Leaf rust resistance gene Lr1, isolated from bread wheat of the large psr567 gene family

Plant Molecular Biology 65, 93-106 DOI: 10.1007/s11103-007-9201-8

Citation Report

#	Article	IF	CITATIONS
1	RNA interference for wheat functional gene analysis. Transgenic Research, 2007, 16, 689-701.	1.3	76
2	Molecular approaches for characterization and use of natural disease resistance in wheat. European Journal of Plant Pathology, 2008, 121, 387-397.	0.8	38
3	Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, 2008, 116, 481-490.	1.8	81
4	AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theoretical and Applied Genetics, 2008, 116, 1095-1104.	1.8	44
5	Wheat Genomics: Present Status and Future Prospects. International Journal of Plant Genomics, 2008, 2008, 1-36.	2.2	178
6	Wheat leaf rust caused by <i>Puccinia triticina</i> . Molecular Plant Pathology, 2008, 9, 563-575.	2.0	385
7	Durable resistance to wheat stem rust needed. Current Opinion in Plant Biology, 2008, 11, 187-192.	3.5	87
8	Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Australian Journal of Agricultural Research, 2008, 59, 197.	1.5	29
9	<i>Lr34</i> -Mediated Leaf Rust Resistance in Wheat: Transcript Profiling Reveals a High Energetic Demand Supported by Transient Recruitment of Multiple Metabolic Pathways. Molecular Plant-Microbe Interactions, 2008, 21, 1515-1527.	1.4	99
10	RXLR-Mediated Entry of <i>Phytophthora sojae</i> Effector <i>Avr1b</i> into Soybean Cells Does Not Require Pathogen-Encoded Machinery. Plant Cell, 2008, 20, 1930-1947.	3.1	440
11	Integrated Views in Plant Breeding. , 2009, , 327-354.		4
12	Virus-Induced Gene Silencing in the Culinary Ginger (Zingiber officinale): An Effective Mechanism for Down-Regulating Gene Expression in Tropical Monocots. Molecular Plant, 2009, 2, 1084-1094.	3.9	51
13	Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the <i>Pm3</i> resistance locus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9519-9524.	3.3	213
14	A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Functional and Integrative Genomics, 2009, 9, 325-334.	1.4	33
15	Genetic analysis of durable resistance against leaf rust in durum wheat. Molecular Breeding, 2009, 24, 25-39.	1.0	41
16	Two different CCâ€NBSâ€LRR genes are required for <i>Lr10</i> â€mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant Journal, 2009, 60, 1043-1054.	2.8	126
17	Biotic Stress Resistance in Wheat—Breeding and Genomic Selection Implications. Biotechnology and Biotechnological Equipment, 2009, 23, 1417-1426.	0.5	44
18	The Uredinales: Cytology, Biochemistry, and Molecular Biology. , 2009, , 69-98.		23

ATION REI

#	Article	IF	CITATIONS
23	A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 323, 1360-1363.	6.0	1,140
24	Hordeivirus Replication, Movement, and Pathogenesis. Annual Review of Phytopathology, 2009, 47, 385-422.	3.5	132
25	Genetic Diversity of the Pm3 Powdery Mildew Resistance Alleles in Wheat Gene Bank Accessions as Assessed by Molecular Markers. Diversity, 2010, 2, 768-786.	0.7	25
26	Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21. Theoretical and Applied Genetics, 2010, 121, 271-281.	1.8	11
27	Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Functional and Integrative Genomics, 2010, 10, 463-476.	1.4	70
28	Molecular characterization and functional analysis of elite genes in wheat and its related species. Journal of Genetics, 2010, 89, 539-554.	0.4	1
29	Identification of Lr24 with targeted region amplified polymorphism (TRAP) analysis in wheat. Frontiers of Agriculture in China, 2010, 4, 18-23.	0.2	1
30	Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics, 2010, 11, 408.	1.2	82
31	Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnology Journal, 2010, 8, 1023-1032.	4.1	87
32	Rapid Determination of Gene Function by Virusâ€induced Gene Silencing in Wheat and Barley. Crop Science, 2010, 50, S-77.	0.8	38
33	Genomics for Wheat Improvement. , 2010, , 281-305.		4
34	Comparative Gene Expression Analysis of Susceptible and Resistant Near-Isogenic Lines in Common Wheat Infected by Puccinia triticina. DNA Research, 2010, 17, 211-222.	1.5	59
35	Analysis of differentially expressed genes in leaf rust infected bread wheat involving seedling resistance gene Lr28. Functional Plant Biology, 2011, 38, 479.	1.1	17
36	Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 2011, 168, 30-44.	1.6	39
37	The Barley stripe mosaic virus system used for virus-induced gene silencing in cereals differentially affects susceptibility to fungal pathogens in wheat. Journal of Plant Physiology, 2011, 168, 990-994.	1.6	47
38	New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 2011, 16, 656-665.	4.3	279
39	Isolation and Characterization of NBS-LRR Class Resistance Homologous Gene from Wheat. Agricultural Sciences in China, 2011, 10, 1151-1158.	0.6	3
40	TaRAR1 is Required for Lr24-Mediated Wheat Leaf Rust Resistance. Agricultural Sciences in China, 2011, 10, 1732-1738.	0.6	3

#	Article	IF	CITATIONS
41	A wheat disease resistance gene analog of the NBS-LRR class: identification and analysis. Journal of Plant Diseases and Protection, 2011, 118, 63-68.	1.6	2
42	Identification and inheritance of leaf rust resistance genes in the wheat cultivar â€~Mar∨dasht'. Cereal Research Communications, 2011, 39, 67-76.	0.8	0
43	Transgenic <i>Pm3b</i> wheat lines show resistance to powdery mildew in the field. Plant Biotechnology Journal, 2011, 9, 897-910.	4.1	61
45	Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance. European Journal of Plant Pathology, 2011, 130, 559-575.	0.8	28
46	Prospects for functional analysis of effectors from cereal rust fungi. Euphytica, 2011, 179, 57-67.	0.6	46
47	Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica, 2011, 179, 69-79.	0.6	83
48	Molecular genetics of race non-specific rust resistance in wheat. Euphytica, 2011, 179, 81-91.	0.6	163
49	High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetica, 2011, 139, 1179-1187.	0.5	14
50	A genome-wide genetic map of NB-LRR disease resistance loci in potato. Theoretical and Applied Genetics, 2011, 123, 493-508.	1.8	54
51	Development of a Host-Induced RNAi System in the Wheat Stripe Rust Fungus <i>Puccinia striiformis</i> f. sp. <i>tritici</i> Molecular Plant-Microbe Interactions, 2011, 24, 554-561.	1.4	183
52	Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases. PLoS ONE, 2012, 7, e38008.	1.1	35
53	Recent advances in tomato functional genomics: utilization of VIGS. Protoplasma, 2012, 249, 1017-1027.	1.0	32
54	A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat. Molecular Breeding, 2012, 30, 1453-1464.	1.0	15
55	The Application of Reverse Genetics to Polyploid Plant Species. Critical Reviews in Plant Sciences, 2012, 31, 181-200.	2.7	10
56	Molecular breeding for Septoria tritici blotch resistance in wheat. Cereal Research Communications, 2012, 40, 451-466.	0.8	13
57	Virus-induced gene silencing and its application in plant functional genomics. Science China Life Sciences, 2012, 55, 99-108.	2.3	49
58	Genome-Wide Analysis of Stowaway-Like MITEs in Wheat Reveals High Sequence Conservation, Gene Association, and Genomic Diversification Â. Plant Physiology, 2012, 161, 486-496.	2.3	29
59	Molecular Basis of Disease Resistance in Cereal Crops: An Overview. , 2012, , 477-489.		2

#	Article	IF	CITATIONS
60	Genetic analysis of leaf rust resistance genes and associated markers in the durable resistant wheat cultivar Sinvalocho MA. Theoretical and Applied Genetics, 2012, 124, 1305-1314.	1.8	16
61	Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theoretical and Applied Genetics, 2012, 124, 1365-1373.	1.8	36
62	A bioinformatic evaluation of potential allergenicity of 85 candidate genes in transgenic organisms. Science Bulletin, 2012, 57, 1824-1832.	1.7	1
63	Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (<i>Triticum) Tj ETQq1 1 0.7843 Pathology, 2012, 13, 276-287.</i>	814 rgBT / 2.0	Overlock 10 45
64	SNP markers linked to leaf rust and grain mold resistance in sorghum. Molecular Breeding, 2013, 32, 451-462.	1.0	23
65	Genomics and Breeding for Climate-Resilient Crops. , 2013, , .		10
66	Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Molecular Breeding, 2013, 32, 663-677.	1.0	56
67	Sequence-Based Mapping of the Polyploid Wheat Genome. G3: Genes, Genomes, Genetics, 2013, 3, 1105-1114.	0.8	143
68	Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 2013, 81, 595-608.	2.0	164
69	Disease Resistance. , 2013, , 291-314.		10
70	Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses. International Journal of Molecular Sciences, 2013, 14, 7302-7326.	1.8	279
71	Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. Journal of Experimental Botany, 2013, 64, 1381-1392.	2.4	87
72	Genetic Dissection of Blackleg Resistance Loci in Rapeseed (Brassica napus L.). , 0, , .		34
73	Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides). PLoS ONE, 2014, 9, e100160.	1.1	36
74	Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics, 2014, 15, 1080.	1.2	31
75	Identification and Implementation of Resistance: Genomics-Assisted use of Genetic Resources for Breeding Against Powdery Mildew and Stagonospora Nodorum Blotch in Wheat. , 2014, , 359-383.		3
76	A Time for More Booms and Fewer Busts? Unraveling Cereal–Rust Interactions. Molecular Plant-Microbe Interactions, 2014, 27, 207-214.	1.4	46
77	Preventing Potential Diseases of Crop Plants Under the Impact of a Changing Environment. , 2014, , 193-214.		2

	CITATION	REPORT	
#	Article	IF	CITATIONS
78	The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 2014, 5, 641.	1.7	453
79	Nonhost resistance to rust pathogens ââ,¬â€œ a continuation of continua. Frontiers in Plant Science, 2014, 5, 664.	1.7	79
80	Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid Wheat Line 92R137. BioMed Research International, 2014, 2014, 1-9.	0.9	3
81	Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. Theoretical and Applied Genetics, 2014, 127, 1133-1141.	1.8	15
82	Genomics of Plant Genetic Resources. , 2014, , .		16
83	The Stripe Rust Resistance Gene Yr10 Encodes an Evolutionary-Conserved and Unique CC–NBS–LRR Sequence in Wheat. Molecular Plant, 2014, 7, 1740-1755.	3.9	132
84	Lr70, a new gene for leaf rust resistance mapped in common wheat accession KU3198. Theoretical and Applied Genetics, 2014, 127, 2005-2009.	1.8	18
85	Lr1-mediated leaf rust resistance pathways of transgenic wheat lines revealed by a gene expression study using the Affymetrix GeneChip® Wheat Genome Array. Molecular Breeding, 2014, 34, 127-141.	1.0	21
86	Overview and Application of QTL for Adult Plant Resistance to Leaf Rust and Powdery Mildew in Wheat. Crop Science, 2014, 54, 1907-1925.	0.8	131
87	Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. Phytopathology, 2015, 105, 872-884.	1.1	393
88	Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genomics, 2015, 16, 742.	1.2	27
89	Recent trends and perspectives of molecular markers against fungal diseases in wheat. Frontiers in Microbiology, 2015, 6, 861.	1.5	55
90	Disease Resistance Gene Analogs (RGAs) in Plants. International Journal of Molecular Sciences, 2015, 16, 19248-19290.	1.8	234
91	Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. Theoretical and Applied Genetics, 2015, 128, 1617-1629.	1.8	21
92	Phiâ€class glutathioneâ€ <i>S</i> â€ŧransferase is involved in <i>Dn1</i> â€mediated resistance. Physiologia Plantarum, 2015, 154, 1-12.	2.6	6
93	Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress. Journal of Experimental Botany, 2015, 66, 513-531.	2.4	35
94	Sequencing chromosome 5D of <i>Aegilops tauschii</i> and comparison with its allopolyploid descendant bread wheat (<i>Triticum aestivum</i>). Plant Biotechnology Journal, 2015, 13, 740-752.	4.1	32
95	Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors. Molecular Genetics and Genomics, 2015, 290, 727-738.	1.0	79

#	Article	IF	CITATIONS
96	Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat. Functional and Integrative Genomics, 2015, 15, 233-245.	1.4	11
97	Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Molecular Genetics and Genomics, 2015, 290, 257-271.	1.0	21
98	Identification and Validation of SNP Markers Linked to the Stripe Rust Resistance Gene <i>Yr5</i> in Wheat. Crop Science, 2016, 56, 3055-3065.	0.8	32
99	Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum). Frontiers in Plant Science, 2016, 7, 1668.	1.7	20
100	Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Molecular and Cellular Proteomics, 2016, 15, 2954-2969.	2.5	32
101	Molecular genetics and evolution of disease resistance in cereals. New Phytologist, 2016, 212, 320-332.	3.5	99
102	Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. Comptes Rendus - Biologies, 2016, 339, 347-356.	0.1	3
103	Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. Journal of Applied Genetics, 2016, 57, 453-465.	1.0	15
104	A review of wheat leaf rust research and the development of resistant cultivars in Canada. Canadian Journal of Plant Pathology, 2016, 38, 1-18.	0.8	107
105	Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum) Tj ETQq1 1 0.784	4314 rgBT 2.8	/Overlock 10
106	Identification of Leaf Rust Resistance Genes in Chinese Common Wheat Cultivars. Plant Disease, 2017, 101, 1729-1737.	0.7	18
107	Cenetic analysis of rust resistance genes in global wheat cultivars: an overview. Biotechnology and Biotechnological Equipment, 2017, 31, 431-445.	0.5	61
108	Genetic diversity of disease resistance genes in foxtail millet (Setaria italica L.). Plant Gene, 2017, 10, 8-16.	1.4	23
109	A large-scale chromosome-specific SNP discovery guideline. Functional and Integrative Genomics, 2017, 17, 97-105.	1.4	40
110	The <i>Lr34</i> adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnology Journal, 2017, 15, 894-905.	4.1	56
111	Development of NBS-related microsatellite (NRM) markers in hexaploid wheat. Euphytica, 2017, 213, 1.	0.6	Ο
112	Wheat Rust Diseases. Methods in Molecular Biology, 2017, , .	0.4	3
113	iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat. Scientific Reports, 2017, 7, 7524.	1.6	29

CITATION REPORT ARTICLE IF CITATIONS Rapid Identification of Rust Resistance Genes Through Cultivar-Specific De Novo Chromosome 0.4 2 Assemblies. Methods in Molecular Biology, 2017, 1659, 245-255. Wheat-Puccinia striiformis Interactions., 2017, , 155-282. A wheat NBS-LRR gene TaRGA19 participates in Lr19 -mediated resistance to Puccinia triticina. Plant 2.8 10 Physiology and Biochemistry, 2017, 119, 1-8. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii. Genetic Resources and Crop Evolution, 2017, 64, 913-926. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC 1.6 53 Plant Biology, 2017, 17, 45. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.). BMC Plant Biology, 2017, 17, 108. 1.6 Association mapping of leaf rust resistance loci in a spring wheat core collection. Theoretical and 1.8 41 Applied Genetics, 2017, 130, 345-361. The wheat <scp>NB</scp>â€<scp>LRR</scp> gene <i>Ta<scp>RCR</scp>1</i> is required for host defence response to the necrotrophic fungal pathogen <i>Rhizoctonia cerealis</i>. Plant Biotechnology 4.1 Journal, 2017, 15, 674-687 Overexpression of the Prunus sogdiana NBS-LRR Subgroup Gene PsoRPM2 Promotes Resistance to the 1.5 36 Root-Knot Nematode Meloidogyne incognita in Tobacco. Frontiers in Microbiology, 2017, 8, 2113. Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection. Theoretical and 1.8 Applied Genetics, 2018, 131, 127-144.

Molecular breeding technologies and strategies for rust resistance in wheat ($\langle i \rangle$ Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 342 Td ($\frac{124}{40}$

125	Leaf Rust Resistance of 35 Wheat Cultivars (Lines). Journal of Plant Pathology & Microbiology, 2018, 09, .	0.3	3
126	Analysis of three types of resistance gene analogs in PmU region from Triticum urartu. Journal of Integrative Agriculture, 2018, 17, 2601-2611.	1.7	8
127	Identification of Two Novel Wheat Drought Tolerance-Related Proteins by Comparative Proteomic Analysis Combined with Virus-Induced Gene Silencing. International Journal of Molecular Sciences, 2018, 19, 4020.	1.8	16
128	Suppression subtractive hybridization and microarray analysis reveal differentially expressed genes in the Lr39/41-mediated wheat resistance to Puccinia triticina. European Journal of Plant Pathology, 2018, 152, 479-492.	0.8	3
129	Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress. Journal of Proteome Research, 2018, 17, 2256-2281.	1.8	11
130	A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. Functional Plant Biology, 2018, 45, 1046.	1.1	25
131	Molecular identification of wheat leaf rust resistance genes in sixty Chinese wheat cultivars. Czech Journal of Genetics and Plant Breeding, 2018, 54, 1-8.	0.4	3

114

116

118

120

122

#	Article	IF	Citations
132	Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 2018, 9, 240.	1.7	18
133	Characterization and mapping of leaf rust resistance in four durum wheat cultivars. PLoS ONE, 2018, 13, e0197317.	1.1	23
134	Fine mapping of powdery mildew resistance gene Pm4e in bread wheat (Triticum aestivum L.). Planta, 2018, 248, 1319-1328.	1.6	16
135	Advances in Wheat and Pathogen Genomics: Implications for Disease Control. Annual Review of Phytopathology, 2018, 56, 67-87.	3.5	66
136	Gene Network and Database for Genes of Wheat's Resistance to Pathogenic Fungi. Russian Journal of Plant Physiology, 2018, 65, 319-332.	0.5	2
137	Genome-Wide Expression Profiling of Genes Associated with the Lr47-Mediated Wheat Resistance to Leaf Rust (Puccinia triticina). International Journal of Molecular Sciences, 2019, 20, 4498.	1.8	16
138	Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (Puccinia triticina). Frontiers in Plant Science, 2019, 10, 1291.	1.7	7
139	Mapping of Genetic Loci Conferring Resistance to Leaf Rust From Three Globally Resistant Durum Wheat Sources. Frontiers in Plant Science, 2019, 10, 1247.	1.7	21
140	Fine Mapping of the Wheat Leaf Rust Resistance Gene Lr42. International Journal of Molecular Sciences, 2019, 20, 2445.	1.8	57
141	African wheat germplasm – a valuable resource for resistance to rust diseases. Plant Pathology, 2019, 68, 1308-1319.	1.2	3
142	Mapping QTL Associated with Stripe Rust, Leaf Rust, and Leaf Spotting in a Canadian Spring Wheat Population. Crop Science, 2019, 59, 650-658.	0.8	15
143	Rust pathogen effectors: perspectives in resistance breeding. Planta, 2019, 250, 1-22.	1.6	42
144	Genome-wide mapping of adult plant stripe rust resistance in wheat cultivar Toni. Theoretical and Applied Genetics, 2019, 132, 1693-1704.	1.8	9
145	Genetic mapping of a major gene for leaf rust resistance in soft red winter wheat cultivar AGS 2000. Molecular Breeding, 2019, 39, 1.	1.0	15
146	Rapid Gene Cloning in Wheat. , 2019, , 65-95.		6
147	Identification of known leaf rust resistance genes in common wheat cultivars from Sichuan province in China. Crop Protection, 2019, 115, 122-129.	1.0	19
148	Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Molecular Biology Reports, 2020, 47, 1339-1360.	1.0	40
149	Exome association analysis sheds light onto leaf rust (<i>Puccinia triticina</i>) resistance genes currently used in wheat breeding (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2020, 18, 1396-1408.	4.1	13

#	Article	IF	CITATIONS
150	A novel adult plant leaf rust resistance gene <i>Lr2K38</i> mapped on wheat chromosome 1AL. Plant Genome, 2020, 13, e20061.	1.6	5
151	Identification of New Leaf Rust Resistance Loci in Wheat and Wild Relatives by Array-Based SNP Genotyping and Association Genetics. Frontiers in Plant Science, 2020, 11, 583738.	1.7	29
152	Fusarium Head Blight and Rust Diseases in Soft Red Winter Wheat in the Southeast United States: State of the Art, Challenges and Future Perspective for Breeding. Frontiers in Plant Science, 2020, 11, 1080.	1.7	47
153	Comparing the Potential of Marker-Assisted Selection and Genomic Prediction for Improving Rust Resistance in Hybrid Wheat. Frontiers in Plant Science, 2020, 11, 594113.	1.7	21

Haplotype-based genome-wide association increases the predictability of leaf rust (<i>Puccinia) Tj ETQq0 0 0 rgBT $\frac{10}{2.4}$ Tf 50 58 $\frac{13}{2.4}$ Tf 50 58

155	Fine Mapping of the Wheat Leaf Rust Resistance Gene LrLC10 (Lr13) and Validation of Its Co-segregation Markers. Frontiers in Plant Science, 2020, 11, 470.	1.7	14
156	Identification of Leaf Rust Resistance Genes in Bread Wheat Cultivars from Ethiopia. Plant Disease, 2020, 104, 2354-2361.	0.7	8
157	Current strategies and advances in wheat biology. Crop Journal, 2020, 8, 879-891.	2.3	24
158	Breeding Wheat for Durable Leaf Rust Resistance in Southern Africa: Variability, Distribution, Current Control Strategies, Challenges and Future Prospects. Frontiers in Plant Science, 2020, 11, 549.	1.7	22
159	How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. Frontiers in Plant Science, 2020, 11, 678.	1.7	38
160	Molecular genetics of leaf rust resistance in wheat and barley. Theoretical and Applied Genetics, 2020, 133, 2035-2050.	1.8	46
161	Cenetic analysis of Aegilops tauschii-derived seedling resistance to leaf rust in synthetic hexaploid wheat. Journal of Applied Genetics, 2020, 61, 163-168.	1.0	7
162	The progress of leaf rust research in wheat. Fungal Biology, 2020, 124, 537-550.	1.1	57
163	Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theoretical and Applied Genetics, 2021, 134, 849-858.	1.8	54
164	Globally Important Wheat Diseases: Status, Challenges, Breeding and Genomic Tools to Enhance Resistance Durability. , 2021, , 59-128.		12
165	Wheat rust research: impact, thrusts, and roadmap to sustained wheat production. , 2021, , 177-203.		1
166	Characterization of the Resistance to Powdery Mildew and Leaf Rust Carried by the Bread Wheat Cultivar Victo. International Journal of Molecular Sciences, 2021, 22, 3109.	1.8	4
167	Breeding Wheat for Biotic Stress Resistance: Achievements, Challenges and Prospects. , 0, , .		4

#	Article	IF	CITATIONS
168	Development of diagnostic markers for a wheat leaf rust resistance gene Lr42 using RNA-sequencing. Crop Journal, 2021, 9, 1357-1366.	2.3	5
169	Identification of leaf rust resistance genes in common wheat varieties from China and foreign countries. Journal of Integrative Agriculture, 2021, 20, 1302-1313.	1.7	11
170	A Methodological Advance of Tobacco Rattle Virus-Induced Gene Silencing for Functional Genomics in Plants. Frontiers in Plant Science, 2021, 12, 671091.	1.7	31
171	A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nature Communications, 2021, 12, 3378.	5.8	39
172	Identification of Resistant Germplasm and Detection of Genes for Resistance to Powdery Mildew and Leaf Rust from 2,978 Wheat Accessions. Plant Disease, 2021, 105, 3900-3908.	0.7	21
173	High-resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theoretical and Applied Genetics, 2021, 134, 2857-2873.	1.8	15
174	Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection. Plants, 2021, 10, 1378.	1.6	10
175	NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Current Opinion in Plant Biology, 2021, 62, 102053.	3.5	48
176	Map-Based Cloning of Genes in Triticeae (Wheat and Barley). , 2009, , 337-357.		33
177	Molecular approaches for characterization and use of natural disease resistance in wheat. , 2007, , 387-397.		2
178	Durum Wheat (Triticum turgidum ssp. durum) Breeding to Meet the Challenge of Climate Change. , 2019, , 471-524.		20
179	Advances in Molecular Markers and Their Use in Genetic Improvement of Wheat. , 2021, , 139-174.		19
180	Stripe Rust Resistance. , 2017, , 353-558.		64
181	Disease resistance genes: form and function , 2009, , 94-141.		9
182	Virus-induced gene silencing and its applications CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	13
185	A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots. PLoS ONE, 2011, 6, e26468.	1.1	253
186	Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat. PLoS ONE, 2016, 11, e0164293.	1.1	50
187	Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. Frontiers in Plant Science, 2020, 11, 567147.	1.7	27

#	ARTICLE P1 peptidase of Pea seed-borne mosaic virus contains non-canonical C2H2 zinc finger and may act in a	IF 1.2	CITATIONS
188	truncated form. Journal of Plant Science and Molecular Breeding, 2014, 3, 2. RNA Interference and Wheat Functional Genomics. , 2011, , 285-308.	1.2	0
190	COMPARISON OF NEXT-GENERATION SEQUENCING SYSTEMS. , 2014, , 31-56.		0
192	Genotyping of Ukrainian common wheat cultivars using the marker of the Lr48 gene conferring moderate resistance to leaf rust. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 22, 86-89.	0.0	0
193	Diversity of Resistance Gene Analogues in Rust Resistance and Susceptible Bread Wheat Varieties. Plant Genetic Researches, 2019, 5, 29-40.	0.4	0
195	Advanced Genomics and Breeding Tools to Accelerate the Development of Climate Resilient Wheat. , 2020, , 45-95.		1
196	Research Advances in Wheat Breeding and Genetics for Leaf Rust Resistance. Han'guk Yukchong Hakhoe Chi, 2020, 52, 213-224.	0.2	2
197	Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. Biology, 2021, 10, 1168.	1.3	3
198	The evolving battle between yellow rust and wheat: implications for global food security. Theoretical and Applied Genetics, 2022, 135, 741-753.	1.8	22
199	Fine mapping of QPm.caas-3BS, a stable QTL for adult-plant resistance to powdery mildew in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135, 1083-1099.	1.8	12
200	Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Scientific Reports, 2022, 12, 821.	1.6	12
201	Candidate powdery mildew resistance gene in wheat landrace cultivar Hongyoumai discovered using SLAF and BSR-seq. BMC Plant Biology, 2022, 22, 83.	1.6	4
202	An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Frontiers in Genetics, 2022, 13, 816057.	1.1	25
203	Validation of CAPS marker WR003 for the leaf rust resistance gene Lr1 and the molecular evolution of Lr1 in wheat. Czech Journal of Genetics and Plant Breeding, 2022, 58, 223-232.	0.4	2
204	QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. Journal of Applied Genetics, 2022, 63, 265-279.	1.0	2
205	Production of new wheat–A. cristatum translocation lines with modified chromosome 2P coding for powdery mildew and leaf rust resistance. Molecular Breeding, 2022, 42, 1.	1.0	0
206	Polyamine Oxidation Is Indispensable for Wheat (Triticum aestivum L.) Oxidative Response and Necrotic Reactions during Leaf Rust (Puccinia triticina Eriks.) Infection. Plants, 2021, 10, 2787.	1.6	1
207	Discovery of a Novel Leaf Rust (Puccinia recondita) Resistance Gene in Rye (Secale cereale L.) Using Association Genomics. Cells, 2022, 11, 64.	1.8	11

#	Article	IF	CITATIONS
208	Genome-Wide Association Mapping of Crown and Brown Rust Resistance in Perennial Ryegrass. Genes, 2022, 13, 20.	1.0	1
256	Prospects of molecular markers for wheat improvement in postgenomic era. , 2022, , 323-340.		1
257	Deciphering the genomic hotspots in wheat for key breeding traits using comparative and structural genomics. , 2022, , 295-321.		0
258	The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nature Communications, 2022, 13, 2386.	5.8	12
259	Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nature Communications, 2022, 13, .	5.8	29
260	Comparative Transcriptome Analysis Reveals the Gene Expression and Regulatory Characteristics of Broad-Spectrum Immunity to Leaf Rust in a Wheat–Agropyron cristatum 2P Addition Line. International Journal of Molecular Sciences, 2022, 23, 7370.	1.8	4
261	Wheat genomic study for genetic improvement of traits in China. Science China Life Sciences, 2022, 65, 1718-1775.	2.3	63
262	Fine mapping of a recessive leaf rust resistance locus on chromosome 2BS in wheat accession CH1539. Molecular Breeding, 2022, 42, .	1.0	2
264	Genome-wide characterization and identification of cyclophilin genes associated with leaf rust resistance in bread wheat (Triticum aestivum L.). Frontiers in Genetics, 0, 13, .	1.1	2
265	A novel locus conferring resistance to Puccinia hordei maps to the genomic region corresponding to Rph14 on barley chromosome 2HS. Frontiers in Plant Science, 0, 13, .	1.7	3
266	The Role of Genetic, Genomic, and Breeding Approaches in the Fight Against Fungal Diseases in Wheat. , 2022, , 225-247.		0
267	Fine mapping and marker development for the wheat leaf rust resistance gene <i>Lr32</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	1
268	Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Frontiers in Plant Science, 0, 13, .	1.7	12
269	Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel. Agriculture (Switzerland), 2022, 12, 1829.	1.4	3
271	Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. Theoretical and Applied Genetics, 2023, 136, .	1.8	4
272	Important wheat diseases in the US and their management in the 21st century. Frontiers in Plant Science, 0, 13, .	1.7	8
273	Genome-wide association analyses of leaf rust resistance in cultivated emmer wheat. Theoretical and Applied Genetics, 2023, 136, .	1.8	1
275	Identification of leaf rust resistance loci in a geographically diverse panel of wheat using genome-wide association analysis. Frontiers in Plant Science, 0, 14, .	1.7	Ο

#	Article	IF	CITATIONS
276	Genetics of Resistance to Leaf Rust in Wheat: An Overview in a Genome-Wide Level. Sustainability, 2023, 15, 3247.	1.6	6
277	Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. Frontiers in Plant Science, 0, 13, .	1.7	1
278	Molecular Advances in Breeding for Durable Resistance against Pests and Diseases in Wheat: Opportunities and Challenges. Agronomy, 2023, 13, 628.	1.3	3
279	Mapping of quantitative trait loci for leaf rust resistance in the wheat population â€~Xinmai 26/Zhoumai 22'. Journal of Experimental Botany, 0, , .	2.4	3
280	Cloning and identification of <i>CmCC</i> - <i>NB</i> - <i>ARC</i> , <italic></italic> a chrysanthemum white rust resistance gene. Ornamental Plant Research, 2023, 3, 0-0.	0.2	0
286	Epigenetics for Crop Improvement: Challenges and Opportunities with Emphasis on Wheat. , 2023, , 395-411.		0
294	Rapid Cloning of Disease Resistance Genes in Wheat. Compendium of Plant Genomes, 2024, , 187-212.	0.3	0