Electrically Nonconductive Thermal Pastes with Carbon Component

Journal of Electronic Materials 36, 659-668 DOI: 10.1007/s11664-007-0116-6

Citation Report

#	Article	IF	CITATIONS
1	Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces. Journal of Electronic Materials, 2008, 37, 1698-1709.	2.2	33
2	Factors That Govern the Performance of Thermal Interface Materials. Journal of Electronic Materials, 2009, 38, 175-192.	2.2	28
3	Rheological Behavior of Thermal Interface Pastes. Journal of Electronic Materials, 2009, 38, 2069-2084.	2.2	11
4	Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon, 2009, 47, 295-305.	10.3	129
5	The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon, 2009, 47, 3128-3136.	10.3	112
6	Tailoring Composite Materials. Engineering Materials and Processes, 2010, , 157-201.	0.4	3
8	Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets. Journal of Electronic Materials, 2011, 40, 1490-1500.	2.2	8
9	Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers. Scientific Reports, 2015, 5, 13108.	3.3	20
10	Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications. Composites Science and Technology, 2015, 120, 9-16.	7.8	36
11	Performance evaluation of carbon nanoparticle-based thermal interface materials. Diamond and Related Materials, 2020, 108, 107976.	3.9	7
12	Fabrication and application of graphene-based silicone grease. Materials Research Express, 2023, 10, 095003.	1.6	1
13	A critical review of carbon-based thermal interface materials. Materials Chemistry and Physics, 2023, 309, 128432.	4.0	1