Description and explanation of electromagnetic behavior on effective medium theory

Physical Review E 76, 026606 DOI: 10.1103/physreve.76.026606

Citation Report

#	Article	IF	CITATIONS
1	Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators. Applied Physics Letters, 2007, 91, 253119.	1.5	14
2	Magnetic resonance leads to negative refraction. , 2008, , .		0
3	Validity of the effective-medium approximation of photonic crystals. Physical Review B, 2008, 77, .	1.1	50
4	Recent progress on metamaterial researches at Southeast University. , 2008, , .		О
5	Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Applied Physics Letters, 2008, 93, .	1.5	279
6	Electric and magnetic responses from metamaterial unit cells at terahertz. , 2008, , .		4
7	Application of the discrete Maxwell's equation method in 1D metamaterial analysis. , 2008, , .		0
8	Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators. Physical Review B, 2008, 78, .	1.1	9
9	A SYMMETRICAL CIRCUIT MODEL DESCRIBING ALL KINDS OF CIRCUIT METAMATERIALS. Progress in Electromagnetics Research B, 2008, 5, 63-76.	0.7	21
10	INVESTIGATIONS OF THE ELECTROMAGNETIC PROPERTIES OF THREE-DIMENSIONAL ARBITRARILY-SHAPED CLOAKS. Progress in Electromagnetics Research, 2009, 94, 105-117.	1.6	41
11	Gradient index circuit by waveguided metamaterials. Applied Physics Letters, 2009, 94, .	1.5	49
12	High-Frequency Active Metamaterials. , 2009, , .		0
13	Broadband Ground-Plane Cloak. Science, 2009, 323, 366-369.	6.0	1,392
14	Hybrid resonant phenomena in a SRR/YIG metamaterial structure. Optics Express, 2009, 17, 2122.	1.7	27
15	Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Optics Express, 2009, 17, 21030.	1.7	72
16	Electromagnetic tunneling in a sandwich structure containing single negative media. Physical Review E, 2009, 79, 026601.	0.8	42
17	Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79, .	1.1	682
18	Spectroscopic investigation of metamaterials across the effective medium threshold. Metamaterials, 2010, 4, 175-180.	2.2	1

#	Article	IF	CITATIONS
19	Current-driven metamaterial homogenization. Physica B: Condensed Matter, 2010, 405, 2930-2934.	1.3	72
20	Understanding metamaterials. Waves in Random and Complex Media, 2010, 20, 202-222.	1.6	12
21	Modeling of electromagnetic metamaterials. , 2010, , .		0
22	Transformation Electromagnetic Design of an Embedded Monopole in a Ground Recess for Conformal Applications. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 432-435.	2.4	18
23	Broadband one-dimensional photonic crystal wave plate containing single-negative materials. Optics Express, 2010, 18, 19920.	1.7	38
24	Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 2010, 82, .	1.1	185
25	Analytic expressions for the constitutive parameters of magnetoelectric metamaterials. Physical Review E, 2010, 81, 036605.	0.8	92
26	An evaluation of spatial de-interlacing methods for infrared videos with symbolgy. , 2011, , .		0
27	Reconfigurable gradient index using VO2 memory metamaterials. Applied Physics Letters, 2011, 99, .	1.5	83
28	Design and realization of a two-dimensional spatial magnetic field mapping apparatus to measure magnetic fields of metamaterials. Journal of Applied Physics, 2011, 110, .	1.1	8
29	Homogenization of tensor TL metamaterials. Metamaterials, 2011, 5, 81-89.	2.2	6
30	Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, 110, .	1.1	354
31	Nonlocal homogenization of metamaterials by dual interpolation of fields. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2956.	0.9	13
32	A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470, 369-373.	13.7	551
33	Photonic gap vanishing in one-dimensional photonic crystals with single-negative metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2465-2470.	0.9	4
34	A new method for the verification of effective medium parameters for metamaterials. , 2011, , .		0
35	Extreme subwavelength electric GHz metamaterials. Journal of Applied Physics, 2011, 110, .	1.1	26
36	Three-dimensional magnetic terahertz metamaterials using a multilayer electroplating technique. Journal of Micromechanics and Microengineering, 2012, 22, 045011.	1.5	4

#	ARTICLE	IF	CITATIONS
37	Nested U-ring resonators: a novel multi-band metamaterial design in microwave region. IET Microwaves, Antennas and Propagation, 2012, 6, 1102.	0.7	47
38	Rapid analysis of metamaterial structures using the discrete Maxwell;s equation method. , 2012, , .		0
39	Magnetic levitation from negative permeability materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2739-2742.	0.9	4
40	Surface Susceptibility Bianisotropic Matrix Model for Periodic Metasurfaces of Uniaxially Mono-Anisotropic Scatterers Under Oblique TE-Wave Incidence. IEEE Transactions on Antennas and Propagation, 2012, 60, 5753-5767.	3.1	34
41	Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models. Journal of Applied Physics, 2012, 112, 064907.	1.1	25
42	Theoretical formalism for collective electromagnetic response of discrete metamaterial systems. Physical Review B, 2012, 86, .	1.1	42
43	Experimental determination of effective parameters in a layered metamaterial. Physical Review B, 2012, 85, .	1.1	3
44	Design of a high gain antenna at 5.8GHz Using a New Metamaterials Structure. , 2012, , .		3
45	PERTURBATION THEORY IN THE DESIGN OF DEGENERATE RECTANGULAR DIELECTRIC RESONATORS. Progress in Electromagnetics Research B, 2012, 44, 1-29.	0.7	18
46	Realizing Optical Magnetism from Dielectric Metamaterials. Physical Review Letters, 2012, 108, 097402.	2.9	381
47	Multichannel and omnidirectional transparency in periodic metamaterial layers. Applied Physics B: Lasers and Optics, 2012, 107, 771-778.	1.1	5
48	Visible frequency range negative index metamaterial of hexagonal arrays of gold triangular nanoprisms. Optics Communications, 2012, 285, 1533-1541.	1.0	9
49	Designing polarization insensitive negative index metamaterial for operation in near infrared. Optics Communications, 2012, 285, 2195-2200.	1.0	7
50	A tunable metamaterial absorber using varactor diodes. New Journal of Physics, 2013, 15, 043049.	1.2	260
51	Three-Dimensional Gradient-Index Materials and Their Applications in Microwave Lens Antennas. IEEE Transactions on Antennas and Propagation, 2013, 61, 2561-2569.	3.1	118
52	Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration. Journal of Optics (United Kingdom), 2013, 15, 125101.	1.0	30
53	Homogenization analysis of complementary waveguide metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 453-467.	1.0	25
54	Perturbation Theory in the Design of Degenerate Spherical Dielectric Resonators. IEEE Transactions on Antennas and Propagation, 2013, 61, 2130-2141.	3.1	12

	СПАПО	N KEPORT	
#	Article	IF	CITATIONS
55	Three-dimensional broadband tunable terahertz metamaterials. Physical Review B, 2013, 87, .	1.1	93
56	Super-thin Mikaelian's lens of small index as a beam compressor with an extremely high compression ratio. Optics Express, 2013, 21, 7328.	1.7	9
57	Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics Express, 2013, 21, 26721.	1.7	159
58	DETERMINING THE EFFECTIVE ELECTROMAGNETIC PARAMETERS OF BIANISOTROPIC METAMATERIALS WITH PERIODIC STRUCTURES. Progress in Electromagnetics Research M, 2013, 29, 79-93.	[†] 0.5	13
59	Bayesian Nonparametric Modeling for Rapid Design of Metamaterial Microstructures. International Journal of Antennas and Propagation, 2014, 2014, 1-9.	0.7	5
60	Design of High-Gain and Beam Steering Antennas Using a New Planar Folded-Line Metamaterial Structure. International Journal of Antennas and Propagation, 2014, 2014, 1-16.	0.7	13
61	Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures. Journal of Applied Physics, 2014, 115, .	1.1	51
62	Automated Metamaterial Design with Computer Model Emulation and Bayesian Optimization. Applied Mechanics and Materials, 0, 575, 201-205.	0.2	0
63	Robust double-spectral transparency of double mutually staggered plasmonic arrays sandwiched by two continuous metal films. Optics Communications, 2014, 321, 219-225.	1.0	6
64	Singular analysis to homogenize planar metamaterials as nonlocal effective media. Physical Review B, 2014, 89, .	1.1	7
65	Active Optical Metamaterials. Progress in Optics, 2014, 59, 1-88.	0.4	6
66	Two-dimensional metamaterial device design in the discrete dipole approximation. Journal of Applied Physics, 2014, 116, .	1.1	12
67	Realization of a broadband electromagnetic gateway at microwave frequencies. Applied Physics Letters, 2015, 107, .	1.5	10
68	Embedded metal nanopatterns as a general scheme for enhanced broadband light absorption. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 561-565.	0.8	4
69	Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies. Optics Express, 2015, 23, 28170.	1.7	32
70	Theoretical analysis for constitutive parameters of the periodic electric resonator metamaterials. , 2015, , .		0
71	Numerical studies on dual-band electromagnetic energy harvesting with double-ring split-ring resonators. , 2015, , .		0
72	An extremely wideband and lightweight metamaterial absorber. Journal of Applied Physics, 2015, 117, 224503.	1.1	70

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
73	Investigations on Photoresist-Based Artificial Dielectrics With Tall-Embedded Metal Grids and Their Resonator Antenna Application. IEEE Transactions on Antennas and Propagation, 2015, 63, 3826-3838.	3.1	8
74	Manipulation of dual band ultrahigh index metamaterials in the terahertz region. Applied Optics, 2016, 55, 8743.	2.1	15
75	Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science and Applications, 2016, 5, e16076-e16076.	7.7	422
76	Frequencyâ€Dependent Dualâ€Functional Coding Metasurfaces at Terahertz Frequencies. Advanced Optical Materials, 2016, 4, 1965-1973.	3.6	125
77	Nano-Al2O3/PANI composites with high negative permittivity. Organic Electronics, 2016, 39, 133-137.	1.4	26
78	Multiband polarisation insensitive metamaterial absorber based on circular fractal structure. IET Microwaves, Antennas and Propagation, 2016, 10, 1141-1145.	0.7	35
79	Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation. Optics Express, 2016, 24, 14618.	1.7	21
80	Effective Medium Theory. , 2016, , 17-28.		0
81	Information entropy of coding metasurface. Light: Science and Applications, 2016, 5, e16172-e16172.	7.7	253
82	Metamaterials beyond negative refractive index: Applications in telecommunication and sensing. Science China Technological Sciences, 2016, 59, 1007-1011.	2.0	9
83	Optical negative index metamaterial based on hexagonal arrays of metallic meta-atoms with threefold rotational symmetry. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 27.	0.9	2
84	Generation Mechanism of Negative Dielectric Properties of Metallic Oxide Crystals/Polyaniline Composites. Journal of Physical Chemistry C, 2016, 120, 4937-4944.	1.5	37
85	Dynamic analysis of hyperbolic waveguide resonator driven by optical gradient force. Optical Engineering, 2016, 55, 081313.	0.5	0
86	Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	20
87	Modulating and tuning relative permittivity of dielectric composites at metamaterial unit cell level for microwave applications. Materials Research Bulletin, 2017, 96, 164-170.	2.7	5
88	Flexible perfect metamaterial absorbers for electromagnetic wave. Journal of Electromagnetic Waves and Applications, 2017, 31, 663-715.	1.0	15
89	Directive Beam of the Monopole Antenna Using Broadband Gradient Refractive Index Metamaterial for Ultra-Wideband Application. IEEE Access, 2017, 5, 9757-9763.	2.6	19
90	Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves. Journal of Optics (United Kingdom), 2017, 19, 084004.	1.0	95

#	ARTICLE	IF	CITATIONS
91	Optically Transparent Broadband Microwave Absorption Metamaterial By Standingâ€Up Closedâ€Ring Resonators. Advanced Optical Materials, 2017, 5, 1700109.	3.6	124
92	Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials. Advanced Science, 2017, 4, 1700098.	5.6	72
93	Design of ultrahigh refractive index metamaterials in the terahertz regime. Superlattices and Microstructures, 2017, 109, 716-724.	1.4	14
94	Information metamaterials and metasurfaces. Journal of Materials Chemistry C, 2017, 5, 3644-3668.	2.7	297
95	Research on a multiband metamaterial absorber. AIP Conference Proceedings, 2017, , .	0.3	3
96	Concepts, Working Principles, and Applications of Coding and Programmable Metamaterials. Advanced Optical Materials, 2017, 5, 1700624.	3.6	133
97	Point dipole and quadrupole scattering approximation to collectively responding resonator systems. Physical Review B, 2017, 96, .	1.1	4
98	Limitations and Opportunities for Optical Metafluids To Achieve an Unnatural Refractive Index. ACS Photonics, 2017, 4, 2298-2311.	3.2	39
99	The effective permittivity of the coated ellipsoid: a tunable electromagnetic parameter approach. Journal Physics D: Applied Physics, 2017, 50, 505001.	1.3	3
100	Refraction at metamaterial interface in terms of induced phase at resonant frequency. , 2017, , .		0
101	Flexible Controls of Terahertz Waves Using Coding and Programmable Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-12.	1.9	37
102	A Compact Triple-Band Negative Permittivity Metamaterial for C, X-Band Applications. International Journal of Antennas and Propagation, 2017, 2017, 1-12.	0.7	27
103	Agile Beamwidth Control and Directivity Enhancement for Aperture Radiation With Low-Profile Metasurfaces. IEEE Transactions on Antennas and Propagation, 2018, 66, 1528-1533.	3.1	4
104	Gain enhancement of the ultra-wideband tapered slot antenna using broadband gradient refractive index metamaterial. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28, e21191.	0.8	9
105	Experimental study of the properties of metamaterials using broadside-coupled split ring resonators. , 2018, , .		1
106	A Novel Wideband Circularly Polarized Antenna for RF Energy Harvesting in Wireless Sensor Nodes. International Journal of Antennas and Propagation, 2018, 2018, 1-9.	0.7	22
107	Explaining negative refraction without negative refractive indices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 437.	0.8	1
108	Refractory Metamaterial Microwave Absorber with Strong Absorption Insensitive to Temperature. Advanced Optical Materials, 2018, 6, 1800691.	3.6	32

#	Article	IF	CITATIONS
109	Polarization-selective dual-band digital coding metasurface for controls of transmitted waves. Journal Physics D: Applied Physics, 2018, 51, 285103.	1.3	11
110	Non-Abelian gauge field optics. Nature Communications, 2019, 10, 3125.	5.8	46
111	Multichannel direct transmissions of near-field information. Light: Science and Applications, 2019, 8, 60.	7.7	83
112	Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics, 2019, 67, 100223.	3.5	50
113	Microwave Metamaterials. Annalen Der Physik, 2019, 531, 1800445.	0.9	22
114	Using Multiple Resonances to Widen the Band for High-Permeability Spiral-Pair Metamaterials. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1026-1030.	2.4	4
115	Simulation of analogue of electromagnetically induced transparency (EIT) based on metal metamaterials. , 2019, , .		1
116	Active Optical Metamaterials. , 2019, , 187-261.		2
117	A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical, 2019, 287, 21-28.	2.0	52
118	CPW fed grid dielectric resonator antennas with enhanced gain and bandwidth. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21639.	0.8	2
119	Frequency-switchable VO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e353" altimg="si10.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> -based coding metasurfaces at the terahertz band. Optics Communications, 2020, 458, 124744.	1.0	32
120	Tunable, reconfigurable, and programmable metamaterials. Microwave and Optical Technology Letters, 2020, 62, 9-32.	0.9	60
121	Fast Nonuniform Metasurface Analysis in FDTD Using Surface Susceptibility Model. IEEE Transactions on Antennas and Propagation, 2020, 68, 7121-7130.	3.1	8
122	Broadband bifunctional Luneburg–Fisheye lens based on anisotropic metasurface. Scientific Reports, 2020, 10, 20381.	1.6	9
123	A Review of Nonlinear Transmission Line System Design. IEEE Access, 2020, 8, 148606-148621.	2.6	50
124	Microwave metamaterials: from exotic physics to novel information systems. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 4-26.	1.5	15
125	Dualâ€Region Resonant Meander Metamaterial. Advanced Optical Materials, 2020, 8, 1901658.	3.6	6
126	Numerical Study of an Ultra-Broadband and Polarization Independence Metamaterial Cross-Shaped Fractal Absorber. Plasmonics, 2020, 15, 1517-1524.	1.8	11

#	Article	IF	CITATIONS
127	Mathematical Operations of Transmissive Near Fields Controlled by Metasurface with Phase and Amplitude Modulations. Annalen Der Physik, 2020, 532, 2000069.	0.9	13
128	Germaniumâ€onâ€Carborundum Surface Phononâ€Polariton Infrared Metamaterial. Advanced Optical Materials, 2021, 9, 2001652.	3.6	7
129	Miniaturized tri-band bandpass filter design using quarter-wavelength shunted-line stepped-impedance resonators (SLSIRs) with multi-transmission zeros. Journal Physics D: Applied Physics, 2021, 54, 185102.	1.3	3
130	Fullâ€Space Manipulations of Electromagnetic Wavefronts at Two Frequencies by Encoding Both Amplitude and Phase of Metasurface. Advanced Materials Technologies, 2021, 6, 2001032.	3.0	53
131	Programmable Reflection–Transmission Sharedâ€Aperture Metasurface for Realâ€Time Control of Electromagnetic Waves in Full Space. Advanced Science, 2021, 8, e2100149.	5.6	60
132	3-D Printed Cylindrical Luneburg Lens for Dual Polarization. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 878-882.	2.4	13
133	Metamaterial Lenses and Their Applications at Microwave Frequencies. Advanced Photonics Research, 2021, 2, 2100001.	1.7	16
134	Realizing spatiotemporal effective media for acoustic metamaterials. Physical Review B, 2021, 104, .	1.1	12
135	Artificial Surfaces and Media for Electromagnetic Absorption and Interference Shielding. , 0, , .		0
136	Miniaturized metamaterial absorber based on a high permittivity substrate. Journal of Applied Physics, 2021, 130, .	1.1	3
137	Multifunctional anisotropic coding metasurface with low emissivity and high optical transmittance. Infrared Physics and Technology, 2021, 117, 103845.	1.3	3
139	Introduction to Metamaterials. , 2010, , 1-19.		8
141	Use of loss limit approach to zero in scattering-based parameter retrieval of elastic micro-structured media. International Journal of Solids and Structures, 2020, 200-201, 34-63.	1.3	4
142	Geometry free materials enabled by transformation optics for enhancing the intensity of electromagnetic waves in an arbitrary domain. Journal of Applied Physics, 2020, 127, .	1.1	15
143	Global <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="double-struck">T</mml:mi </mml:math> operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections. Physical Review Research, 2020, 2, .	1.3	26
144	Nanoscale optical pulse limiter enabled by refractory metallic quantum wells. Science Advances, 2020, 6, eaay3456.	4.7	16
145	Highly-dispersive unidirectional reflectionless phenomenon based on high-order plasmon resonance in metamaterials. Optics Express, 2019, 27, 30589.	1.7	9
146	Enhancing the magneto-optical effects in low-biased gyromagnetic media via photonic doping. Optics Letters, 2019, 44, 3050.	1.7	7

#	Article	IF	CITATIONS
147	Analysis of refractive index characteristics for magnetoelectric metamaterials. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 084101.	0.2	5
148	A method of retrieving the constitutive parameter matrix of magnetoelectric coupling metamaterial. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 044101.	0.2	2
149	A Model-Order Reduction Approach to Parametric Electromagnetic Inversion. Lecture Notes in Computational Science and Engineering, 2009, , 1-19.	0.1	0
151	Rapid Design for Metamaterials. , 2010, , 61-85.		0
152	Broadband and Low-Loss Non-Resonant Metamaterials. , 2010, , 87-97.		1
154	A Non-asymptotic Effective Medium Theory for Metamaterials. , 2012, , .		0
155	Analysis of symmetrical, periodic negative-permeability metamaterial using interdigital capacitance loading. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 124103.	0.2	3
156	Metamaterial characterization using structured light. , 2013, , .		0
157	Theoretical analysis of constitutive parameters for the periodic magnetic resonator metamaterials. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 104105.	0.2	0
158	High-Speed Terahertz Modulation Using Active Metamaterial. , 2017, , 67-82.		0
159	Background Theory. , 2017, , 27-39.		0
160	Effective Medium Theory. , 2017, , 17-28.		0
161	Determination of effective parameters of fishnet metamaterials with vortex based interferometry. Optics Express, 2020, 28, 20051.	1.7	6
162	A Compact Component for Multi-Band Rejection and Frequency Coding in the Plasmonic Circuit at Microwave Frequencies. Electronics (Switzerland), 2021, 10, 4.	1.8	10
163	Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: A review. Journal of the European Ceramic Society, 2022, 42, 1-17.	2.8	46
164	Research progress of information metamaterials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 158101.	0.2	9
165	HDMA: Holographic-Pattern Division Multiple Access. IEEE Journal on Selected Areas in Communications, 2022, 40, 1317-1332.	9.7	15
166	Reconfigurable Holographic Surface-Enabled Multi-User Wireless Communications: Amplitude-Controlled Holographic Beamforming. IEEE Transactions on Wireless Communications, 2022, 21, 6003-6017.	6.1	20

#	Article	IF	CITATIONS
167	Metamaterialsâ€Based Photoelectric Conversion: From Microwave to Optical Range. Laser and Photonics Reviews, 2022, 16, .	4.4	11
169	Holographic MIMO for LEO Satellite Communications Aided by Reconfigurable Holographic Surfaces. IEEE Journal on Selected Areas in Communications, 2022, 40, 3071-3085.	9.7	10
170	Electromagnetic composites: From effective medium theories to metamaterials. Journal of Applied Physics, 2022, 132, .	1.1	13
171	Sub-10â€nm radial resolution achieved by cascading a graded structure outside a spherical hyperlens. Optics Express, 2022, 30, 37224.	1.7	0
172	Broadband Bilayer Antireflective Coating with Metasurfaces and Chebyshev Transformer. Physical Review Applied, 2022, 18, .	1.5	2
173	用于é«~æ•^ç"µç£æ³¢åæ"¶çš"3D打åºè¶ææ−™. Science China Materials, 2023, 66, 1283-1312.	3.5	13