Double-Layer in Ionic Liquids:Â Paradigm Change?

Journal of Physical Chemistry B 111, 5545-5557 DOI: 10.1021/jp0678570

Citation Report

#	Article	IF	CITATIONS
5	Femtosecond Solvation Dynamics in a Neat Ionic Liquid and Ionic Liquid Microemulsion:  Excitation Wavelength Dependence. Journal of Physical Chemistry B, 2007, 111, 12809-12816.	1.2	147
6	Well-Ordered Structure at Ionic Liquid/Rutile (110) Interface. Journal of Physical Chemistry C, 2007, 111, 12161-12164.	1.5	52
7	Steric Selectivity in Na Channels Arising from Protein Polarization and Mobile Side Chains. Biophysical Journal, 2007, 93, 1960-1980.	0.2	111
8	Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces. Electrochemistry Communications, 2007, 9, 2370-2374.	2.3	145
9	Counterion volume effects in mixed electrical double layers. Journal of Colloid and Interface Science, 2007, 316, 490-499.	5.0	161
10	Measurements of Differential Capacitance at Mercury/Room-Temperature Ionic Liquids Interfaces. Journal of Physical Chemistry C, 2007, 111, 18326-18333.	1.5	121
11	The physical chemistry of organic coatings revisited—viewing coatings as a materials scientist. Journal of Coatings Technology Research, 2008, 5, 133-155.	1.2	33
12	A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry, 2008, 613, 131-138.	1.9	466
13	The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – Effect of temperature on the differential capacitance. Journal of Electroanalytical Chemistry, 2008, 622, 153-160.	1.9	149
14	Towards understanding the structure and capacitance of electrical double layer in ionic liquids. Electrochimica Acta, 2008, 53, 6835-6840.	2.6	378
15	Electrochemical charge transfer at a metallic electrode: A simulation study. Journal of Chemical Physics, 2008, 128, 124701.	1.2	84
16	Ionic liquid enhanced electrochemical characterization of organic coatings. Progress in Organic Coatings, 2008, 63, 250-259.	1.9	15
17	Ionic Liquid Near a Charged Wall: Structure and Capacitance of Electrical Double Layer. Journal of Physical Chemistry B, 2008, 112, 11868-11872.	1.2	383
18	Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemical Physics, 2008, 128, 214509.	1.2	115
19	Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 2008, 108, 2238-2264.	23.0	1,094
20	Metal complexation in ionic liquids. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 21.	0.8	72
21	A Model for Selective Ion Adsorption Including van der Waals Interaction. Journal of Physical Chemistry B, 2008, 112, 1693-1698.	1.2	4
22	Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 2008, 77, 051202.	0.8	174

#	Article	IF	CITATIONS
23	Electrical Double-Layer Structure in Ionic Liquids: A Corroboration of the Theoretical Model by Experimental Results. Journal of Physical Chemistry C, 2008, 112, 16568-16574.	1.5	194
24	Capacitance Measurements in a Series of Room-Temperature Ionic Liquids at Glassy Carbon and Gold Electrode Interfaces. Journal of Physical Chemistry C, 2008, 112, 16600-16608.	1.5	153
25	lonic Liquid Structure Dependent Electrical Double Layer at the Mercury Interface. Journal of Physical Chemistry C, 2008, 112, 2601-2606.	1.5	58
26	Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids:  Influence of Potential, Cation Size, and Temperature. Journal of Physical Chemistry C, 2008, 112, 7486-7495.	1.5	449
27	Surface Structure at the Ionic Liquidâ ``Electrified Metal Interface. Accounts of Chemical Research, 2008, 41, 421-431.	7.6	482
28	Steric effects on ac electro-osmosis in dilute electrolytes. Physical Review E, 2008, 77, 036317.	0.8	114
29	A Fundamental Study on Electrowetting by Traditional and Multifunctional Ionic Liquids: Possible Use in Electrowetting on Dielectric-Based Microfluidic Applications. Analytical Chemistry, 2008, 80, 7690-7698.	3.2	77
30	High-Pressure Testing of Heterogeneous Charge Transfer in a Room-Temperature Ionic Liquid:  Evidence for Solvent Dynamic Control. Journal of Physical Chemistry B, 2008, 112, 3085-3100.	1.2	37
31	Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity. Nanotechnology, 2008, 19, 265606.	1.3	33
32	Redox potentials and screening in ionic liquids: Effects of sizes and shapes of solute ions. Journal of Chemical Physics, 2008, 129, 204503.	1.2	21
33	Grand canonical Monte Carlo investigations of electrical double layer in molten salts. Journal of Chemical Physics, 2008, 129, 164503.	1.2	44
34	Limitations and strengths of uniformly charged double-layer theory: Physical significance of capacitance anomalies. Physical Review E, 2008, 77, 061117.	0.8	13
35	Generalized Poisson-Fermi formalism for investigating size correlation effects with multiple ions. Physical Review E, 2008, 78, 061506.	0.8	47
36	"Squishy capacitor―model for electrical double layers and the stability of charged interfaces. Physical Review E, 2009, 80, 011112.	0.8	11
37	Room-Temperature Ionic Liquids: Excluded Volume and Ion Polarizability Effects in the Electrical Double-Layer Structure and Capacitance. Physical Review Letters, 2009, 103, 117801.	2.9	95
38	Diffuse Charge Effects in Fuel Cell Membranes. Journal of the Electrochemical Society, 2009, 156, B225.	1.3	53
40	Probing the adsorption of methylimidazole at ionic liquids/Cu electrode interface by surfaceâ€enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 516-523.	1.2	43
41	Double Layer of Au(100)/Ionic Liquid Interface and Its Stability in Imidazoliumâ€Based Ionic Liquids. Angewandte Chemie - International Edition, 2009, 48, 5148-5151.	7.2	171

		CITATION REPORT	
#	Article	IF	Citations
42	Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Advances in Colloid and Interface Science, 2009, 152, 48-88.	7.0	742
43	Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochimica Acta, 2009, 54, 2630-2634. Electrochemical windows and impedance characteristics of [Bmim+][<mml:math< td=""><td>2.6</td><td>111</td></mml:math<>	2.6	111
44	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:mrow><mml:msubsup><mml:mrow><mml:mtext>BF</mml:mtext></mml:mrow><mm and [Bdmim+][<mml:math <br="" altimg="si2.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mrow><mml:msubsup><mml:mro. chemical="" letters,<="" physics="" td=""><td>ıl:mrow> <r 1.2</r </td><td>nml;mn>4</td></mml:mro.></mml:msubsup></mml:mrow></mml:math></mm </mml:msubsup></mml:mrow>	ıl:mrow> <r 1.2</r 	nml;mn>4
45	2009, 483, 90-94. Activity behaviour of electrolyte solutions: Evaluation of temperature effects by means of the quasi-random lattice model. Fluid Phase Equilibria, 2009, 286, 144-153.	1.4	4
46	Measurement of Forces across Room Temperature Ionic Liquids between Mica Surfaces. Journal of Physical Chemistry C, 2009, 113, 16445-16449.	1.5	57
47	Systemic Energy Management by Strategically Located Functional Components within Molecular Frameworks, Determined by Systems Chemistry. Journal of Physical Chemistry B, 2009, 113, 10308-10314.	1.2	17
48	Ultraslow Response of Interfacial Tension to the Change in the Phase-Boundary Potential at the Interface between Water and a Room-Temperature Ionic Liquid, Trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide. Journal of Physical Chemistry B, 2009, 113, 3273-3276.	1.2	47
49	Spontaneous Polarization of the Neutral Interface for Valence Asymmetric Coulombic Systems. Journal of Physical Chemistry B, 2009, 113, 2006-2012.	1.2	2
50	Exact Analytic Result of Contact Value for the Density in a Modified Poissonâ^'Boltzmann Theory of an Electrical Double Layer. Journal of Chemical Theory and Computation, 2009, 5, 1079-1083.	2.3	4
51	Electrical Double Layer Structure in Ionic Liquids: An Understanding of the Unusual Capacitanceâ^'Potential Curve at a Nonmetallic Electrode. Journal of Physical Chemistry C, 2009, 113, 3386-3389.	1.5	95
52	Electrical Double Layer in Mixtures of Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2009, 113, 6596-6601.	1.5	57
53	Electrochemically Driven Reorientation of Three Ionic States of <i>p</i> -Aminobenzoic Acid on Ag(111). Journal of Physical Chemistry C, 2009, 113, 2417-2424.	1.5	22
54	Properties of the Diffuse Double Layer at High Electrolyte Concentrations. Journal of Physical Chemistry B, 2009, 113, 14310-14314.	1.2	13
55	Supramolecular Aggregation of Inorganic Molecules at Au(111) Electrodes under a Strong Ionic Atmosphere. Journal of the American Chemical Society, 2009, 131, 14728-14737.	6.6	20
56	Physical and Electrochemical Properties of Thioether-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 11222-11231.	1.2	59
57	D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4. Talanta, 2009, 78, 1056-1062.	2.9	19
58	Ion adsorption at a metallic electrode: an <i>ab initio</i> based simulation study. Journal of Physics Condensed Matter, 2009, 21, 424109.	0.7	47
59	Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. Journal of the American Chemical Society, 2009, 131, 5194-5202.	6.6	246

#	Article	IF	CITATIONS
60	Molecular dynamics simulation of the electrochemical interface between a graphite surface and the ionic liquid [BMIM][PF6]. Physical Chemistry Chemical Physics, 2009, 11, 5584.	1.3	240
61	The Electric Double-Layer Differential Capacitance at and near Zero Surface Charge for a Restricted Primitive Model Electrolyte. Journal of Physical Chemistry B, 2009, 113, 8925-8929.	1.2	107
62	Electrode polarization and charge transport at solid interfaces. Physical Review B, 2009, 80, .	1.1	233
63	Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes. Journal of Physical Chemistry C, 2009, 113, 4549-4559.	1.5	182
64	Water at an electrochemical interface—a simulation study. Faraday Discussions, 2009, 141, 423-441.	1.6	120
65	Insights from theory and simulation on the electrical double layer. Physical Chemistry Chemical Physics, 2009, 11, 3822.	1.3	116
66	Squeezing Ionic Liquids through Nanopores. Nano Letters, 2009, 9, 2125-2128.	4.5	78
67	The diffuse double layer in ionic liquids. Collection of Czechoslovak Chemical Communications, 2009, 74, 1665-1674.	1.0	9
68	Ion steric effects on electrophoresis of a colloidal particle. Journal of Fluid Mechanics, 2009, 640, 343-356.	1.4	73
69	A modified Poisson–Boltzmann study of the singlet ion distribution at contact with the electrode for a planar electric double layer. Collection of Czechoslovak Chemical Communications, 2010, 75, 425-446.	1.0	7
70	Ionic multilayers at the free surface of an ionic liquid, trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, probed by x-ray reflectivity measurements. Journal of Chemical Physics, 2010, 132, 164705.	1.2	76
71	Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents Chemistry - an Asian Journal, 2010, 5, 202-230.	1.7	280
72	Silica Colloidal Suspensions in Ionic Liquids: Colloidal Stability and Fabrication of Ion Gels on the basis of Colloidal Self-Assembly. ACS Symposium Series, 2010, , 199-210.	0.5	1
73	Sum Frequency Generation Spectroscopy and Electrochemical Analysis of the 1-Butyl-3-methylimidazolium Bis{(trifluoromethyl)sulfonyl}amide Double Layer Structure on the Platinum Electrode. ACS Symposium Series, 2010, , 291-304.	0.5	0
74	The interface between Au(111) and an ionic liquid. Electrochimica Acta, 2010, 55, 6212-6217.	2.6	136
75	Modeling Electrolytically Top-Gated Graphene. Nanoscale Research Letters, 2010, 5, 505-511.	3.1	17
76	The Electrode/Ionic Liquid Interface: Electric Double Layer and Metal Electrodeposition. ChemPhysChem, 2010, 11, 2764-2778.	1.0	141
77	The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: Electrostriction vs. lattice saturation. Journal of Electroanalytical Chemistry, 2010, 649, 261-267.	1.9	162

#	Article	IF	CITATIONS
78	Influence of anion composition and size on the double layer capacitance for Bi(111) room temperature ionic liquid interface. Electrochemistry Communications, 2010, 12, 1058-1061.	2.3	48
79	Hysteresis in the measurement of double-layer capacitance at the gold–ionic liquid interface. Electrochemistry Communications, 2010, 12, 1340-1343.	2.3	67
80	Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochimica Acta, 2010, 55, 5210-5222.	2.6	15
81	Electrode polarization in glassy electrolytes: Large interfacial capacitance values and indication for pseudocapacitive charge storage. Solid State Ionics, 2010, 181, 859-863.	1.3	36
82	Induced-charge electrokinetic phenomena. Current Opinion in Colloid and Interface Science, 2010, 15, 203-213.	3.4	223
83	An SFG/DFG investigation of CNâ^' adsorption at an Au electrode in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid. Electrochemistry Communications, 2010, 12, 56-60.	2.3	35
84	Double layer in ionic liquids: The nature of the camel shape of capacitance. Electrochemistry Communications, 2010, 12, 296-299.	2.3	276
85	Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface — an in-situ IR-visible sum-frequency generation spectroscopic study. Electrochemistry Communications, 2010, 12, 672-675.	2.3	117
86	Mass transportation in diethylmethylammonium trifluoromethanesulfonate for fuel cell applications. Electrochimica Acta, 2010, 55, 6639-6644.	2.6	17
87	Electrolytes in a nanometer slab-confinement: Ion-specific structure and solvation forces. Journal of Chemical Physics, 2010, 133, 164511.	1.2	37
88	Steric effects of ions in the charge-related wetting phenomena. Physical Review E, 2010, 81, 036314.	0.8	23
89	Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?. Physical Review Letters, 2010, 104, 128302.	2.9	44
90	Electrochemical double layers at the interface between glassy electrolytes and platinum: Differentiating between the anode and the cathode capacitance. Physical Review B, 2010, 82, .	1.1	12
91	On the Influence of Ion Excluded Volume (Steric) Effects on the Double-Layer Polarization of a Nonconducting Spherical Particle in an AC Field. Journal of Physical Chemistry C, 2010, 114, 8389-8397.	1.5	16
92	Molecular Dynamic Simulations of Ionic Liquids at Graphite Surface. Journal of Physical Chemistry C, 2010, 114, 990-995.	1.5	161
93	Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes. Journal of the American Chemical Society, 2010, 132, 14825-14833.	6.6	297
94	Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 382-386.	1.2	96
95	Recovery of Bitumen from Utah Tar Sands Using Ionic Liquids. Energy & Fuels, 2010, 24, 5081-5088.	2.5	111

#	Article	IF	CITATIONS
96	Non-mean-field theory of anomalously large double layer capacitance. Physical Review E, 2010, 82, 016107.	0.8	18
97	Electrical Double Layer Properties in Diameter Asymmetric Molten Salt Investigated by Grand Canonical Monte Carlo Method. Journal of Physical Chemistry C, 2010, 114, 13329-13333.	1.5	22
98	Anomalously large capacitance of an ionic liquid described by the restricted primitive model. Physical Review E, 2010, 82, 056102.	0.8	36
99	Potential-Induced Ordering Transition of the Adsorbed Layer at the Ionic Liquid/Electrified Metal Interface. Journal of Physical Chemistry B, 2010, 114, 8453-8459.	1.2	93
100	Hysteresis Effects in the Potential-Dependent Double Layer Capacitance of Room Temperature Ionic Liquids at a Polycrystalline Platinum Interface. Journal of Physical Chemistry C, 2010, 114, 3614-3617.	1.5	104
101	Hydrogenation-Induced Surface Polarity Recognition and Proton Memory Behavior at Protic-Ionic-Liquid/Oxide Electric-Double-Layer Interfaces. Journal of the American Chemical Society, 2010, 132, 6672-6678.	6.6	151
102	Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM]+[EtSO4]â^`. Talanta, 2010, 81, 1045-1055.	2.9	65
103	Electrical Double-Layer Capacitance in Room Temperature Ionic Liquids: Ion-Size and Specific Adsorption Effects. Journal of Physical Chemistry B, 2010, 114, 11149-11154.	1.2	79
104	Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Physical Chemistry Chemical Physics, 2010, 12, 170-182.	1.3	114
105	Differential Capacitance of Room Temperature Ionic Liquids: The Role of Dispersion Forces. Journal of Physical Chemistry Letters, 2010, 1, 1191-1195.	2.1	99
106	Differential capacitance of the double layer at the electrode/ionic liquids interface. Physical Chemistry Chemical Physics, 2010, 12, 12499.	1.3	284
107	Double layer in room temperature ionic liquids: influence of temperature and ionic size on the differential capacitance and electrocapillary curves. Physical Chemistry Chemical Physics, 2010, 12, 11125.	1.3	73
108	Double-Layer Formation of [Bmim][PF ₆] Ionic Liquid Triggered by Surface Negative Charge. Langmuir, 2010, 26, 12667-12672.	1.6	87
109	Electrocapillarity under Ultraslow Relaxation of the Ionic Liquid Double Layer at the Interface between Trioctylmethylammonium Bis(nonafluorobutanesulfonyl)amide and Water. Journal of Physical Chemistry B, 2010, 114, 11141-11148.	1.2	18
110	Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Physical Chemistry Chemical Physics, 2010, 12, 1243-1247.	1.3	269
111	Strongly nonlinear dynamics of electrolytes in large ac voltages. Physical Review E, 2010, 82, 011501.	0.8	115
112	Electrochemical cell for neutron reflectometry studies of the structure of ionic liquids at electrified interface. Review of Scientific Instruments, 2010, 81, 074101.	0.6	23
113	Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010, 12, 1685.	1.3	327

#	Article	IF	CITATIONS
114	NMR Relaxation and Self-Diffusion Study at High and Low Magnetic Fields of Ionic Association in Protic Ionic Liquids. Journal of Physical Chemistry B, 2010, 114, 11436-11443.	1.2	35
115	Electrical Double Layer Capacitance at Bi(111)â^£1-Ethyl-3-methylimidazolium Tetrafluoroborate Interface as a Function of the Electrode Potential. Journal of the Electrochemical Society, 2010, 157, F83.	1.3	31
116	Dynamics of ionic liquid mediated quantised charging of monolayer-protected clusters. Physical Chemistry Chemical Physics, 2010, 12, 5417.	1.3	17
117	An improved version of the Kornyshev-Eigen-Wicke model for the diffuse double layer in concentrated electrolytes. Physical Chemistry Chemical Physics, 2010, 12, 9816.	1.3	9
118	Evaluating Energy Storage Efficiency by Modeling the Voltage and Temperature Dependency in EDLC Electrical Characteristics. IEEE Transactions on Power Electronics, 2010, 25, 1231-1239.	5.4	27
119	Kinetics of Ion Transfer at the Ionic Liquid/Water Nanointerface. Journal of the American Chemical Society, 2010, 132, 16945-16952.	6.6	42
120	Electrostatic interactions in ionic liquids: the dangers of dipole and dielectric descriptions. Physical Chemistry Chemical Physics, 2010, 12, 1922.	1.3	78
121	The interface between Au(100) and 1-butyl-3-methyl-imidazolium-hexafluorophosphate. Physical Chemistry Chemical Physics, 2011, 13, 11627.	1.3	67
122	The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 1152-1161.	1.3	173
123	Determining Nanocapillary Geometry from Electrochemical Impedance Spectroscopy Using a Variable Topology Network Circuit Model. Analytical Chemistry, 2011, 83, 533-541.	3.2	25
124	Graphene Actuators: Quantum-Mechanical and Electrostatic Double-Layer Effects. Journal of the American Chemical Society, 2011, 133, 10858-10863.	6.6	101
125	Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains. Journal of Materials Chemistry, 2011, 21, 13205.	6.7	63
126	Study of micelles and microemulsions formed in a hydrophobic ionic liquid by a dielectric spectroscopy method. I. Interaction and percolation. Soft Matter, 2011, 7, 8828.	1.2	44
127	From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media. Langmuir, 2011, 27, 9105-9115.	1.6	136
128	Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes. Journal of Physical Chemistry C, 2011, 115, 16711-16719.	1.5	238
129	On Capacitive Processes at the Interface between 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111). Journal of Physical Chemistry C, 2011, 115, 6802-6808.	1.5	88
130	Simple Description of the Capacitance of the Double Layer of a High Concentration Electrolyte. Journal of Chemical & Engineering Data, 2011, 56, 1204-1208.	1.0	17
131	Wetting Films of Two Ionic Liquids: [C ₈ mim][BF4] and [C ₂ OHmim][BF ₄]. Journal of Physical Chemistry C, 2011, 115, 16116-16123.	1.5	16

#	Article	IF	CITATIONS
132	Density Functional Study of the Electric Double Layer Formed by a High Density Electrolyte. Journal of Physical Chemistry B, 2011, 115, 12911-12914.	1.2	81
133	Differential Capacitance at Au(111) in 1-Alkyl-3-methylimidazolium Tetrafluoroborate Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2011, 115, 19797-19804.	1.5	71
135	Molecular Simulations of the Electric Double Layer Structure, Differential Capacitance, and Charging Kinetics for <i>N</i> -Methyl- <i>N</i> -propylpyrrolidinium Bis(fluorosulfonyl)imide at Graphite Electrodes. Journal of Physical Chemistry B, 2011, 115, 3073-3084.	1.2	164
136	A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Physical Chemistry Chemical Physics, 2011, 13, 11359.	1.3	249
137	Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics Condensed Matter, 2011, 23, 022201.	0.7	192
138	Electrochemical Oxidation of Hydrogen on Basal Plane Platinum Electrodes in Imidazolium Ionic Liquids. Journal of Physical Chemistry C, 2011, 115, 11147-11155.	1.5	36
139	Electrified Ionic Liquid/Solid Interfaces. Springer Series in Solid-state Sciences, 2011, , 131-160.	0.3	0
140	An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. Physical Chemistry Chemical Physics, 2011. 13. 6849.	1.3	224
141	Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation. Journal of Physical Chemistry C, 2011, 115, 6855-6863.	1.5	336
142	Investigation of Confined Ionic Liquid in Nanostructured Materials by a Combination of SANS, Contrast-Matching SANS, and Nitrogen Adsorption. Langmuir, 2011, 27, 7980-7985.	1.6	32
143	Diffuse-charge dynamics of ionic liquids in electrochemical systems. Physical Review E, 2011, 84, 051504.	0.8	38
144	Oscillation of Capacitance inside Nanopores. Nano Letters, 2011, 11, 5373-5377.	4.5	290
145	Simulation study of capacitance of the electrical double layer of an electrolyte near a highly charged electrode. Molecular Simulation, 2011, 37, 264-268.	0.9	30
146	Influence of electrode polarization on the capacitance of an electric double layer at and around zero surface charge. Molecular Physics, 2011, 109, 21-26.	0.8	40
147	An advanced model framework for solid electrolyte intercalation batteries. Physical Chemistry Chemical Physics, 2011, 13, 12817.	1.3	65
148	On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces. Journal of Physical Chemistry Letters, 2011, 2, 2267-2272.	2.1	152
149	Effects of Pore Size and Pore Loading on the Properties of Ionic Liquids Confined Inside Nanoporous CMK-3 Carbon Materials. Journal of Physical Chemistry C, 2011, 115, 3034-3042.	1.5	62
150	Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size. Journal of Physical Chemistry Letters, 2011, 2, 2859-2864.	2.1	316

ARTICLE IF CITATIONS # Electrical Double Layer Capacitors Based on Two 1-Ethyl-3-Methylimidazolium Ionic Liquids with 151 2.2 52 Different Anions. Electrochemical and Solid-State Letters, 2011, 14, A120. A classical density functional theory for interfacial layering of ionic liquids. Soft Matter, 2011, 7, 1.2 170 11222. Nonlinear capacitance and electrochemical response of ionic liquid-ionic polymers. Journal of Applied 153 19 1.1 Physics, 2011, 109, 084901. Boundary layer charge dynamics in ionic liquid-ionic polymer transducers. Journal of Applied Physics, 154 1.1 <u>2011, 109, 014909.</u> A Classical Density Functional Theory of Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 155 1.2 75 4606-4612. Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations. Journal of Physical Chemistry C, 2011, 115, 16613-16618. 1.5 139 A "counter-charge layer in generalized solvents―framework for electrical double layers in neat and 157 1.3 90 hybrid ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2011, 13, 14723. Self-Consistent Mean-Field Theory for Room-Temperature Ionic Liquids., 2011, , . 158 159 Classical Density Functional Theory of Ionic Liquids., 0,,. 0 Ion adsorption and external electric field effects on isotropic liquids using a Fermi-like distribution. 2.3 Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388, 77-83. Self-assembly in the electrical double layer of ionic liquids. Chemical Communications, 2011, 47, 6572. 161 2.2 245 Locality and Fluctuations: Trends in Imidazolium-Based Ionic Liquids and Beyond. Journal of Chemical 2.3 Theory and Computation, 2011, 7, 3040-3044. Double Layer in Ionic Liquids: Overscreening versus Crowding. Physical Review Letters, 2011, 106, 163 2.9 828 046102. Historical development of theories of the electrochemical double layer. Journal of Solid State 164 1.2 Electrochemistry, 2011, 15, 1317-1334. "Ligandâ€Free―Cluster Quantized Charging in an Ionic Liquid. Angewandte Chemie - International 166 7.2 30 Edition, 2011, 50, 9735-9738. Density functional theory for differential capacitance of planar electric double layers in ionic 1.2 130 liquids. Chemical Physics Letters, 2011, 504, 153-158. The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 168 2.6 186 2011, 56, 5272-5279. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium 2.3 hexafluorophosphate. Electrochemistry Communications, 2011, 13, 284-286.

~				
(ПТ	ΔTIC	JNI I	2 F D	ORT
	$\pi \Pi \Lambda$		VLI -	

#	ARTICLE	IF	CITATIONS
170	Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity. Electrochimica Acta, 2011, 56, 6189-6197.	2.6	78
171	Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Physical Review E, 2011, 84, 012501.	0.8	60
172	Overscreening in a 1D lattice Coulomb gas model of ionic liquids. Europhysics Letters, 2012, 97, 28004.	0.7	22
173	The one-dimensional Coulomb lattice fluid capacitor. Journal of Chemical Physics, 2012, 137, 064901.	1.2	24
174	A close look into the excluded volume effects within a double layer. Journal of Chemical Physics, 2012, 137, 164703.	1.2	39
175	Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations. Physical Review E, 2012, 85, 041406.	0.8	22
176	External electric field dependence of the structure of the electric double layer at an ionic liquid/Au interface. Applied Physics Letters, 2012, 101, 053122.	1.5	66
178	Evidence for enhanced capacitance and restricted motion of an ionic liquid confined in 2 nm diameter Pt mesopores. Physical Chemistry Chemical Physics, 2012, 14, 3872.	1.3	17
179	Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. Journal of Applied Physics, 2012, 111, .	1.1	69
180	Dipolar depletion effect on the differential capacitance of carbon-based materials. Europhysics Letters, 2012, 98, 60003.	0.7	12
181	Investigation of Physically and Chemically Ionic Liquid Confinement in Nanoporous Materials by a Combination of SANS, Contrast-Matching SANS, XRD and Nitrogen Adsorption. Journal of Physics: Conference Series, 2012, 340, 012087.	0.3	7
182	Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 2012, 86, 056303.	0.8	126
183	Influence of nonelectrostatic ion-ion interactions on double-layer capacitance. Physical Review E, 2012, 86, 051502.	0.8	18
184	Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide [C _{<i>n</i>} mim][TFSI] Ionic Liquids at Graphite Electrodes. Journal of Physical Chemistry C, 2012, 116, 7940-7951.	1.5	144
185	Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties. Journal of the Electrochemical Society, 2012, 159, A944-A951.	1.3	85
186	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	7.3	151
187	Probing double layer structures of Au (111)–BMIPF ₆ ionic liquid interfaces from potential-dependent AFM force curves. Chemical Communications, 2012, 48, 582-584.	2.2	114
188	Influence of the ionic liquid/gas surface on ionic liquid chemistry. Physical Chemistry Chemical Physics, 2012, 14, 5071.	1.3	83

#	Article	IF	CITATIONS
189	Slow and fast capacitive process taking place at the ionic liquid/electrode interface. Faraday Discussions, 2012, 154, 303-311.	1.6	84
190	Electrochemical Properties of the Double Layer of an Ionic Liquid Using a Dimer Model Electrolyte and Density Functional Theory. Journal of Physical Chemistry B, 2012, 116, 2520-2525.	1.2	38
191	Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. Journal of Physical Chemistry Letters, 2012, 3, 2465-2469.	2.1	42
192	Observation of Charge Inversion of an Ionic Liquid at the Solid Salt–Liquid Interface by Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 844-847.	2.1	28
193	Influence of the Electrolyte Film Thickness on Charge Dynamics of Ionic Liquids in Ionic Electroactive Devices. Macromolecules, 2012, 45, 2050-2056.	2.2	19
194	Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations. Journal of Physical Chemistry Letters, 2012, 3, 1124-1129.	2.1	62
195	In Situ Molecular Level Measurements of Ion Dynamics in an Electrochemical Capacitor. Journal of Physical Chemistry Letters, 2012, 3, 3297-3301.	2.1	23
196	New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics. Physical Chemistry Chemical Physics, 2012, 14, 5090.	1.3	147
197	Structure of [C ₄ mpyr][NTf ₂] Room-Temperature Ionic Liquid at Charged Gold Interfaces. Langmuir, 2012, 28, 7374-7381.	1.6	104
198	Ionic liquids in confined geometries. Physical Chemistry Chemical Physics, 2012, 14, 5052.	1.3	329
199	Effect of dissolved LiCl on the ionic liquid–Au(111) electrical double layer structure. Chemical Communications, 2012, 48, 10246.	2.2	70
200	An assessment of comparative methods for approaching electrode polarization in dielectric permittivity measurements. Review of Scientific Instruments, 2012, 83, 083118.	0.6	19
201	Alignment of electronic energy levels at electrochemical interfaces. Physical Chemistry Chemical Physics, 2012, 14, 11245.	1.3	233
202	Molecular-scale insights into the mechanisms of ionic liquids interactions with carbon nanotubes. Faraday Discussions, 2012, 154, 235-247.	1.6	70
203	Poisson-Helmholtz-Boltzmann model of the electric double layer: Analysis of monovalent ionic mixtures. Physical Review E, 2012, 85, 031130.	0.8	33
205	Atomic Force Microscopy in Viscous Ionic Liquids. Langmuir, 2012, 28, 5319-5322.	1.6	45
206	Influence of cation chemical composition and structure on the double layer capacitance for Bi(111) room temperature ionic liquid interface. Journal of Electroanalytical Chemistry, 2012, 668, 30-36.	1.9	43
207	In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(111). Electrochimica Acta, 2012, 82, 48-59.	2.6	53

#	Article	IF	CITATIONS
208	A Poisson–Boltzmann description for the double-layer capacitance of an electrolytic cell. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3382-3385.	0.9	5
209	Molecular dynamics simulation of ionic liquids adsorbed onto a solid surface and confined in nanospace. Chemical Modelling, 0, , 186-217.	0.2	5
210	Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. Journal of Chemical Theory and Computation, 2012, 8, 1058-1063.	2.3	125
211	1H-1,2,4-Triazole as solvent for imidazolium methanesulfonate. Physical Chemistry Chemical Physics, 2012, 14, 11441.	1.3	24
212	Monte Carlo Simulation for the Double Layer Structure of an Ionic Liquid Using a Dimer Model: A Comparison with the Density Functional Theory. Journal of Physical Chemistry B, 2012, 116, 10364-10370.	1.2	44
213	Graphene-based supercapacitors in the parallel-plate electrode configuration: Ionic liquidsversus organic electrolytes. Faraday Discussions, 2012, 154, 249-263.	1.6	79
214	Adsorption of Solvent Cations on Au(111) and Au(100) in Alkylimidazolium-Based Ionic Liquids – Worm-Like <i>versus</i> Micelle-Like Structures. Zeitschrift Fur Physikalische Chemie, 2012, 226, 979-994.	1.4	44
215	Structure and Dynamics of an Ionic Liquid Confined Inside a Charged Slit Graphitic Nanopore. Journal of Physical Chemistry C, 2012, 116, 14504-14513.	1.5	63
216	PNP Equations with Steric Effects: A Model of Ion Flow through Channels. Journal of Physical Chemistry B, 2012, 116, 11422-11441.	1.2	146
217	Unusual aspects of ionâ€pairing effects in room temperature ionic liquids. Journal of Physical Organic Chemistry, 2012, 25, 1243-1246.	0.9	8
218	On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11, 306-310.	13.3	861
219	An in Situ STM and DTS Study of the Extremely Pure [EMIM]FAP/Au(111) Interface. ChemPhysChem, 2012, 13, 1736-1742.	1.0	24
220	Effects of Specific Adsorption on the Differential Capacitance of Imidazoliumâ€Based Ionic Liquid Electrolytes. ChemPhysChem, 2012, 13, 1671-1676.	1.0	55
221	Electrode screening by ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 2693.	1.3	122
222	Clusters in a mixture of an "amphiphilic―ionic liquid and a nonionic liquid: Theoretical study. Journal of Chemical Physics, 2012, 136, 014504.	1.2	7
223	Ionizable side chains at catalytic active sites of enzymes. European Biophysics Journal, 2012, 41, 449-460.	1.2	25
224	Electrochemistry of organometallic lyotropic chromonic liquid crystals. Electrochemistry Communications, 2012, 19, 50-54.	2.3	10
225	Ion-cell model for electric double layers composed of rigid ions. Electrochimica Acta, 2012, 67, 216-223.	2.6	9

#	Article	IF	CITATIONS
226	Comments on "Intrinsic limitations of impedance measurements in determining electric double layer capacitances―by H. Wang and L. Pilon [Electrochim. Acta 63 (2012) 55]. Electrochimica Acta, 2012, 76, 526-528.	2.6	10
227	Reply to comments on "Intrinsic limitations of impedance measurements in determining electric double layer capacitances―by H. Wang, L. Pilon [Electrochimica Acta 63 (2012) 55]. Electrochimica Acta, 2012, 76, 529-531.	2.6	35
228	Electric Double Layer at the Interface of Ionic Liquid–Dielectric Liquid under Electric Field. Langmuir, 2013, 29, 1875-1884.	1.6	15
229	A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces. Physical Chemistry Chemical Physics, 2013, 15, 14234.	1.3	93
230	Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 2013, 15, 15781.	1.3	148
231	Influence of anisotropic ion shape on structure and capacitance of an electric double layer: A Monte Carlo and density functional study. Journal of Chemical Physics, 2013, 139, 054703.	1.2	28
232	Modeling and simulation of electrostatically gated nanochannels. Advances in Colloid and Interface Science, 2013, 199-200, 78-94.	7.0	42
233	Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 2829-2837.	2.1	111
234	Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model. Journal of Physical Chemistry C, 2013, 117, 18286-18297.	1.5	90
235	Dynamic and Structural Properties of Room-Temperature Ionic Liquids near Silica and Carbon Surfaces. Langmuir, 2013, 29, 9744-9749.	1.6	59
236	Charge Fluctuations in Nanoscale Capacitors. Physical Review Letters, 2013, 111, 106102.	2.9	129
237	Comparative Impedance Study of Cd(0001) Electrode in EMImBF ₄ and KI Aqueous Solution at Different Temperatures. Journal of the Electrochemical Society, 2013, 160, H368-H375.	1.3	18
238	Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores. Journal of Chemical Physics, 2013, 139, 105101.	1.2	3
239	Hysteresis of Potential-Dependent Changes in Ion Density and Structure of an Ionic Liquid on a Gold Electrode: In Situ Observation by Surface-Enhanced Infrared Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3110-3114.	2.1	121
240	Correlated Ions in a Calcium Channel Model: A Poisson–Fermi Theory. Journal of Physical Chemistry B, 2013, 117, 12051-12058.	1.2	40
241	Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 3367-3376.	2.1	125
242	Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)–ionic liquid interface as a function of potential. Physical Chemistry Chemical Physics, 2013, 15, 14624.	1.3	163
243	The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 17287.	1.3	96

#	Article	IF	CITATIONS
244	Hysteresis Effects in the In Situ SFG and Differential Capacitance Measurements on Metal Electrode/Ionic Liquids Interface. ECS Transactions, 2013, 50, 339-348.	0.3	28
245	Solidification of the charged hard-sphere fluid. Molecular Simulation, 2013, 39, 837-841.	0.9	1
246	Anisometric charge dependent swelling of porous carbon in an ionic liquid. Electrochemistry Communications, 2013, 34, 196-199.	2.3	59
247	Electrode polarization in dielectric measurements: a review. Measurement Science and Technology, 2013, 24, 102001.	1.4	280
248	Convective mass transport in ionic liquids studied by electrochemical and electrohydrodynamic impedance spectroscopy. Electrochimica Acta, 2013, 93, 32-43.	2.6	9
249	In Situ XPS Studies of Electrochemically Negatively Polarized Molybdenum Carbide Derived Carbon Double Layer Capacitor Electrode. Journal of the Electrochemical Society, 2013, 160, A1084-A1093.	1.3	25
250	Influence of temperature on the electrochemical characteristics of Bi(111) ionic liquid interface. Journal of Electroanalytical Chemistry, 2013, 689, 51-56.	1.9	26
251	Numerical methods for the Poisson–Fermi equation in electrolytes. Journal of Computational Physics, 2013, 247, 88-99.	1.9	27
252	In Situ Spectroscopic Measurements of Individual Cation and Anion Dynamics in a RuO ₂ Electrochemical Capacitor. Journal of the Electrochemical Society, 2013, 160, A862-A868.	1.3	6
253	Charge–discharge behavior of graphite negative electrodes in bis(fluorosulfonyl)imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces. Electrochimica Acta, 2013, 110, 181-190.	2.6	62
254	Anomalous fluctuations in current transient at glassy carbon room temperature ionic liquid interface. Electrochimica Acta, 2013, 105, 593-598.	2.6	2
256	Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences. Electrochimica Acta, 2013, 92, 304-314.	2.6	76
257	Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 378-382.	2.1	145
258	On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores. Journal of Physical Chemistry Letters, 2013, 4, 132-140.	2.1	107
259	lonic interactions in biological and physical systems: a variational treatment. Faraday Discussions, 2013, 160, 279-296.	1.6	14
260	Adsorbed and near surface structure of ionic liquids at a solid interface. Physical Chemistry Chemical Physics, 2013, 15, 3320.	1.3	114
261	A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF ₆] Ionic Liquid. Journal of the Electrochemical Society, 2013, 160, A1-A10.	1.3	229
262	Electric Double Layer of Au(100)/Imidazolium-Based Ionic Liquids Interface: Effect of Cation Size. Journal of Physical Chemistry C, 2013, 117, 205-212.	1.5	63

		CITATION REPORT		
#	Article		IF	Citations
263	Charging properties of gold clusters in different environments. Physical Review B, 2013	, 87, .	1.1	7
264	Dynamic Electrowetting and Dewetting of Ionic Liquids at a Hydrophobic Solid–Liquid Langmuir, 2013, 29, 2631-2639.	d Interface.	1.6	47
265	The tail effect on the shape of an electrical double layer differential capacitance curve. J Chemical Physics, 2013, 138, 144704.	ournal of	1.2	30
266	Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in E Double-Layer Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1260-1267.	lectric	2.1	113
267	On the interfacial capacitance of an electrolyte at a metallic electrode around zero surf Molecular Physics, 2013, 111, 807-815.	ace charge.	0.8	14
268	Electrokinetics: insights from simulation on the microscopic scale. Molecular Physics, 2 827-842.	013, 111,	0.8	50
269	Preparation and characterization of high surface area, high porosity carbon monoliths f pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon, 20		5.4	90
270	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.		7.1	275
271	Influence of solvation on the structural and capacitive properties of electrical double lay capacitors. Electrochimica Acta, 2013, 101, 262-271.	ver	2.6	96
272	Electrical double layer in ionic liquids: Structural transitions from multilayer to monolay structure at the interface. Electrochimica Acta, 2013, 110, 762-771.	er	2.6	110
273	Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent or Temperature. Journal of Physical Chemistry C, 2013, 117, 9178-9186.	f Voltage and	1.5	69
274	Electric double layer studies at the interface of mercury–binary ionic liquid mixtures v anion. RSC Advances, 2013, 3, 11697.	vith a common	1.7	25
275	Impedance characteristics and electrical double-layer capacitance of composite polystyrene–cobalt–arsenate membrane. Journal of Industrial and Engineering Che 256-262.	mistry, 2013, 19,	2.9	34
276	Double Layer at [BuMeIm][Tf ₂ N] Ionic Liquid–Pt or â^'C Material Interfa Physical Chemistry C, 2013, 117, 22915-22925.	ces. Journal of	1.5	43
277	Tunable soft structure in charged fluids confined by dielectric interfaces. Proceedings o National Academy of Sciences of the United States of America, 2013, 110, 5301-5308.		3.3	63
278	Lattice-gas Poisson-Boltzmann approach for sterically asymmetric electrolytes. Physical 2013, 88, 022302.	Review E,	0.8	24
279	Influence of the electrode potential and in situ STM scanning conditions on the phase b structure of the single crystal Bi(1 1 1) 1-butyl-4-methylpyridinium tetrafluoroborate in Journal of Electroanalytical Chemistry, 2013, 709, 46-56.		1.9	22
280	Influence of Solvent on Ion Aggregation and Transport in PY ₁₅ TFSI Ionic L Solvent Mixtures. Journal of Physical Chemistry B, 2013, 117, 10581-10588.	iquid–Aprotic	1.2	35

	CITATION REPORT	
Article	IF	Citations
Heterogeneous electron-transfer rate constants for ferrocene and ferrocene carboxylic acid at boron-doped diamond electrodes in a room temperature ionic liquid. Electrochimica Acta, 2013, 9 49-56.	4, 2.6	34
Al electrodeposition from chloroaluminate ionic liquid. Canadian Metallurgical Quarterly, 2013, 52 398-404.	2, 0.4	4
A proposed voltage dependence of the ionic strength of a confined electrolyte based on a grand canonical ensemble model. Journal of Physics Condensed Matter, 2013, 25, 095006.	0.7	3
Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond. Journal c Chemical Physics, 2013, 139, 150901.	of 1.2	145
Molecular dynamics simulation of the electrical double layer in ionic liquids. Journal of Physics: Conference Series, 2013, 418, 012021.	0.3	20
Role of Van der Waals Interaction on Selective Ion Adsorption in Liquid Crystals. Molecular Crystal and Liquid Crystals, 2013, 576, 118-126.	ls 0.4	Ο
Nanocarbon based ionic actuators—a review. Smart Materials and Structures, 2013, 22, 104022	2. 1.8	108
Ionic liquids behave as dilute electrolyte solutions. Proceedings of the National Academy of Science of the United States of America, 2013, 110, 9674-9679.	ces 3.3	345
Model-free test of local-density mean-field behavior in electric double layers. Physical Review E, 20 88, 011301.	13, 0.8	10
Impact of Lithium Salt Addition to Ionic Liquid Electrolytes for High-performance Electric Double-layer Capacitors. Electrochemistry, 2013, 81, 857-862.	0.6	7
The Structure of Supported Ionic Liquids at the Interface. , 0, , .		1
Continuous electrowetting at the low concentration electrolyte-insulator-semiconductor junction Applied Physics Letters, 2014, 105, 231604.	. 1.5	4
Properties and Green Aspects of Ionic Liquids. , 2014, , 1-93.		4
Boosting Capacitive Blue-Energy and Desalination Devices with Waste Heat. Physical Review Lette 2014, 113, 268501.	ers, 2.9	61
Effect of Alkali and Alkaline Earth Metal Salts on Suppression of Lithium Dendrites. Journal of the Electrochemical Society, 2014, 161, D418-D424.	1.3	42
A Gibbs-ensemble based technique for Monte Carlo simulation of electric double layer capacitors (EDLC) at constant voltage. Journal of Chemical Physics, 2014, 140, 174110.	1.2	12
Size asymmetric hard spheres as a convenient model for the capacitance of the electrical double la of an ionic liquid. Journal of Chemical Physics, 2014, 140, 014704.	ayer 1.2	26

299Electrical double layers and differential capacitance in molten salts from density functional theory.1.229Journal of Chemical Physics, 2014, 141, 054708.1.229

#

		ATION REPORT	
#	Article	IF	CITATIONS
300	In Situ XPS Studies of Electrochemically Positively Polarized Molybdenum Carbide Derived Carbon Double Layer Capacitor Electrode. Journal of the Electrochemical Society, 2014, 161, A1266-A1277.	1.3	16
301	Analytical models of calcium binding in a calcium channel. Journal of Chemical Physics, 2014, 141, 075102.	1.2	19
302	Molecular dynamics simulation of ionic transport at coherent interfaces in fluorite heterostructures. Physical Review B, 2014, 89, .	1.1	4
303	Ionic Liquids, Structures. , 2014, , 1121-1125.		0
304	Ionic Mobility and Diffusivity. , 2014, , 1125-1130.		3
305	Ionic Liquids for Supercapacitors. , 2014, , 1112-1116.		168
306	Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. Journal of Molecular Liquids, 2014, 192, 44-54.	2.3	133
307	A universal equivalent circuit for carbon-based supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 1377-1387.	1.2	128
308	lons and water molecules in an electrolyte solution in contact with charged and dipolar surfaces. Electrochimica Acta, 2014, 126, 42-60.	2.6	79
309	Ionic Liquids at Electrified Interfaces. Chemical Reviews, 2014, 114, 2978-3036.	23.0	1,101
310	Classical density functional theory & simulations on a coarse-grained model of aromatic ionic liquids. Soft Matter, 2014, 10, 3229.	1.2	17
311	Graphitization as a Universal Tool to Tailor the Potentialâ€Dependent Capacitance of Carbon Supercapacitors. Advanced Energy Materials, 2014, 4, 1400316.	10.2	201
312	Influence of Analysis Method on the Experimentally Observed Capacitance at the Gold-Ionic Liquid Interface. Journal of the Electrochemical Society, 2014, 161, H260-H263.	1.3	18
313	Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes. Journal of Materials Chemistry A, 2014, 2, 792-803.	5.2	21
314	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.	1.5	111
315	Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation. Chemistry of Materials, 2014, 26, 1144-1153.	3.2	55
316	Water in Ionic Liquids at Electrified Interfaces: The Anatomy of Electrosorption. ACS Nano, 2014, 8, 11685-11694.	7.3	146
317	The electrical double layer at the ionic liquid/Au and Pt electrode interface. RSC Advances, 2014, 4, 28914-28921.	1.7	39

#	Article	IF	CITATIONS
318	Interfacial structure and orientation of confined ionic liquids on charged quartz surfaces. Physical Chemistry Chemical Physics, 2014, 16, 23329-23339.	1.3	44
319	Unraveling the photoelectrochemical properties of ionic liquids: cognizance of partially reversible redox activity. Physical Chemistry Chemical Physics, 2014, 16, 22735-22744.	1.3	9
320	Diffusion of tetrathiafulvalene and its radical cation in ionic liquids in comparison to conventional solvents. Electrochimica Acta, 2014, 141, 72-81.	2.6	9
321	Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces. Physical Chemistry Chemical Physics, 2014, 16, 5174.	1.3	59
322	Molecular dynamics simulations of the structure of the graphene–ionic liquid/alkali salt mixtures interface. Physical Chemistry Chemical Physics, 2014, 16, 13271-13278.	1.3	58
323	Structure of tetraalkylammonium ionic liquids in the interlayer of modified montmorillonite. Journal of Physics Condensed Matter, 2014, 26, 284107.	0.7	6
324	Self-Assembly of Azobenzene Bilayer Membranes in Binary Ionic Liquid–Water Nanostructured Media. Langmuir, 2014, 30, 2376-2384.	1.6	13
325	Effect of dissolved LiCl on the ionic liquid–Au(111) interface: an <i>in situ</i> STM study. Journal of Physics Condensed Matter, 2014, 26, 284111.	0.7	16
326	Resolving Fine Structures of the Electric Double Layer of Electrochemical Interfaces in Ionic Liquids with an AFM Tip Modification Strategy. Journal of the American Chemical Society, 2014, 136, 14682-14685.	6.6	71
327	Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions. Physical Review B, 2014, 90, .	1.1	17
328	Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 2836.	1.3	29
329	Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. Journal of Physics Condensed Matter, 2014, 26, 284106.	0.7	32
330	An unusual non-Tafel dependence for electron transfer reactions in ionic liquids at large electrode polarisations: Fiction or reality?. Electrochemistry Communications, 2014, 48, 173-177.	2.3	7
331	Measurements of the potential of zero charge in room temperature ionic liquids at Ag electrode by surface-enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2014, 728, 10-17.	1.9	24
332	Classical Density Functional Study on Interfacial Structure and Differential Capacitance of Ionic Liquids near Charged Surfaces. Journal of Physical Chemistry C, 2014, 118, 15825-15834.	1.5	33
333	Mechanism for the large conductance modulation in electrolyte-gated thin gold films. Physical Review B, 2014, 90, .	1.1	34
334	Molecular Insights into the Electric Double Layers of Ionic Liquids on Au(100) Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 12556-12565.	4.0	47
335	Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects. Journal of Physics Condensed Matter, 2014, 26, 284108.	0.7	25

ARTICLE IF CITATIONS Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge 336 0.7 17 localization. Journal of Physics Condensed Matter, 2014, 26, 284114. The Electric Double Layer Has a Life of Its Own. Journal of Physical Chemistry C, 2014, 118, 18291-18298. 1.5 195 The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined 338 room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation. Carbon, 5.4 24 2014, 78, 415-427. The material combining conducting polymer and ionic liquid: Hydrogen bonding interactions between 340 34 polyaniline and imidazolium salt. Synthétic Metals, 2014, 197, 168-174. Temperature Effects on the Capacitance of an Imidazoliumâ€based Ionic Liquid on a Graphite Electrode: A 341 1.0 35 Molecular Dynamics Simulation. ChemPhysChem, 2014, 15, 2503-2509. Differential capacitance of ionic liquid interface with graphite: the story of two double layers. Journal of Solid State Electrochemistry, 2014, 18, 1345-1349. 1.2 Theory for Anomalous Electric Double-Layer Dynamics in Ionic Liquids. Journal of Physical Chemistry 344 1.5 25 C, 2014, 118, 8766-8774. Screening of Ionâ€"Graphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure. 345 1.5 54 Journal of Physical Chemistry C, 2014, 118, 5841-5847. Unifying Solution and Surface Electrochemistry: Limitations and Opportunities in Surface 346 1.3 35 Electrocatalysis. Topics in Catalysis, 2014, 57, 215-221. A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near 347 charged electrodes. Electrochimica Acta, 2014, 145, 40-52. Spatial Structure of Electrical Diffuse Layers in Highly Concentrated Electrolytes: A Modified 348 1.5 32 Poisson–Nernst–Planck Approach. Journal of Physical Chemistry C, 2014, 118, 5716-5724. The Role of Adsorbed Ions during Electrocatalysis in Ionic Liquids. Journal of Physical Chemistry C, 349 1.5 2014, 118, 7414-7422. A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical 350 1.3 216 Physics, 2014, 16, 6519. Self-Organized Hexagonal Nanostructures on Nickel and Steel Formed by Anodization in 1-Butyl-3-methylimidazolium bis(triflate)imide Ionic Liquid. Journal of Physical Chemistry C, 2014, 118, 1.5 21293-21298. Interfaces of ionic liquids. Journal of Physics Condensed Matter, 2014, 26, 280301. 352 9 0.7 A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. Journal of 49 Physics Condensed Matter, 2014, 26, 284103. Dicationic Ionic Liquid: Insight in the Electrical Double Layer Structure at mercury, glassy carbon and 354 2.6 15 gold surfaces. Electrochimica Acta, 2014, 116, 306-313. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions. Journal of Physics Condensed Matter, 2014, 26, 284109.

ARTICLE IF CITATIONS Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified 356 1.4 45 electrode in BMImBF₄. New Journal of Chemistry, 2014, 38, 3606-3612. Comparing the differential capacitance of two ionic liquid electrolytes: Effects of specific 2.3 adsorption. Electrochemistry Communications, 2014, 38, 44-46. Monte Carlo study of molten salt with charge asymmetry near the electrode surface. Journal of 358 1.2 10 Chemical Physics, 2014, 140, 054703. Examination of the Gouy–Chapman theory for double layer capacitance in deionized latex suspensions. RSC Advances, 2014, 4, 63171-63181. Voidâ€Assisted Ionâ€Paired Proton Transfer at Water–Ionic Liquid Interfaces. Angewandte Chemie, 2015, 360 1.6 1 127, 15116-15119. Voidâ€Assisted Ionâ€Paired Proton Transfer at Water–Ionic Liquid Interfaces. Angewandte Chemie -International Edition, 2015, 54, 14903-14906. 362 Structure and Dynamics at Ionic Liquid/Electrode Interfaces. ECS Transactions, 2015, 66, 35-42. 0.3 15 Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model. 0.8 Physical Review E, 2015, 92, 063020. lonic structure in liquids confined by dielectric interfaces. Journal of Chemical Physics, 2015, 143, 365 1.2 50 194508. Finite electric boundary-layer solutions of a generalized Poisson–Boltzmann equation. Proceedings 1.0 of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150024. Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 2015, 115, 6357-6426. 368 23.0 1.793 Electrochemical Applications of Frequency Modulation Atomic Force Microscopy. Nanoscience and 1.5 Technology, 2015, , 461-479. Monte Carlo investigation of structure of an electric double layer formed by a valency asymmetric 370 0.8 9 mixture of charged dimers and charged hard spheres. Molecular Physics, 2015, 113, 1043-1052. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging. Journal of Chemical Physics, 2015, 142, 064707. 371 1.2 38 Nanostructure of the Ionic Liquid–Graphite Stern Layer. ACS Nano, 2015, 9, 7608-7620. 372 7.3 156 A simple model for charge storage in a nanotube. Electrochimica Acta, 2015, 173, 91-95. Molecular aspects of the Eu³⁺/Eu²⁺ redox reaction at the interface between a 374 0.8 12 molten salt and a metallic electrode. Molecular Physics, 2015, 113, 2451-2462. Long-range electrostatic screening in ionic liquids. Proceedings of the National Academy of Sciences 3.3 214 of the United States of America, 2015, 112, 7432-7437.

#	Article	IF	Citations
376	Potential dependent structure of an ionic liquid at ionic liquid/water interface probed by x-ray reflectivity measurements. Journal of Electroanalytical Chemistry, 2015, 759, 129-136.	1.9	32
377	Dynamics of Ion Transport in Ionic Liquids. Physical Review Letters, 2015, 115, 106101.	2.9	54
378	Electrocapillarity and zero-frequency differential capacitance at the interface between mercury and ionic liquids measured using the pendant drop method. Physical Chemistry Chemical Physics, 2015, 17, 5219-5226.	1.3	24
379	Influence of Electrode Roughness on Double Layer Formation in Ionic Liquids. Journal of Physical Chemistry C, 2015, 119, 4620-4626.	1.5	33
380	Restructuring of the electrical double layer in ionic liquids upon charging. Journal of Physics Condensed Matter, 2015, 27, 102101.	0.7	37
381	Assessment of ζ-potential in TiO2 aqueous suspensions: A comparative study based on thermodynamic and rheological methods. Ceramics International, 2015, 41, 5331-5340.	2.3	6
382	Density functional theory study of the capacitance of single file ions in a narrow cylinder. Journal of Colloid and Interface Science, 2015, 449, 130-135.	5.0	25
383	Electro-Brush Plating from Deep Eutectic Solvent: A Case of Nanocrystalline Ni Coatings with Superior Mechanical Property and Corrosion Resistance. Journal of the Electrochemical Society, 2015, 162, D159-D165.	1.3	14
384	Contrasted electrochemical behaviour of Cu(I) and Cu(II) ions in 1-butyl-3-methylimidazolium dicyanamide. Electrochimica Acta, 2015, 162, 156-162.	2.6	16
385	Simulations of room temperature ionic liquids: from polarizable to coarse-grained force fields. Physical Chemistry Chemical Physics, 2015, 17, 14270-14279.	1.3	145
386	Structure of an electric double layer containing a 2:2 valency dimer electrolyte. Journal of Colloid and Interface Science, 2015, 449, 175-179.	5.0	11
387	Dissecting graphene capacitance in electrochemical cell. Electrochimica Acta, 2015, 163, 296-302.	2.6	18
388	Electro-optical phenomena based on ionic liquids in an optofluidic waveguide. Lab on A Chip, 2015, 15, 1311-1319.	3.1	12
389	Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of the Electrochemical Society, 2015, 162, A5158-A5178.	1.3	105
390	High voltage supercapacitors based on carbon-grafted NiO nanowires interfaced with an aprotic ionic liquid. Chemical Communications, 2015, 51, 6092-6095.	2.2	19
391	Solid-liquid interfaces of ionic liquid solutions—Interfacial layering and bulk correlations. Journal of Chemical Physics, 2015, 142, 164707.	1.2	56
392	Topological defects in electric double layers of ionic liquids at carbon interfaces. Nano Energy, 2015, 15, 737-745.	8.2	35
393	In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Physical Chemistry Chemical Physics, 2015, 17, 12870-12880.	1.3	82

#	Article	IF	CITATIONS
394	Two-Dimensional Ordering of Ionic Liquids Confined by Layered Silicate Plates via Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2015, 119, 19244-19252.	1.5	27
395	Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. Journal of Chemical Physics, 2015, 142, 194703.	1.2	224
396	Insight on the effect of surface modification by carbon materials on the Ionic Liquid Electric Double Layer Charge Storage properties. Electrochimica Acta, 2015, 176, 880-886.	2.6	8
397	Electrocatalysis in Room Temperature Ionic Liquids. , 2015, , 483-506.		3
398	Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. ACS Nano, 2015, 9, 5999-6017.	7.3	108
399	Structure and Dynamics of Ionic Liquids Confined in Amorphous Porous Chalcogenides. Langmuir, 2015, 31, 6742-6751.	1.6	32
400	Dipolar Self-Consistent Field Theory for Ionic Liquids: Effects of Dielectric Inhomogeneity in Ionic Liquids between Charged Plates. Journal of Physical Chemistry C, 2015, 119, 7086-7094.	1.5	11
401	Potentialâ€Dependent Adlayer Structure and Dynamics at the Ionic Liquid/Au(111) Interface: A Molecularâ€Scale In Situ Videoâ€STM Study. Angewandte Chemie - International Edition, 2015, 54, 6062-6066.	7.2	118
402	Study of the interface Pt(111)/ [Emmim][NTf2] using laser-induced temperature jump experiments. Electrochemistry Communications, 2015, 55, 39-42.	2.3	27
403	Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination. Journal of Physics Condensed Matter, 2015, 27, 194129.	0.7	39
404	Charge Storage on Ionic Liquid Electric Double Layer: The Role of the Electrode Material. Electrochimica Acta, 2015, 167, 421-428.	2.6	37
405	Electric Double-Layer Structure in Primitive Model Electrolytes: Comparing Molecular Dynamics with Local-Density Approximations. Langmuir, 2015, 31, 3553-3562.	1.6	55
406	Impedance Analysis of Inherently Redoxâ€Active Ionicâ€Liquidâ€Based Photoelectrochemical Cells: Chargeâ€Transfer Mechanism in the Presence of an Additional Redox Couple. ChemPhysChem, 2015, 16, 1750-1756.	1.0	6
408	Electrochemical double layer near polar reduced graphene oxide electrode: Insights from molecular dynamic study. Electrochimica Acta, 2015, 166, 142-149.	2.6	51
409	Effects of the Dielectric Response of Single-Component Liquids and Liquid Mixtures on Electrochemical Properties between Charged Plates. Journal of Physical Chemistry C, 2015, 119, 24714-24723.	1.5	12
410	Enhancing Faradaic Charge Storage Contribution in Hybrid Pseudocapacitors. Electrochimica Acta, 2015, 182, 639-651.	2.6	29
411	Asymmetric size of ions and orientational ordering of water dipoles in electric double layer model - an analytical mean-field approach. Electrochimica Acta, 2015, 178, 541-545.	2.6	65
412	Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement. Journal of Chemical Physics, 2015, 142, 044706.	1.2	92

#	Article	IF	CITATIONS
413	Structural View of Hydrophobic Ionic Liquid on Graphene: Comparing Static and Ab Initio Computer Simulations. ECS Journal of Solid State Science and Technology, 2015, 4, M77-M87.	0.9	3
414	Structure of Quaternary Ammonium Ionic Liquids at Interfaces: Effects of Cation Tail Modification with Isoelectronic Groups. Journal of Physical Chemistry C, 2015, 119, 23955-23967.	1.5	24
415	Rapid Preparation of Room Temperature Ionic Liquids with Low Water Content as Characterized with a t <i>a-</i> C:N Electrode. Journal of the Electrochemical Society, 2015, 162, H507-H511.	1.3	19
416	A modified Poisson-Boltzmann theory: Effects of co-solvent polarizability. Europhysics Letters, 2015, 111, 28002.	0.7	43
417	Capacitive Energy Storage: Current and Future Challenges. Journal of Physical Chemistry Letters, 2015, 6, 3594-3609.	2.1	99
418	An Ion Gel as a Low-Cost, Spin-Coatable, High-Capacitance Dielectric for Electrowetting-on-Dielectric (EWOD). Langmuir, 2015, 31, 8512-8518.	1.6	67
419	Weighing the surface charge of an ionic liquid. Nanoscale, 2015, 7, 16039-16045.	2.8	28
420	Effects of anion on the electric double layer of imidazolium-based ionic liquids on graphite electrode by molecular dynamics simulation. Electrochimica Acta, 2015, 184, 164-170.	2.6	40
421	Molecular Response of 1-Butyl-3-Methylimidazolium Dicyanamide Ionic Liquid at the Graphene Electrode Interface Investigated by Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2015, 119, 26009-26019.	1.5	44
422	Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. Nanotechnology, 2015, 26, 464001.	1.3	35
423	Structural Transitions at Ionic Liquid Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 4978-4985.	2.1	81
424	Ionic liquids at charged surfaces: Insight from molecular simulations. Journal of Non-Crystalline Solids, 2015, 407, 339-348.	1.5	41
425	Effects of repulsive interaction on the electric double layer of an imidazolium-based ionic liquid by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2015, 17, 2628-2633.	1.3	15
426	Asymmetric electrostatic properties of an electric double layer: a generalized Poisson-Boltzmann approach taking into account non-uniform size effects and water polarization. Electrochimica Acta, 2015, 153, 531-539.	2.6	29
427	Ion transport and softening in a polymerized ionic liquid. Nanoscale, 2015, 7, 947-955.	2.8	18
428	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	1.3	61
429	The interface between Au(100) and 1-butyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide. Journal of Electroanalytical Chemistry, 2015, 737, 218-225.	1.9	34
431	Critical Influence of 5â€Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. Angewandte Chemie, 2016, 128, 8478-8482.	1.6	49

#	Article	IF	CITATIONS
432	Direct Observation of Selfâ€Organized Waterâ€Containing Structures in the Liquid Phase and Their Influence on 5â€(Hydroxymethyl)furfural Formation in Ionic Liquids. Angewandte Chemie, 2016, 128, 2201-2206.	1.6	8
433	Ion–Image Interactions and Phase Transition at Electrolyte–Metal Interfaces. Journal of Physical Chemistry Letters, 2016, 7, 2753-2757.	2.1	26
434	Critical Influence of 5â€Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis. Angewandte Chemie - International Edition, 2016, 55, 8338-8342.	7.2	160
435	Direct Observation of Selfâ€Organized Waterâ€Containing Structures in the Liquid Phase and Their Influence on 5â€(Hydroxymethyl)furfural Formation in Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 2161-2166.	7.2	82
436	The Electric Double Layer in an Ionic Liquid Incorporated with Water Molecules: Atomic Force Microscopy Force Curve Study. ChemElectroChem, 2016, 3, 2221-2226.	1.7	48
437	A Numerical Strategy for Nernst–Planck Systems with Solvation Effect. Fuel Cells, 2016, 16, 704-714.	1.5	9
438	On the structure of generalized Poisson–Boltzmann equations. European Journal of Applied Mathematics, 2016, 27, 667-685.	1.4	14
439	Fifty years of liquid state physics. Journal of Physics Condensed Matter, 2016, 28, 410301.	0.7	1
440	Investigation of Dielectric Decrement and Correlation Effects on Electric Double-Layer Capacitance by Self-Consistent Field Model. Communications in Computational Physics, 2016, 20, 441-458.	0.7	13
441	Electrochemical and structural properties of the electrical double layer of two-component electrolytes in response to varied electrode potential. Journal of Chemical Physics, 2016, 144, 134701.	1.2	9
442	Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides. Russian Metallurgy (Metally), 2016, 2016, 691-697.	0.1	8
443	Electrochemical Investigation of 1-Ethyl-3-methylimidazolium Bromide and Tetrafluoroborate Mixture at Bi(111) Electrode Interface. Journal of the Electrochemical Society, 2016, 163, H723-H730.	1.3	26
444	On the theory of electric double layer with explicit account of a polarizable co-solvent. Journal of Chemical Physics, 2016, 144, 184703.	1.2	37
445	Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions. Journal of Chemical Physics, 2016, 145, 124503.	1.2	34
446	New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016, 138, 5731-5744.	6.6	529
447	Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure. ACS Applied Materials & amp; Interfaces, 2016, 8, 14879-14884.	4.0	25
448	A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes. Faraday Discussions, 2016, 193, 251-263.	1.6	15
449	Effect of orientational ordering of water dipoles on stratification of counterions of different size in multicomponent electrolyte solution near charged surface - a mean field approach. Electrochimica Acta, 2016, 207, 237-246.	2.6	9

#	Article	IF	CITATIONS
450	Influence of Surface Oxidation on Ion Dynamics and Capacitance in Porous and Nonporous Carbon Electrodes. Journal of Physical Chemistry C, 2016, 120, 8730-8741.	1.5	40
451	The influence of excluded volume and excess ion polarisability on the capacitance of the electric double layer. Molecular Physics, 2016, 114, 2477-2491.	0.8	19
452	A Generic Model for Electric Double Layers in Porous Electrodes. Journal of Physical Chemistry C, 2016, 120, 8704-8710.	1.5	73
453	Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. ACS Energy Letters, 2016, 1, 21-26.	8.8	146
454	Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory. Journal of Physics Condensed Matter, 2016, 28, 244007.	0.7	15
455	Diffuse electric double layer in planar nanostructures due to Fermi-Dirac statistics. Electrochimica Acta, 2016, 204, 154-159.	2.6	16
456	Potential-dependent condensation of Water at the Interface between ionic liquid [BMIM][TFSA] and an Au electrode. Electrochemistry Communications, 2016, 65, 14-17.	2.3	62
457	A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. Journal of Physics Condensed Matter, 2016, 28, 464002.	0.7	30
458	Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement. Journal of Physics Condensed Matter, 2016, 28, 464007.	0.7	18
459	Role of ion hydration for the differential capacitance of an electric double layer. Physical Chemistry Chemical Physics, 2016, 18, 27796-27807.	1.3	28
460	Spectroscopy study of ionic liquid restructuring at lead interface. Journal of Electroanalytical Chemistry, 2016, 778, 41-48.	1.9	9
461	Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives. Journal of Physical Chemistry C, 2016, 120, 24041-24047.	1.5	37
462	Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016, 1, .	19.8	1,655
463	Electric double layer in molten salts: Toward a more realistic model. Electrochimica Acta, 2016, 213, 574-577.	2.6	6
464	Dielectric Properties of Ionic Liquids at Metal Interfaces: Electrode Polarization, Characteristic Frequencies, Scaling Laws. Advances in Dielectrics, 2016, , 193-212.	1.2	1
465	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
466	Theoretical method for simulation of potential swing and double layer capacitance in electrolytes containing different cations. Materials Chemistry and Physics, 2016, 182, 1-5.	2.0	3
467	Electrochemical Double Layers in Ionic Liquids Investigated by Broadband Impedance Spectroscopy and Other Complementary Experimental Techniques. Advances in Dielectrics, 2016, , 157-192.	1.2	0

#	Article	IF	CITATIONS
468	Influence of asymmetric depletion of solvents on the electric double layer of charged objects in binary polar solvent mixtures. Physical Chemistry Chemical Physics, 2016, 18, 26509-26518.	1.3	6
469	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
470	lon size effects on the osmotic pressure and electrocapillarity in a nanoslit: Symmetric and asymmetric ion sizes. Physical Review E, 2016, 93, 063112.	0.8	13
471	Mathematical Modelling and Simulation of Supercapacitors. Nanostructure Science and Technology, 2016, , 515-562.	0.1	3
472	Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode. ACS Applied Materials & Interfaces, 2016, 8, 28325-28337.	4.0	44
473	In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes. Scientific Reports, 2016, 6, 36153.	1.6	65
474	Control of Selective Ion Transfer across Liquid–Liquid Interfaces: A Rectifying Heterojunction Based on Immiscible Electrolytes. ACS Central Science, 2016, 2, 857-866.	5.3	8
475	Simulations and design of microfabricated interdigitated electrodes for use in a gold nanoparticle enhanced biosensor. , 2016, 2016, 299-302.		2
476	Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear Poisson–Boltzmann approach. New Journal of Physics, 2016, 18, 083037.	1.2	21
477	Electrodeposition in Ionic Liquids. ChemPhysChem, 2016, 17, 335-351.	1.0	117
478	Solvation of the morpholinium cation in acetonitrile. Effect of an anion. Journal of Molecular Modeling, 2016, 22, 26.	0.8	4
479	Decay behavior of screened electrostatic surface forces in ionic liquids: the vital role of non-local electrostatics. Physical Chemistry Chemical Physics, 2016, 18, 18985-19000.	1.3	41
480	Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces. Journal of Physical Chemistry C, 2016, 120, 11993-12011.	1.5	26
481	Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions. Journal of Physical Chemistry Letters, 2016, 7, 2333-2338.	2.1	60
482	Influence of the negative potential of molybdenum carbide derived carbon electrode on the in situ synchrotron radiation activated X-ray photoelectron spectra of 1-ethyl-3-methylimidazolium tetrafluoroborate. Electrochimica Acta, 2016, 206, 419-426.	2.6	29
483	A physically meaningful equivalent circuit network model of a lithium-ion battery accounting for local electrochemical and thermal behaviour, variable double layer capacitance and degradation. Journal of Power Sources, 2016, 325, 171-184.	4.0	55
484	Magnetic field tunable capacitive dielectric:ionic-liquid sandwich composites. Materials Research Express, 2016, 3, 036102.	0.8	3
485	An electric double layer of colloidal particles in salt-free concentrated suspensions including non-uniform size effects and orientational ordering of water dipoles. Physical Chemistry Chemical Physics, 2016, 18, 234-243.	1.3	12

		CITATION	Report	
#	Article		IF	CITATIONS
486	Development of mean-field electrical double layer theory. Chinese Physics B, 2016, 25,	016801.	0.7	12
487	Interaction of the ionic liquid [BMP][TFSA] with rutile TiO ₂ (110) and coad Physical Chemistry Chemical Physics, 2016, 18, 6618-6636.	dsorbed lithium.	1.3	35
488	2-Sulfoethylammonium Trifluoromethanesulfonate as an Ionic Liquid for High Tempera Cells. Journal of the Electrochemical Society, 2016, 163, F25-F37.	ture PEM Fuel	1.3	41
489	Mechanism for Asymmetric Nanoscale Electrowetting of an Ionic Liquid on Graphene. I 32, 140-150.	angmuir, 2016,	1.6	23
490	Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Journal of Physical Chemistry C, 2016, 120, 1534-1545.	: Solvent.	1.5	23
491	Metal ion adsorption at the ionic liquid–mica interface. Nanoscale, 2016, 8, 906-914		2.8	36
492	Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid Interface Observ Operando X-ray Scattering. ACS Central Science, 2016, 2, 175-180.	ed Using	5.3	47
493	The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe mic impedance study. Electrochimica Acta, 2016, 197, 282-289.	roscopy and	2.6	37
494	Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueor Electrolyte-Nanoparticle Interface. Physical Review X, 2016, 6, .	s	2.8	139
495	Role of the anion on the Interfacial Structure of Ionic Liquids Binary Mixtures at Mercur Electrochimica Acta, 2016, 195, 150-157.	y Interfaces.	2.6	12
496	Harvesting vibrational energy with liquid-bridged electrodes: thermodynamics in mecha electrically driven RC-circuits. RSC Advances, 2016, 6, 20485-20491.	anically and	1.7	7
497	Phase diagram of a bulk 1d lattice Coulomb gas. Europhysics Letters, 2016, 113, 1800	8.	0.7	9
498	Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Me of Physical Chemistry Letters, 2016, 7, 1180-1186.	chanism. Journal	2.1	38
499	Fused coarse-grained model of aromatic ionic liquids and their behaviour at electrodes. Chemistry Chemical Physics, 2016, 18, 8165-8173.	Physical	1.3	9
500	Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO ₃ . ACS N 4565-4569.	lano, 2016, 10,	7.3	29
501	Highly Sensitive Capacitive Gas Sensing at Ionic Liquid–Electrode Interfaces. Analytic 2016, 88, 1959-1964.	al Chemistry,	3.2	25
502	The interface between HOPG and 1-butyl-3-methyl-imidazolium hexafluorophosphate. I Chemistry Chemical Physics, 2016, 18, 916-925.	Physical	1.3	19
503	Characterization of the interfaces between Au(hkl) single crystal basal plane electrodes [Emmim][Tf 2 N] ionic liquid. Electrochemistry Communications, 2016, 62, 44-47.	s and	2.3	25

#	Article	IF	CITATIONS
504	Nanostructure of Deep Eutectic Solvents at Graphite Electrode Interfaces as a Function of Potential. Journal of Physical Chemistry C, 2016, 120, 2225-2233.	1.5	58
505	General theory of asymmetric steric interactions in electrostatic double layers. Soft Matter, 2016, 12, 1219-1229.	1.2	76
506	Structure and capacitance of an electric double layer formed by fused dimer cations and monomer anions: a Monte Carlo simulation study. Molecular Physics, 2016, 114, 53-60.	0.8	7
507	Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics. Journal of Computational Physics, 2017, 334, 125-144.	1.9	12
508	Electrochemical impedance spectroscopy in interfacial studies. Current Opinion in Electrochemistry, 2017, 1, 53-58.	2.5	107
509	Ultraslow Dynamics at a Charged Silicon–Ionic Liquid Interface Revealed by X-ray Reflectivity. Journal of Physical Chemistry C, 2017, 121, 3841-3845.	1.5	39
510	Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis. Faraday Discussions, 2017, 199, 423-463.	1.6	88
512	Potential-induced restructuring dynamics of ionic liquids on a gold electrode: Steric effect of constituent ions studied by surface-enhanced infrared absorption spectroscopy. Journal of Electroanalytical Chemistry, 2017, 800, 126-133.	1.9	36
513	Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. Journal of Electroanalytical Chemistry, 2017, 789, 108-113.	1.9	16
514	Photophysical properties and interaction studies of Rose Bengal derivatives with biomimetic systems based in micellar aqueous solutions. Journal of Molecular Liquids, 2017, 230, 674-685.	2.3	32
515	Theoretical and numerical analysis of nano-actuators based on grafted polyelectrolytes in an electric field. Faraday Discussions, 2017, 199, 487-510.	1.6	8
516	Inductive dielectric analyzer. Measurement Science and Technology, 2017, 28, 035103.	1.4	1
517	Reversible Heating in Electric Double Layer Capacitors. Physical Review Letters, 2017, 118, 096001.	2.9	48
518	On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers. Molecular Simulation, 2017, 43, 838-849.	0.9	34
519	Electrical Double Layer at Various Electrode Potentials: A Modification by Vibration. Journal of Physical Chemistry C, 2017, 121, 4760-4764.	1.5	20
520	Understanding the graphene-based electric double layer from dielectric perspective: A density functional study. Chemical Physics Letters, 2017, 677, 137-142.	1.2	13
521	Adsorption of 2,2′-bipyridine at an Au(111) ionic liquid electrified interface. Electrochemistry Communications, 2017, 78, 56-59.	2.3	5
522	Electrical Double Layers near Charged Nanorods in Mixture Electrolytes. Journal of Physical Chemistry C, 2017, 121, 9454-9461.	1.5	6

#	Article	IF	CITATIONS
523	The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes. Journal of Chemical Physics, 2017, 146, 094101.	1.2	17
524	Computational Insights into Materials and Interfaces for Capacitive Energy Storage. Advanced Science, 2017, 4, 1700059.	5.6	176
525	Confinement Effects on an Electron Transfer Reaction in Nanoporous Carbon Electrodes. Journal of Physical Chemistry Letters, 2017, 8, 1925-1931.	2.1	29
526	Conduction in In2O3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces. APL Materials, 2017, 5, 042502.	2.2	1
527	Large-Amplitude Fourier-Transformed AC Voltammetric Study of the Capacitive Electrochemical Behavior of the 1-Butyl-3-methylimidazolium Tetrafluoroborate–Polycrystalline Gold Electrode Interface. Journal of Physical Chemistry C, 2017, 121, 12136-12147.	1.5	20
528	Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Advances in Colloid and Interface Science, 2017, 249, 220-233.	7.0	67
529	Multiscale Studies on Ionic Liquids. Chemical Reviews, 2017, 117, 6636-6695.	23.0	584
530	Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews, 2017, 117, 10623-10664.	23.0	114
531	Lattice Model of an Ionic Liquid at an Electrified Interface. Journal of Physical Chemistry B, 2017, 121, 6408-6415.	1.2	20
532	Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Advances, 2017, 7, 28945-28950.	1.7	25
533	Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105
534	Capacitive Energy Extraction by Few-Layer Graphene Electrodes. Journal of Physical Chemistry C, 2017, 121, 14010-14018.	1.5	21
535	Solvation Energy of Ions in Polymers: Effects of Chain Length and Connectivity on Saturated Dipoles near Ions. Journal of Physical Chemistry B, 2017, 121, 3142-3150.	1.2	25
536	Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes. Physical Review E, 2017, 95, 033303.	0.8	35
537	Anomalous Voltammetric Behavior Observed for Electrodeposition of Indium in the 1-Butyl-1-methylpyrrolidinium Dicyanamide Ionic Liquid. A Result of the Ionic Liquid Cation Adsorption. Journal of Physical Chemistry C, 2017, 121, 8907-8913.	1.5	12
538	Interfacial Structure at the Quaternary Ammonium-Based Ionic Liquids Gold Electrode Interface Probed by Surface-Enhanced Infrared Absorption Spectroscopy: Anion Dependence of the Cationic Behavior. Journal of Physical Chemistry C, 2017, 121, 1658-1666.	1.5	41
539	An analysis of electric double layers near comb electrodes using the linearized Poisson-Nernst-Planck theory. Journal of Applied Physics, 2017, 121, 044502.	1.1	1
540	Differential capacitance of the diffuse double layer at electrode-electrolyte interfaces considering ions as dielectric spheres: Part I. Binary electrolyte solutions. Journal of Colloid and Interface Science, 2017, 496, 531-539.	5.0	25

#	Article	IF	CITATIONS
541	Room Temperature Ionic Liquids as Electrolyte Additives for the HER in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, F427-F432.	1.3	20
542	Modeling electrokinetics in ionic liquids. Electrophoresis, 2017, 38, 1693-1705.	1.3	8
543	Towards Understanding the Solventâ€Dynamic Control of the Transport and Heterogeneous Electronâ€Transfer Processes in Ionic Liquids. ChemPhysChem, 2017, 18, 415-426.	1.0	3
544	Influence of a size asymmetric dimer on the structure and differential capacitance of an electric double layer. A Monte Carlo study. Electrochimica Acta, 2017, 226, 98-103.	2.6	14
545	Impurity effects on ionic-liquid-based supercapacitors. Molecular Physics, 2017, 115, 454-464.	0.8	18
546	Mean-Field Theory of Electrical Double Layer In Ionic Liquids with Account of Short-Range Correlations. Electrochimica Acta, 2017, 225, 190-197.	2.6	124
547	Molecular dynamics simulation of the structure and interfacial free energy barriers of mixtures of ionic liquids and divalent salts near a graphene wall. Physical Chemistry Chemical Physics, 2017, 19, 846-853.	1.3	33
548	Molecular-level understanding of electric double layer in ionic liquids. Current Opinion in Electrochemistry, 2017, 4, 105-111.	2.5	30
549	Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces. Physical Chemistry Chemical Physics, 2017, 19, 30010-30020.	1.3	42
550	Self-segregated nanostructure in room temperature ionic liquids. Soft Matter, 2017, 13, 6947-6955.	1.2	26
551	Simulations of ionic liquids confined by metal electrodes using periodic Green functions. Journal of Chemical Physics, 2017, 147, 074109.	1.2	28
552	Quantitative Information about Electrosorption of Ionic Liquids in Carbon Nanopores from Electrochemical Dilatometry and Quartz Crystal Microbalance Measurements. Journal of Physical Chemistry C, 2017, 121, 19120-19128.	1.5	23
553	Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations. Physical Chemistry Chemical Physics, 2017, 19, 23971-23981.	1.3	23
554	Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. Journal of Materials Chemistry A, 2017, 5, 21049-21076.	5.2	58
555	Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nature Materials, 2017, 16, 1225-1232.	13.3	219
556	Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it. Journal of Physics Condensed Matter, 2017, 29, 423002.	0.7	39
557	Improving Continuum Models to Define Practical Limits for Molecular Models of Electrified Interfaces. Journal of the Electrochemical Society, 2017, 164, E3438-E3447.	1.3	18
558	Influence of chemical composition of electrode material on the differential capacitance characteristics of the ionic liquid electrode interface. Electrochemistry Communications, 2017, 82, 39-42.	2.3	24

#	Article	IF	Citations
559	Effect of solvent polarization on electric double layer of a charged soft surface in an electrolyte solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 972-978.	2.3	6
560	Monte Carlo Study of a Planar Electric Double Layer Formed by Ions with Off-Center Charge. Langmuir, 2017, 33, 11554-11560.	1.6	8
561	The influence of water content in a proton-conducting ionic liquid on the double layer properties of the Pt/PIL interface. Physical Chemistry Chemical Physics, 2017, 19, 24706-24723.	1.3	26
562	Near-Wall Molecular Ordering of Dilute Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 18593-18597.	1.5	20
563	Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study. Journal of Chemical Physics, 2017, 147, 194507.	1.2	90
564	Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. Journal of the American Chemical Society, 2017, 139, 18681-18687.	6.6	101
565	Specific adsorption from an ionic liquid: impedance study of iodide ion adsorption from a pure halide ionic liquid at bismuth single crystal planes. Electrochimica Acta, 2017, 247, 910-919.	2.6	19
566	On the capacitance of narrow nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 20393-20400.	1.3	10
567	Underscreening, overscreening and double-layer capacitance. Electrochemistry Communications, 2017, 82, 129-133.	2.3	80
568	Electrotunable wetting, and micro- and nanofluidics: general discussion. Faraday Discussions, 2017, 199, 195-237.	1.6	2
569	Effects of Alkyl Chain Length on Interfacial Structure and Differential Capacitance in Graphene Supercapacitors: A Molecular Dynamics Simulation Study. Electrochimica Acta, 2017, 247, 634-645.	2.6	47
570	Interface between an Au(111) Surface and an Ionic Liquid: The Influence of Water on the Double‣ayer Capacitance. ChemElectroChem, 2017, 4, 216-220.	1.7	35
571	Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations. Journal of Molecular Liquids, 2017, 228, 236-242.	2.3	18
572	Mathematical modeling of influence of ion size effects in an electrolyte in a nanoslit with overlapped EDL. AIP Conference Proceedings, 2017, , .	0.3	2
573	Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution. Journal of Chemical Physics, 2017, 147, 214702.	1.2	10
574	Chemical potential distribution of nonhomogeneous solid electrolyte. , 2017, , .		0
575	Comparison of two protic ionic liquid behaviors in the presence of an electric field using molecular dynamics. Journal of Chemical Physics, 2017, 147, 234505.	1.2	11
576	The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations. Molecules, 2017, 22, 241.	1.7	15

#	Article	IF	CITATIONS
577	Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface. Applied Sciences (Switzerland), 2017, 7, 939.	1.3	21
578	Surface force apparatus studies on the surface interaction of [C<inf>n</inf>mim ⁺][BF<inf>4</inf> ^{â^'}] and [C<inf>n</inf>mim ⁺ J][PF<inf>6</inf> ^{â^'}] ionic liquids., 2017		0
579	Relative dielectric constants and selectivity ratios in open ionic channels. Computational and Mathematical Biophysics, 2017, 5, 125-137.	0.6	7
580	Water dissolution in ionic liquids between charged surfaces: effects of electric polarization and electricstatic correlation. Molecular Systems Design and Engineering, 2018, 3, 328-341.	1.7	9
581	Systematic comparison of force fields for molecular dynamic simulation of Au(111)/Ionic liquid interfaces. Fluid Phase Equilibria, 2018, 463, 106-113.	1.4	23
582	Lattice model of ionic liquid confined by metal electrodes. Journal of Chemical Physics, 2018, 148, 193829.	1.2	19
583	Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate–polycrystalline gold interface. Analytical and Bioanalytical Chemistry, 2018, 410, 4575-4586.	1.9	7
584	Molecular-level understanding of supported ionic liquid membranes for gas separation. Journal of Molecular Liquids, 2018, 262, 230-236.	2.3	19
585	The effects of dielectric decrement and finite ion size on differential capacitance of electrolytically gated graphene. Chemical Physics Letters, 2018, 701, 43-51.	1.2	6
586	Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models. Physical Review X, 2018, 8, .	2.8	23
587	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	18.7	70
588	Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids. Russian Journal of Physical Chemistry A, 2018, 92, 999-1005.	0.1	10
589	Approaching the self-consistency challenge of electrocatalysis with theory and computation. Current Opinion in Electrochemistry, 2018, 9, 189-197.	2.5	28
590	Effects of Water on Mica–Ionic Liquid Interfaces. Journal of Physical Chemistry C, 2018, 122, 9035-9045.	1.5	22
591	The system of mobile ions in lattice models: Screening effects, thermodynamic and electrophysical properties. Journal of Molecular Liquids, 2018, 270, 183-190.	2.3	6
593	Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994.	1.5	50
594	Confinement Induced Dilution: Electrostatic Screening Length Anomaly in Concentrated Electrolytes in Confined Space. Journal of Physical Chemistry C, 2018, 122, 3428-3433.	1.5	21
595	"Solvent-in-salt―systems for design of new materials in chemistry, biology and energy research. Chemical Society Reviews, 2018, 47, 1250-1284.	18.7	151

#	Article	IF	CITATIONS
596	Surface structure evolution in a homologous series of ionic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1100-E1107.	3.3	42
597	Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance. Journal of Chemical Physics, 2018, 148, 044704.	1.2	40
598	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	14.4	73
599	Confrontation of the Ohmic approach with the ionic transport approach for modeling the electrical behavior of an electrolyte. Ionics, 2018, 24, 2157-2165.	1.2	13
600	Enhancement of differential double layer capacitance and charge accumulation by tuning the composition of ionic liquids mixtures. Electrochimica Acta, 2018, 261, 214-220.	2.6	23
601	Direct Measurement of the Differential Capacitance of Solvent-Free and Dilute Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 126-131.	2.1	68
602	Large Power Factor Improvement in a Novel Solid–Liquid Thermoelectric Hybrid Device. ACS Applied Energy Materials, 2018, 1, 254-259.	2.5	6
603	Ionic liquid interface at an electrode: simulations of electrochemical properties using an asymmetric restricted primitive model. Journal of Physics Condensed Matter, 2018, 30, 074004.	0.7	14
604	Unexpected behaviors in molecular transport through size-controlled nanochannels down to the ultra-nanoscale. Nature Communications, 2018, 9, 1682.	5.8	68
605	Computer simulation studies of nanoporous carbon-based electrochemical capacitors. Current Opinion in Electrochemistry, 2018, 9, 81-86.	2.5	19
606	Two-dimensional equations for thin-films of ionic conductors. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1071-1088.	1.9	1
607	Ionic liquids: a brief history. Biophysical Reviews, 2018, 10, 691-706.	1.5	658
608	A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and <i>in vitro</i> conditions. RSC Advances, 2018, 8, 12017-12028.	1.7	27
609	Observation of Structure of Surfaces and Interfaces by Synchrotron X-ray Diffraction: Atomic-Scale Imaging and Time-Resolved Measurements. Journal of the Physical Society of Japan, 2018, 87, 061010.	0.7	7
610	Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges. Journal of Chemical Physics, 2018, 148, 193701.	1.2	58
611	Influence of the Nature of the Alkali Metal Cations on the Electrical Double-Layer Capacitance of Model Pt(111) and Au(111) Electrodes. Journal of Physical Chemistry Letters, 2018, 9, 1927-1930.	2.1	68
612	Modulation of an Induced Charge Density Gradient in the Room-Temperature Ionic Liquid BMIM ⁺ BF ₄ [–] . Journal of Physical Chemistry C, 2018, 122, 7361-7367.	1.5	17
613	Fluorinated Anionic Room Temperature Ionic Liquid-Based CO ₂ Electrochemical Sensing. IEEE Sensors Journal, 2018, 18, 3517-3523.	2.4	11

#	Article	IF	CITATIONS
614	On the thickness of the double layer in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10275-10285.	1.3	40
615	A classical density functional theory for the asymmetric restricted primitive model of ionic liquids. Journal of Chemical Physics, 2018, 148, 193814.	1.2	13
616	Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochimica Acta, 2018, 270, 352-362.	2.6	16
617	Nano-mechanics of ionic liquids at dielectric and metallic interfaces. Faraday Discussions, 2018, 206, 443-457.	1.6	17
618	The Au(111)/IL interfacial nanostructure in the presence of precursors and its influence on the electrodeposition process. Faraday Discussions, 2018, 206, 459-473.	1.6	11
619	Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 2018, 122, 194-206.	1.5	854
620	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Doubleâ€Layer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	2.7	46
621	Comparison of zeta potentials and structure for statistical mechanical theories of a model cylindrical double layer. Journal of Molecular Liquids, 2018, 270, 157-167.	2.3	12
622	Effects of Silica Surfaces on the Structure and Dynamics of Room-Temperature Ionic Liquids: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2018, 122, 624-634.	1.5	29
623	On the temperature dependence of the double layer capacitance of ionic liquids. Journal of Electroanalytical Chemistry, 2018, 819, 347-358.	1.9	67
624	A semi-analytical solution for electric double layers near an elliptical cylinder. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 62-67.	1.5	2
625	Molecular scale structure and dynamics at an ionic liquid/electrode interface. Faraday Discussions, 2017, 206, 141-157.	1.6	57
626	Universality of steric effects of electrolytes in nanoconfinements. Europhysics Letters, 2018, 124, 14004.	0.7	2
627	Zero Charge Potentials and Electrical Double Layer at Solid Electrodes. , 2018, , 316-344.		10
628	Treatment of Ion-Size Asymmetry in Lattice-Gas Models for Electrical Double Layer. Journal of Physical Chemistry C, 2018, 122, 28652-28664.	1.5	21
629	Legendre Transforms of Electrostatic Free-Energy Functionals. SIAM Journal on Applied Mathematics, 2018, 78, 2973-2995.	0.8	2
630	Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?. Journal of Chemical Physics, 2018, 149, 234708.	1.2	11
631	Differential capacitance of ionic liquids according to lattice-gas mean-field model with nearest-neighbor interactions. Journal of Chemical Physics, 2018, 149, 204703.	1.2	13

#	Article	IF	CITATIONS
632	The Role of Ion–Ion Correlations for the Differential Capacitance of Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 28537-28544.	1.5	15
633	Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nature Communications, 2018, 9, 5222.	5.8	96
634	Electrochemical Friction Force Microscopy. Microtechnology and MEMS, 2018, , 247-271.	0.2	0
635	Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations. European Physical Journal E, 2018, 41, 113.	0.7	14
636	Capacitive Performance of Water-in-Salt Electrolytes in Supercapacitors: A Simulation Study. Journal of Physical Chemistry C, 2018, 122, 23917-23924.	1.5	49
637	Steric effect of water molecule clusters on electrostatic interaction and electroosmotic transport in aqueous electrolytes: A mean-field approach. AIP Advances, 2018, 8, .	0.6	2
638	General theory of charge regulation and surface differential capacitance. Journal of Chemical Physics, 2018, 149, 104701.	1.2	50
639	Differential Capacitance and Energetics of the Electrical Double Layer of Graphene Oxide Supercapacitors: Impact of the Oxidation Degree. Journal of Physical Chemistry C, 2018, 122, 21824-21832.	1.5	30
640	Theory of the Double Layer in Water-in-Salt Electrolytes. Journal of Physical Chemistry Letters, 2018, 9, 5840-5846.	2.1	140
641	Impedance Resonance in Narrow Confinement. Journal of Physical Chemistry C, 2018, 122, 21724-21734.	1.5	16
641 642	Impedance Resonance in Narrow Confinement. Journal of Physical Chemistry C, 2018, 122, 21724-21734. Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900.	1.5 1.7	16 15
	Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst,		
642	Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900. Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric	1.7	15
642 643	 Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900. Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion–Ion Correlations. Langmuir, 2018, 34, 11971-11985. Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & amp; Interfaces, 2018, 10, 	1.7 1.6	15 47
642 643 644	Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900. Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion–Ion Correlations. Langmuir, 2018, 34, 11971-11985. Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & amp; Interfaces, 2018, 10, 32151-32161. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer	1.7 1.6 4.0	15 47 13
642 643 644 645	 Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900. Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion–Ion Correlations. Langmuir, 2018, 34, 11971-11985. Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & amp; Interfaces, 2018, 10, 32151-32161. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure. Physical Review E, 2018, 97, 052610. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces. Current Opinion 	1.7 1.6 4.0 0.8	15 47 13 2
 642 643 644 645 646 	Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst, The, 2018, 143, 4887-4900. Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion–Ion Correlations. Langmuir, 2018, 34, 11971-11985. Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & amp; Interfaces, 2018, 10, 32151-32161. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure. Physical Review E, 2018, 97, 052610. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces. Current Opinion in Electrochemistry, 2018, 8, 147-155.	1.7 1.6 4.0 0.8 2.5	15 47 13 2 16

#	Article	IF	CITATIONS
650	A Flexible Capacitive Pressure Sensor Based on Ionic Liquid. Sensors, 2018, 18, 2395.	2.1	37
651	Ionic Liquids at Interfaces and Their Tribological Behavior. , 2018, , 172-194.		12
652	Theory of electrosorption of water from ionic liquids. Electrochimica Acta, 2018, 284, 346-354.	2.6	53
653	Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catalysis, 2018, 8, 8244-8254.	5.5	82
654	Computer simulation study of differential capacitance and charging mechanism in graphene supercapacitors: Effects of cyano-group in ionic liquids. Electrochimica Acta, 2018, 284, 577-586.	2.6	16
655	Ionic Liquids in the Field of Metal Electrodeposition. , 2018, , 690-700.		4
656	Modeling Electric Double-Layer Capacitors Using Charge Variation Methodology in Gibbs Ensemble. Frontiers in Energy Research, 2018, 5, .	1.2	6
657	Potential dependent changes in the structural and dynamical properties of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on graphite electrodes revealed by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 19408-19415.	1.3	13
658	Stabilizing Li ₁₀ SnP ₂ S ₁₂ /Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 25473-25482.	4.0	103
659	Differential capacitance in ion-gel-gated organic transistors investigated by impedance spectroscopy. Ionics, 2018, 24, 3287-3290.	1.2	4
660	A GPU Poisson–Fermi solver for ion channel simulations. Computer Physics Communications, 2018, 229, 99-105.	3.0	3
661	Double-Layer Capacitance at Ionic Liquid–Boron-Doped Diamond Electrode Interfaces Studied by Fourier Transformed Alternating Current Voltammetry. Journal of Physical Chemistry C, 2018, 122, 11777-11788.	1.5	9
662	Theory of polymer-electrolyte-composite electroactuator sensors with flat or volume-filling electrodes. Soft Matter, 2018, 14, 7996-8005.	1.2	1
663	On the influence of physical parameters on the properties of the electric double layer modelled by soft potentials. A Monte Carlo study. Electrochimica Acta, 2018, 286, 279-286.	2.6	6
664	The metal–ionic liquid interface as characterized by impedance spectroscopy and <i>in situ</i> scanning tunneling microscopy. Physical Chemistry Chemical Physics, 2018, 20, 21241-21250.	1.3	25
665	High Modulation Speed, Depth, and Coloration Efficiency of Carbon Nanotube Thin Film Electrochromic Device Achieved by Counter Electrode Impedance Matching. Advanced Materials Interfaces, 2018, 5, 1800861.	1.9	19
666	What is the effect of polar and nonpolar side chain group on bulk and electrical double layer properties of amino acid ionic liquids?. Electrochimica Acta, 2018, 285, 393-404.	2.6	4
667	Ionic Liquid Mixture Expands the Potential Window and Capacitance of a Supercapacitor in Tandem. Journal of Physical Chemistry C, 2018, 122, 18304-18310.	1.5	27

#	Article	IF	Citations
668	Versatile Duplex Electrochemical Sensor for the Detection of CO ₂ and Relative Humidity Using Room Temperature Ionic Liquid. ECS Transactions, 2018, 85, 751-765.	0.3	9
669	Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density. Physical Chemistry Chemical Physics, 2018, 20, 22961-22971.	1.3	7
670	A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. II. Accounts of ionic interactions. Physical Chemistry Chemical Physics, 2018, 20, 17606-17614.	1.3	16
671	Effect of proximity to ionic liquid-solvent demixing on electrical double layers. Journal of Molecular Liquids, 2019, 294, 111368.	2.3	12
672	Differential capacitance of an electrical double layer with asymmetric ion sizes in the presence of hydration interactions. Electrochimica Acta, 2019, 321, 134655.	2.6	7
673	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
674	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	7.3	32
675	Atomic Force Spectroscopy on Ionic Liquids. Applied Sciences (Switzerland), 2019, 9, 2207.	1.3	23
676	Solvent granularity in the differential electrical capacitance of supercapacitor and mechanism analysis. Physica A: Statistical Mechanics and Its Applications, 2019, 533, 121905.	1.2	21
677	Solvation in ionic liquid-water mixtures: A computational study. Journal of Molecular Liquids, 2019, 292, 111273.	2.3	10
678	Evaluation of the Electrochemically Active Surface Area of Microelectrodes by Capacitive and Faradaic Currents. ChemElectroChem, 2019, 6, 4411-4417.	1.7	15
679	Ionic liquid electrolytes in electric double layer capacitors. Science China Materials, 2019, 62, 1537-1555.	3.5	33
680	Differential capacitance of ionic liquid interface with graphene: The effects of correlation and finite size of ions. Electrochimica Acta, 2019, 319, 423-434.	2.6	7
681	Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 42680-42689.	4.0	25
682	Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ Xâ€ r ay Photoelectron Spectroscopy. ChemistryOpen, 2019, 8, 1365-1368.	0.9	6
683	Local Grand Canonical Monte Carlo Simulation Method for Confined Fluids. Journal of Chemical Theory and Computation, 2019, 15, 6944-6957.	2.3	6
684	Molecular insight into structures of monocationic and dicationic ionic liquids in mica slits. Molecular Physics, 2019, 117, 3957-3967.	0.8	2
685	Impedance characterization of silver/silver chloride micro-electrodes for bio-sensing applications. Electrochimica Acta, 2019, 320, 134638.	2.6	6

#	Article	IF	CITATIONS
686	Electric double layer structure and capacitance of imidazolium-based ionic liquids with FSIâ^' and Tfâ^' anions at graphite electrode by molecular dynamic simulations. Journal of Electroanalytical Chemistry, 2019, 851, 113452.	1.9	4
687	Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. Langmuir, 2019, 35, 15692-15700.	1.6	25
688	Potential dependent capacitance of [EMIM][TFSI], [N ₁₁₁₄][TFSI] and [PYR ₁₃][TFSI] ionic liquids on glassy carbon. Physical Chemistry Chemical Physics, 2019, 21, 3712-3720.	1.3	61
689	Exploring chemical speciation at electrified interfaces using detailed continuum models. Journal of Chemical Physics, 2019, 150, 041725.	1.2	13
690	Understanding the charging dynamics of an ionic liquid electric double layer capacitor <i>via</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 6790-6800.	1.3	65
691	Nanoscale origins of super-capacitance phenomena. Journal of Power Sources, 2019, 414, 420-434.	4.0	48
692	Potential-induced interfacial restructuring of a pyrrolidinium-based ionic liquid on an Au electrode: Effect of polarization of constituent ions. Electrochemistry Communications, 2019, 100, 117-120.	2.3	15
693	Equivalent circuit model modified for free-standing bilayer lipid membranes beyond 1 TΩ. Japanese Journal of Applied Physics, 2019, 58, SDDK02.	0.8	3
694	Free and Bound States of Ions in Ionic Liquids, Conductivity, and Underscreening Paradox. Physical Review X, 2019, 9, .	2.8	54
695	Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Advanced Composites and Hybrid Materials, 2019, 2, 279-288.	9.9	37
696	Electrical double layer in molten salts with account of soft repulsions. Journal of Chemical Physics, 2019, 150, 184703.	1.2	6
697	Molecular and Continuum Perspectives on Intermediate and Flow Reversal Regimes in Electroosmotic Transport. Journal of Physical Chemistry C, 2019, 123, 14024-14035.	1.5	22
699	Size effect on electric-double-layer capacitances of conducting structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2353-2360.	0.9	11
700	Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. Journal of Physical Chemistry C, 2019, 123, 12583-12591.	1.5	15
701	A java application to characterize biomolecules and nanomaterials in electrolyte aqueous solutions. Computer Physics Communications, 2019, 242, 104-119.	3.0	10
702	Potential-Dependent Structure of the Ionic Layer at the Electrode Interface of an Ionic Liquid Probed Using Neutron Reflectometry. Journal of Physical Chemistry C, 2019, 123, 9223-9230.	1.5	29
703	Machine learning models for solvent effects on electric double layer capacitance. Chemical Engineering Science, 2019, 202, 186-193.	1.9	38
704	Analysis of electrical double layer structure in molten salts. Journal of Chemical Physics, 2019, 150, 064704.	1.2	2

#	Article	IF	CITATIONS
705	Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions. Science China Chemistry, 2019, 62, 515-520.	4.2	15
706	Coupled Processes in Charged Porous Media: From Theory to Applications. Transport in Porous Media, 2019, 130, 183-214.	1.2	14
707	Hysteretic order-disorder transitions of ionic liquid double layer structure on graphite. Nano Energy, 2019, 60, 886-893.	8.2	19
708	On the relevance of electrostatic interactions for the structural relaxation of ionic liquids: A molecular dynamics simulation study. Journal of Chemical Physics, 2019, 150, 124501.	1.2	14
709	Effect of Ionic Liquid Structure on the Oxygen Reduction Reaction Under Humidified Conditions. Journal of Physical Chemistry C, 2019, 123, 10727-10737.	1.5	11
710	The effect of short-range interaction and correlations on the charge and electric field distribution in a model solid electrolyte. Solid State Ionics, 2019, 335, 156-163.	1.3	4
711	Progress, status and prospects of non-porous, heteroatom-doped carbons for supercapacitors and other electrochemical applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	13
712	A generalized Debye-Hückel theory of electrolyte solutions. AIP Advances, 2019, 9, .	0.6	22
713	Coarse-Grained Electrostatic Model Including Ion-Pairing Equilibrium That Explains DC and AC X-ray Photoelectron Spectroscopy Measurements on Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 13192-13200.	1.5	6
714	Surface Structure of Quaternary Ammonium-Based Ionic Liquids Studied Using Molecular Dynamics Simulation: Effect of Switching the Length of Alkyl Chains. Journal of Physical Chemistry C, 2019, 123, 7246-7258.	1.5	14
715	Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior. Journal of Chemical Physics, 2019, 151, 184105.	1.2	9
716	5. Ionic liquids at electrified interfaces for advanced energy/charge storage applications. , 2019, , 101-128.		1
717	Ionic liquid/ZnO(0001Ì,,) single crystal and epitaxial film interfaces studied through a combination of electrochemical measurements and a pulsed laser deposition process under vacuum. Physical Chemistry Chemical Physics, 2019, 21, 25506-25512.	1.3	6
718	Influence of dielectric layers on estimates of diffusion coefficients and concentrations of ions from impedance spectroscopy. Physical Review E, 2019, 100, 062601.	0.8	12
719	Differential Capacitance of Electrolytes at Weakly Curved Electrodes. Journal of Physical Chemistry C, 2019, 123, 1127-1135.	1.5	7
720	Theoretical Aspects of Ionic Liquids for Softâ€Matter Sciences. Israel Journal of Chemistry, 2019, 59, 813-823.	1.0	3
721	Differential capacitance of the electric double layer: mean-field modeling approaches. Current Opinion in Electrochemistry, 2019, 13, 125-131.	2.5	19
722	Electrical Double Layers Close to Ionic Liquid–Solvent Demixing. Journal of Physical Chemistry C, 2019, 123, 1596-1601.	1.5	26

#	Article	IF	CITATIONS
723	A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical Chemistry Chemical Physics, 2019, 21, 681-691.	1.3	23
724	Discrete and Continuum Analyses of Confinement Effects of an Ionic Liquid on the EDL Structure and the Pressure Acting on the Wall. Journal of Physical Chemistry C, 2019, 123, 2516-2525.	1.5	7
725	O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: Product formation and adlayer dynamics. Journal of Chemical Physics, 2019, 150, 041724.	1.2	9
726	Improved accessibility of porous carbon electrodes with surfactant ionic liquids for supercapacitors. Journal of Applied Electrochemistry, 2019, 49, 151-162.	1.5	15
727	Synergistic Aqueous Biphasic Systems: A New Paradigm for the "One-Pot―Hydrometallurgical Recovery of Critical Metals. ACS Sustainable Chemistry and Engineering, 2019, 7, 1769-1777.	3.2	28
728	Hunting ionic liquids with large electrochemical potential windows. AICHE Journal, 2019, 65, 804-810.	1.8	83
729	lonic liquids as electrolytes for energy storage applications – A modelling perspective. Energy Storage Materials, 2020, 25, 827-835.	9.5	86
730	Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors. Journal of Applied Electrochemistry, 2020, 50, 15-32.	1.5	17
731	Development of a simple, molecular dynamicsâ€based method to estimate the thickness of electrical double layers. Soil Science Society of America Journal, 2020, 84, 494-501.	1.2	13
732	Entropy Changes upon Double Layer Charging at a (111)-Textured Au Film in Pure 1-Butyl-1-Methylpyrrolidinium Bis[(trifluoromethyl)sulfonyl]imide Ionic Liquid. Journal of Physical Chemistry C, 2020, 124, 693-700.	1.5	8
733	Theory for Influence of the Metal Electrolyte Interface on Heterogeneous Electron Transfer Rate Constant: Fractional Electron Transferred Transition State Approach. Journal of Physical Chemistry C, 2020, 124, 2273-2288.	1.5	21
734	Molecular dynamics simulation of imidazolium C _n MIM-BF ₄ ionic liquids using a coarse grained force-field. Physical Chemistry Chemical Physics, 2020, 22, 1682-1692.	1.3	16
735	Temperature evolution of the bulk nano-structure in a homologous series of room temperature ionic liquids. Journal of Molecular Liquids, 2020, 300, 112280.	2.3	10
736	Ionic Liquids under Confinement: From Systematic Variations of the Ion and Pore Sizes toward an Understanding of the Structure and Dynamics in Complex Porous Carbons. ACS Applied Materials & Interfaces, 2020, 12, 1789-1798.	4.0	39
737	Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochimica Acta, 2020, 331, 135386.	2.6	22
738	Electroanalytical Investigation of the Electrode–Electrolyte Interface of Quaternary Ammonium Ionic Liquids: Impact of Alkyl Chain Length and Ether Functionality. Journal of Physical Chemistry C, 2020, 124, 5613-5623.	1.5	25
739	Understanding Dynamics of Electrochemical Double Layers via a Modified Concentrated Solution Theory. Journal of the Electrochemical Society, 2020, 167, 013519.	1.3	14
740	Electric Double Layer and Orientational Ordering of Water Dipoles in Narrow Channels within a Modified Langevin Poisson-Boltzmann Model. Entropy, 2020, 22, 1054.	1.1	9

#	Article	IF	CITATIONS
741	Post-synthetic modification of ionic liquids using ligand-exchange and redox coordination chemistry. Journal of Materials Chemistry A, 2020, 8, 22674-22685.	5.2	5
742	Origin of a High Overpotential of Co Electrodeposition in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry Letters, 2020, 11, 8697-8702.	2.1	17
743	Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study. Journal of Chemical Physics, 2020, 153, 134703.	1.2	4
744	Enforced Freedom: Electricâ€Fieldâ€Induced Declustering of Ionicâ€Liquid Ions in the Electrical Double Layer. Energy and Environmental Materials, 2020, 3, 414-420.	7.3	17
745	Thermodynamics of Electrical Double Layers with Electrostatic Correlations. Journal of Physical Chemistry C, 2020, 124, 26830-26842.	1.5	10
746	Grand canonical simulations of ions between charged conducting surfaces using exact 3D Ewald summations. Physical Chemistry Chemical Physics, 2020, 22, 13659-13665.	1.3	6
747	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
748	How charge regulation and ion–surface affinity affect the differential capacitance of an electrical double layer. Physical Chemistry Chemical Physics, 2020, 22, 18229-18238.	1.3	5
749	Mixed quantum-classical treatment of electron transfer at electrocatalytic interfaces: Theoretical framework and conceptual analysis. Journal of Chemical Physics, 2020, 153, 164707.	1.2	14
750	Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. Physical Review Letters, 2020, 125, 188004.	2.9	28
751	Generalized DebyeHückel Equation From Poisson–Bikerman Theory. SIAM Journal on Applied Mathematics, 2020, 80, 2003-2023.	0.8	6
752	Computational Insights into Charge Storage Mechanisms of Supercapacitors. Energy and Environmental Materials, 2020, 3, 235-246.	7.3	49
753	Interfacial Layering in the Electric Double Layer of Ionic Liquids. Physical Review Letters, 2020, 125, 116001.	2.9	69
754	Modified 3D Ewald Summation for Slab Geometry at Constant Potential. Journal of Physical Chemistry B, 2020, 124, 7842-7848.	1.2	2
755	Electrochemical surface plasmon resonance measurements of camel-shaped static capacitance and slow dynamics of electric double layer structure at the ionic liquid/electrode interface. Journal of Chemical Physics, 2020, 153, 044707.	1.2	12
756	Wearable Battery-Free Perspiration Analyzing Sites Based on Sweat Flowing on ZnO Nanoarrays. Nano-Micro Letters, 2020, 12, 105.	14.4	30
757	Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Frontiers in Chemistry, 2020, 8, 261.	1.8	59
758	Model and Measurement Based Insights into Double Layer Capacitors: Voltage-Dependent Capacitance and Low Ionic Conductivity in Pores. Journal of the Electrochemical Society, 2020, 167, 080535.	1.3	3

#	Article	IF	CITATIONS
759	Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Physical Chemistry Chemical Physics, 2020, 22, 13536-13553.	1.3	2
760	Electric double layer formation and storing energy processes on graphene-based supercapacitors from electrical and thermodynamic perspectives. Journal of Molecular Modeling, 2020, 26, 159.	0.8	11
761	Modeling hydration-mediated ion-ion interactions in electrolytes through oscillating Yukawa potentials. Physical Review E, 2020, 101, 052603.	0.8	3
762	Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model. Entropy, 2020, 22, 550.	1.1	40
763	Inâ€Situ Spectroelectrochemical Investigation of Potentialâ€Dependent Changes in an Amphiphilic Imidazoliumâ€Based Ionic Liquid Film on the Au(111) Electrode Surface. ChemElectroChem, 2020, 7, 3233-3243.	1.7	5
764	Breakdown of electroneutrality in nanopores. Journal of Colloid and Interface Science, 2020, 579, 162-176.	5.0	44
765	Evidence for Pseudocapacitance and Faradaic Charge Transfer in High-Mobility Thin-Film Transistors with Solution-Processed Oxide Dielectrics. Journal of Physical Chemistry Letters, 2020, 11, 2765-2771.	2.1	23
766	2D materials as the basis of supercapacitor devices. , 2020, , 97-130.		3
767	Electrowetting of a gold electrode by alkali bromide and iodide melts. Journal of Solid State Electrochemistry, 2020, 24, 855-861.	1.2	2
768	Effect of Switching the Length of Alkyl Chains on Electric Double Layer Structure and Differential Capacitance at the Electrode Interface of Quaternary Ammonium-Based Ionic Liquids Studied Using Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 7873-7883.	1.5	20
769	Potential of zero charge and surface charging relation of metal-solution interphases from a constant-potential jellium-Poisson-Boltzmann model. Physical Review B, 2020, 101, .	1.1	27
770	Ionogel Microphones Detect Underwater Sound with Directivity and Exceptional Stability. ACS Applied Electronic Materials, 2020, 2, 1295-1303.	2.0	6
771	Multiscale modeling of electrolytes in porous electrode: From equilibrium structure to non-equilibrium transport. Green Energy and Environment, 2020, 5, 303-321.	4.7	57
772	Electrical Double Layer of Linear Tricationic Ionic Liquids at Graphite Electrode. Journal of Physical Chemistry C, 2020, 124, 15723-15729.	1.5	16
773	Two-Component Electrolyte Solutions with Dipolar Cations on a Charged Electrode: Theory and Computer Simulations. Journal of Physical Chemistry C, 2020, 124, 16308-16314.	1.5	15
774	Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface. Journal of Physical Chemistry B, 2020, 124, 6412-6419.	1.2	17
775	Nanoscale Structure in Shortâ€Chain Ionic Liquids. ChemPhysChem, 2020, 21, 1887-1897.	1.0	6
776	Capacitance of thin films containing polymerized ionic liquids. Science Advances, 2020, 6, eaba7952.	4.7	12

#	Article	IF	CITATIONS
777	Electrical double layer in molten salts taking into account Lennard-Jones potential. Electrochimica Acta, 2020, 337, 135747.	2.6	5
778	Correlation Length in Concentrated Electrolytes: Insights from All-Atom Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 1778-1786.	1.2	34
779	Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids. Journal of Chemical Physics, 2020, 152, 074709.	1.2	29
780	Influence of Polarizability on the Prediction of the Electrical Double Layer Structure in a Clay Mesopore: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2020, 124, 6221-6232.	1.5	17
781	Effects of Surface Transition and Adsorption on Ionic Liquid Capacitors. Journal of Physical Chemistry Letters, 2020, 11, 1767-1772.	2.1	15
782	Asymmetric double-layer charging in a cylindrical nanopore under closed confinement. Journal of Chemical Physics, 2020, 152, 084103.	1.2	7
783	Inner Layer Capacitance of Organic Electrolytes from Constant Voltage Molecular Dynamics. Journal of Physical Chemistry C, 2020, 124, 2907-2922.	1.5	25
784	An electric double layer structure and differential capacitance at the electrode interface of tributylmethylammonium bis(trifluoromethanesulfonyl)amide studied using a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 5198-5210.	1.3	9
785	Charge oscillations in ionic liquids: A microscopic cluster model. Physical Review E, 2020, 101, 010601.	0.8	40
786	Charge storage in two-dimensional systems. Journal of Electroanalytical Chemistry, 2020, 872, 114101.	1.9	5
787	Ambipolar device simulation based on the drift-diffusion model in ion-gated transition metal dichalcogenide transistors. Npj Computational Materials, 2020, 6, .	3.5	5
788	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	23.0	277
789	Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews, 2020, 49, 3005-3039.	18.7	391
790	Differential capacitance of ionic liquid and mixture with organic solvent. Electrochimica Acta, 2021, 367, 137517.	2.6	8
791	On the inverse relaxation approach to supercapacitors characterization. Journal of Power Sources, 2021, 484, 229257.	4.0	4
792	Curvature effects on electric-double-layer capacitance. Chinese Journal of Chemical Engineering, 2021, 31, 145-152.	1.7	11
793	Multi-ionic effects on the equilibrium and dynamic properties of electric double layers based on the Bikerman correction. Journal of Electroanalytical Chemistry, 2021, 880, 114923.	1.9	3

ARTICLE IF CITATIONS Model of electrical double layer structure at semi-metallic electrode/ionic liquid interface. 795 2.6 10 Electrochimica Acta, 2021, 368, 137555. Thermodynamic factors for locally non-neutral, concentrated electrolytic fluids. Electrochimica 796 2.6 Acta, 2021, 371, 137638. Recent understanding of solid-liquid friction in ionic liquids. Green Chemical Engineering, 2021, 2, 797 3.3 25 145-157. Evaluation of static differential capacitance at the [C₄mim⁺][TFSA^{â[~]}]/electrode interface using molecular dynamics 798 simulation combined with electrochemical surface plasmon resonance measurements. Physical Chemistry Chemical Physics, 2021, 23, 13905-13917. Enrichment effects of ionic liquid mixtures at polarized electrode interfaces monitored by potential 799 1.3 6 screening. Physical Chemistry Chemical Physics, 2021, 23, 10756-10762. Surface Charge Density in Electrical Double Layer Capacitors with Nanoscale Cathodeâ \in Anode Separation. Journal of Physical Chemistry B, 2021, 125, 625-636. 1.2 801 Mean-Field Theory of the Electrical Double Layer in Ionic Liquids., 2021, , 1-13. 4 Distinguishing interfacial double layer and oxide-based capacitance on gold and pre-oxidized Fe-Cr in 1-ethyl-3-methylimidazolium methanesulfonate room temperature ionic liquid aqueous mixture. 2.3 Electrochemistry Communications, 2021, 122, 106900. Structural transitions at electrodes, immersed in simple ionic liquid models. Soft Matter, 2021, 17, 803 1.2 2 3876-3885. Effect of Bjerrum pairs on the electrostatic properties of an electrolyte solution near charged 804 1.3 surfaces: a mean-field approach. Physical Chemistry Chemical Physics, 2021, 23, 12296-12308. A Tutorial on Electrochemical Impedance Spectroscopy and Nanogap Electrodes for Biosensing 805 2.4 18 Applications. IEEE Sensors Journal, 2021, 21, 22232-22245. Capacitance with Different Electrode Surface Topology., 2021, , 1-9. 806 Mean-Field and Modified Poisson–Boltzmann Approaches for Modeling Electrochemical Energy 807 0 Storage Systems., 2021, , 1-16. Understanding contact electrification at liquid–solid interfaces from surface electronic structure. 808 5.8 56 Nature Communications, 2021, 12, 1752 Grand-Canonical Model of Electrochemical Double Layers from a Hybrid Density–Potential 809 2.320 Functional. Journal of Chemical Theory and Computation, 2021, 17, 2417-2430. Capacitance Effects of a Hydrophobic-Coated Ion Gel Dielectric on AC Electrowetting. Micromachines, 1.4 2021, 12, 320. Electronic View of Triboelectric Nanogenerator for Energy Harvesting: Mechanisms and Applications. 811 2.8 4 Advanced Energy and Sustainability Research, 2021, 2, 2000087. Demystifying the Stern layer at a metal–electrolyte interface: Local dielectric constant, specific ion 1.2 adsorption, and partial charge transfer. Journal of Chemical Physics, 2021, 154, 124701.

#	Article	IF	CITATIONS
814	Structural Reorganization of Ionic Liquid Electrolyte by a Rapid Charge/Discharge Circle. Journal of Physical Chemistry Letters, 2021, 12, 2273-2278.	2.1	25
815	Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express, 2021, 2, 022004.	1.2	37
816	Perturbation analysis for the effects of ion correlations on the surface force and the specific capacitance in a nanochannel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126207.	2.3	1
817	Capacitive Hysteresis Effects in Ionic Liquids: 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate on Polycrystalline Gold Electrode. Journal of the Electrochemical Society, 2021, 168, 046510.	1.3	2
818	Measurement of Electric Double Layer Capacitance Using Dielectrophoresis-Based Particle Manipulation. Analytical Chemistry, 2021, 93, 5882-5889.	3.2	9
819	Capillary Ionization and Jumps of Capacitive Energy Stored in Mesopores. Journal of Physical Chemistry C, 2021, 125, 10243-10249.	1.5	4
820	Impedance response of electrochemical interfaces: part II-chemisorption. Journal of Physics Condensed Matter, 2021, 33, 164003.	0.7	11
821	Energetic Arguments on the Microstructural Analysis in Ionic Liquids. Advanced Theory and Simulations, 2021, 4, 2100114.	1.3	2
822	Ionic liquid–metal interface: The origins of capacitance peaks. Electrochimica Acta, 2021, 379, 138148.	2.6	28
823	A new regularity used to predict the camel-bell shape transition in the capacitance curve of electric double layer capacitors. Journal of Applied Electrochemistry, 2021, 51, 1229.	1.5	6
824	A study of the numerical stability of an ImEx scheme with application to the Poisson-Nernst-Planck equations. Applied Numerical Mathematics, 2021, 163, 239-253.	1.2	2
825	Resistivity of mesopore-confined ionic liquid determined by electrochemical impedance spectroscopy. Electrochimica Acta, 2021, 378, 138112.	2.6	1
826	Adaptive time-stepping schemes for the solution of the Poisson-Nernst-Planck equations. Applied Numerical Mathematics, 2021, 163, 254-269.	1.2	5
827	Modeling Lithium Transport and Electrodeposition in Ionic-Liquid Based Electrolytes. Frontiers in Energy Research, 2021, 9, .	1.2	1
828	Electrolyte structure near electrodes with molecular-size roughness. Physical Review E, 2021, 103, L060102.	0.8	12
829	Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid—Solvent Mixtures. Molecules, 2021, 26, 3668.	1.7	17
830	Relaxation dynamics of two interacting electrical double-layers in a 1D Coulomb system. Journal of Physics Condensed Matter, 2021, 33, 394001.	0.7	3
831	Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces. Membranes, 2021, 11, 533.	1.4	8

#	Article	IF	CITATIONS
832	Effect of the metallicity on the capacitance of gold–aqueous sodium chloride interfaces. Journal of Chemical Physics, 2021, 155, 044703.	1.2	26
833	Capacitance and Structure of Electric Double Layers: Comparing Brownian Dynamics and Classical Density Functional Theory. Journal of Solution Chemistry, 2022, 51, 296-319.	0.6	19
834	Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS Nano, 2021, 15, 11724-11733.	7.3	24
835	Interaction Regulation Between Ionomer Binder and Catalyst: Active Tripleâ€Phase Boundary and High Performance Catalyst Layer for Anion Exchange Membrane Fuel Cells. Advanced Science, 2021, 8, e2101744.	5.6	34
836	The electric double layer effect and its strong suppression at Li+ solid electrolyte/hydrogenated diamond interfaces. Communications Chemistry, 2021, 4, .	2.0	15
837	Polarization of ionic liquid and polymer and its implications for polymerized ionic liquids: An overview towards a new theory and simulation. Journal of Polymer Science, 2021, 59, 2434-2457.	2.0	11
838	Transient performance analysis of graphene FET gated via ionic solid by numerical simulations based on tight-binding method and Nernst–Planck–Poisson equations. Journal of Applied Physics, 2021, 130, .	1.1	4
839	A critical review on the electrosorption of organic compounds in aqueous effluent – Influencing factors and engineering considerations. Environmental Research, 2022, 204, 112128.	3.7	20
840	Theory of Ionic Liquids with Polarizable Ions on a Charged Electrode. Journal of Physical Chemistry C, 2021, 125, 21151-21159.	1.5	15
841	Electric Double Layer at the Polycrystalline Platinum–Electrolyte Interface Probed by the Electrokinetic Streaming Current Method. Journal of Physical Chemistry C, 2021, 125, 19706-19715.	1.5	5
842	Effect of acetonitrile on the interface structure of Au (1 0 0)/1-butyl-3-methyl tetrafluoroborate ionic liquid determined by a molecular dynamics simulation. Chemical Physics Letters, 2021, 779, 138882.	1.2	0
843	The differential capacitance as a probe for the electric double layer structure and the electrolyte bulk composition. Journal of Chemical Physics, 2021, 155, 104702.	1.2	16
844	Nonisothermal model for the electric double layer under constant-charge condition. Journal of Electroanalytical Chemistry, 2021, 896, 115320.	1.9	2
845	The electrochemical behaviour of protic quaternary amine based room-temperature ionic liquid N2210(OTf) at negatively and positively polarized micro-mesoporous carbon electrode investigated by in situ X-ray photoelectron spectroscopy, in situ mass-spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. Journal of Electroanalytical Chemistry, 2021, 897,	1.9	3
846	115561. Structure–Capacitance Relationships of Graphene/Ionic Liquid Electrolyte Double Layers. Journal of Physical Chemistry C, 2021, 125, 20204-20218.	1.5	16
847	Binary mixtures of homologous room-temperature ionic liquids: Temperature and composition evolution of the nanoscale structure. Journal of Molecular Liquids, 2021, 338, 116587.	2.3	5
848	Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers. Physical Review Letters, 2021, 127, 135502.	2.9	7
849	A nonlocal electrostatics model for ions in concentrated primitive electrolyte solutions. Electrochimica Acta, 2021, 392, 139040.	2.6	3

#	Article	IF	CITATIONS
850	On the Gouy–Chapman–Stern model of the electrical double-layer structure with a generalized Boltzmann factor. Physica A: Statistical Mechanics and Its Applications, 2021, 582, 126252.	1.2	17
852	Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chemical Science, 2021, 12, 11166-11180.	3.7	36
853	Fundamentals of Capacitive Charge Storage in Carbon-Based Supercapacitors. Springer Series in Materials Science, 2021, , 559-586.	0.4	0
854	Atomic structure and electrical property of ionic liquids at the MoS2 electrode with varying interlayer spacing. Journal of Molecular Modeling, 2021, 27, 41.	0.8	2
855	Potential dependence of the ionic structure at the ionic liquid/water interface studied using MD simulation. Physical Chemistry Chemical Physics, 2021, 23, 22367-22374.	1.3	7
856	From Ionogels to Biredox Ionic Liquids: Some Emerging Opportunities for Electrochemical Energy Storage and Conversion Devices. Advanced Energy Materials, 2017, 7, 1700883.	10.2	36
857	Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. Green Energy and Technology, 2016, , 61-89.	0.4	3
858	A semi-GCMC simulation study of electrolytic capacitors with adsorbed titrating peptides. Journal of Chemical Physics, 2020, 153, 174703.	1.2	3
859	Ionic structure and decay length in highly concentrated confined electrolytes. AIP Advances, 2020, 10,	0.6	12
860	Low Mach number fluctuating hydrodynamics model for ionic liquids. Physical Review Fluids, 2020, 5, .	1.0	4
861	Spin-glass charge ordering in ionic liquids. Physical Review Materials, 2019, 3, .	0.9	11
862	Overscreening and crowding in electrochemical ionic liquid systems. Physical Review Materials, 2019, 3, .	0.9	14
863	Water as a catalyst for ion transport across the electrical double layer in ionic liquids. Physical Review Materials, 2020, 4, .	0.9	5
864	Stability of ionic liquid modeled by composite Coulomb-Yukawa potentials. Physical Review Research, 2020, 2, .	1.3	5
865	A mean spherical approximation study of the capacitance of an electric double layer formed by a high density electrolyte. Collection of Czechoslovak Chemical Communications, 2010, 75, 303-312.	1.0	8
866	Impedance Response of Electrochemical Interfaces: Part I. Exact Analytical Expressions for Ideally Polarizable Electrodes. Journal of the Electrochemical Society, 2020, 167, 166517.	1.3	10
867	Electrolytes for Electrochemical Supercapacitors. , 0, , .		44
868	Asymmetric Finite Size of Ions and Orientational Ordering of Water in Electric Double Layer Theory Within Lattice Model. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1559-1566.	1.1	8

#	Article	IF	CITATIONS
869	Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory. Bulletin of the Korean Chemical Society, 2010, 31, 2553-2556.	1.0	4
870	Ionic Liquids - Classes and Properties. , 2011, , .		25
871	Experimental Evidence of Long-Lived Electric Fields of Ionic Liquid Bilayers. Journal of the American Chemical Society, 2021, 143, 17431-17440.	6.6	31
872	Capacitive energy storage in single-file pores: Exactly solvable models and simulations. Journal of Chemical Physics, 2021, 155, 174112.	1.2	8
873	Unusual properties of the electric double layer in an extremely narrow nanotube. A grand canonical Monte Carlo and classical DFT study. Journal of Physics and Chemistry of Solids, 2022, 161, 110440.	1.9	9
874	Adsorption phenomena at the interface between mercury and solutions containing choline chloride, ethylene glycol and water. Voprosy Khimii I Khimicheskoi Tekhnologii, 2021, , 50-58.	0.1	0
875	On the Role of Electrostatic Repulsion in Topological Defect-Driven Membrane Fission. Membranes, 2021, 11, 812.	1.4	3
876	2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. Advanced Science, 2021, 8, e2102493.	5.6	29
877	Biological Impact of Membranous Nanostructures. , 2015, , 401-464.		0
878	Frequency dependence of the electrophoretic mobility for single colloids as measured using optical tweezers. Physical Review Fluids, 2017, 2, .	1.0	2
881	Towards a Scalable Multifidelity Simulation Approach for Electrokinetic Problems atÂtheÂMesoscale. Lecture Notes in Computer Science, 2018, , 156-164.	1.0	0
882	On The Inverse Relaxation Approach To Supercapacitors Characterization. SSRN Electronic Journal, 0, ,	0.4	0
883	Vibrational spectroscopic investigations on ionic liquid/electrode interfaces. Denki Kagaku, 2020, 88, 102-108.	0.0	0
884	Long-term stability of Cd(0001) single crystal ionic liquid interface – The effect of Iâ^' addition. Journal of Electroanalytical Chemistry, 2021, 903, 115826.	1.9	2
885	Electrical Double-Layer Structure and Property of Ionic Liquid-Electrode System for Electrochemical Applications. Nanotechnology in the Life Sciences, 2020, , 177-220.	0.4	0
886	Use of ionic liquids in electrochemical sensors. , 2022, , 343-368.		1
887	The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. International Journal of Molecular Sciences, 2021, 22, 12653.	1.8	7
888	Overscreening Induced by Ionic Adsorption at the Ionic Liquid/Electrode Interface Detected Using Neutron Reflectometry with a Rational Material Design. Bulletin of the Chemical Society of Japan, 2021, 94, 2914-2918.	2.0	6

#	Article	IF	CITATIONS
889	The Influence of Anion Structure on the Ionic Liquids/Au (100) Interface by Molecular Dynamics Simulations. Langmuir, 2021, 37, 14059-14071.	1.6	12
890	Ionic screening in bulk and under confinement. Journal of Chemical Physics, 2021, 155, 204501.	1.2	19
891	Electrochemistry meets polymer physics: polymerized ionic liquids on an electrified electrode. Physical Chemistry Chemical Physics, 2022, 24, 1355-1366.	1.3	6
892	Raman spectroscopy and DFT calculations of PEDOT:PSS in a dipolar field. Physical Chemistry Chemical Physics, 2021, 24, 541-550.	1.3	24
893	On the importance of the electric double layer structure in aqueous electrocatalysis. Nature Communications, 2022, 13, 174.	5.8	92
894	Derivation of the solvation effect-incorporated Poisson-Boltzmann equation. Journal of Molecular Liquids, 2022, 351, 118537.	2.3	2
895	Charging dynamics of electrical double layers inside a cylindrical pore: predicting the effects of arbitrary pore size. Soft Matter, 2021, 18, 198-213.	1.2	26
896	Ionic Flexible Sensors: Mechanisms, Materials, Structures, and Applications. Advanced Functional Materials, 2022, 32, .	7.8	79
897	Molecular dynamics investigation of charging process in polyelectrolyte-based supercapacitors. Scientific Reports, 2022, 12, 1098.	1.6	6
898	Electric double layer theory for room temperature ionic liquids on charged electrodes: Milestones and prospects. Current Opinion in Electrochemistry, 2022, 33, 100931.	2.5	13
899	Double-Edged Sword of Ion-Size Asymmetry in Energy Storage of Supercapacitors. Journal of Physical Chemistry Letters, 2022, 13, 1438-1445.	2.1	9
900	Structural Forces in Ionic Liquids: The Role of Ionic Size Asymmetry. Journal of Physical Chemistry B, 2022, 126, 1242-1253.	1.2	21
901	In situ and operando thermal characterization in aqueous electric double layer capacitors using the 3 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si8.svg"><mml:mrow><mml:mi mathvariant="normal">ï‰</mml:mi></mml:mrow></mml:math> hot-wire method. International Journal of Heat and Mass Transfer, 2022, 188, 122632.	2.5	3
902	Angstrom-scale ion channels towards single-ion selectivity. Chemical Society Reviews, 2022, 51, 2224-2254.	18.7	116
903	2-Dimensional study of ion size effects on nanoflows. AIP Conference Proceedings, 2022, , .	0.3	0
904	Different shapes based on ionic liquid leading to a two-stage discharge process. Journal of Materials Chemistry A, 2022, 10, 7684-7693.	5.2	9
905	New Crowding States of Ionic Liquid Induced by Configuration Change of Ion Adsorption on Charged Electrode. SSRN Electronic Journal, 0, , .	0.4	0
906	Slow and Fast Dynamics at the Ionic Liquid/Gold Electrode Interface Separately Probed by Electrochemical Surface Plasmon Resonance Combined with Sequential Potential Pulse Techniques. Journal of the Electrochemical Society, 2022, 169, 066501.	1.3	2

#	Article	IF	CITATIONS
907	Molecular Dynamics Simulations of Metal Electrode/Molten LiCl-KCl-UCl ₃ Mixtures Interface. Journal of the Electrochemical Society, 2022, 169, 032503.	1.3	1
908	Spectroscopic investigation of the structure of a pyrrolidinium-based ionic liquid at electrified interfaces. Journal of Chemical Physics, 2022, 156, 114701.	1.2	3
909	Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. Electrochemical Science Advances, 2023, 3, .	1.2	4
910	Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. ACS Applied Materials & Interfaces, 2022, 14, 16800-16808.	4.0	9
911	The primitive model in classical density functional theory: beyond the standard mean-field approximation. Journal of Physics Condensed Matter, 2022, 34, 235101.	0.7	5
912	Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews, 2022, 122, 10860-10898.	23.0	81
913	Thermodynamics of Electrolyte Solutions Near Charged Surfaces: Constant Surface Charge vs. Constant Surface Potential. Journal of Chemical Physics, 2022, 156, 174704.	1.2	2
914	Ionic Liquid/Non-Ionic Surfactant Mixtures as Versatile, Non-Volatile Electrolytes: Double-Layer Capacitance and Conductivity. Journal of the Electrochemical Society, 2022, 169, 040513.	1.3	3
915	Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews, 2022, 122, 10777-10820.	23.0	82
916	Effect of a Magnetic Field on the Electrode Process of Al Electrodeposition in a [Emim]Cl-AlCl ₃ Ionic Liquid. Journal of Physical Chemistry B, 2021, 125, 13744-13751.	1.2	4
917	Lipid nanoparticles with ionizable lipids: Statistical aspects. Physical Review E, 2022, 105, 044405.	0.8	2
918	Fully periodic, computationally efficient constant potential molecular dynamics simulations of ionic liquid supercapacitors. Journal of Chemical Physics, 2022, 156, 184101.	1.2	20
919	Skin-Inspired Large Area Iontronic Pressure Sensors with Ultra-Broad-Range and High Sensitivity. SSRN Electronic Journal, 0, , .	0.4	0
920	A coarse-grained model of room-temperature ionic liquids between metal electrodes: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 11573-11584.	1.3	3
921	Knowledge and Technology Used in Capacitive Deionization of Water. Membranes, 2022, 12, 459.	1.4	10
922	Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews, 2022, 122, 11022-11084.	23.0	46
923	Ionic Liquid Solutions Show Anomalous Crowding Behavior at an Electrode Surface. Langmuir, 2022, 38, 6322-6329.	1.6	4
924	Ionic liquid crystals/nano-nickel oxide-decorated carbon nanotubes composite for electrocatalytic treatment of urea-contaminated water. Journal of Water Process Engineering, 2022, 48, 102823.	2.6	3

#	Article	IF	CITATIONS
925	Analysis of the Electric Double Layer Structure Formed in an Ionic Liquid Using Neutron Reflectivity. , 2022, 1, 020503.		2
926	Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface. Chemical Reviews, 2022, 122, 10651-10674.	23.0	39
927	Modified Poisson–Boltzmann equations and macroscopic forces in inhomogeneous ionic fluids. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 053205.	0.9	16
928	Finite element approximations to a fourth-order modified Poisson-Fermi equation for electrostatic correlations in concentrated electrolytes. Computers and Mathematics With Applications, 2022, 117, 229-244.	1.4	0
929	The impact of steric repulsion on the total free energy of electric double layer capacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129134.	2.3	1
930	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
931	Boundary-Monte Carlo Method for Neutral and Charged Confined Fluids. Journal of Chemical Theory and Computation, 2022, 18, 3766-3780.	2.3	0
932	Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells. Physchem, 2022, 2, 163-178.	0.5	7
933	Combined Ionic Size and Electrode Spacing Effects on the Differential Capacitance of Confined Electrolytic Cells. Journal of Physical Chemistry C, 2022, 126, 9154-9160.	1.5	3
934	Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews, 2022, 122, 10821-10859.	23.0	186
935	Probing the distribution of ionic liquid mixtures at charged and neutral interfaces via simulations and lattice-gas theory. Physical Chemistry Chemical Physics, 0, , .	1.3	0
936	On the theory of electrolytes: correlations, excluded volume and multiple-boundaries. Physics and Chemistry of Liquids, 0, , 1-12.	0.4	0
937	Towards a Pseudocapacitive Battery: Benchmarking the Capabilities of Quantized Capacitance for Energy Storage. , 2022, 1, .		3
938	New crowding states of ionic liquid induced by configuration change of ion adsorption on charged electrode. Electrochimica Acta, 2022, 425, 140692.	2.6	2
939	Impact of Asymmetries in Valences and Diffusivities on the Transport of a Binary Electrolyte in a Charged Cylindrical Pore. SSRN Electronic Journal, 0, , .	0.4	0
940	Insight into the Camelâ€ŧoâ€Bell Transition of Differential Capacitance in Ionic Liquidâ€Based Supercapacitors. ChemElectroChem, 2022, 9, .	1.7	2
941	Structure-Dependent Electrical Double-Layer Capacitances of the Basal Plane Pd(<i>hkl</i>) Electrodes in HClO ₄ . Journal of Physical Chemistry C, 2022, 126, 11414-11420.	1.5	5
942	Properties of electrolyte near rough electrodes: Capacity and impedance. Current Opinion in Electrochemistry, 2022, 35, 101104.	2.5	3

#	Article	IF	CITATIONS
943	Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano Energy, 2022, 101, 107571.	8.2	40
944	Double layer in ionic liquids: Temperature effect and bilayer model. Journal of Molecular Liquids, 2022, 363, 119747.	2.3	10
945	Tuning Ionic Screening To Accelerate Electrochemical CO ₂ Reduction in Ionic Liquid Electrolytes. ACS Catalysis, 2022, 12, 9706-9716.	5.5	14
946	Recent Progresses in Adsorption Mechanism, Architectures, Electrode Materials and Applications for Advanced Electrosorption System: A Review. Polymers, 2022, 14, 2985.	2.0	1
947	Temperature-insensitive fast anion intercalation kinetics in graphite electrodes for aluminum-ion batteries. Electrochimica Acta, 2022, 428, 140892.	2.6	1
948	Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews, 2022, 122, 13547-13635.	23.0	127
949	The role of water at electrified metal-water interfaces unravelled from first principles. Current Opinion in Electrochemistry, 2022, 36, 101118.	2.5	2
950	Gelation, clustering, and crowding in the electrical double layer of ionic liquids. Journal of Chemical Physics, 2022, 157, .	1.2	13
951	Impedance Response of Ionic Liquids in Long Slit Pores. Journal of the Electrochemical Society, 2022, 169, 120513.	1.3	4
952	A review of carbon materials for supercapacitors. Materials and Design, 2022, 221, 111017.	3.3	128
953	The electrical impedance of carbon xerogel hierarchical electrodes. Electrochimica Acta, 2022, 433, 141203.	2.6	1
954	Disjoining pressure of room temperature ionic liquid in charged slit carbon nanopore: Molecular dynamics study. Journal of Molecular Liquids, 2022, 366, 120307.	2.3	6
955	Cracking Ion Pairs in the Electrical Double Layer of Ionic Liquids. SSRN Electronic Journal, 0, , .	0.4	0
956	Electrical double layer in ionic liquids and deep eutectic solvents. , 2023, , .		0
957	MetalWalls: Simulating electrochemical interfaces between polarizable electrolytes and metallic electrodes. Journal of Chemical Physics, 2022, 157, .	1.2	19
958	Cracking Ion Pairs in the Electrical Double Layer of Ionic Liquids. Electrochimica Acta, 2022, 434, 141163.	2.6	6
959	Electrosorption-induced deformation of a porous electrode with non-convex pore geometry in electrolyte solutions: A theoretical study. Europhysics Letters, 2022, 140, 16001.	0.7	8
960	Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nature Communications, 2022, 13, .	5.8	27

ARTICLE IF CITATIONS Impact of asymmetries in valences and diffusivities on the transport of a binary electrolyte in a 961 2.6 9 charged cylindrical pore. Electrochimica Acta, 2022, 433, 141220. Polymerized ionic liquids on charged electrodes: New prospects for electrochemistry. Current 2.5 Opinion in Electrochemistry, 2022, 36, 101134. Effects of dilution in ionic liquid supercapacitors. Physical Chemistry Chemical Physics, 2022, 24, 963 1.3 1 27362-27374. Electrochemical In Situ/<i>operando</i> Spectroscopy and Microscopy Part 1: Fundamentals. 964 Electrochemistry, 2022, 90, 102009-102009. High-frequency phenomena and electrochemical impedance spectroscopy at nanoelectrodes. Current 965 3.4 3 Opinion in Colloid and Interface Science, 2023, 63, 101654. Electrical double layer at electrode/ionic liquid interfaces., 2024, , 40-51. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to 967 11.1 2 Biomacromolecules. Advanced Materials, 2023, 35, . Advanced polymer-based materials and mesoscale models to enhance the performance of 968 3.9 9 multifunctional supercapacitors. Journal of Energy Storage, 2023, 58, 106337. Multimode transistors and neural networks based on ion-dynamic capacitance. Nature Electronics, 969 13.1 27 2022, 5, 859-869. Molecular Insights into Curvature Effects on the Capacitance of Electrical Double Layers in 970 1.6 Tricationic Ionic Liquids with Carbon Nanotube Electrodes. Langmuir, 2023, 39, 588-596. Density-Potential Functional Theory of Electrochemical Double Layers: Calibration on the Ag(111)-KPF₆ System and Parametric Analysis. Journal of Chemical Theory and Computation, 971 7 2.32023, 19, 1003-1013. Capacitance with Different Electrode Surface Topology., 2022, , 159-167. Molecular Dynamics Simulation of the Interfacial Structure and Differential Capacitance of 973 1.3 2 [BMI+][PF6ấ^'] Ionic Liquids on MoS2 Electrode. Processes, 2023, 11, 380. Zooming into the Inner Helmholtz Plane of Pt(111)–Aqueous Solution Interfaces: Chemisorbed Water 974 3.6 14 and Partially Charged Ions. Jacs Au, 2023, 3, 550-564. Mapping the Threeâ€Dimensional Nanostructure of the Ionic Liquid–Solid Interface Using Atomic Force 975 1.9 1 Microscopy and Molecular Dynamics Simulations. Advanced Materials Interfaces, 2023, 10, . An artificial sodium-selective subnanochannel. Science Advances, 2023, 9, . Effect of frequency on droplet actuation in reverse electrowetting. Journal of Micromechanics and 977 1.51 Microengineering, 2023, 33, 035003. Hybrid quantum-classical model of mechano-electrochemical effects on graphite-electrolyte 978 interfaces in metal-ion batteries. Extreme Mechanics Letters, 2023, 59, 101971.

#	Article	IF	Citations
" 979	Mean-Field Theory of the Electrical Double Layer in Ionic Liquids. , 2022, , 837-850.		2
980	The adsorption of 4,4ʹ-bipyridine at a Cd(0001) ionic liquid interface – The descent into disorder. Electrochemistry Communications, 2023, 148, 107451.	2.3	3
981	First-principles theory of electrochemical capacitance. Electrochimica Acta, 2023, 444, 142016.	2.6	3
982	Macroscopic forces in inhomogeneous polyelectrolyte solutions. Physical Review E, 2023, 107, .	0.8	6
984	The Poisson-Boltzmann Equation. SpringerBriefs in Physics, 2023, , 1-25.	0.2	0
985	Novel electrodes and gate dielectrics for <scp>fieldâ€effect</scp> transistors based on <scp>twoâ€dimensional</scp> materials. Bulletin of the Korean Chemical Society, 0, , .	1.0	1
986	Porous Carbon Materials for Supercapacitor Applications. Materials Horizons, 2023, , 117-146.	0.3	1
987	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
988	Electrostatics of soft (bio)interfaces: Corrections of mean-field Poisson-Boltzmann theory for ion size, dielectric decrement and ion-ion correlations. Journal of Colloid and Interface Science, 2023, 642, 154-168.	5.0	4
989	Planar Multi-Gate Artificial Synaptic Transistor with Solution-Processed AlOx Solid Electric Double Layer Dielectric and InOx Channel. Coatings, 2023, 13, 719.	1.2	2
990	Constant chemical potential–quantum mechanical–molecular dynamics simulations of the graphene–electrolyte double layer. Journal of Chemical Physics, 2023, 158, .	1.2	7
991	Platinum quantum dots-decorated MXene-derived titanium dioxide nanowire/Ti3C2 heterostructure for use in solar-driven gas-phase carbon dioxide reduction to yield value-added fuels. Journal of Energy Chemistry, 2023, 82, 627-637.	7.1	7
992	Potential risk assessment of ionic liquids based on molecular dynamics simulation. Soft Computing, 0,	2.1	0
993	An Insight into the Mechanisms of Energy Storage in a Double Layer Capacitor with ILs and a Microporous Carbon: Experimental Evidences of Ion-Swapping by Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2023, 170, 040528.	1.3	1
1000	The adsorption of organic molecules and inorganic ions—case studies in aqueous, organic and ionic liquid electrolytes. , 2024, , 681-691.		1
1002	Thermodynamics beyond dilute solution theory: Steric effects and electrowetting. , 2024, , 126-135.		0
1006	Theory and Simulations of Ionic Liquids in Nanoconfinement. Chemical Reviews, 2023, 123, 6668-6715.	23.0	24
1007	Layered structure and property of the ionic liquid-electrode interface. , 2024, , 714-724.		0

#		Article	IF	Citations
10	012	Density-potential functional theory of metal-solution interfaces. , 2024, , 308-331.		1
10	042	Colloidal Interactions in Ionic Liquids—The Electrical Double Layer Inferred from Ion Layering and Aggregation. ACS Symposium Series, 0, , 123-148.	0.5	0