Design, fabrication and performance analysis of a 200W

Journal of Power Sources 171, 179-185 DOI: 10.1016/j.jpowsour.2006.12.061

Citation Report

#	Article	IF	CITATIONS
1	PEM fuel cell stack testing in the framework of an EU-harmonized fuel cell testing protocol: Results for an 11kW stack. Journal of Power Sources, 2008, 180, 452-460.	7.8	14
2	The effect of low humidity on the uniformity and stability of segmented PEM fuel cells. Journal of Power Sources, 2008, 181, 251-258.	7.8	47
3	Gas–liquid two-phase flow patterns in parallel channels for fuel cells. Journal of Power Sources, 2008, 183, 643-650.	7.8	61
4	Design, Fabrication, and Performance Analysis of a Passive Micro-PEM-Fuel-Cell Stack. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	1
5	Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes. International Journal of Hydrogen Energy, 2010, 35, 5521-5527.	7.1	19
6	A review of accelerated conditioning for a polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 9097-9106.	7.8	83
7	Analysis of the operating conditions influence on PEM fuel cell performances by means of a novel semi-empirical model. International Journal of Hydrogen Energy, 2011, 36, 10434-10442.	7.1	36
8	A review of polymer electrolyte membrane fuel cell stack testing. Journal of Power Sources, 2011, 196, 601-613.	7.8	165
9	Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. Journal of Power Sources, 2011, 196, 4306-4313.	7.8	34
10	Stack Operation Using Composite Membrane-Electrodes Assemblies at 120ÃÂ,Ã,°C. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	7
11	Accelerated conditioning for a proton exchange membrane fuel cell. Journal of Power Sources, 2012, 205, 340-344.	7.8	34
12	Surface modifications of gasketless carbon composite bipolar plates for gas tightness of PEM fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12343-12352.	7.1	11
13	Photoelectrocatalytic decomposition of gaseous isopropanol in a polymer electrolyte photoreactor. Journal of Solid State Electrochemistry, 2013, 17, 737-741.	2.5	6
14	Development and Diagnosis of a 1-kW Self-Sustainable Proton Exchange Membrane Fuel Cell System With a Methanol Reformer. Journal of Fuel Cell Science and Technology, 2013, 10, .	0.8	4
15	Stack performance of phosphotungstic acid functionalized mesoporous silica (HPW-meso-silica) nanocomposite high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12830-12837.	7.1	11
16	Comparative Study of Onâ€Line Membrane Electrode Assembly Activation Procedures in Proton Exchange Membrane Fuel Cell. Fuel Cells, 2013, 13, 946-955.	2.4	24
17	Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. Journal of Materials Chemistry A, 2014, 2, 7637-7655.	10.3	82
18	Thermal design analysis of a 1ÂL cryogenic liquid hydrogen tank for an unmanned aerial vehicle. International Journal of Hydrogen Energy, 2014, 39, 20009-20016.	7.1	13

#	Article	IF	CITATIONS
19	Investigation of water transport and its effect on performance of high-temperature PEM fuel cells. Electrochimica Acta, 2014, 149, 271-277.	5.2	42
20	Influence of ageing on the dynamic behaviour and the electrochemical characteristics of a 500ÂWe PEMFC stack. International Journal of Hydrogen Energy, 2014, 39, 10230-10244.	7.1	20
21	Development of 500ÂW PEM fuel cell stack for portable power generators. International Journal of Hydrogen Energy, 2015, 40, 7707-7719.	7.1	57
22	PEM fuel cell short stack performances of silica doped nanocomposite membranes. International Journal of Hydrogen Energy, 2015, 40, 7870-7878.	7.1	19
23	Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy, 2015, 80, 509-521.	8.8	181
24	Development of novel proton exchange membrane fuel cells using stamped metallic bipolar plates. Journal of Power Sources, 2015, 283, 429-442.	7.8	28
25	Dynamic performance of a high-temperature PEM fuel cell – An experimental study. Energy, 2015, 90, 1949-1955.	8.8	38
26	Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): Review. Composite Structures, 2015, 134, 927-949.	5.8	47
27	Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 2015, 274, 177-185.	7.8	74
28	In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Sensors, 2016, 16, 1731.	3.8	23
29	Comparative studies on performance of single cell and PEMFC stack. AIP Conference Proceedings, 2016,	0.4	2
30	Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology, 2016, , .	0.6	19
31	Development and performance analysis of PEMFC stack based on bipolar plates fabricated employing different designs. Arabian Journal of Chemistry, 2018, 11, 609-614.	4.9	12
32	Pulsed Activation of a Fuel Cell on the Basis of a Proton-Exchange Polymer Membrane. Technical Physics Letters, 2018, 44, 570-573.	0.7	10
33	Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Applied Energy, 2019, 255, 113865.	10.1	83
34	Assessment of the electrochemical characteristics of a Polymer Electrolyte Membrane in a reference single fuel cell testing hardware. Journal of Power Sources, 2020, 473, 228319.	7.8	12
35	Impact of nonuniform reactant flow rate on the performance of proton exchange membrane fuel cell stacks. International Journal of Green Energy, 2020, 17, 603-616.	3.8	8
36	Development of Optimal Conditioning Method to Improve Economic Efficiency of Polymer Electrolyte Membrane (PEM) Fuel Cells. Energies, 2020, 13, 2831.	3.1	11

CITATION REPORT

#	Article	IF	CITATIONS
37	Activation mechanisms in the catalyst coated membrane of PEM fuel cells. Progress in Energy and Combustion Science, 2021, 85, 100924.	31.2	33
38	Enhanced Photocatalytic Decomposition of Gaseous Isopropyl Alcohol in a Polymer Electrolyte Cell. Aerosol and Air Quality Research, 2013, 13, 1570-1581.	2.1	5
39	Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design. Renewable and Sustainable Energy Reviews, 2021, 152, 111660.	16.4	30
40	Fuel Cells Challenges. Green Energy and Technology, 2016, , 77-94.	0.6	1
41	Looking Inside Polymer Electrolyte Membrane Fuel Cell Stack Using Tailored Electrochemical Methods. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	2.1	4
42	Activation of polymer electrolyte membrane fuel cells: Mechanisms, procedures, and evaluation. International Journal of Hydrogen Energy, 2022, 47, 24897-24915.	7.1	18
43	Design and Mathematical Modelling of Proton Exchange Membrane Fuel Cell used in Automobiles. IOP Conference Series: Earth and Environmental Science, 2022, 1100, 012005.	0.3	0
44	Performance Conversion Rate of Proton Exchange Membrane Fuel Cells. , 2022, , .		0
45	Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer. EScience, 2024, , 100254.	41.6	0