A rice gene activation/knockout mutant resource for hi genomics

Plant Molecular Biology 63, 351-364 DOI: 10.1007/s11103-006-9093-z

Citation Report

#	Article	IF	CITATIONS
1	The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 2007, 36, D1028-D1033.	14.5	295
2	The SnRK1A Protein Kinase Plays a Key Role in Sugar Signaling during Germination and Seedling Growth of Rice. Plant Cell, 2007, 19, 2484-2499.	6.6	207
3	T-DNA Insertion Mutants as a Resource for Rice Functional Genomics. , 2007, , 181-221.		10
4	Activation Tagging Systems in Rice. , 2007, , 333-353.		3
6	Activation tagging in plants—generation of novel, gain-of-function mutations. Australian Journal of Agricultural Research, 2007, 58, 490.	1.5	15
7	Characterization of left-border flanking sequences of T-DNA integration in transgenic rice (<i>Oryza) Tj ETQq1 1</i>	0.784314 1.6	rgBT /Over
8	A barley activation tagging system. Plant Molecular Biology, 2007, 64, 329-347.	3.9	72
9	Analysis of gene-trap Ds rice populations in Korea. Plant Molecular Biology, 2007, 65, 373-384.	3.9	35
10	A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Molecular Biology, 2007, 65, 427-438.	3.9	52
11	Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Molecular Biology, 2007, 65, 587-601.	3.9	66
12	Global functional analyses of rice promoters by genomics approaches. Plant Molecular Biology, 2007, 65, 417-425.	3.9	14
13	Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Molecular Biology, 2007, 65, 385-402.	3.9	39
14	A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Molecular Biology, 2007, 65, 357-371.	3.9	103
15	Rice Metabolomics. Rice, 2008, 1, 63-71.	4.0	55
16	Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nature Reviews Genetics, 2008, 9, 91-101.	16.3	143
17	Mutagenesis and Highâ€Throughput Functional Genomics in Cereal Crops: Current Status. Advances in Agronomy, 2008, 98, 357-414.	5.2	4
18	Systems Approaches to Identifying Gene Regulatory Networks in Plants. Annual Review of Cell and Developmental Biology, 2008, 24, 81-103.	9.4	96
19	Engineering with Precision: Tools for the New Generation of Transgenic Crops. BioScience, 2008, 58, 391-401.	4.9	24

#	Article	IF	CITATIONS
20	A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice. Plant Cell, 2008, 20, 2603-2618.	6.6	410
21	A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants. Plant Physiology, 2008, 146, 189-199.	4.8	64
23	Transposon-based activation tagging in cereals. Functional Plant Biology, 2009, 36, 915.	2.1	12
24	Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiology, 2009, 149, 165-170.	4.8	167
25	Development of an activation tagging system for the basidiomycetous medicinal fungus Antrodia cinnamomea. Mycological Research, 2009, 113, 290-297.	2.5	22
26	Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Molecular Biology, 2009, 69, 69-80.	3.9	88
27	Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant Journal, 2009, 57, 883-894.	5.7	121
28	Specific features of T-DNA insertion regions in transgenic plants. Russian Journal of Genetics, 2009, 45, 1289-1301.	0.6	3
29	Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 2009, 103, 181-196.	2.9	238
30	Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. Journal of Genetics and Genomics, 2009, 36, 267-276.	3.9	31
31	Genetic technologies for the identification of plant genes controlling environmental stress responses. Functional Plant Biology, 2009, 36, 696.	2.1	11
32	Phenome Analysis in Plant Species Using Loss-of-Function and Gain-of-Function Mutants. Plant and Cell Physiology, 2009, 50, 1215-1231.	3.1	83
33	A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Molecular Biology, 2010, 74, 119-128.	3.9	13
34	Comparative analyses of linkage maps and segregation distortion of two F2 populations derived from japonica crossed with indica rice. Hereditas, 2010, 147, 225-236.	1.4	22
35	Proteomic approaches to study plant–pathogen interactions. Phytochemistry, 2010, 71, 351-362.	2.9	90
36	Transgenic rice plants carrying RNA interference constructs of <i>AOS</i> (<i>allene oxide) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 TF 3
37	Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. International Journal of Biological Sciences, 2010, 6, 228-251.	6.4	54
38	Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breeding Science, 2010, 60, 486-492.	1.9	25

	CITATION	Report	
#	Article	IF	CITATIONS
39	Production and characterization of a large population of cDNA-overexpressing transgenic rice plants using Gateway-based full-length cDNA expression libraries. Breeding Science, 2010, 60, 575-585.	1.9	31
40	Rice transgenic resources with gain-of-function phenotypes. Breeding Science, 2010, 60, 493-501.	1.9	15
41	Abscisic Acid-Induced Resistance against the Brown Spot Pathogen <i>Cochliobolus miyabeanus</i> in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling Â. Plant Physiology, 2010, 152, 2036-2052.	4.8	186
42	Transgene Integration, Expression and Stability in Plants: Strategies for Improvements. , 2010, , 201-237.		24
43	High-Throughput Characterization of Plant Gene Functions by Using Gain-of-Function Technology. Annual Review of Plant Biology, 2010, 61, 373-393.	18.7	40
44	Comparing Genetic Characteristics of Retrotransposon TOS17 During Different Tissue Culture Processes in the Rice Cultivars Nipponbare and Shishoubaimao. Agricultural Sciences in China, 2010, 9, 157-162.	0.6	1
45	TTRSIS: A Cloud Computing Platform for Rice Functional Genomics Research through a Reverse Genetics Approach. , 2011, , .		1
46	Development of an Efficient Inverse PCR Method for Isolating Gene Tags from T-DNA Insertional Mutants in Rice. Methods in Molecular Biology, 2011, 678, 139-146.	0.9	21
47	FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. Journal of Plant Physiology, 2011, 168, 181-187.	3.5	13
48	Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and <i>Ds</i> Insertion Mutagenesis. International Journal of Biological Sciences, 2011, 7, 28-40.	6.4	8
49	Screening for resistance against Pseudomonas syringae in riceâ€FOX Arabidopsis lines identified a putative receptorâ€like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice. Plant Biotechnology Journal, 2011, 9, 466-485.	8.3	68
50	Rice <i>SIZ1</i> , a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist, 2011, 189, 869-882.	7.3	65
51	Genome walking in eukaryotes. FEBS Journal, 2011, 278, 3953-3977.	4.7	45
52	Activation Tagging. Methods in Molecular Biology, 2011, 876, 117-133.	0.9	11
53	Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Molecular Biology, 2011, 75, 179-191.	3.9	141
54	RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function. Plant and Cell Physiology, 2011, 52, 265-273.	3.1	72
55	Strategies for Silencing and Escape. International Review of Cell and Molecular Biology, 2011, 292, 119-152.	3.2	39
56	RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Research, 2011, 39, D1141-D1148.	14.5	227

#	Article	IF	CITATIONS
57	Clone DB: an integrated NCBI resource for clone-associated data. Nucleic Acids Research, 2012, 41, D1070-D1078.	14.5	14
58	Effort and Contribution of Tâ€ÐNA Insertion Mutant Library for Rice Functional Genomics Research in China: Review and Perspective. Journal of Integrative Plant Biology, 2012, 54, 953-966.	8.5	17
59	Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnology Advances, 2012, 30, 1059-1070.	11.7	100
60	Transformation Using Controlled cDNA Overexpression System. Methods in Molecular Biology, 2012, 913, 277-290.	0.9	5
61	Plant Salt Tolerance. Methods in Molecular Biology, 2012, , .	0.9	9
62	Transgenic Plants as Gene-Discovery Tools. , 0, , .		0
63	Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxlyase results in a dark brown phenotype and stunted growth. Plant Molecular Biology, 2012, 78, 525-543.	3.9	56
64	Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genomics, 2012, 13, 61.	2.8	33
65	Genomeâ€wide <i>LORE1</i> retrotransposon mutagenesis and highâ€ŧhroughput insertion detection in <i>Lotus japonicus</i> . Plant Journal, 2012, 69, 731-741.	5.7	149
66	Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. Plant Journal, 2012, 71, 288-302.	5.7	21
67	Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Analytical Biochemistry, 2013, 441, 1-7.	2.4	41
68	Transgenic Cotton. Methods in Molecular Biology, 2013, , .	0.9	2
70	Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. Journal of Experimental Botany, 2013, 64, 4169-4182.	4.8	48
71	Mutant Resources for the Functional Analysis of the Rice Genome. Molecular Plant, 2013, 6, 596-604.	8.3	112
72	Activation tagging in Salvia miltiorrhiza can cause increased leaf size and accumulation of tanshinone I and IIA in its roots. , 2013, 54, 37.		6
73	How important are transposons for plant evolution?. Nature Reviews Genetics, 2013, 14, 49-61.	16.3	711
75	Investigating Transgene Integration and Organization in Cotton (Gossypium hirsutum L.) Genome. Methods in Molecular Biology, 2013, 958, 95-107.	0.9	2
76	RiceFREND: a platform for retrieving coexpressed gene networks in rice. Nucleic Acids Research, 2013, 41, D1214-D1221.	14.5	163

#	Article	IF	CITATIONS
77	RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 2013, 41, D1206-D1213.	14.5	312
78	International Consortium of Rice Mutagenesis: resources and beyond. Rice, 2013, 6, 39.	4.0	53
79	High-throughput analysis of rice genes by means of the heterologous full-length cDNA overexpressor (FOX)-hunting system. International Journal of Developmental Biology, 2013, 57, 517-523.	0.6	6
80	Overexpression of DWARF AND LESION FORMATION 1 (DLE1) causes altered activation of plant defense system in Arabidopsis thaliana. Plant Biotechnology, 2013, 30, 385-392.	1.0	5
81	Increasing Leaf Vein Density by Mutagenesis: Laying the Foundations for C4 Rice. PLoS ONE, 2014, 9, e94947.	2.5	36
82	Discovery and Characterization of Two Novel Salt-Tolerance Genes in Puccinellia tenuiflora. International Journal of Molecular Sciences, 2014, 15, 16469-16483.	4.1	6
83	Phenotype to genotype using forward-genetic Mu-seq for identification and functional classification of maize mutants. Frontiers in Plant Science, 2014, 4, 545.	3.6	20
84	The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of <i>EAT1</i> and Regulate Pollen Development in Rice Â. Plant Cell, 2014, 26, 2486-2504.	6.6	142
85	Genomeâ€ <scp>w</scp> ide patterns of largeâ€ <scp>s</scp> ize presence/ <scp>a</scp> bsence variants in sorghum. Journal of Integrative Plant Biology, 2014, 56, 24-37.	8.5	22
87	Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. Plant Cell Reports, 2014, 33, 617-631.	5.6	36
88	A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties. Plant Physiology, 2014, 164, 2045-2053.	4.8	120
89	Progress in TILLING as a tool for functional genomics and improvement of crops. Journal of Integrative Plant Biology, 2014, 56, 425-443.	8.5	84
90	17. Induced mutagenesis for improving plant abiotic stress tolerance. , 2014, , 345-376.		21
91	Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Scientific Reports, 2015, 5, 15183.	3.3	58
92	Nonâ€canonical structure, function and phylogeny of the B sister MADS â€box gene O s MADS 30 of rice () Tj ET	Qq0,0 0 rş	gBT /Overlock
93	Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway. Plant Cell Reports, 2015, 34, 767-781.	5.6	44
94	Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. Planta, 2015, 241, 371-385.	3.2	14
95	Characterization of a potato activation-tagged mutant, nikku, and its partial revertant. Planta, 2015, 241, 1481-1495.	3.2	3

#	Article	IF	CITATIONS
97	High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. Planta, 2015, 241, 629-640.	3.2	9
98	Expression of eggplant ascorbate peroxidase increases the tolerance of transgenic rice plants to flooding stress. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 257-267.	1.7	21
99	Overexpression of <i>BSR1</i> confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice. Breeding Science, 2016, 66, 396-406.	1.9	26
100	Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS ONE, 2016, 11, e0155768.	2.5	7
101	Gene Overexpression Resources in Cereals for Functional Genomics and Discovery of Useful Genes. Frontiers in Plant Science, 2016, 7, 1359.	3.6	16
102	Genetic resources offer efficient tools for rice functional genomics research. Plant, Cell and Environment, 2016, 39, 998-1013.	5.7	42
103	Somaclonal variation does not preclude the use of rice transformants for genetic screening. Plant Journal, 2016, 85, 648-659.	5.7	34
104	Transposon Ds â€Mediated Insertional Mutagenesis in Rice (Oryza sativa). Current Protocols in Plant Biology, 2016, 1, 466-487.	2.8	6
105	Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics. Journal of Experimental Botany, 2016, 67, 2901-2911.	4.8	35
106	An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2016, 28, 367-387.	6.6	336
107	A New Enzyme-Free Electrochemical Immunoassay for <i>Escherichia coli</i> Detection using Magnetic Nanoparticles. Analytical Letters, 2016, 49, 245-257.	1.8	18
108	The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals. Plant Science, 2016, 242, 240-249.	3.6	27
109	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2017, , .	1.1	12
110	Bioengineering Hairy Roots: Phytoremediation, Secondary Metabolism, Molecular Pharming, Plant-Plant Interactions and Biofuels. Sustainable Agriculture Reviews, 2017, , 213-251.	1.1	17
111	Role of Biotechnology in Rice Production. , 2017, , 487-547.		7
112	Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis. Journal of Plant Research, 2017, 130, 373-386.	2.4	17
113	Characterization of Transgenic Kalanchoë and Petunia with Organ-Specific Expression of GUS or GA 2 ox Genes Led by the Deletion BOX-I Version (dBI) of the PAL1 Promoter. Journal of Plant Growth Regulation, 2017, 36, 424-435.	5.1	5
114	Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity. Briefings in Functional Genomics, 2017, 16, elw041.	2.7	8

#	Article	IF	CITATIONS
115	Auxin transport and response requirements for root hydrotropism differ between plant species. Journal of Experimental Botany, 2017, 68, 3441-3456.	4.8	19
116	The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies. Plant Cell, 2017, 29, 1218-1231.	6.6	138
117	A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnology Journal, 2017, 15, 1439-1452.	8.3	33
118	Integration of <i>Agrobacterium</i> T-DNA into the Plant Genome. Annual Review of Genetics, 2017, 51, 195-217.	7.6	214
119	Biotechnology of Medicinal Plants and Fungi in Taiwan: Production of Bioactive Secondary Metabolites in In Vitro Culture Systems. Medicinal and Aromatic Plants of the World, 2017, , 459-483.	0.2	0
120	Ectopic Expression of WINDING 1 Leads to Asymmetrical Distribution of Auxin and a Spiral Phenotype in Rice. Plant and Cell Physiology, 2017, 58, 1494-1506.	3.1	3
121	Large-scale phenomics analysis of a T-DNA tagged mutant population. GigaScience, 2017, 6, 1-7.	6.4	15
122	A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. Journal of Immunological Methods, 2018, 458, 26-32.	1.4	21
123	The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. Plant Physiology, 2018, 176, 2761-2771.	4.8	43
124	Comparative Analysis of Flanking Sequence Tags of T-DNA/Transposon Insertional Mutants and Genetic Variations of Fast-neutron Treated Mutants in Rice. Journal of Plant Biology, 2018, 61, 80-84.	2.1	8
125	Responses of contrasting rice genotypes to excess manganese and their implications for lignin synthesis. Plant Physiology and Biochemistry, 2018, 123, 252-259.	5.8	33
126	Pervasive read-through transcription of T-DNAs is frequent in tobacco BY-2 cells and can effectively induce silencing. BMC Plant Biology, 2018, 18, 252.	3.6	3
127	Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Briefings in Functional Genomics, 2018, 17, 339-351.	2.7	5
128	Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type. Frontiers in Plant Science, 2018, 9, 1179.	3.6	40
129	The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2. Frontiers in Plant Science, 2018, 9, 337.	3.6	83
130	<i>OsDCL1a</i> activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. Annals of Botany, 2019, 123, 79-93.	2.9	15
131	Insertional Mutagenesis Approaches and Their Use in Rice for Functional Genomics. Plants, 2019, 8, 310.	3.5	25
132	Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Frontiers in Plant Science, 2019, 10, 1326.	3.6	82

#	Article	IF	CITATIONS
133	A Sequence-Indexed <i>Mutator</i> Insertional Library for Maize Functional Genomics Study. Plant Physiology, 2019, 181, 1404-1414.	4.8	28
134	Climate-Resilient Future Crop: Development of C4 Rice. , 2019, , 111-124.		7
135	Type-B response regulators of rice play key roles in growth, development, and cytokinin signaling. Development (Cambridge), 2019, 146, .	2.5	38
136	EAT-Rice: A predictive model for flanking gene expression of T-DNA insertion activation-tagged rice mutants by machine learning approaches. PLoS Computational Biology, 2019, 15, e1006942.	3.2	4
137	Identification of sugar response complex in the metallothionein OsMT2b gene promoter for enhancement of foreign protein production in transgenic rice. Plant Cell Reports, 2019, 38, 899-914.	5.6	1
138	Development of an activation tagging system for maize. Plant Direct, 2019, 3, e00118.	1.9	4
139	Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus. BMC Plant Biology, 2019, 19, 563.	3.6	34
140	Comparative transcriptome analysis of two common wheat varieties induced by 7Li-ion beam irradiation reveals mutation hotspot regions and associated pathways. Radiation Physics and Chemistry, 2020, 170, 108650.	2.8	9
141	Development of a large population of activationâ€ŧagged mutants in an elite <i>indica</i> rice variety. Plant Breeding, 2020, 139, 328-343.	1.9	6
142	<i>BonnMu</i> : A Sequence-Indexed Resource of Transposon-Induced Maize Mutations for Functional Genomics Studies. Plant Physiology, 2020, 184, 620-631.	4.8	25
143	An ethyl methanesulfonateâ€induced neutral mutantâ€bridging method efficiently identifies spontaneously mutated genes in rice. Plant Journal, 2020, 104, 1129-1141.	5.7	3
144	Expression of Human papillomavirus type 52 L1 capsid gene in Oryza sativa involved in cytoprotective activities. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 40-52.	1.1	Ο
146	<i>Rice Big Grain 1 </i> promotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnology Journal, 2020, 18, 1969-1983.	8.3	25
147	PAP90, a novel rice protein plays a critical role in regulation of D1 protein stability of PSII. Journal of Advanced Research, 2021, 30, 197-211.	9.5	6
149	Collection, preservation and distribution of <i>Oryza</i> genetic resources by the National Bioresource Project RICE (NBRP-RICE). Breeding Science, 2021, 71, 291-298.	1.9	5
150	Metabolomics in Rice Improvement. , 2021, , 83-103.		0
151	OsARF11 Promotes Growth, Meristem, Seed, and Vein Formation during Rice Plant Development. International Journal of Molecular Sciences, 2021, 22, 4089.	4.1	18
152	A droughtâ€responsive rice amidohydrolase is the elusive plant guanine deaminase with the potential to modulate the epigenome. Physiologia Plantarum, 2021, 172, 1853-1866.	5.2	2

	CHATION REPORT	
ARTICLE Comparisons within the Rice GA 2-Oxidase Gene Family Revealed Three Dominant Paralogs and a Functional Attenuated Gene that Led to the Identification of Four Amino Acid Variants Associated with GA Deactivation Capability. Rice, 2021, 14, 70.	IF 4.0	Citations
SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice v Kitaake. Plant Biotechnology Journal, 2021, 19, 2576-2588.	variety 8.3	29
Characterization and Evaluation of Transgenic Rice Pyramided with the Pi Genes Pib, Pi25 and Pi54 2021, 14, 78.	ł. Rice, 4.0	9
Era-like GTP protein gene expression in rice. Brazilian Journal of Biology, 2021, 82, e250700.	0.9	0
Mutant Resources for Functional Analysis of the Rice Genome. , 2013, , 81-115.		6
Methods for Rice Phenomics Studies. Methods in Molecular Biology, 2011, 678, 129-138.	0.9	5
Activation Tagging and Insertional Mutagenesis in Barley. Methods in Molecular Biology, 2011, 673 107-128.	8, 0.9	11
Reverse Genetics in Rice Using Tos17. Methods in Molecular Biology, 2013, 1057, 205-221.	0.9	6
Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stre Response Genes in Rice (Oryza sativa L.). PLoS ONE, 2016, 11, e0157244.	ess 2.5	14
Development of pollen mediated activation tagging system for Phalaenopsis and Doritaenopsis. Electronic Journal of Biotechnology, 2012, 15, .	2.2	3
Towards a C4 Rice. Asian Journal of Cell Biology, 2012, 7, 13-31.	0.4	11
Activation of CDC48 and acetyltransferase encoding genes contributes to enhanced abiotic stress tolerance and improved productivity traits in rice. Plant Physiology and Biochemistry, 2021, 168, 329-339.	5.8	3
Unravelling Gene Function Through Mutagenesis. , 2010, , 437-467.		0
Feasibility analysis of leaf disc samples produced via agroinfiltration for promoter trapping studies . Emirates Journal of Food and Agriculture, 2010, 22, 448.	1.0	0
Rice functional genomics using T-DNA mutants. Journal of Plant Biotechnology, 2010, 37, 133-143	3. 0.4	1
Concepts and Strategies for Reverse Genetics in Field, Forest and Bioenergy Crop Species. , 2010, 354-398.	; ;	1
A comprehensive and efficient genomic PCR analysis for the identification of transgenes in rice full-length cDNA-overexpressing lines. Ikushugaku Kenkyu, 2013, 15, 160-166.	0.3	0

171	High-level gene expression in differentiating xylem of tobacco driven by a 2.0^ ^#8201;kb Poplar COMT2 promoter and a 4^ ^times;35S enhancer. Plant Biotechnology, 2013, 30, 191-198.	1.0	0
-----	---	-----	---

#

#	Article	IF	CITATIONS
172	Biotechnological Approaches for Improvement and Conservation of Prunus Species. , 2014, , 456-478.		0
173	Plant functional genomics: Approaches and applications. , 2016, , 157-186.		2
174	Induction of Male-Sterility by Controlling of Gibberellin Biosynthesis in Rice (Oryza sativa). Plant Breeding and Biotechnology, 2018, 6, 19-29.	0.9	0
175	Investigating Transgene Integration and Organization in Cotton (Gossypium hirsutum L.) Genome. Methods in Molecular Biology, 2019, 1902, 123-136.	0.9	1
176	Enhancing Crop Breeding Using Population Genomics Approaches. Population Genomics, 2020, , 1.	0.5	0
177	Phalaenopsis orchid miniaturization by overexpression of OsGA20x6, a rice GA2-oxidase gene. , 2020, 61, 10.		9
178	Closer vein spacing by ectopic expression of nucleotide-binding and leucine-rich repeat proteins in rice leaves. Plant Cell Reports, 2022, 41, 319-335.	5.6	1
179	Using Machine Learning Approaches to Predict Target Gene Expression in Rice T-DNA Insertional Mutants. Frontiers in Genetics, 2021, 12, 798107.	2.3	2
188	Simultaneous detection of <scp>miRNA</scp> and <scp>mRNA</scp> at the singleâ€eell level in plant tissues. Plant Biotechnology Journal, 2023, 21, 136-149.	8.3	2
189	Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. Frontiers in Plant Science, 0, 13, .	3.6	5
190	Proof of concept and early development stage of market-oriented high iron and zinc rice expressing dicot ferritin and rice nicotianamine synthase genes. Scientific Reports, 2023, 13, .	3.3	4
191	Developments of Plant-Based Emulsion-Type Sausage by Using Grey Oyster Mushrooms and Chickpeas. Foods, 2023, 12, 1564.	4.3	6
193	Introduction/Review. , 2023, , 1-73.		0
194	Rice transformation treatments leave specific epigenome changes beyond tissue culture. Plant Physiology, 2023, 193, 1297-1312.	4.8	1
195	Plant Functional Genomics Based on Highâ€Throughput CRISPR Library Knockout Screening: A Perspective. Genetics & Genomics Next, 2024, 5, .	1.5	0
196	Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice. Plant Cell Reports, 2024, 43, .	5.6	0
197	A newly evolved riceâ€specific gene <i>JAUP1</i> regulates jasmonate biosynthesis and signalling to promote root development and multiâ€stress tolerance. Plant Biotechnology Journal, 2024, 22, 1417-1432.	8.3	1