Isolation of antifouling compounds from the marine bac SCH0402

World Journal of Microbiology and Biotechnology 23, 243-249 DOI: 10.1007/s11274-006-9220-7

Citation Report

#	ARTICLE	IF	Citations
1	Marine antifouling laboratory bioassays: an overview of their diversity. Biofouling, 2009, 25, 297-311.	2.2	134
2	Inhibition and Induction of Marine Biofouling by Biofilms. Springer Series on Biofilms, 2009, , 293-313.	0.1	15
3	Inhibition of spore germination of Ulva pertusa by the marine bacterium Pseudoalteromonas haloplanktis CI4. Acta Oceanologica Sinica, 2010, 29, 69-78.	1.0	9
4	Antifouling marine natural products. Natural Product Reports, 2011, 28, 400-410.	10.3	201
5	Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. World Journal of Microbiology and Biotechnology, 2011, 27, 1543-1549.	3.6	34
6	Antifouling activities of marine bacteria associated with sponge (Sigmadocia sp.). Journal of Ocean University of China, 2012, 11, 354-360.	1.2	23
7	Antifouling steroids isolated from red alga epiphyte filamentous bacterium Leucothrix mucor. Fisheries Science, 2012, 78, 683-689.	1.6	11
8	Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm. Marine Pollution Bulletin, 2013, 77, 172-176.	5.0	8
9	Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling, 2013, 29, 1097-1113.	2.2	122
10	Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling, 2013, 29, 423-441.	2.2	220
11	Antifouling chromanols isolated from brown alga Sargassum horneri. Journal of Applied Phycology, 2013, 25, 299-309.	2.8	37
12	Chemical characterization and bioactivity evaluation of bacteriocin from marine biofilm-forming bacteria. African Journal of Microbiology Research, 2014, 8, 3617-3624.	0.4	3
13	Diversity and biological activities of the bacterial community associated with the marine sponge <i>Phorbas tenacior</i> (Porifera, Demospongiae). Letters in Applied Microbiology, 2014, 58, 42-52.	2.2	22
14	Antifouling potential of bacteria isolated from a marine biofilm. Journal of Ocean University of China, 2014, 13, 799-804.	1.2	3
15	Environmentally benign antifouling potentials of triterpene-glycosides from Streptomyces fradiae: a mangrove isolate. RSC Advances, 2015, 5, 29524-29534.	3.6	28
16	Comparative effects of indole derivatives as antifouling agents on the growth of two marine diatom species. Chemistry and Ecology, 2015, 31, 299-307.	1.6	17
17	The ways to increase efficiency of soil bioremediation. Ecological Chemistry and Engineering S, 2016, 23, 155-174.	1.5	19
18	The lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA has potent activity against the biofilm-forming organisms. Marine Pollution Bulletin, 2016, 108, 62-69.	5.0	8

ITATION REDO

CITATION REPORT	
-----------------	--

#	Article	IF	CITATIONS
19	Natural antifouling compound production by microbes associated with marine macroorganisms — A review. Electronic Journal of Biotechnology, 2016, 21, 26-35.	2.2	122
20	Microbial Diversity and Symbiotic Interactions with Macroalgae. , 2017, , 493-546.		2
21	Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Marine Drugs, 2017, 15, 266.	4.6	69
22	Lanosterol expressed bio-fouling inhibition on Gulf of Mannar coast, India. Progress in Organic Coatings, 2018, 115, 100-106.	3.9	3
23	The Influence of Bacteria on Animal Metamorphosis. Annual Review of Microbiology, 2020, 74, 137-158.	7.3	42
24	Green biolubricant infused slippery surfaces to combat marine biofouling. Journal of Colloid and Interface Science, 2020, 568, 185-197.	9.4	59
25	Marine sponges: source of novel biotechnological substances. , 2021, , 363-379.		0
26	Antibiofilm activity in the culture supernatant of a marine Pseudomonas sp. bacterium. Microbiology (United Kingdom), 2020, 166, 239-252.	1.8	6
27	Review on Impact of Biofouling in Aquafarm Infrastructures. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2942-2953.	0.1	10
28	Antifouling Activity of Giffinisterone B and Oleamide Isolated from a Filamentous Bacterium Leucothrix mucor Culture against Ulva pertusa. Han'guk Susan Hakhoe Chi = Bulletin of the Korean Fisheries Society, 2012, 45, 30-34.	0.1	3
29	Inhibition and Induction of Marine Biofouling by Biofilms. Springer Series on Biofilms, 2008, , 293.	0.1	1
30	Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications. Nanotechnology in the Life Sciences, 2020, , 233-272.	0.6	3
31	Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm Agents. Marine Drugs, 2022, 20, 90.	4.6	12
32	Chemical Prevention and Control of the Green Tide and Fouling Organism Ulva: Key Chemicals, Mechanisms, and Applications. Frontiers in Marine Science, 0, 8, .	2.5	15
33	Biofouling inhibition by Staphylococcus aureus extracts and their potential use for paints. International Microbiology, 2024, 27, 81-90.	2.4	0
34	Stimulated Germination of Chlorine-Resistant Fungal Spores during Drinking Water Chlor(am)ination. Environmental Science and Technology Letters, 2023, 10, 1173-1180.	8.7	1
35	New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms, 2023, 11, 2444.	3.6	2
36	Not all parents are the same: Diverse strategies of symbiont transmission in seaweeds. Environmental Microbiology, 2024, 26, .	3.8	0

#	Article	IF	CITATIONS
37	Preparation and characterization of new antifouling coating based on alkyd paint modified with hydrophobic cationic biocide. Journal of Coatings Technology Research, 0, , .	2.5	0
38	In Vitro and In Silico Antifouling Activity Analysis of Secondary Metabolites Extracted from the Marine Bacterium Vibrio alginolyticus. Thalassas, 2024, 40, 225-235.	0.5	0
39	Rapid discovery of a new antifoulant: From in silico studies targeting barnacle chitin synthase to efficacy against barnacle settlement. Ecotoxicology and Environmental Safety, 2024, 274, 116187.	6.0	0

CITATION REPORT