Diseases shared between wildlife and livestock: a Europ

European Journal of Wildlife Research 53, 241 DOI: 10.1007/s10344-007-0098-y

Citation Report

#	Article	IF	CITATIONS
1	Effect of domestic sheep on chamois activity, distribution and abundance on sub-alpine pastures. European Journal of Wildlife Research, 2008, 54, 110-116.	1.4	24
2	Identification of Mycobacterium avium subsp. paratuberculosis in wild cervids (Cervus elaphus) Tj ETQq1 1 0.784 Research, 2008, 54, 357-360.	314 rgBT 1.4	/Overlock 10 20
3	Cladogenesis of the European brown hare (Lepus europaeus Pallas, 1778). European Journal of Wildlife Research, 2008, 54, 495-510.	1.4	25
4	Epidemiological risk factors of Aujeszky's disease in wild boars (Sus scrofa) and domestic pigs in Spain. European Journal of Wildlife Research, 2008, 54, 549-555.	1.4	32
5	Treatment of foot rot in free-ranging mouflon (Ovis gmelini musimon) populations—does it make sense?. European Journal of Wildlife Research, 2008, 54, 657-665.	1.4	23
6	How does hunting influence activity and spatial usage in wild boar Sus scrofa L.?. European Journal of Wildlife Research, 2008, 54, 729-737.	1.4	174
7	Massive presence of Echinococcus granulosus (Cestoda, Taeniidae) cysts in a wild boar (Sus scrofa) from Spain. Parasitology Research, 2008, 103, 705-707.	1.6	20
8	Sarcoptic mange in red deer from Spain: Improved surveillance or disease emergence?. Veterinary Parasitology, 2008, 154, 103-113.	1.8	43
9	Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Veterinary Microbiology, 2008, 127, 1-9.	1.9	276
10	Large-scale ELISA testing of Spanish red deer for paratuberculosis. Veterinary Immunology and Immunopathology, 2008, 124, 75-81.	1.2	44
11	AGE-INDEPENDENT OSTEOPATHOLOGY IN SKELETONS OF A SOUTH AMERICAN CERVID, THE PATAGONIAN HUEMUL (HIPPOCAMELUS BISULCUS). Journal of Wildlife Diseases, 2008, 44, 636-648.	0.8	34
12	Antibodies against Salmonella is associated with reduced reproductive success in female alpine chamois (Rupicapra rupicapra). Canadian Journal of Zoology, 2008, 86, 1111-1120.	1.0	10
13	Research Priorities for Coordinating Management of Food Safety and Water Quality. Journal of Environmental Quality, 2008, 37, 1411-1418.	2.0	42
14	Scientific review on Tuberculosis in wildlife in the EU. EFSA Supporting Publications, 2009, 6, 12E.	0.7	2
15	Comparison of Three Immunological Diagnostic Tests for the Detection of Avian Tuberculosis in Naturally Infected Red Deer (Cervus Elaphus). Journal of Veterinary Diagnostic Investigation, 2009, 21, 102-107.	1.1	9
16	Tuberculosis in roe deer from Spain and Italy. Veterinary Record, 2009, 164, 468-470.	0.3	27
17	High prevalence of antibodies against Chlamydiaceae and Chlamydophila abortus in wild ungulates using two "in house―blocking-ELISA tests. Veterinary Microbiology, 2009, 135, 46-53.	1.9	36
18	Pseudoectoparasites: a new tool for exploring the relationship between host behaviour and ectoparasites. Animal Behaviour, 2009, 77, 1351-1356.	1.9	9

	CHATON	KEPORT	
#	Article	IF	CITATIONS
19	Serological survey of selected infectious diseases in mouflon (Ovis aries musimon) from south-central Spain. European Journal of Wildlife Research, 2009, 55, 75-79.	1.4	26
20	Bluetongue epidemiology in wild ruminants from Southern Spain. European Journal of Wildlife Research, 2009, 55, 173-178.	1.4	53
21	Gene expression profiles of European wild boar naturally infected with Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2009, 129, 119-125.	1.2	30
22	Fate of genetically modified maize and conventional rapeseed, and endozoochory in wild boar (Sus) Tj ETQq1 \Im	1 0.784314 1.5	rgBT /Overlo
23	Helminth species richness in wild wood mice, <i>Apodemus sylvaticus</i> , is enhanced by the presence of the intestinal nematode <i>Heligmosomoides polygyrus</i> . Parasitology, 2009, 136, 793-804.	1.5	40
24	Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildlife Research, 2009, 36, 203.	1.4	27
25	Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research, 2010, 56, 159-167.	1.4	81
26	Prevalence of antibodies against selected agents shared between Cantabrian chamois (Rupicapra) Tj ETQq1 1	0.784314 r 1.4	gBT_/Overlock
27	Qualitative risk assessment of the role of the feral wild boar (Sus scrofa) in the likelihood of incursion and the impacts on effective disease control of selected exotic diseases in England. European Journal of Wildlife Research, 2010, 56, 401-410.	1.4	16
28	Serosurvey for selected pathogens in Iberian roe deer. BMC Veterinary Research, 2010, 6, 51.	1.9	31
29	Unsupervised clustering of wildlife necropsy data for syndromic surveillance. BMC Veterinary Research, 2010, 6, 56.	1.9	21
30	Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infectious Diseases, 2010, 10, 46.	2.9	125
31	Wild Boars as an Important Reservoir for Foodborne Pathogens. Foodborne Pathogens and Disease, 2010, 7, 307-312.	1.8	103
32	Sampling Frequency Differentially Influences Interpretation of Zoonotic Pathogen and Host Dynamics: Sin Nombre Virus and Deer Mice. Vector-Borne and Zoonotic Diseases, 2010, 10, 575-583.	1.5	9
33	The utility of GIS in studying the distribution of Bovine Tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) in Central Portugal. , 2011, , 199-205.		0
34	Management of Yellowstone bison and brucellosis transmission risk – Implications for conservation and restoration. Biological Conservation, 2011, 144, 1322-1334.	4.1	59
35	The role of pathogens in the population dynamics of European ungulates. , 2011, , 319-348.		6
36	Wild ungulate diseases and the risk for livestock and public health. , 2011, , 192-214.		13

#	Article	IF	CITATIONS
37	Effectiveness of Biosecurity Measures in Preventing Badger Visits to Farm Buildings. PLoS ONE, 2011, 6, e28941.	2.5	49
38	Recent advances in the management of bovine tuberculosis in free-ranging wildlife. Veterinary Microbiology, 2011, 151, 23-33.	1.9	42
39	A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Veterinary Research, 2011, 42, 70.	3.0	94
40	The current status and future directions of myxoma virus, a master in immune evasion. Veterinary Research, 2011, 42, 76.	3.0	54
41	Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France. Conservation Genetics, 2011, 12, 1287-1297.	1.5	26
42	Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. European Journal of Wildlife Research, 2011, 57, 749-757.	1.4	32
43	Prevalence of Francisella tularensis in brown hare (Lepus europaeus) populations in Lower Saxony, Germany. European Journal of Wildlife Research, 2011, 57, 1085-1089.	1.4	16
44	Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central-East Portugal. European Journal of Wildlife Research, 2011, 57, 1189-1201.	1.4	30
45	Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. European Journal of Wildlife Research, 2011, 57, 697-706.	1.4	42
46	Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiology, 2011, 11, 27.	3.3	48
47	EPIZOOTIOLOGIC INVESTIGATIONS OF SELECTED ABORTIVE AGENTS IN FREE-RANGING ALPINE IBEX (CAPRA) Tj	ETQ <u>q</u> 0 0 0	rgßT /Overlo
48	Occurrence of avian pathogenicEscherichia coliand antimicrobial-resistantE. coliin red-legged partridges (Alectoris rufa): sanitary concerns of farming. Avian Pathology, 2012, 41, 337-344.	2.0	16
49	meadows. Italian Journal of Animal Science, 2012, 11, e9.	1.9	17
50	<i>Mycobacterium bovis</i> : A Model Pathogen at the Interface of Livestock, Wildlife, and Humans. Veterinary Medicine International, 2012, 2012, 1-17.	1.5	98
51	Progress in Oral Vaccination against Tuberculosis in Its Main Wildlife Reservoir in Iberia, the Eurasian Wild Boar. Veterinary Medicine International, 2012, 2012, 1-11.	1.5	38
52	Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zoologica, 2012, 61, 138-151.	0.9	43
53	Farm-scale risk factors for bovine tuberculosis incidence in cattle herds during the Randomized Badger Culling Trial. Epidemiology and Infection, 2012, 140, 219-230.	2.1	13
54	Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions, 2012, 14, 2283-2300.	2.4	515

#	Article	IF	CITATIONS
55	Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Preventive Veterinary Medicine, 2012, 107, 214-221.	1.9	78
56	Cow dogs: Use of livestock protection dogs for reducing predation and transmission of pathogens from wildlife to cattle. Applied Animal Behaviour Science, 2012, 140, 128-136.	1.9	15
57	Detection of specific antibodies anti-Neospora caninum in the fallow deer (Dama dama). Research in Veterinary Science, 2012, 92, 96-98.	1.9	11
58	Salmonella in meat from hunted game: A Central European perspective. Food Research International, 2012, 45, 609-616.	6.2	54
59	Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over. BMC Veterinary Research, 2012, 8, 116.	1.9	54
60	A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Veterinary Research, 2012, 8, 148.	1.9	49
61	Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock. BMC Veterinary Research, 2012, 8, 204.	1.9	58
62	A serological and bacteriological survey of brucellosis in wild boar (Sus scrofa) in Belgium. BMC Veterinary Research, 2012, 8, 80.	1.9	35
63	Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations. BMC Veterinary Research, 2012, 8, 92.	1.9	12
64	Effect of Cattle on Salmonella Carriage, Diversity and Antimicrobial Resistance in Free-Ranging Wild Boar (Sus scrofa) in Northeastern Spain. PLoS ONE, 2012, 7, e51614.	2.5	42
65	Wildlife-associated zoonotic diseases in some southern African countries in relation to game meat safety: A review. Onderstepoort Journal of Veterinary Research, 2012, 79, E1-E12.	1.2	12
66	Wild boar: an increasing concern for Aujeszky's disease control in pigs?. BMC Veterinary Research, 2012, 8, 7.	1.9	50
67	Genetic evidence for past hybridisation between domestic pigs and English wild boars. Conservation Genetics, 2012, 13, 1355-1364.	1.5	25
68	Linking sanitary and ecological requirements in the management of avian scavengers: effectiveness of fencing against mammals in supplementary feeding sites. Biodiversity and Conservation, 2012, 21, 1673-1685.	2.6	24
69	Unexpected high responses to tuberculin skin-test in farmed red deer: Implications for tuberculosis control. Preventive Veterinary Medicine, 2012, 104, 327-334.	1.9	14
70	Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Veterinaria Scandinavica, 2013, 55, 42.	1.6	50
71	Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Preventive Veterinary Medicine, 2013, 111, 42-50.	1.9	55
72	A coprological survey of parasites of wild carnivores in Ireland. Parasitology Research, 2013, 112, 3587-3593.	1.6	33

#	Article	IF	CITATIONS
73	Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Veterinary Microbiology, 2013, 163, 274-281.	1.9	57
74	Cestode fauna of feral pigeons in Thessaloniki; Northern Greece. Helminthologia, 2013, 50, 39-42.	0.9	3
75	Methicillin resistant Staphylococcus aureus (MRSA) carriage in different free-living wild animal species in Spain. Veterinary Journal, 2013, 198, 127-130.	1.7	72
76	Genetic analysis of Streptococcus suis isolates from wild rabbits. Veterinary Microbiology, 2013, 165, 483-486.	1.9	15
77	Cattle Drive <i>Salmonella</i> Infection in the Wildlife–Livestock Interface. Zoonoses and Public Health, 2013, 60, 510-518.	2.2	26
78	Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Preventive Veterinary Medicine, 2013, 112, 213-221.	1.9	112
79	Wildlife diseases that pose a risk to small ruminants and their farmers. Small Ruminant Research, 2013, 110, 67-70.	1.2	22
80	Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States. Preventive Veterinary Medicine, 2013, 110, 119-132.	1.9	166
81	The impact of increased dispersal in response to disease control in patchy environments. Journal of Theoretical Biology, 2013, 323, 57-68.	1.7	9
82	First detection of Echinococcus granulosus G1 and G7 in wild boars (Sus scrofa) and red deer (Cervus) Tj ETQq1	1 0.78431 1.8	4 rgBT /Over 24
83	Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium. European Journal of Wildlife Research, 2013, 59, 795-803.	1.4	33
84	Reducing Eurasian wild boar (Sus scrofa) population density as a measure for bovine tuberculosis control: Effects in wild boar and a sympatric fallow deer (Dama dama) population in Central Spain. Preventive Veterinary Medicine, 2013, 110, 435-446.	1.9	31
85	Wildlife health investigations: needs, challenges and recommendations. BMC Veterinary Research, 2013, 9, 223.	1.9	156
86	CROSS TRANSMISSION OF GASTROINTESTINAL NEMATODES BETWEEN CAPTIVE NEOTROPICAL FELIDS AND FERAL CATS. Journal of Zoo and Wildlife Medicine, 2013, 44, 936-940.	0.6	7
87	Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research, 2013, 59, 805-814.	1.4	135
88	Small Ruminant Lentiviruses (SRLVs) Break the Species Barrier to Acquire New Host Range. Viruses, 2013, 5, 1867-1884.	3.3	64
89	Virological Investigation of Avian Influenza Virus on Postglacial Species of Phasianidae and Tetraonidae in the Italian Alps. ISRN Veterinary Science, 2013, 2013, 1-5.	1.1	7

#	Article	IF	CITATIONS
91	Experimental treatment of dog lice infestation in interior Alaska wolf packs. Journal of Wildlife Management, 2013, 77, 626-632.	1.8	21
92	A novel approach to assess the probability of disease eradication from a wild-animal reservoir host. Epidemiology and Infection, 2013, 141, 1509-1521.	2.1	57
93	Livestock Depredation by Carnivores in the Serengeti Ecosystem, Tanzania. Environment and Natural Resources Research, 2013, 3, .	0.1	11
94	Exposure of Wild Boar to Mycobacterium tuberculosis Complex in France since 2000 Is Consistent with the Distribution of Bovine Tuberculosis Outbreaks in Cattle. PLoS ONE, 2013, 8, e77842.	2.5	44
95	2. Public health issues related to zoonoses in wildlife and farmed game. , 2014, , 31-58.		1
96	The Socio-Economic Impact of Controlled and Notifiable Wildlife Diseases in the Southern African Development Community (SADC) States of Africa. Poultry Fisheries & Wildlife Sciences, 2014, 2, .	0.1	Ο
97	Host genetic heterozygosity and age are important determinants of porcine circovirus type 2 disease prevalence in European wild boar. European Journal of Wildlife Research, 2014, 60, 803-810.	1.4	4
98	Detection and Molecular Characterization of Mycobacterium microti Isolates in Wild Boar from Northern Italy. Journal of Clinical Microbiology, 2014, 52, 2834-2843.	3.9	41
99	Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Veterinary Research, 2014, 45, 122.	3.0	106
100	An assessment of Zoonotic and Production Limiting Pathogens in Rusa Deer (<i>Cervus timorensis) Tj ETQq1 1</i>	0.784314 3.0	rgBT /Overloc
100	An assessment of Zoonotic and Production Limiting Pathogens in Rusa Deer (<i>Cervus timorensis) Tj ETQq1 1 Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617.</i>	0.784314 0.6	rgBT/Overloc 31
		3.0	10
101	Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617. Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers:	0.6	31
101 102	 Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617. Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787. Hunting in European mountain systems: an economic assessment of game gross margins in nine case 	0.6 3.1	31 10
101 102 103	 Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617. Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787. Hunting in European mountain systems: an economic assessment of game gross margins in nine case study areas. European Journal of Wildlife Research, 2014, 60, 933-936. Warring brothers: The complex interactions between wolves (Canis lupus) and dogs (Canis familiaris) 	0.6 3.1 1.4	31 10 8
101 102 103 104	 Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617. Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787. Hunting in European mountain systems: an economic assessment of game gross margins in nine case study areas. European Journal of Wildlife Research, 2014, 60, 933-936. Warring brothers: The complex interactions between wolves (Canis lupus) and dogs (Canis familiaris) in a conservation context. Biological Conservation, 2014, 171, 232-245. 	0.6 3.1 1.4 4.1	13 31 10 8 71
101 102 103 104	 Wild boars' social structure in the Mediterranean habitat. Italian Journal of Zoology, 2014, 81, 610-617. Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787. Hunting in European mountain systems: an economic assessment of game gross margins in nine case study areas. European Journal of Wildlife Research, 2014, 60, 933-936. Warring brothers: The complex interactions between wolves (Canis lupus) and dogs (Canis familiaris) in a conservation context. Biological Conservation, 2014, 171, 232-245. Globalization and Livestock Biosecurity. Agricultural Research, 2014, 3, 22-31. Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter?. 	0.6 3.1 1.4 4.1 1.7	13 31 10 8 71 21

# 109	ARTICLE Generalists at the interface: Nematode transmission between wild and domestic ungulates. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 242-250.	IF 1.5	Citations
110	Shared risk factors for multiple livestock diseases: A case study of bovine tuberculosis and brucellosis. Research in Veterinary Science, 2014, 97, 491-497.	1.9	21
111	Long-Term Spatiotemporal Stability and Dynamic Changes in the Haemoparasite Community of Bank Voles (Myodes glareolus) in NE Poland. Microbial Ecology, 2014, 68, 196-211.	2.8	39
112	Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. European Journal of Wildlife Research, 2014, 60, 459-467.	1.4	21
113	The BOSâ,"¢ as a species-specific method to deliver baits to wild boar in a Mediterranean area. European Journal of Wildlife Research, 2014, 60, 555-558.	1.4	17
114	Molecular evidence of Anaplasma phagocytophilum in wild boar (Sus scrofa) in Belgium. BMC Veterinary Research, 2014, 10, 80.	1.9	10
115	Genetic analysis of hybridization between domesticated endangered pig breeds and wild boar. Livestock Science, 2014, 162, 1-4.	1.6	25
116	Spatial distribution of wild boar population abundance: Basic information for spatial epidemiology and wildlife management. Ecological Indicators, 2014, 36, 594-600.	6.3	79
117	Near infrared reflectance spectroscopy (NIRS) for predicting glucocorticoid metabolites in lyophilised and oven-dried faeces of red deer. Ecological Indicators, 2014, 45, 522-528.	6.3	9
118	The biological potential of the raccoon dog (Nyctereutes procyonoides, Gray 1834) as an invasive species in Europe—new risks for disease spread?. Acta Theriologica, 2014, 59, 49-59.	1.1	43
119	1. A note on human-livestock-wildlife interactions and implications for food safety. , 2014, , 21-30.		0
120	The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Frontiers in Veterinary Science, 2014, 1, 27.	2.2	128
121	A picture of trends in Aujeszky's disease virus exposure in wild boar in the Swiss and European contexts. BMC Veterinary Research, 2015, 11, 277.	1.9	25
122	Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (<i>Capreolu</i> s) Tj ETQq1 1 ().784314 r 3.9	gBT /Overloo
123	Risk Factors for Brucella spp. in Domestic and Wild Animals. , 2015, , .		11
124	Influence of human activities on the activity patterns of Japanese sika deer (Cervus nippon) and wild boar (Sus scrofa) in Central Japan. European Journal of Wildlife Research, 2015, 61, 517-527.	1.4	39
125	Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Critical Reviews in Microbiology, 2015, 41, 508-519.	6.1	50
126	Long-Term Surveillance of Aujeszky's Disease in the Alpine Wild Boar (Sus scrofa). EcoHealth, 2015, 12, 563-570.	2.0	19

ARTICLE IF CITATIONS # Wild Red Foxes (<i>Vulpes vulpes</i>) as Sentinels of Parasitic Diseases in the Province of Soria, 127 1.5 13 Northern Spain. Vector-Borne and Zoonotic Diseases, 2015, 15, 743-749. Increased Mycoplasma hyopneumoniae Disease Prevalence in Domestic Hybrids Among Free-Living Wild Boar. EcoHealth, 2015, 12, 571-579. Prioritisation of wildlife pathogens to be targeted in European surveillance programmes: Expert-based 129 1.9 22 risk analysis focus on ruminants. Preventive Veterinary Medicine, 2015, 118, 271-284. Stakeholder opinions on the practicality of management interventions to control bovine tuberculosis. Veterinary Journal, 2015, 204, 179-185. Opportunities and challenges with growing wildlife populations and zoonotic diseases in Sweden. 131 30 1.4 European Journal of Wildlife Research, 2015, 61, 649-656. Retrospective serological study to monitor the health status of Apennine chamois (Rupicapra) Tj ETQq1 1 0.784314 rgBT /Overlock 1 133 Trichinella pseudospiralis in the Iberian peninsula. Veterinary Parasitology, 2015, 210, 255-259. 1.8 14 Single Causative Factor for Severe Pneumonia Epizootics in Muskoxen?. EcoHealth, 2015, 12, 395-397. 2.0 134 Exposure of extensively farmed wild boars (<i>Sus scrofa scrofa</i>) to selected pig pathogens in 135 12 6.7 Greece. Veterinary Quarterly, 2015, 35, 97-101. <i>>Escherichia coli</i>O157:H7 in wild boars (<i>Sus scrofa</i>) and Iberian ibex (<i>Capra) Tj ETQq1 1 0.784314 rgBT /Overlock 10 6.7 Veterinary Quarterly, 2015, 35, 102-106. A serosurvey for selected pathogens in Greek European wild boar. Veterinary Record Open, 2015, 2, 137 1.0 43 e000077. Hematology, Serum Chemistry, and Serum Protein Electrophoresis Ranges for Free-ranging Roe Deer 138 0.8 (<i>Capreolus capreolus </i>) in Sweden. Journal of Wildlife Diseases, 2015, 51, 269-273. Estimating red deer abundance using the pellet-based distance sampling method. Journal of Forest 139 1.1 10 Science, 2015, 61, 422-430. Avian Influenza Risk Surveillance in North America with Online Media. PLoS ONE, 2016, 11, e0165688. 140 2.5 Limited sharing of tick-borne hemoparasites between sympatric wild and domestic ungulates. 141 1.8 9 Veterinary Parasitology, 2016, 226, 167-173. The ecology of wildlife disease surveillance: demographic and prevalence fluctuations undermine 142 surveillance. Journal of Applied Ecology, 2016, 53, 1460-1469. Monitoring African buffalo (Syncerus caffer) and cattle (Bos taurus) movement across a damaged 143 veterinary control fence at a Southern African wildlife/livestock interface. African Journal of 0.9 11 Ecology, 2016, 54, 415-423. Creeping into a wild boar stomach to find traces of supplementary feeding. Wildlife Research, 2016, 43, 144 1.4 590.

#	Article	IF	CITATIONS
145	Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecology Letters, 2016, 19, 443-449.	6.4	45
146	Effects of wild boar predation on nests of wading birds in various Swedish habitats. European Journal of Wildlife Research, 2016, 62, 423-430.	1.4	10
147	Research Priorities and Trends in Infections Shared with Wildlife. Wildlife Research Monographs, 2016, , 55-78.	0.9	1
148	Trends in Wildlife Research: A Bibliometric Approach. Wildlife Research Monographs, 2016, , 1-28.	0.9	1
149	Contact rates of wild-living and domestic dog populations in Australia: a new approach. Oecologia, 2016, 182, 1007-1018.	2.0	19
150	Interrelationships Between Wild Boars (Sus scrofa) and Truffles. Soil Biology, 2016, , 375-389.	0.8	6
151	Infections shared with wildlife: an updated perspective. European Journal of Wildlife Research, 2016, 62, 511-525.	1.4	34
152	Blood thicker than water: kinship, disease prevalence and group size drive divergent patterns of infection risk in a social mammal. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160798.	2.6	14
153	Spatiotemporal and Ecological Patterns of <i>Mycobacterium microti</i> Infection in Wild Boar (<i>Sus scrofa</i>). Transboundary and Emerging Diseases, 2016, 63, e381-e388.	3.0	14
154	Evidence of shared bovine viral diarrhea infections between red deer and extensively raised cattle in south-central Spain. BMC Veterinary Research, 2016, 12, 11.	1.9	27
155	Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. European Journal of Wildlife Research, 2016, 62, 65-78.	1.4	53
156	Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China. Archives of Virology, 2016, 161, 867-872.	2.1	3
157	Management of Wild Boar in Protected Areas: The Case of Elba Island. , 2016, , 229-251.		6
158	Regulating wild boar populations is "somebody else's problemâ€I - Human dimension in wild boar management. Science of the Total Environment, 2016, 554-555, 311-319.	8.0	59
159	Seasonal Dynamics, Parity Rate, and Composition ofCulicoides(Diptera: Ceratopogonidae) Occurring in the Vicinity of Wild and Domestic Ruminants in the Czech Republic. Journal of Medical Entomology, 2016, 53, 416-424.	1.8	8
160	Absence of circulation of <i>Pestivirus</i> between wild and domestic ruminants in southern Spain. Veterinary Record, 2016, 178, 215-215.	0.3	14
161	A European Perspective on the Transmission of Foodborne Pathogens at the Wildlife–Livestock–Human Interface. , 2016, , 59-88.		7
162	Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France. European Journal of Wildlife Research, 2016, 62, 33-42.	1.4	46

		CITATION REPORT	
#	Article	IF	CITATIONS
163	The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Science of the Total Environment, 2016, 541, 877-882.	8.0	70
164	Factors that Influence <i>Mycobacterium bovis</i> Infection in RedÂDeer and Wild Boar in an Epidemiological Risk Area forÂTuberculosis of Game Species in Portugal. Transboundary and Emerging Diseases, 2017, 64, 793-804.	3.0	16
165	Parenteral Vaccination with Heat-Inactivated <i>Mycobacterium Bovis</i> Reduces the Prevalence of Tuberculosis-Compatible Lesions in Farmed Wild Boar. Transboundary and Emerging Diseases, 2017, 64, e18-e21.	3.0	18
166	Detection of <i>Echinococcus granulosus</i> G3 in a Wild Boar (<i>Sus scrofa</i>) in Central Italy using PCR and Sequencing. Journal of Wildlife Diseases, 2017, 53, 399-401.	0.8	10
167	Effect of host diversity and species assemblage composition on bovine tuberculosis (bTB) risk in Ethiopian cattle. Parasitology, 2017, 144, 783-792.	1.5	6
168	An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: The wild boar. Mammalian Biology, 2017, 84, 73-81.	1.5	70
169	Effects of emerging infectious diseases on host population genetics: a review. Conservation Genetics, 2017, 18, 1235-1245.	1.5	39
170	Prevalence and distribution of infectious and parasitic agents in roe deer from Spain and their possible role as reservoirs. Italian Journal of Animal Science, 2017, 16, 266-274.	1.9	18
171	<i>Hepatozoon</i> SPP. Infect Free-Ranging Jaguars (<i>Panthera onca</i>) in Brazil. Journal of Parasitology, 2017, 103, 243-250.	0.7	13
172	Seroprevalence of Leptospirosis, Brucellosis, and Q Fever in a Wild Red Deer (<i>Cervus elaphus</i>) Population Kept in a Fenced Reserve in Absence of Contact with Livestock. Vector-Borne and Zoonotic Diseases, 2017, 17, 692-697.	1.5	9
173	Livestock as sentinels for an infectious disease in a sympatric or adjacent-living wildlife reservoir host. Preventive Veterinary Medicine, 2017, 148, 106-114.	1.9	4
174	Assessment of microbial carcass contamination of hunted wild boars. European Journal of Wildlife Research, 2017, 63, 1.	1.4	30
175	Control hunting of wild animals: health, money, or pleasure?. European Journal of Wildlife Research, 2017, 63, 1.	1.4	10
177	Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya. Frontiers in Veterinary Science, 2017, 4, 73.	2.2	52
178	Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) NoÂ2016/429): infection with BrucellaÂabortus, B.Âmelitensis and B.Âsuis. EFSA Journal, 2017, 15, e04889.	1.8	1
179	A SEROLOGIC SURVEY OF PATHOGENS IN WILD BOAR (SUS SCROFA) IN SWEDEN. Journal of Wildlife Diseases, 2018, 54, 229.	0.8	35
180	Pigs in space: An agent-based model of wild boar (Sus scrofa) movement into cities. Landscape and Urban Planning, 2018, 173, 70-80.	7.5	22
181	Biology and Impacts of Pacific Islands Invasive Species. 14. <i>Sus scrofa,</i> the Feral Pig (Artiodactyla:) Tj ETQ	q1 1.0.784 0.6	-314 rgBT /C

#	Article	IF	CITATIONS
182	Influence of livestock, habitat type, and density of roe deer (Capreolus capreolus) on parasitic larvae abundance and infection seroprevalence in wild populations of roe deer from central Iberian Peninsula. Mammal Research, 2018, 63, 213-222.	1.3	8
183	Migratory behaviour predicts greater parasite diversity in ungulates. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180089.	2.6	42
184	Molecular identification of cryptic cysticercosis: <i>Taenia ovis krabbei</i> in wild intermediate and domestic definitive hosts. Journal of Helminthology, 2018, 92, 203-209.	1.0	6
185	The Local Value Chain of Hunted Red Deer Meat: A Scenario Analysis Based on a Northern Italian Case Study. Resources, 2018, 7, 34.	3.5	12
186	Hotspots of recent hybridization between pigs and wild boars in Europe. Scientific Reports, 2018, 8, 17372.	3.3	53
187	Identification of Cross-Protective Potential Antigens against PathogenicBrucellaspp. through Combining Pan-Genome Analysis with Reverse Vaccinology. Journal of Immunology Research, 2018, 2018, 1-15.	2.2	37
188	Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Veterinary Sciences, 2018, 5, 92.	1.7	14
189	Infection of Wildlife by Mycobacterium bovis in France Assessment Through a National Surveillance System, Sylvatub. Frontiers in Veterinary Science, 2018, 5, 262.	2.2	45
190	Generalist haemosporidian parasites are better adapted to a subset of host species in a multiple host community. Molecular Ecology, 2018, 27, 4336-4346.	3.9	26
191	Distribution of enteropathogenic Yersinia spp. and Salmonella spp. in the Swedish wild boar population, and assessment of risk factors that may affect their prevalence. Acta Veterinaria Scandinavica, 2018, 60, 40.	1.6	22
192	Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Supporting Publications, 2018, 15, 1449E.	0.7	38
193	Animal tuberculosis in a free-ranging fallow deer in northwest Italy: a case of "lucky strain survival― or multi-host epidemiological system complexity?. European Journal of Wildlife Research, 2019, 65, 1.	1.4	1
194	Myxomatosis and Rabbit Haemorrhagic Disease: A 30-Year Study of the Occurrence on Commercial Farms in Spain. Animals, 2019, 9, 780.	2.3	13
195	Effect of culling on individual badger <i>Meles meles</i> behaviour: Potential implications for bovine tuberculosis transmission. Journal of Applied Ecology, 2019, 56, 2390-2399.	4.0	19
196	Multi-host disease management: the why and the how to include wildlife. BMC Veterinary Research, 2019, 15, 295.	1.9	18
197	Limited changes in the fecal microbiome composition of laying hens after oral inoculation with wild duck feces. Poultry Science, 2019, 98, 6542-6551.	3.4	7
198	A metaproteomics approach reveals changes in mandibular lymph node microbiota of wild boar naturally exposed to an increasing trend of Mycobacterium tuberculosis complex infection. Tuberculosis, 2019, 114, 103-112.	1.9	2
199	Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy. EcoHealth, 2019, 16, 420-428.	2.0	26

#	Article	IF	CITATIONS
200	CANINE DISTEMPER VIRUS AS AN EMERGING MULTIHOST PATHOGEN IN WILD CARNIVORES IN NORTHWEST ITALY. Journal of Wildlife Diseases, 2019, 55, 844.	0.8	10
201	A Multi-Pathogen Screening of Captive Reindeer (Rangifer tarandus) in Germany Based on Serological and Molecular Assays. Frontiers in Veterinary Science, 2019, 6, 461.	2.2	14
202	Analysis of Lifetime Mortality Trajectories in Wildlife Disease Research: BaSTA and Beyond. Diversity, 2019, 11, 182.	1.7	4
203	Fireworksâ€like surveillance approach: The case of HPAI H5N1 in wild birds in Europe. Transboundary and Emerging Diseases, 2020, 67, 206-222.	3.0	1
204	Scientific priorities and shepherds' perceptions of ungulate's contributions to people in rewilding landscapes. Science of the Total Environment, 2020, 705, 135876.	8.0	11
205	The wildlifeâ€livestock interface on extensive freeâ€ranging pig farms in central Spain during the "montanera―period. Transboundary and Emerging Diseases, 2021, 68, 2066-2078.	3.0	15
206	A Review of Pathogen Transmission at the Backyard Chicken–Wild Bird Interface. Frontiers in Veterinary Science, 2020, 7, 539925.	2.2	28
207	Who's afraid of the big bad boar? Assessing the effect of wild boar presence on the occurrence and activity patterns of other mammals. PLoS ONE, 2020, 15, e0235312.	2.5	7
208	The importance of longâ€ŧerm studies on wildlife diseases and their interfaces with humans and domestic animals: A review. Transboundary and Emerging Diseases, 2021, 68, 1895-1909.	3.0	25
209	PCR Detection of Toxoplasma gondii in European Wild Rabbit (Oryctolagus cuniculus) from Portugal. Microorganisms, 2020, 8, 1926.	3.6	9
210	Mycobacterium bovis Population Structure in Cattle and Local Badgers: Co-Localisation and Variation by Farm Type. Pathogens, 2020, 9, 592.	2.8	8
211	The hard numbers of tuberculosis epidemiology in wildlife: A metaâ€regression and systematic review. Transboundary and Emerging Diseases, 2021, 68, 3257-3276.	3.0	17
212	Fineâ€scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecology and Evolution, 2020, 10, 13796-13809.	1.9	6
213	Chronic bee paralysis as a serious emerging threat to honey bees. Nature Communications, 2020, 11, 2164.	12.8	23
214	Fifteen years since the first record of Trichinella pseudospiralis in Slovakia: What's new?. Veterinary Parasitology, 2021, 297, 109129.	1.8	5
215	Estimating wild boar density and rooting activity in a Mediterranean protected area. Mammalian Biology, 2020, 100, 241-251.	1.5	17
216	Addressing social attitudes toward lethal control of wildlife in national parks. Conservation Biology, 2020, 34, 868-878.	4.7	26
217	LEPTOSPIRA, PARVOVIRUS, AND TOXOPLASMA IN THE NORTH AMERICAN RIVER OTTER (LONTRA CANADENSIS) IN NORTH CAROLINA, USA. Journal of Wildlife Diseases, 2020, 56, 791-802.	0.8	5

#	Article	IF	CITATIONS
218	Infectious Wildlife Diseases in Austria—A Literature Review From 1980 Until 2017. Frontiers in Veterinary Science, 2020, 7, 3.	2.2	10
219	The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biological Conservation, 2020, 244, 108500.	4.1	128
220	Detection of a putative novel genotype of Anaplasma in gray-brocket deer (Mazama gouazoubira) from Uruguay. Experimental and Applied Acarology, 2020, 81, 575-583.	1.6	4
221	Guidance on estimation of abundance and density data of wild ruminant population: methods, challenges, possibilities. EFSA Supporting Publications, 2020, 17, 1876E.	0.7	6
222	Molecular Survey on Vector-Borne Pathogens in Alpine Wild Carnivorans. Frontiers in Veterinary Science, 2020, 7, 1.	2.2	152
223	Ungulate management in European national parks: Why a more integrated European policy is needed. Journal of Environmental Management, 2020, 260, 110068.	7.8	33
224	Seroprevalence of small ruminant lentivirus (SRLV) infection in wild cervids in Poland. Preventive Veterinary Medicine, 2020, 176, 104905.	1.9	10
225	Monitoring of Pseudorabies in Wild Boar of Germany—A Spatiotemporal Analysis. Pathogens, 2020, 9, 276.	2.8	11
226	Wild boar as a potential reservoir of zoonotic tick-borne pathogens. Ticks and Tick-borne Diseases, 2021, 12, 101558.	2.7	20
227	Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Review, 2021, 51, 95-108.	4.8	117
228	Collecting Data to Assess the Interactions Between Livestock and Wildlife. Wildlife Research Monographs, 2021, , 307-338.	0.9	1
229	<i>Setaria cervi</i> (Filarioidea, Onchocercidae) undressing in ungulates: altered morphology of developmental stages, their molecular detection and complete sequence <i>cox</i> 1 gene. Parasitology, 2021, 148, 598-611.	1.5	1
230	Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in Oceania. Wildlife Research Monographs, 2021, , 217-243.	0.9	0
231	Identification of Escherichia coli and Related Enterobacteriaceae and Examination of Their Phenotypic Antimicrobial Resistance Patterns: A Pilot Study at A Wildlife–Livestock Interface in Lusaka, Zambia. Antibiotics, 2021, 10, 238.	3.7	9
232	Serotyping and Evaluation of Antimicrobial Resistance of Salmonella Strains Detected in Wildlife and Natural Environments in Southern Italy. Antibiotics, 2021, 10, 353.	3.7	12
233	Integrated framework for stakeholder participation: Methods and tools for identifying and	2.0	21
	addressing human–wildlife conflicts. Conservation Science and Practice, 2021, 3, e399.		
234	Lungworms (Metastrongylus spp.) and intestinal parasitic stages of two separated Swiss wild boar populations north and south of the Alps: Similar parasite spectrum with regional idiosyncrasies. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 202-210.	1.5	7

#	Article	IF	CITATIONS
236	Sarcoptic mange: An emerging panzootic in wildlife. Transboundary and Emerging Diseases, 2022, 69, 927-942.	3.0	56
237	Anthropogenic threats drive spatio-temporal responses of wildcat on Mt. Etna. European Journal of Wildlife Research, 2021, 67, 1.	1.4	4
238	COVIDâ€19, media coverage of bats and related Web searches: a turning point for bat conservation?. Mammal Review, 2022, 52, 16-25.	4.8	15
239	The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Scientific Reports, 2021, 11, 13256.	3.3	39
240	Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations. EFSA Journal, 2021, 19, e06716.	1.8	3
241	Beware of dogs! Domestic animals as a threat for wildlife conservation in Alpine protected areas. European Journal of Wildlife Research, 2021, 67, 70.	1.4	10
242	Assessment of Associations between Malaria Parasites and Avian Hosts—A Combination of Classic System and Modern Molecular Approach. Biology, 2021, 10, 636.	2.8	3
243	The contribution of bovines to human health against viral infections. Environmental Science and Pollution Research, 2021, 28, 46999-47023.	5.3	16
244	Society's preferences when ecological values and health risks are at stake: An application to the population control of a flagship ungulate (Iberian ibex) in Sierra de Guadarrama national park, Spain. Science of the Total Environment, 2021, 776, 146012.	8.0	5
245	Stakeholders engagement as an important step for the longâ€ŧerm monitoring of wild ungulate populations. Ecological Solutions and Evidence, 2021, 2, e12088.	2.0	2
246	Vector-borne zoonotic blood parasites in wildlife from Ecuador: A report and systematic review. Veterinary World, 2021, 14, 1935-1945.	1.7	1
247	Detection of Stephanurus dentatus in wild boar urine using different parasitological techniques. International Journal for Parasitology: Parasites and Wildlife, 2021, 15, 31-34.	1.5	1
248	CIS as an Epidemiological Tool to Monitor the Spatial–Temporal Distribution of Tuberculosis in Large Game in a High-Risk Area in Portugal. Animals, 2021, 11, 2374.	2.3	6
249	An approach to assess stress in response to drive hunts using cortisol levels of wild boar (Sus) Tj ETQq1 1 0.784	314.ggBT /	Overlock 10
250	How Do Hunters Hunt Wild Boar? Survey on Wild Boar Hunting Methods in the Federal State of Lower Saxony. Animals, 2021, 11, 2658.	2.3	6
251	Enterobacteriaceae and Salmonella contamination of wild boar (Sus scrofa) carcasses: comparison between different sampling strategies. European Journal of Wildlife Research, 2021, 67, 88.	1.4	6
252	Host Community Interfaces: The Wildlife-Livestock. Wildlife Research Monographs, 2021, , 3-32.	0.9	1
253	Infectious Diseases, Climate Change Effects on. , 2013, , 117-146.		3

ARTICLE IF CITATIONS # Characterisation of the Wildlife Reservoir Community for Human and Animal Trypanosomiasis in the 254 3.0 85 Luangwa Valley, Zambia. PLoS Neglected Tropical Diseases, 2011, 5, e1211. Bovine Tuberculosis in Doñana Biosphere Reserve: The Role of Wild Ungulates as Disease Reservoirs in 2.5 139 the Last Iberian Lynx Strongholds. PLoS ONE, 2008, 3, e2776. Demographic Processes Drive Increases in Wildlife Disease following Population Reduction. PLoS 256 2.5 18 ONE, 2014, 9, e86563. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology. PLoS ÓNE, 2014, 9, e115608. Lontra longicaudis infected with canine parvovirus and parasitized by Dioctophyma renale. Pesquisa 258 0.5 9 Veterinaria Brasileira, 2018, 38, 1844-1848. Isolation and Characterization of Novel Trichomonas gallinae Ribotypes Infecting Domestic and Wild Birds in Riyadh, Saudi Arabia. Avian Diseases, 2019, 64, 130. 259 1.0 Joining the dots $\hat{a} \in$ understanding the complex interplay between the values we place on wildlife, 260 biodiversity conservation, human and animal health: A review. Schweizer Archiv Fur Tierheilkunde, 0.8 6 2015, 157, 243-253. National competence center for wildlife diseases in Switzerland: Mandate, development and current 0.8 strategies. Schweizer Archiv Fur Tierheilkunde, 2015, 157, 255-266. Integrating ecology with management to control wildlife brucellosis. OIE Revue Scientifique Et Technique, 2013, 32, 239-247. 263 1.2 6 The establishment and distribution of feral wild boar (Sus scrofa) in England. Wildlife Biology in 264 0.1 Practice, 2014, 10, . Reproductive and demographic parameters in Sardinian wild boar, <i>Sus scrofa meridionalis</i>. Folia 265 0.9 8 Zoologica, 2014, 63, 301-307. Variability of daily space use in wild boar Sus scrofa. Wildlife Biology, 2020, 2020, . 266 1.4 Endoparasite diversity of the main wild ungulates in Portugal. Wildlife Biology, 2020, 2020, . 267 1.4 9 Salmonella spp. in wild boar (Sus scrofa): a public and animal health concern., 2011, , 131-136. The taxonomy, life cycle and pathology of Sarcoptes scabiei and Notoedres cati (Acarina, Sarcoptidae): 270 0.3 13 A review in a Fennoscandian wildlife perspective. Fauna Norvegica, 0, 35, 21-33. Una propuesta para considerar aspectos sanitarios en la regulaciÃ³n cinegéti<u>ca. Ecosistemas, 2013, 22</u>, 271 54-60. Influence of Anthropic Environmental-Related Factors on Erysipelas in Wild Boar. EcoHealth, 2021, 18, 272 2.0 1 372-382. Effectiveness of signs of activity as relative abundance indices for wild boar. Wildlife Biology, 2021, 273 1.4 2021,.

ARTICLE IF CITATIONS # Identification of Differences in Hunting Management in Poland and Selected European Countries in 274 3.2 2 the Context of Sustainable Development. Sustainability, 2021, 13, 11048. Infectious Diseases, Climate Change Effects on., 2012, , 5358-5378. Screening of the Prevalence of Antibodies to the Tick Hyalomma lusitanicum in a Province of 276 0 Northern Spain., 0,,. Efectos de los cambios en los usos del suelo en las especies cinegéticas en el sur de España: 278 0.4 repercusiones para la gestiÃ³n. Ecosistemas, 2013, 22, 33-39. Where has all our research gone? A 20-year assessment of the peer-reviewed wildlife conservation 279 0.3 14 literature. International Journal of Comparative Psychology, 2014, 27, . Roles of wildlife in epidemiology of rabies: A mini-review. Journal of Advanced Veterinary and Animal 280 1.2 Research, 2017, 4, 1. 15. Biosecurity: methods to reduce contact risks between vectors and livestock. Ecology and Control 281 0.7 1 of Vector-Borne Diseases, 2018, , 453-464. Toward an Integrated History to Govern the Commons: Using the Archive to Enhance Local 1.4 Knowledge. International Journal of the Commons, 2020, 14, 154. 284 Viral Zoonoses: Wildlife Perspectives. Livestock Diseases and Management, 2020, , 339-378. 0.5 0 SEROLOGY AS A TOOL TO INVESTIGATE SARCOPTIC MANGE IN AMERICAN BLACK BEARS (URSUS) Tj ETQq1 1 0.784314 rgBT/Overlo Year-round Monitoring of <i>Salmonella</i>Infection in Roosting Crows in Japan. Japanese Journal of 286 0.2 0 Zoo and Wildlife Medicine, 2020, 25, 1-7. Red deer reveal spatial risks of Crimeanâ€Congo haemorrhagic fever virus infection. Transboundary and 3.0 Emerging Diseases, 2022, 69, . Aujeszky's Disease in South-Italian Wild Boars (Sus scrofa): A Serological Survey. Animals, 2021, 11, 288 2.3 12 3298. Gastrointestinal parasites of six large mammals in the Wasgomuwa National Park, Sri Lanka. 289 1.5 International Journal for Parasitology: Parasites and Wildlife, 2021, 17, 1-6. Wild Boar (Sus scrofa) as Reservoir of Zoonotic Yeasts: Bioindicator of Environmental Quality. 290 3.17 Mycopathologia, 2022, 187, 235-248. Seasonal variation in space use and territoriality in a large mammal (Sus scrofa). Scientific Reports, 2022, 12, 4023. Behavioral states in space and time: understanding landscape use by an invasive mammal. Journal of 292 1.8 1 Wildlife Management, 0, , . Molecular Detection of Human Pathogenic Gastric Helicobacter Species in Wild Rabbits (Oryctolagus) Tj ETQq1 1 0.784314 rgBT /Ove

#	Article	IF	CITATIONS
294	Epitope-Based Vaccine of a Brucella abortus Putative Small RNA Target Induces Protection and Less Tissue Damage in Mice. Frontiers in Immunology, 2021, 12, 778475.	4.8	3
295	Risk of Infection, Local Prevalence and Seasonal Changes in an Avian Malaria Community Associated with Game Bird Releases. Diversity, 2021, 13, 657.	1.7	4
297	The Relationship between Vector Species Richness and the Risk of Vector-Borne Infectious Diseases. American Naturalist, 2022, 200, 330-344.	2.1	2
306	Institutional one health and animal-human health connections in Nthongoni, Eastern Kenya. Health and Place, 2022, 77, 102818.	3.3	2
307	Molecular epidemiological study on ticks and tick-borne protozoan parasites (Apicomplexa:) Tj ETQq0 0 0 rgBT /0 (Sciurus vulgaris) in central Europe, Hungary. Parasites and Vectors, 2022, 15, .	Overlock 1 2.5	0 Tf 50 587 1 9
308	Retrospective Detection and Complete Genomic Sequencing of Canine morbillivirus in Eurasian Otter (Lutra lutra) Using Nanopore Technology. Viruses, 2022, 14, 1433.	3.3	1
309	PATHOGEN SURVEY AND PREDICTORS OF LYMPHOPROLIFERATIVE DISEASE VIRUS INFECTION IN WILD TURKEYS (MELEAGRIS GALLOPAVO). Journal of Wildlife Diseases, 2022, 58, .	0.8	4
310	Moss cover and browsing scores as sustainability indicators of mountain ungulate populations in Mediterranean environments. Biodiversity and Conservation, 0, , .	2.6	1
312	The African swine fever modelling challenge: Objectives, model description and synthetic data generation. Epidemics, 2022, 40, 100616.	3.0	6
313	Description of a Sarcoptic Mange Outbreak in Alpine Chamois Using an Enhanced Surveillance Approach. Animals, 2022, 12, 2077.	2.3	4
314	Morphologic and physiologic characteristics of green sea turtle (Chelonia mydas) hatchlings in southeastern Florida, USA. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2022, 192, 751-764.	1.5	2
315	Alpine Ibex Capra ibex Linnaeus, 1758. Handbook of the Mammals of Europe, 2020, , 1-27.	0.3	0
316	Synthesizing the connections between environmental disturbances and zoonotic spillover. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.8	14
317	Alpine Ibex Capra ibex Linnaeus, 1758. Handbook of the Mammals of Europe, 2022, , 383-408.	0.3	2
318	Community attitudes towards Amur tigers (Panthera tigris altaica) and their prey species in Yanbian, Jilin province, a region of northeast China where tigers are returning. PLoS ONE, 2022, 17, e0276554.	2.5	2
321	Habitat model for wild boar (<i>Sus scrofa</i>) in Bukhansan National Park, Seoul. Journal of Urban Ecology, 2022, 8, .	1.5	0
322	Fifty Years of Wildlife Diseases in Europe: A Citation Database Meta-Analysis. Veterinary Sciences, 2022, 9, 629.	1.7	1
323	The perceptions of Lithuanian hunters towards African swine fever using a participatory approach. BMC Veterinary Research, 2022, 18, .	1.9	3

#	Article	IF	Citations
324	Coprological survey of gastrointestinal parasitism in captive wildlife of three zoological parks located in southern India. Indian Journal of Animal Sciences, 2022, 90, 547-552.	0.2	0
325	Gastrointestinal Parasites in Iberian Wolf (Canis lupus signatus) from the Iberian Peninsula. Parasitologia, 2023, 3, 15-32.	1.3	2
326	Microorganisms and resistance to antimicrobials. Ubiquity of potential environmental and wildlife sources of microorganisms in meat. , 2022, , .		0
327	Different Roles of Wild Boars and Livestock in Salmonella Transmission to Humans in Italy. EcoHealth, 2023, 20, 122-132.	2.0	0
328	Climate Change Effects on Infectious Diseases. , 2012, , 99-121.		0
329	Tuberculosis Epidemiology and Spatial Ecology at the Cattle-Wild Boar Interface in Northern Spain. Transboundary and Emerging Diseases, 2023, 2023, 1-11.	3.0	0
330	Heavy Youngsters—Habitat and Climate Factors Lead to a Significant Increase in Body Weight of Wild Boar Females. Animals, 2023, 13, 898.	2.3	3
331	Looking for a magic island in the sea of agriculture: factors affecting forest patch attractiveness for wild boar in human-dominated landscape. Landscape Ecology, 2023, 38, 1591-1604.	4.2	2
332	The prevalence of viral diseases in wild boars (<i>Sus scrofa</i>) in Gyeongsangnam-do, South Korea. Korean Journal of Veterinary Service, 2023, 46, 59-66.	0.3	0
333	Challenges of integrated management in tick-borne zoonosis control. Journal of the Acarological Society of Japan, 2022, 31, 49-65.	0.2	0
334	Contact between European bison and cattle from the cattle breeders' perspective, in the light of the risk of pathogen transmission. PLoS ONE, 2023, 18, e0285245.	2.5	1
335	Assessing Variation in the Individual-Level Impacts of a Multihost Pathogen. Transboundary and Emerging Diseases, 2023, 2023, 1-16.	3.0	0
336	The Role of Wildlife and Pests in the Transmission of Pathogenic Agents to Domestic Pigs: A Systematic Review. Animals, 2023, 13, 1830.	2.3	0
337	Home Range and Habitat Selection of Wild Boar (Sus scrofa) in Rural Landscape. Mammal Study, 2023, 48, .	0.6	1
338	Diseases of Iberian ibex (Capra pyrenaica). European Journal of Wildlife Research, 2023, 69, .	1.4	0
339	Research progress in the therapy of brucellosis. , 0, , .		0
342	Spatiotemporal Distribution of Salmonella enterica in European Hedgehogs in Northern Italy. Pathogens, 2023, 12, 946.	2.8	1
344	Reduced parasite burden in feral honeybee colonies. Ecological Solutions and Evidence, 2023, 4, .	2.0	1

#	Article	IF	Citations
345	Sarcoptes scabiei infestation in a captive lowland tapir (Tapirus terrestris): case report, morphological and molecular genetic mite identification. Parasitology Research, 2023, 122, 3181-3188.	1.6	0
346	Cattle aggregations at shared resources create potential parasite exposure hotspots for wildlife. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	1
347	Towards standardising the collection of game statistics in Europe: a case study. European Journal of Wildlife Research, 2023, 69, .	1.4	1
348	Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica. Foods, 2024, 13, 65.	4.3	0
349	Survey of Mycobacterium spp. in Eurasian Badgers (Meles meles) in Central Italy. Animals, 2024, 14, 219.	2.3	0
351	Overcoming the limitations of wildlife disease monitoring. , 2024, 2, .		1
352	Active surveillance of paratuberculosis in Alpine-dwelling red deer (Cervus elaphus). Frontiers in Veterinary Science, 0, 11, .	2.2	0
353	Potential zoonotic spillover at the human–animal interface: A mini-review. Veterinary World, 2024, , 289-302.	1.7	0
354	Landscape connectivity for predicting the spread of ASF in the European wild boar population. Scientific Reports, 2024, 14, .	3.3	0
355	Evaluation of habitat connectivity for wild boars (Sus scrofa L.): a pilot study in South Korea. Landscape and Ecological Engineering, 0, , .	1.5	0