Relative importance of basicity in the gas phase and in a in electrospray ionization mass spectrometry

Journal of the American Society for Mass Spectrometry 19, 719-728 DOI: 10.1016/j.jasms.2008.01.003

Citation Report

#	Article	IF	CITATIONS
2	Coordinated dissociative proton transfers of external proton and thiocarbamide hydrogen: MS experimental and theoretical studies on the fragmentation of protonated S-methyl benzenylmethylenehydrazine dithiocarboxylate in gas phase. International Journal of Mass Spectrometry, 2010, 291, 17-23.	1.5	13
3	Electrospray Ionization Efficiency Scale of Organic Compounds. Analytical Chemistry, 2010, 82, 2865-2872.	6.5	232
4	Generation of Naphthoquinone Radical Anions by Electrospray Ionization: Solution, Gas-Phase, and Computational Chemistry Studies. Journal of Physical Chemistry A, 2011, 115, 5453-5460.	2.5	23
5	Kinetic Control of Protonation in Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2011, 22, 360-368.	2.8	36
6	Peptide polarity and the position of arginine as sources of selectivity during positive electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3597-3608.	1.5	15
7	Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomedical Chromatography, 2011, 25, 1-10.	1.7	136
8	Increasing the Sensitivity of an LC-MS Method for Screening Material Extracts for Organic Extractables via Mobile Phase Optimization. Journal of Chromatographic Science, 2012, 50, 213-227.	1.4	39
9	Artifacts in Amine Analysis from Anodic Oxidation of Organic Solvents upon Electrospray Ionization for Mass Spectrometry. European Journal of Mass Spectrometry, 2012, 18, 301-312.	1.0	9
10	Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: Fundamental concepts and technical developments. Journal of Chromatography A, 2012, 1267, 17-31.	3.7	106
11	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	10.0	44
13	Mechanistic study on the ionization of trace gases by an electrospray plume. International Journal of Mass Spectrometry, 2012, 313, 21-29.	1.5	49
14	Quantitative structure–ion intensity relationship strategy to the prediction of absolute levels without authentic standards. Analytica Chimica Acta, 2013, 794, 67-75.	5.4	29
16	Understanding collision-induced dissociation of dofetilide: a case study in the application of density functional theory as an aid to mass spectral interpretation. Analyst, The, 2013, 138, 6869.	3.5	12
17	Compound coverage enhancement of electrospray ionization mass spectrometry through the addition of a homemade needle. Analyst, The, 2013, 138, 1772.	3.5	4
18	An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry. Analytical Methods, 2013, 5, 72-80.	2.7	24
19	Effect of ammonium on liquid- and gas-phase protonation and deprotonation in electrospray ionization mass spectrometry. Analyst, The, 2013, 138, 659-665.	3.5	38
20	From the mobile proton to wandering hydride ion: mechanistic aspects of gasâ€phase ion chemistry. Journal of Mass Spectrometry, 2013, 48, 505-518.	1.6	25
21	Electrospray ionization mass spectrometric studies on uranyl complex with αâ€hydroxyisobutyric acid in water–methanol medium. Rapid Communications in Mass Spectrometry, 2013, 27, 1105-1118.	1.5	18

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
22	Sodium adduct formation efficiency in ESI source. Journal of Mass Spectrometry, 2013, 48, 695-702.	1.6	102
23	Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environmental Pollution, 2014, 184, 25-32.	7.5	211
24	Investigations of Analyte-Specific Response Saturation and Dynamic Range Limitations in Atmospheric Pressure Ionization Mass Spectrometry. Analytical Chemistry, 2014, 86, 10639-10645.	6.5	10
25	Effect of Mobile Phase on Electrospray Ionization Efficiency. Journal of the American Society for Mass Spectrometry, 2014, 25, 1853-1861.	2.8	61
26	Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Analytical Chemistry, 2014, 86, 4822-4830.	6.5	99
27	Ga ⁺ Basicity and Affinity Scales Based on Highâ€Level Abâ€Initio Calculations. ChemPhysChem, 2015, 16, 3206-3213.	2.1	0
28	Exploring analyte response in an ESI-MS system with different chemometric tools. Chemometrics and Intelligent Laboratory Systems, 2015, 146, 120-127.	3.5	11
29	Zero Volt Paper Spray Ionization and Its Mechanism. Analytical Chemistry, 2015, 87, 6786-6793.	6.5	63
30	Chemical derivatization in LC–MS bioanalysis: current & future challenges. Bioanalysis, 2015, 7, 2443-2449.	1.5	9
31	Transferability of the Electrospray Ionization Efficiency Scale between Different Instruments. Journal of the American Society for Mass Spectrometry, 2015, 26, 1923-1930.	2.8	25
32	Dependence of negative-mode electrospray ionization response factors on mobile phase composition and molecular structure for newly-authenticated neutral acylsucrose metabolites. Analyst, The, 2015, 140, 6522-6531.	3.5	17
33	Decoding the signal response of steroids in electrospray ionization mode (ESI-MS). Analytical Methods, 2015, 7, 10433-10444.	2.7	11
34	Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution. Journal of Physical Chemistry A, 2016, 120, 2591-2604.	2.5	51
35	Dopant Enriched Nitrogen Gas Combined with Sheathless Capillary Electrophoresis–Electrospray Ionization-Mass Spectrometry for Improved Sensitivity and Repeatability in Glycopeptide Analysis. Analytical Chemistry, 2016, 88, 5849-5856.	6.5	60
36	Increased electrospray ionization intensities and expanded chromatographic possibilities for emerging contaminants using mobile phases of different pH. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 128-137.	2.3	18
37	Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode. Journal of the American Society for Mass Spectrometry, 2016, 27, 1211-1218.	2.8	9
38	Structure–response relationship in electrospray ionization-mass spectrometry of sartans by artificial neural networks. Journal of Chromatography A, 2016, 1438, 123-132.	3.7	26
39	Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Analytical Chemistry, 2017, 89, 5665-5668.	6.5	84

#	Article	IF	CITATIONS
40	Extraction and fractionation of basic nitrogen compounds in vacuum residue by solid-phase extraction and characterization by ultra-high resolution mass spectrometry. International Journal of Mass Spectrometry, 2017, 418, 67-72.	1.5	27
41	Gasâ€phase fragmentation of protonated piplartine and its fungal metabolites using tandem mass spectrometry and computational chemistry. Journal of Mass Spectrometry, 2017, 52, 517-525.	1.6	8
42	Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides. Journal of the American Society for Mass Spectrometry, 2017, 28, 1647-1656.	2.8	28
43	Predicting ESI/MS Signal Change for Anions in Different Solvents. Analytical Chemistry, 2017, 89, 5079-5086.	6.5	36
44	Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide–Synthetic Polymer Conjugates. Analytical Chemistry, 2017, 89, 1170-1177.	6.5	14
45	Plant Metabolomics: Maximizing Metabolome Coverage by Optimizing Mobile Phase Additives for Nontargeted Mass Spectrometry in Positive and Negative Electrospray Ionization Mode. Analytical Chemistry, 2017, 89, 10474-10486.	6.5	45
46	Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation. Analytical Chemistry, 2017, 89, 9159-9166.	6.5	31
47	Detection of transient dopamine antioxidant radicals using electrochemistry in electrospray ionization mass spectrometry. Electrochimica Acta, 2017, 249, 145-154.	5.2	26
48	Charge Mediated Compaction and Rearrangement of Gas-Phase Proteins: A Case Study Considering Two Proteins at Opposing Ends of the Structure-Disorder Continuum. Journal of the American Society for Mass Spectrometry, 2017, 28, 1450-1461.	2.8	16
49	A tutorial in small molecule identification via electrospray ionizationâ€mass spectrometry: The practical art of structural elucidation. Mass Spectrometry Reviews, 2018, 37, 607-629.	5.4	154
50	Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobileâ€phase additive. Rapid Communications in Mass Spectrometry, 2018, 32, 201-211.	1.5	33
51	Response in Ambient Low Temperature Plasma Ionization Compared to Electrospray and Atmospheric Pressure Chemical Ionization for Mass Spectrometry. International Journal of Analytical Chemistry, 2018, 2018, 1-18.	1.0	7
52	Semiâ€quantitative nonâ€ŧarget analysis of water with liquid chromatography/highâ€resolution mass spectrometry: How far are we?. Rapid Communications in Mass Spectrometry, 2019, 33, 54-63.	1.5	31
53	Influence of the amino acid composition on the ionization efficiencies of small peptides. Journal of Mass Spectrometry, 2019, 54, 481-487.	1.6	23
54	New Approach Combining Molecular Fingerprints and Machine Learning to Estimate Relative Ionization Efficiency in Electrospray Ionization. ACS Omega, 2020, 5, 9510-9516.	3.5	11
55	Enabling resolution of isomeric peptides using tri-state ion gating and Fourier-transform ion mobility spectrometry. International Journal for Ion Mobility Spectrometry, 2020, 23, 133-142.	1.4	4
56	Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Analytical Chemistry, 2020, 92, 4691-4699.	6.5	61
57	Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e-Cigarette Aerosol. Environmental Science & Technology, 2020, 54, 5640-5650.	10.0	15

#	Article	IF	CITATIONS
58	Physicochemical Property Correlations with Ionization Efficiency in Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI). Journal of the American Society for Mass Spectrometry, 2021, 32, 84-94.	2.8	7
59	30ÂYears of research on ESI/MS response: Trends, contradictions and applications. Analytica Chimica Acta, 2021, 1152, 238117.	5.4	25
60	Towards a new pseudo-quantitative approach to evaluate the ionization response of nitrogen compounds in complex matrices. Scientific Reports, 2021, 11, 6417.	3.3	9
61	Relative Energetics of the Gas Phase Protomers of <i>p</i> -Aminobenzoic Acid and the Effect of Protonation Site on Fragmentation. Journal of Physical Chemistry A, 2021, 125, 2849-2865.	2.5	17
62	Simultaneous analysis of E1 and E2 by LC-MS/MS in healthy volunteers: estimation of reference intervals and comparison with a conventional E2 immunoassay. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1178, 122563.	2.3	12
63	Quantitative electrospray ionization efficiency scale: 10Âyears after. Rapid Communications in Mass Spectrometry, 2021, 35, e9178.	1.5	4
65	Quantification for non-targeted LC/MS screening without standard substances. Scientific Reports, 2020, 10, 5808.	3.3	80
66	Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration. PLoS ONE, 2016, 11, e0167502.	2.5	64
67	The Applicability of Molecular Descriptors for Designing an Electrospray Ionization Mass Spectrometry Compatible Library for Drug Discovery. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 806-815.	1.1	8
68	Predicting compound amenability with liquid chromatography-mass spectrometry to improve non-targeted analysis. Analytical and Bioanalytical Chemistry, 2021, 413, 7495-7508.	3.7	12
69	A Palladium Metalloreceptor with Two 5-Amino-3H-1,3,4-thiadiazolin-2-one Groups. Bulletin of the Korean Chemical Society, 2009, 30, 1198-1200.	1.9	0
71	Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environment International, 2022, 158, 107011.	10.0	37
72	Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules, 2022, 27, 1013.	3.8	11
73	Estimation of the concentrations of hydroxylated polychlorinated biphenyls in human serum using ionization efficiency prediction for electrospray. Analytical and Bioanalytical Chemistry, 2022, 414, 7451-7460.	3.7	2
74	Characterization of analytes and matrices. , 2022, , 179-205.		0
75	Calculation of Mass Spectra with the QCxMS Method for Negatively and Multiply Charged Molecules. Journal of the American Society for Mass Spectrometry, 2022, 33, 2226-2242.	2.8	2
76	Overcoming the lack of authentic standards for the quantification of biogenic secondary organic aerosol markers. Environmental Science Atmospheres, 0, , .	2.4	0
77	Nonempirical Prediction of the Relative Electrospray Ionization Efficiencies of Nitroanilines by Combined CBS-QB3 and SCC-DFTB Calculations. Journal of Physical Chemistry A, 2022, 126, 8939-8944.	2.5	0

CITATION REPORT

#	Article	IF	CITATIONS
78	Regarding the Influence of Additives and Additional Plasma-Induced Chemical Ionization on Adduct Formation in ESI/IMS/MS. Journal of the American Society for Mass Spectrometry, 2023, 34, 857-868.	2.8	2
79	Supercritical Fluid Nanospray Mass Spectrometry: II. Effects on Ionization. Journal of the American Society for Mass Spectrometry, 2023, 34, 995-1005.	2.8	1
80	Predicting liquid chromatographyâ´'electrospray ionization/mass spectrometry signal from the structure of model compounds and experimental factors; case study of aripiprazole and its impurities. Journal of Pharmaceutical and Biomedical Analysis, 2023, 233, 115422.	2.8	0
81	μPESI-MS/MS System for Screening and Quantitating Drugs in Plasma Samples. Journal of the American Society for Mass Spectrometry, 0, , .	2.8	0
82	Electrospray Ionization Efficiency Predictions and Analytical Standard Free Quantification for SFC/ESI/HRMS. Journal of the American Society for Mass Spectrometry, 2023, 34, 1511-1518.	2.8	2
83	NORMAN guidance on suspect and non-target screening in environmental monitoring. Environmental Sciences Europe, 2023, 35, .	11.0	12

CITATION REPORT