stretching during Electrospinning: An Experimental Imitation Method. Macromolecular Materials and Engineering, 2017, 302, 1600554.	3.6	11
880	Innovative Electrospinning Method of Depositing Functionally Graded and Aligned Multidirectional Polymer Nanofibers. Polymer-Plastics Technology and Engineering, 2017, 56, 1772-1779.	1.9	3

#	Article	IF	CITATIONS
881	Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. Journal of Membrane Science, 2017, 534, 1-8.	8.2	155
882	STED Analysis of Droplet Deformation during Emulsion Electrospinning. Macromolecular Chemistry and Physics, 2017, 218, 1600547.	2.2	11
883	Characterization and hydrogen sorption behaviors of FeNiCr-carbon composites derived from Fe, Ni and Cr-containing polyacrylonitrile fibers prepared by electrospinning method. International Journal of Hydrogen Energy, 2017, 42, 10014-10022.	7.1	3
884	Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Separation and Purification Technology, 2017, 182, 219-223.	7.9	75
885	Polymer Blends and Composites for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2017, , 195-235.	1.0	4
886	Highly porous fibers prepared by centrifugal spinning. Materials and Design, 2017, 114, 303-311.	7.0	67
887	Zero valent zinc nanoparticles promote neuroglial cell proliferation: A biodegradable and conductive filler candidate for nerve regeneration. Journal of Materials Science: Materials in Medicine, 2017, 28, 19.	3.6	21
888	Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells. Journal of Power Sources, 2017, 342, 125-134.	7.8	52
889	Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polymer Bulletin, 2017, 74, 3243-3268.	3.3	31
890	Prevention of mold invasion by eco-friendly lignin/polycaprolactone nanofiber membranes for amelioration of public hygiene. Cellulose, 2017, 24, 951-965.	4.9	11
891	Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. European Polymer Journal, 2017, 97, 147-157.	5.4	15
892	Role of ITO nanoparticles embedded into electrospun ITO nanofibers. Journal Physics D: Applied Physics, 2017, 50, 475305.	2.8	4
893	Energy Device Applications of Synthesized 1D Polymer Nanomaterials. Small, 2017, 13, 1701820.	10.0	38
894	Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 38187-38200.	8.0	97
895	Influence of Particle Size and Loading on Particle Accessibility in Electrospun Poly(ethylene oxide) and ZIF-8 Composite Fibers: Experiments and Theory. Langmuir, 2017, 33, 9066-9072.	3.5	21
896	Shaping helical electrospun filaments: a review. Soft Matter, 2017, 13, 6678-6688.	2.7	37
897	5.13 Electrospinning With Polymer Melts $\hat{a} \in $ State of the Art and Future Perspectives. , 2017, , 217-235.		10
898	SiO ₂ Fibers by Centrifugal Spinning with Excellent Textural Properties and Water Adsorption Performance. ACS Omega, 2017, 2, 5052-5059.	3.5	25

#	Article	IF	CITATIONS
899	Silicon nitride-based composites reinforced with zirconia nanofibres. Ceramics International, 2017, 43, 16811-16818.	4.8	19
900	Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. Journal of Materials Chemistry C, 2017, 5, 10288-10294.	5.5	74
901	Review of Literature: Melt Electrospinning. Engineering Materials, 2017, , 9-39.	0.6	2
902	Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dental Clinics of North America, 2017, 61, 689-711.	1.8	80
903	Drop Impact onto Dry Surfaces with Complex Morphology. , 0, , 155-252.		1
904	Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 224-230.	4.7	16
905	Atmospheric Pressure Plasma Jet Treatment of Poly-Îμ-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 2017, 9, 33080-33090.	8.0	24
906	Effect of pulse voltage amplitude on electrohydrodynamic cone jetting behavior of non particle nano Ag conductive ink. AlP Conference Proceedings, 2017, , .	0.4	2
907	Engineering Porous Waterâ€Responsive Poly(PEG/PCL/PDMS Urethane) Shape Memory Polymers. Macromolecular Materials and Engineering, 2017, 302, 1700174.	3.6	32
908	A high speed electrohydrodynamic (EHD) jet printing method for line printing. Journal of Micromechanics and Microengineering, 2017, 27, 095003.	2.6	32
910	Influence of secondary stretching on diameter and morphology of bicomponent polymer nanofibers produced by gas jet fiber process. Polymer, 2017, 123, 219-231.	3.8	9
911	Preparation of Polymeric Mats Through Electrospinning for Technological Uses. , 2017, , 83-128.		1
912	Applicability of biotechnologically produced insect silks. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2017, 72, 365-385.	1.4	14
913	Electrospun poly(ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose, 2017, 24, 3353-3365.	4.9	33
914	Nonwoven materials produced by melt electrospinning of commodity polymers. Russian Journal of General Chemistry, 2017, 87, 1364-1370.	0.8	4
915	Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts of Chemical Research, 2017, 50, 1976-1987.	15.6	826
916	Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomaterials Science, 2017, 5, 1962-1975.	5.4	70
917	A core–shell fiber-constructed pH-responsive nanofibrous hydrogel membrane for efficient oil/water separation. Journal of Materials Chemistry A, 2017, 5, 19398-19405.	10.3	91

#	Article	IF	CITATIONS
918	Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior. Materials Science and Engineering C, 2017, 81, 314-320.	7.3	15
919	Effects of orthogonal rotating electric fields on electrospinning process. Physics of Fluids, 2017, 29, .	4.0	20
920	Self-layering behavior of PET fiber deposition in melt-electrospinning process. Fibers and Polymers, 2017, 18, 1981-1987.	2.1	3
921	Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 2017, 7, 53481-53491.	3.6	38
922	Colloidal Bio-nanoparticles in Polymer Fibers: Current Trends and Future Prospects. , 2017, , 279-294.		1
923	Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies. Materials Research Express, 2017, 4, 125401.	1.6	9
924	Bioinspired Synthesis of Mesoporous Gold-silica Hybrid Microspheres as Recyclable Colloidal SERS Substrates. Scientific Reports, 2017, 7, 14728.	3.3	30
925	From Electrospun Polymer Core–Shell Fibers to Polymer Hemispheres and Spheres: Two Types of Transformation Processes and Tearing Films with Linearly Arranged Cavities. Macromolecules, 2017, 50, 9024-9031.	4.8	11
926	Melt electrospinning: Electrodynamics and spinnability. Polymer, 2017, 132, 206-215.	3.8	45
927	Drug delivery nanoplatform for orthopaedic-associated infections. Materials Today: Proceedings, 2017, 4, 6880-6888.	1.8	5
928	Sustainable Electrospinning of Nanoscale Fibres. Procedia Manufacturing, 2017, 12, 66-78.	1.9	17
929	Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2017, 50, 1734-1743.	15.6	343
930	Experimental investigations on characteristics of stable water electrospray in air without discharge. Physical Review E, 2017, 95, 063110.	2.1	22
931	The Antibacterial Polyamide 6-ZnO Hierarchical Nanofibers Fabricated by Atomic Layer Deposition and Hydrothermal Growth. Nanoscale Research Letters, 2017, 12, 421.	5.7	10
932	3D Nearâ€Field Electrospinning of Biomaterial Microfibers with Potential for Blended Microfiber ell‣oaded Gel Composite Structures. Advanced Healthcare Materials, 2017, 6, 1700456.	7.6	52
933	Discretized modeling for centrifugal spinning of viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 62-77.	2.4	29
934	Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 2017, 302, 1600387.	3.6	39
935	Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible, highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions. Applied Catalysis B: Environmental, 2017, 203, 549-562.	20.2	56

.

#	ARTICLE In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. Journal of the Mechanical Behavior of Biomedical	IF 3.1	CITATIONS
200	Materials, 2017, 65, 66-76.	0.1	12
937	Nanoscale upconversion for oxygen sensing. Materials Science and Engineering C, 2017, 70, 76-84.	7.3	26
938	pH-sensitive drug controlled release core/shell fibers fabricated by combination of electrospinning and photopolymerization. Journal of Industrial and Engineering Chemistry, 2017, 45, 334-337.	5.8	8
939	Poly(vinylidene fluoride)/poly(acrylonitrile) blend fibrous membranes by centrifugal spinning for highâ€performance lithium ion battery separators. Journal of Applied Polymer Science, 2017, 134, .	2.6	13
940	Mixture of PLA–PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 356-362.	4.0	11
941	Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 1-17.	4.3	211
942	Microscopic Characterization and Analysis of Electrospun TiO ₂ -PVP and TiO ₂ -PVDF Fibers. Solid State Phenomena, 0, 264, 33-37.	0.3	2
943	Controlled electrospinning to produce polymer nanofibers with specified diameters. , 2017, , .		4
944	Electrospun curcumin loaded poly(lactic acid) nanofiber mat on the flexible crosslinked PVA/PEG membrane film: Characterization and in vitro release kinetic study. Fibers and Polymers, 2017, 18, 2349-2360.	2.1	19
945	5.12 Electrospinning and Polymer Nanofibers: Process Fundamentals. , 2017, , 200-216.		5
946	Solution electrospinning of nanofibers. , 2017, , 73-108.		15
947	Ionic Liquid-Containing Composite Poly(ethylene oxide) Electrolyte Reinforced by Electrospun Silica Nanofiber. Journal of the Electrochemical Society, 2017, 164, A3357-A3361.	2.9	13
948	Wetting of inclined nano-textured surfaces by self-healing agents. Applied Physics Letters, 2017, 111, .	3.3	6
949	Poly(acrylonitrile-co-itaconic acid)–poly(3,4-ethylenedioxythiophene) and poly(3-methoxythiophene) nanoparticles and nanofibres. Bulletin of Materials Science, 2017, 40, 957-969.	1.7	8
950	Modeling and simulation of the electrospinning process. , 2017, , 277-301.		10
951	Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials. Bioengineering, 2017, 4, 1.	3.5	128
952	Nanodelivery of nutrients for improved bioavailability. , 2017, , 369-411.		3
953	Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications. Inventions, 2017, 2, 9.	2.5	58

#	Article	IF	CITATIONS
954	Novel Polyvinyl Alcohol/Starch Electrospun Fibers as a Strategy to Disperse Cellulose Nanocrystals into Poly(lactic acid). Polymers, 2017, 9, 117.	4.5	19
955	Melt-electrospinning of nanofibers. , 2017, , 11-40.		19
956	Electrospinning of patterned and 3D nanofibers. , 2017, , 399-447.		10
957	Tolnaftate-Loaded PolyacrylateElectrospun Nanofibers for an Impressive Regimen on Dermatophytosis. Fibers, 2017, 5, 41.	4.0	7
958	Lignin from Micro- to Nanosize: Production Methods. International Journal of Molecular Sciences, 2017, 18, 1244.	4.1	145
959	Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	34
960	Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers, 2017, 9, 687.	4.5	58
961	Preparation and Characterisation of Cyclodextrin Glucanotransferase Enzyme Immobilised in Electrospun Nanofibrous Membrane. Journal of Fiber Science and Technology, 2017, 73, 251-260.	0.4	8
962	4.29 Electrospun Fibers for Drug Delivery â~†. , 2017, , 527-548.		0
963	Neurotrophic support by traumatized muscle-derived multipotent progenitor cells: Role of endothelial cells and Vascular Endothelial Growth Factor-A. Stem Cell Research and Therapy, 2017, 8, 226.	5.5	12
964	Preparation of electrospun polyacrylonitrile fibers containing only the polarization charges. EPJ Applied Physics, 2017, 78, 20402.	0.7	1
965	Processing of ferroelectric polymer composites. , 2017, , 249-280.		3
966	Carbon Fiber Production from Electrospun Sulfur Free Softwood Lignin Precursors. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	1.0	11
967	A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 2018, 11, 1165-1188.	4.9	1,136
968	Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS Applied Materials & Interfaces, 2018, 10, 8426-8435.	8.0	42
969	Pullulan-alginate fibers produced using free surface electrospinning. International Journal of Biological Macromolecules, 2018, 112, 809-817.	7.5	60
970	Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials, 2018, 166, 96-108.	11.4	72
972	Largeâ€Scale Directâ€Writing of Aligned Nanofibers for Flexible Electronics. Small, 2018, 14, e1703521.	10.0	126

#	Article	IF	CITATIONS
973	Mechanism of Electrospinning for Poly(amic acid)/Polyacrylonitrile Fiber Fabrication. Journal of Macromolecular Science - Physics, 2018, 57, 222-230.	1.0	11
974	Sulfonated polyimide nanofiber framework: Evaluation of intrinsic proton conductivity and application to composite membranes for fuel cells. Solid State Ionics, 2018, 317, 244-255.	2.7	22
975	Photo-crosslinked PVA/PEI electrospun nanofiber membranes: Preparation and preliminary evaluation in virus clearance tests. Separation and Purification Technology, 2018, 197, 432-438.	7.9	19
976	Morphology enhancement of TiO ₂ /PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. Journal of Applied Polymer Science, 2018, 135, 46337.	2.6	20
977	Whipping of Electrified Visco-Capillary Jets in Airflows. SIAM Journal on Applied Mathematics, 2018, 78, 343-371.	1.8	5
978	Optimization of biodegradable PEG/PLGA nanofiber mats electrospinning process for antiâ€adhesion application. Journal of Applied Polymer Science, 2018, 135, 46282.	2.6	14
979	Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity. International Journal of Biological Macromolecules, 2018, 113, 1008-1014.	7.5	43
980	Electrospun nanofiber reinforced composites: a review. Polymer Chemistry, 2018, 9, 2685-2720.	3.9	431
981	Nanofiber films of chloroacetated natural rubber/poly(vinyl alcohol) by electrospinning technique: Silica effects on biodegradation. Journal of Applied Polymer Science, 2018, 135, 46432.	2.6	10
982	Intra-fibrillar citric acid crosslinking of marine collagen electrospun nanofibres. International Journal of Biological Macromolecules, 2018, 114, 874-881.	7.5	37
983	Mechanical Considerations for Electrospun Nanofibers in Tendon and Ligament Repair. Advanced Healthcare Materials, 2018, 7, e1701277.	7.6	57
984	Electrospinning of plant oilâ€based, nonâ€isocyanate polyurethanes for biomedical applications. Journal of Applied Polymer Science, 2018, 135, 46464.	2.6	19
985	Preparation of electrospun heterostructured hollow SnO2/CuO nanofibers and their enhanced visible light photocatalytic performance. Journal of Solid State Electrochemistry, 2018, 22, 2413-2423.	2.5	20
986	Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: Comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes. Electrochimica Acta, 2018, 266, 332-340.	5.2	48
987	Nanofibers of poly(vinylidene fluoride)/copper nanowire: Microstructural analysis and dielectric behavior. European Polymer Journal, 2018, 101, 46-55.	5.4	12
988	Nanofibers with diameter below one nanometer from electrospinning. RSC Advances, 2018, 8, 4794-4802.	3.6	117
989	Mechanical Properties and the Characterization of Polyacrylonitrile/Carbon Nanotube Composite Nanofiber. Arabian Journal for Science and Engineering, 2018, 43, 4697-4702.	3.0	30
990	THE USE OF COMPUTATIONAL FLUID DYNAMICS IN THE OPTIMIZATION OF AIR-IMPEDANCE ELECTROSPUN STRUCTURES FOR TISSUE ENGINEERING. Journal of Mechanics in Medicine and Biology, 2018, 18, 1850009.	0.7	0

#	ARTICLE	IF	CITATIONS
991	Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning. Physics of Fluids, 2018, 30, .	4.0	13
992	Effect of Electric Field on the Directly Electrospun Nanofiber Yarns: Simulation and Experimental Study. Fibers and Polymers, 2018, 19, 116-124.	2.1	21
993	Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Advances, 2018, 8, 6069-6074.	3.6	16
994	Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. , 2018, , .		18
995	Introduction of Electrohydrodynamic Printing. , 2018, , 1-29.		0
996	Mechano-electrospinning (MES). , 2018, , 31-65.		3
997	Spray in Polymer Processing. Energy, Environment, and Sustainability, 2018, , 31-54.	1.0	0
998	Functionalized Flexible Soft Polymer Optical Fibers for Laser Photomedicine. Advanced Optical Materials, 2018, 6, 1701118.	7.3	48
999	From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Progress in Polymer Science, 2018, 81, 80-113.	24.7	256
1000	High-strength lignin-based carbon fibers <i>via</i> a low-energy method. RSC Advances, 2018, 8, 1218-1224.	3.6	57
1001	The application of electrospinning used in meniscus tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 461-475.	3.5	17
1002	Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. Journal of Aerosol Science, 2018, 125, 2-31.	3.8	180
1003	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 247-263.	1.6	19
1004	Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, , .	1.6	2
1005	Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate Polymers, 2018, 193, 316-325.	10.2	51
1006	Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write. AIP Advances, 2018, 8, 015122.	1.3	8
1007	Cilostazol-Loaded Poly(ε-Caprolactone) Electrospun Drug Delivery System for Cardiovascular Applications. Pharmaceutical Research, 2018, 35, 32.	3.5	56
1008	Mechanical reinforcement of electrospun poly(vinyl alcohol) by αâ€FeOOH nanowires. Polymer Composites, 2018, 39, 2461-2468.	4.6	6

#	Article	IF	CITATIONS
1010	Multiâ€jet electrospinning with highâ€ŧhroughput using a coaxial grooved nozzle and two fluids. Polymer Engineering and Science, 2018, 58, 416-421.	3.1	8
1011	Surface and proton conductivity properties of electrospun poly(vinyl butyral)/polyaniline nanofibers. Advances in Polymer Technology, 2018, 37, 1774-1781.	1.7	20
1012	The technique of electrospinning for manufacturing core-shell nanofibers. Materials and Manufacturing Processes, 2018, 33, 202-219.	4.7	28
1013	Semiconducting nanofibers in photoelectrochemistry. Materials Science in Semiconductor Processing, 2018, 73, 13-21.	4.0	18
1014	Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds. Carbohydrate Polymers, 2018, 179, 164-172.	10.2	45
1015	Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian Journal of Pharmaceutical Sciences, 2018, 13, 239-247.	9.1	55
1016	Electrospinning of poly(lactic acid)/polycaprolactone blends: investigation of the governing parameters and biocompatibility. Journal of Polymer Engineering, 2018, 38, 409-417.	1.4	9
1017	Thermal shrinkage of electrospun PVP nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 248-254.	2.1	25
1018	Development of biomimetic thermoplastic polyurethane/fibroin smallâ€diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research - Part A, 2018, 106, 985-996.	4.0	47
1019	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	16.0	216
1020	Surface modification of PHBV nanofiber mats for rapid cell cultivation and harvesting. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1026-1041.	3.5	4
1021	Voltage effect on color, optical, and surface properties of fibers of PS/PES blends. International Journal of Polymer Analysis and Characterization, 2018, 23, 128-141.	1.9	0
1022	The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polymer International, 2018, 67, 178-188.	3.1	24
1023	Preparation and characterization of crosslinked electrospun poly(vinyl alcohol) nanofibrous membranes. Polymer, 2018, 134, 275-281.	3.8	17
1024	Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO 2 composite bers. Turkish Journal of Chemistry, 2018, 42, .	1.2	3
1025	An in Situ Crystal Growth of Metal Organic Frameworks-5 on Electrospun PVA Nanofibers. Autex Research Journal, 2018, 18, 308-313.	1.1	7
1026	Guide column array: a versatile approach to aligning and patterning ceramic nanofibers. Nanoscale, 2018, 10, 20681-20688.	5.6	3
1027	Semiconducting Electrospun Nanofibers for Energy Conversion. , 2018, , .		0

#	Article	IF	CITATIONS
1028	Fabrication and characterization of Zn doped CuO nanofiber using newly designed nanofiber generator for the photodegradation of methylene blue from textile effluent. Materials Science-Poland, 2018, 36, 520-529.	1.0	12
1029	Enhancing Multiple Jets in Electrospinning: The Role of Auxiliary Electrode. Nanomaterials, 2018, 8, 768.	4.1	5
1030	One- and two-dimensional electrodynamic steering of electrospun polymer nanofibers. Applied Physics Letters, 2018, 113, .	3.3	10
1031	Engineering electrospun multicomponent polyurethane scaffolding platform comprising grapeseed oil and honey/propolis for bone tissue regeneration. PLoS ONE, 2018, 13, e0205699.	2.5	36
1032	Evaluation of Single Hydrogel Nanofiber Mechanics Using Persistence Length Analysis. ACS Omega, 2018, 3, 18304-18310.	3.5	9
1033	Effects of electrospinning conditions on microstructural properties of polystyrene fibrous materials. Journal of Applied Physics, 2018, 124, .	2.5	28
1034	A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 2018, 5, .	11.3	565
1035	Electrohydrodynamic Printing for Advanced Micro/Nanomanufacturing: Current Progresses, Opportunities, and Challenges. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.7	60
1036	Nanostructure of electrospun collagen: Do electrospun collagen fibers form native structures?. Materialia, 2018, 3, 90-96.	2.7	67
1037	Synthesis and Thermoelectric Characterization of Lead Telluride Hollow Nanofibers. Frontiers in Chemistry, 2018, 6, 436.	3.6	7
1038	Rapid Microwave-Assisted Synthesis of Platinum Nanoparticles Immobilized in Electrospun Carbon Nanofibers for Electrochemical Catalysis. ACS Applied Nano Materials, 2018, 1, 6236-6246.	5.0	15
1039	Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Advances in Experimental Medicine and Biology, 2018, 1078, 49-78.	1.6	38
1040	One-Step Fabrication of Three-Dimensional Fibrous Collagen-Based Macrostructure with High Water Uptake Capability by Coaxial Electrospinning. Nanomaterials, 2018, 8, 803.	4.1	3
1041	Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Materials, 2018, 11, 1963.	2.9	101
1042	Electrospun Composite Membranes for Fouling and Biofouling Control. Industrial & Engineering Chemistry Research, 2018, 57, 14561-14570.	3.7	16
1043	Homogenization of Amorphous Solid Dispersions Prepared by Electrospinning in Low-Dose Tablet Formulation. Pharmaceutics, 2018, 10, 114.	4.5	14
1044	Structural Multifunctional Nanofibers and their Emerging Applications. , 2018, , 1-41.		6
1045	Storage stability of electrospun pure gelatin stabilized with EDC/Sulfoâ€NHS. Biopolymers, 2018, 109, e23232.	2.4	24

#	Article	IF	CITATIONS
1046	A double-switching voltage: Controlling multiple jets in electrospinning. Materials Letters, 2018, 233, 359-362.	2.6	10
1047	Electrospun Bead-on-String Fibers: Useless or Something of Value?. , 0, , .		11
1048	A reusable electrospun PVDF-PVP-MnO2 nanocomposite membrane for bisphenol A removal from drinking water. Journal of Environmental Chemical Engineering, 2018, 6, 5801-5811.	6.7	50
1049	Electrospunâ€electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. Journal of Applied Polymer Science, 2018, 135, 46756.	2.6	14
1050	Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 2018, 296, 1759-1766.	2.1	8
1051	Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer, 2018, 153, 643-652.	3.8	33
1052	Electrostatic focusing of electrospun Polymer(PEO) nanofibers. Journal of Electrostatics, 2018, 94, 21-29.	1.9	13
1053	Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. Journal of Aerosol Science, 2018, 125, 32-56.	3.8	182
1054	Electrospinning Process and Structure Relationship of Biobased Poly(butylene succinate) for Nanoporous Fibers. ACS Omega, 2018, 3, 5547-5557.	3.5	29
1055	Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics. ACS Applied Materials & Interfaces, 2018, 10, 20703-20711.	8.0	40
1056	Numerical and experimental investigation on static electric charge model at stable cone-jet region. Physics of Fluids, 2018, 30, .	4.0	7
1057	Solvent-free two-component electrospinning of ultrafine polymer fibers. New Journal of Chemistry, 2018, 42, 11739-11745.	2.8	6
1058	Lignin/Polyacrylonitrile Carbon Fibers: The Effect of Fractionation and Purification on Properties of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 8554-8562.	6.7	58
1059	Bioinspired Superwettability Electrospun Micro/Nanofibers and Their Applications. Advanced Functional Materials, 2018, 28, 1801114.	14.9	204
1060	Using an industrial braiding machine to upscale the production and modulate the design of electrospun medical yarns. Polymer Testing, 2018, 69, 188-198.	4.8	12
1061	Plasticization and conglutination improve the tensile strength of electrospun starch fiber mats. Food Hydrocolloids, 2018, 83, 393-396.	10.7	6
1062	Development of Superhydrophobic Microfibers for Bandage Coatings. Fibers and Polymers, 2018, 19, 1207-1218.	2.1	5
1063	Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nanofibers. Journal of Manufacturing Processes, 2018, 34, 776-784.	5.9	9

#	Article	IF	CITATIONS
1064	Chemomechanical and morphological properties with proliferation of keratinocyte cells of electrospun poyhydroxyalkanoate fibers incorporated with essential oil. Polymers for Advanced Technologies, 2018, 29, 2364-2372.	3.2	5
1065	Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes. , 2018, , 181-209.		1
1066	Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Applied Surface Science, 2018, 456, 568-576.	6.1	110
1067	A polarization method for quickly distinguishing the morphology of electro-spun ultrafine fibers. Chinese Chemical Letters, 2018, 29, 1317-1320.	9.0	7
1068	Harvesting electrical energy from torsional thermal actuation driven by natural convection. Scientific Reports, 2018, 8, 8712.	3.3	11
1069	Interfused nanofibres network in scalable manufacturing of polymeric fibres via multiâ€nozzle electrospinning. Micro and Nano Letters, 2018, 13, 536-540.	1.3	3
1070	Polymer blend nanofibers containing polycaprolactone as biocompatible and biodegradable binding agent to fabricate electrospun three-dimensional scaffolds/structures. Polymer, 2018, 151, 299-306.	3.8	40
1071	Electrospun Antimicrobial Wound Dressings: Novel Strategies to Fight Against Wound Infections. Recent Clinical Techniques, Results, and Research in Wounds, 2018, , 213-253.	0.1	4
1072	Electrofluidodynamic technologies for biomaterials and medical devices. , 2018, , 37-69.		14
1073	Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants. Beilstein Journal of Nanotechnology, 2018, 9, 1986-1994.	2.8	17
1074	Stable increased formulation atomization using a multi-tip nozzle device. Drug Delivery and Translational Research, 2018, 8, 1815-1827.	5.8	7
1075	Annealing and saponification of electrospun cellulose-acetate nanofibers used as reinforcement materials for composites. Composites Part A: Applied Science and Manufacturing, 2018, 113, 158-165.	7.6	24
1076	Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polymers for Advanced Technologies, 2018, 29, 2583-2592.	3.2	32
1077	Introduction and Literature Review. Springer Theses, 2018, , 1-45.	0.1	0
1078	"Mechanotropic―mechanism of electrospinning. AlP Conference Proceedings, 2018, , .	0.4	4
1079	Design of Pt-Supported 1D and 3D Multilayer Graphene-Based Structural Composite Electrodes with Controlled Morphology by Core–Shell Electrospinning/Electrospraying. ACS Omega, 2018, 3, 6400-6410.	3.5	11
1080	Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 171, 31-39.	5.0	62
1081	Electrospun Composites of Polycaprolactone and Porous Silicon Nanoparticles for the Tunable Delivery of Small Therapeutic Molecules. Nanomaterials, 2018, 8, 205.	4.1	13

	C	CITATION REPORT		
#	Article		IF	CITATIONS
1082	Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials, 2018, 8, 259.		4.1	171
1083	Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors, 2018, 18,	330.	3.8	158
1084	A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing and Their Application Fibers, 2018, 6, 45.	s.	4.0	112
1085	High temperature thermochromic polydiacetylene supported on polyacrylonitrile nanofibers. Polymer, 2018, 149, 106-116.		3.8	36
1086	Nano-architectural advancement of CeO2-driven catalysis via electrospinning. Surface and Coatings Technology, 2018, 350, 245-280.		4.8	12
1087	Production and characterization of hydrophilic and hydrophobic sunflower protein isolate nanofibers by electrospinning method. International Journal of Biological Macromolecules, 2018, 119 1-7.	Э,	7.5	22
1088	Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbor Progress in Polymer Science, 2018, 86, 40-84.	IS.	24.7	197
1089	Polymer solution electrospraying: A tool for engineering particles and films with controlled morphology. Journal of Aerosol Science, 2018, 125, 93-118.		3.8	49
1090	Incorporation of simvastatin in PLLA membranes for guided bone regeneration: effect of thermal treatment on simvastatin release. RSC Advances, 2018, 8, 28546-28554.		3.6	11
1091	Fabrication and Thermal Insulation Properties of Bambooâ€Shaped Polymer Fibers by Selective Solve Vapor Annealing. Macromolecular Rapid Communications, 2018, 39, e1800424.	nt	3.9	7
1092	Direct Observation and Quantitative Analysis of the Fiber Formation Process during Electrospinning by a High-Speed Camera. Industrial & Engineering Chemistry Research, 2018, 57, 12122-12126		3.7	18
1093	Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Advances, 2018, 8, 28013-28023.		3.6	41
1094	A Quantification of Jet Speed and Nanofiber Deposition Rate in Near-Field Electrospinning Through Novel Image Processing. Journal of Micro and Nano-Manufacturing, 2018, 6, .		0.7	7
1095	Application of hydroxypropyl methylcellulose as a protective agent against magnesium stearate induced crystallization of amorphous itraconazole. European Journal of Pharmaceutical Sciences, 2018, 121, 301-308.		4.0	11
1096	Surface modification to control the water wettability of electrospun mats. International Materials Reviews, 2019, 64, 249-287.		19.3	71
1097	Model development and validation of electrospun jet formation. Textile Reseach Journal, 2019, 89, 2177-2186.		2.2	12
1098	Highly aligned magnetic composite nanofibers fabricated by magnetic-field-assisted electrospinning PAN/FeCo solution. High Performance Polymers, 2019, 31, 230-237.		1.8	10
1099	Hydrophilically modified poly(vinylidene fluoride) nanofibers incorporating cellulose acetate fabricated by colloidal electrospinning for future tissueâ€regeneration applications. Polymer Composites, 2019, 40, 1619-1630.		4.6	5

#	Article	IF	CITATIONS
1100	A review on nanofiber fabrication with the effect of high-speed centrifugal force field. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501986751.	1.0	21
1101	Electrospinning of poly(ethylene oxide) solutions - Quantitative relations between mean nanofibre diameter, concentration, molecular weight, and viscosity. AIP Conference Proceedings, 2019, , .	0.4	1
1102	Moiré-fringeless Transparent Conductive Films with a Random Serpentine Network of Medium-Field Electrospun, Chemically Annealed Silver Microfibres. Scientific Reports, 2019, 9, 11226.	3.3	7
1103	Electrospun flexible nanofibrous membranes for oil/water separation. Journal of Materials Chemistry A, 2019, 7, 20075-20102.	10.3	177
1104	Microphase separation in oriented polymeric chains at the surface of nanomaterials during nanofiber formation. Soft Matter, 2019, 15, 6811-6818.	2.7	7
1105	Catalytic electrospun nano-composite membranes for virus capture and remediation. Separation and Purification Technology, 2019, 229, 115806.	7.9	36
1106	Empirical model to simulate morphology of electrospun polycaprolactone mats. Journal of Applied Polymer Science, 2019, 136, 48242.	2.6	19
1107	Electrospinning Polymer Nanofibers With Controlled Diameters. IEEE Transactions on Industry Applications, 2019, 55, 5239-5243.	4.9	15
1108	Designing Solutions for Electrospinning of Poly(ionic liquid)s. Macromolecules, 2019, 52, 5223-5230.	4.8	24
1109	Improved Fiber Uniformity and Jet Number in Multi-spinneret Electrospinning via Auxiliary Electrode. Fibers and Polymers, 2019, 20, 1172-1179.	2.1	6
1110	Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters. Membranes, 2019, 9, 87.	3.0	16
1111	Facile Control of Liquid-Rope Coiling With Tunable Electric Field Configuration. Physical Review Applied, 2019, 12, .	3.8	4
1112	A composite polyaniline/graphene–coated polyamide6 nanofiber mat for electrochemical applications. Polymers for Advanced Technologies, 2019, 30, 2819-2826.	3.2	5
1113	Antimicrobial Peptideâ€Based Electrospun Fibers for Wound Healing Applications. Macromolecular Bioscience, 2019, 19, e1800488.	4.1	61
1114	Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. Fibers, 2019, 7, 66.	4.0	63
1115	SOLUTION PARAMETER EFFECT ON POLYSULFONE FIBERS VIA ELECTROSPINNING: FABRICATION, CHARACTERIZATION AND WATER FLUX PROPERTY. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.4	0
1116	Electrospun Nanofibers Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalysts, 2019, 9, 565.	3.5	40
1117	Electrospinning of Tough and Elastic Liquid Crystalline Polymer–Polyurethane Composite Fibers: Mechanical Properties and Fiber Alignment. Macromolecular Materials and Engineering, 2019, 304, 1900186.	3.6	13

#	Article	IF	CITATIONS
1118	Core-shell nanofibers as drug delivery systems. Acta Pharmaceutica, 2019, 69, 131-153.	2.0	50
1119	A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 2019, 175, 107074.	12.0	132
1120	Encoded Microneedles: Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomarkers (Adv. Mater. 37/2019). Advanced Materials, 2019, 31, 1970267.	21.0	7
1121	Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers, 2019, 11, 1669.	4.5	38
1122	Shear Stress Analysis of Asphalt Overlay on Old Concrete Pavement Considering Horizontal Load. , 2019, , .		0
1123	Micro- and nanostructured piezoelectric polymers. Frontiers of Nanoscience, 2019, , 35-65.	0.6	3
1124	Tailoring structural, morphological and mechanical characteristics of mono-crystalline diamond-reinforced polyacrylonitrile based electrospun fibers. Iranian Polymer Journal (English) Tj ETQq0 0 0 rgBT	0.4erlock	≀110 Tf 50 49
1125	Biomedical Applications of Nanoparticles. , 2019, , 113-132.		21
1126	Electrospray cone-jet mode for weakly viscoelastic liquids. Physical Review E, 2019, 100, 043114.	2.1	4
1127	Biodegradable Electrosprayed NPs as Drug Carriers for Optimal Treatment of Orthopaedic Infections. Materials Today: Proceedings, 2019, 19, 110-116.	1.8	1
1128	Stable-jet length controlling electrospun fiber radius: Model and experiment. Polymer, 2019, 180, 121762.	3.8	10
1129	Highâ€Resolution 3D Printing of Freeform, Transparent Displays in Ambient Air. Advanced Science, 2019, 6, 1901603.	11.2	47
1130	Biomimetic Biomass-Bsed Carbon Fibers: Effect of Covalent-Bnd Connection on Performance of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 16084-16093.	6.7	36
1131	Effect of sterilization methods on electrospun cellulose acetate butyrate nanofibers for SH-SY5Y cultivation. Reactive and Functional Polymers, 2019, 143, 104339.	4.1	6
1132	The key role of straight fluid jet in predicting the drug dissolution from electrospun nanofibers. International Journal of Pharmaceutics, 2019, 569, 118634.	5.2	57
1133	Ultrasensitive Detection of Volatile Organic Compounds by a Freestanding Aligned Ag/CdSe–CdS/PMMA Texture with Double-Side UV–Ozone Treatment. ACS Applied Materials & Interfaces, 2019, 11, 34454-34462.	8.0	7
1134	Fabrication of spiral fibre on PET substrate by electrospinning direct-writing for flexible electronics. Journal of Physics: Conference Series, 2019, 1213, 042026.	0.4	2
1135	Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. International Journal of Biological Macromolecules, 2019, 141, 747-755.	7.5	41

ATION

#	Article	IF	CITATIONS
1136	Experimental study of electrostatic spray modes of high-flowrate water with horizontal nozzle. Journal of Mechanical Science and Technology, 2019, 33, 4563-4572.	1.5	7
1137	Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control. ACS Applied Bio Materials, 2019, 2, 4258-4270.	4.6	22
1138	Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent. Polymers, 2019, 11, 1517.	4.5	12
1139	Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning. Fibers and Polymers, 2019, 20, 1857-1868.	2.1	11
1140	Electrospinning of highly aligned fibers for drug delivery applications. Journal of Materials Chemistry B, 2019, 7, 224-232.	5.8	55
1141	Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. Journal of Biomedical Materials Research - Part A, 2019, 107, 1031-1041.	4.0	20
1142	Characterization and in vitro and in vivo assessment of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 507 Journal of Polymer Research, 2019, 26, 1.	Td (adipat 2.4	e-co-terephtl 27
1143	Coaxial Electrospinning. , 2019, , 125-200.		7
1144	Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Research on Chemical Intermediates, 2019, 45, 2197-2254.	2.7	131
1145	Introduction and Historical Overview. , 2019, , 3-20.		4
1146	Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing, 2019, 75, 76-84.	4.8	84
1147	Preparation and characterization of ß-lactoglobulin/poly(ethylene oxide) magnetic nanofibers for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 63-72.	4.7	19
1148	Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration. Separation and Purification Technology, 2019, 224, 247-254.	7.9	62
1149	The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. Nanomaterials, 2019, 9, 843.	4.1	92
1150	Enhanced flux in direct contact membrane distillation using superhydrophobic PVDF nanofibre membranes embedded with organically modified SiO ₂ nanoparticles. Journal of Chemical Technology and Biotechnology, 2019, 94, 2826-2837.	3.2	44
1151	Morphology, Modification and Characterisation of Electrospun Polymer Nanofiber Adsorbent Material Used in Metal Ion Removal. Journal of Polymers and the Environment, 2019, 27, 1843-1860.	5.0	44
1152	Effects and efficacy of different sterilization and disinfection methods on electrospun drug delivery systems. International Journal of Pharmaceutics, 2019, 567, 118450.	5.2	13
1153	Fabrication and properties of elastic fibers from electrospinning natural rubber. Journal of Applied Polymer Science, 2019, 136, 48153.	2.6	5

#	Article	IF	CITATIONS
1154	Recent Advances in Nanostructured Polymer Composites for Biomedical Applications. , 2019, , 21-52.		4
1155	Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. Polymer, 2019, 178, 121610.	3.8	62
1156	Surface Micro―and Nanoengineering: Applications of Layerâ€by‣ayer Technology as a Versatile Tool to Control Cellular Behavior. Small, 2019, 15, e1901228.	10.0	42
1157	Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone. Frontiers in Chemistry, 2019, 7, 344.	3.6	4
1158	Effect of molecular weight on humidity-sensitive characteristics of electrospun polyethylene oxide. Sensors and Actuators A: Physical, 2019, 294, 194-202.	4.1	9
1159	Strong, Long, Electrically Conductive and Insulated Coaxial Nanocables. ACS Applied Polymer Materials, 2019, 1, 1717-1723.	4.4	4
1160	Microwave absorption and photocatalytic properties of magnetic nickel nanoparticles/recycled PET nanofibers web. Journal of the Textile Institute, 2019, 110, 1606-1614.	1.9	11
1161	β-modification of isotactic polypropylene induced by electrospun isotactic polystyrene fibers. Polymer, 2019, 176, 236-243.	3.8	3
1162	Tuning Porosity and Functionality of Electrospun Rubber Nanofiber Mats by Photo-Crosslinking. ACS Applied Materials & Interfaces, 2019, 11, 24544-24551.	8.0	26
1163	Electrospun Ribbonâ€Like Microfiber Films of a Novel Guanidineâ€Based ABA Triblock Copolymer: Fabrication, Antibacterial Activity, and Cytotoxicity. Macromolecular Chemistry and Physics, 2019, 220, 1900138.	2.2	6
1164	Potential Protective Effect of Nitric Oxide-Releasing Nanofibers in Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury. Journal of Nanoscience and Nanotechnology, 2019, 19, 6539-6545.	0.9	11
1165	Superhydrophobic PVDF nanofibre membranes coated with an organic fouling resistant hydrophilic active layer for direct-contact membrane distillation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 363-372.	4.7	44
1166	Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. International Journal of Molecular Sciences, 2019, 20, 2455.	4.1	39
1167	Gel electrolytes based on polyacrylonitrile/thermoplastic polyurethane/polystyrene for lithium-ion batteries. Ionics, 2019, 25, 3673-3682.	2.4	19
1168	Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS Applied Materials & Interfaces, 2019, 11, 19679-19690.	8.0	21
1169	Tunable wrinkle modes of core-shell polymer fibers in electrospinning. Journal of Physics Communications, 2019, 3, 045001.	1.2	4
1170	Lateral Diffusion of a Free Air Jet in Slot-Die Melt Blowing for Microfiber Whipping. Polymers, 2019, 11, 788.	4.5	10
1171	Optimal Electrospun TiO 2 Nanofiber Photocatalytic Performance via Synergistic Morphology and Particle Crystallinity with Anatase/Rutile Phase Tuning. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900066.	1.8	6

щ			CITATIONS
#	Oriented siloxane-containing vaterite/poly(lactic acid) composite scaffolds for controlling	IF	CHATIONS
1172	osteoblast alignment and proliferation. Journal of Asian Ceramic Societies, 2019, 7, 228-237.	2.3	4
1173	Lignin-Based Electrospun Carbon Nanofibers. Frontiers in Materials, 2019, 6, .	2.4	46
1174	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	10.0	235
1175	Carbon nanomaterials for implant dentistry and bone tissue engineering. , 2019, , 429-468.		5
1176	In vitrodegradation of zein nanofibres for propolis release in oral treatments. Materials Research Express, 2019, 6, 075407.	1.6	11
1177	Electrospun Microbial-Encapsulated Composite-Based Plasticized Seed Coat for Rhizosphere Stabilization and Sustainable Production of Canola (<i>Brassica napus</i> L.). Journal of Agricultural and Food Chemistry, 2019, 67, 5085-5095.	5.2	29
1178	Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers, 2019, 11, 726.	4.5	108
1179	Fabrication of Vascular Nanofiber Networks with Encapsulated Self-Healing Agents for Mechanical Recovery. Advanced Structured Materials, 2019, , 77-119.	0.5	1
1180	Self-Powered Well-Aligned P(VDF-TrFE) Piezoelectric Nanofiber Nanogenerator for Modulating an Exact Electrical Stimulation and Enhancing the Proliferation of Preosteoblasts. Nanomaterials, 2019, 9, 349.	4.1	41
1181	Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules, 2019, 24, 834.	3.8	212
1182	Current Trends in Biomaterials and Bio-manufacturing. , 2019, , 1-34.		30
1183	Fabrication and preliminary characterization of rubber cellulose/natural rubber latex (C-NRL) nanocomposite fibers. AIP Conference Proceedings, 2019, , .	0.4	0
1184	Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 2019, 119, 5298-5415.	47.7	2,814
1185	Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. Nanomaterials, 2019, 9, 404.	4.1	144
1186	Single-needle electrospinning of PVA hollow nanofibers for core–shell structures. SN Applied Sciences, 2019, 1, 1.	2.9	19
1187	Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nature Communications, 2019, 10, 1458.	12.8	108
1188	Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Separation and Purification Technology, 2019, 221, 44-63.	7.9	75
1189	Electrospinning under lateral electrostatic control in ambient atmosphere. Journal of Electrostatics, 2019, 98, 75-81.	1.9	5

#	Article	IF	CITATIONS
1190	A Novel Method for Fabricating an Electrospun Poly(Vinyl Alcohol)/Cellulose Nanocrystals Composite Nanofibrous Filter with Low Air Resistance for High-Efficiency Filtration of Particulate Matter. ACS Sustainable Chemistry and Engineering, 2019, 7, 8706-8714.	6.7	98
1191	Electrospinning and electrospraying technologies for food applications. Advances in Food and Nutrition Research, 2019, 88, 167-234.	3.0	68
1192	Electrospun Conducting and Biocompatible Uniaxial and Core–Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 2019, 4, 3660-3672.	3.5	74
1193	Sunny-Side-Up Egg-Shaped Structures: Surface Modification To Form Anisotropic Polymer Particles Driven by the Plateau–Rayleigh Instability as Fluorescence Manipulation Platforms. Macromolecules, 2019, 52, 1601-1608.	4.8	4
1194	A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 93-104.	3.1	15
1195	Green synthesis of silver nanoparticles using one-pot and microwave-assisted methods and their subsequent embedment on PVDF nanofibre membranes for growth inhibition of mesophilic and thermophilic bacteria. New Journal of Chemistry, 2019, 43, 4168-4180.	2.8	33
1196	Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5900-5911.	6.7	37
1197	Controlled deposition of electrospun nanofibers by electrohydrodynamic deflection. Journal of Applied Physics, 2019, 125, 054901.	2.5	9
1198	Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual Relations between Mean Diameter of Electrospun Nanofibers and Solution Characteristics. Processes, 2019, 7, 948.	2.8	28
1199	Porous Biomimetic Hyaluronic Acid and Extracellular Matrix Protein Nanofiber Scaffolds for Accelerated Cutaneous Tissue Repair. ACS Applied Materials & Interfaces, 2019, 11, 45498-45510.	8.0	54
1200	Electrospinning: An Efficient Biopolymer-Based Micro- and Nanofibers Fabrication Technique. ACS Symposium Series, 2019, , 209-241.	0.5	18
1201	Fine liquid blowing: A high Reynolds number, high production rate nanofiber manufacturing technique. Journal of Applied Polymer Science, 2019, 136, 47384.	2.6	1
1202	Modification of electrospun, ultra-thin cellulose fibres by means of polycarboxylic acid–based cross-linking agents. Polymers and Polymer Composites, 2019, 27, 55-65.	1.9	2
1203	Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics, 2019, 11, 5.	4.5	188
1204	Silica/polycaprolactone nanofiber scaffold variants for human periosteal cell growth. Journal of Biomedical Materials Research - Part A, 2019, 107, 791-801.	4.0	6
1205	Nanolayer coextrusion: An efficient and environmentally friendly micro/nanofiber fabrication technique. Materials Science and Engineering C, 2019, 95, 292-301.	7.3	15
1206	Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , .	0.7	44
1207	Nanoscale Materials in Water Purification. , 2019, , 231-246.		4

# 1208	ARTICLE Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation. Materials Research Express, 2019, 6, 025039.	IF 1.6	CITATIONS 8
1209	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	7.3	132
1210	Wire Melt Electrospinning of Thin Polymeric Fibers via Strong Electrostatic Field Gradients. Macromolecular Materials and Engineering, 2019, 304, 1800417.	3.6	18
1211	Nanomorphology and nanomechanical characteristics of solutionâ€blowâ€spun PVDFâ€based fibers filled with carbon nanotubes. Journal of Applied Polymer Science, 2019, 136, 47115.	2.6	3
1212	Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers, 2019, 11, 34.	4.5	140
1213	Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. Materials Science and Engineering C, 2019, 98, 324-332.	7.3	31
1214	Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties. Carbohydrate Polymers, 2019, 206, 29-37.	10.2	38
1215	Injectable, Magnetically Orienting Electrospun Fiber Conduits for Neuron Guidance. ACS Applied Materials & Interfaces, 2019, 11, 356-372.	8.0	79
1216	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
1217	Keratin Processing. Springer Series on Polymer and Composite Materials, 2019, , 77-121.	0.7	3
1218	Thermoelectric properties of electrospun carbon nanofibres derived from lignin. International Journal of Biological Macromolecules, 2019, 121, 472-479.	7.5	101
1219	Porous polydimethylsiloxane membranes loaded with low-temperature crystallized TiO2 NPs for detachable antibacterial films. Journal of Materials Science, 2019, 54, 1665-1676.	3.7	12
1220	Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells, 2019, 189, 75-102.	6.2	120
1221	Bio-Waste Based Nanofiber Materials. , 2020, , 715-726.		1
1222	Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 477-504.	3.4	15
1223	Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103449.	3.1	51
1224	Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. Journal of Materials Science, 2020, 55, 893-924.	3.7	51
1225	One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning. Energy Storage Materials, 2020, 25, 443-476.	18.0	89

#	Article	IF	CITATIONS
1226	Mechanical properties of poly(ε aprolactone) composites with electrospun cellulose nanofibers surface modified by 3â€aminopropyltriethoxysilane. Journal of Applied Polymer Science, 2020, 137, 48599.	2.6	11
1227	Progress in the use of electrospun nanofiber electrodes for solid oxide fuel cells: a review. Reviews in Chemical Engineering, 2020, 36, 879-931.	4.4	11
1228	Advanced Materials for Sodiumâ€lon Capacitors with Superior Energy–Power Properties: Progress and Perspectives. Small, 2020, 16, e1902843.	10.0	45
1229	Progress of electrospray and electrospinning in energy applications. Nanotechnology, 2020, 31, 132001.	2.6	19
1230	Preparation of PVA/Chitosan samples by electrospinning and film casting methods and evaluating the effect of surface morphology on their antibacterial behavior. Materials Research Express, 2020, 7, 015401.	1.6	18
1231	Fabrication of porous fibers via electrospinning: strategies and applications. Polymer Reviews, 2020, 60, 595-647.	10.9	77
1232	Fabrication and Thermal Dissipation Properties of Carbon Nanofibers Derived from Electrospun Poly(Amic Acid) Carboxylate Salt Nanofibers. Macromolecular Materials and Engineering, 2020, 305, 1900519.	3.6	2
1233	Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli. Materials Science and Engineering C, 2020, 107, 110218.	7.3	30
1234	Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Materials Science and Engineering C, 2020, 107, 110347.	7.3	95
1235	Materials for blood brain barrier modeling in vitro. Materials Science and Engineering Reports, 2020, 140, 100522.	31.8	51
1236	Touch-Spun Nanofibers for Nerve Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 2067-2075.	8.0	27
1237	Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. International Journal of Biological Macromolecules, 2020, 151, 1299-1313.	7.5	105
1238	Pulse gas-assisted multi-needle electrospinning of nanofibers. Advanced Composites and Hybrid Materials, 2020, 3, 98-113.	21.1	21
1239	Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Materials Research Express, 2020, 7, 015601.	1.6	40
1240	Oneâ€step fabrication of superhydrophobic P(VDFâ€coâ€HFP) nanofibre membranes using electrospinning technique. Journal of Applied Polymer Science, 2020, 137, 48817.	2.6	11
1241	Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. Polymer Bulletin, 2020, 77, 6085-6104.	3.3	30
1242	Recent progresses and challenges in graphene based nano materials for advanced therapeutical applications: a comprehensive review. Materials Today Communications, 2020, 22, 100823.	1.9	37
1243	Osseointegrated membranes based on electro-spun TiO2/hydroxyapatite/polyurethane for oral maxillofacial surgery. Materials Science and Engineering C, 2020, 108, 110479.	7.3	19

#	Article	IF	Citations
1244	Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning. Materials Science and Engineering C, 2020, 108, 110505.	7.3	23
1245	Quality by Design Micro-Engineering Optimisation of NSAID-Loaded Electrospun Fibrous Patches. Pharmaceutics, 2020, 12, 2.	4.5	5
1246	Characterization of β-PVDF-based nanogenerators along with Fe2O3 NPs for piezoelectric energy harvesting. Journal of Materials Science: Materials in Electronics, 2020, 31, 19146-19158.	2.2	10
1247	High-efficiency and super-breathable air filters based on biomimetic ultrathin nanofiber networks. Composites Communications, 2020, 22, 100493.	6.3	40
1248	Preparation and Magnetic Properties of CoFe2O4 Oriented Fiber Arrays by Electrospinning. Materials, 2020, 13, 3860.	2.9	14
1249	A Scenario of a Fiber Formation Mechanism in Electrospinning: Jet Evolves Assemblies of Phase-Separated Strings That Eventually Split into As-spun Fibers Observed on the Grounded Collector. Macromolecules, 2020, 53, 9584-9600.	4.8	10
1250	Novel Maleic Acid, Crosslinked, Nanofibrous Chitosan/Poly (Vinylpyrrolidone) Membranes for Reverse Osmosis Desalination. International Journal of Molecular Sciences, 2020, 21, 7338.	4.1	13
1251	Electric-field-induced transitions from spherical to discocyte and lens-shaped drops. Journal of Fluid Mechanics, 2020, 904, .	3.4	14
1252	PVA- <i>Nigella sativa</i> nanofibrous mat: antibacterial efficacy and wound healing potentiality. Journal of the Textile Institute, 2021, 112, 1611-1621.	1.9	24
1253	Electrospinning of Highly Crystalline Polymers for Strongly Oriented Fibers. ACS Applied Polymer Materials, 2020, 2, 5025-5032.	4.4	18
1254	Electrospinning of PLA with DMF: Effect of polymer concentration on the bead diameter of the electrospun fibre. IOP Conference Series: Materials Science and Engineering, 2020, 778, 012087.	0.6	7
1255	Circumferential wrinkling of polymer nanofibers. Physical Review E, 2020, 102, 013001.	2.1	1
1256	Dripping, jetting and tip streaming. Reports on Progress in Physics, 2020, 83, 097001.	20.1	91
1257	A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solutionâ€cast films of polybenzimidazole. Journal of Applied Polymer Science, 2020, 137, 49639.	2.6	11
1258	Biofabrication for neural tissue engineering applications. Materials Today Bio, 2020, 6, 100043.	5.5	82
1259	ActiVLayr nanofiber technology. , 2020, , 225-246.		0
1260	Use of experimental design to obtain polymeric microfibers with carbon nanotubes. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 115-126.	0.4	0
1261	Dependence of poly(vinyl butyral) electrospun fibres diameter on molecular weight and concentration. Journal of Industrial Textiles, 2022, 51, 1612S-1626S.	2.4	3

#	Article	IF	CITATIONS
1262	Exfoliated Graphite Nanosheets Coating on Nano-grained SnO2/Li4Ti5O12 as a High-Performance Anode Material for Lithium-Ion Batteries. Langmuir, 2020, 36, 14666-14675.	3.5	5
1263	Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration. Polymer Engineering and Science, 2020, 60, 2887-2894.	3.1	18
1264	Incorporation of Plasticizers and Co-proteins in Zein Electrospun Fibers. Journal of Agricultural and Food Chemistry, 2020, 68, 14610-14619.	5.2	15
1265	Experimental Study of the Probabilistic Fatigue Residual Strength of a Carbon Fiber-Reinforced Polymer Matrix Composite. Journal of Composites Science, 2020, 4, 173.	3.0	8
1266	A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers. Materials, 2020, 13, 5220.	2.9	0
1267	Electro-Hydrodynamic Direct-Writing Technology toward Patterned Ultra-Thin Fibers: Advances, Materials and Applications. Nano Today, 2020, 35, 100942.	11.9	25
1269	Electrospun Cellulose Acetate Nanofiber: Characterization and Applications. , 2020, , 139-155.		3
1270	Tailoring the spatial filament organization within nanofibrous tissue engineering scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 24-33.	3.4	1
1271	Antimicrobial modification of PLA scaffolds with ascorbic and fumaric acids via plasma treatment. Surface and Coatings Technology, 2020, 400, 126216.	4.8	26
1272	Microstructure of Ni0.5Zn0.5Fe2O4 Nanofiber with Metal Nitrates in Electrospinning Precursor. Nanomaterials, 2020, 10, 1344.	4.1	1
1273	Nanoscience and Nanotechnology in Security and Protection against CBRN Threats. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , .	0.3	2
1274	Novel protein and peptide nanofibrous structures via supramolecular co-assembly. , 2020, , 69-97.		3
1275	Baicalein Nanofiber Scaffold Containing Hyaluronic Acid and Polyvinyl Alcohol: Preparation and Evaluation. Turkish Journal of Medical Sciences, 2020, 50, 1139-1146.	0.9	3
1276	Potential Applications of Magnesium-Based Polymeric Nanocomposites Obtained by Electrospinning Technique. Nanomaterials, 2020, 10, 1524.	4.1	22
1277	Development of Novel Microenvironments for Promoting Enhanced Wound Healing. Current Tissue Microenvironment Reports, 2020, 1, 73-87.	3.2	5
1278	Low and High-Frequency Electro-Hydrodynamic Patterns in Nematic Liquid Crystal Aligned Using Dual Layer Alignment Produced by Nanofiber. Key Engineering Materials, 0, 840, 459-465.	0.4	1
1279	Electrohydrodynamics of droplets and jets in multiphase microsystems. Soft Matter, 2020, 16, 8526-8546.	2.7	10
1280	An empirical model to evaluate the effects of environmental humidity on the formation of wrinkled, creased and porous fibre morphology from electrospinning. Scientific Reports, 2020, 10, 18783.	3.3	6

#	Article	IF	CITATIONS
1281	Nanofibrous cosmetic face mask for transdermal delivery of nano gold: synthesis, characterization, release and zebra fish employed toxicity studies. Royal Society Open Science, 2020, 7, 201266.	2.4	16
1282	Melt Electrospinning of Nanofibers from Medicalâ€Grade Poly(εâ€Caprolactone) with a Modified Nozzle. Small, 2020, 16, e2003471.	10.0	35
1283	Graphene impregnated electrospun nanofiber sensing materials: a comprehensive overview on bridging laboratory set-up to industry. Nano Convergence, 2020, 7, 27.	12.1	52
1284	Electrospun Polyvinylpyrrolidone-Gelatin and Cellulose Acetate Bi-Layer Scaffold Loaded with Gentamicin as Possible Wound Dressing. Polymers, 2020, 12, 2311.	4.5	31
1285	Impact of Apparatus Orientation and Gravity in Electrospinning—A Review of Empirical Evidence. Polymers, 2020, 12, 2448.	4.5	27
1286	Electrospinning of PCL-Based Blends: Processing Optimization for Their Scalable Production. Materials, 2020, 13, 3853.	2.9	35
1287	Breakup of an electrified viscoelastic liquid bridge. Physical Review E, 2020, 102, 033103.	2.1	6
1288	A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. Nanomaterials, 2020, 10, 1801.	4.1	9
1289	Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 45673-45701.	8.0	144
1290	Formation of Dissipative Structures in the Straight Segment of Electrospinning Jets. Macromolecules, 2020, 53, 7876-7886.	4.8	12
1291	Processing, Carbonization, and Characterization of Lignin Based Electrospun Carbon Fibers: A Review. Frontiers in Energy Research, 2020, 8, .	2.3	33
1292	Models of polymer solutions in electrified jets and solution blowing. Reviews of Modern Physics, 2020, 92, .	45.6	51
1293	Electrospun nanofibers in cancer research: from engineering of <i>in vitro</i> 3D cancer models to therapy. Biomaterials Science, 2020, 8, 4887-4905.	5.4	55
1294	Fluid interfaces with very sharp tips in viscous flow. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32238-32243.	7.1	10
1295	In-situ growth of β-SiC nanofibers from polymer precursors. IOP Conference Series: Materials Science and Engineering, 2020, 768, 022069.	0.6	0
1296	Morphological/alignment properties of thermoplastic polyurethane nanofiber affected by processing parameters. Journal of Elastomers and Plastics, 2021, 53, 769-783.	1.5	1
1297	A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials, 2020, 10, 2142.	4.1	103
1298	Ultraviolet Lightâ€Assisted Electrospinning of Core–Shell Fully Crossâ€Linked P(NIPAAmâ€ <i>co</i> â€NIPMAAm) Hydrogelâ€Based Nanofibers for Thermally Induced Drug Delivery Selfâ€Regulation. Advanced Materials Interfaces, 2020, 7, 2000247.	3.7	45
#	Article	IF	CITATIONS
------	--	-------------------	-------------
1299	Disruption of Electrospinning due to Water Condensation into the Taylor Cone. ACS Applied Materials & Interfaces, 2020, 12, 26566-26576.	8.0	27
1300	Directâ€Printing of Functional Nanofibers on 3D Surfaces Using Selfâ€Aligning Nanojet in Nearâ€Field Electrospinning. Advanced Materials Technologies, 2020, 5, 2000232.	5.8	18
1301	Generation of Aligned Electrospun Fibers by Using Insulating and Hydrophobic Collectors. ACS Applied Polymer Materials, 2020, 2, 2151-2159.	4.4	4
1302	A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solid constituents (PM2.5) from polluted air. Colloids and Interface Science Communications, 2020, 37, 100275.	4.1	41
1303	Nanofibrous MgO composites: structures, properties, and applications. Polymer-Plastics Technology and Materials, 2020, 59, 1522-1551.	1.3	6
1304	A Novel Method for Electrospinning Nanofibrous 3-D Structures. Fibers, 2020, 8, 27.	4.0	9
1305	Electrospun Anion-Conducting Ionomer Fibers—Effect of Humidity on Final Properties. Polymers, 2020, 12, 1020.	4.5	12
1306	Bone apatite anisotropic structure control <i>via</i> designing fibrous scaffolds. RSC Advances, 2020, 10, 13500-13506.	3.6	16
1307	Electrospun Nanofibrous Membranes for Water Treatment. , 0, , .		8
1308	A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 2020, 90, 106647.	4.8	183
1309	Ultrafine, self-crimp, and electret nano-wool for low-resistance and high-efficiency protective filter media against PM0.3. Journal of Colloid and Interface Science, 2020, 578, 565-573.	9.4	43
1310	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq1 1 0.7	'84314 rgl 4.5	3T40verlock
1311	Preparation of electrospun nanofibrous poly(vinyl alcohol)/cellulose nanocrystals air filter for efficient particulate matter removal with repetitive usage capability via facile heat treatment. Chemical Engineering Journal, 2020, 399, 125768.	12.7	68
1312	Highly Stretchable Piezoelectric Strain Sensor With Dual Wavy Structures of PVDF Microfibers. , 2020, , .		4
1313	Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. International Journal of Molecular Sciences, 2020, 21, 4019.	4.1	51
1314	The Role of α,Âγ, and Metastable Polymorphs on Electrospun Polyamide 6/Functionalized Graphene Oxide. Macromolecular Rapid Communications, 2020, 41, e2000195.	3.9	7
1315	Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. Regenerative Engineering and Translational Medicine, 2020, 6, 383-397.	2.9	9
1316	Critical condition of electrohydrodynamic jetting from a polymer-solution droplet on a conductive wire. Journal of Applied Physics, 2020, 127, .	2.5	8

#	Article	IF	CITATIONS
1317	Preâ€ŧhermal treatment in binary solvent systems promoting β crystalline phase of electrospun poly(vinylidene fluoride) nanofibers. Polymer International, 2020, 69, 719-727.	3.1	3
1318	Electrospun filtration membranes for environmental remediation. , 2020, , 309-341.		3
1319	Electrospinning: A Powerful Tool to Improve the Corrosion Resistance of Metallic Surfaces Using Nanofibrous Coatings. Metals, 2020, 10, 350.	2.3	33
1320	Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions. Catalysts, 2020, 10, 20.	3.5	19
1321	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	32.8	113
1322	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
1323	The contribution of bisfurfurylamine to the development and properties of polyureas. Polymer International, 2020, 69, 688-692.	3.1	6
1324	Strategies in Precursors and Post Treatments to Strengthen Carbon Nanofibers. Advanced Fiber Materials, 2020, 2, 46-63.	16.1	36
1325	Coaxial Electrospinning: Jet Motion, Core–Shell Fiber Morphology, and Structure as a Function of Material Parameters. Industrial & Engineering Chemistry Research, 2020, 59, 6301-6308.	3.7	22
1326	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	21.0	144
1327	Needleless electrospun carboxymethyl cellulose/polyethylene oxide mats with medicinal plant extracts for advanced wound care applications. Cellulose, 2020, 27, 4487-4508.	4.9	40
1328	Electrospun PVA nanoscaffolds associated with propolis nanoparticles with wound healing activity. Journal of Materials Science, 2020, 55, 9712-9727.	3.7	40
1329	Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers, 2020, 12, 1390.	4.5	20
1330	Tailoring the Diameters of Electro-Mechanically Spun Fibers by Controlling Their Deborah Numbers. Polymers, 2020, 12, 1358.	4.5	3
1331	Moisture-activated release of hexanal from imidazolidine precursor encapsulated in ethylcellulose/poly(ethylene oxide) nonwoven for shelf-life extension of papaya. Food Packaging and Shelf Life, 2020, 25, 100532.	7.5	10
1332	Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity. Nano Energy, 2020, 76, 105074.	16.0	29
1333	Effect of Processing Parameters on the Morphology, Particulate, and Superconducting Properties of Electrospun YBCO Nanostructures. Journal of Nano Research, 0, 63, 89-97.	0.8	2
1334	Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. International Journal of Biological Macromolecules, 2020, 156, 669-680.	7.5	26

#	Article	IF	CITATIONS
1335	Electroactive actuator based on polyurethane nanofibers coated with polypyrrole through electrochemical polymerization: a competent method for developing artificial muscles. Smart Materials and Structures, 2020, 29, 045008.	3.5	12
1336	Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. Polymers, 2020, 12, 238.	4.5	35
1337	Self-feeding electrospinning method based on the Weissenberg effect. Polymer, 2020, 190, 122247.	3.8	5
1338	Targeted morphology of copper oxide based electrospun nanofibers. Chemical Engineering Science, 2020, 219, 115547.	3.8	4
1339	Improvement of Oxygenâ€Đepolarized Cathodes in Highly Alkaline Media by Electrospinning of Poly(vinylidene fluoride) Barrier Layers. ChemElectroChem, 2020, 7, 830-837.	3.4	7
1340	Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454, 227932.	7.8	89
1341	Electrospinning and Mechanotropic Phenomena in Polymer Solutions. Macromolecular Symposia, 2020, 389, 1900091.	0.7	2
1342	A co-culture nanofibre scaffold model of neural cell degeneration in relevance to Parkinson's disease. Scientific Reports, 2020, 10, 2767.	3.3	18
1343	Physicochemical characteristics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) electrospun nanofibres for the adsorption of phenol. Journal of Experimental Nanoscience, 2020, 15, 26-53.	2.4	4
1345	Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications. Progress in Materials Science, 2020, 112, 100656.	32.8	84
1346	<i>In vitro</i> cell culture in hollow microfibers with porous structures. Biomaterials Science, 2020, 8, 2175-2188.	5.4	19
1347	Manufacturing routes toward flexible and smart energy harvesters and sensors based on functional nanomaterials. , 2020, , 381-437.		2
1348	Jet Mode Recognition of Electrohydrodynamic Direct-Writing Based on Micro/Nano Current. Micromachines, 2020, 11, 128.	2.9	7
1349	The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers. Pharmaceutics, 2020, 12, 139.	4.5	12
1350	Novel Inulin Electrospun Composite Nanofibers: Prebiotic and Antibacterial Activities. ACS Omega, 2020, 5, 3006-3015.	3.5	17
1351	Improvements in gelatin cold water solubility after electrospinning and associated physicochemical, functional and rheological properties. Food Hydrocolloids, 2020, 104, 105740.	10.7	36
1352	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	2.6	5
1353	Alignmentâ€Improved and Diameterâ€Reduced Electrospun Polymer Fibers via the Hotâ€Stretching Process. Macromolecular Materials and Engineering, 2020, 305, 1900637.	3.6	11

#	Article	IF	Citations
1354	A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect, 2020, 5, 1335-1348.	1.5	64
1356	Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nature Communications, 2020, 11, 753.	12.8	114
1357	Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications. New Journal of Chemistry, 2020, 44, 9581-9606.	2.8	40
1359	Advances in Hybrid Fabrication toward Hierarchical Tissue Constructs. Advanced Science, 2020, 7, 1902953.	11.2	86
1360	Design of Hollow Nanofibrous Structures using Electrospinning: An Aspect of Chemical Sensor Applications. ChemNanoMat, 2020, 6, 1014-1027.	2.8	16
1361	Study on the formation and structural evolution of beadâ€onâ€string in electrospun polysulfone mats. Polymer International, 2020, 69, 822-832.	3.1	18
1362	Evaluation of Repellent Effectiveness of Polyvinyl Alcohol/Eucalyptus globules Nanofibrous Membranes against Forcipomyia taiwana. Polymers, 2020, 12, 870.	4.5	0
1363	Recent developments in nanofiber-based sensors for disease detection, immunosensing, and monitoring. Sensors and Actuators Reports, 2020, 2, 100005.	4.4	34
1364	Thermoplasmonicâ€Activated Hydrogel Based Dynamic Light Attenuator. Advanced Optical Materials, 2020, 8, 2000324.	7.3	23
1365	Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Packaging and Shelf Life, 2020, 24, 100508.	7.5	43
1366	Fabrication of Hollow and Porous Tin-Doped Indium Oxide Nanofibers and Microtubes via a Gas Jet Fiber Spinning Process. Materials, 2020, 13, 1539.	2.9	3
1367	Electrospinningâ€Based Strategies for Battery Materials. Advanced Energy Materials, 2021, 11, 2000845.	19.5	169
1368	Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 2021, 115, 100704.	32.8	254
1369	Experimental investigation of process parameters for the filtration property of nanofiber membrane fabricated by needleless electrospinning apparatus. Journal of Industrial Textiles, 2021, 50, 1528-1541.	2.4	7
1370	Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. Advanced Therapeutics, 2021, 4, .	3.2	14
1371	Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity. Journal of Biomedical Materials Research - Part A, 2021, 109, 788-803.	4.0	14
1372	Coupling between voltage and tip-to-collector distance in polymer electrospinning: Insights from analysis of regimes, transitions and cone/jet features. Chemical Engineering Science, 2021, 230, 116200.	3.8	23
1373	Electrospinning for tissue engineering applications. Progress in Materials Science, 2021, 117, 100721.	32.8	378

#	Article	IF	CITATIONS
1374	A PVDF electrospun antifibrotic composite for use as a glaucoma drainage implant. Materials Science and Engineering C, 2021, 119, 111637.	7.3	15
1375	Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioactive Materials, 2021, 6, 1491-1511.	15.6	161
1376	Electrospun three-dimensional nanofibrous scaffolds based on polycaprolactone for stem cells differentiation and bone regeneration. , 2021, , 179-215.		1
1377	Nanoribbons fabricated by melt electrospinning. Polymer Journal, 2021, 53, 493-503.	2.7	5
1378	Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications. , 2021, , 689-764.		6
1379	Enhanced Water Harvesting System and Mechanical Performance from Janus Fibers with Polystyrene and Cellulose Acetate. ACS Sustainable Chemistry and Engineering, 2021, 9, 180-188.	6.7	37
1380	Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS Applied Materials & Interfaces, 2021, 13, 48-66.	8.0	108
1381	Electrohydrodynamic instability of confined viscoelastic liquid jets. Journal of Non-Newtonian Fluid Mechanics, 2021, 288, 104453.	2.4	2
1382	Nanofibrillated polymer systems: Design, application, and current state of the art. Progress in Polymer Science, 2021, 113, 101346.	24.7	47
1384	The Electrospinning Process. , 2021, , 153-185.		1
1384 1385	The Electrospinning Process. , 2021, , 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232.	7.6	1
1384 1385 1386	The Electrospinning Process., 2021,, 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232. Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402.	7.6	1 123 4
1384 1385 1386 1387	The Electrospinning Process., 2021,, 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232. Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402. Functionalizing nanofibrous materials for textile applications., 2021,, 471-512.	7.6 1.8	1 123 4 0
1384 1385 1386 1387 1388	The Electrospinning Process., 2021,, 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232. Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402. Functionalizing nanofibrous materials for textile applications., 2021,, 471-512. Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings., 2021,, 315-359.	7.6	1 123 4 0
1384 1385 1386 1387 1388 1389	The Electrospinning Process., 2021, , 153-185.Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232.Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402.Functionalizing nanofibrous materials for textile applications., 2021, , 471-512.Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings., 2021, , 315-359.Efficiency of Respiratory Protective Equipment in the SARS-CoV-2 Pandemic. Nanobiotechnology Reports, 2021, 16, 69-88.	7.6 1.8	1 123 4 0 1
1384 1385 1386 1387 1388 1389	The Electrospinning Process., 2021,, 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232. Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402. Functionalizing nanofibrous materials for textile applications., 2021,, 471-512. Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings., 2021,, 315-359. Efficiency of Respiratory Protective Equipment in the SARS-CoV-2 Pandemic. Nanobiotechnology Reports, 2021, 16, 69-88. Electrospun composite nanofibers as sensors for food analysis., 2021,, 261-286.	7.6 1.8	1 123 4 0 1 5
1384 1385 1386 1387 1388 1389 1390	The Electrospinning Process., 2021, 153-185. Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232. Synthesis of fiber membranes from polyvinyl alcohol (PVA)/shell extract of melinjo (SEM) using electrospinning method. Materials Today: Proceedings, 2021, 44, 3400-3402. Functionalizing nanofibrous materials for textile applications., 2021, , 471-512. Electrospun nanofibers for interfacial toughening and damage self-healing of polymer composites and surface coatings., 2021, , 315-359. Efficiency of Respiratory Protective Equipment in the SARS-CoV-2 Pandemic. Nanobiotechnology Reports, 2021, 16, 69-88. Electrospun composite nanofibers as sensors for food analysis., 2021, , 261-286. Advances and innovations in electrospinning technology., 2021, , 45-81.	7.6 1.8 0.6	1 123 4 0 1 1 5 9

#	Article	IF	CITATIONS
1393	The ultrahigh discharge efficiency and energy density of P(VDF-HFP) <i>via</i> electrospinning-hot press with St-MMA copolymer. Materials Chemistry Frontiers, 2021, 5, 3646-3656.	5.9	8
1394	Electrostatically Sprayed Nanostructured Electrodes for Energy Conversion and Storage Devices. Advanced Functional Materials, 2021, 31, 2008181.	14.9	39
1395	Sensing Materials: Nanomaterials Definition. , 2021, , .		1
1397	Recent Trends in Electrospinning for the Preparation of Ultrathin Plastic and Polymer Fibers for Bio-Medical Applications. , 2022, , 810-835.		1
1398	Biomimicking spider webs for effective fog water harvesting with electrospun polymer fibers. Nanoscale, 2021, 13, 16034-16051.	5.6	32
1399	Synthesis of Magnesium Based Nanophosphors and Nanocomposites by Different Techniques. , 2021, , 261-287.		0
1400	Modeling of the electrospinning process. , 2021, , 237-253.		1
1401	Mechanical and Dielectric Properties of Aligned Electrospun Fibers. Fibers, 2021, 9, 4.	4.0	19
1402	The Mass Production of Lignin Fibres by Means of Needleless Electrospinning. Journal of Polymers and the Environment, 2021, 29, 2164-2173.	5.0	12
1403	Revisiting lignin: a tour through its structural features, characterization methods and applications. New Journal of Chemistry, 2021, 45, 6986-7013.	2.8	52
1404	Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batteries and Supercaps, 2021, 4, 571-584.	4.7	54
1405	Study of morphology of composite fibers polyvinylpyrrolidone/cellulose acetate loaded by garlic extract with glycerin as an additive. Materials Today: Proceedings, 2021, 44, A5-A8.	1.8	2
1406	Encapsulating bacteria in alginate-based electrospun nanofibers. Biomaterials Science, 2021, 9, 4364-4373.	5.4	29
1407	Electrospinning: The State of Art Technique for the Production of Nanofibers and Nanofibrous Membranes for Advanced Engineering Applications. Materials Horizons, 2021, , 23-71.	0.6	1
1408	Fabrication and Properties of Electrospun Collagen Tubular Scaffold Crosslinked by Physical and Chemical Treatments. Polymers, 2021, 13, 755.	4.5	13
1409	Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers, 2021, 13, 662.	4.5	54
1410	CuO/ZnO Heterojunction Nanograins: Methanol Vapour Detection. Journal of Electronic Materials, 2021, 50, 2482-2495.	2.2	5
1411	Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomedical Materials (Bristol), 2021, 16, 035004.	3.3	9

#	Article	IF	CITATIONS
1412	New insights of nanomaterials usage toward superhydrophobic membranes for water desalination via membrane distillation: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2104-2149.	12.8	51
1413	Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. Polymers for Advanced Technologies, 2021, 32, 1924-1950.	3.2	19
1414	Role of Block Copolymers in Tissue Engineering Applications. Cells Tissues Organs, 2022, , 76-89.	2.3	5
1415	Novel Self-Directing Single-Polymer Jet Developing Layered-Like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2021, 13, 9691-9701.	8.0	9
1416	Nanofibrous Grids Assembled Orthogonally from Direct-Written Piezoelectric Fibers as Self-Powered Tactile Sensors. ACS Applied Materials & Interfaces, 2021, 13, 10623-10631.	8.0	18
1417	Smart composite nanofiber mats with thermal management functionality. Scientific Reports, 2021, 11, 4256.	3.3	23
1418	Asymptotic decay of velocity of whipping jet in electrospinning. Polymer, 2021, 217, 123456.	3.8	7
1419	Electrospinning Janus Nanofibrous Membrane for Unidirectional Liquid Penetration and Its Applications. Chemical Research in Chinese Universities, 2021, 37, 337-354.	2.6	21
1420	Aerodynamics and the role of the earth's electric field in the spiders' ballooning flight. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 219-236.	1.6	5
1421	Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers, 2021, 13, 916.	4.5	14
1422	Development of electrospun-based polyetherimide fibers and diameter analysis for potential use in dental materials. Brazilian Dental Science, 2021, 24, 5.	0.4	2
1423	Fabrication, structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection. Applied Surface Science, 2021, 543, 148783.	6.1	5
1424	Fluence-Dependent Morphological Transitions in Laser-Induced Graphene Electrodes on Polyimide Substrates for Flexible Devices. ACS Applied Nano Materials, 2021, 4, 2973-2986.	5.0	49
1425	Features of the Behavior of a Polymer Solution Jet in Electrospinning. Polymer Science - Series A, 2021, 63, 172-179.	1.0	2
1426	Controlled stretching of the first spiral in electrospinning whipping jet via surface charge. Polymer, 2021, 217, 123443.	3.8	5
1427	Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115012.	3.5	28
1428	Challenges and advantages of electrospun nanofibers in agriculture: a review. Materials Research Express, 2021, 8, 042001.	1.6	38
1429	Phenolic Compound, Antioxidant and Antibacterial properties of Electrospun PVP Nanofiber loaded with Bassela rubra linn extract and Alginate from Sargassum sp IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012015.	0.6	1

#	Article	IF	CITATIONS
1430	Real-time Monitoring and Analysis of Jet Behaviors in Electrohydrodynamic Direct-Writing. , 2021, , .		0
1431	Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano Structures Nano Objects, 2021, 26, 100708.	3.5	27
1432	Robust dual-layered omniphobic electrospun membrane with anti-wetting and anti-scaling functionalised for membrane distillation application. Journal of Membrane Science, 2021, 624, 119089.	8.2	52
1433	Reinforced electrospun nanofiber composites for drug delivery applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 2036-2064.	4.0	21
1434	Extension rate and bending behavior of electrospinning jet: The role of solution conductivity. Polymer, 2021, 222, 123672.	3.8	10
1435	Natural and Synthetic Fiberâ€Based Adsorbents for Water Remediation. Clean - Soil, Air, Water, 2021, 49, 2000189.	1.1	14
1436	Development of a novel multi-scale structured superhydrophobic nanofiber membrane with enhanced thermal efficiency and high flux for membrane distillation. Desalination, 2021, 501, 114834.	8.2	36
1437	Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126272.	4.7	9
1438	Toward Optimizing Electrospun Nanofiber Fuel Cell Catalyst Layers: Polymer–Particle Interactions and Spinnability. ACS Applied Polymer Materials, 2021, 3, 2374-2384.	4.4	16
1439	Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy and Environment, 2022, 7, 578-605.	8.7	97
1440	Cu–Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic Compounds. ACS Applied Nano Materials, 2021, 4, 6045-6056.	5.0	21
1441	Peptide-Based Electrospun Fibers: Current Status and Emerging Developments. Nanomaterials, 2021, 11, 1262.	4.1	15
1442	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	3.8	36
1443	Mechanical Properties of Electrospun Fibers—A Critical Review. Advanced Engineering Materials, 2021, 23, 2100153.	3.5	84
1444	Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chemical Engineering Science, 2021, 235, 116463.	3.8	20
1445	Physical and biological properties of electrospun poly(<scp>d</scp> , <scp>l</scp> â€lactide)/nanoclay and poly(<scp>d</scp> , <scp>l</scp> â€lactide)/nanosilica nanofibrous scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 2120-2136.	4.0	19
1446	Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth. Macromolecular Bioscience, 2021, 21, e2000439.	4.1	10
1447	Composite micro/nano fibrous air filter by simultaneous melt and solution electrospinning. Journal of Aerosol Science, 2021, 154, 105754.	3.8	19

		CITATION REPORT		
#	Article		IF	Citations
1449	pH-Responsive Electrospun Nanofibers and Their Applications. Polymer Reviews, 2022	, 62, 351-399.	10.9	44
1451	Evaluation of the Photocatalytic Activity and Anticorrosion Performance of Electrospu Doped with Metallic Oxides. Polymers, 2021, 13, 2011.	n Fibers	4.5	13
1452	Review on Electrospun Nanofiber-Applied Products. Polymers, 2021, 13, 2087.		4.5	85
1453	Hydrodynamic and electrical interactions in electrospinning of polymer fibers over a lic collector. Journal of Applied Polymer Science, 2021, 138, 51271.	quid	2.6	2
1454	Effects of solution concentration on the synthesis of polyvinylidene fluoride (PVDF) ele nanofibers. Materials Today: Proceedings, 2023, 80, 2119-2124.	ectrospun	1.8	6
1455	The Role of Polymer Carrier and Process Parameters for Small Molecule Drug Delivery v Electrospinning. Nano LIFE, 2021, 11, 2150001.	via Blended	0.9	1
1456	Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-C Engineering Science and Technology, an International Journal, 2021, 24, 620-630.	R model.	3.2	8
1457	A simple electrospinning setup with the Arduino board using cigarette filter tip and liq source for fabricating fibres. Physics Education, 2021, 56, 055013.	uid glue as the	0.5	1
1458	Analysis of the association of parameters in the formation of ultrafine fibers from PEI a Brazilian Dental Science, 2021, 24, .	ind PMMA.	0.4	0
1459	Effect of Glycero-(9,10-trioxolane)-trialeate on the Physicochemical Properties of Non- Polylactic Acid Fiber Materials. Polymers, 2021, 13, 2517.	Woven	4.5	4
1460	Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced N Technologies, 2021, 6, 2100410.	laterials	5.8	183
1461	Fibrous Scaffolds From Elastin-Based Materials. Frontiers in Bioengineering and Biotec 9, 652384.	hnology, 2021,	4.1	12
1462	Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomaterialia, 20	21, 128, 21-41.	8.3	30
1463	Extension Rate and Bending Instability of Electrospinning Jets: the Role of the Electric Macromolecules, 2021, 54, 7193-7209.	Field.	4.8	7
1464	Stress-Function Variational Method for Accurate Free-Edge Interfacial Stress Analysis o Bonded Single-Lap Joints and Single-Sided Joints. Journal of Composites Science, 2021	of Adhesively , 5, 197.	3.0	0
1465	Formaldehyde vapour sensing property of electrospun NiO nanograins. Frontiers of Ma Science, 2021, 15, 416-430.	aterials	2.2	5
1466	Overview of Nano-Fiber Mats Fabrication via Electrospinning and Morphology Analysis 1, 206-226.	. Textiles, 2021,	4.1	43
1467	Supermolecular Structure, Free Volume, and Glass Transition of Needleless Electrospu Nanofibers. ACS Applied Polymer Materials, 2021, 3, 3989-4007.	n Polymer	4.4	13

#	Article	IF	CITATIONS
1468	Control of copper nanoparticle metallization on electrospun fibers via Pd and Ag seed-assisted templating. Journal of Materials Science, 2021, 56, 16307-16323.	3.7	1
1469	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	31.8	169
1470	Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Advanced Drug Delivery Reviews, 2021, 175, 113823.	13.7	32
1471	A Review on Silver Nanoparticles -green Synthesis, Antimicrobial Action and Application in Textiles. Journal of Natural Fibers, 2022, 19, 8463-8484.	3.1	24
1472	Effect of Nanoclay Addition on the Morphology, Fiber Size Distribution and Pore Size of Electrospun Polyvinylpyrrolidone (PVP) Composite Fibers for Air Filter Applications. Fibers, 2021, 9, 48.	4.0	10
1473	A Rapidâ€Ab/Desorption and Portable Photothermal MILâ€101(Cr) Nanofibrous Composite Membrane Fabricated by Sprayâ€Electrospinning for Atmosphere Water Harvesting. Energy and Environmental Materials, 2023, 6, .	12.8	8
1474	PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules, 2021, 26, 4925.	3.8	17
1475	Effect of hydrogen–deuterium exchange in amide linkages on properties of electrospun polyamide nanofibers. Polymer, 2021, 229, 123994.	3.8	5
1476	New trends in nanofibers functionalization and recent applications in wastewater treatment. Polymers for Advanced Technologies, 2021, 32, 4587-4597.	3.2	7
1477	Centrifugally spun poly(ethylene oxide) fibers rival the properties of electrospun fibers. Journal of Polymer Science, 2021, 59, 2754-2762.	3.8	12
1478	Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 6027-6056.	11.7	32
1479	3D macroporous biocomposites with a microfibrous topographical cue enhance new bone formation through activation of the MAPK signaling pathways. Journal of Industrial and Engineering Chemistry, 2021, 104, 478-490.	5.8	6
1480	Recent Advances in Multilayerâ€Structure Dielectrics for Energy Storage Application. Advanced Science, 2021, 8, e2102221.	11.2	105
1481	A Deeper Insight into the Influence of the Electric Field Strength When Meltâ€Electrowriting on Nonâ€Planar Surfaces. Macromolecular Materials and Engineering, 2021, 306, 2100496.	3.6	8
1482	Superhydrophobic and elastic 3D conductive sponge made from electrospun nanofibers and reduced graphene oxide for sweatproof wearable tactile pressure sensor. Polymer, 2021, 230, 124025.	3.8	11
1483	Wave-Shaped Piezoelectric Nanofiber Membrane Nanogenerator for Acoustic Detection and Recognition. Advanced Fiber Materials, 2021, 3, 368-380.	16.1	21
1484	Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology. , 2022, 232, 107990.		44
1485	Photoluminescence enhancement of dye-doped polymer films covered with electrospun nanofibers. Japanese Journal of Applied Physics, 2021, 60, 100904.	1.5	0

#	Article	IF	CITATIONS
1486	Recent Advances in Applications of Ceramic Nanofibers. , 0, , .		0
1487	The Application of Hollow Carbon Nanofibers Prepared by Electrospinning to Carbon Dioxide Capture. Polymers, 2021, 13, 3275.	4.5	8
1488	Progress of superconducting nanofibers via electrospinning. Journal of Physics Condensed Matter, 2022, 34, 043002.	1.8	6
1489	Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromolecular Materials and Engineering, 2021, 306, 2100410.	3.6	46
1490	3D reconstruction of bias effects on porosity, alignment and mesoscale structure in electrospun tubular polycaprolactone. Polymer, 2021, 232, 124120.	3.8	4
1491	Electrospinning of cellulose carboxylic esters synthesized under homogeneous conditions: Effects of the ester degree of substitution and acyl group chain length on the morphology of the fabricated mats. Journal of Molecular Liquids, 2021, 339, 116745.	4.9	4
1492	Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering Reports, 2021, 146, 100630.	31.8	18
1493	Self-assembly of polyethylene oxide and its composite nanofibrous membranes with cellular network structure. Composites Communications, 2021, 27, 100759.	6.3	5
1494	High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Composites Part B: Engineering, 2021, 222, 109060.	12.0	40
1495	Tuned interactions within inclusion complex to generate electrospun matrices of superior strength. Materials Today Communications, 2021, 29, 102794.	1.9	3
1496	Optimization of electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter fabrication using response surface methodology. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100120.	2.6	3
1497	Nanofiber induced enhancement of electrical and electrochemical properties in polymer gel electrolytes for application in energy storage devices. Journal of Alloys and Compounds, 2021, 886, 161173.	5.5	9
1498	Fiber-intercepting-particle structured MOF fabrics for simultaneous solar vapor generation and organic pollutant adsorption. Chemical Engineering Journal, 2022, 428, 131365.	12.7	37
1499	Effect of coating on the mechanical properties of electrospun poly(3-hydroxybutyrate) materials with targeted fibers alignment. Journal of Polymer Research, 2021, 28, 1.	2.4	5
1500	An Estimate of the Onset of Beadless Character of Electrospun Nanofibers Using Rheological Characterization. Polymers, 2021, 13, 265.	4.5	5
1501	Micro/nanodeposition techniques for enhanced optical fiber sensors. , 2021, , 531-573.		3
1502	Carbon nanotube/epoxy submicron filaments for composite reinforcement applications. , 2021, , .		1
1503	Composite hydrogels of pectin and alginate. , 2021, , 507-533.		0

#	Article	IF	CITATIONS
1504	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. , 2021, , 730-783.		0
1505	Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomaterials Science and Engineering, 2021, 7, 400-407.	5.2	4
1506	Membrane distillation: recent technological developments and advancements in membrane materials. Emergent Materials, 2022, 5, 347-367.	5.7	33
1507	Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers, 2021, 13, 174.	4.5	149
1508	Basic concepts and fundamental insights into electrospinning. , 2021, , 3-43.		2
1509	Synthetic Multi-level Matrices for Bone Regeneration. , 2011, , 99-122.		5
1510	Nanofibers for Filtration Applications. Advances in Material Research and Technology, 2020, , 361-371.	0.6	2
1511	Electrospinning of Electro-Active Materials: Devices Based on Individual and Crossed Nanofibers. Nanoscience and Technology, 2015, , 103-113.	1.5	2
1512	Electrospun Nanocomposite Materials for Polymer Electrolyte Membrane Methanol Fuel Cells. , 2017, , 165-191.		3
1513	Electrospun Chitosan Nanofiber Materials as Burn Dressing. IFMBE Proceedings, 2010, , 1212-1214.	0.3	20
1515	Electrospinning. Engineering Materials, 2013, , 31-42.	0.6	2
1516	Electrospun Nanofibers: Solving Global Issues. Nanostructure Science and Technology, 2014, , 3-38.	0.1	12
1517	Electrospinning and Tissue Engineering. Computational Methods in Applied Sciences (Springer), 2011, , 111-136.	0.3	4
1518	Melt electrospinning in a parallel electric field. , 2019, , 91-101.		1
1519	Enhancing the Antibacterial Performance of Titanium Dioxide Nanofibers by Coating with Silver Nanoparticles. ACS Applied Nano Materials, 2020, 3, 5743-5751.	5.0	53
1520	Electrospun Thermosetting Carbon Nanotube–Epoxy Nanofibers. ACS Applied Polymer Materials, 2021, 3, 610-619.	4.4	15
1521	Oscillatory coalescence of droplets in an alternating electric field. Physical Review Fluids, 2017, 2, .	2.5	17
1522	Antibacterial Silver Embedded Nanofibers for Water Disinfection. International Journal of Materials Science and Applications, 2015, 4, 293.	0.1	6

#	Article	IF	CITATIONS
1524	Chapter 18 Nanostructured Fibers Via Electrospinning (Part I). , 2016, , 253-280.		2
1525	Electrospinning of Nanofibers. , 2012, , 293-320.		4
1526	Performances of Breathable & Waterproof Jacquard Fabric with PU-Nanofiber Web and PU-Film. Textile Science and Engineering, 2014, 51, 319-326.	0.4	2
1527	Solid Aerosol Filtration by Electrospun Poly Vinyl Pyrrolidone Fiber Mats and Dependence on Pore Size. Journal of Textile Engineering & Fashion Technology, 2017, 1, .	0.3	2
1528	As-spun Bio-novolac Fiber Morphological Study based on Resin's Physico- chemical Properties. Sains Malaysiana, 2017, 46, 1659-1665.	0.5	3
1529	Electrospun Cellulose Fibres and Applications. Sains Malaysiana, 2019, 48, 1459-1472.	0.5	6
1530	Nanotechnology: A Promising Tool Towards Wound Healing. Current Pharmaceutical Design, 2017, 23, 3515-3528.	1.9	48
1531	Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014, 18, 2299-2314.	1.6	36
1532	New Strategies for Safe Cancer Therapy Using Electrospun Nanofibers: A Short Review. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1272-1286.	2.4	5
1533	Response Surface Modeling and Optimization of Electrospun Nanofiber Membranes. The Open Nanoscience Journal, 2013, 7, 8-17.	1.8	33
1534	Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF. EXPRESS Polymer Letters, 2010, 4, 2-8.	2.1	40
1535	Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering, 2021, 8, 4.	3.5	26
1536	Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects. Energies, 2021, 14, 135.	3.1	41
1537	Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. Nanomaterials, 2021, 11, 21.	4.1	115
1538	Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers, 2016, 8, 287.	4.5	88
1539	Synthesis and Luminescence Properties of La3Si8O4N11: Ln (Ln =Ce3+, Sm3+) Nanofibers via Electrospinning. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 885-889.	1.3	1
1540	A comprehensive review on electrospinning design, parameters and potential use of electrospun nanofibers in regenerative endodontics. International Journal of Dental Materials, 2020, 02, 37-44.	0.2	1
1541	Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2016, , 281-336.	0.3	1

#	Article	IF	CITATIONS
1542	Coaxially Electrospun Fibrillar Structures as Templates and Hosts for Synthesis Processes. Journal of Textile Engineering, 2010, 56, 9-13.	0.2	1
1543	Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review. Journal of the Korean Ceramic Society, 2017, 54, 366-379.	2.3	90
1544	Nanopores Structure in Electrospun Bacterial Cellulose. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 92-96.	0.5	15
1545	Electrospinning of Gelatin Functionalized with Silver Na-noparticles for Nanofiber Fabrication. Modeling and Numerical Simulation of Material Science, 2013, 03, 95-105.	0.3	3
1546	Hydrodynamics of Drop Impact and Spray Cooling through Nanofiber Mats. The Journal of Undergraduate Research at the University of Illinois at Chicago, 2017, 4, .	0.0	1
1547	DEVELOPMENT OF POLY (LACTIC-CO-GLYCOLIC ACID)/ BIOGLASS FIBERS USING AN ELECTROSPINNING TECHNIQUE. Latin American Applied Research, 2018, 48, 131-138.	0.4	2
1548	Electrospinning of Polymeric Fibres: an Unconventional View on the Influence of Surface Tension on Fibre Diameter. Fibres and Textiles in Eastern Europe, 2016, 24, 22-29.	0.5	16
1549	Synthesis and Characterization of CuCo2O4Nanofiber Electrocatalyst for Oxygen Evolution Reaction. Journal of the Korean Institute of Surface Engineering, 2016, 49, 539-548.	0.1	1
1550	Porous and non-porous electrospun fibres from discarded expanded polystyrene. International Journal of Physical Sciences, 2012, 7, .	0.4	1
1552	Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes. Environmental Science: Water Research and Technology, 2021, 7, 2166-2205.	2.4	6
1553	Raman Investigation of the Processing Structure Relations in Individual Poly(ethylene terephthalate) Electrospun Fibers. Applied Spectroscopy, 2021, , 000370282110492.	2.2	1
1554	A SERS-Active Electrospun Polymer Mesh for Spatially Localized pH Measurements of the Cellular Microenvironment. Analytical Chemistry, 2021, 93, 13844-13851.	6.5	8
1555	Electrospinning of a Copolymer PVDF-co-HFP Solved in DMF/Acetone: Explicit Relations among Viscosity, Polymer Concentration, DMF/Acetone Ratio and Mean Nanofiber Diameter. Polymers, 2021, 13, 3418.	4.5	12
1556	Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics, 2021, 13, 1665.	4.5	11
1557	Synthesis and Water Treatment Applications of Nanofibers by Electrospinning. Processes, 2021, 9, 1779.	2.8	18
1558	Optimization of Processâ€Control Parameters for the Diameter of Electrospun Hydrophilic Polymeric Composite Nanofibers. Macromolecular Materials and Engineering, 2021, 306, 2100471.	3.6	4
1559	Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers. ACS Applied Materials & amp; Interfaces, 2021, 13, 51504-51518.	8.0	50
1561	Spatially Designed Nanofibrous Membranes for Periodontal Tissue Regeneration. , 2012, , 141-168.		0

#	Article	IF	CITATIONS
1562	Silindirli Elektro Lif Çekim Yöntemi ile Nano Lif Üretimi. Tekstil Ve Muhendis, 2013, 20, 35-49.	0.3	7
1563	A Detailed Review on Pore Structure Analysis of Electrospun Porous Membranes. , 2014, , 29-49.		0
1564	Spinning. Seikei-Kakou, 2014, 26, 317-324.	0.0	0
1565	Electrospinning Process: A Comprehensive Review and Update. , 2014, , 19-126.		1
1567	Electrospinning. , 2016, , 1101-1108.		2
1568	An Investigation onto the Importance of Dimensionless Analysis in the Modeling of Electrospinning. International Journal of Chemoinformatics and Chemical Engineering, 2016, 5, 12-23.	0.1	0
1570	Fabrication of Highly Aligned Poly(Vinyl Alcohol) Nanofibers and its Yarn by Electrospinning. , 0, , .		2
1571	Highly Sensitive Gas Sensors Based on Electrospun Indium Oxide Nanofibers for Indoor Toxic CO and HCHO Gases. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 803-808.	0.0	0
1572	Comparative study of chitosan/Ag nanocomposites synthesis and test their antibacterial activity on Staphylococcus aureus and Escherichia coli. Tap Chi Khoa Hoc = Journal of Science, 2018, 54(8), 96.	0.1	0
1573	Structural Multifunctional Nanofibers and Their Emerging Applications. , 2019, , 693-732.		3
1574	Electrospun nanofibers as support for the healing of intestinal anastomoses. Physiological Research, 2019, 68, S517-S525.	0.9	3
1575	Numerical simulation study of a stable jet shape variation in electrospinning. Thermal Science, 2019, 23, 965-974.	1.1	0
1576	Kurkumin Yüklü Biyo-Bazlı Elektroeğirme Poliüretan Yapılar. Cumhuriyet Science Journal, 2019, 40, 125-135.	0.3	7
1577	Electrospinning of Polymer Fibres Using Recycled PET. Acta Materialia Transylvanica, 2019, 2, 19-26.	0.0	7
1578	Controlled Nanofabrication of Uniform Continuous Graphene Oxide/Polyacrylonitrile Nanofibers for Templated Carbonization. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	2
1579	Recent Advances of Electrospinning and Multifunctional Electrospun Textile Materials for Chemical and Biological Protection. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 275-289.	0.3	1
1580	Fabrication of Microscale Polymeric Wavy and Coiling Structures via Side-Electrode-Assisted Near-Field Electrospinning: Modeling and Experiments. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	2.2	0
1581	Electrohydrodynamic Printing Process Monitoring for Diverse Microstructure Bioscaffold Fabrication. , 2020, , .		0

#	Article	IF	CITATIONS
1583	Nexus of Electrospun Nanofibers and Additive Processing—Overview of Wearable Tactical Gears for CBRNE Defense. Smart Innovation, Systems and Technologies, 2022, , 133-145.	0.6	4
1584	Solvent Assisted Coaxial-Electrospun Poly Methyl Methacrylate Polymer and Study of Resultant Fibers. Sensor Letters, 2020, 18, 905-909.	0.4	0
1585	Silk Protein Paper with In Situ Synthesized Silver Nanoparticles. Macromolecular Bioscience, 2021, 21, e2000357.	4.1	5
1586	Functionalization of biopolymer fibers with magnetic nanoparticles. ChemistrySelect, 2022, 7, 1091-1117.	1.5	6
1587	Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. Chemical Engineering Journal, 2022, 430, 132876.	12.7	53
1588	Poly(ε-caprolactone)/Chitosan Nanostructures for Cell Cultivation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 459-464.	0.3	0
1589	Modified polysaccharides in wound healing. , 2020, , 225-258.		3
1590	Coordination Polymers and Polymer Nanofibers for Effective Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2020, , 168-234.	0.3	3
1591	Electrospinning Nanofibers. Progress in Optical Science and Photonics, 2020, , 111-132.	0.5	1
1592	Feature extraction on Mueller matrix data for detecting nonporous electrospun fibers based on mutual information. Optics Express, 2020, 28, 10456.	3.4	10
1594	Study of the Optical Properties of Electrospun PAN/GO Nanocomposites. Solid State Phenomena, 0, 326, 17-31.	0.3	0
1595	Ultrafast response and high-sensitivity acetone gas sensor based on porous hollow Ru-doped SnO2 nanotubes. Sensors and Actuators B: Chemical, 2022, 352, 131061.	7.8	37
1596	Stable Electrospinning of Core-Functionalized Coaxial Fibers Enabled by the Minimum-Energy Interface Given by Partial Core–Sheath Miscibility. Langmuir, 2021, 37, 13265-13277.	3.5	6
1597	Electrospinning for the design of medical supplies. Bulletin of Siberian Medicine, 2020, 19, 153-162.	0.3	1
1598	Synthesis of Magnesium Based Nanophosphors and Nanocomposites by Different Techniques. Advances in Chemical and Materials Engineering Book Series, 0, , 251-276.	0.3	0
1599	Scaffold Design for Nerve Regeneration. , 2021, , 257-283.		0
1600	Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. Neuromethods, 2021, , 61-101.	0.3	2
1601	The Design and Implementation of a Disk Electrospinning Device. Műszaki Tudományos Közlemények, 2020, 13, 72-76.	0.1	0

# 1602	ARTICLE Processing strategies in graphene-derived nanocomposites. , 2022, , 45-66.	IF	CITATIONS
1603	Measurement and Modeling of the Nanofiber Surface Potential during Electrospinning on a Patterned Collector: Toward Directed 3D Microstructuration. Advanced Materials Interfaces, 2021, 8, 2101302.	3.7	4
1604	Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior. Macromolecular Materials and Engineering, 0, , 2100640.	3.6	3
1605	Electrospinning super-assembly of ultrathin fibers from single- to multi-Taylor cone sites. Applied Materials Today, 2022, 26, 101272.	4.3	18
1606	Quantitative volatile organic compound sensing with liquid crystal core fibers. Cell Reports Physical Science, 2021, 2, 100661.	5.6	13
1607	Electrospun Nanocomposite Fibers of Polycarbonate- and Taurine-Modified Boehmite Nanoparticles: What Can Be Learned from Structural and Thermal Investigations?. ACS Applied Polymer Materials, 2021, 3, 6572-6585.	4.4	5
1608	Electrospun membranes filtering 100Ânm particles from air flow by means of the van der Waals and Coulomb forces. Journal of Membrane Science, 2022, 644, 120138.	8.2	6
1609	Diameter Refinement of Electrospun Nanofibers: From Mechanism, Strategies to Applications. Advanced Fiber Materials, 2022, 4, 145-161.	16.1	28
1610	Electrospinning of Neat Graphene Nanofibers. Advanced Fiber Materials, 2022, 4, 268-279.	16.1	31
1611	Recent advances in nanocarriers for nutrient delivery. Drug Delivery and Translational Research, 2022, 12, 2359-2384.	5.8	19
1612	Electrospun One Dimensional (1D) Pseudocapacitive nanorods embedded carbon nanofiber as positrode and graphene wrapped carbon nanofiber as negatrode for enhanced electrochemical energy storage Journal of Energy Storage, 2022, 46, 103731.	8.1	21
1613	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	47.7	44
1614	High-Voltage Wave Induced a Unique Structured Percolation Network with a Negative Gauge Factor. ACS Applied Materials & Interfaces, 2022, 14, 5661-5672.	8.0	11
1615	Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Applied Bio Materials, 2022, 5, 394-412.	4.6	34
1616	Buckling of elastic fibers in a shear flow. New Journal of Physics, 2022, 24, 013013.	2.9	3
1617	A Novel Theoretical Model Development and Simulation of Meltâ€Electrospinning Using Kane's and Udwadia–Kalaba Methods. Advanced Theory and Simulations, 2022, 5, .	2.8	4
1618	Tunable TiO ₂ –BN–Pd nanofibers by combining electrospinning and atomic layer deposition to enhance photodegradation of acetaminophen. Dalton Transactions, 2022, 51, 2674-2695.	3.3	31
1620	Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration, 2022, 2, .	11.0	68

#		IF	CITATIONS
" 1621	Advanced electrospun nanofibers as bifunctional electrocatalysts for flexible metal-air (O2)	7.0	28
1622	The Significance of Electrical Polarity in Electrospinning: A Nanoscale Approach for the Enhancement of the Polymer Fibers' Properties. Macromolecular Materials and Engineering, 2022, 307, .	3.6	19
1623	Recent Applications of Electrospun Nanofibrous Scaffold in Tissue Engineering. Applied Bionics and Biomechanics, 2022, 2022, 1-15.	1.1	22
1624	Application of Electrospun Nonwoven Fibers in Air Filters. Fibers, 2022, 10, 15.	4.0	35
1625	In Situ Growth of Silver Nanoparticles on Chitosan Matrix for the Synthesis of Hybrid Electrospun Fibers: Analysis of Microstructural and Mechanical Properties. Polymers, 2022, 14, 674.	4.5	11
1626	High performance and illumination stable In2O3 nanofibers-based field effect transistors by doping praseodymium. Surfaces and Interfaces, 2022, 29, 101781.	3.0	1
1627	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	12.8	37
1628	Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. Journal of Materials Chemistry B, 2022, 10, 1763-1774.	5.8	10
1629	Engineering strategies to achieve efficient <i>in vitro</i> expansion of haematopoietic stem cells: development and improvement. Journal of Materials Chemistry B, 2022, 10, 1734-1753.	5.8	8
1630	Extraction of keratin from wool and its use as biopolymer in film formation and in electrospinning for composite material processing. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502210904.	1.0	6
1631	The Potential for the Direct and Alternating Current-Driven Electrospinning of Polyamides. Nanomaterials, 2022, 12, 665.	4.1	4
1632	Fiber Engineering Trifecta of Spinnability, Morphology, and Properties: Centrifugally Spun versus Electrospun Fibers. ACS Applied Polymer Materials, 2022, 4, 2022-2035.	4.4	7
1633	Electrospinning research and products: The road and the way forward. Applied Physics Reviews, 2022, 9, .	11.3	50
1634	Qualitative and Numerical Aspects of a Motion of a Family of Interacting Curves in Space. SIAM Journal on Applied Mathematics, 2022, 82, 549-575.	1.8	1
1635	Patterning with Aligned Electrospun Nanofibers by Electrostatic Deflection of Fast Jets. Advanced Engineering Materials, 2022, 24, .	3.5	6
1636	A review of multilayer and composite films and coatings for active biodegradable packaging. Npj Science of Food, 2022, 6, 18.	5.5	61
1637	Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells. International Journal of Energy Research, 2022, 46, 10919-10929.	4.5	4
1638	Recent Progress, Challenges, and Opportunities of Membrane Distillation for Heavy Metals Removal. Chemical Record, 2022, 22, e202100323.	5.8	19

#	Article	IF	CITATIONS
1639	Drug Delivery Applications of Coaxial Electrospun Nanofibres in Cancer Therapy. Molecules, 2022, 27, 1803.	3.8	27
1640	Advanced and traditional processing of thermoplastic polyurethane waste. Polymer Degradation and Stability, 2022, 198, 109880.	5.8	11
1641	Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Advanced Drug Delivery Reviews, 2022, 183, 114161.	13.7	21
1642	Chapter 5: A critical review of carbon fiber and related products from an industrial perspective. Advanced Industrial and Engineering Polymer Research, 2022, 5, 90-106.	4.7	10
1643	Regenerative therapies for tympanic membrane. Progress in Materials Science, 2022, 127, 100942.	32.8	11
1644	Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coordination Chemistry Reviews, 2022, 460, 214466.	18.8	58
1645	Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers. Polymers, 2021, 13, 4312.	4.5	4
1646	Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. Journal of Functional Biomaterials, 2021, 12, 71.	4.4	25
1647	Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS Polymers Au, 2022, 2, 108-117.	4.1	12
1648	Research Progress on the Applications of Electrospun Nanofibers in Catalysis. Catalysts, 2022, 12, 9.	3.5	16
1650	Electrospun porous poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate)/lecithin scaffold for bone tissue engineering. RSC Advances, 2022, 12, 11913-11922.	3.6	6
1651	Optical sensors based on electrospun membranes – principles, applications, and prospects for chemistry and biology. New Journal of Chemistry, 2022, 46, 8356-8380.	2.8	3
1652	Nanofibers for Renewable Energy. , 0, 2022, 1-25.		0
1653	Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Scientific Reports, 2022, 12, 6469.	3.3	7
1654	Scaled-Up Multi-Needle Electrospinning Process Using Parallel Plate Auxiliary Electrodes. Nanomaterials, 2022, 12, 1356.	4.1	11
1655	Silk fibroinâ€based films in food packaging applications: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2253-2273.	11.7	20
1656	Production of Nanofibers from Plant Extracts by Electrospinning Method. , 0, , .		0
1657	Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In) Tj ETQq1 1	0.784314 4.5	rgβŢ /Overlo

#	Article	IF	CITATIONS
1658	State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 2022, 27, 101473.	4.3	66
1665	Fabrication of Highly Oriented Piezoelectric Nanofibers Using a Low Cost and Lab-Scale Electrospinning System. Lecture Notes in Mechanical Engineering, 2022, , 139-148.	0.4	1
1666	Biomaterials Used for Periodontal Disease Treatment: Focusing on Immunomodulatory Properties. International Journal of Biomaterials, 2022, 2022, 1-8.	2.4	4
1667	Preparation and Formation Mechanism of Electrospun Porous Beaded Fibers. AATCC Journal of Research, 2022, 9, 134-142.	0.6	0
1668	Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. Journal of Biomedical Materials Research - Part A, 2022, 110, 1460-1487.	4.0	25
1669	Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polymer Reviews, 2023, 63, 127-199.	10.9	23
1670	Structural characterization of electrospun tetraethylortosilicate (TEOS)/Polyvinylpyrrolidone (PVP) microfibres. Materials Chemistry and Physics, 2022, 287, 126248.	4.0	8
1671	Studying of Nanoribbon and Circular Poly (Vinyl Alcohol) Nanofibers Deposited by Electrospinning: Film Synthesis, Characterization Structure, and Resistance Corrosion. Journal of Failure Analysis and Prevention, 2022, 22, 1196-1214.	0.9	1
1672	Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing. Polymers, 2022, 14, 1948.	4.5	5
1673	Electrospun PVDF/Cloisite-30B and PVDF/BaTio3/graphene nanofiber mats for development of nanogenerators. Journal of the Indian Chemical Society, 2022, 99, 100501.	2.8	2
1674	Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry, 2022, 24, 100944.	3.5	36
1675	High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release. Journal of Membrane Science, 2022, 654, 120571.	8.2	21
1676	Electrospun Nanofiber-Based Membranes for Water Treatment. Polymers, 2022, 14, 2004.	4.5	24
1677	Light Scattering of Electrospinning Jet with Internal Structures by Flowâ€Induced Phase Separation. Macromolecular Rapid Communications, 2022, , 2200273.	3.9	3
1678	Electrohydrodynamic processing of phycocolloids for food-related applications: Recent advances and future prospects. Trends in Food Science and Technology, 2022, 125, 114-125.	15.1	5
1679	Enhanced Piezoelectric Performance of Electrospun Pvdf-Trfe by Polydopamine-Assisted Attachment of Zno Nanowires for Impact Force Sensing. SSRN Electronic Journal, 0, , .	0.4	0
1680	In-Situ Measurement of Proton Conductivity of a Single Ionomer Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
1681	Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	25

#	Article	IF	CITATIONS
1682	Fabrication of Chitosan Nanofibers Containing Some Steroidal Compounds as a Drug Delivery System. Polymers, 2022, 14, 2094.	4.5	9
1683	Jet diameter of the first coil in the electrospinning whipping region: the role of fluid viscosity. Textile Reseach Journal, 0, , 004051752210806.	2.2	0
1684	Recent Progress on the Fabrication of Ultrafine Polyamide-6 Based Nanofibers Via Electrospinning: A Topical Review. Nano-Micro Letters, 2014, 6, .	27.0	2
1685	Preparation and characterization of electrospun nanofiber membrane from polyvinyl alcohol loaded with <i>Glycyrrhiza glabra</i> extract. Polymers and Polymer Composites, 2022, 30, 096739112211094.	1.9	3
1686	Direct imaging of polymer filaments pulled from rebounding drops. Soft Matter, 2022, 18, 5097-5105.	2.7	2
1687	A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications. Biomaterials Science, 2022, 10, 4424-4442.	5.4	11
1688	A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Research, 2022, 15, 7402-7431.	10.4	9
1689	Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. Coatings, 2022, 12, 862.	2.6	6
1690	Bio-based materials with special wettability for oil-water separation. Separation and Purification Technology, 2022, 297, 121445.	7.9	69
1691	Effects of Geometry in the Operation of Coaxial Electrosprays. SSRN Electronic Journal, 0, , .	0.4	0
1693	Electrospun nanofibers for angiogenesis strategies. , 2022, , 383-414.		0
1694	Application of Hand-Held Electrospinning Devices in Medicine. , 2022, , 605-630.		1
1695	Aminated-diamond integrated poly(methyl methacrylate) fibers reinforced epoxy composites with enhanced structural, thermal, and mechanical properties. Polymer Bulletin, 0, , .	3.3	0
1696	Fabrication and Characterization of Gelatin/Calcium Phosphate Electrospun Composite Scaffold for Bone Tissue Engineering. Fibers and Polymers, 2022, 23, 1915-1923.	2.1	2
1697	Preparation of PCL Electrospun Fibers Loaded with Cisplatin and Their Potential Application for the Treatment of Prostate Cancer. Emergency Medicine International, 2022, 2022, 1-8.	0.8	2
1698	Bio-Mimicking Acellular Wet Electrospun Scaffolds Promote Accelerated Integration and Re-Epithelialization of Full-Thickness Dermal Wounds. Bioengineering, 2022, 9, 324.	3.5	1
1699	Improvement of the Structure and Physicochemical Properties of Polylactic Acid Films by Addition of Glycero-(9,10-trioxolane)-Trialeate. Polymers, 2022, 14, 3478.	4.5	3
1700	Direct measurement of proton conductivity of a single ionomer nanofiber. Nano Energy, 2022, 102, 107738.	16.0	2

#	Article	IF	CITATIONS
1701	Drug delivery nano-scaffold for effective implantation in orthopedic applications. Materials Today: Proceedings, 2022, 67, 975-984.	1.8	1
1702	A Comparative Study on the Addition of MgO and Mg(OH) ₂ Nanoparticles into PCL Electrospun Fibers. Macromolecular Chemistry and Physics, 0, , 2200215.	2.2	3
1703	Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polymer Bulletin, 2023, 80, 7145-7200.	3.3	6
1704	Surface Morphology and Biochemical Characteristics of Electrospun Cellulose Nanofibril Reinforced PLA/PBS Hollow Scaffold for Tissue Engineering. Fibers and Polymers, 2022, 23, 2539-2548.	2.1	5
1705	Electrospinning of 1D Fiberâ€Like Block Copolymer Micelles with a Crystalline Core. Macromolecular Chemistry and Physics, 0, , 2200151.	2.2	1
1706	Development and characterization of PCL membranes incorporated with Zn-doped bioactive glass produced by electrospinning for osteogenesis evaluation. Journal of Polymer Research, 2022, 29, .	2.4	7
1707	Monitoring the Formation of Polymer Nanoparticles with Fluorescent Molecular Rotors. Macromolecules, 2022, 55, 7284-7293.	4.8	7
1708	Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method. Materials, 2022, 15, 5876.	2.9	8
1709	Towards an interpretable machine learning model for electrospun polyvinylidene fluoride (PVDF) fiber properties. Computational Materials Science, 2022, 213, 111661.	3.0	7
1710	Pore structure design and optimization of electrospun PMIA nanofiber membrane. Journal of the Taiwan Institute of Chemical Engineers, 2022, 139, 104512.	5.3	9
1711	Recent advances in morphology, aperture control, functional control and electrochemical sensors applications of carbon nanofibers. Analytical Biochemistry, 2022, 656, 114882.	2.4	10
1712	Effects of geometry in the operation of coaxial electrosprays. Journal of Aerosol Science, 2023, 167, 106075.	3.8	2
1713	Exploration of biomimetic poly(l̂³-benzyl- <scp>l</scp> -glutamate) fibrous scaffolds for corneal nerve regeneration. Journal of Materials Chemistry B, 2022, 10, 6372-6379.	5.8	7
1714	Electrospun nanofibrous membranes for membrane distillation. , 2022, , 215-261.		2
1715	Electrospun Hydrogel Fibers Guide Hkust-1 Assembly. SSRN Electronic Journal, 0, , .	0.4	0
1716	Electro – Technologies. Food Engineering Series, 2022, , 93-176.	0.7	Ο
1717	Electrospun nanofibers for 3-D cancer models, diagnostics, and therapy. Nanoscale Horizons, 2022, 7, 1279-1298.	8.0	9
1718	Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication. Nanoscale, 2022, 14, 13452-13472.	5.6	6

#	Article	IF	Citations
1719	In situ preparation and functionalization of nanofibers by a combination of electrospinning and click chemistry methods. Iranian Polymer Journal (English Edition), 0, , .	2.4	0
1720	Electrospun Hydrogel Fibers Guide HKUST-1 Assembly. Materials Today Communications, 2022, , 104535.	1.9	0
1721	Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. International Journal of Molecular Sciences, 2022, 23, 11525.	4.1	6
1722	Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet. ACS Applied Materials & Interfaces, 2022, 14, 42841-42851.	8.0	2
1723	<scp>Physicsâ€based</scp> deep neural network model to guide electrospinning polyurethane fibers. Journal of Applied Polymer Science, 2022, 139, .	2.6	1
1724	Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers, 2022, 14, 3725.	4.5	22
1725	Uniaxial and Coaxial Nanofibers PCL/Alginate or PCL/Gelatine Transport and Release Tamoxifen and Curcumin Affecting the Viability of MCF7 Cell Line. Nanomaterials, 2022, 12, 3348.	4.1	5
1726	Electrospun Fibrous Sponges: Principle, Fabrication, and Applications. Advanced Fiber Materials, 2022, 4, 1434-1462.	16.1	25
1727	Surfactant Molecular Properties Control Location in Emulsion Electrospun Fibers and Dictate Resulting Fiber Properties. Macromolecules, 2022, 55, 9186-9195.	4.8	2
1728	Biocompatibile nanofiber based membranes for high-efficiency filtration of nano-aerosols with low air resistance. Chemical Engineering Research and Design, 2022, 167, 695-707.	5.6	3
1729	Morphology of electrospun PVA nanofibers enhanced with graphene oxide, poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) and multiwalled carbon nanotubes. , 0, , 239-252.		4
1730	Application of Electrospun Polymeric Fibrous Membranes as Patches for Atopic Skin Treatments. Advances in Polymer Science, 2022, , .	0.8	0
1731	An Alternative Methodology for the Evaluation of Photocatalytic Activity of Polymeric Coatings by Monitoring Dye Degradation. Coatings, 2022, 12, 1529.	2.6	3
1732	PVP/CS/Phyllanthus emblica Nanofiber Membranes for Dry Facial Masks: Manufacturing Process and Evaluations. Polymers, 2022, 14, 4470.	4.5	5
1733	The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis. International Journal of Molecular Sciences, 2022, 23, 12670.	4.1	4
1734	Achievement of high surface charge in poly(vinylidene fluoride) fiber yarns through dipole orientation during fabrication. Journal of Applied Polymer Science, 0, , .	2.6	2
1735	Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Scientific Reports, 2022, 12, .	3.3	7
1736	Review on the preparation of high value-added carbon materials from biomass. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105747.	5.5	16

#	Article	IF	CITATIONS
1737	Insights on Titanium-based chalcogenides TiX2 (XÂ=ÂO, S, Se) as LIBs/SIBs anode materials. Chemical Engineering Journal, 2023, 453, 139768.	12.7	15
1738	Biomimetic tissue regeneration using electrospun nanofibrous scaffolds. , 2022, 14, 169-186.		1
1739	Stimuliâ€Responsive Electrospun Fluorescent Fibers Augmented with Aggregationâ€Induced Emission (AIE) for Smart Applications. Advanced Science, 2023, 10, .	11.2	23
1740	High-strength electrospun polydimethylsiloxane/polytetrafluoroethylene hybrid membranes with stable and controllable coral-like structures. Composites Part A: Applied Science and Manufacturing, 2023, 164, 107316.	7.6	4
1741	Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications. Chemical Engineering Journal, 2023, 456, 140989.	12.7	33
1742	Ozonation of Non-Woven Ultrathin Fibrous Biomaterials for Medical and Packaging Implementations. , 0, , .		0
1743	Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review. Bioengineering, 2022, 9, 728.	3.5	19
1744	Evaluation of Lapatinib-Loaded Microfibers Prepared by Centrifugal Spinning. Polymers, 2022, 14, 5557.	4.5	4
1745	Electrohydrodynamic 3D Printing of Aqueous Solutions. Small, 2023, 19, .	10.0	8
1746	Suspension Arrays Prepared from Nanofiber-Based Microparticles for a Platform of SERS-Based Multiplex Immunoassay. ACS Applied Polymer Materials, 2023, 5, 625-634.	4.4	2
1747	Electrospun Conducting Polymers: Approaches and Applications. Materials, 2022, 15, 8820.	2.9	9
1748	High-efficiency retention of ultrafine aerosols by electrospun nanofibers. Scientific Reports, 2022, 12,	3.3	1
1749	Electrospun Poly(vinyl alcohol)– <scp>l</scp> -Arginine Nanofiber Composites for Direct Air Capture of CO ₂ . ACS ES&T Engineering, 2023, 3, 373-386.	7.6	5
1750	Manufacturing Strategies for Graphene Derivative Nanocomposites—Current Status and Fruitions. Nanomanufacturing, 2023, 3, 1-19.	3.6	5
1751	Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon, 2023, 9, e12810.	3.2	20
1752	Step by Step Modification of Electrospinning Process to Fabricate Ultra-Fine Dextran Nanofibers. Polymer-Plastics Technology and Materials, 2023, 62, 294-305.	1.3	0
1753	Metal Oxide Heterostructures for Improving Gas Sensing Properties: A Review. Materials, 2023, 16, 263.	2.9	10
1754	Electrospray. , 2023, , 121-152.		1

#	Article	IF	Citations
1755	Enhanced Piezoelectric Performance of Electrospun PVDFâ€TrFE by Polydopamineâ€Assisted Attachment of ZnO Nanowires for Impact Force Sensing. Macromolecular Materials and Engineering, 2023, 308, .	3.6	2
1756	Melt electrospinning for membrane fabrication. , 2023, , 27-51.		0
1757	Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf

1758	Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications. Chemical Engineering Journal, 2023, 465, 142847.	12.7	21
1759	Buckling of Fiber-on-Substrate System in Flexible Electronics. , 2022, , 57-84.		0
1760	Solution Blow Spinning Versus Electrospinning for the Production of Green Nanofibers. , 2022, , 1-7.		0
1761	Electrohydrodynamic printing for demanding devices: A review of processing and applications. Nanotechnology Reviews, 2022, 11, 3305-3334.	5.8	8
1762	Review of bubble dynamics on charged liquid–gas flow. Physics of Fluids, 2023, 35, .	4.0	4
1763	Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Polymeric Blends Electrospun with TiO2-R/Fe3O4 for Pollutant Photodegradation. Polymers, 2023, 15, 762.	4.5	4
1764	Recycled PET nanofiber membranes for air filtration. , 2022, , .		0
1765	Recent advancements in high performance polymer electrolyte fuel cell electrode fabrication – Novel materials and manufacturing processes. Journal of Power Sources, 2023, 562, 232734.	7.8	12
1766	Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites. Polymers, 2023, 15, 957.	4.5	1
1767	Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS Applied Bio Materials, 2023, 6, 951-964.	4.6	7
1768	Freestanding, flexible, ultrahigh-surface area carbon nanofibers by supersonic solution blowing: Promising electrodes for supercapacitors. Applied Materials Today, 2023, 31, 101776.	4.3	2
1769	Nanofibres in Drug Delivery Applications. Fibers, 2023, 11, 21.	4.0	21
1770	Generation of Controllable Patterned Nanofibrous Networks by Electrospinning Lithography: Simultaneous Detection and Adsorption toward Cesium Ions. ACS Sustainable Chemistry and Engineering, 2023, 11, 3810-3819.	6.7	2
1771	Accessibility of adsorption sites for superfine powdered activated carbons incorporated into electrospun polystyrene fibers. Chemical Engineering Journal, 2023, 461, 142009.	12.7	1
1772	State Recognition of Multi-Nozzle Electrospinning Based on Image Processing. Micromachines, 2023, 14, 529.	2.9	1

ARTICLE IF CITATIONS Unique Fiber Morphologies from Emulsion Electrospinningâ€"A Case Study of Poly(lµ-caprolactone) and 1773 2.1 8 Its Applications. Colloids and Interfaces, 2023, 7, 19. Dual-Phasic, Well-Aligned, and Strong Flexible Hydrophobic Ceramic Membranes for Efficient Thermal Insulation in Extreme Conditions. ACS Applied Materials & amp; Interfaces, 0, , . 1774 8.0 Smart textiles with PCMs for thermoregulation., 2023, , 445-505. 1775 1 Biodegradable Polymer Electrospinning for Tendon Repairment. Polymers, 2023, 15, 1566. A Comparative Study in the Design of TiO2 Assisted Photocatalytic Coatings Monitored by Controlling 1777 2.9 4 Hydrophilic Behavior and Rhodamine B Degradation. Materials, 2023, 16, 2589. Electrospun Flexible Nanofibres for Batteries: Design and Application. Electrochemical Energy 1778 25.5 Reviews, 2023, 6, . Review on Electrospun Conductive Polymer Composites Strain Sensors. Advanced Materials 1779 5.8 11 Technologies, 2023, 8, . Sustainable medical materials printed by melt electrowriting: A mini-review. Current Opinion in 1780 3.4 Biomedical Engineering, 2023, 27, 100464. 1781 Study on electrospinning of wheat gluten: A review. Food Research International, 2023, 169, 112851. 7 6.2 Fabrication and modification of nanofiltration membranes by solution electrospinning technique: A 1782 8.2 review of influential factors and applications in water treatment. Desalination, 2023, 558, 116638. Preparation and characterization of anatase titanium dioxide fibre by electrospinning. Bulletin of 1783 1.7 1 Materials Science, 2022, 45, . The History of Electrospinning: Past, Present, and Future Developments. Advanced Materials 1784 5.8 28 Technologies, 2023, 8, High performance filtration membranes from electrospun poly (3-hydroxybutyrate)-based fiber 1785 7.5 1 membranes for fine particulate protection. Environmental Research, 2023, 231, 116144. Effect of isopropanol cosolvent on the rheology and spinnability of aqueous polyacrylic acid 1786 3.8 solutions. Journal of Polymer Science, 0, , . Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and 1787 modification with multiwall carbon nanotubes. International Journal of Biological Macromolecules, 7.5 3 2023, 242, 124730. Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality 1788 integration and applications. Progress in Materials Science, 2023, 137, 101139. 電界ç′jç³,ãfŠãfŽãf•ã,jã,¤fãf¼ã®æ§‹é€ ―å°ç¹Šç¶æ§‹é€è§£æžã®é‡è¦æ€§ã°æ—°è¦æ§‹é€å^¶å¾j法ã®æœj^â€@.6eni Kikoi Gakkai S 1789

1790 Biomaterials Applied to Medical Devices and Pharmacy., 2023, , 1-13.

0

#	Article	IF	CITATIONS
1791	Fabrication of hierarchical porous ethyl cellulose fibrous membrane by electro-centrifugal spinning for drug delivery systems with excellent integrated properties. International Journal of Biological Macromolecules, 2023, 242, 125141.	7.5	3
1792	Influence of Polymer Concentration on Drying of SPION Dispersions by Electrospinning. Pharmaceutics, 2023, 15, 1619.	4.5	0
1794	Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 2023, 5, 3606-3618.	4.6	5
1795	Preparation and characterization of β-cyclodextrin grafted chitosan nanofibers via electrospinning for dye removal. Polymer Bulletin, 2024, 81, 3641-3677.	3.3	0
1796	Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering. Colloids and Surfaces B: Biointerfaces, 2023, 228, 113416.	5.0	0
1797	Production of thermal insulation materials using various methods. AIP Conference Proceedings, 2023, , .	0.4	0
1798	A Review of Chitosan and Chitosan Nanofiber: Preparation, Characterization, and Its Potential Applications. Polymers, 2023, 15, 2820.	4.5	7
1799	Preparation and properties of PAN nanofiber membrane based on spiral spinning technology. Journal of Engineered Fibers and Fabrics, 2023, 18, .	1.0	0
1800	Flow-through catalytic nanofiber membrane assembly of hierarchically porous structure with Ag nanoparticles immobilized for enhanced catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131562.	4.7	1
1801	Evaluation of antibacterial properties of polyvinyl alcohol/chitosan/potassium permanganate electrospun nanofibers. Polymer Bulletin, 2024, 81, 2627-2642.	3.3	0
1802	Advancement of Nonwoven Fabrics in Personal Protective Equipment. Materials, 2023, 16, 3964.	2.9	7
1803	Electrospinning and electrospun based polyvinyl alcohol nanofibers utilized as filters and sensors in the real world. Journal of Polymer Engineering, 2023, .	1.4	0
1804	Classification of axisymmetric shapes of droplets on fibers. Could non-wettable fibers support axisymmetric droplets?. Physics of Fluids, 2023, 35, .	4.0	1
1805	Electrospun nanofibers: promising nanomaterials for biomedical applications. , 2023, , 225-260.		0
1806	Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioactive Materials, 2023, 29, 151-176.	15.6	2
1807	Jet-Injection In Situ Production of PVDF/PCM Composite Fibers for Thermal Management. ACS Omega, 2023, 8, 26136-26146.	3.5	1
1808	Electrospinning with non-DC voltages. , 2023, , .		0
1809	Recent advances in the synthesis of defective TiO2 nanofibers and their applications in energy and catalysis. Chemical Engineering Journal, 2023, 472, 144831.	12.7	13

ARTICLE IF CITATIONS Fabrication of fiber-reinforced composites via immersed electrohydrodynamic direct writing in 1810 1.8 0 polymer gels. MRS Communications, 0, , Suitable electrospinning approaches for recombinant spider silk proteins. Open Ceramics, 2023, 1811 100420. A Review on Electro Spun Nano-Fiber Composites for an Efficient Electrochemical Sensor 1812 3.8 0 Applications. Sensors, 2023, 23, 6705. Superior Thermoelectric Performance of Textured $\label{eq:cases} Ca₃Co_{4a^{\circ}}<i>_x</i>O₉₊<i>_Î</i>Ceramic Nanoribbons. Advanced Functional Materials, 2023, 33, .$ 14.9 The high-throughput atomization of polymer solutions for fiber synthesis in a single step aided with 1814 3.3 0 corona ionizers. Scientific Reports, 2023, 13, . Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, . 6.1 Optimization of Oil Sorbent Thermoplastic Elastomer Microfiber Production by Centrifugal Spinning. 1816 4.5 0 Polymers, 2023, 15, 3368. Recent Advances in Electrospun Fibers for Biological Applications. Macromol, 2023, 3, 569-613. 1817 4.4 Protonâ€Conducting Hierarchical Composite Hydrogels Producing First Soft Memcapacitors with 1818 14.9 1 Switchable Memory. Advanced Functional Materials, 2023, 33, . Functionalized Nanobiomaterials in Electroanalysis and Diagnosis of Biomolecules., 2023, , 457-482. Optimization and Production of Aceclofenac-Loaded Microfiber Solid Dispersion by Centrifugal 1820 4.51 Spinning. Pharmaceutics, 2023, 15, 2256. Fabrication of Ultra-High-Performance PVDF-HFP Air Filters by Electrospinning. Fibers, 2023, 11, 71. 1821 4.0 Packaging films based on biopolymers from seafood processing wastes: Preparation, properties, and their applications for shelfa \in if extension of seafoods $a \in \mathbb{Z}^{2}$ A comprehensive review. Comprehensive 1822 11.7 3 Reviews in Food Science and Food Safety, 2023, 22, 4451-4483. Polysaccharide-based antibacterial coating technologies. Acta Biomaterialia, 2023, 168, 42-77. 1823 8.3 Raman Analysis of Orientation and Crystallinity in High <i>T</i></sub>g</sub>, Low Crystallinity 1824 2.2 0 Electrospun Fibers. Applied Spectroscopy, 0, , . Explicit Expressions for a Mean Nanofibre Diameter Using Input Parameters in the Process of Electrospinning. Polymers, 2023, 15, 3371. Cellulose and Chitin Twisted Structures: From Nature to Applications. Advanced Functional 1826 14.9 2 Materials, 0, , . Deposition of Uniform Nanoscale Patterns on Silicon Dioxide Based on Coaxial Jet Direct Writing. 4.5 Polymers, 2023, 15, 3702.

#	Article	IF	CITATIONS
1828	Morphology Control of Electrospun Brominated Butyl Rubber Microfibrous Membrane. Polymers, 2023, 15, 3909.	4.5	0
1829	Electro-spun poly(lactic acid)/poly(triarylamine)(PLA/PTAA) composite nanofibers with low PLA content for fiber-based electronic applications. Materials Advances, 0, , .	5.4	0
1830	Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics, 2023, 15, 2285.	4.5	5
1831	An Electrospun Thermoadhesive Material as a Component of Multilayered Composites for the Filtration of Aircraft Fuels and Hydraulic Fluids. Polymer Science - Series D, 2023, 16, 459-466.	0.6	0
1832	Dye removal membrane from electrospun nanofibers of blended polybutylenesuccinate and sulphonated expanded polystyrene waste. Scientific Reports, 2023, 13, .	3.3	1
1833	Freeâ€Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. Advanced Materials, 2024, 36, .	21.0	1
1835	A perspective on the synergistic use of 3D printing and electrospinning to improve nanomaterials for biomedical applications. , 2023, 4, 100025.		1
1836	Mechanism Analysis of Discharge Energy in the Electrostatic-Field-Induced Electrolyte Jet Micro-EDM. Micromachines, 2023, 14, 1919.	2.9	0
1837	Electrospun Composite Nanofibers and Polymer Composites. , 2012, , 301-349.		0
1838	Effects of the morphology and diameter of TiO ₂ nanofibers as light-scattering layers on the efficiency of dye-sensitized solar cells. Materials Research Express, 2023, 10, 105009.	1.6	0
1839	A review on electrospun nanofibers for photocatalysis: Upcoming technology for energy and environmental remediation applications. Applied Surface Science Advances, 2023, 18, 100471.	6.8	2
1840	Innovative Bioactive Nanofibrous Materials Combining Medicinal and Aromatic Plant Extracts and Electrospinning Method. Membranes, 2023, 13, 840.	3.0	2
1841	Functionalization of Cellulose-Based Materials. Advanced Structured Materials, 2023, , 89-104.	0.5	0
1842	Electrospinning drafting system for polyamide 6 and polyamide 6.6 nanofiber production. Textile Reseach Journal, 0, , .	2.2	0
1843	Thread of hope: Weaving a comprehensive review on electrospun nanofibers for cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 89, 105100.	3.0	0
1844	Design and construction of poly (L-lactic-acid) nanofibrous yarns and threads with controllable structure and performances. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 148, 106214.	3.1	1
1845	Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers, 2023, 15, 4253.	4.5	1
1846	Tailored Broad‧pectrum Emission in Hybrid Aggregation Induced Emission (AIE)â€MOFs: Boosting White Light Efficiency in Electrospun Janus Microfibers. Advanced Functional Materials, 2024, 34, .	14.9	0

#	Article	IF	CITATIONS
1847	Silk fibroin-derived electrospun materials for biomedical applications: A review. International Journal of Biological Macromolecules, 2024, 254, 127641.	7.5	1
1848	Electromechanical analysis of electrospun polymer fiber deposition. Journal of Applied Physics, 2023, 134, .	2.5	1
1849	Emerging Smart Micro/Nanofiberâ€Based Materials for Nextâ€Generation Wound Dressings. Advanced Functional Materials, 2024, 34, .	14.9	1
1850	Flexible and stretchable synaptic devices for wearable neuromorphic electronics. Flexible and Printed Electronics, 2023, 8, 043001.	2.7	0
1851	Recent developments of electrospun nanofibers for electrochemical energy storage and conversion. Energy Storage Materials, 2024, 65, 103111.	18.0	1
1852	DOKU MÜHENDİSLİĞİ UYGULAMALARI İÇİN GELİŞTİRİLEN TAŞINABİLİR ELEKTROEĞİRM İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2023, 26, 1061-1077.	IE ÇİHAZ	LARI. Kahra
1853	Innovative applications of electrospun nanofibers in cancer research. Journal of Drug Delivery Science and Technology, 2024, 91, 105255.	3.0	1
1854	Driving fiber diameters to the limit: nanoparticle-induced diameter reductions in electrospun photoactive composite nanofibers for organic photovoltaics. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	1
1855	Development of multi-directional piezoelectric sensor doped with graphene by near-field electrospinning technology for calligraphy writing. International Journal of Modern Physics B, O, , .	2.0	0
1856	Study on the modes transformation and emission characteristics of Ionic Liquid Electrospray Thrusters. Acta Astronautica, 2024, 215, 415-425.	3.2	0
1857	Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for Highâ€Performance Thermal Insulation Under Extreme Temperature. Advanced Materials, 0, , .	21.0	2
1858	A Facile Strategy to Achieve High Piezoelectric Performance in Electrospun Poly(Vinylidene Fluoride) Non-woven Nanofabrics. Transactions on Electrical and Electronic Materials, 0, , .	1.9	1
1859	Instability-Driven 3D bioprinting for engineering composite bio-inks. Engineered Regeneration, 2023, , .	6.0	0
1860	Electrospinning of nanofibres. Nature Reviews Methods Primers, 2024, 4, .	21.2	3
1861	Progress and prospects of electrospun nanofibrous membranes for water filtration: A comprehensive review. Desalination, 2024, 574, 117285.	8.2	0
1862	Preparation of electrospun polyacrylonıtrile (PAN) nanofıber membrane gel electrolyte and its application in TiO2-based electrochromic devices. Ionics, 2024, 30, 1627-1638.	2.4	0
1863	Cells–biomaterials structure–function at different length scales. , 2024, , 463-516.		0
1864	Electrospun fibers: promising materials for oil water separation. , 2024, , 261-288.		0

#	Article	IF	CITATIONS
1865	Electrospun sulfonated polyimide nanofibers for polymer electrolyte composite membranes. , 2024, , 325-351.		0
1866	The role of 3D electrostatic field in modeling the electrospinning process. Journal of Applied Physics, 2024, 135, .	2.5	0
1867	Machine learningâ€enabled optimization of melt electroâ€writing threeâ€dimensional printing. Aggregate, 0, , .	9.9	0
1869	Innovative Electrospun Nanofiber Mats Based on Polylactic Acid Composited with Silver Nanoparticles for Medical Applications. Polymers, 2024, 16, 409.	4.5	0
1870	3D-Scaffold Design of Biodegradable Nanofibers for Tissue Regeneration and Drug Delivery. , 2024, , 212-232.		0
1871	Supersonic solution blowing: a novel approach to producing self-supported carbon–silica microporous nanofibers for Li-ion battery anodes. Journal of Materials Science, 2024, 59, 2449-2465.	3.7	0
1872	Electrospinning: Processes, Structures, and Materials. Macromol, 2024, 4, 58-103.	4.4	1
1873	A systematic review on green and natural polymeric nanofibers for biomedical applications. International Journal of Biological Macromolecules, 2024, 262, 130135.	7.5	0
1874	Phage formulations and delivery strategies: Unleashing the potential against antibiotic-resistant bacteria. Microbiological Research, 2024, 282, 127662.	5.3	0
1875	Photosynthetic nano fibers: Living microalgae packaging into polyvinyl alcohol nanofibers using an electrospinning method. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
1876	Adaptable intelligent filters based on nanotextured nonwoven membranes containing water-insoluble hydrogels. Journal of Applied Physics, 2024, 135, .	2.5	0
1877	A state-of-the-art review of multilayer packaging recycling: Challenges, alternatives, and outlook. Journal of Cleaner Production, 2024, 447, 141403.	9.3	0
1878	Determination of the bifurcation parameter (λ), as a function of time in the electrospinning process using Bratu equation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46, .	1.6	0
1879	Microporous electrospun nonwovens combined with green solvents for the selective peel-off of thin coatings from painting surfaces. Journal of Colloid and Interface Science, 2024, 663, 869-879.	9.4	0
1880	Development and application of electrospun fiber-based multifunctional sensors. Chemical Engineering Journal, 2024, 486, 150204.	12.7	0
1881	Identification and dynamic monitoring of electrospinning jet assisted by coaxial laser. Review of Scientific Instruments, 2024, 95, .	1.3	0
1882	A Review on the Recent Development of Carbon Nanotubes (CNTs) Application for Polymeric Mixed-Matrix Membranes: Synthesis, Performance, and Future Challenges. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
1883	Nanofibrous electrospun scaffold doped with hydroxyapatite derived from sand lobster shell (<i>Panulirus homarus</i>) for bone tissue engineering. RSC Advances, 2024, 14, 8222-8239.	3.6	0

#	Article	IF	CITATIONS
1884	A Review on Silk Fibroin as a Biomaterial in Tissue Engineering. Journal of Biosciences and Medicines, 2024, 12, 275-290.	0.2	0
1885	Ways of tuning the morphology of electrospun carbon nanofibres for flexible supercapacitors. Nano Structures Nano Objects, 2024, 38, 101137.	3.5	Ο
1886	Smart Electrospun Nanofibers from Short Peptidomimetics Based on Pyrrolo-pyrazole Scaffold. Biomacromolecules, 2024, 25, 2378-2389.	5.4	0