Nanostructured fumed metal oxides for thermal interfa

Journal of Materials Science 42, 9245-9255 DOI: 10.1007/s10853-007-1911-4

Citation Report

#	Article	IF	CITATIONS
1	Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces. Journal of Electronic Materials, 2008, 37, 1698-1709.	1.0	33
2	Factors That Govern the Performance of Thermal Interface Materials. Journal of Electronic Materials, 2009, 38, 175-192.	1.0	28
3	Rheological Behavior of Thermal Interface Pastes. Journal of Electronic Materials, 2009, 38, 2069-2084.	1.0	11
4	Nanomaterials via NanoSpray Combustion Chemical Vapor Condensation, and Their Electronic Applications. , 2010, , 139-166.		2
5	Carbon Fibers and Nanofillers. Engineering Materials and Processes, 2010, , 35-46.	0.2	0
6	Screen-Printable Silver Pastes with Metallic Nano-Zinc and Nano-Zinc Alloys for Crystalline Silicon Photovoltaic Cells. ACS Applied Materials & amp; Interfaces, 2011, 3, 606-611.	4.0	44
7	Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets. Journal of Electronic Materials, 2011, 40, 1490-1500.	1.0	8
8	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
9	Carbon black/graphite nanoplatelet/rubbery epoxy hybrid composites for thermal interface applications. Journal of Materials Science, 2012, 47, 1059-1070.	1.7	23
10	TEC cracking in temperature margining liquid-cooled thermal tools in post-silicon validation. , 2013, , .		4
11	Solder–Graphite Network Composite Sheets as High-Performance Thermal Interface Materials. Journal of Electronic Materials, 2015, 44, 929-947.	1.0	19
12	Fumed-Alumina-Derived Nanoporous Alumina as a New Low-k Dielectric Material for Microelectronics Packaging. Journal of Electronic Materials, 2015, 44, 2211-2220.	1.0	9
13	Design of novel starch-based Pickering emulsions as platforms for skin photoprotection. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 56-64.	1.7	51
14	Measurement and modeling of the effective thermal conductivity of sintered silver pastes. International Journal of Thermal Sciences, 2016, 108, 185-194.	2.6	35
15	Influence of electric field and shear on the rheology of fumed alumina in silicone oil suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 339-350.	2.3	6
16	Carbon black and fumed alumina exhibiting high interface-derived mechanical energy dissipation. Carbon, 2016, 103, 436-448.	5.4	3
17	First report of fumed alumina incorporation in carbon–carbon composite and the consequent improvement of the oxidation resistance and mechanical properties. Carbon, 2016, 101, 281-289.	5.4	7
18	Effect of ethyl cellulose on thermal resistivity of thixotropic ZnO nano-particle paste for thermal interface material in light emitting diode application. Materials Science in Semiconductor Processing, 2017, 58, 61-67,	1.9	5

CITATION REPORT

#	Article	IF	CITATIONS
19	Thermal Diffusivity of Compounds Loaded with Carbon Nanofibers. International Journal of Thermophysics, 2018, 39, 1.	1.0	30
20	Three-dimensional structure of high-performance heat insulator produced with micro and nano particle alumina. Materials Characterization, 2019, 154, 424-436.	1.9	7
21	Fabrication of micro-/nano-structured super-hydrophobic fluorinated polymer coatings by cold-spray. Surface and Coatings Technology, 2019, 373, 17-24.	2.2	40
22	Thermal contact resistance of various carbon nanomaterial-based epoxy composites developed for thermal interface applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 10630-10638.	1.1	12
23	Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes. Journal of Electronic Materials, 2020, 49, 2100-2109.	1.0	3
24	Performance evaluation of carbon nanoparticle-based thermal interface materials. Diamond and Related Materials, 2020, 108, 107976.	1.8	7
25	Nanomaterials via NanoSpray Combustion Chemical Vapor Condensation and Their Electronic Applications. , 2021, , 61-79.		1
26	Thermal Interface Materials. , 2017, , 511-535.		16
27	Morphological and Electronic Characteristics of Nanoalumina Alone and in High-Temperature (Fumed) and Low-Temperature (Mechanical) Mixtures with Nanosilica. Himia, Fizika Ta Tehnologia Poverhni, 2015, 5, 136-144.	0.2	0
28	Performance of Thermal Interface Materials. Small, 2022, 18, e2200693.	5.2	54