Carbon Nanotube Thermal Pastes for Improving Therm

Journal of Electronic Materials 36, 1181-1187

DOI: 10.1007/s11664-007-0188-3

Citation Report

#	Article	IF	CITATIONS
1	Effect of carbon black structure on the effectiveness of carbon black thermal interface pastes. Carbon, 2007, 45, 2922-2931.	5.4	45
2	Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces. Journal of Electronic Materials, 2008, 37, 1698-1709.	1.0	33
3	Factors That Govern the Performance of Thermal Interface Materials. Journal of Electronic Materials, 2009, 38, 175-192.	1.0	28
4	Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47, 295-305.	5.4	129
5	Percolation threshold related to field-effect transistors using thin multi-walled carbon nanotubes composites. Synthetic Metals, 2009, 159, 2034-2037.	2.1	4
6	Double-walled carbon nanotube dispersion via surfactant substitution. Journal of Materials Chemistry, 2009, 19, 2729.	6.7	70
7	The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology, 2009, 20, 245705.	1.3	181
8	Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. Journal of Thermal Analysis and Calorimetry, 2010, 101, 297-302.	2.0	29
9	Thermal Properties. Engineering Materials and Processes, 2010, , 277-331.	0.2	1
10	An Overview of the Thermal Properties and Applications of Carbon Nanotubes. Journal of Polymer Engineering, 2010, 30, 277-308.	0.6	1
12	Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets. Journal of Electronic Materials, 2011, 40, 1490-1500.	1.0	8
13	Thermal and electrical conduction behavior of alumina and multiwalled carbon nanotube incorporated poly(dimethyl siloxane). Thermochimica Acta, 2011, 512, 34-39.	1.2	27
14	Carbon nanotubes based engineering materials for thermal management applications., 2011,,.		0
15	Silver-based thermal interface materials with low thermal resistance. , 2012, , .		6
16	SAC 305 solder paste with carbon nanotubes – part I: investigation of the influence of the carbon nanotubes on the SAC solder paste properties. Soldering and Surface Mount Technology, 2012, 24, 267-279.	0.9	19
17	Architecting Three-Dimensional Networks in Carbon Nanotube Buckypapers for Thermal Interface Materials. Journal of Physical Chemistry C, 2012, 116, 3903-3909.	1.5	96
18	Thermal properties of poly(dimethyl siloxane) nanocomposite filled with silicon carbide and multiwall carbon nanotubes. Polymer International, 2012, 61, 639-645.	1.6	20
19	Electrical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites. Macromolecular Research, 2012, 20, 465-472.	1.0	36

#	ARTICLE	IF	CITATIONS
20	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
21	Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Applied Surface Science, 2013, 283, 525-531.	3.1	58
22	A novel heat dissipation material for high-brightness light-emitting-diode devices. Materials Chemistry and Physics, 2013, 139, 741-746.	2.0	4
23	Enhance heat dissipation for projection lamps by MWCNTs nano-coating. Applied Thermal Engineering, 2013, 51, 1098-1106.	3.0	19
25	SAC solder paste with carbon nanotubes. Part II: carbon nanotubes' effect on solder joints' mechanical properties and microstructure. Soldering and Surface Mount Technology, 2013, 25, 195-208.	0.9	10
27	Nanofins: Science. SpringerBriefs in Applied Sciences and Technology, 2014, , 23-50.	0.2	0
28	Cooling performance enhancement of LED (Light Emitting Diode) using nano-pastes for energy conversion application. Energy, 2014, 76, 468-476.	4.5	23
29	Modifying the characteristics of carbon nanotubes grown on metallic substrates for ultracapacitor applications. Journal of Applied Physics, 2014, 115, .	1.1	6
30	A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler. Journal of Electronic Materials, 2014, 43, 2759-2769.	1.0	14
31	Crack-Free and Scalable Transfer of Carbon Nanotube Arrays into Flexible and Highly Thermal Conductive Composite Film. ACS Applied Materials & Samp; Interfaces, 2014, 6, 539-544.	4.0	54
32	Measurement and modeling of the effective thermal conductivity of sintered silver pastes. International Journal of Thermal Sciences, 2016, 108, 185-194.	2.6	35
33	Thermal conductance of carbon nanotube contacts: Molecular dynamics simulations and general description of the contact conductance. Physical Review B, 2016, 94, .	1.1	31
34	Modeling and optimization of heat transfer in buckypaper reinforced polymer composite. Journal of Materials Science, 2017, 52, 8300-8310.	1.7	0
35	Analysis of model network partitioning process of composites reinforced with nanopaper. AIP Conference Proceedings, 2019, , .	0.3	0
36	Performance evaluation of carbon nanoparticle-based thermal interface materials. Diamond and Related Materials, 2020, 108, 107976.	1.8	7
37	Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydrate Polymers, 2020, 234, 115888.	5.1	112
38	Thermal interface materials for cooling microelectronic systems: present status and future challenges. Journal of Materials Science: Materials in Electronics, 2021, 32, 11339-11366.	1.1	19
39	Light Weight Metallic Coating over Carbon Nano Tubes Polymer Composite Shielding for Electromagnetic Radiation. Asian Journal of Scientific Research, 2017, 10, 259-270.	0.3	1

3

#	Article	IF	CITATIONS
40	A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers: Carbon Nanotubes and Carbon Fibers. Carbon Letters, 2010, 11, 347-356.	3.3	53
41	Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes. Porrime, 2013, 37, 722-729.	0.0	4
42	Chitosan for Suspension Performance and Viscosity of MWCNTs. International Journal of Chemical Engineering and Applications (IJCEA), 2012, , 347-353.	0.3	7
43	Performance of Thermal Interface Materials. Small, 2022, 18, e2200693.	5.2	54
44	Investigation of the influence of submicron spherical diamond particles and silicon whiskers on the thermal conductivity of thermal greases. AIP Conference Proceedings, 2022, , .	0.3	1