Biodegradable thermosensitive copolymer hydrogels for

Expert Opinion on Therapeutic Patents 17, 965-977 DOI: 10.1517/13543776.17.8.965

Citation Report

#	Article	IF	CITATIONS
1	Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid) – Thermodynamics of micellization and hydrolytic degradation. Biomaterials, 2008, 29, 2164-2172.	5.7	153
2	Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials, 2008, 29, 3185-3194.	5.7	157
3	A Thermosensitive and Biodegradable Physical Gel with Chemically Crosslinked Nanogels as the Building Block. Macromolecular Rapid Communications, 2008, 29, 751-756.	2.0	49
4	Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide)–poly(ɛ-caprolactone)–poly(N-isopropylacrylamide) triblock copolymers. Polymer, 2008, 49, 5084-5094.	1.8	89
5	Head Group Modulated pH-Responsive Hydrogel of Amino Acid-Based Amphiphiles:  Entrapment and Release of Cytochrome <i>c</i> and Vitamin B ₁₂ . Langmuir, 2008, 24, 4280-4288.	1.6	109
6	Surface Coating with a Thermoresponsive Copolymer for the Culture and Nonâ€Enzymatic Recovery of Mouse Embryonic Stem Cells. Macromolecular Bioscience, 2009, 9, 1069-1079.	2.1	80
7	Biodegradable Thermogelling Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Block Copolymers: Micellization, Gelation, and Cytotoxicity and Cell Culture Studies. Journal of Physical Chemistry B, 2009, 113, 11822-11830.	1.2	100
8	Reverse Thermal Gelation of PAF-PLX-PAF Block Copolymer Aqueous Solution. Biomacromolecules, 2009, 10, 2476-2481.	2.6	50
9	Synthesis of Novel Biodegradable Thermoresponsive Triblock Copolymers Based on Poly[(<i>R</i>)-3-hydroxybutyrate] and Poly(<i>N</i> -isopropylacrylamide) and Their Formation of Thermoresponsive Micelles. Macromolecules, 2009, 42, 194-202.	2.2	130
10	Novel poly(N-isopropylacrylamide)-poly[(R)-3-hydroxybutyrate]-poly(N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter, 2009, 5, 2937.	1.2	78
11	Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry, 2009, 19, 5891.	6.7	111
12	Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 2010, 143, 175-182.	4.8	206
13	In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials, 2010, 31, 9266-9272.	5.7	92
14	Synthesis of Poly(p-dioxanone) Catalyzed by Zn L-Lactate under Microwave Irradiation and Its Application in Ibuprofen Delivery. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 927-936.	1.9	11
15	Micellization and Thermogelation of Poly(ether urethane)s Comprising Poly(ethylene glycol) and Poly(propylene glycol). Macromolecular Symposia, 2010, 296, 161-169.	0.4	15
16	Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect. Soft Matter, 2011, 7, 456-462.	1.2	42
17	Block sequence affects thermosensitivity and nano-assembly: PEG-l-PA-dl-PA and PEG-dl-PA-l-PA block copolymers. Soft Matter, 2011, 7, 6515.	1.2	38
18	Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. Journal of Materials Chemistry, 2011, 21, 2246.	6.7	94

#	Article	IF	CITATIONS
19	Enzymatically Degradable Thermogelling Poly(alanine- <i>co</i> -leucine)-poloxamer-poly(alanine- <i>co</i> -leucine). Biomacromolecules, 2011, 12, 1234-1242.	2.6	61
20	pH/temperature sensitive chitosan-g-(PA-PEG) aqueous solutions as new thermogelling systems. Journal of Materials Chemistry, 2011, 21, 5484.	6.7	31
21	Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opinion on Drug Delivery, 2011, 8, 1141-1159.	2.4	48
22	Paclitaxel delivery to brain tumors from hydrogels: A computational study. Biotechnology Progress, 2011, 27, 1478-1487.	1.3	25
23	Injectable biodegradable materials. , 2011, , 323-337.		7
25	Sustained delivery of doxorubicin from thermogelling poly(PEG/PPG/PTMC urethane)s for effective eradication of cancer cells. Journal of Materials Chemistry, 2012, 22, 21249.	6.7	97
26	CHAPTER 8. Hydrogels for Biomedical Applications. Monographs in Supramolecular Chemistry, 2012, , 167-209.	0.2	3
27	Sol–gel transition of PEG–PAF aqueous solution and its application for hGH sustained release. Journal of Materials Chemistry, 2012, 22, 6072.	6.7	45
28	PEG- <scp>l</scp> -PAF and PEG- <scp>d</scp> -PAF: Comparative Study on Thermogellation and Biodegradation. Macromolecules, 2012, 45, 2007-2013.	2.2	43
29	Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012, 41, 2193-2221.	18.7	1,190
30	Biodegradable Thermogels. Accounts of Chemical Research, 2012, 45, 424-433.	7.6	212
31	Complexationâ€Induced Biomimetic Long Range Fibrous Orientation in a Rigidâ€Flexible Block Copolymer Thermogel. Advanced Functional Materials, 2012, 22, 5118-5125.	7.8	28
32	Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer, 2012, 53, 4069-4075.	1.8	27
33	Cell Therapy for Skin Wound Using Fibroblast Encapsulated Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 2	22 ₈ ∏d (glycol
34	Temperature-responsive compounds as in situ gelling biomedical materials. Chemical Society Reviews, 2012, 41, 4860.	18.7	370
35	Thermogelling Chitosan- <i>g</i> -(PAF-PEG) Aqueous Solution As an Injectable Scaffold. Biomacromolecules, 2012, 13, 1750-1757.	2.6	32
36	Molecular captain: A lightâ€sensitive linker molecule in poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 112 nanoâ€assembly, conformation, and solâ€gel transition. Journal of Polymer Science Part A, 2012, 50, 3184-3191.	Td (glycol) 2.5	iâ€poly(<scp 14</scp
37	Sustained delivery of paclitaxel using thermogelling poly(PEG/PPG/PCL urethane)s for enhanced toxicity against cancer cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2686-2694.	2.1	85

#	Article	IF	CITATIONS
38	Polymers used to influence cell fate in 3D geometry: New trends. Progress in Polymer Science, 2012, 37, 645-658.	11.8	62
39	The effect of pH on the hydrolytic degradation of poly(εâ€caprolactone)â€blockâ€poly(ethylene glycol) copolymers. Journal of Applied Polymer Science, 2013, 127, 2046-2056.	1.3	39
40	Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating. Macromolecular Research, 2013, 21, 207-215.	1.0	23
41	Effect of amide hydrogen bonding on spontaneously formed gel-emulsions by two pyridyl carboxylic acid based amphiphiles, sodium salt of 2-dodecylpyridine-5-carboxylic acid and sodium salt of [2-dodecylpyridine-5-carboxylic]glycine: entrapment and release of vitamin B12. Journal of Materials Chemistry B, 2013, 1, 5588.	2.9	24
42	3D Culture of Adipose-Tissue-Derived Stem Cells Mainly Leads to Chondrogenesis in Poly(ethylene) Tj ETQq0 0 0 r 3256-3266.	gBT /Over 2.6	lock 10 Tf 50 83
43	Incorporation of d-alanine into poly(ethylene glycol) and l-poly(alanine-co-phenylalanine) block copolymers affects their nanoassemblies and enzymatic degradation. Soft Matter, 2013, 9, 8014.	1.2	27
44	Biodegradable thermogelling poly(ester urethane)s consisting of poly(1,4-butylene adipate), poly(ethylene glycol), and poly(propylene glycol). Soft Matter, 2013, 9, 787-794.	1.2	25
45	Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science, 2013, 38, 672-701.	11.8	351
46	THERMOGELLING COPOLYMERS FOR MEDICAL APPLICATIONS. Journal of Molecular and Engineering Materials, 2013, 01, 1330002.	0.9	11
47	Evaluation of methoxy polyethylene glycolâ€polylactide diblock copolymers as additive in hypromellose film coating. Polymers for Advanced Technologies, 2013, 24, 1018-1024.	1.6	4
48	Biosynthetic hydrogels—Studies on chemical and physical characteristics on longâ€ŧerm cellular response for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, 2238-2247.	2.1	21
49	Thermal gelation or gel melting: (ethylene glycol) ₁₁₃ â€(<scp>l</scp> â€alanine) ₁₂ and (ethylene glycol) ₁₁₃ â€(<scp>l</scp> â€lactic acid) ₁₂ . Journal of Polymer Science Part A, 2014, 52, 2434-2441.	2.5	3
50	Differentiation of Tonsil-Tissue-Derived Mesenchymal Stem Cells Controlled by Surface-Functionalized Microspheres in PEG-Polypeptide Thermogels. Biomacromolecules, 2014, 15, 2180-2187.	2.6	40
51	Polypeptide Thermogels as a Three Dimensional Culture Scaffold for Hepatogenic Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2014, 6, 17034-17043.	4.0	42
52	Ion and Temperature Sensitive Polypeptide Block Copolymer. Biomacromolecules, 2014, 15, 3664-3670.	2.6	14
53	Biodegradable Thermogelling Polymers: Working Towards Clinical Applications. Advanced Healthcare Materials, 2014, 3, 977-988.	3.9	121
54	3D Culture of Tonsilâ€Derived Mesenchymal Stem Cells in Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 10 Healthcare Materials, 2014, 3, 1782-1791.)7 Td (glyd 3.9	col)â€Poly(< 56

55	Microsphereâ€Incorporated Hybrid Thermogel for Neuronal Differentiation of Tonsil Derived Mesenchymal Stem Cells. Advanced Healthcare Materials, 2015, 4, 1565-1574.	3.9	39
----	---	-----	----

#	Article	IF	CITATIONS
56	PEG-Poly(l-alanine) Thermogel As a 3D Scaffold of Bone-Marrow-Derived Mesenchymal Stem Cells. Macromolecular Bioscience, 2015, 15, 464-472.	2.1	38
57	Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs. Molecules, 2015, 20, 20397-20408.	1.7	157
58	In-Situ Gelling Polymers. Series in Bioengineering, 2015, , .	0.3	3
59	Biodegradable Thermogelling Poly(Organophosphazenes) and Their Potential Biomedical Applications. Series in Bioengineering, 2015, , 37-67.	0.3	1
60	Control of rhCH Release Profile from PEG–PAF Thermogel. Biomacromolecules, 2015, 16, 1461-1469.	2.6	43
61	Recent Progress in Using Biomaterials as Vitreous Substitutes. Biomacromolecules, 2015, 16, 3093-3102.	2.6	98
62	Characteristic cell adhesion behaviors on various derivatives of poly(3-hydroxybutyrate) (PHB) and a block copolymer of poly(3-[RS]-hydroxybutyrate) and poly(oxyethylene). Polymer Degradation and Stability, 2015, 111, 194-202.	2.7	11
63	Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small, 2016, 12, 4782-4806.	5.2	226
64	In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian Journal of Pharmaceutical Sciences, 2016, 11, 673-683.	4.3	175
65	New Linear and Star‣haped Thermogelling Poly([<i>R</i>]â€3â€hydroxybutyrate) Copolymers. Chemistry - A European Journal, 2016, 22, 10501-10512.	1.7	79
66	Thermogels: In Situ Gelling Biomaterial. ACS Biomaterials Science and Engineering, 2016, 2, 295-316.	2.6	176
67	Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Materials Science and Engineering C, 2017, 70, 1107-1119.	3.8	49
68	PCL-based thermo-gelling polymers for in vivo delivery of chemotherapeutics to tumors. Materials Science and Engineering C, 2017, 74, 110-116.	3.8	52
69	Encapsulation of methotrexate and cyclophosphamide in interpolymer complexes formed between poly acrylic acid and poly ethylene glycol on multi-walled carbon nanotubes as drug delivery systems. Materials Science and Engineering C, 2017, 79, 841-847.	3.8	39
70	Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. Materials Science and Engineering C, 2017, 79, 116-122.	3.8	16
71	Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Materials Science and Engineering C, 2017, 80, 411-416.	3.8	125
72	Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Materials Science and Engineering C, 2017, 79, 917-929.	3.8	147
73	Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science and Engineering C, 2017, 79, 793-801.	3.8	39

#	Article	IF	CITATIONS
74	Injectable Polypeptide Thermogel as a Tissue Engineering System for Hepatogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 11568-11576.	4.0	59
75	Thermoresponsive hydrogels based on a phosphorylated star-shaped copolymer: mimicking the extracellular matrix for in situ bone repair. Journal of Materials Chemistry B, 2017, 5, 428-434.	2.9	18
76	Injectable methotrexate loaded polycaprolactone microspheres: Physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Materials Science and Engineering C, 2017, 81, 542-550.	3.8	36
77	Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release. Journal of Biomaterials Applications, 2017, 32, 511-523.	1.2	8
78	A targeted nanocarrier based on polyspermine for the effective delivery of methotrexate in nasopharyngeal carcinoma. Materials Science and Engineering C, 2017, 81, 48-56.	3.8	11
79	Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Materials Science and Engineering C, 2017, 81, 607-626.	3.8	85
80	Recent advances of using polyhydroxyalkanoateâ€based nanovehicles as therapeutic delivery carriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1429.	3.3	77
81	Intratumoral Delivery of Doxorubicin on Folate-Conjugated Graphene Oxide by In-Situ Forming Thermo-Sensitive Hydrogel for Breast Cancer Therapy. Nanomaterials, 2017, 7, 388.	1.9	87
82	Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Materials Science and Engineering C, 2018, 89, 307-315.	3.8	32
83	Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene) Tj ETQq1 1 C 160-165.).784314 rg 3.8	gBT /Overlock 24
84	Salt-Induced Thermoresponsivity of Cross-Linked Polymethoxyethylaminophosphazene Hydrogels: Energetics of the Volume Phase Transition. Journal of Physical Chemistry B, 2018, 122, 1981-1991.	1.2	11
85	Advances in thermosensitive polymer-grafted platforms for biomedical applications. Materials Science and Engineering C, 2018, 92, 1016-1030.	3.8	60
86	An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Materials Science and Engineering C, 2018, 86, 129-143.	3.8	85
87	Preparation and characterization of gellan gum/glucosamine/clioquinol film as oral cancer treatment patch. Materials Science and Engineering C, 2018, 82, 317-322.	3.8	31
88	A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger. Materials Science and Engineering C, 2018, 82, 277-283.	3.8	34
89	Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor. Materials Science and Engineering C, 2018, 82, 234-243.	3.8	20
90	Proof of Principle for Local Delivery of a c-Met Inhibitor. Journal of Pharmaceutical Sciences, 2018, 107, 856-862.	1.6	0
91	Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Materials Science and Engineering C, 2018, 83, 17-24.	3.8	72

#	Article	IF	Citations
 92	Biodegradable Thermogelling Polymers. Small Methods, 2019, 3, 1800313.	4.6	28
92	biodegradable mermogening Folymers. Smail Methods, 2017, 5, 1000515.	4.0	20
93	Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions. Macromolecules, 2018, 51, 7964-7973.	2.2	6
94	Biodegradable polyhydroxyalkanoates nanocarriers for drug delivery applications. , 2018, , 607-634.		8
95	Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 2018, 9, 13.	1.8	193
96	Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies. Molecules, 2018, 23, 553.	1.7	17
97	Biomedical application and controlled drug release of electrospun fibrous materials. Materials Science and Engineering C, 2018, 90, 750-763.	3.8	107
98	Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Engineering and Regenerative Medicine, 2018, 15, 521-530.	1.6	14
99	Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Materials Science and Engineering C, 2018, 91, 727-733.	3.8	31
100	Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery. Biomacromolecules, 2019, 20, 3601-3610.	2.6	144
101	Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Materials Science and Engineering C, 2019, 96, 552-560.	3.8	29
102	Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Materials Science and Engineering C, 2019, 95, 409-421.	3.8	43
103	Combining Ultraâ€High Drug‣oaded Micelles and Injectable Hydrogel Drug Depots for Prolonged Drug Release. Macromolecular Chemistry and Physics, 2020, 221, 1900341.	1.1	24
104	Amphiphilic PLGAâ€₽EGâ€₽LGA triblock copolymer nanogels varying in gelation temperature and modulus for the extended and controlled release of hyaluronic acid. Journal of Applied Polymer Science, 2020, 137, 48678.	1.3	22
105	Recent advances in formulating electrospun nanofiber membranes: Delivering active phytoconstituents. Journal of Drug Delivery Science and Technology, 2020, 60, 102038.	1.4	15
106	Insights into the polymerization kinetics of thermoresponsive polytrimethylene carbonate bearing a methoxyethoxy side group. Journal of Polymer Science, 2020, 58, 2697-2707.	2.0	6
107	Advances in biodegradable and injectable hydrogels for biomedical applications. Journal of Controlled Release, 2021, 330, 151-160.	4.8	133
108	Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Development Research, 2021, 82, 503-522.	1.4	18
109	Study on the Application of a Novel Nano-Curcumin Drug for Alzheimer's Disease. Journal of Biomaterials and Tissue Engineering, 2021, 11, 445-452.	0.0	1

0.			D	
	TAT	ON	Repc	דעו
\sim			INLI C	

#	Article	IF	CITATIONS
110	Hydrogels for Stem Cell Fate Control and Delivery in Regenerative Medicine. Series in Bioengineering, 2015, , 187-214.	0.3	6
111	Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. Materials Science and Engineering C, 2018, 83, 143-147.	3.8	37
112	Biodegradable Thermogelling Polymers for Drug Delivery. Biomaterials Science Series, 2018, , 76-86.	0.1	1
113	Smart hydrogels for 3D bioprinting. International Journal of Bioprinting, 2015, , .	1.7	54
114	Advances in Hydrogels Applied to Degenerative Diseases. Current Pharmaceutical Design, 2012, 18, 2558-2575.	0.9	29
115	Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery. Journal of Pharmaceutical Investigation, 2010, 40, 201-212.	2.7	9
116	Thermoresponsive Gels. , 0, , 7835-7846.		0
117	CHAPTER 10. Thermogelling Polymers: A Cutting Edge Rheology Modifier. RSC Polymer Chemistry Series, 2016, , 178-204.	0.1	0
118	Hydrogel-based 3D Scaffolds for Stem Cell Culturing and Differentiation. Biomaterials Science Series, 2018, , 145-161.	0.1	0
119	General mechanisms of drug loading and sustained release. , 2023, , 31-57.		1
120	Optimization of thermoresponsive chitosan∫β-glycerophosphate hydrogels for injectable neural tissue engineering application. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113193.	2.5	14