Efficiency of Malaise traps and colored pan traps for col from three forested ecosystems

Journal of Insect Conservation 11, 399-408 DOI: 10.1007/s10841-006-9055-4

Citation Report

#	Article	IF	CITATIONS
1	Efficiency of Malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. Journal of Insect Conservation, 2007, 11, 399-408.	1.4	200
3	Window traps and direct observations record similar arthropod flower visitor assemblages in two mass flowering crops. Journal of Applied Entomology, 2009, 133, 553-564.	1.8	32
4	Sampling Hymenoptera along a precipitation gradient in tropical forests: the effectiveness of different coloured pan traps. Entomologia Experimentalis Et Applicata, 2010, 137, 262-268.	1.4	40
5	Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conservation and Diversity, 2010, 3, 15-23.	3.0	132
6	On the vertical distribution of bees in a temperate deciduous forest. Insect Conservation and Diversity, 2010, 3, 222-228.	3.0	57
7	Trap Type, Lure Placement, and Habitat Effects on Cerambycidae and Scolytinae (Coleoptera) Catches in the Northeastern United States. Journal of Economic Entomology, 2010, 103, 698-707.	1.8	40
8	Analysis of the Diversity of Megachilidae Bees on the Northern Subplateau of the Iberian Peninsula. Journal of Insect Science, 2010, 10, 1-17.	1.5	0
9	Hoverfly diversity (Diptera: Syrphidae) in a Mediterranean scrub community near Athens, Greece. Annales De La Societe Entomologique De France, 2011, 47, 168-175.	0.9	35
10	Removing an exotic shrub from riparian forests increases butterfly abundance and diversity. Forest Ecology and Management, 2011, 262, 674-680.	3.2	52
11	Comparison of yellow and white pan traps in surveys of bee fauna in New South Wales, Australia (Hymenoptera: Apoidea: Anthophila). Australian Journal of Entomology, 2011, 50, 174-178.	1.1	43
12	Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States. Insect Conservation and Diversity, 2011, 4, 275-283.	3.0	54
13	The Utility of Aerial Pan-Trapping for Assessing Insect Pollinators Across Vertical Strata. Journal of the Kansas Entomological Society, 2011, 84, 260-270.	0.2	26
14	Is pan-trapping the most reliable sampling method for measuring and monitoring bee biodiversity in agroforestry systems in sub-Saharan Africa?. International Journal of Tropical Insect Science, 2012, 33, 14-37.	1.0	5
15	Sex-ratio variation and the function of staminodes in Aralia nudicaulis1This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 575-585.	1.0	6
16	Effectiveness of Pan Trapping as a Rapid Bioinventory Method of Freshwater Shoreline Insects of Subtropical Texas. Southwestern Entomologist, 2012, 37, 133-139.	0.2	9
17	Sampling Methods for Assessing Syrphid Biodiversity (Diptera: Syrphidae) in Tropical Forests. Environmental Entomology, 2012, 41, 1544-1552.	1.4	18
18	High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest. PLoS ONE, 2012, 7, e52109.	2.5	25
19	Optimising coloured pan traps to survey flower visiting insects. Journal of Insect Conservation, 2012, 16, 345-354.	1.4	119

#	Article	IF	CITATIONS
20	Hymenoptera (Insecta: Hymenoptera) associated with silvopastoral systems. Agroforestry Systems, 2012, 85, 113-119.	2.0	9
21	The contribution of plant species with a steadyâ€state flowering phenology to native bee conservation and bee pollination services. Insect Conservation and Diversity, 2013, 6, 45-56.	3.0	19
22	Pan trap catches of pollinator insects vary with habitat. Australian Journal of Entomology, 2013, 52, 106-113.	1.1	60
23	Removing Chinese privet from riparian forests still benefits pollinators five years later. Biological Conservation, 2013, 167, 355-362.	4.1	35
24	Grassy strips in their landscape context, their role as new habitat for biodiversity. Agriculture, Ecosystems and Environment, 2013, 166, 15-27.	5.3	31
25	Factors influencing the diversity of cuckoo wasps (<scp>H</scp> ymenoptera: <scp>C</scp> hrysididae) in the postâ€agriculture area of the <scp>K</scp> ampinos <scp>N</scp> ational <scp>P</scp> ark, <scp>P</scp> oland. Insect Conservation and Diversity, 2013, 6, 339-353.	3.0	11
26	Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests. Diversity, 2013, 5, 1-14.	1.7	17
27	Evaluating bee (Hymenoptera: Apoidea) diversity using Malaise traps in coffee landscapes of Costa Rica. Canadian Entomologist, 2013, 145, 435-453.	0.8	22
28	Bee and wasp responses to a fragmented landscape in southern Brazil. Journal of Insect Conservation, 2014, 18, 1193-1201.	1.4	14
29	Agricultural mosaics maintain significant flower and visiting insect biodiversity in a global hotspot. Biodiversity and Conservation, 2014, 23, 133-148.	2.6	26
30	Visual ecology of flies with particular reference to colour vision and colour preferences. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 497-512.	1.6	142
31	To enrich or not to enrich? Are there any benefits of using multiple colors of pan traps when sampling aculeate Hymenoptera?. Journal of Insect Conservation, 2014, 18, 1123-1136.	1.4	41
32	Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: methodology and conservation considerations. Journal of Insect Conservation, 2014, 18, 951-964.	1.4	74
33	Logging Legacies Affect Insect Pollinator Communities in Southern Appalachian Forests. Southeastern Naturalist, 2014, 13, 317.	0.4	27
34	Optimising methods for collecting Hymenoptera, including parasitoids and Halictidae bees, in New Zealand apple orchards. Journal of Asia-Pacific Entomology, 2014, 17, 375-381.	0.9	19
35	Influence of windbreaks and forest borders on abundance and species richness of native pollinators in lowbush blueberry fields in Québec, Canada. Canadian Entomologist, 2015, 147, 432-442.	0.8	18
36	Field methods for inventorying insects. , 2015, , 190-213.		9
37	Temperature versus resource constraints: which factors determine bee diversity on <scp>M</scp> ount <scp>K</scp> ilimanjaro, <scp>T</scp> anzania?. Global Ecology and Biogeography, 2015, 24, 642-652.	5.8	73

#	Article	IF	CITATIONS
38	Landscape simplification decreases wild bee pollination services to strawberry. Agriculture, Ecosystems and Environment, 2015, 211, 51-56.	5.3	89
39	Towards a standardized Rapid Ecosystem Function Assessment (REFA). Trends in Ecology and Evolution, 2015, 30, 390-397.	8.7	98
40	Pollination of the Endangered Arizona Hedgehog Cactus (Echinocereus arizonicus). American Midland Naturalist, 2015, 173, 61-72.	0.4	3
41	Effects of fragmentation on a distinctive coastal sage scrub bee fauna revealed through incidental captures by pitfall traps. Journal of Insect Conservation, 2015, 19, 175-179.	1.4	19
42	Comparative Trapping Efficiency to Characterize Bee Abundance, Diversity, and Community Composition in Apple Orchards. Annals of the Entomological Society of America, 2015, 108, 785-799.	2.5	75
43	Have changing forests conditions contributed to pollinator decline in the southeastern United States?. Forest Ecology and Management, 2015, 348, 142-152.	3.2	75
44	Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). Journal of Insect Conservation, 2015, 19, 487-500.	1.4	65
45	Does the Silvopastoral System Alter Hymenopteran Fauna (Insecta: Hymenoptera) inBrachiaria decumbensMonocultures?. Annals of the Entomological Society of America, 2015, 108, 468-473.	2.5	4
46	Comparison of sampling methods for estimating the abundance of <i>Meligethes aeneus</i> on oilseed crops. International Journal of Pest Management, 2015, 61, 312-319.	1.8	7
47	Bee assemblage in habitats associated with Brassica napus L Revista Brasileira De Entomologia, 2015, 59, 222-228.	0.4	9
48	Spatial–temporal distribution of the Hymenoptera in the Brazilian Savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation, 2015, 19, 1173-1187.	1.4	15
49	From the experience of LIFE+ ManFor C.BD to the Manual of Best Practices in Sustainable Forest Management. Italian Journal of Agronomy, 2016, 11, 1-175.	1.0	6
50	Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities. Insects, 2016, 7, 62.	2.2	11
51	Contrasting effects of field boundary management on three pollinator groups. Insect Conservation and Diversity, 2016, 9, 427-437.	3.0	10
52	Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities. Genome, 2016, 59, 827-839.	2.0	15
53	Malaise Trap Sampling Efficiency for Bees (Hymenoptera: Apoidea) in a Restored Tallgrass Prairie. Florida Entomologist, 2016, 99, 321-323.	0.5	14
54	Are pan traps colors complementary to sample community of potential pollinator insects?. Journal of Insect Conservation, 2016, 20, 583-596.	1.4	36
55	Factors affecting bee communities in forest openings and adjacent mature forest. Forest Ecology and Management, 2017, 394, 111-122.	3.2	67

		CHAHON REPORT		
#	Article	IF	CITATIONS	
56	Collection of terrestrial amphipods using a yellow panÂtrap. Crustaceana, 2017, 90, 639-642.	0.3	1	
57	Effect of Floral Diversity and Urbanization on Bee Species Community Composition in Phoenix, Arizona. Journal of the Arizona-Nevada Academy of Science, 2017, 47, 6-18.	0.1	4	
58	Forested field edges support a greater diversity of wild pollinators in lowbush blueberry (Vaccinium	ı) Tj ETQq0 0 0 rgBT	/Overlock 10 Tf 5	

59	Sampling bees in tropical forests and agroecosystems: a review. Journal of Insect Conservation, 2017, 21, 753-770.	1.4	34
61	Pollinator diversity in different habitats of the agricultural landscape in the middle and lower reaches of the Yellow River based on the three-color pan trap method. Acta Ecologica Sinica, 2017, 37, 148-155.	1.9	7
62	Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats. Journal of Economic Entomology, 2017, 110, 1424-1432.	1.8	5

63 Evaluation of Malaise and Yellow Pan Trap Performance to Assess Velvet Ant (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 502

64	The Impact of Trap Type and Design Features on Survey and Detection of Bark and Woodboring Beetles and Their Associates: A Review and Meta-Analysis. Annual Review of Entomology, 2017, 62, 127-146.	11.8	49
65	Biodiversity and Ecology of the Leafhoppers (Hemiptera: Cicadellidae) of New Hampshire. Transactions of the American Entomological Society, 2017, 143, 773-971.	0.3	9
66	Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest. Insects, 2017, 8, 81.	2.2	22
67	Blue and yellow vane traps differ in their sampling effectiveness for wild bees in both open and wooded habitats. Agricultural and Forest Entomology, 2018, 20, 487-495.	1.3	38
68	Effect of bioenergy crop type and harvest frequency on beneficial insects. Agriculture, Ecosystems and Environment, 2018, 261, 25-32.	5.3	4

69 Insect community response to switchgrass intercropping and stand age of loblolly pine (<i>Pinus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

70	Organic farming promotes bee abundance in vineyards in Italy but not in South Africa. Journal of Insect Conservation, 2018, 22, 61-67.	1.4	14
71	Comparisons of Citizen Science Data-Gathering Approaches to Evaluate Urban Butterfly Diversity. Insects, 2018, 9, 186.	2.2	26
72	Determination of apomixis by flow cytometry in two species of Lachemilla (Rosaceae) in Ecuador. Neotropical Biodiversity, 2018, 4, 152-163.	0.5	7
73	Bee Assemblages in Managed Early-Successional Habitats in Southeastern New Hampshire. Northeastern Naturalist, 2018, 25, 437-459.	0.3	10
74	The Effects of Repeated Prescribed Fire and Thinning on Bees, Wasps, and Other Flower Visitors in the Understory and Midstory of a Temperate Forest in North Carolina. Forest Science, 2018, 64, 299-306.	1.0	40

#	Article	IF	CITATIONS
75	Entomofauna Associated with Agroforestry Systems of Timber Species and Cacao in the Southern Region of the Maracaibo Lake Basin (Mérida, Venezuela). Insects, 2018, 9, 46.	2.2	4
76	Response of beetles (Coleoptera) to repeated applications of prescribed fire and other fuel reduction techniques in the southern Appalachian Mountains. Forest Ecology and Management, 2018, 429, 294-299.	3.2	8
77	Diversity and Pollen Loads of Flower Flies (Diptera: Syrphidae) in Cranberry Crops. Annals of the Entomological Society of America, 2018, 111, 326-334.	2.5	16
78	Monitoring bee populations: are eusocial bees attracted to different colours of pan trap than other bees?. Journal of Insect Conservation, 2018, 22, 433-441.	1.4	18
79	Urban development decreases bee abundance and diversity within coastal dune systems. Global Ecology and Conservation, 2019, 20, e00711.	2.1	5
80	High sampling effectiveness for nonâ€bee flower visitors using vane traps in both open and wooded habitats. Austral Entomology, 2019, 58, 836-847.	1.4	12
81	The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover. PLoS ONE, 2019, 14, e0217198.	2.5	33
82	Optimizing sampling of flying insects using a modified window trap. Methods in Ecology and Evolution, 2019, 10, 1820-1825.	5.2	33
83	Bee Communities across Gap, Edge, and Closed-Canopy Microsites in Forest Stands with Group Selection Openings. Forest Science, 2019, 65, 751-757.	1.0	6
84	Evaluation of nest-site selection of ground-nesting bees and wasps (Hymenoptera) using emergence traps. Canadian Entomologist, 2019, 151, 260-271.	0.8	17
85	Small forest patches as pollinator habitat: oases in an agricultural desert?. Landscape Ecology, 2019, 34, 487-501.	4.2	38
86	Interspecific variation in herbivory level and leaf nutrients of mangroves Rhizophora. IOP Conference Series: Earth and Environmental Science, 2019, 391, 012038.	0.3	1
87	Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities. Insect Conservation and Diversity, 2020, 13, 229-238.	3.0	7
88	Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosystems, 2020, 23, 39-54.	2.4	23
89	Insects moving through forest-crop edges: a comparison among sampling methods. Journal of Insect Conservation, 2020, 24, 249-258.	1.4	3
90	Changes in the Summer Wild Bee Community Following a Bark Beetle Outbreak in a Douglas-fir Forest. Environmental Entomology, 2020, 49, 1437-1448.	1.4	12
91	Introduction and application of a composite insect trap for the National Ecosystem Survey of Korea. Entomological Research, 2020, 50, 506-514.	1.1	1
92	Interactive Effects of an Herbivore-Induced Plant Volatile and Color on an Insect Community in Cranberry. Insects, 2020, 11, 524.	2.2	3

#	Article	IF	CITATIONS
93	Netting and pan traps fail to identify the pollinator guild of an agricultural crop. Scientific Reports, 2020, 10, 13819.	3.3	19
94	Surveys of the bee (Hymenoptera: Apiformes) community in a Neotropical savanna using pan traps. Papeis Avulsos De Zoologia, 0, 60, e20206031.	0.4	3

25 Effect of Trap Color on Captures of Bark- and Wood-Boring Beetles (Coleoptera; Buprestidae and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

96	The State of the World's Insects. Annual Review of Environment and Resources, 2020, 45, 61-82.	13.4	86
97	Pollinator Specific Richness and Their Interactions With Local Plant Species: 10 Years of Sampling in Mediterranean Habitats. Environmental Entomology, 2020, 49, 947-955.	1.4	10
98	Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture, Ecosystems and Environment, 2020, 301, 107031.	5.3	40
99	The importance of trap type, trap colour and capture liquid for catching <i>Dendrolimus pini</i> and their impact on by atch of beneficial insects. Agricultural and Forest Entomology, 2020, 22, 319-327.	1.3	8
100	Species diversity in bee flies and hover flies (Diptera: Bombyliidae and Syrphidae) in the horticultural environments of the Blue Mountains, Australia. Austral Entomology, 2020, 59, 561-571.	1.4	7
101	Effect of pan trap size on the diversity of sampled bees and abundance of bycatch. Journal of Insect Conservation, 2020, 24, 409-420.	1.4	14
102	Local habitat conditions shaping the assemblages of vespid wasps (Hymenoptera: Vespidae) in a post-agricultural landscape of the Kampinos National Park in Poland. Scientific Reports, 2020, 10, 1424.	3.3	1
103	Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 2020, 11, 576.	12.8	177
104	Ecosystem functions in natural and anthropogenic ecosystems across the East African coastal forest landscape. Biotropica, 2020, 52, 598-607.	1.6	7
105	Seasonality of predatory insects (Diptera: Syrphidae and Asilidae) in pasture monoculture and silvopastoral systems from Southeast Brazil. International Journal of Tropical Insect Science, 2021, 41, 861-872.	1.0	7
106	Effects of urban environmental conditions and landscape structure on taxonomic and functional groups of insects. Urban Forestry and Urban Greening, 2021, 58, 126902.	5.3	8
107	Exploiting trap color to improve surveys of longhorn beetles. Journal of Pest Science, 2021, 94, 871-883.	3.7	25
108	A Review of Terrestrial and Canopy Malaise Traps. Annals of the Entomological Society of America, 2021, 114, 27-47.	2.5	41
109	Use of colored pan traps method for monitoring insect (Diptera and Hymenoptera) diversity in the Southern Tropical Andes of Ecuador. International Journal of Tropical Insect Science, 2021, 41, 643-652.	1.0	3
110	First report of colored pan traps to capture Drosophilidae (Diptera). Revista Brasileira De Entomologia, 2021, 65, .	0.4	1

#	Article	IF	CITATIONS
111	Standards and Best Practices for Monitoring and Benchmarking Insects. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	99
112	Powerline right-of-way management and flower-visiting insects: How vegetation management can promote pollinator diversity. PLoS ONE, 2021, 16, e0245146.	2.5	6
113	Disentangling the effects of latitudinal and elevational gradients on bee, wasp, and ant diversity in an ancient neotropical mountain range. Journal of Biogeography, 2021, 48, 1564-1578.	3.0	11
114	Are there differences in the diversity of bees between organic and conventional agroecosystems in the Pampa biome?. Journal of Apicultural Research, 0, , 1-13.	1.5	4
115	Color pan traps often catch less when there are more flowers around. Ecology and Evolution, 2021, 11, 3830-3840.	1.9	16
116	Shrub density effects on the community structure and composition of a desert animal community. Wildlife Biology, 2021, 2021, .	1.4	9
117	A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia. Saudi Journal of Biological Sciences, 2021, 28, 2342-2351.	3.8	1
118	Usage of Fermental Traps for the Study of the Species Diversity of Coleoptera. Insects, 2021, 12, 407.	2.2	13
119	Color of Pan Trap Influences Sampling of Bees in Livestock Pasture Ecosystem. Biology, 2021, 10, 445.	2.8	7
120	Pan trapping in habitats supporting Platanthera (Orchidaceae) shows little difference in insect family-level diversity. Canadian Entomologist, 2021, 153, 566-578.	0.8	1
121	Relative trapping efficiencies of different types of attraction traps for three insect orders in an agricultural field. Applied Entomology and Zoology, 2021, 56, 393-405.	1.2	6
122	Hymenopteran color preference using multiple colours of pan traps in Slovakia. Acta Musei Silesiae: Scientiae Naturales, 2021, 70, 33-46.	0.2	0
123	Evaluation of four different methods for assessing bee diversity as ecological indicators of agro-ecosystems. Ecological Indicators, 2021, 125, 107573.	6.3	22
124	Wild Bee Response to Application of the Douglas-fir Beetle Anti-Aggregation Pheromone, 3-Methylcyclohex-2-En-1-One. Journal of Economic Entomology, 2021, 114, 2121-2126.	1.8	1
125	Ecosystem functions in degraded riparian forests of southeastern Kenya. Ecology and Evolution, 2021, 11, 12665-12675.	1.9	3
126	Evaluation of Cowpea (Vigna unguiculata) in an Intercropping System as Pollinator Enhancer for Increased Crop Yield. Sustainability, 2021, 13, 9612.	3.2	6
127	The effects of mycorrhizal colonization on phytophagous insects and their natural enemies in soybean fields. PLoS ONE, 2021, 16, e0257712.	2.5	0
128	Functional traits and nesting habitats distinguish the structure of bee communities in clearcut and managed hardwood & pine forests in Southeastern USA. Forest Ecology and Management, 2021, 496, 119351.	3.2	12

# 129	ARTICLE Structure and diversity of hoverflies (Diptera: Syrphidae) in northwestern Colombian Paramos: towards the identification of bioindicator species in the Tropical Andes. Journal of Insect Conservation, 0, , 1.	IF 1.4	CITATIONS 2
130	Wild bees benefit from structural complexity enhancement in a forest restoration experiment. Forest Ecology and Management, 2021, 496, 119412.	3.2	16
131	Major insect groups show distinct responses to local and regional attributes of urban green spaces. Landscape and Urban Planning, 2021, 216, 104238.	7.5	6
132	OUP accepted manuscript. Annals of the Entomological Society of America, 2022, 115, 69-94.	2.5	4
133	Bees: How and Why to Sample Them. , 2021, , 55-83.		23
134	Sampling Methods for Butterflies (Lepidoptera). , 2021, , 101-123.		12
135	Sampling Methods for Adult Flies (Diptera). , 2021, , 187-204.		4
136	Preliminary results of bowl trapping bees (Hymenoptera, Apoidea) in a southern Brazil forest fragment. Journal of Insect Biodiversity, 2013, 1, 1.	0.4	20
137	The Composite Insect Trap: An Innovative Combination Trap for Biologically Diverse Sampling. PLoS ONE, 2011, 6, e21079.	2.5	36
138	Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. PLoS ONE, 2014, 9, e104679.	2.5	241
139	Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in the Cabañeros National Park (Spain). European Journal of Entomology, 2008, 105, 879-888.	1.2	40
140	Patterns in diurnal co-occurrence in an assemblage of hoverflies (Diptera: Syrphidae). European Journal of Entomology, 2013, 110, 649-656.	1.2	5
141	Responses of grassland arthropods to various biodiversity-friendly management practices: Is there a compromise?. European Journal of Entomology, 2015, 112, 734-746.	1.2	20
142	Sampling of flower-visiting insects: Poor correspondence between the catches of colour pan-trap and sweep netting. European Journal of Entomology, 0, 116, 425-431.	1.2	7
143	CHALLENGES IN ASSESSING ECOLOGICAL IMPACTS OF CONSTRUCTION AND DEMOLITION WASTE ON WETLANDS: A CASE STUDY. Applied Ecology and Environmental Research, 2014, 12, 457-479.	0.5	5
144	Assessing the Efficiency of Pan Traps for Collecting Bees (Hymenoptera: Apoidea). Journal of Entomological Science, 2020, 55, 321-328.	0.3	5
145	Las abejas del género Agapostemon (Hymenoptera: Halictidae) del estado de Nuevo León, México. Revista Mexicana De Biodiversidad, 2012, 83, .	0.4	6
146	Habitat-Dependency of Transect Walk and Pan Trap Methods for Bee Sampling in Farmlands. Journal of Apicultural Science, 2019, 63, 93-115.	0.4	16

#	Article	IF	CITATIONS
147	Records of larentiine moths (Lepidoptera: Geometridae) collected at the Station Linné in Sweden. Biodiversity Data Journal, 2016, 4, e7304.	0.8	4
148	Spatio-Temporal Trends of Insect Communities in Southern Brazil. Journal of Entomology, 2008, 5, 369-380.	0.2	8
149	Shades of yellow: interactive effects of visual and odour cues in a pest beetle. PeerJ, 2016, 4, e2219.	2.0	11
150	Species turnover in plants does not predict turnover in flower-visiting insects. PeerJ, 2018, 6, e6139.	2.0	2
151	El uso de platos trampa y red entomológica en la captura de abejas nativas en el estado de Nuevo León, México. Acta Zoológica Mexicana, 2014, 30, .	1.1	5
152	The Use of Malaise Trap for the Study of the Beetles Fauna (Insecta: Coleoptera) in the Territory of National Park «Khvalynsky» Saratov Province. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2018, 18, 79-85.	0.1	1
153	Role of Colored Pan Traps for Insect Pollinator Diversity in Bitter Gourd Ecosystem in Surguja of Chhattisgarh. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 3116-3119.	0.1	1
155	The impact of herbivorous insect on leaves of mangrove species Rhizophora stylosa and its relation to leaf nutrient level. Biodiversitas, 2019, 20, .	0.6	1
156	Sampling of parasitoid Hymenoptera: influence of the height on the ground. Journal of Hymenoptera Research, 0, 78, 19-31.	0.8	7
157	Collecting parasitic Hymenoptera from a northern California swimming pool. Pan-Pacific Entomologist, 2020, 96, .	0.2	0
158	Pan trap color preference across Hymenoptera in a forest clearing. Entomologia Experimentalis Et Applicata, 2021, 169, 298-311.	1.4	11
159	Bee species checklist of the San Francisco Peaks, Arizona. Biodiversity Data Journal, 2020, 8, e49285.	0.8	6
160	Differential efficacy of edaphic traps for monitoring arthropods diversity in subtropical regions. Journal of King Saud University - Science, 2021, 34, 101686.	3.5	2
161	Population Abundance of Insect Trapped on Different Colours of Sticky Trap in Pumpkin (Cucurbita) Tj ETQq1 1	0.784314 0.3	rgBT /Overloo
162	Unusual pollinator attractants increase the fructification rate on West Indian Cherry Trees. Journal of Applied Entomology, 0, , .	1.8	0
163	Effects of aerial adulticiding for mosquito management on nontarget insects: A Bayesian and community ecology approach. Ecosphere, 2022, 13, .	2.2	3
164	The First Report of the Genera Abaria and Drepanocentron (Trichoptera: Xiphocentronidae) from China, with Descriptions of Two New Species. Insects, 2022, 13, 95.	2.2	0
165	Evaluation of Flower Visiting Insects Specimen Sampling Methodology in Turfgrassâ€forb Habitat. Itsrj, 0, , .	0.3	0

#	Article	IF	CITATIONS
166	Biodiversity and Ecosystem Functions Across an Afro-Tropical Forest Biodiversity Hotspot. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	4
167	Decadal Patterns of Forest and Pollinator Recovery Following the Eradication of an Invasive Shrub. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	5
168	Comparison between window traps and pan traps in monitoring flower-visiting insects in agricultural fields. Bulletin of Entomological Research, 2022, 112, 691-696.	1.0	3
169	Inventorying and monitoring crop pollinating bees: Evaluating the effectiveness of common sampling methods. Insect Conservation and Diversity, 2022, 15, 299-311.	3.0	11
170	The Use of Honeybee Hives May Boost Yields of Some Crops in Nepal. Psyche: Journal of Entomology, 2021, 2021, 1-6.	0.9	3
172	Wild bees respond differently to sampling traps with vanes of different colors and light reflectivity in a livestock pasture ecosystem. Scientific Reports, 2022, 12, .	3.3	3
173	The bee fauna (Hymenoptera, Apoidea) in Cerrado and Cerrado-Amazon Rainforest transition sites in Tocantins state, Northern Region of Brazil. Biota Neotropica, 2022, 22, .	0.5	1
174	Wind Tunnel and Field Evaluation of Trapping Efficiency of Semiochemical Baited Camera-Traps for Capturing Codling Moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2022, 115, 2004-2012.	1.8	1
175	First Documented Wild Population of the "Hunter Flyâ€; Coenosia attenuata Stein (Diptera: Muscidae) in North America. Insects, 2022, 13, 970.	2.2	0
176	Pollinator Abundance and Diversity Under Differing Wet Prairie Management. Natural Areas Journal, 2022, 42, .	0.5	Ο
177	Response of bee and hoverfly populations to a land-use gradient in a Quebec floodplain. Journal of Insect Conservation, 2022, 26, 919-932.	1.4	2
178	The Importance of Urban Green Spaces for Pollinating Insects: The Case of the Metropolitan Area of Port-au-Prince, Haiti. Caribbean Journal of Science, 2022, 52, .	0.3	2
180	Animal key species of the ecosystems of western Ukraine. Visnyk L'vivs'koho Universytetu Seriia Biolohichna, 2022, , 112-129.	0.3	5
181	A comparison of sampling methods and temporal patterns of arthropod abundance and diversity in a mature, temperate, Oak woodland. Acta Oecologica, 2023, 118, 103873.	1.1	1
182	Avoid, tolerate, or escape? Native vegetation responses to invasion vary between functional groups. Biological Invasions, 2023, 25, 1387-1401.	2.4	0
183	Autumnal migration patterns of hoverflies (Diptera: Syrphidae): interannual variability in timing and sex ratio. PeerJ, 0, 10, e14393.	2.0	4
184	Insect Pollinator Monitoring in and around a Netted Plot of Apple Trees—Biosafety Implications for Genetically Engineered Fruit Trees. Agronomy, 2023, 13, 84.	3.0	1
185	Linear scaling – negative effects of invasive Spiraea tomentosa (Rosaceae) on wetland plants and pollinator communities. NeoBiota, 0, 81, 63-90.	1.0	Ο

#	Article	IF	CITATIONS
186	Crop-Specific Effects on Pan-Trap Sampling of Potential Pollinators as Influenced by Trap Color and Location. Agronomy, 2023, 13, 552.	3.0	1
187	Comparing three collection methods for pollinating insects within electric transmission rights-of-ways. Journal of Insect Conservation, 2023, 27, 377-387.	1.4	6
188	Mechanical weeding enhances ecosystem multifunctionality and profit in industrial oil palm. Nature Sustainability, 2023, 6, 683-695.	23.7	7
189	Optimizing low-cost sampling of pollinator insects in oilseed rape fields. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	1
190	Tailoring your bee sampling protocol: Comparing three methods reveals the best approaches to capturing bees. Agricultural and Forest Entomology, 0, , .	1.3	1
191	Degree-day-based model to predict egg hatching of <i>Philaenus spumarius</i> (Hemiptera:) Tj ETQq1 1 0.7843 2023, 52, 350-359.	14 rgBT 1.4	/Overlock 10 Tf 1
192	An efficient method to sample Musca domestica (Linnaeus, 1758) (Diptera: Muscidae) using coloured pan-traps in a cage poultry facility. Entomological Communications, 0, 5, ec05005.	0.0	0
193	Observing bees and wasps: Why surveys and monitoring programs are critical and how they can improve our understanding of these beneficial hymenopterans. Journal of Pollination Ecology, 0, 33, 139-169.	0.5	О
194	Syrphid fly response to urban heat islands varies with functional traits. Journal of Insect Conservation, 0, , .	1.4	1
195	Stand stage affects wild bee communities in working pine forests. Forest Ecology and Management, 2023, 545, 121247.	3.2	1
196	Environmental factors affecting honey bees (<i>Apis cerana</i>) and cabbage white butterflies (<i>Pieris rapae</i>) at urban farmlands. PeerJ, 0, 11, e15725.	2.0	0
197	Investigating the abundance and diversity of sawflies (Hymenoptera, Symphyta) within commercial Sitka spruce plantation forests in <scp>midâ€Wales</scp> . Agricultural and Forest Entomology, 2024, 26, 81-92.	1.3	0
198	Butterfly abundance is higher in areas treated for fire ants. Journal of Wildlife Management, 2023, 87,	1.8	0
199	Not invasive status but plant overstory matters: open shrub canopies support greater plant and arthropod diversity and more complex food web structures compared to shady tree canopies. Arthropod-Plant Interactions, 0, , .	1.1	0
200	Drivers of arthropod biodiversity in an urban ecosystem. Scientific Reports, 2024, 14, .	3.3	0