Theory of piezoresistivity for strain sensing in carbon fifexure

Journal of Materials Science 42, 6222-6233 DOI: 10.1007/s10853-006-1131-3

Citation Report

#	Article	IF	CITATION
1	Cement-based piezoelectret. Materials and Structures/Materiaux Et Constructions, 2009, 42, 541-557.	1.3	11
2	Modeling of conductivity in carbon fiber-reinforced cement-based composite. Journal of Materials Science, 2010, 45, 3538-3546.	1.7	63
3	The Properties of Oxidated Carbon Fibers Reinforced Cement. Advanced Materials Research, 2010, 163-167, 1203-1206.	0.3	0
4	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
6	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
7	Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement and Concrete Composites, 2012, 34, 866-873.	4.6	464
8	Carbon layer structures and thermal conductivity of graphitized carbon fibers. Journal of Materials Science, 2012, 47, 2882-2890.	1.7	18
9	Double-Layered Cement Composites with Superior Electromagnetic Wave Absorbing Properties Containing Carbon Black and Expanded Polystyrene. Advanced Materials Research, 0, 774-776, 747-752.	0.3	2
10	Electromagnetic Wave Absorbing Properties of Glass Fiber Reinforced Cement Composites with Special-Shaped Structure Surfaces. Applied Mechanics and Materials, 0, 401-403, 614-618.	0.2	1
11	Self-sensing structural composites in aerospace engineering. , 2016, , 295-331.		3
12	Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete. Cement and Concrete Composites, 2016, 72, 48-65.	4.6	118
13	Self-sensing piezoresistive cement composite loaded with carbon black particles. Cement and Concrete Composites, 2017, 81, 59-65.	4.6	139
14	Electrical impedance response for physical simulations of composites with conductive fiber-bridged insulating cracks. Journal of Materials Science, 2017, 52, 10023-10037.	1.7	2
15	Effect of the fringing electric field on the apparent electric permittivity of cement-based materials. Composites Part B: Engineering, 2017, 126, 192-201.	5.9	29
16	Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Materials and Design, 2017, 114, 424-432.	3.3	139
18	The effects of damage and self-healing on impedance spectroscopy of strain-hardening cementitious materials. Cement and Concrete Research, 2018, 106, 77-90.	4.6	26
19	High electric permittivity of polymer-modified cement due to the capacitance of the interface between polymer and cement. Journal of Materials Science, 2018, 53, 7199-7213.	1.7	9
20	Understanding the increase of the electric permittivity of cement caused by latex addition. Composites Part B: Engineering, 2018, 134, 177-185.	5.9	19

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
21	Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab. Composites Part B: Engineering, 2018, 134, 18-27.	5.9	10
22	Advanced engineered cementitious composites with combined self-sensing and self-healing functionalities. Construction and Building Materials, 2018, 176, 313-322.	3.2	93
23	A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 2019, 177, 107437.	5.9	121
24	Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 2019, 203, 146-163.	3.2	214
25	Piezoresistivity of polymer-matrix carbon fiber filament in plane stress state. Materials Research Express, 2019, 6, 085602.	0.8	4
26	A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 2020, 55, 15367-15396.	1.7	97
27	Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, 2021, 12, 1-19.	2.0	51
28	Self-sensing ultra-high performance concrete for in-situ monitoring. Sensors and Actuators A: Physical, 2021, 331, 113049.	2.0	31
29	Piezopermittivity for capacitance-based strain/stress sensing. Sensors and Actuators A: Physical, 2021, 332, 113028.	2.0	14
30	Carbon Fiber-Reinforced Cement-Based Composites for Tensile Strain Sensing. ACI Materials Journal, 2017, 114, .	0.3	10
31	Carbonization of Pitch-coated Glass Fibers on Thermal Conductivity of Epoxy Composites. Composites Research, 2013, 26, 315-321.	0.1	0
32	Nanomaterials: Conducting Polymers and Sensing. , 0, , 5311-5335.		0
33	Nanomaterials: Conducting Polymers and Sensing. , 2017, , 1035-1059.		0
34	Non-destructive test approach for assessing the amount of fibre in polymeric fibre reinforced concrete. Construction and Building Materials, 2022, 317, 125964.	3.2	4
35	Damage Management of Concrete Structures with Engineered Cementitious Materials and Natural Fibers: A Review of Potential Uses. Sustainability, 2022, 14, 3917.	1.6	7
36	Recycling waste materials to produce self-sensing concretes for smart and sustainable structures: A review. Construction and Building Materials, 2022, 325, 126658.	3.2	30
37	Carbon nanotubes doped concrete-based sensor for strain measurements. , 2022, , .		0
38	A Review of Self-Sensing in Carbon Fiber Structural Composite Materials. , 2023, 01, .		1

<u></u>			D	_
(IT	ATI	ON.	REPO	IRT.
U		U		

#	Article	IF	CITATIONS
39	Development and Implementation of Cement-Based Nanocomposite Sensors for Structural Health Monitoring Applications: Laboratory Investigations and Way Forward. Sustainability, 2022, 14, 12452.	1.6	9
40	A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon, 2023, 203, 311-325.	5.4	33
41	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3
42	Smart <scp>cementâ€sensor</scp> composite: The evolution of nanomaterial in developing sensor for structural integrity. Structural Concrete, 2023, 24, 6297-6337.	1.5	1
43	Influence of Carbon Nanotubes Dispersion Degree on the Piezo-Resistive Behavior of Self-sensing Cementitious Composites. RILEM Bookseries, 2023, , 516-527.	0.2	0