Critical Properties, Normal Boiling Temperatures, and A Liquids

Industrial & amp; Engineering Chemistry Research 46, 1338-1344 DOI: 10.1021/ie0603058

Citation Report

#	Article	IF	CITATIONS
1	<i>P</i> Ï <i>T</i> Measurements of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1881-1888.	1.0	277
2	Thermodynamic Phase Behavior of Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1872-1880.	1.0	56
3	Comment on "Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids― Industrial & Engineering Chemistry Research, 2007, 46, 6061-6062.	1.8	10
4	Reply to "Comment on â€~Critical Properties, Normal Boiling Temperature, and Acentric Factor of Fifty Ionic Liquids'― Industrial & Engineering Chemistry Research, 2007, 46, 6063-6064.	1.8	25
5	Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 2007, 314, 621-630.	5.0	406
6	Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochimica Acta, 2007, 52, 7413-7417.	2.6	130
7	Development of In Situ Electrochemical Scanning Electron Microscopy with Ionic Liquids as Electrolytes. ChemPhysChem, 2008, 9, 763-767.	1.0	69
8	Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilibria, 2008, 268, 74-84.	1.4	144
9	Development of an a Priori Ionic Liquid Design Tool. 1. Integration of a Novel COSMO-RS Molecular Descriptor on Neural Networks. Industrial & Engineering Chemistry Research, 2008, 47, 4523-4532.	1.8	79
10	Critical Properties, Normal Boiling Temperature, and Acentric Factor of Another 200 Ionic Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 1318-1330.	1.8	265
11	Heat Capacities of Ionic Liquids as a Function of Temperature at 0.1 MPa. Measurement and Prediction. Journal of Chemical & Engineering Data, 2008, 53, 2148-2153.	1.0	173
12	Thermodynamic Consistency Test of Vaporâ^'Liquid Equilibrium Data for Mixtures Containing Ionic Liquids. Industrial & Engineering Chemistry Research, 2008, 47, 8416-8422.	1.8	62
13	Parameter estimation for VLE calculation by global minimization: the genetic algorithm. Brazilian Journal of Chemical Engineering, 2008, 25, 409-418.	0.7	61
14	Avances en la Predicción de Propiedades FÃsicas, FÃsico-QuÃmicas y de Transporte de LÃquidos Iónicos. Informacion Tecnologica (discontinued), 2009, 20, .	0.1	1
15	Position Group Contribution Method for Predicting the Normal Boiling Point of Organic Compounds. Chinese Journal of Chemical Engineering, 2009, 17, 254-258.	1.7	24
16	Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a). Fluid Phase Equilibria, 2009, 286, 1-7.	1.4	101
17	Prediction by the ASOG method of liquid–liquid equilibrium for binary and ternary systems containing 1-alkyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria, 2009, 287, 43-49.	1.4	16
18	Measurement and correlation of supercritical CO2 and ionic liquid systems for design of advanced unit operations. Frontiers of Chemical Engineering in China, 2009, 3, 12-19.	0.6	15

ARTICLE IF CITATIONS # Thermodynamic properties of the mixtures of some ionic liquids with alcohols using a simple 19 2.3 22 equation of state. Journal of Molecular Liquids, 2009, 149, 66-73. A simple and generalized model for predicting the density of ionic liquids. Fluid Phase Equilibria, 2009, 1.4 89 275, 145-151. High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium 21 1.6 139 bis (trifluoromethylsulfonyl) imide ionic liquids. Journal of Supercritical Fluids, 2009, 48, 99-107. Application of a group contribution equation of state for the thermodynamic modeling of the binary systems $CO2\hat{a}\in$ 1-butyl-3-methyl imidazolium nitrate and $CO2\hat{a}\in$ 1-hydroxy-1-propyl-3-methyl imidazolium nitrate. Journal of Supercritical Fluids, 2009, 50, 112-117. High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. Journal 23 1.6 167 of Supercritical Fluids, 2009, 50, 105-111. Molecular sieve synthesis in the presence of tetraalkylammonium and dialkylimidazolium molten salts. Chemical Engineering Journal, 2009, 147, 2-5. 6.6 Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids. Journal 25 1.8 56 of Chromatography A, 2009, 1216, 1861-1880. Optofluidic variable focus lenses. Applied Optics, 2009, 48, 2308. 2.1 26 Density of Ionic Liquids Using Group Contribution and Artificial Neural Networks. Industrial & amp; 27 1.8 100 Engineering Chemistry Research, 2009, 48, 3254-3259. Thermophysical Properties of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 185-212. 109 Critical Properties of Ionic Liquids. Revisited. Industrial & amp; Engineering Chemistry Research, 2009, 29 307 1.8 48, 6890-6900. Production of Anhydrous Ethanol by Extractive Distillation of Diluted Alcoholic Solutions with 0.3 Ionic Liquids. Computer Aided Chemical Engineering, 2009, 27, 1137-1142. Activity coefficient models to describe isothermal vapor-liquid equilibrium of binary systems $\mathbf{31}$ 0.6 11 containing ionic liquids. Journal of Engineering Thermophysics, 2010, 19, 170-183. Ionic multilayers at the free surface of an ionic liquid, trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, probed by x-ray reflectivity measurements. Journal of Chemical 1.2 Physics, 2010, 132, 164705. Thermophysical properties of ionic liquids. ACS Symposium Series, 2010, , 43-60. 33 0.5 6 Liquid–liquid equilibrium of ternary systems 1-octyl-3-methylimidazolium hexafluorophosphate + 1.4 23 aromatic + aliphatic hydrocarbons. Fluid Phase Equilibria, 2010, 296, 88-94. Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives. Fluid 35 222 1.4 Phase Equilibria, 2010, 294, 15-30. Modeling of high-pressure vapor–liquid equilibrium in ionic liquids + gas systems using the PRSV 1.4 34 equation of state. Fluid Phase Equilibria, 2010, 295, 9-16.

		CITATION REPORT		
#	Article		IF	Citations
37	Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria, 2010,	297, 34-39.	1.4	102
38	An efficient approach to optimal interpolation of experimental data. Journal of the Taiw Chemical Engineers, 2010, 41, 184-189.	an Institute of	2.7	7
39	High-pressure phase equilibria of {carbon dioxide (CO2)+n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide} ionic liquids. Journal of Chemical Thermodynamics, 3 305-311.	2010, 42,	1.0	123
40	Application of a group contribution equation of state for the thermodynamic modeling systems (gas + ionic liquids) with bis[(trifluoromethyl)sulfonyl]imide anion. Journal of (Thermodynamics, 2010, 42, 524-529.		1.0	24
41	Validity of some regularities of dense fluids for ionic liquids. Journal of Molecular Liquid 117-121.	s, 2010, 151,	2.3	8
42	High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. Jo Supercritical Fluids, 2010, 52, 258-265.	burnal of	1.6	164
43	Prediction of liquid–liquid equilibrium for ternary systems containing ionic liquids wit tetrafluoroborate anion using ASOG. Fluid Phase Equilibria, 2010, 296, 154-158.	h the	1.4	11
44	Mass connectivity index, a new molecular parameter for the estimation of ionic liquid p Fluid Phase Equilibria, 2010, 297, 107-112.	roperties.	1.4	51
45	Volatility of Aprotic Ionic Liquids — A Review. Journal of Chemical & Engineering 3-12.	Data, 2010, 55,	1.0	294
46	Critical-Point Temperature of Ionic Liquids from Surface Tension at Liquidâ Vapor Equi Correlation with the Interaction Energy. Industrial & Engineering Chemistry Resea 12696-12701.	ibrium and the rch, 2010, 49,	1.8	39
47	Alkanolamine Ionic Liquids and Their Inability To Dissolve Crystalline Cellulose. Industria Engineering Chemistry Research, 2010, 49, 11809-11813.	al &	1.8	34
48	Guggenheim's Rule and the Enthalpy of Vaporization of Simple and Polar Fluids, M Room Temperature Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 9183-919	olten Salts, and 4.	1.2	28
49	Measurement of CO ₂ Solubility in Ionic Liquids: [BMP][TfO] and [P14,6,6,6][Tf ₂ N] by Measuring Bubble-Point Pressure. Journal of Chemic Engineering Data, 2010, 55, 891-896.	al &	1.0	77
50	Application of a Group Contribution Equation of State for the Thermodynamic Modelin Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research, 2010, 49, 496		1.8	16
51	Liquidâ^'Liquid Equilibrium of Mixtures of Imidazolium-Based Ionic Liquids with Propane Glycerol. Industrial & Engineering Chemistry Research, 2010, 49, 4850-4857.	diols or	1.8	55
52	Unusual Behavior of the Thermodynamic Response Functions of Ionic Liquids. Journal c Chemistry Letters, 2010, 1, 211-214.	f Physical	2.1	42
53	A GROUP CONTRIBUTION METHOD TO PREDICT i. <i>T-P</i> OF IONIC LIQUIDS. Chemic Communications, 2010, 197, 974-1015.	cal Engineering	1.5	34
54	Ionic Liquids. Topics in Current Chemistry, 2010, , .		4.0	67

#	Article	IF	CITATIONS
55	Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes. Computer Aided Chemical Engineering, 2011, , 1578-1582.	0.3	8
56	Measurement of CO ₂ Solubility in Ionic Liquids: [BMP][Tf ₂ N] and [BMP][MeSO ₄] by Measuring Bubble-Point Pressure. Journal of Chemical & Engineering Data, 2011, 56, 1197-1203.	1.0	52
57	Modeling pVT Properties and Vapor-Liquid Equilibrium of Ionic Liquids Using Cubic-plus-association Equation of State. Chinese Journal of Chemical Engineering, 2011, 19, 1009-1016.	1.7	11
58	Particle swarm modeling of vapor-liquid equilibrium data of binary systems containing CO2 + imidazolium ionic liquids based on bis[(trifluoromethyl)sulfonyl]imide anion. Journal of Engineering Thermophysics, 2011, 20, 487-500.	0.6	4
59	High-pressure phase behavior of binary mixtures containing ionic liquid [HMP][Tf2N], [OMP][Tf2N] and carbon dioxide. Fluid Phase Equilibria, 2011, 308, 147-152.	1.4	32
60	Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 5136.	1.3	160
61	Heat Capacity of Ionic Liquids Using Artificial Neural Networks and the Concept of Mass Connectivity. International Journal of Thermophysics, 2011, 32, 942-956.	1.0	30
62	Ionic liquid and Lewis acid combination in the synthesis of novel (E)-1-(benzylideneamino)-3-cyano-6-(trifluoromethyl)-1H-2-pyridones. Monatshefte Für Chemie, 2011, 142, 1265-1270.	0.9	8
63	Viscosity of ionic liquids using the concept of mass connectivity and artificial neural networks. Korean Journal of Chemical Engineering, 2011, 28, 1451-1457.	1.2	39
64	Extraction of free fatty acids from soybean oil using ionic liquids or poly(ethyleneglycol)s. AICHE Journal, 2011, 57, 1344-1355.	1.8	41
65	Estimation of densities of ionic liquids using Patel–Teja equation of state and critical properties determined from group contribution method. Chemical Engineering Science, 2011, 66, 2690-2698.	1.9	58
66	Modeling the volumetric properties of mixtures involving ionic liquids using perturbed hard-sphere equation of state. Journal of Molecular Liquids, 2011, 160, 67-71.	2.3	25
67	Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network. Journal of Chemical Thermodynamics, 2011, 43, 22-27.	1.0	41
68	Measurement and prediction of phase behaviour for 1-alkyl-3-methylimidazolium tetrafluoroborate and carbon dioxide: Effect of alkyl chain length in imidazolium cation. Journal of Chemical Thermodynamics, 2011, 43, 339-343.	1.0	27
69	Isobaric (vapor+liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde) Tj ETQq0 0 895-900.	0 rgBT /Ov 1.0	erlock 10 Tf 26
70	Prediction of the heat capacity of ionic liquids using the mass connectivity index and a group contribution method. Journal of Chemical Thermodynamics, 2011, 43, 1068-1073.	1.0	54
71	High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. Journal of Supercritical Fluids, 2011, 56, 224-230.	1.6	100
72	Electrochemical determination of ferrocene diffusion coefficient in [C6MIM][PF6]–CO2 biphasic system. Journal of Supercritical Fluids, 2011, 56, 130-136.	1.6	2

#	Article	IF	CITATIONS
73	Predictive model for the heat capacity of ionic liquids using the mass connectivity index. Thermochimica Acta, 2011, 513, 83-87.	1.2	30
74	Prediction of deep eutectic solvents densities at different temperatures. Thermochimica Acta, 2011, 515, 67-72.	1.2	200
75	Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Advances, 2012, 2, 7322.	1.7	129
76	Modification of a statistical mechanically-based equation of state: Application to ionic liquids. Journal of Molecular Liquids, 2012, 175, 61-66.	2.3	13
77	Thermodynamic and Topological Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate + Pyrrolidin-2-one and 1-Methyl-pyrrolidin-2-one Mixtures. Journal of Chemical & Engineering Data, 2012, 57, 3488-3497.	1.0	44
78	Density, Refraction Index, and Vapor–Liquid Equilibria of <i>n</i> -Methyl-2-hydroxyethylammonium Hexanoate Plus (Methyl Acetate, Ethyl Acetate, or Propyl Acetate) at Several Temperatures. Industrial & Engineering Chemistry Research, 2012, 51, 14543-14554.	1.8	11
79	Capturing Thermodynamic Behavior of Ionic Liquid Systems: Correlations with the SWCF-VR Equation. Industrial & Engineering Chemistry Research, 2012, 51, 3137-3148.	1.8	5
80	Volumetric properties of mixtures involving ionic liquids from improved equation of state. Thermochimica Acta, 2012, 546, 94-101.	1.2	18
81	Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 702-711.	1.7	74
82	Developing models for correlating ionic liquids density: Part 1 – Density at 0.1MPa. Fluid Phase Equilibria, 2012, 331, 33-47.	1.4	8
83	Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilibria, 2012, 332, 128-143.	1.4	82
84	High-pressure phase behavior of binary mixtures containing methylpyrrolidinium derivative ionic liquids and carbon dioxide. Fluid Phase Equilibria, 2012, 332, 28-34.	1.4	27
85	Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Computers and Chemical Engineering, 2012, 42, 248-262.	2.0	103
86	Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K. Journal of Chemical & Engineering Data, 2012, 57, 2936-2941.	1.0	38
87	Modeling the Volumetric Properties of Ionic Liquids Using Modified Perturbed Hard-Sphere Equation of State: Application to Pure and Binary Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 758-766.	1.8	28
89	Critical Properties and Normal Boiling Temperature of Ionic Liquids. Update and a New Consistency Test. Industrial & Engineering Chemistry Research, 2012, 51, 7838-7844.	1.8	159
90	Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt–ionic liquid. Green Chemistry, 2012, 14, 1220.	4.6	66
91	Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquidsvia Monte Carlo simulations. Faraday Discussions, 2012, 154, 53-69.	1.6	59

#	Article	IF	CITATIONS
92	Phase Behavior at High Pressure of the Ternary System: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>CO < mathvariant="bold">2 </mml:mtext></mml:mrow></mml:msub> </mml:mrow> , lonic Liquid and Disperse Dye. Journal of Thermodynamics, 2012, 2012, 1-6.</mml:math 	/mml:mte 0.8	xt៹
93	Solubility of CO ₂ , H ₂ S, and Their Mixture in the Ionic Liquid 1-Octyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide. Journal of Physical Chemistry B, 2012, 116, 2758-2774.	1.2	188
94	Modified equation of state extended to imidazolium-, phosphonium-, pyridinium-, pyrrolidinium- and ammonium-based ionic liquids. Ionics, 2012, 18, 829-835.	1.2	5
95	Modeling of P-Ï+T properties of ionic liquids using ISM equation of state: Application to pure component and binary mixtures. Korean Journal of Chemical Engineering, 2012, 29, 1628-1637.	1.2	10
96	Applications of cubic equations of state for determination of the solubilities of industrial solid compounds in supercritical carbon dioxide: A comparative study. Chemical Engineering Science, 2012, 71, 283-299.	1.9	30
97	Application of particle swarm optimization to model the phase equilibrium of complex mixtures. Fluid Phase Equilibria, 2012, 317, 132-139.	1.4	15
98	Infinite dilution partition coefficients of benzene derivative compounds in supercritical carbon dioxide+ionic liquid systems: 1-butyl-3-methylimidazolium chloride [bmim][Cl], 1-butyl-3-methylimidazolium acetate [bmim][Ac] and 1-butyl-3-methylimidazolium octylsulfate [bmim][OcSO4]. Journal of Supercritical Fluids, 2012, 66, 49-58.	1.6	15
99	Modeling gas solubility in ionic liquids with the SAFT-Î ³ group contribution method. Journal of Supercritical Fluids, 2012, 63, 81-91.	1.6	37
100	Gas–liquid equilibrium modeling of mixtures containing supercritical carbon dioxide and an ionic liquid. Journal of Supercritical Fluids, 2012, 64, 32-38.	1.6	18
101	Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochimica Acta, 2012, 527, 59-66.	1.2	264
102	Correlation of the volumetric behaviour of pyridinium-based ionic liquids with two different equations. Thermochimica Acta, 2012, 531, 21-27.	1.2	24
103	Quaternary phosphonium-based ionic liquids: Thermal stability and heat capacity of the liquid phase. Journal of Chemical Thermodynamics, 2012, 45, 16-27.	1.0	101
104	Effect of the molecular structure in the prediction of thermodynamic properties for 1â€butylâ€3â€methylimidazolium chloride ionic liquid. International Journal of Quantum Chemistry, 2013, 113, 852-858.	1.0	16
105	Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+distilled or saline water/heavy crude oil)) as a new surfactant. Journal of Molecular Liquids, 2013, 187, 83-89.	2.3	156
106	A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces. Physical Chemistry Chemical Physics, 2013, 15, 14234.	1.3	93
107	High pressure solubility of CO2 in non-fluorinated phosphonium-based ionic liquids. Journal of Supercritical Fluids, 2013, 82, 41-49.	1.6	40
108	Volumetric properties of ionic liquids from cubic equation of state: Application to pure and mixture. Journal of Industrial and Engineering Chemistry, 2013, 19, 769-775.	2.9	20
109	Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate. Journal of Chemical Thermodynamics, 2013, 67, 55-62.	1.0	123

#	Article	IF	Citations
110	A High-Pressure Quartz Spring Method for Measuring Solubility and Diffusivity of CO ₂ in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 3926-3932.	1.8	23
111	Use of ionic liquids in analytical sample preparation of organic compounds from food and environmental samples. TrAC - Trends in Analytical Chemistry, 2013, 43, 121-145.	5.8	76
112	CO2 solubility measurement in 1-hexyl-3-methylimidazolium ([HMIM]) cation based ionic liquids. Fluid Phase Equilibria, 2013, 352, 67-74.	1.4	61
113	Density, refraction index and vapor–liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methyl acetate or ethyl acetate or propyl acetate) at several temperatures. Journal of Chemical Thermodynamics, 2013, 62, 130-141.	1.0	13
114	Trace detection of oxygen – ionic liquids in gas sensor design. Talanta, 2013, 116, 474-481.	2.9	24
115	High pressure CO2 absorption studies on imidazolium-based ionic liquids: Experimental and simulation approaches. Fluid Phase Equilibria, 2013, 351, 74-86.	1.4	56
116	Modeling the melting temperature depression of ionic liquids caused by supercritical carbon dioxide. Fluid Phase Equilibria, 2013, 341, 1-6.	1.4	3
117	Topological investigations of thermodynamic properties of ionic liquid mixtures: Excess molar volumes and excess isentropic compressibilities. Journal of Molecular Liquids, 2013, 188, 258-271.	2.3	18
118	Environmentally friendly solutions of liquid poly(ethylene glycol) and imidazolium based ionic liquids with bistriflamide and triflate anions: Volumetric and viscosity studies. Fluid Phase Equilibria, 2013, 352, 100-109.	1.4	32
119	Study of thermodynamic and transport properties of phosphonium-based ionic liquids. Journal of Chemical Thermodynamics, 2013, 62, 98-103.	1.0	39
120	Melting temperature depression caused by high pressure gases. Effect of the gas on organic substances and on ionic liquids. Journal of Supercritical Fluids, 2013, 82, 151-157.	1.6	4
121	Developing models for correlating ionic liquids density: Part 2 – Density at high pressures. Fluid Phase Equilibria, 2013, 358, 172-188.	1.4	5
122	Ionic liquids surface tension prediction based on enthalpy of vaporization. Fluid Phase Equilibria, 2013, 358, 40-43.	1.4	11
123	Critical properties and acentric factors of ionic liquids. Korean Journal of Chemical Engineering, 2013, 30, 187-193.	1.2	25
124	Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling. Journal of Chemical Thermodynamics, 2013, 58, 237-244.	1.0	50
125	A simple correlation to predict high pressure solubility of carbon dioxide in 27 commonly used ionic liquids. Journal of Supercritical Fluids, 2013, 77, 158-166.	1.6	42
126	Phase behavior of mixture of supercritical CO ₂ + ionic liquid: Thermodynamic consistency test of experimental data. AICHE Journal, 2013, 59, 3892-3913.	1.8	21
127	A new fragment contributionâ€corresponding states method for physicochemical properties prediction of ionic liquids. AICHE Journal, 2013, 59, 1348-1359.	1.8	102

#	Article	IF	CITATIONS
128	Accurate Modeling of CO ₂ Solubility in Ionic Liquids Using a Cubic EoS. Industrial & Engineering Chemistry Research, 2013, 52, 7593-7601.	1.8	25
129	Vapor–liquid and liquid–liquid equilibrium for binary systems ester + a new protic ionic liquid. Ionics, 2013, 19, 1263-1269.	1.2	10
130	Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. Journal of Chemical Thermodynamics, 2013, 65, 220-232.	1.0	123
131	Thermochemical, Cloud Condensation Nucleation Ability, and Optical Properties of Alkyl Aminium Sulfate Aerosols. Journal of Physical Chemistry C, 2013, 117, 22412-22421.	1.5	23
132	A Simple Equation for Predicting the Volumetric Properties of Mixtures Involving Ionic Liquids. Journal of Solution Chemistry, 2013, 42, 1854-1862.	0.6	8
133	Modeling of Ionic Liquid Systems: Phase Equilibria and Physical Properties. , 2013, , .		4
134	PERCEPTRON ARTIFICIAL NEURAL NETWORK AND PREDICTION OF BUBBLE POINTS OF TERNARY MIXTURES CONTAINING IONIC LIQUIDS. Journal of Theoretical and Computational Chemistry, 2013, 12, 1350053.	1.8	2
135	Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state. Brazilian Journal of Chemical Engineering, 2013, 30, 63-73.	0.7	20
136	Structures and Interactions of Ionic Liquids. Structure and Bonding, 2014, , .	1.0	41
137	Prediction of Density, Surface Tension, and Viscosity of Quaternary Ammonium-Based Ionic Liquids ([N _{222(n)}]Tf ₂ N) by Means of Artificial Intelligence Techniques. Journal of Dispersion Science and Technology, 2014, 35, 1809-1829.	1.3	20
138	Modeling the Viscosity of Ionic Liquids with the Electrolyte Perturbed-Chain Statistical Association Fluid Theory. Industrial & Engineering Chemistry Research, 2014, 53, 20258-20268.	1.8	32
139	Structures and Thermodynamic Properties of Ionic Liquids. Structure and Bonding, 2014, , 107-139.	1.0	17
140	Thermophysical properties of alkyl-imidazolium based ionic liquids through the heterosegmented SAFT-BACK equation of state. Journal of Molecular Liquids, 2014, 191, 59-67.	2.3	35
141	Solubility of CO2 in ionic liquids containing cyanide anions: [c2mim][SCN], [c2mim][N(CN)2], [c2mim][C(CN)3]. Fluid Phase Equilibria, 2014, 367, 151-158.	1.4	51
142	CO ₂ Solubility in Biodegradable Hydroxylammonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2014, 59, 702-708.	1.0	15
143	Effect of cation on the solubility of carbon dioxide in three bis(fluorosulfonyl)imide low viscosity ([FSI]) ionic liquids. Fluid Phase Equilibria, 2014, 375, 324-331.	1.4	18
144	Solubilities of hydrofluorocarbons in ionic liquids: Experimental and modelling study. Journal of Chemical Thermodynamics, 2014, 73, 36-43.	1.0	31
145	Myths and Realities about Existing Methods for Calculating the Melting Temperatures of Ionic Liquids. Industrial & Engineering Chemistry Research, 2014, 53, 1004-1014.	1.8	34

#	Article	IF	CITATIONS
146	A Group Contribution Method for the Correlation of Static Dielectric Constant of Ionic Liquids. Chinese Journal of Chemical Engineering, 2014, 22, 79-88.	1.7	18
147	Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities. Physical Chemistry Chemical Physics, 2014, 16, 3549.	1.3	39
148	Applying parachor method to the prediction of ionic liquids surface tension based on modified group contribution. Journal of Molecular Liquids, 2014, 193, 204-209.	2.3	32
149	Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids. RSC Advances, 2014, 4, 7566.	1.7	34
151	Low Transition Temperature Mixtures as Innovative and Sustainable CO ₂ Capture Solvents. Journal of Physical Chemistry B, 2014, 118, 14429-14441.	1.2	100
152	New Experimental Density Data and Soft-SAFT Models of Alkylimidazolium ([C _{<i>n</i>} C ₁ im] ⁺) Chloride (Cl [–]), Methylsulfate ([MeSO ₄] ^{â[*]}), and Dimethylphosphate ([Me ₂ PO ₄] ^{â[*]}) Based Ionic Liquids. Journal of Physical Chemistry B,	1.2	65
153	Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach. Journal of Supercritical Fluids, 2014, 95, 525-534.	1.6	100
154	Development of a Conceptual Process for Selective Capture of CO2 from Fuel Gas Streams Using Two TEGO Ionic Liquids as Physical Solvents. Industrial & Engineering Chemistry Research, 2014, 53, 3184-3195.	1.8	23
155	Mechanistic Investigation on Dynamic Interfacial Tension Between Crude Oil and Ionic Liquid Using Mass Transfer Concept. Journal of Dispersion Science and Technology, 2014, 35, 1483-1491.	1.3	35
156	Solubility of carbon dioxide in three [Tf2N] ionic liquids. Fluid Phase Equilibria, 2014, 380, 39-47.	1.4	47
157	Density Prediction of Mixtures of Ionic Liquids and Molecular Solvents Using Two New Generalized Models. Industrial & Engineering Chemistry Research, 2014, 53, 15270-15277.	1.8	25
158	Assessing Ionic Liquids Experimental Data Using Molecular Modeling: [C _{<i>n</i>} mim][BF ₄] Case Study. Journal of Chemical & Engineering Data, 2014, 59, 3220-3231.	1.0	47
159	Experimental determination and prediction of phase behavior for 1-butyl-3-methylimidazolium nonafluorobutyl sulfonate and carbon dioxide. Korean Journal of Chemical Engineering, 2014, 31, 1656-1660.	1.2	5
160	Densities of Six Commercial Ionic Liquids: Experiments and Prediction Using a Cohesion Based Cubic Equation of State. Journal of Chemical & Engineering Data, 2014, 59, 571-578.	1.0	36
161	Application of the Eötvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues. Thermochimica Acta, 2014, 575, 40-44.	1.2	69
162	Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng–Robinson equation of state. Chemical Engineering Research and Design, 2014, 92, 1898-1906.	2.7	165
163	Temperature Dependence of Physicochemical Properties of Imidazolium-, Pyroldinium-, and Phosphonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2014, 59, 1955-1963.	1.0	74
164	A New QSPR Model for Predicting the Densities of Ionic Liquids. Arabian Journal for Science and Engineering, 2014, 39, 6767-6775.	1.1	13

#	Article	IF	Citations
165	Estimation of H2S solubility in ionic liquids using a rigorous method. Journal of Supercritical Fluids, 2014, 92, 60-69.	1.6	59
166	Experimental and thermodynamic study of CO2 solubility in promising [TF2N and DCN] ionic liquids. Fluid Phase Equilibria, 2014, 376, 22-30.	1.4	27
167	Thermal Behaviour of Pure Ionic Liquids. , 0, , .		13
168	Technical Evaluation of Ionic Liquid-Extractive Processing of Ultra Low Sulfur Diesel Fuel. Industrial & Engineering Chemistry Research, 2015, 54, 10843-10853.	1.8	20
169	Design and Control of Ionic Liquidâ€Catalyzed Reactive Distillation for <i>n</i> â€Butyl Acetate Production. Chemical Engineering and Technology, 2015, 38, 223-234.	0.9	12
170	Modeling CO2 solubility in an ionic liquid: A comparison between a cubic and a group contribution EoS. Journal of Supercritical Fluids, 2015, 101, 54-62.	1.6	21
171	A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel, 2015, 153, 276-283.	3.4	96
172	Correlation of liquid–liquid equilibrium for binary and ternary systems containing ionic liquids with the tetrafluoroborate anion using ASOG. Fluid Phase Equilibria, 2015, 404, 42-48.	1.4	3
173	Prediction of (liquid+liquid) equilibrium for binary and ternary systems containing ionic liquids with the bis[(trifluoromethyl)sulfonyl]imide anion using the ASOG method. Journal of Chemical Thermodynamics, 2015, 90, 1-7.	1.0	4
174	Solubility of Isobutane in Ionic Liquids [BMIm][PF ₆], [BMIm][BF ₄], and [BMIm][Tf ₂ N]. Journal of Chemical & Engineering Data, 2015, 60, 1706-1714.	1.0	27
175	Estimation of Normal Boiling Temperatures, Critical Properties, and Acentric Factors of Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2015, 60, 1844-1854.	1.0	72
176	CO ₂ Solubility in Hybrid Solvents Containing 1-Butyl-3-methylimidazolium Tetrafluoroborate and Mixtures of Alkanolamines. Journal of Chemical & Engineering Data, 2015, 60, 2380-2391.	1.0	14
177	Extension of a Group Contribution Method To Estimate the Critical Properties of Ionic Liquids of High Molecular Mass. Industrial & Engineering Chemistry Research, 2015, 54, 3480-3487.	1.8	53
178	Group Contribution Methods for Estimation of Ionic Liquid Heat Capacities: Critical Evaluation and Extension. Chemical Engineering and Technology, 2015, 38, 632-644.	0.9	27
179	Thermal Properties of Alkyl-triethylammonium bis \$\${\$\$ { (trifluoromethyl)sulfonyl \$\$}\$\$ } imide Ionic Liquids. Journal of Solution Chemistry, 2015, 44, 790-810.	0.6	27
180	Solubility and Diffusivity of CO ₂ in the Ionic Liquid 1-Butyl-3-methylimidazolium Tricyanomethanide within a Large Pressure Range (0.01 MPa to 10 MPa). Journal of Chemical & Engineering Data, 2015, 60, 1544-1562.	1.0	71
181	Liquid–Vapor Equilibria of Ionic Liquids from a SAFT Equation of State with Explicit Electrostatic Free Energy Contributions. Journal of Physical Chemistry B, 2015, 119, 5864-5872.	1.2	5
182	Modeling of ionic liquid+polar solvent mixture molar volumes using a generalized volume translation on the Peng–Robinson equation of state. Fluid Phase Equilibria, 2015, 395, 51-57.	1.4	30

#	Article	IF	CITATIONS
183	Modeling the complex phase behavior of methane, ethane and propane in an ionic liquid up to 11MPa – A comparison between the PR EoS and the GC EoS. Journal of Supercritical Fluids, 2015, 101, 63-71.	1.6	6
184	Evaluation of Optimal Methods for Critical Properties and Acentric Factor of Biodiesel Compounds with Their Application on Soave–Redlich–Kwong and Peng–Robinson Equations of State. Journal of Chemical & Engineering Data, 2015, 60, 3358-3381.	1.0	13
185	Modeling the Thermal Conductivity of Ionic Liquids and Ionanofluids Based on a Group Method of Data Handling and Modified Maxwell Model. Industrial & Engineering Chemistry Research, 2015, 54, 8600-8610.	1.8	57
186	Solubilities of Carbon Dioxide and Oxygen in the Ionic Liquids Methyl Trioctyl Ammonium Bis(trifluoromethylsulfonyl)imide, 1-Butyl-3-Methyl Imidazolium Bis(trifluoromethylsulfonyl)imide, and 1-Butyl-3-Methyl Imidazolium Methyl Sulfate. Journal of Physical Chemistry B, 2015, 119, 1503-1514.	1.2	52
187	Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach. Journal of Supercritical Fluids, 2015, 97, 81-87.	1.6	82
188	A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature. Fuel, 2015, 139, 154-159.	3.4	88
189	Método de Contribución de Grupos: una Herramienta Fundamental en cursos Avanzados de Termodinámica y FÃsica de Fluidos para la Estimación de Propiedades de Sustancias. Formacion Universitaria, 2016, 9, 99-108.	0.2	2
190	Reliable Absolute Vapor Pressures of Extremely Low Volatile Compounds from Fast Scanning Calorimetry. , 2016, , 259-296.		5
191	<i>PVT</i> properties of imidazolium-, phosphonium-, pyridinium- and pyrrolidinium-based ionic liquids using critical point constants. Physics and Chemistry of Liquids, 0, , 1-8.	0.4	0
192	Ionic Liquid Properties. , 2016, , .		51
193	Room Temperature Ionic Liquids. , 2016, , 123-220.		12
194	Prediction of densities of pure ionic liquids using Esmaeilzadeh-Roshanfekr equation of state and critical properties from group contribution method. Fluid Phase Equilibria, 2016, 423, 101-108.	1.4	12
195	Vapor–Liquid Equilibria of Binary and Ternary Mixtures of Acetaldehyde with Versatic 9 and Veova 9. Journal of Chemical & Engineering Data, 2016, 61, 2114-2119.	1.0	3
196	Transport properties of pure and mixture of ionic liquids from new rough hard-sphere-based model. Fluid Phase Equilibria, 2016, 429, 266-274.	1.4	27
197	Estimation of the Densities of Ionic Liquids Using a Group Contribution Method. Journal of Chemical & Engineering Data, 2016, 61, 4031-4038.	1.0	22
198	Evaluation of density, viscosity, surface tension and CO 2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. International Journal of Greenhouse Gas Control, 2016, 53, 187-197.	2.3	28
199	Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chemical Engineering and Processing: Process Intensification, 2016, 109, 190-198.	1.8	76
200	ANFIS modeling of ionic liquids densities. Journal of Molecular Liquids, 2016, 224, 965-975.	2.3	31

#	Article	IF	CITATIONS
201	An accurate CSA-LSSVM model for estimation of densities of ionic liquids. Journal of Molecular Liquids, 2016, 224, 954-964.	2.3	23
202	Comprehensive Approach toward Dehydration of <i>tert-</i> Butyl Alcohol by Extractive Distillation: Entrainer Selection, Thermodynamic Modeling and Process Optimization. Industrial & Engineering Chemistry Research, 2016, 55, 6982-6995.	1.8	35
203	Molar volume of eutectic solvents as a function of molar composition and temperature. Chinese Journal of Chemical Engineering, 2016, 24, 1779-1785.	1.7	4
204	Evaluation of imidazolium-based ionic liquids for biogas upgrading. Applied Energy, 2016, 175, 69-81.	5.1	36
205	Prediction of H2S solubility in [hmim][Pf6], [hmim][Bf4] and [hmim][Tf2N] using UNIQUAC, NRTL and COSMO-RS. Journal of Molecular Liquids, 2016, 220, 631-634.	2.3	19
206	Estimation of the normal boiling point of organic compounds via a new group contribution method. Fluid Phase Equilibria, 2016, 411, 13-23.	1.4	21
207	Thermodynamic property prediction for high molecular weight molecules based on their constituent family. Fluid Phase Equilibria, 2016, 420, 1-6.	1.4	5
208	On the prediction of critical temperatures of ionic liquids: Model development and evaluation. Fluid Phase Equilibria, 2016, 411, 24-32.	1.4	19
209	Molecular interactions between ammonium-based ionic liquids and molecular solvents: current progress and challenges. Physical Chemistry Chemical Physics, 2016, 18, 8278-8326.	1.3	40
210	A simple method for prediction of density of ionic liquids through their molecular structure. Journal of Molecular Liquids, 2016, 216, 732-737.	2.3	37
211	Evolving machine learning models to predict hydrogen sulfide solubility in the presence of various ionic liquids. Journal of Molecular Liquids, 2016, 216, 411-422.	2.3	72
212	Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium lactate (2-HDEAL)+short hydroxylic solvents. Journal of Molecular Liquids, 2016, 213, 92-106.	2.3	22
213	Rational Design of Ionic Liquids for Lipid Processing. , 2016, , 153-203.		1
214	Analysis of operating conditions for CO 2 capturing process using deep eutectic solvents. International Journal of Greenhouse Gas Control, 2016, 47, 342-350.	2.3	45
215	Measurement and correlation of vapor-liquid equilibria for a binary system containing 1-butyl-3-methylimidazolium tridecafluorohexylsulfonate and carbon dioxide. Korean Journal of Chemical Engineering, 2016, 33, 260-264.	1.2	4
216	Development of a perturbed hard-sphere equation of state for pure and mixture of ionic liquids. Ionics, 2016, 22, 649-660.	1.2	7
217	Structure–property relationships in ionic liquids: Influence of branched and cyclic groups on vaporization enthalpies of imidazolium-based ILs. Journal of Chemical Thermodynamics, 2016, 93, 151-156.	1.0	22
218	Harmony Search Algorithm. Advances in Intelligent Systems and Computing, 2016, , .	0.5	8

#	Article	IF	CITATIONS
219	A least-squares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems. International Journal of Ambient Energy, 2017, 38, 122-129.	1.4	23
220	Rigorous modeling of CO 2 equilibrium absorption in ionic liquids. International Journal of Greenhouse Gas Control, 2017, 58, 19-41.	2.3	101
221	Prediction of Thermal Conductivity and Viscosity of Ionic Liquid-Based Nanofluids Using Adaptive Neuro Fuzzy Inference System. Heat Transfer Engineering, 2017, 38, 1561-1572.	1.2	16
222	A reliable radial basis function neural network model (RBF-NN) for the prediction of densities of ionic liquids. Journal of Molecular Liquids, 2017, 231, 462-473.	2.3	20
223	Application of different novel and newly designed commercial ionic liquids and surfactants for more oil recovery from an Iranian oil field. Journal of Molecular Liquids, 2017, 230, 579-588.	2.3	67
224	Modeling H2S and CO2 solubility in ionic liquids using the CPA equation of state through a new approach. Fluid Phase Equilibria, 2017, 437, 155-165.	1.4	40
225	Viscosities of Pure Ionic Liquids Using Combinations of Free Volume Theory or Friction Theory with the Cubic, the Cubic Plus Association, and the Perturbed-Chain Statistical Associating Fluid Theory Equations of State at High Pressures. Industrial & Engineering Chemistry Research, 2017, 56, 2247-2258.	1.8	30
226	Ternary Liquid–Liquid Equilibrium of Azeotropes (Water +2-Propanol) with Ionic Liquids ([Dmim][NTf ₂]) at Different Temperatures. Journal of Chemical & Engineering Data, 2017, 62, 1667-1672.	1.0	24
227	Gas solubility in longâ€chain imidazoliumâ€based ionic liquids. AICHE Journal, 2017, 63, 1792-1798.	1.8	50
228	Critical Assessment of Using an Ionic Liquid as Entrainer via Extractive Distillation. Industrial & Engineering Chemistry Research, 2017, 56, 7768-7782.	1.8	40
229	The study on temperature dependence of viscosity and surface tension of several Phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2017, 241, 500-510.	2.3	102
230	Group Contribution Method for Evaluation of Volumetric Properties of Ionic Liquids Using Experimental Data Recommended by Mathematical Gnostics. Industrial & Engineering Chemistry Research, 2017, 56, 6827-6840.	1.8	10
231	Development of robust generalized models for estimating the normal boiling points of pure chemical compounds. Journal of Molecular Liquids, 2017, 242, 59-69.	2.3	33
232	Correlating ionic liquids density over wide range of temperature and pressure by volume shift concept. Journal of Molecular Liquids, 2017, 236, 172-183.	2.3	26
233	Measurement and Correlation for Acoustic, Transport, Refractive, and High-Temperature Volumetric Data of Substituted Benzylamines. Journal of Chemical & Engineering Data, 2017, 62, 1189-1197.	1.0	13
234	A simple guiding principle for the temperature dependence of the solubility of light gases in imidazolium-based ionic liquids derived from molecular simulations. Physical Chemistry Chemical Physics, 2017, 19, 1770-1780.	1.3	29
235	A GEP based model for prediction of densities of ionic liquids. Journal of Molecular Liquids, 2017, 227, 373-385.	2.3	12
236	The New Method for Correlation and Prediction of Thermophysical Properties of Fluids. Critical Temperature. Journal of Chemical & amp; Engineering Data, 2017, 62, 3723-3731.	1.0	7

ARTICLE IF CITATIONS Simulation and experiment for ethanol dehydration using low transition temperature mixtures 237 28 1.8 (LTTMs) as entrainers. Chemical Engineering and Processing: Process Intensification, 2017, 121, 71-80. The solubility of gases in ionic liquids. AICHE Journal, 2017, 63, 4722-4737. 1.8 64 A new decision tree based algorithm for prediction of hydrogen sulfide solubility in various ionic 239 2.324 liquids. Journal of Molecular Liquids, 2017, 242, 701-713. Prediction of critical temperature, critical pressure and acentric factor of some ionic liquids using Patel-Teja equation of state based on genetic algorithm. Korean Journal of Chemical Engineering, 2017, 1.2 240 34, 2686-2702 Predicting the Solubility of CO₂ in Toluene + Ionic Liquid Mixtures with PC-SAFT. 241 1.8 17 Industrial & amp; Engineering Chemistry Research, 2017, 56, 9885-9894. Absorption heat pump cycles with NH3 – ionic liquid working pairs. Applied Energy, 2017, 204, 819-830. 5.1 Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and 243 1.8 9 Equations of State. Industrial & amp; Engineering Chemistry Research, 2017, 56, 9895-9905. Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for 244 1.2 Lattice-Fluid Mixtures. Journal of Physical Chemistry B, 2017, 121, 8338-8347 Prediction of the CO2 Solubility in Deep Eutectic Solvents: A Comparative Study between PC-SAFT and 245 1 Cubic Equations of State., 2017,,. Solid-like features in dense vapors near the fluid critical point. Journal of Chemical Physics, 2017, 146, 246 1.2 224501. Predicting physical properties (viscosity, density, and refractive index) of ternary systems containing 1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide, esters and alcohols at 298.15 K and 247 2.323 atmospheric pressure, using rigorous classification techniques. Journal of Molecular Liquids, 2017, 225, 778-787 Density modelling of ionic liquids using the electrolyte Soave–Redlich–Kwong equation of state. 1.0 Journal of Chemical Thermodynamics, 2017, 105, 414-422. Prediction of H₂S Solubility in Liquid Electrolytes by Multilayer Perceptron and Radial 249 0.9 10 Basis Function Neural Networks. Chemical Engineering and Technology, 2017, 40, 367-375. Liquid-liquid phase equilibrium and heat capacity of binary solution {2-propanol + 1-octyl-3-methylimidazolium hexafluorophosphate}. Journal of Chemical Thermodynamics, 2017, 105, 1.0 434-442 251 Density of aqueous choline chloride-based ionic liquids analogues. Thermochimica Acta, 2017, 647, 8-14. 1.2 35 Predicting Density and Refractive Index of Ionic Liquids., 2017,,. High pressure phase behaviour of carbon dioxide and two ionic liquids based on a benzyl 253 1.0 9 functionalized cation. Journal of Chemical Thermodynamics, 2018, 121, 91-96. Study on the use of an imidazolium-based acetate ionic liquid for CO2 capture from flue gas in 254 absorber/stripper packed columns: Experimental and modeling. International Journal of Greenhouse 2.3 Gas Control, 2018, 70, 178-192.

ARTICLE IF CITATIONS # Viscosity Modeling of Ionic Liquids Using the Friction Theory and a Simple Cubic Equation of State. 255 1.8 13 Industrial & amp; Engineering Chemistry Research, 2018, 57, 1109-1120. A viscosity model for ionic liquids based on the Eyring's theory and a cubic EoS. Journal of Molecular 2.3 Liquids, 2018, 262, 161-174. Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine 257 3.3 74 learning. Journal of CO2 Utilization, 2018, 25, 99-107. Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea. 5.1 Applied Energy, 2018, 229, 1269-1283. Prediction of Boiling Point of Imidazolium-Based Ionic Liquid + Solvent Mixtures. Journal of 259 0.9 2 Thermophysics and Heat Transfer, 2018, 32, 10-17. Determination of heat capacity of ionic liquid based nanofluids using group method of data handling technique. Heat and Mass Transfer, 2018, 54, 49-57. 260 1.2 Further development of the predictive models for physical properties of pure ionic liquids: Thermal 261 1.0 45 conductivity and heat capacity. Journal of Chemical Thermodynamics, 2018, 118, 1-15. Modelling the volumetric properties of ionic liquids using a modified perturbed hard-sphere-chain 0.4 equation of state. Physics and Chemistry of Liquids, 2018, 56, 627-634. Experimental and theoretical study of CO2 solubility under high pressure conditions in the ionic 263 1.6 14 liquid 1-ethyl-3-methylimidazolium acetate. Journal of Supercritical Fluids, 2018, 133, 195-210. Assessment of vapor–liquid equilibrium models for ionic liquid based working pairs in absorption 264 1.8 cycles. International Journal of Refrigeration, 2018, 87, 10-25. Measurement and correlation of ternary phase equilibrium of (hexane + ethyl acetate) with four ILs. 265 17 1.0 Journal of Chemical Thermodynamics, 2018, 116, 114-120. Process design of carbon dioxide and ethane separation using ionic liquid by extractive distillation. 266 1.6 26 Journal of Chemical Technology and Biotechnology, 2018, 93, 887-896. Experimental and Molecular Modeling Evaluation of the Physicochemical Properties of Proline-Based 267 1.2 36 Deep Eutectic Solvents. Journal of Physical Chemistry B, 2018, 122, 369-379. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. 8.2 368 Renewable and Sustainable Energy Reviews, 2018, 96, 502-525. The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic 269 33 4.0 liquids as draw solutes for forward osmosis. Desalination, 2018, 444, 94-106. Novel molecular descriptors for prediction of H2S solubility in ionic liquids. Journal of Molecular 270 Liquids, 2018, 265, 756-764. Modeling Viscosity of Ionic Liquids with Electrolyte Perturbed-Chain Statistical Associating Fluid 271 1.8 28 Theory and Free Volume Theory. Industrial & amp; Engineering Chemistry Research, 2018, 57, 8784-8801. Estimation of Physical Constants of Biodiesel-Related Fatty Acid Alkyl Esters: Normal Boiling Point, Critical Temperature, Critical Pressure, and Acentric Factor. Industrial & amp; Engineering Chemistry 272 1.8 Research, 2018, 57, 8552-8565.

#	Article	IF	CITATIONS
273	Ionic liquid-based CO2 capture in power plants for low carbon emissions. International Journal of Greenhouse Gas Control, 2018, 75, 134-139.	2.3	69
274	Liquid-liquid extraction of methanol from its mixtures with hexane using three imidazolium-based ionic liquids. Journal of Chemical Thermodynamics, 2019, 138, 189-195.	1.0	35
275	Different spacer homologs of gemini imidazolium ionic liquid surfactants at the interface of crude oil-water. Journal of Molecular Liquids, 2019, 296, 111748.	2.3	23
276	Reconstruction of thermal field in target tissue during the therapy of high intensity focused ultrasound. International Communications in Heat and Mass Transfer, 2019, 108, 104325.	2.9	10
277	Novel Solvent for CO2 Capture. Energy Procedia, 2019, 158, 5124-5129.	1.8	1
278	Molecular Dynamics Evaluation of Removal of Acid Gases from SNG by Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2019, 7, 18093-18104.	3.2	32
279	Diffusivity and solubility of carbonyl sulfide and sulfur dioxide in 1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylimide ([emim][Tf2N]): Experimental measurement and modelling. Journal of Chemical Thermodynamics, 2019, 132, 411-422.	1.0	5
280	Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: Pure ionic liquids. Fluid Phase Equilibria, 2019, 497, 164-177.	1.4	28
281	Energy-saving thermally coupled ternary extractive distillation process using ionic liquids as entrainer for separating ethyl acetate-ethanol-water ternary mixture. Separation and Purification Technology, 2019, 226, 337-349.	3.9	54
282	Artificial Neural Network and Principal Component Analysis Study of Excess Molar Volumes and Excess Molar Enthalpies in Ionic Liquid Mixtures. Russian Journal of Physical Chemistry A, 2019, 93, 809-821.	0.1	2
283	On the evaluation of density of ionic liquids: towards a comparative study. Chemical Engineering Research and Design, 2019, 147, 648-663.	2.7	26
284	Thermodynamic, structural and dynamic properties of ionic liquids [C4mim][CF3COO], [C4mim][Br] in the condensed phase, using molecular simulations. RSC Advances, 2019, 9, 13677-13695.	1.7	4
285	Electron microscopy and its role in advanced lithium-ion battery research. Sustainable Energy and Fuels, 2019, 3, 1623-1646.	2.5	25
286	Extractive Distillation with Ionic Liquid Entrainers for the Separation of Acetonitrile and Water. Industrial & Engineering Chemistry Research, 2019, 58, 5602-5612.	1.8	33
287	<i>110th Anniversary:</i> The First Thermodynamic and Kinetic Analysis of Ammonia in Imidazolium-Based Ionic Liquids Using a Gravimetric Microbalance. Industrial & Engineering Chemistry Research, 2019, 58, 4644-4655.	1.8	12
288	Generalized correlations for calculating the density of ionic liquids at 0.1†MPa and higher pressures. Journal of Molecular Liquids, 2019, 282, 131-141.	2.3	0
289	Norm indexes for predicting enthalpy of vaporization of organic compounds at the boiling point. Journal of Molecular Liquids, 2019, 282, 484-488.	2.3	17
290	Modeling Thermodynamic Derivative Properties and Gas Solubility of Ionic Liquids with ePC-SAFT. Industrial & Engineering Chemistry Research, 2019, 58, 8401-8417.	1.8	33

#	Article	IF	CITATIONS
291	Critical Properties of Metal-Containing Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 7332-7340.	1.8	11
292	Systematic Investigation of a Surfactant Type Nano Gemini Ionic Liquid and Simultaneous Abnormal Salt Effects on Crude Oil/Water Interfacial Tension. Industrial & Engineering Chemistry Research, 2019, 58, 3583-3594.	1.8	29
293	A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid. Journal of Cleaner Production, 2019, 213, 480-490.	4.6	101
294	Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state. Fluid Phase Equilibria, 2019, 486, 80-90.	1.4	13
295	Deep Eutectic Solvents. , 2019, , .		70
296	Measuring and modelling the absorption and volumetric properties of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical Thermodynamics, 2019, 131, 544-556.	1.0	37
297	Properties of Deep Eutectic Solvents. , 2019, , 45-110.		9
298	Predictive methods and semi-classical Equations of State for pure ionic liquids: A review. Journal of Chemical Thermodynamics, 2019, 130, 47-94.	1.0	34
299	Thermodynamic and Transport Properties Modeling of Deep Eutectic Solvents: A Review on g ^E -Models, Equations of State, and Molecular Dynamics. Journal of Chemical & Engineering Data, 2020, 65, 943-967.	1.0	52
300	Relative permeability measurement in carbonate rocks, the effects of conventional surfactants vs. Ionic liquid-based surfactants. Journal of Dispersion Science and Technology, 2020, 41, 1797-1811.	1.3	18
301	Bring Back Harmony in Philosophical Discourse: a Confucian Perspective. Journal of Dharma Studies, 2020, 2, 163-173.	0.2	7
302	Effective modeling methods to accurately predict the miscibility of CO2 in ionic liquids. Chemical Engineering Research and Design, 2020, 154, 262-272.	2.7	6
303	Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. Journal of Molecular Liquids, 2020, 298, 112183.	2.3	83
304	CO ₂ Separation by a Series of Aqueous Morpholinium-Based Ionic Liquids with Acetate Anions. ACS Sustainable Chemistry and Engineering, 2020, 8, 415-426.	3.2	28
305	Screening of ionic liquids for gas separation using COSMO-RS and comparison between performances of ionic liquids and aqueous alkanolamine solutions. Chemical Engineering Communications, 2020, 207, 1264-1277.	1.5	17
306	A novel atomic contribution model for the standard chemical exergies of organic compounds. Fluid Phase Equilibria, 2020, 507, 112397.	1.4	11
307	Tetrabutylammonium 2,4,6-trimethylbenzenesulfonate as an effective and regenerable thermo-responsive ionic liquid drawing agent in forward osmosis for seawater desalination. Desalination, 2020, 495, 114635.	4.0	27
308	Quantum chemical calculation, molecular dynamics simulation and process design for separation of her tangen and process design	2.3	29

#	Article	IF	CITATIONS
309	A universal cohesive energy estimation equation based on <scp>COSMO</scp> . AICHE Journal, 2020, 66, e16990.	1.8	3
310	Experimental and computational studies on the solubility of carbon dioxide in protic ammonium-based ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 152-161.	2.7	14
311	Application of Prigogine–Flory–Patterson theory to correlate the thermodynamic properties of aqueous mixtures of some three-component deep eutectic solvents based on choline chloride and carboxylic acids at TÂ=Â(288.15 to 318.15) K. Journal of Molecular Liquids, 2020, 320, 114224.	2.3	5
312	Estimating the Heat Capacity of Non-Newtonian Ionanofluid Systems Using ANN, ANFIS, and SGB Tree Algorithms. Applied Sciences (Switzerland), 2020, 10, 6432.	1.3	34
313	Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids. New Journal of Chemistry, 2020, 44, 20544-20567.	1.4	37
314	A simple model for the viscosities of deep eutectic solvents. Fluid Phase Equilibria, 2020, 521, 112662.	1.4	44
315	Screening of Imidazole Ionic Liquids for Separating the Acetone– <i>n</i> -Hexane Azeotrope by COSMO-SAC Simulations and Experimental Verification. ACS Sustainable Chemistry and Engineering, 2020, 8, 4440-4450.	3.2	39
316	Research on Synthesis, Characterization and CO ₂ Absorption of Functional Room Temperature Ionic Liquids. Materials Science Forum, 0, 984, 189-194.	0.3	1
317	Generalized Model to Estimate the Refractive Indices of Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 3965-3976.	1.0	14
318	Comparison of LSSVM model results with artificial neural network model for determination of the solubility of SO2 in ionic liquids. Journal of Molecular Liquids, 2020, 304, 112771.	2.3	31
319	A Global Model for the Estimation of Speeds of Sound in Deep Eutectic Solvents. Molecules, 2020, 25, 1626.	1.7	8
320	Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nature Sustainability, 2021, 4, 277-285.	11.5	117
321	An RETM approach to model CO2 and H2S solubility in four protic ionic liquids using mSRK and CPA EoSs. Journal of Molecular Liquids, 2021, 324, 114684.	2.3	8
322	Solubility of H2S in ammonium-based ionic liquids. Journal of Chemical Thermodynamics, 2021, 154, 106336.	1.0	8
323	Suitability of non-conventional reaction medium for biocatalysis: From lipase activity to thermophysical characterization. Journal of Molecular Liquids, 2021, 322, 114960.	2.3	6
324	Modeling stability conditions of methane Clathrate hydrate in ionic liquid aqueous solutions. Journal of Molecular Liquids, 2021, 325, 114804.	2.3	11
325	Mechanism analysis and sustainability evaluation of imidazole ionic liquid extraction based on molecular dynamics. Journal of Molecular Liquids, 2021, 323, 115066.	2.3	7
326	Viscosity models for ionic liquids and their mixtures. Physical Chemistry Chemical Physics, 2021, 23, 733-752.	1.3	35

	CITATION RE	CITATION REPORT		
#	Article	IF	Citations	
327	Simulation on vapor-liquid equilibrium of CO2-[emim][Tf2N] in flow state and depressurization of its refrigeration cycle based on Aspen Plus. International Journal of Refrigeration, 2021, 124, 75-84.	1.8	6	
328	Forward osmosis with direct contact membrane distillation using tetrabutylphosphonium p-toluenesulfonate as an effective and safe thermo-recyclable osmotic agent for seawater desalination. Chemosphere, 2021, 263, 128070.	4.2	20	
329	Diffusion coefficients of carbon dioxide—ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF ₄]) system at temperatures of 313 K and 323 K and pressures of 5 MPa and 8 I Chemical Engineering Communications, 2021, 208, 233-241.	VI Plas	3	
330	Modeling the Solubility of Carbon Dioxide and 1,1,1,2-Tetrafluoroethane in Ionic Liquids Using the van der Waals and Generic Redlich–Kwong Equations of State. Theoretical Foundations of Chemical Engineering, 2021, 55, 129-139.	0.2	3	
331	Carbon Dioxide Capture by Ionic Liquids. Energy, Environment, and Sustainability, 2021, , 147-194.	0.6	2	
332	A review on machine learning algorithms for the ionic liquid chemical space. Chemical Science, 2021, 12, 6820-6843.	3.7	80	
333	Molecular Mechanism and Absorption Performance Evaluation of CO ₂ Capture from the PCC Process by Monoethanolamine-Based Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2021, 60, 1483-1493.	1.8	20	
334	Molecular-level insights into composition-dependent structure, dynamics, and hydrogen bonds of binary ionic liquid mixture from molecular dynamics simulations. Chemical Physics, 2021, 542, 111051.	0.9	7	
335	Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Scientific Reports, 2021, 11, 6684.	1.6	24	
336	Explorations of Liquid–Liquid Phase Equilibrium for the Mixture (Isopropanol + Water) with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 2192-2199.	1.0	10	
337	Partial Charges Optimized by Genetic Algorithms for Deep Eutectic Solvent Simulations. Journal of Chemical Theory and Computation, 2021, 17, 3078-3087.	2.3	12	
338	A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models. Chinese Journal of Chemical Engineering, 2022, 44, 521-527.	1.7	2	
339	Supramolecular host-guest complex of methylated β-cyclodextrin with polymerized ionic liquid ([vbim]TFSI) as highly effective and energy-efficient thermo-regenerable draw solutes in forward osmosis. Chemical Engineering Journal, 2021, 411, 128520.	6.6	15	
340	Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product. Chinese Journal of Chemical Engineering, 2022, 45, 111-120.	1.7	5	
341	Modeling interfacial properties of ionic liquids with ePC-SAFT combined with density gradient theory. Fluid Phase Equilibria, 2021, 536, 112984.	1.4	5	
342	Extension of SAFT-Î ³ to model the phase behavior of CO2+ionic liquid systems. Fluid Phase Equilibria, 2021, 538, 113026.	1.4	2	
343	Thermodynamics of CO2 separation with the superbase derived ionic liquid organic solvent binary system. Journal of Molecular Liquids, 2021, 331, 115760.	2.3	7	
344	Technoeconomic Assessment of a Biomass Pretreatment + Ionic Liquid Recovery Process with Aprotic and Choline Derived Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 8467-8476.	3.2	22	

#	Article	IF	CITATIONS
345	Comprehensive Evaluation of a Deep Eutectic Solvent Based CO ₂ Capture Process through Experiment and Simulation. ACS Sustainable Chemistry and Engineering, 2021, 9, 10250-10265.	3.2	48
346	Study on empirical models of isobaric heat capacities and conductivities for ammonium salt-based DESs. Chemical Engineering Journal Advances, 2021, 7, 100132.	2.4	Ο
347	Implementation of CP-PC-SAFT and CS-SAFT-VR-Mie for Predicting the Thermodynamic Properties of C ₁ –C ₃ Halocarbon Systems. II. Inter-Relation between Solubilities in Ionic Liquids, Their Pressure, Volume, and Temperature, and Critical Constants. Industrial & Engineering Chemistry Research, 2021, 60, 13084-13093.	1.8	17
348	Comprehensive Prediction of Densities for Deep Eutectic Solvents: A New Bonding-Group Interaction Contribution Scheme. Industrial & amp; Engineering Chemistry Research, 2021, 60, 13127-13139.	1.8	13
349	Group and <scp>groupâ€interaction</scp> contribution method for estimating the melting temperatures of deep eutectic solvents. AICHE Journal, 2022, 68, e17408.	1.8	17
350	Sequestration of light hydrocarbons in Ionic Liquids at high-pressures: Consistency and thermodynamic modeling. Fluid Phase Equilibria, 2021, 546, 113119.	1.4	5
351	Modeling of H2S absorption in some ionic liquids with carboxylate anions using modified HKM plus association EoS together with RETM. Fluid Phase Equilibria, 2021, 546, 113135.	1.4	3
352	Extractive distillation to produce anhydrous bioethanol with choline chloride with urea (1:2) as a solvent: a comparative evaluation of the equilibrium and the rate-based models. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108580.	1.8	5
353	Extraction mechanism analysis and energy saving enhancement of extraction separation of methyl tert-butyl ether and methanol by ionic liquid based on molecular dynamics simulation. Separation and Purification Technology, 2021, 279, 119717.	3.9	23
354	CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation. Applied Energy, 2021, 304, 117767.	5.1	17
355	Absorption Power Cycles with Various Working Fluids for Exergy-Efficient Low-Temperature Waste Heat Recovery. Green Energy and Technology, 2018, , 99-111.	0.4	2
356	Molecular Mechanism and Extraction Performance Evaluation for Separation of Methanol and <i>n</i> -Hexane via Ionic Liquids as Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 8700-8712.	3.2	57
357	Modeling the Solubility of Hydrogen Sulfide in Ionic Liquids Using van der Waals Equation of State. Theoretical Foundations of Chemical Engineering, 2020, 54, 1276-1289.	0.2	3
358	Application of a Thermodynamic Consistency Test to Binary Mixtures Containing an Ionic Liquid. The Open Thermodynamics Journal, 2008, 2, 25-38.	0.6	17
359	Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics, 2018, 21, 70-80.	0.4	14
360	Process Designs for Separating R-410A, R-404A, and R-407C Using Extractive Distillation and Ionic Liquid Entrainers. Industrial & Engineering Chemistry Research, 2021, 60, 16054-16067.	1.8	30
361	Extension of a Group Contribution Method to Predict Viscosity Based on Momentum Transport Theory Using a Modified Peng–Robinson EoS. Industrial & Engineering Chemistry Research, 2021, 60, 14903-14926.	1.8	4
362	Development of Mathematical Model Using Group Contribution Method to Predict Exposure Limit Values in Air for Safeguarding Health. Advances in Intelligent Systems and Computing, 2016, , 395-402.	0.5	0

	CHAHO	CITATION REPORT	
#	Article	IF	CITATIONS
363	Ionic Liquids for Carbon Dioxide Capture. Sustainable Agriculture Reviews, 2019, , 193-219.	0.6	0
364	A Simple Computer Tool for Simultaneously Estimating Critical, Transport, Physicochemical, and Phase Change Properties of Ionic Liquids. Industrial & Engineering Chemistry Research, 2021, 60, 16143-16151.	1.8	7
365	Vapor-Liquid Equilibrium of Ionic Liquids. , 2020, , 1-22.		0
366	Evaluation of Deep Eutectic Systems as an Alternative to Solvents in Painting Conservation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15451-15460.	3.2	11
367	A van der Waals-EoS-based model for the dynamic viscosity of ionic liquids. Fluid Phase Equilibria, 2022, 554, 113343.	1.4	6
368	A-priori modelling of density of deep eutectic solvent with cohesion based cubic equation of state. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100026.	0.7	4
369	Solubility behavior of CO2 and H2S in 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Journal of Chemical Thermodynamics, 2022, 167, 106721.	1.0	11
370	Eco-Efficient Heat-Integrated Extractive Distillation Process Using Ionic Liquid as Entrainer for Ethyl Acetate-Isopropyl Alcohol-Water Mixture. SSRN Electronic Journal, 0, , .	0.4	0
371	Ionic liquid–based surfactants for oil spill remediation. , 2022, , 257-268.		4
372	Anomalously high solubility behavior of methanethiol in alkylimidazolium–based ionic liquids. Journal of Molecular Liquids, 2022, 350, 118529.	2.3	6
373	Estimation of solubility of acid gases in ionic liquids using different machine learning methods. Journal of Molecular Liquids, 2022, 349, 118413.	2.3	11
374	Eco-efficient heat-integrated extractive distillation process using ionic liquid as entrainer for ethyl acetate-isopropyl alcohol-water mixture. Separation and Purification Technology, 2022, 287, 120491.	3.9	19
375	Application of PC-SAFT EoS for calculating gas solubility and viscosity of ammonium-based ionic liquids. Korean Journal of Chemical Engineering, 2022, 39, 1576-1587.	1.2	1
376	Dependency of Physicochemical Properties of Imidazolium Bis(Trifluoromethylsulfonyl)Imide-Based Ionic Liquids on Temperature and Alkyl Chain. Journal of Chemical & Engineering Data, 2022, 67, 858-868.	1.0	11
377	Thermodynamic study of binary mixtures of 2-propanol with ionic liquids, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate and triethylhexylammonium bis(trifluoromethylsulfonyl)imide. Journal of Chemical Thermodynamics, 2022, 171, 106789.	1.0	4
378	Toward predicting SO2 solubility in ionic liquids utilizing soft computing approaches and equations of state. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104220.	2.7	14
379	Sustainable wastewater treatment via extractive distillation process with ionic liquid as entrainer for the separation of ethyl acetate/isopropanol/water. Chemical Engineering Research and Design, 2022, 160, 527-540.	2.7	10
380	Molecular mechanism, liquid–liquid equilibrium and process design of separating octane-n-butanol system by ionic liquids. Journal of Molecular Liquids, 2022, 355, 118974.	2.3	8

#	Article	IF	CITATIONS
381	<i>In silico</i> COSMO-RS predictive screening of ionic liquids for the dissolution of plastic. Green Chemistry, 2022, 24, 4140-4152.	4.6	33
382	Prediction of CO2 solubility in glymes and ionic liquids using modified generalized BWR EoS. Fluid Phase Equilibria, 2022, , 113500.	1.4	0
383	Thermodynamic and Artificial Intelligence Approaches of H2S Solubility in Some Imidazolium-Based Ionic Liquids. SSRN Electronic Journal, 0, , .	0.4	0
384	Effect of Temperature and Alkyl Chain Length on the Physicochemical Properties of Pyridinium Bis(Trifluoromethylsulfonyl)Imide-Based Ionic Liquids. SSRN Electronic Journal, 0, , .	0.4	0
385	Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Industrial & amp; Engineering Chemistry Research, 2022, 61, 9795-9812.	1.8	17
386	Highly efficient separation of benzene + cyclohexane mixtures by extraction combined extractive distillation using imidazolium-based dicationic ionic liquids. Green Chemical Engineering, 2023, 4, 312-323.	3.3	8
387	CO2 separation from biogas with ionic liquid-based hybrid solvents: From properties to process. Separation and Purification Technology, 2022, 298, 121591.	3.9	9
388	A review of group contribution models to calculate thermodynamic properties of ionic liquids for process systems engineering. Chemical Engineering Research and Design, 2022, 185, 458-480.	2.7	6
389	Application of atomic electrostatic potential descriptors for predicting the eco-toxicity of ionic liquids towards leukemia rat cell line. Chemical Engineering Science, 2022, , 117941.	1.9	1
390	Thermal Conductivity of 1-Alkyl-3-methylimidazolium [Tf ₂ N] Ionic Liquids and Compressed 1,1,1,2-Tetrafluoroethane (R-134a). Journal of Chemical & Engineering Data, 2022, 67, 1796-1809.	1.0	5
391	Global and straightforward models for viscosity prediction of fatty acid alkyl esters. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	2
392	Investigation of carbon dioxide solubility in various families of deep eutectic solvents by the PC-SAFT EoS. Frontiers in Chemistry, 0, 10, .	1.8	2
393	Carbon dioxide solubility in ionic liquids: [Guad-(6,6),(1,1),(1,1)][DCA] and [Guad-(6,6),(1,1),(1,1)][TCM] at high pressure. Fluid Phase Equilibria, 2023, 563, 113572.	1.4	1
394	Influence of water and ethanol in the physical properties of choline glycinate at several temperatures. Journal of Molecular Liquids, 2022, 364, 120022.	2.3	1
395	Multiscale Screening of Deep Eutectic Solvents for Efficient Extraction of <i>m</i> -Cresol from Model Coal Tar. ACS Omega, 2022, 7, 34485-34494.	1.6	4
396	Mixed Ionic Liquids as Entrainers for Aromatic Extraction Processes: Energy, Economic, and Environmental Evaluations. Industrial & Engineering Chemistry Research, O, , .	1.8	1
397	Techno-economic analysis of the production of 2G ethanol and technical lignin via a protic ionic liquid pretreatment of sugarcane bagasse. Industrial Crops and Products, 2022, 189, 115788.	2.5	4
398	Machine learning coupled with group contribution for predicting the density of deep eutectic solvents. Fluid Phase Equilibria, 2023, 565, 113672.	1.4	7

#	Article	IF	CITATIONS
399	Vapor-liquid equilibrium of acid gases with imidazolium-based ionic liquids using the UMR-PRU model. Chemical Thermodynamics and Thermal Analysis, 2022, 8, 100097.	0.7	2
400	Development of Natural Hydrophobic Deep Eutectic Solvents for Precombustion CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2022, 10, 15284-15296.	3.2	8
401	Thermodynamic modeling of determined the optimal condition of the gas antisolvent process with different solvent. Chemical Thermodynamics and Thermal Analysis, 2022, 8, 100094.	0.7	1
402	Prediction of heat capacity of ionic liquids: A simple group contribution method. Fluid Phase Equilibria, 2023, 565, 113675.	1.4	4
403	Patel-Teja cubic equation of state – A review of modifications and applications till 2022. Fluid Phase Equilibria, 2023, 567, 113707.	1.4	7
404	Thermodynamic modelling of physico-chemical properties of new generation ionic liquid-bitumen system. , 2023, 221, 211364.		3
405	Effect of temperature and alkyl chain length on the physicochemical properties of pyridinium bis(trifluoromethylsulfonyl)imide-based ionic liquids. Chemical Thermodynamics and Thermal Analysis, 2022, 8, 100099.	0.7	1
406	Multiscale molecular simulations for the solvation of lignin in ionic liquids. Scientific Reports, 2023, 13, .	1.6	13
407	Vapor-Liquid Equilibrium of Ionic Liquids. , 2022, , 1331-1351.		0
408	Thermodynamic and Artificial Intelligence Approaches of H2S Solubility in Some Imidazolium-Based Ionic Liquids. Journal of Solution Chemistry, 2023, 52, 429-446.	0.6	1
409	Thermodynamic model for CO2 absorption in imidazolium-based ionic liquids using cubic plus association equation of state. Journal of Molecular Liquids, 2023, 378, 121587.	2.3	1
410	Physical properties of a new dipeptide ionic liquid in water and methanol at several temperatures: Correlation and prediction. Journal of Molecular Liquids, 2023, 376, 121435.	2.3	1
411	Diffusion Coefficient and Absorption of Carbonyl Sulfide in 1-Hexyl-3-methylimidazolium Bis (Trifluoromethyl) Sulfonylimide ([hmim][Tf ₂ N]). Journal of Chemical & Engineering Data, 2023, 68, 586-600.	1.0	1
412	Study of the effect of ionic liquid on the wettability alteration of carbonate reservoir. Chemical Papers, 0, , .	1.0	1
413	Critical Properties of Ternary Deep Eutectic Solvents Using Group Contribution with Extended Lee–Kesler Mixing Rules. ACS Omega, 2023, 8, 13177-13191.	1.6	7
414	Random forest models to predict the densities and surface tensions of deep eutectic solvents. AICHE Journal, O, , .	1.8	1
421	Surfactants and Colloidal Properties of Ionic Liquids. , 2023, , 55-76.		0
447	Natural gas dehydration using ionic liquids. , 2024, , 111-142.		0