Marine Biogeochemical Cycling of Mercury

Chemical Reviews 107, 641-662 DOI: 10.1021/cr050353m

Citation Report

#	Article	IF	CITATIONS
1	Calix[4]arene-Based, Hg ²⁺ -Induced Intramolecular Fluorescence Resonance Energy Transfer Chemosensor. Journal of Organic Chemistry, 2007, 72, 7634-7640.	1.7	191
2	Cleaving Mercury-Alkyl Bonds: A Functional Model for Mercury Detoxification by <i>MerB</i> . Science, 2007, 317, 225-227.	6.0	107
4	The geomicrobiology of gold. ISME Journal, 2007, 1, 567-584.	4.4	212
5	Use of Pitzer Equations to Examine the Formation of Mercury(II) Hydroxide and Chloride Complexes in NaClO4 Media. Aquatic Geochemistry, 2007, 13, 339-355.	1.5	4
6	Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification. EcoHealth, 2008, 5, 399-408.	0.9	137
7	Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast. EcoHealth, 2008, 5, 426-441.	0.9	36
8	Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor Estuary. Marine Chemistry, 2008, 109, 1-17.	0.9	97
9	Sediment–water exchange of methylmercury determined from shipboard benthic flux chambers. Marine Chemistry, 2008, 109, 86-97.	0.9	49
10	Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Marine Chemistry, 2008, 109, 165-182.	0.9	110
11	Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Marine Chemistry, 2008, 111, 214-220.	0.9	52
12	Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chemical Communications, 2008, , 1856.	2.2	233
13	Effects of Stream Water Chemistry and Tree Species on Release and Methylation of Mercury during Litter Decomposition. Environmental Science & Technology, 2008, 42, 8692-8697.	4.6	24
14	Fuel-Mercury Combustion Emissions: An Important Heterogeneous Mechanism and an Overall Review of its Implications. Environmental Science & amp; Technology, 2008, 42, 9014-9030.	4.6	41
15	A mass balance inventory of mercury in the Arctic Ocean. Environmental Chemistry, 2008, 5, 89.	0.7	154
16	Anion-Exchange Chromatographic Separation of Hg for Isotope Ratio Measurements by Multicollector ICPMS. Analytical Chemistry, 2008, 80, 2548-2555.	3.2	42
17	Binding of HgCl ₂ by tripodal ligands controlled by AgPF ₆ : receptors for the PF ₆ ^{â^'} anion. Dalton Transactions, 2008, , 738-741.	1.6	9
18	Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. Journal of Geophysical Research, 2008, 113, .	3.3	196
19	An organopalladium chromogenic chemodosimeter for the selective naked-eye detection of Hg2+ and	2.2	44

'8

#	Article	IF	CITATIONS
20	Simultaneous Determination of Species-Specific Isotopic Composition of Hg by Gas Chromatography Coupled to Multicollector ICPMS. Analytical Chemistry, 2008, 80, 3530-3538.	3.2	99
21	Substrates and Inhibitors of Human Multidrug Resistance Associated Proteins and the Implications in Drug Development. Current Medicinal Chemistry, 2008, 15, 1981-2039.	1.2	330
23	Mercury methylation dynamics in estuarine and coastal marine environments — A critical review. Earth-Science Reviews, 2009, 96, 54-66.	4.0	149
24	Distribution characteristics of total mercury and methylmercury in the topsoil and dust of Xiamen, China. Journal of Environmental Sciences, 2009, 21, 1400-1408.	3.2	18
25	Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry, 2009, 114, 86-101.	0.9	132
26	Convenient and highly effective fluorescence sensing for Hg2+ in aqueous solution and thin film. Bioorganic and Medicinal Chemistry, 2009, 17, 3887-3891.	1.4	24
27	Hyperbranched calixarenes: synthesis and applications as fluorescent probes. Chemical Communications, 2009, , 4791.	2.2	80
28	Mercuryâ€selenium compounds and their toxicological significance: Toward a molecular understanding of the mercuryâ€selenium antagonism. Environmental Toxicology and Chemistry, 2009, 28, 1567-1577.	2.2	376
29	Highly Selective Phthalocyanineâ^'Thymine Conjugate Sensor for Hg ²⁺ Based on Target Induced Aggregation. Analytical Chemistry, 2009, 81, 3699-3704.	3.2	88
30	Controls of Dissolved Organic Matter and Chloride on Mercury Uptake by a Marine Diatom. Environmental Science & Technology, 2009, 43, 8998-9003.	4.6	60
31	Relative Importance of Atmospheric and Riverine Mercury Sources to the Northern Gulf of Mexico. Environmental Science & Technology, 2009, 43, 415-422.	4.6	23
32	Stability of Dimethyl Mercury in Seawater and Its Conversion to Monomethyl Mercury. Environmental Science & Technology, 2009, 43, 4056-4062.	4.6	64
33	The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments. Environmental Pollution, 2009, 157, 981-986.	3.7	15
34	Application of indicator kriging to the complementary use of bioindicators at three trophic levels. Environmental Pollution, 2009, 157, 2689-2696.	3.7	15
35	Organic and total mercury in muscle tissue of five aquatic birds with different feeding habits from the SE Gulf of California, Mexico. Chemosphere, 2009, 76, 415-418.	4.2	23
36	Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochimica Et Cosmochimica Acta, 2009, 73, 1285-1296.	1.6	188
37	Mercury Bioaccumulation in a Stream Network. Environmental Science & Technology, 2009, 43, 7016-7022.	4.6	64
38	Kinetic Controls on the Complexation between Mercury and Dissolved Organic Matter in a Contaminated Environment. Environmental Science & Technology, 2009, 43, 8548-8553.	4.6	112

#	Article	IF	CITATIONS
39	Dimethylmercury in Coastal Upwelling Waters, Monterey Bay, California. Environmental Science & Technology, 2009, 43, 1305-1309.	4.6	44
40	The need for a coordinated global Hg monitoring network for global and regional models validation. , 2009, , 391-424.		5
41	Mercury Fate and Transport in the Global Atmosphere. , 2009, , .		43
42	Species-Specific Stable Isotope Fractionation of Mercury during Hg(II) Methylation by an Anaerobic Bacteria (<i>Desulfobulbus propionicus</i>) under Dark Conditions. Environmental Science & Technology, 2009, 43, 9183-9188.	4.6	164
43	Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 2009, 34, 43-63.	5.6	988
44	Fluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivatives. Organic and Biomolecular Chemistry, 2009, 7, 4590.	1.5	74
45	The influence of depth on mercury levels in pelagic fishes and their prey. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13865-13869.	3.3	176
46	Submarine Groundwater Discharge of Total Mercury and Monomethylmercury to Central California Coastal Waters. Environmental Science & Technology, 2009, 43, 5652-5659.	4.6	65
47	Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine. Environmental Science & Technology, 2009, 43, 1804-1810.	4.6	146
48	The origin of methylmercury in open Mediterranean waters. Limnology and Oceanography, 2009, 54, 837-844.	1.6	219
49	Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. Environmental Chemistry, 2010, 7, 133.	0.7	39
50	A Selective Chromogenic Probe for Mercury(II) and Cyanide in Aqueous Buffered Solution from a Cycloaddition Reaction of an Ynamine to Polycyclic Dithiolethiones. Chemistry - an Asian Journal, 2010, 5, 1692-1699.	1.7	16
51	Mercury Species in Seawater and Sediment of Xiamen Western Sea Area Adjacent to a Coalâ€fired Power Plant. Water Environment Research, 2010, 82, 335-341.	1.3	15
52	Chemodosimeters for mercury(II) and methylmercury(I) based on 2,1,3-benzothiadiazole. Sensors and Actuators B: Chemical, 2010, 149, 20-27.	4.0	71
53	Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. Science of the Total Environment, 2010, 408, 1338-1348.	3.9	38
54	Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south-west France). Estuarine, Coastal and Shelf Science, 2010, 90, 80-92.	0.9	40
55	Mercury speciation in Pacific coastal rainwater, Monterey Bay, California. Atmospheric Environment, 2010, 44, 1788-1797.	1.9	36
56	Polythymine Oligonucleotideâ€Modified Gold Electrode for Voltammetric Determination of Mercury(II) in Aqueous Solution. Electroanalysis, 2010, 22, 479-482.	1.5	34

#	Article	IF	CITATIONS
57	Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes. Marine Chemistry, 2010, 122, 11-19.	0.9	66
58	A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Letters, 2010, 51, 892-894.	0.7	92
59	A highly selective pyrene based fluorescent sensor toward Hg2+ detection. Tetrahedron Letters, 2010, 51, 3422-3425.	0.7	59
60	Methods for the determination and speciation of mercury in natural waters—A review. Analytica Chimica Acta, 2010, 663, 127-138.	2.6	434
61	A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environmental Microbiology, 2010, 12, 2904-2917.	1.8	116
62	Thiomethoxychalcone-Functionalized Ferrocene Ligands as Selective Chemodosimeters for Mercury(II): Single-Crystal X-ray Structural Signature of the [Hg ₈ (μ ₈ -S)(SCH ₃) ₁₂] ²⁺ Cluster. Inorganic Chemistry. 2010. 49. 4447-4457.	1.9	35
63	Substantial Emission of Gaseous Monomethylmercury from Contaminated Waterâ ² Sediment Microcosms. Environmental Science & amp; Technology, 2010, 44, 278-283.	4.6	16
64	Chemical Demethylation of Methylmercury by Selenoamino Acids. Chemical Research in Toxicology, 2010, 23, 1202-1206.	1.7	113
65	Organomercurials. Their Formation and Pathways in the Environment. Metal Ions in Life Sciences, 2010, , 365-401.	1.0	89
66	Biogeochemical Changes and Mercury Methylation beneath an In-Situ Sediment Cap. Environmental Science & Technology, 2010, 44, 7280-7286.	4.6	26
67	Impact of Iron Amendment on Net Methylmercury Export from Tidal Wetland Microcosms. Environmental Science & Technology, 2010, 44, 7659-7665.	4.6	28
68	Vertical transport of anthropogenic mercury in the ocean. Global Biogeochemical Cycles, 2010, 24, .	1.9	28
69	Natural and Anthropogenic Mercury Distribution in Marine Sediments from Hudson Bay, Canada. Environmental Science & Technology, 2010, 44, 5805-5811.	4.6	43
70	Recognition of Hg ²⁺ Using Diametrically Disubstituted Cyclam Unit. Inorganic Chemistry, 2010, 49, 11485-11492.	1.9	54
71	Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 2010, 44, 7964-7969.	4.6	35
72	The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry. Science, 2010, 328, 1512-1516.	6.0	668
73	Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter. Geochimica Et Cosmochimica Acta, 2010, 74, 4693-4708.	1.6	125
74	Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochimica Et Cosmochimica Acta, 2010, 74, 5549-5559.	1.6	149

#	Article	IF	CITATIONS
75	Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochimica Et Cosmochimica Acta, 2010, 74, 6263-6275.	1.6	84
76	Subcellular controls of mercury trophic transfer to a marine fish. Aquatic Toxicology, 2010, 99, 500-506.	1.9	48
77	A coumarin–thiourea conjugate as a fluorescent probe for Hg(ii) in aqueous media with a broad pH range 2–12. Organic and Biomolecular Chemistry, 2010, 8, 1310.	1.5	57
78	Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 2010, 44, 1630-1637.	4.6	194
79	Mercury Speciation in Marine Sediments under Sulfate-Limited Conditions. Environmental Science & Technology, 2010, 44, 3752-3757.	4.6	26
80	DFT studies of the degradation mechanism of methyl mercury activated by a sulfur-rich ligand. Physical Chemistry Chemical Physics, 2010, 12, 3961.	1.3	13
81	Enhanced sensitivity in a Hg2+ sensor by photonic crystals. Analytical Methods, 2010, 2, 448.	1.3	15
82	Preliminary Investigations of Correlations Between Total Mercury in Tuna and Quality Control, and Mercury Recoveries Using Microwave Digestion. Spectroscopy Letters, 2010, 43, 597-601.	0.5	2
83	Detection and adsorption of Hg2+ by new mesoporous silica and membrane material grafted with a chemodosimeter. Journal of Materials Chemistry, 2011, 21, 14441.	6.7	61
84	Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas. Journal of Environmental Monitoring, 2011, 13, 1703.	2.1	15
85	Oligonucleotide-based label-free Hg2+ assay with a monomer–excimer fluorescence switch. Analyst, The, 2011, 136, 4284.	1.7	22
86	Carbohydrate assisted fluorescence turn-on gluco–imino–anthracenyl conjugate as a Hg(<scp>ii</scp>) sensor in milk and blood serum milieu. Chemical Communications, 2011, 47, 2565-2567.	2.2	50
87	Combination of Diffusive Gradient in a Thin Film Probe and IC-ICP-MS for the Simultaneous Determination of CH ₃ Hg ⁺ and Hg ²⁺ in Oxic Water. Environmental Science & Technology, 2011, 45, 6429-6436.	4.6	88
88	Degradation Mechanism of Methyl Mercury Selenoamino Acid Complexes: A Computational Study. Inorganic Chemistry, 2011, 50, 2366-2372.	1.9	41
89	Regional patterns in mercury and selenium concentrations of yellowfin tuna (<i>Thunnus) Tj ETQq0 0 0 rgBT /Ov Fisheries and Aquatic Sciences, 2011, 68, 2046-2056.</i>	erlock 10 0.7	Tf 50 187 Td 23
90	Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios. Environmental Science & Technology, 2011, 45, 10477-10484.	4.6	140
91	Mass Balance of Total Mercury and Monomethylmercury in Coastal Embayments of a Volcanic Island: Significance of Submarine Groundwater Discharge. Environmental Science & Technology, 2011, 45, 9891-9900.	4.6	26
92	Mercury Distribution and Transport Across the Oceanâ^'Sea-Iceâ^'Atmosphere Interface in the Arctic Ocean. Environmental Science & Technology, 2011, 45, 1866-1872.	4.6	52

	CITATION RE	PORT	
# 93	ARTICLE Trace Metal(loid)s (As, Cd, Cu, Hg, Pb, PGE, Sb, and Zn) and Their Species. , 2011, , 31-57.	IF	CITATIONS
93	Trace Metal(Iolu)s (As, Cu, Cu, Hg, P0, POE, S0, and ZII) and Their Species. , 2011, , 51-57.		9
94	Enhanced diffusion of pollutants by self-propulsion. Physical Chemistry Chemical Physics, 2011, 13, 12755.	1.3	24
95	Colorimetric probing of Hg2+ in both solution and thin film. Analytical Methods, 2011, 3, 557.	1.3	10
98	Epoxy-based oligomer containing dithia-aza-based naphthylazobenzene pendant: a chemosensor for Hg2+and Cu2+ions. Supramolecular Chemistry, 2011, 23, 558-562.	1.5	6
99	Cryptand derived fluorescence signaling systems for sensing Hg(<scp>ii</scp>) ion: A comparative study. Dalton Transactions, 2011, 40, 726-734.	1.6	24
100	Does anoxia affect mercury cycling at the sediment–water interface in the Gulf of Trieste (northern) Tj ETQq1 194-204.	l 0.784314 1.4	ł rgBT /Over 49
101	Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Continental Shelf Research, 2011, 31, 1777-1789.	0.9	44
102	Mercury in the Southern Ocean. Geochimica Et Cosmochimica Acta, 2011, 75, 4037-4052.	1.6	209
103	A fluorescent "turn-on―probe for the dual-channel detection of Hg(II) and Mg(II) and its application of imaging in living cells. Talanta, 2011, 85, 2194-2201.	2.9	83
104	Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(ii) ion. Organic and Biomolecular Chemistry, 2011, 9, 4467.	1.5	99
108	Acute intraperitoneal mercury chloride contamination and distribution in liver, muscle and gill of a neotropical fish Hoplias malabaricus (BLOCK, 1794). Brazilian Archives of Biology and Technology, 2011, 54, 379-386.	0.5	8
109	Extraction of monomethylmercury from seawater for lowâ€femtomolar determination. Limnology and Oceanography: Methods, 2011, 9, 121-128.	1.0	29
110	Interdisciplinary approaches for addressing marine contamination issues. Environmental Conservation, 2011, 38, 187-198.	0.7	1
111	Some like it cold: microbial transformations of mercury in polar regions. Polar Research, 2011, 30, 15469.	1.6	26
112	Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments. Science of the Total Environment, 2011, 409, 778-784.	3.9	44
113	Ecological factors differentially affect mercury levels in two species of sympatric marine birds of the North Pacific. Science of the Total Environment, 2011, 409, 1328-1335.	3.9	14
114	Importance of monsoon rainfall in mass fluxes of filtered and unfiltered mercury in Gwangyang Bay, Korea. Science of the Total Environment, 2011, 409, 1498-1503.	3.9	9
115	Phase speciation of mercury (Hg) in coastal water of the Yellow Sea, China. Marine Chemistry, 2011, 126, 250-255.	0.9	35

#	Article	IF	CITATIONS
116	Evaluating the impact of atmospheric deposition on dissolved trace-metals in the Gulf of Aqaba, Red Sea. Marine Chemistry, 2011, 126, 256-268.	0.9	44
117	Spatial patterns of chemical contamination (metals, PAHs, PCBs, PCDDs/PCDFS) in sediments of a non-industrialized but densely populated coral atoll/small island state (Bermuda). Marine Pollution Bulletin, 2011, 62, 1362-1376.	2.3	21
118	Anthropogenic processes in the biosphere. Herald of the Russian Academy of Sciences, 2011, 81, 629-636.	0.2	1
119	Mercury isotope fractionation during abiotic transmethylation reactions. International Journal of Mass Spectrometry, 2011, 307, 214-224.	0.7	25
120	Relocation effects of dredged marine sediments on mercury geochemistry: Venice lagoon, Italy. Estuarine, Coastal and Shelf Science, 2011, 93, 7-13.	0.9	11
121	Impact of atmospheric deposition of anthropogenic and natural trace metals on Northwestern Mediterranean surface waters: A box model assessment. Environmental Pollution, 2011, 159, 1629-1634.	3.7	35
122	Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and air–sea exchange. Atmospheric Environment, 2011, 45, 183-190.	1.9	63
123	Mercury Concentration and Monomethylmercury Production in Sediment: Effect of Dredged Sediment Reuse on Bioconcentration for Ragworms. Water, Air, and Soil Pollution, 2011, 219, 59-68.	1.1	5
124	Health Risk Associated to Dietary Intake of Mercury in Selected Coastal Areas of Mexico. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 180-188.	1.3	20
125	Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data. Analytical and Bioanalytical Chemistry, 2011, 401, 2699-2711.	1.9	50
126	Mercury Distribution and Methylmercury Mobility in the Sediments of Three Sites on the Lebanese Coast, Eastern Mediterranean. Archives of Environmental Contamination and Toxicology, 2011, 60, 394-405.	2.1	29
127	Increased Bioavailability of Mercury in the Lagoons of Lomé, Togo: The Possible Role of Dredging. Ambio, 2011, 40, 26-42.	2.8	21
128	Ontogenetic patterns in bluefish (<i>Pomatomus saltatrix</i>) feeding ecology and the effect on mercury biomagnification. Environmental Toxicology and Chemistry, 2011, 30, 1447-1458.	2.2	27
129	Mercury and carbon dioxide emissions: Uncoupling a toxic relationship. Environmental Toxicology and Chemistry, 2011, 30, 2640-2646.	2.2	9
130	Azobenzeneâ€Based Colorimetric Chemosensors for Rapid Nakedâ€Eye Detection of Mercury(II). Chemistry - A European Journal, 2011, 17, 7276-7281.	1.7	108
131	Air–sea exchange of volatile mercury in the North Atlantic Ocean. Marine Chemistry, 2011, 125, 1-7.	0.9	58
132	New photochromic chemosensors for Hg2+ and Fâ^'. Tetrahedron, 2011, 67, 915-921.	1.0	90
133	Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics, 2011, 11, 2881-2892.	1.9	96

#	ARTICLE	IF	CITATIONS
134	Determination of Mercury (II) Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	7
135	Interaction of Macroaggregates and Hg in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea). Geomicrobiology Journal, 2011, 28, 615-624.	1.0	2
136	Storage bottle material and cleaning for determination of total mercury in seawater. Limnology and Oceanography: Methods, 2011, 9, 426-431.	1.0	39
137	Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 2011, 56, 1355-1371.	1.6	43
138	Effect of Inorganic and Organic Ligands on the Bioavailability of Methylmercury as Determined by Using a <i>mer-lux</i> Bioreporter. Applied and Environmental Microbiology, 2012, 78, 7276-7282.	1.4	50
139	Influences of Bioavailability, Trophic Position, and Growth on Methylmercury in Hakes (<i>Merluccius merluccius</i>) from Northwestern Mediterranean and Northeastern Atlantic. Environmental Science & Technology, 2012, 46, 4885-4893.	4.6	94
140	Mercury Speciation and Transport via Submarine Groundwater Discharge at a Southern California Coastal Lagoon System. Environmental Science & Technology, 2012, 46, 1480-1488.	4.6	37
141	Total and Methylated Mercury in the Beaufort Sea: The Role of Local and Recent Organic Remineralization. Environmental Science & Technology, 2012, 46, 11821-11828.	4.6	64
142	Sources and Transfers of Methylmercury in Adjacent River and Forest Food Webs. Environmental Science & Technology, 2012, 46, 10957-10964.	4.6	107
143	Bis(N-methylindolyl)methane-based chemical probes for Hg2+ and Cu2+ and molecular IMPLICATION gate operating in fluorescence mode. Organic and Biomolecular Chemistry, 2012, 10, 1497.	1.5	44
144	Alteration of selectivity in rhodamine based probes for Fe(iii) and Hg(ii) ion induced dual mode signalling responses. Organic and Biomolecular Chemistry, 2012, 10, 2733.	1.5	33
145	Mercury in lagoons: An overview of the importance of the link between geochemistry and biology. Estuarine, Coastal and Shelf Science, 2012, 113, 126-132.	0.9	27
146	Benthic flux measurements of Hg species in a northern Adriatic lagoon environment (Marano and) Tj ETQq0 0 0	rgBT /Ovei 0.9	lock 10 Tf 50
147	Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 2012, 113, 7-19.	0.9	57
148	Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon. Estuarine, Coastal and Shelf Science, 2012, 113, 116-125.	0.9	27
149	Mercury in the Waters of the JundiaÃ-River, SP, Brazil: The Role of Dissolved Organic Matter. Aquatic Geochemistry, 2012, 18, 445-456.	1.5	5
150	Synthesis and characterization of nano-sized Mn–TiO2 catalysts and their application to removal of gaseous elemental mercury. Research on Chemical Intermediates, 2012, 38, 2511-2522.	1.3	25
151	Benthic fluxes of mercury during redox changes in pristine coastal marine sediments from the Gulf of Trieste (northern Adriatic Sea). Journal of Soils and Sediments, 2012, 12, 1604-1614.	1.5	10

#	Article	IF	CITATIONS
152	Mercury levels in selected bycatch fish species from industrial shrimp-trawl fishery in the SE Gulf of California. Marine Pollution Bulletin, 2012, 64, 2857-2859.	2.3	11
153	Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. Journal of Materials Chemistry, 2012, 22, 17685.	6.7	115
154	An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane. Talanta, 2012, 91, 65-71.	2.9	28
155	Applications of Stable Mercury Isotopes to Biogeochemistry. Advances in Isotope Geochemistry, 2012, , 229-245.	1.4	28
156	Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry. Aquatic Toxicology, 2012, 110-111, 133-140.	1.9	31
157	Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach Dang Estuary (Haiphong, Vietnam). Marine Pollution Bulletin, 2012, 64, 1789-1798.	2.3	19
158	Hg(II) ion specific dual mode signalling in a thiophene derivatized rhodamine based probe and their complexation cooperativity. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240, 42-49.	2.0	22
159	Enhanced bioaccumulation of mercury in deep-sea fauna from the Bay of Biscay (north-east Atlantic) in relation to trophic positions identified by analysis of carbon and nitrogen stable isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 65, 113-124.	0.6	91
160	Mercury dynamics in lake sediments. Geochimica Et Cosmochimica Acta, 2012, 82, 92-112.	1.6	48
161	The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. Environmental Chemistry, 2012, 9, 321.	0.7	106
162	Net Degradation of Methyl Mercury in Alder Swamps. Environmental Science & Technology, 2012, 46, 13144-13151.	4.6	25
163	An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography: Methods, 2012, 10, 90-100.	1.0	62
164	A New Rhodamine-Based "Off-On―Fluorescent Chemosensor for Hg (II) Ion and its Application in Imaging Hg (II) in Living Cells. Journal of Fluorescence, 2012, 22, 1249-1256.	1.3	28
165	A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(ii) in aqueous media. New Journal of Chemistry, 2012, 36, 1961.	1.4	27
166	Total and monomethyl mercury in fog water from the central California coast. Geophysical Research Letters, 2012, 39, .	1.5	57
166 167		1.5 3.7	57 477
	Letters, 2012, 39, . Mercury biogeochemical cycling in the ocean and policy implications. Environmental Research, 2012,		

		CITATION REPC	DRT	
#	Article	II	F	CITATIONS
170	Sensitive and selective voltammetric measurement of Hg ²⁺ by rational covalent functionalization of graphene oxide with cysteamine. Analyst, The, 2012, 137, 305-308.	1	7	65
172	Mercury-Induced Chromosomal Damage in Wild Fish (Dicentrarchus labrax L.) Reflecting Aquat Contamination in Contrasting Seasons. Archives of Environmental Contamination and Toxicolo 2012, 63, 554-562.	c gy, 2	2.1	12
173	Speciation Studies of L-Histidine Complexes of Pb(II), Cd(II), and Hg(II) in DMSO-Water Mixture International Journal of Inorganic Chemistry, 2012, 2012, 1-9.	s. ().6	3
174	Methylmercury Effects and Exposures: Who Is at Risk?. Environmental Health Perspectives, 201 A224-5.	2, 120, 2	2.8	13
175	Modeling the Mercury Cycle in the Marano-Grado Lagoon (Italy). Developments in Environment Modelling, 2012, 25, 239-257.	al c).3	1
177	Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemic Society Reviews, 2012, 41, 3210-3244.	al 1	.8.7	2,019
178	Density functional study of substituted (–SH, –S, –OH, –Cl) hydrated ions of Hg2+. Th Chemistry Accounts, 2012, 131, 1.	eoretical ().5	12
179	A Fluorescence Turn-on Sensor for Hg2+ with a Simple Receptor Available in Sulphide-Rich Environments. Journal of Fluorescence, 2012, 22, 945-951.	1	3	10
180	Reactive Transport Modeling of Subaqueous Sediment Caps and Implications for the Long-Tern Arsenic, Mercury, and Methylmercury. Aquatic Geochemistry, 2012, 18, 297-326.	I Fate of 1	5	25
181	Potential sources of methylmercury in tree foliage. Environmental Pollution, 2012, 160, 82-87.	3	3.7	27
182	Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, G Environmental Pollution, 2012, 160, 109-117.	China. 3	3.7	83
183	A review of the sources of uncertainties in atmospheric mercury modeling II. Mercury surface a heterogeneous chemistry – A missing link. Atmospheric Environment, 2012, 46, 1-10.	nd 1	9	100
184	Vertical methylmercury distribution in the subtropical North Pacific Ocean. Marine Chemistry, 2 132-133, 77-82.	012, c).9	120
185	Indicators of sediment and biotic mercury contamination in a southern New England estuary. N Pollution Bulletin, 2012, 64, 807-819.	larine 2	2.3	63
186	How does climate change influence arctic mercury?. Science of the Total Environment, 2012, 4	14, 22-42. s	8.9	198
187	Assessment of mercury and selenium concentrations in captive bottlenose dolphin's (Tursiops)	Tj ETQq1 1 0.78431	4 rgBT /(Dyerlock 10
188	A selective turn-on fluorescent chemosensor based on rhodamine for Hg2+ and its application cell imaging. Sensors and Actuators B: Chemical, 2012, 162, 313-320.	n live 4	ł.0	65
189	A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidin Tetrahedron, 2012, 68, 3129-3134.	e. 1	0	80

#	Article	IF	CITATIONS
190	Mercury in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. Journal of Hazardous Materials, 2012, 215-216, 199-207.	6.5	32
191	Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry, 2012, 108, 335-350.	1.7	98
192	A new fluorescent chemosensor for Hg ²⁺ in aqueous solution. Luminescence, 2013, 28, 222-225.	1.5	17
193	Alkyl mercury compounds: an assessment of DFT methods. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	19
194	Selective sensing of Hg2+ using rhodamine–thiophene conjugate: Red light emission and visual detection of intracellular Hg2+ at nanomolar level. Journal of Hazardous Materials, 2013, 261, 198-205.	6.5	56
195	Why Mercury Prefers Soft Ligands. Journal of Physical Chemistry Letters, 2013, 4, 2317-2322.	2.1	54
196	Mercury Nephrotoxicity. , 2013, , 1357-1362.		0
197	Mercury Transporters. , 2013, , 1372-1375.		0
198	Mercury Toxicity. , 2013, , 1367-1372.		0
199	Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst, The, 2013, 138, 3820.	1.7	90
200	New assessment of organic mercury formation in highly polluted sediments in the Lenga estuary, Chile. Marine Pollution Bulletin, 2013, 73, 16-23.	2.3	21
201	Methylmercury production below the mixed layer in the North Pacific Ocean. Nature Geoscience, 2013, 6, 879-884.	5.4	298
202	Comparison of Different Air–Water Gas Exchange Models to Determine Gaseous Mercury Evasion from Different European Coastal Lagoons and Estuaries. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	14
203	In situ experiments for element species-specific environmental reactivity of tin and mercury compounds using isotopic tracers and multiple linear regression. Environmental Science and Pollution Research, 2013, 20, 1269-1280.	2.7	40
204	Investigations into the differential reactivity of endogenous and exogenous mercury species in coastal sediments. Environmental Science and Pollution Research, 2013, 20, 1292-1301.	2.7	5
205	Progress in the study of mercury methylation and demethylation in aquatic environments. Science Bulletin, 2013, 58, 177-185.	1.7	59
206	Studies of biouptake and transformation of mercury by a typical unicellular diatom Phaeodactylum tricornutum. Science Bulletin, 2013, 58, 256-265.	1.7	23
207	Manganese in Biological Systems. , 2013, , 1297-1303.		7

#	Article	IF	CITATIONS
208	Mercury concentrations, speciation, and isotopic composition in sediment from a cold seep in the northern Gulf of Mexico. Marine Pollution Bulletin, 2013, 77, 308-314.	2.3	15
209	In Vivo Mercury Methylation and Demethylation in Freshwater Tilapia Quantified by Mercury Stable Isotopes. Environmental Science & Technology, 2013, 47, 7949-7957.	4.6	72
210	Highly selective fluorescence enhancement chemosensor for Hg2+ based on rhodamine and its application in living cells and aqueous media. Sensors and Actuators B: Chemical, 2013, 183, 290-296.	4.0	59
211	Aquatic geochemistry of small lakes: Effects of environment changes. Geochemistry International, 2013, 51, 1031-1148.	0.2	27
212	Bioaccumulation of Trace Mercury in Trophic Levels of Benthic, Benthopelagic, Pelagic Fish Species, and Sea Birds from Arvand River, Iran. Biological Trace Element Research, 2013, 156, 175-180.	1.9	59
213	Multimodal Use of New Coumarinâ€Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg ²⁺ Probing. Chemistry - A European Journal, 2013, 19, 14639-14653.	1.7	66
214	Assessment of mercury bioavailability to benthic macroinvertebrates using diffusive gradients in thin films (DGT). Environmental Sciences: Processes and Impacts, 2013, 15, 2104.	1.7	34
215	The impact of marine shallow-water hydrothermal venting on arsenic and mercury accumulation by seaweed Sargassum sinicola in Concepcion Bay, Gulf of California. Environmental Sciences: Processes and Impacts, 2013, 15, 470.	1.7	15
216	Preferences of rhodamine coupled (aminoalkyl)-piperazine probes towards Hg(ii) ion and their FRET mediated signaling. Organic and Biomolecular Chemistry, 2013, 11, 4975.	1.5	24
217	Regional variation in mercury and stable isotopes of red snapper (<i>Lutjanus campechanus</i>) in the northern gulf of Mexico, USA. Environmental Toxicology and Chemistry, 2013, 32, 434-441.	2.2	18
218	Determination of low-level mercury in coralline aragonite by calcination-isotope dilution-inductively coupled plasma-mass spectrometry and its application to Diploria specimens from Castle Harbour, Bermuda. Geochimica Et Cosmochimica Acta, 2013, 109, 27-37.	1.6	5
219	Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. Comptes Rendus - Geoscience, 2013, 345, 213-224.	0.4	41
220	Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions. Chemical Geology, 2013, 336, 13-25.	1.4	63
221	Phenanthroimidazole-based thiobenzamide as an effective sensor for highly selective detection of mercury(II). Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3382-3384.	1.0	21
222	Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chemical Geology, 2013, 336, 103-111.	1.4	91
223	Tracing mercury seawater vs. atmospheric inputs in a pristine SE USA salt marsh system: Mercury isotope evidence. Chemical Geology, 2013, 336, 50-61.	1.4	44
224	Mercury speciation driven by seasonal changes in a contaminated estuarine environment. Environmental Research, 2013, 125, 171-178.	3.7	36
225	Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans. Estuarine, Coastal and Shelf Science, 2013, 134, 19-30.	0.9	74

#	Article	IF	CITATIONS
226	Significance of submarine groundwater discharge in the coastal fluxes of mercury in Hampyeong Bay, Yellow Sea. Chemosphere, 2013, 91, 320-327.	4.2	21
227	Novel regenerable sorbent based on Zr–Mn binary metal oxides for flue gas mercury retention and recovery. Journal of Hazardous Materials, 2013, 261, 206-213.	6.5	97
228	Influence of salinity intrusion on the speciation and partitioning of mercury in the Mekong River Delta. Geochimica Et Cosmochimica Acta, 2013, 106, 379-390.	1.6	46
229	A new pyrenyl-appended triazole for fluorescent recognition of Hg2+ ion in aqueous solution. Dyes and Pigments, 2013, 99, 798-802.	2.0	29
230	Successive methylation and demethylation of methylated mercury species (MeHg and DMeHg) induce mass dependent fractionation of mercury isotopes. Chemical Geology, 2013, 355, 153-162.	1.4	29
231	Shipboard measurements of gaseous elemental mercury along the coast of Central and Southern California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 208-219.	1.2	15
232	Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environmental Science & Technology, 2013, 47, 2441-2456.	4.6	539
233	Methylmercury Production in Estuarine Sediments: Role of Organic Matter. Environmental Science & Technology, 2013, 47, 695-700.	4.6	111
234	Penguins as bioindicators of mercury contamination in the Southern Ocean: Birds from the Kerguelen Islands as a case study. Science of the Total Environment, 2013, 454-455, 141-148.	3.9	78
235	Modified mesoporous silica nanoparticles as a reusable, selective chromogenic sensor for mercury(ii) recognition. Dalton Transactions, 2013, 42, 6318.	1.6	32
236	Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium. Journal of Luminescence, 2013, 141, 48-52.	1.5	25
237	Kinetics of Homogeneous and Surface-Catalyzed Mercury(II) Reduction by Iron(II). Environmental Science & Technology, 2013, 47, 7204-7213.	4.6	43
238	Methylmercury Accumulation in Plankton on the Continental Margin of the Northwest Atlantic Ocean. Environmental Science & Technology, 2013, 47, 3671-3677.	4.6	68
239	BIOACCUMULATION AND BIOMAGNIFICATION OF MERCURY AND SELENIUM IN THE SARASOTA BAY ECOSYSTEM. Environmental Toxicology and Chemistry, 2013, 32, 1143-1152.	2.2	23
240	Malignant Neoplasm. , 2013, , 1283-1283.		0
241	Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure. Aquatic Toxicology, 2013, 138-139, 52-59.	1.9	10
242	A Selective "Turnâ€On―Fluorescent Probe for Recognition of Mercury(II) Ions in Aqueous Solution Based on a Desulfurization Reaction. ChemPlusChem, 2013, 78, 628-631.	1.3	30
246	Trophodynamics of inorganic pollutants in a wide-range feeder: The relevance of dietary inputs and biomagnification in the Yellow-legged gull (Larus michahellis). Environmental Pollution, 2013, 172, 235-242.	3.7	41

CITATION REPORT ARTICLE IF CITATIONS Drivers of Surface Ocean Mercury Concentrations and Airâ€"Sea Exchange in the West Atlantic Ocean. 65 4.6 Environmental Science & amp; Technology, 2013, 47, 7757-7765. Mercury in foods., 2013, , 392-413. Mercury Mobilization in a Flooded Soil by Incorporation into Metallic Copper and Metal Sulfide 4.6 39 Nanoparticles. Environmental Science & amp; Technology, 2013, 47, 7739-7746. Mercury in Baltic Sea sedimentsâ E"Natural background and anthropogenic impact. Chemie Der Erde, 2013, 73, 249-259. A Sensitive and Selective Mercury(II) Sensor Based on Amplified Fluorescence Quenching in a Conjugated Polyelectrolyte/Spiroâ€Cyclic Rhodamine System. Macromolecular Rapid Communications, 2.0 20 2013, 34, 791-795. Methionine Amino Peptidase., 2013, , 1410-1410. The polychaete worm <i>Nereis diversicolor</i> increases mercury lability and methylation in 2.2 20 intertidal mudflats. Environmental Toxicology and Chemistry, 2013, 32, 1888-1895. Millennial scale impact on the marine biogeochemical cycle of mercury from early mining on the 1.9 Iberian Peninsula. Global Biogeochemical Cycles, 2013, 27, 21-30. Redox oscillation affecting mercury mobility from highly contaminated coastal sediments: a 0.2 0 mesocosm incubation experiment. E3S Web of Conferences, 2013, 1, 06003. Experimental and Natural Warming Elevates Mercury Concentrations in Estuarine Fish. PLoS ONE, 1.1 2013, 8, e58401. Methyl Mercury Exposure through Seafood Diet and Its Effect on Aquatic Life and Health in United 3 0.3 Arab Émirates. International Journal of Chemistry, 2013, 5, . Mercury Accumulation in Food Chain of Fish, Crab and Sea Bird from Arvand River. Journal of Marine 0.4 Science: Research & Development, 2014, 4, . Mercury in the Anthropocene Ocean. Oceanography, 2014, 27, 76-87. 0.5 60 Processes, Assessment and Remediation of Contaminated Sediments. SERDP and ESTCP Remediation 0.3 Technology Monograph Series, 2014, , . USE OF CELLULOSE FILTER PAPER TO QUANTIFY WHOLE-BLOOD MERCURY IN TWO MARINE MAMMALS: 0.37 VALIDATION STUDY. Journal of Wildlife Diseases, 2014, 50, 271-278.

 262
 Monograph Series, 2014, , 263-304.
 0.3
 3

 263
 Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States. PLoS ONE, 2014, 9, e89305.
 1.1
 84

 264
 Identification of Multifunctional Graphene–Gold Nanocomposite for Environment-Friendly Enriching, Separating, and Detecting Hg<sup>2+
 4.0
 68

In Situ Biotransformation of Contaminants in Sediments. SERDP and ESTCP Remediation Technology

Interfaces, 2014, 6, 22761-22768.

247

248

249

251

253

254

255

257

259

261

#	Article	IF	CITATIONS
265	Wandering Albatrosses Document Latitudinal Variations in the Transfer of Persistent Organic Pollutants and Mercury to Southern Ocean Predators. Environmental Science & Technology, 2014, 48, 14746-14755.	4.6	73
266	On the Structures, Lifetimes, and Infrared Spectra of Alkylmercury Hydrides. ChemPhysChem, 2014, 15, 530-541.	1.0	3
267	Pyridylphenyl appended imidazoquinazoline based ratiometric fluorescence "turn on―chemosensor for Hg ²⁺ and Al ³⁺ in aqueous media. RSC Advances, 2014, 4, 55967-55970.	1.7	30
268	Carbamodithioate-Based Dual Functional Fluorescent Probe for Hg2+ and S2â^'. Journal of Fluorescence, 2014, 24, 1727-1733.	1.3	3
269	A fluorescent probe for the detection of Hg2+: Shift from "on-state A―to "on-state B― Talanta, 2014, 130, 571-576.	2.9	13
270	A Selective and Sensitive Phenanthroimidazoleâ€Based "Reactive―Ratiometric Sensor for Recognition of Hg ²⁺ Ions in Aqueous Solution. ChemPlusChem, 2014, 79, 1676-1680.	1.3	0
271	8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, 2014, , .	0.0	0
272	Harmful Elements in Estuarine and Coastal Systems. , 2014, , 37-83.		11
273	Mercury photochemistry in snow and implications for Arctic ecosystems. Environmental Reviews, 2014, 22, 331-345.	2.1	21
274	Low mercury levels in marine fish from estuarine and coastal environments in southern China. Environmental Pollution, 2014, 185, 250-257.	3.7	32
275	Mercury dynamics in a coastal aquifer: Maunalua Bay, Oʻahu, Hawaiʻi. Estuarine, Coastal and Shelf Science, 2014, 140, 52-65.	0.9	19
276	A Fluorescent Chemodosimeter for Hg2+Based on a Spirolactam Ring-Opening Strategy and its Application Towards Mercury Determination in Aqueous and Cellular Media. Journal of Fluorescence, 2014, 24, 67-74.	1.3	19
277	Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environmental Science and Pollution Research, 2014, 21, 1339-1348.	2.7	45
278	Mercury in the Mediterranean, part I: spatial and temporal trends. Environmental Science and Pollution Research, 2014, 21, 4063-4080.	2.7	26
279	Mass balance of mercury for the Yellow Sea downwind and downstream of East Asia: the preliminary results, uncertainties and future research priorities. Biogeochemistry, 2014, 118, 243-255.	1.7	20
280	Mercury-binding forms in coals and their geological provenances in coals of different types. Environmental Earth Sciences, 2014, 71, 4989-4995.	1.3	3
281	Species- and size-related patterns in stable isotopes and mercury concentrations in fish help refine marine ecosystem indicators and provide evidence for distinct management units for hake in the Northeast Atlantic. ICES Journal of Marine Science, 2014, 71, 1073-1087.	1.2	36
282	Selenium:Mercury Molar Ratios in Bullfrog and Leopard Frog Tadpoles from the Northeastern United States. EcoHealth, 2014, 11, 154-163.	0.9	2

#	Article	IF	CITATIONS
283	A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg2+ and Cu2+ in aqueous solution. Dalton Transactions, 2014, 43, 8102.	1.6	97
284	Mother–embryo isotope (<scp>δ¹⁵N</scp> , <scp>δ¹³C</scp>) fractionation and mercury (Hg) transfer in aplacental deepâ€sea sharks. Journal of Fish Biology, 2014, 84, 1574-1581.	0.7	33
285	Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe. Sensors and Actuators B: Chemical, 2014, 192, 512-521.	4.0	100
286	Mercury pollution in fish from South China Sea: Levels, species-specific accumulation, and possible sources. Environmental Research, 2014, 131, 160-164.	3.7	57
287	Mercury exposure in a large subantarctic avian community. Environmental Pollution, 2014, 190, 51-57.	3.7	72
289	Visual detection and removal of mercury ions by a ferrocene derivative. Tetrahedron Letters, 2014, 55, 3541-3544.	0.7	10
290	A novel BODIPY-based colorimetric and fluorometric dual-mode chemosensor for Hg2+ and Cu2+. Sensors and Actuators B: Chemical, 2014, 192, 29-35.	4.0	117
291	New rhodamine dimer probes for mercury detection via color changes and enhancement of the fluorescence emission: Fast recognition inÂcellulose supported devices. Dyes and Pigments, 2014, 101, 156-163.	2.0	38
292	â€~Naked-eye' quinoline-based â€~reactive' sensor for recognition of Hg2+ ion in aqueous solution. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5373-5376.	1.0	10
293	Temporal and spatial distributions of sediment mercury in restored coastal saltmarshes. Marine Chemistry, 2014, 167, 150-159.	0.9	8
294	Switching selectivity between Pb ²⁺ and Hg ²⁺ ions through variation of substituents at xanthene end; †turn-on' signalling responses by FRET modulation. RSC Advances, 2014, 4, 33062-33073.	1.7	8
295	Mercury in the food chain of the Lagoon of Venice, Italy. Marine Pollution Bulletin, 2014, 88, 194-206.	2.3	28
296	A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand-to-metal charge transfer (LMCT). RSC Advances, 2014, 4, 16612.	1.7	37
297	A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics, 2014, 6, 396.	1.0	52
298	Organomercury Compounds in Environmental Samples: Emission Sources, Toxicity, Environmental Fate, and Determination. Critical Reviews in Environmental Science and Technology, 2014, 44, 638-704.	6.6	36
299	Environmental specimen banks as a resource for mercury and mercury isotope research in marine ecosystems. Environmental Sciences: Processes and Impacts, 2014, 16, 10-27.	1.7	15
300	A rhodamine based "off-on―probe for selective detection of Hg(ii) and subsequent l-proline and 4-hydroxyproline discrimination. RSC Advances, 2014, 4, 10118-10122.	1.7	14
301	Depth profiles of lithogenic and anthropogenic mercury in the sediments from Thane Creek, Mumbai, India. International Journal of Sediment Research, 2014, 29, 431-439.	1.8	5

#	Article	IF	CITATIONS
302	A novel selective colorimetric chemosensor for Cu2+ in aqueous solution. Inorganic Chemistry Communication, 2014, 49, 68-71.	1.8	11
303	Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Science of the Total Environment, 2014, 496, 701-713.	3.9	35
304	Fluorometric sensing of Hg2+ ions in aqueous medium by nano-aggregates of a tripodal receptor. Organic and Biomolecular Chemistry, 2014, 12, 2302.	1.5	37
305	A new naphthalene-containing triazolophane for fluorescence sensing of mercury(II) ion. Inorganica Chimica Acta, 2014, 423, 163-167.	1.2	18
306	Mackinawite (FeS) Reduces Mercury(II) under Sulfidic Conditions. Environmental Science & Technology, 2014, 48, 10681-10689.	4.6	68
307	Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nature Communications, 2014, 5, 4624.	5.8	148
308	Geochemical factors influencing the production and transport of methylmercury in St. Louis River Estuary sediment. Applied Geochemistry, 2014, 51, 44-54.	1.4	10
309	Mercury accumulation in selected tissues of shrimp Penaeus merguiensis from Musa estuary, Persian Gulf: variations related to sex, size, and season. Environmental Monitoring and Assessment, 2014, 186, 5439-5446.	1.3	13
310	Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 2014, 22, 229-243.	2.1	100
311	A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe2+ and Cu2+ in aqueous media. RSC Advances, 2014, 4, 22463-22469.	1.7	74
312	Does trophic structure dictate mercury concentrations in top predators? A comparative analysis of pelagic food webs in the Pacific Ocean. Ecological Modelling, 2014, 278, 18-28.	1.2	26
313	Mercury speciation in coastal sediments from the central east coast of India by modified BCR method. Marine Pollution Bulletin, 2014, 81, 282-288.	2.3	65
314	Mercury in the Mediterranean. Part 2: processes and mass balance. Environmental Science and Pollution Research, 2014, 21, 4081-4094.	2.7	27
315	A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea). Environmental Science and Pollution Research, 2014, 21, 4124-4133.	2.7	12
316	Trophic transfer and accumulation of mercury in ray species in coastal waters affected by historic mercury mining (Gulf of Trieste, northern Adriatic Sea). Environmental Science and Pollution Research, 2014, 21, 4163-4176.	2.7	37
317	Mercury volatilization from a floodplain soil during a simulated flooding event. Journal of Soils and Sediments, 2014, 14, 1549-1558.	1.5	4
318	Naked eye and fluorescent detections of Hg2+ ions and Cysteine via J-aggregation and deaggregation of a perylene bisimide derivative. Sensors and Actuators B: Chemical, 2014, 194, 229-237.	4.0	40
319	Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 2014, 33, 1211-1224.	2.2	108

#	Article	IF	CITATIONS
320	Natural biogeochemical cycle of mercury in a global threeâ€dimensional ocean tracer model. Global Biogeochemical Cycles, 2014, 28, 553-570.	1.9	55
321	Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control, 2014, 46, 351-359.	2.8	37
322	Sn–Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window. Journal of Colloid and Interface Science, 2014, 428, 121-127.	5.0	47
323	Six centuries of changing oceanic mercury. Global Biogeochemical Cycles, 2014, 28, 1251-1261.	1.9	75
324	Mercury-Thiourea Complex Ion Chromatography: Advances in System Chemistry and Applications to Environmental Mercury Speciation Analysis. ACS Symposium Series, 2015, , 115-151.	0.5	2
325	11 Organomercurials. Their Formation and Pathways in the Environment. , 2015, , 365-402.		3
326	Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Scientific Reports, 2015, 5, 10318.	1.6	70
327	Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters. Scientific Reports, 2015, 5, 16316.	1.6	31
329	Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 2015, 15, 7103-7125.	1.9	96
330	Quantification of monomethylmercury in natural waters by direct ethylation: Interference characterization and method optimization. Limnology and Oceanography: Methods, 2015, 13, 81-91.	1.0	10
331	Chemical Detoxification of Organomercurials. Angewandte Chemie - International Edition, 2015, 54, 9323-9327.	7.2	36
332	The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3. Frontiers in Microbiology, 2015, 6, 1389.	1.5	42
333	Sediment Profile and Fluxes of Mercury and Methyl Mercury in Weihe Watershed in Henan, China. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 51-55.	1.3	4
334	Mercury in the blue tilapia Oreochromis aureus from a dam located in a mining region of NW Mexico: seasonal variation and percentage weekly intake (PWI). Environmental Monitoring and Assessment, 2015, 187, 233.	1.3	8
335	Intramolecular fluorescence resonance energy transfer in a novel PDI–BODIPY dendritic structure: Synthesis, Hg2+ sensor and living cell imaging. Sensors and Actuators B: Chemical, 2015, 219, 57-64.	4.0	41
336	Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels. Science of the Total Environment, 2015, 538, 743-749.	3.9	39
337	A comprehensive assessment of the mercury budget in the Marano–Grado Lagoon (Adriatic Sea) using a combined observational modeling approach. Marine Chemistry, 2015, 177, 742-752.	0.9	16
338	A pyrene based Schiff base probe for selective fluorescence turn-on detection of Hg ²⁺ ions with live cell application. New Journal of Chemistry, 2015, 39, 2523-2531.	1.4	86

#	Article	IF	CITATIONS
339	lsotopic composition analysis of dissolved mercury in seawater with purge and trap preconcentration and a modified Hg introduction device for MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2015, 30, 353-359.	1.6	46
340	Identifying the Sources and Processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science & Technology, 2015, 49, 1347-1355.	4.6	107
341	Water-Soluble Polymeric Probes for the Selective Sensing of Mercury Ion: pH-Driven Controllable Detection Sensitivity and Time. Macromolecules, 2015, 48, 1048-1054.	2.2	38
342	N-propylaniline functionalized 2D-hexagonal mesoporous silica as a highly selective fluorescence sensor for the detection of Hg(II) in water. Microporous and Mesoporous Materials, 2015, 207, 71-77.	2.2	23
343	Ecological tracers and at-sea observations document the foraging ecology of southern long-finned pilot whales (Globicephala melas edwardii) in Kerguelen waters. Marine Biology, 2015, 162, 207-219.	0.7	16
344	Ferrocenyl pyrazoline based multichannel receptors for a simple and highly selective recognition of Hg2+ and Cu2+ ions. Journal of Organometallic Chemistry, 2015, 780, 20-29.	0.8	30
345	Total mercury and methylmercury distributions in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. Environmental Science and Pollution Research, 2015, 22, 8603-8610.	2.7	22
346	Total and Monomethyl Mercury in Terrestrial Arthropods from the Central California Coast. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 425-430.	1.3	17
347	Mercury Stable Isotopes in Ornithogenic Deposits As Tracers of Historical Cycling of Mercury in Ross Sea, Antarctica. Environmental Science & Technology, 2015, 49, 7623-7632.	4.6	42
348	An anion induced multisignaling probe for Hg ²⁺ and its application for fish kidney and liver tissue imaging studies. Dalton Transactions, 2015, 44, 13186-13195.	1.6	20
349	Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere, 2015, 127, 214-221.	4.2	28
350	Fluorescence Enhancement/Quenching Based on Metal Orbital Control: Computational Studies of a 6-Thienyllumazine-Based Mercury Sensor. Journal of Physical Chemistry A, 2015, 119, 8106-8116.	1.1	49
351	Dual mode signaling responses of a rhodamine based probe and its immobilization onto a silica gel surface for specific mercury ion detection. Dalton Transactions, 2015, 44, 15304-15315.	1.6	9
352	Photophysical investigations of a FRET-based bifluorophoric conjugate and its Hg(II) specific ratiometric â€~turn-on' signalling. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 127-136.	2.0	10
353	Mercury (Hg) speciation in coral reef systems of remote Oceania: Implications for the artisanal fisheries of Tutuila, Samoa Islands. Marine Pollution Bulletin, 2015, 96, 41-56.	2.3	9
354	Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150710.	1.2	31
355	A novel sensing capabilities and structural modification from thiourea to urea derivative by Hg(ClO4)2: Selective dual chemodosimeter for Hg2+ and Fâ~' ions. Sensors and Actuators B: Chemical, 2015, 220, 1070-1085.	4.0	17
356	Mercury speciation in the Adriatic Sea. Marine Pollution Bulletin, 2015, 96, 136-148.	2.3	43

#	Article	IF	CITATIONS
357	Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 482-500.	0.9	27
358	Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environmental Science & Technology, 2015, 49, 5399-5406.	4.6	65
359	Controls on methylmercury accumulation in northern Gulf of Mexico sediments. Estuarine, Coastal and Shelf Science, 2015, 159, 50-59.	0.9	17
360	Single molecular probe for multiple analyte sensing: Efficient and selective detection of mercury and fluoride ions. Sensors and Actuators B: Chemical, 2015, 216, 80-85.	4.0	31
361	Development of a Nile-Blue Based Chemodosimeter for Hg2+ in Aqueous Solution and its Application in Biological Imaging. Journal of Fluorescence, 2015, 25, 403-408.	1.3	7
362	The Kinetics of Aqueous Mercury(II) Reduction by Sulfite Over an Array of Environmental Conditions. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	8
363	Spatial and seasonal variations of methylmercury in European glass eels (Anguilla anguilla) in the Adour estuary (France) and relation to their migratory behaviour. Environmental Science and Pollution Research, 2015, 22, 10721-10732.	2.7	11
364	Quinoline-functionalized norbornene for fluorescence recognition of metal ions. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 305, 11-18.	2.0	10
365	Chemical speciation of MeHg ⁺ and Hg ²⁺ in aqueous solution and HEK cells nuclei by means of DNA interacting fluorogenic probes. Chemical Science, 2015, 6, 3757-3764.	3.7	31
366	Mercury accumulation in gentoo penguins Pygoscelis papua: spatial, temporal and sexual intraspecific variations. Polar Biology, 2015, 38, 1335-1343.	0.5	14
367	Azo Linked Polycyclic Aromatic Hydrocarbons-Based Dual Chemosensor for Cu ²⁺ and Hg ²⁺ Ions. Industrial & Engineering Chemistry Research, 2015, 54, 3541-3547.	1.8	21
368	Elemental mercury (Hg(0)) in air and surface waters of the Yellow Sea during late spring and late fall 2012: Concentration, spatial-temporal distribution and air/sea flux. Chemosphere, 2015, 119, 199-208.	4.2	40
369	Methyl mercury concentrations in edible fish and shellfish from Dunedin, and other regions around the South Island, New Zealand. Marine Pollution Bulletin, 2015, 101, 386-390.	2.3	19
370	Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries. Environmental Science & Technology, 2015, 49, 13992-13999.	4.6	23
371	Microbial availability of mercury: effective detection and organic ligand effect using a whole-cell bioluminescent bioreporter. Ecotoxicology, 2015, 24, 2200-2206.	1.1	11
372	Nickel Nanoparticle-Decorated Porous Carbons for Highly Active Catalytic Reduction of Organic Dyes and Sensitive Detection of Hg(II) Ions. ACS Applied Materials & amp; Interfaces, 2015, 7, 24810-24821.	4.0	120
373	An examination of the factors influencing mercury and methylmercury particulate distributions, methylation and demethylation rates in laboratory-generated marine snow. Marine Chemistry, 2015, 177, 753-762.	0.9	70
374	Ratiometric fluorescent silver nanoclusters for the determination of mercury and copper ions. Analytical Methods, 2015, 7, 8019-8024.	1.3	12

#	Article	IF	CITATIONS
375	Sources of water column methylmercury across multiple estuaries in the Northeast U.S Marine Chemistry, 2015, 177, 721-730.	0.9	41
376	The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA. Marine Chemistry, 2015, 177, 731-741.	0.9	8
377	Plasticity of trophic interactions among sharks from the oceanic south-western Indian Ocean revealed by stable isotope and mercury analyses. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 96, 49-58.	0.6	56
378	A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid. Analytical Methods, 2015, 7, 1161-1166.	1.3	36
379	ESIPT based Hg ²⁺ and fluoride chemosensor for sensitive and selective â€~turn on' red signal and cell imaging. RSC Advances, 2015, 5, 5735-5740.	1.7	47
380	Mercury in the North Atlantic Ocean: The U.S. CEOTRACES zonal and meridional sections. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 251-261.	0.6	115
381	Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. International Journal of Environmental Science and Technology, 2015, 12, 995-1002.	1.8	19
382	Mercury in the marine environment of the Canadian Arctic: Review of recent findings. Science of the Total Environment, 2015, 509-510, 67-90.	3.9	106
383	Autism, Chemicals, Probable Cause and Mitigation: A New Examination. Autism-open Access, 2016, 6, .	0.2	4
384	Methylmercury uptake by diverse marine phytoplankton. Limnology and Oceanography, 2016, 61, 1626-1639.	1.6	74
385	Organâ€specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Environmental Toxicology and Chemistry, 2016, 35, 2074-2083.	2.2	45
386	A Review on Mercury Toxicity in Food. , 2016, , 315-326.		5
387	Dimethylmercury Formation Mediated by Inorganic and Organic Reduced Sulfur Surfaces. Scientific Reports, 2016, 6, 27958.	1.6	61
388	A Phenylamine-Oligothiophene-Based Fluorescent Chemosensor for Selective Detection of Hg(II). Journal of Fluorescence, 2016, 26, 1053-1058.	1.3	8
389	The effects of wildfire on mercury and stable isotopes (δ15N, δ13C) in water and biota of small boreal, acidic lakes in southern Norway. Environmental Monitoring and Assessment, 2016, 188, 178.	1.3	7
390	Ferrocene-BODIPY Push–Pull dyad: A common platform for the sensing of Hg 2+ and Cr 3+. Sensors and Actuators B: Chemical, 2016, 229, 499-505.	4.0	43
391	Contrasting distributions of dissolved gaseous mercury concentration and evasion in the North Pacific Subarctic Gyre and the Subarctic Front. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 110, 90-98.	0.6	12
392	A FRET-based fluorescent probe for mercury ions in water and living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 165, 99-105.	2.0	29

#	Article	IF	CITATIONS
393	3D MoS ₂ Composition Aerogels as Chemosensors and Adsorbents for Colorimetric Detection and High-Capacity Adsorption of Hg ²⁺ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3398-3408.	3.2	132
394	Two Centuries of Coral Skeletons from the Northern South China Sea Record Mercury Emissions from Modern Chinese Wars. Environmental Science & amp; Technology, 2016, 50, 5481-5488.	4.6	27
395	Switch in â€~turn-on' signaling preferences from Fe(III) to Hg(II) as a function of solvent and structural variation in rhodamine based probes. Dyes and Pigments, 2016, 135, 143-153.	2.0	13
396	Mercury, selenium and stable isotopes in four small cetaceans from the Southeastern Brazilian coast: Influence of feeding strategy. Environmental Pollution, 2016, 218, 1298-1307.	3.7	29
397	A smart material for the in situ detection of mercury in fish. Chemical Communications, 2016, 52, 11915-11918.	2.2	19
398	Mercury in Marine and Oceanic Waters—a Review. Water, Air, and Soil Pollution, 2016, 227, 371.	1.1	186
399	Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea—A Baltic Sea Case Study. Environmental Science & Technology, 2016, 50, 11787-11796.	4.6	71
400	Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea. Marine Chemistry, 2016, 186, 24-32.	0.9	27
401	Indole-BODIPY: a "turn-on―chemosensor for Hg ²⁺ with application in live cell imaging. RSC Advances, 2016, 6, 82810-82816.	1.7	22
402	A Novel Di(6-aminouracil-5-yl)-arylmethane Derivative as Fluorescence Ratiometric Chemodosimeter for Mercury Detection in Aqueous Solution. ChemistrySelect, 2016, 1, 4229-4234.	0.7	0
403	Assessment of Hg Pollution Released from a WWII Submarine Wreck (U-864) by Hg Isotopic Analysis of Sediments and <i>Cancer pagurus</i> Tissues. Environmental Science & Technology, 2016, 50, 10361-10369.	4.6	22
404	Impacts of crab bioturbation and local pollution on sulfate reduction, Hg distribution and methylation in mangrove sediments, Rio de Janeiro, Brazil. Marine Pollution Bulletin, 2016, 109, 453-460.	2.3	10
405	Mobility of mercury in contaminated marine sediments: Biogeochemical pathways. Marine Chemistry, 2016, 186, 1-10.	0.9	45
406	Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 2016, 7, 11147.	5.8	187
407	Development of Crosslinked Chitosan/Au Nanocomposite, Its Characterization and Application towards Solar Light Driven Photocatalytic Degradation of Toxic Organic Compounds. ChemistrySelect, 2016, 1, 6115-6126.	0.7	9
408	Declining Mercury Concentrations in Bluefin Tuna Reflect Reduced Emissions to the North Atlantic Ocean. Environmental Science & Technology, 2016, 50, 12825-12830.	4.6	45
409	Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Global Biogeochemical Cycles, 2016, 30, 105-119.	1.9	26
410	Bioaccumulation of mercury in fish as indicator of water pollution. Geochemistry International, 2016, 54, 485-493.	0.2	24

#	Article	IF	CITATIONS
411	Air–sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China. Environmental Science and Pollution Research, 2016, 23, 11323-11329.	2.7	11
412	Highly Hg ²⁺ -sensitive and selective fluorescent sensors in aqueous solution and sensors-encapsulated polymeric membrane. RSC Advances, 2016, 6, 10401-10411.	1.7	30
413	A colorimetric and turn-on fluorescent chemosensor for selectively sensing Hg2+ and its resultant complex for fast detection of lâ" over S2â". Dyes and Pigments, 2016, 128, 33-40.	2.0	27
414	Contrasted accumulation patterns of persistent organic pollutants and mercury in sympatric tropical dolphins from the south-western Indian Ocean. Environmental Research, 2016, 146, 263-273.	3.7	25
415	Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza) Tj ETQq0 0 0 Environment, 2016, 548-549, 13-24.	rgBT /Ove 3.9	erlock 10 Tf 50 126
416	Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC - Trends in Analytical Chemistry, 2016, 80, 280-292.	5.8	54
417	Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China. Archives of Environmental Contamination and Toxicology, 2016, 70, 724-733.	2.1	18
418	Penguins as bioindicators of mercury contamination in the southern Indian Ocean: geographical and temporal trends. Environmental Pollution, 2016, 213, 195-205.	3.7	46
419	Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China. Chemosphere, 2016, 147, 173-179.	4.2	37
420	Mercury Redox Chemistry in Waters of the Eastern Asian Seas: From Polluted Coast to Clean Open Ocean. Environmental Science & Technology, 2016, 50, 2371-2380.	4.6	42
421	A physiological role for HgII during phototrophicÂgrowth. Nature Geoscience, 2016, 9, 121-125.	5.4	48
422	Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean. Science of the Total Environment, 2016, 544, 754-764.	3.9	39
423	Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chemical Engineering Journal, 2016, 290, 243-251.	6.6	320
424	Mobility of Four Common Mercury Species in Model and Natural Unsaturated Soils. Environmental Science & Technology, 2016, 50, 3342-3351.	4.6	46
425	A series of selective and sensitive fluorescent sensors based on a thiophen-2-yl-benzothiazole unit for Hg ²⁺ . New Journal of Chemistry, 2016, 40, 2333-2342.	1.4	35
426	Biogeochemical transformations of mercury in solid waste landfills and pathways for release. Environmental Sciences: Processes and Impacts, 2016, 18, 176-189.	1.7	31
427	The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation, 2016, 27, 29-36.	1.5	19
428	Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury. Metallomics, 2016, 8, 170-178.	1.0	50

#	Article	IF	CITATIONS
429	Effects of Age, Colony, and Sex on Mercury Concentrations in California Sea Lions. Archives of Environmental Contamination and Toxicology, 2016, 70, 46-55.	2.1	14
430	A Single Fluorescent Sensor for Hg2+ and Discriminately Detection of Cr3+ and Cr(VI). Journal of Fluorescence, 2016, 26, 263-270.	1.3	26

431 Long-term scenarios of mercury budgeting and exports for a Mediterranean hot spot (Marano-Grado) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

432	Hg2+ triggered â€~off state-on state' conversion of a dipyrene derivative: Application to soft material. Sensors and Actuators B: Chemical, 2017, 244, 299-306.	4.0	4
433	The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 122, 17-28.	0.6	39
434	Detection of Hg ²⁺ and Cs ⁺ with a Rhodamine–based Sensor and Ethoxy–substituted Dihydroimidazole Ring Formation Associated with the Reduction of Hg ²⁺ to Hg. ChemistrySelect, 2017, 2, 1106-1110.	0.7	14
435	Aldoxime based biphenyl-azo derivative for self-assembly, chemosensor (Hg2+/Fâ^') and bioimaging studies. Sensors and Actuators B: Chemical, 2017, 246, 108-117.	4.0	18
436	Metal bioaccumulation and detoxification processes in cephalopods: A review. Environmental Research, 2017, 155, 123-133.	3.7	66
437	Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 2017, 3, e1601239.	4.7	88
438	Dissolved gaseous mercury (DGM) in the Mediterranean Sea: Spatial and temporal trends. Marine Chemistry, 2017, 193, 8-19.	0.9	22
439	Speciation of mercury in the waters of the Weddell, Amundsen and Ross Seas (Southern Ocean). Marine Chemistry, 2017, 193, 20-33.	0.9	21
440	Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries. Environmental Pollution, 2017, 226, 297-307.	3.7	25
441	A rhodamine-based chemosensor with diphenylselenium for highly selective fluorescence turn-on detection of Hg ²⁺ in vitro and in vivo. RSC Advances, 2017, 7, 21733-21739.	1.7	36
442	Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations. Science of the Total Environment, 2017, 596-597, 481-495.	3.9	48
443	A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 2017, 45, 631-634.	2.0	139
444	Trophic ecology drives contaminant concentrations within a tropical seabird community. Environmental Pollution, 2017, 227, 183-193.	3.7	23
445	Highly selective, colorimetric detection of Hg2+ based on three color changes of AuNPs solution from red through sandy beige to celandine green. Sensors and Actuators B: Chemical, 2017, 249, 331-338.	4.0	39
446	Relationships between blood mercury levels, reproduction, and return rate in a small seabird. Ecotoxicology, 2017, 26, 97-103.	1.1	30

#	Article	IF	CITATIONS
447	Speciation of Mercury in Microalgae by Isotope Dilution-inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 2017, 50, 2161-2176.	1.0	11
448	Detection of Hg2+ ion using fluorescent carbon dots derived from elephant foot yum via green-chemistry. AIP Conference Proceedings, 2017, , .	0.3	4
449	Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 693-794.	6.6	419
450	Hydrochemical mercury distribution and air-sea exchange over the submarine hydrothermal vents off-shore Panarea Island (Aeolian arc, Tyrrhenian Sea). Marine Chemistry, 2017, 194, 63-78.	0.9	28
451	CdS quantum dots capped with hyperbranched graft copolymers: Role of hyperbranched shell in fluorescence and selective mercury-sensing. Sensors and Actuators B: Chemical, 2017, 251, 171-179.	4.0	18
452	A novel dye based on phenolphthalein-fluorescein as a fluorescent probe for the dual-channel detection of Hg2+ and Zn2+. Dyes and Pigments, 2017, 145, 72-79.	2.0	42
453	Benzothiazole based chemosensors having appended amino group(s): Selective binding of Hg2+ ions by three related receptors. Inorganica Chimica Acta, 2017, 462, 152-157.	1.2	12
454	A Pyreneâ€Pyrazoleâ€Based Rotamer Senses Hg2+on the Nanomolar Scale. ChemistrySelect, 2017, 2, 2512-2519.	0.7	12
455	Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos Basin near Rio de Janeiro, Brazil. Chemosphere, 2017, 178, 42-50.	4.2	28
456	Spectral studies on anthracene based dual sensor for Hg2+ and Al3+ ions with two distinct output modes of detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 60-64.	2.0	33
457	Highly Selective and Sensitive Colorimetric and Fluorescent Chemosensor for Rapid Detection of Ag+, Cu2+ and Hg2+ Based on a Simple Schiff Base. Journal of Fluorescence, 2017, 27, 729-737.	1.3	43
458	The open sea as the main source of methylmercury in the water column of the Gulf of Lions (Northwestern Mediterranean margin). Geochimica Et Cosmochimica Acta, 2017, 199, 222-237.	1.6	35
459	Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sensors and Actuators B: Chemical, 2017, 243, 888-894.	4.0	87
460	Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization. Applied Geochemistry, 2017, 76, 159-167.	1.4	23
461	Direct mercury determination in blood and urine by means of high-resolution continuum source graphite furnace atomic absorption spectrometry using gold nanoparticles as a chemical modifier. Journal of Analytical Atomic Spectrometry, 2017, 32, 2352-2359.	1.6	14
462	A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins. Reviews of Environmental Contamination and Toxicology, 2017, 245, 1-64.	0.7	7
463	Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter. Marine Chemistry, 2017, 197, 70-79.	0.9	31
464	Distributions and fluxes of methylmercury in the East/Japan Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 130, 47-54.	0.6	3

#	Article	IF	CITATIONS
465	Mercury Stable Isotopes Discriminate Different Populations of European Seabass and Trace Potential Hg Sources around Europe. Environmental Science & Technology, 2017, 51, 12219-12228.	4.6	27
466	Manipulation of monomer-aggregate transformation of a heptamethine cyanine ligand: near infrared chromogenic recognition of Hg ²⁺ . RSC Advances, 2017, 7, 32732-32736.	1.7	5
468	Mercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZ. Marine Pollution Bulletin, 2017, 121, 143-153.	2.3	13
469	Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chemistry - A European Journal, 2017, 23, 16219-16230.	1.7	185
470	Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts. Geochemistry International, 2017, 55, 841-860.	0.2	27
471	Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure. Aquatic Toxicology, 2017, 193, 152-159.	1.9	19
472	Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: AugustaÂBay (Mediterranean Sea). Environmental Pollution, 2017, 230, 394-404.	3.7	67
473	Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan. Environmental Science and Pollution Research, 2017, 24, 17731-17740.	2.7	8
474	Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments. Geochimica Et Cosmochimica Acta, 2017, 197, 245-262.	1.6	31
475	Mercury and methylmercury in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 138, 52-62.	0.6	18
476	Carbazole-driven ratiometric fluorescence turn on for dual ion recognition of Zn2+ and Hg2+ by thiophene-pyridyl conjugate in HEPES buffer medium: spectroscopy, computational, microscopy and cellular studies. Supramolecular Chemistry, 2017, 29, 215-228.	1.5	6
477	Mercury flux over West Antarctic Seas during winter, spring and summer. Marine Chemistry, 2017, 193, 44-54.	0.9	10
478	A new red fluorescent probe for Hg2+ based on naphthalene diimide and its application in living cells, reversibility on strip papers. Sensors and Actuators B: Chemical, 2017, 238, 735-743.	4.0	56
479	Triazole appended mono and 1,1′ di-substituted ferrocene-naphthalene conjugates: Highly selective and sensitive multi-responsive probes for Hg(II). Sensors and Actuators B: Chemical, 2017, 240, 640-650.	4.0	22
480	Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. Marine Pollution Bulletin, 2017, 114, 564-570.	2.3	37
481	Methylmercury varies more than one order of magnitude in commercial European rice. Food Chemistry, 2017, 214, 360-365.	4.2	41
482	Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chemical Engineering Journal, 2017, 307, 456-465.	6.6	394
483	Carbamodithioateâ€based fluorescent chemosensor for Hg(II): a staged response approach and investigation into the sensing mechanism. Luminescence, 2017, 32, 509-516.	1.5	4

#	Article	IF	CITATIONS
484	Rhodol-derived Colorimetric and Fluorescent Probe with the Receptor of Carbonothioate for the Specific Detection of Mercury lons. Analytical Sciences, 2017, 33, 1169-1173.	0.8	10
485	The Solomon Sea: its circulation, chemistry, geochemistry and biology explored during two oceanographic cruises. Elementa, 2017, 5, .	1.1	17
486	To what extent the size fraction affects an interpretation of planktonic foraminiferal assemblages. Acta Adriatica, 2017, 58, 25-40.	0.2	1
487	Contamination status and accumulation characteristics of heavy metals and arsenic in five seabird species from the central Bering Sea. Journal of Veterinary Medical Science, 2017, 79, 807-814.	0.3	15
488	Mercury Exposure and Heart Diseases. International Journal of Environmental Research and Public Health, 2017, 14, 74.	1.2	211
489	Seabird Tissues As Efficient Biomonitoring Tools for Hg Isotopic Investigations: Implications of Using Blood and Feathers from Chicks and Adults. Environmental Science & Technology, 2018, 52, 4227-4234.	4.6	42
490	Bare eye detection of Hg(II) ions based on enzyme inhibition and using mercaptoethanol as a reagent to improve selectivity. Mikrochimica Acta, 2018, 185, 174.	2.5	9
491	Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments. Environmental Science & Technology, 2018, 52, 4145-4153.	4.6	20
492	Changes in mercury exposure of marine birds breeding in the Gulf of Maine, 2008–2013. Marine Pollution Bulletin, 2018, 128, 156-161.	2.3	13
493	Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site,) Tj ETQq1 1 0.7843	14 rgBT /C 4.2	Overlock 10 T 21
494	Use of Mercury Isotopes to Quantify Mercury Exposure Sources in Inland Populations, China. Environmental Science & Technology, 2018, 52, 5407-5416.	4.6	58
495	Determinants of mercury contamination in viperine snakes, Natrix maura, in Western Europe. Science of the Total Environment, 2018, 635, 20-25.	3.9	18
496	Mutual detoxification of mercury and selenium in unicellular Tetrahymena. Journal of Environmental Sciences, 2018, 68, 143-150.	3.2	8
497	Mercury transformations in a coastal water column (Gulf of Trieste, northern Adriatic Sea). Marine Chemistry, 2018, 200, 57-67.	0.9	15
498	A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 2018, 47, 116-140.	2.8	500
499	Building Rhodamine-BODIPY fluorescent platform using Click reaction: Naked-eye visible and multi-channel chemodosimeter for detection of Fe3+ and Hg2+. Sensors and Actuators B: Chemical, 2018, 260, 666-675.	4.0	57
500	Mercury and methylmercury transport and fate in the water column of Tagus estuary (Portugal). Marine Pollution Bulletin, 2018, 127, 235-250.	2.3	25
501	Thiophene Appended Dual Fluorescent Sensor for Detection of Hg2+ and Cysteamine. Journal of Fluorescence, 2018, 28, 427-437.	1.3	19

		CITATION REPORT		
#	Article		IF	CITATIONS
502	Total mercury flux and offshore transport via submarine groundwater discharge and co power plant in the Jiulong River estuary, China. Marine Pollution Bulletin, 2018, 127, 79	al-fired ∂4-803.	2.3	7
503	Determination of δ15N in Anemonia sulcata as a pollution bioindicator. Ecological Indic 179-183.	cators, 2018, 90,	2.6	21
504	Mercury transport and human exposure from global marine fisheries. Scientific Reports	, 2018, 8, 6705.	1.6	73
505	Colorimetric detection of Hg ²⁺ using a mixture of an anionic azo dye and polyelectrolyte in aqueous solution. Polymer International, 2018, 67, 755-760.	a cationic	1.6	12
506	A multiscale study of mercury transformations and dynamics at the chemocline of the tropical reservoir (French Guiana). Science of the Total Environment, 2018, 630, 1401-		3.9	5
507	Sources and exchanges of mercury in the waters of the Northwestern Mediterranean m Progress in Oceanography, 2018, 163, 172-183.	nargin.	1.5	16
508	Geochemistry of mercury in surface sediments of the Kuril Basin of the Sea of Okhotsk Kuril-Kamchatka Trench and adjacent abyssal plain and northwest part of the Bering Se Research Part II: Topical Studies in Oceanography, 2018, 154, 24-31.		0.6	28
509	Mercury transformations in resuspended contaminated sediment controlled by redox c chemical speciation and sources of organic matter. Geochimica Et Cosmochimica Acta, 158-179.		1.6	74
510	Assessing the effect of mercury pollution on cultured benthic foraminifera community morphological and eDNA metabarcoding approaches. Marine Pollution Bulletin, 2018,	using 129, 512-524.	2.3	42
511	A novel ferrocenyl-based multichannel probe for colorimetric detection of Cu(II) and re fluorescent "turn-on―recognition of Hg(II) in aqueous environment and living cell Actuators B: Chemical, 2018, 255, 952-962.	versible s. Sensors and	4.0	39
512	Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic le consumers: A marine ecosystem-comparative study. Environmental Pollution, 2018, 23	vel 3, 844-854.	3.7	62
513	Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/2 disequilibrium and core incubation methods. Geochimica Et Cosmochimica Acta, 2018	28Th , 222, 569-583.	1.6	23
514	Atmospheric mercury species measurements across the Western Mediterranean regior variability during a 2015 research cruise campaign. Atmospheric Environment, 2018, 1		1.9	19
515	Sources, cycling and transfer of mercury in the Labrador Sea (Geotraces-Geovide cruise Chemistry, 2018, 198, 64-69.). Marine	0.9	21
516	Mercury content of blue crabs (Callinectes sapidus) from southern New England coasta Contamination in an emergent fishery and risks to human consumers. Marine Pollution 126, 166-178.		2.3	23
517	Mercury exposure and short-term consequences on physiology and reproduction in An Environmental Pollution, 2018, 237, 824-831.	tarctic petrels.	3.7	30
518	Solar irradiance and primary productivity controlled mercury accumulation in sediment lake in the Southern Hemisphere during the past 4000 years. Limnology and Oceanogr 540-549.		1.6	16
519	Abnormally high mercury contents in hydrogenic ferromanganese crusts from Seth Guy (<i>Northwestern Pacific</i>). Russian Geology and Geophysics, 2018, 59, 217-225.	vot	0.3	7

	CITATION	Report	
#	Article	IF	CITATIONS
520	A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences, 2018, 15, 6297-6313.	1.3	17
521	Coastal erosion—a "new―land-based source of labile mercury to the marine environment. Environmental Science and Pollution Research, 2018, 25, 28682-28694.	2.7	17
522	Efficient "turn-on―nanosensor by dual emission-quenching mechanism of functionalized Se doped ZnO nanorods for mercury (II) detection. Applied Nanoscience (Switzerland), 2018, 8, 1973-1987.	1.6	10
523	Contribution of dissolved organic matter to the photolysis of methylmercury in estuarine water. Marine Chemistry, 2018, 207, 13-20.	0.9	11
524	Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea. Global Biogeochemical Cycles, 2018, 32, 1498-1513.	1.9	36
525	High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon, 2018, 4, e00840.	1.4	17
526	Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. Numerische Mathematik, 2018, 318, 799-860.	0.7	110
527	Dual Sensing Performance of 1,2-Squaraine for the Colorimetric Detection of Fe3+ and Hg2+ lons. Materials, 2018, 11, 1998.	1.3	13
528	Variation of Hg content in low sulfur coals in relation to the coal-forming environment: a case study from Zhuji Coal Mine, Huainan Coalfield, North China. Environmental Earth Sciences, 2018, 77, 1.	1.3	5
529	Quantum Chemical Approach for Calculating Stability Constants of Mercury Complexes. ACS Earth and Space Chemistry, 2018, 2, 1168-1178.	1.2	14
530	A novel nanomolar highly selective fluorescent probe for imaging mercury (II) in living cells and zebrafish. Sensors and Actuators B: Chemical, 2018, 277, 673-678.	4.0	22
531	Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences, 2018, 15, 2309-2323.	1.3	29
532	BODIPY-derived multi-channel polymeric chemosensor with pH-tunable sensitivity: selective colorimetric and fluorimetric detection of Hg ²⁺ and HSO ₄ ^{â^'} in aqueous media. Polymer Chemistry, 2018, 9, 4882-4890.	1.9	42
533	The distribution and speciation of mercury in the California current: Implications for mercury transport via fog to land. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 151, 77-88.	0.6	16
534	Temporal and spatial variation in the mechanisms used by microorganisms to form methylmercury in the water column of Changshou Lake. Ecotoxicology and Environmental Safety, 2018, 160, 32-41.	2.9	10
535	Inherently fluorescent polystyrene microspheres as a fluorescent probe for highly sensitive determination of chromium (VI) and mercury (II) ions. Sensors and Actuators B: Chemical, 2018, 272, 127-134.	4.0	19
536	Mercury Inputs to Chinese Marginal Seas: Impact of Industrialization and Development of China. Journal of Geophysical Research: Oceans, 2018, 123, 5599-5611.	1.0	30
537	Selective and reversible recognition of Hg2+ ions by Tetrathia[22]porphyrin(2.1.2.1). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 534-539.	2.0	5

#	Article	IF	Citations
538	A dual-functional MnO2/La0.6Sr0.4MnO3 composite catalyst: high-efficiency for elemental mercury oxidation in flue gas. Catalysis Communications, 2018, 112, 43-48.	1.6	4
539	Water Column Distribution of Mercury Species in Permanently Stratified Aqueous Environments. Oceanology, 2018, 58, 28-37.	0.3	4
540	A peptide-based multifunctional fluorescent probe for Cu ²⁺ , Hg ²⁺ and biothiols. New Journal of Chemistry, 2018, 42, 15770-15777.	1.4	29
541	Modeling the Influence of Eutrophication and Redox Conditions on Mercury Cycling at the Sediment-Water Interface in the Berre Lagoon. Frontiers in Marine Science, 2018, 5, .	1.2	13
542	Feeding Ecology Tools to Assess Contaminant Exposure in Coastal Mammals. , 2018, , 39-74.		2
543	Mechanism of Accumulation of Methylmercury in Rice (<i>Oryza sativa</i> L.) in a Mercury Mining Area. Environmental Science & Technology, 2018, 52, 9749-9757.	4.6	36
544	Thioacetalized coumarin-based fluorescent probe for mercury(II): ratiometric response, high selectivity and successful bioimaging application. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 503-509.	2.0	24
545	Ultrasensitive determination of mercury ions (â;) by analysis of the degree of quantum dots aggregation. Talanta, 2018, 188, 644-650.	2.9	9
546	Triple detection modes for Hg ²⁺ sensing based on a NBD-fluorescent and colorimetric sensor and its potential in cell imaging. New Journal of Chemistry, 2018, 42, 12412-12420.	1.4	9
547	Zero valent cobalt impregnated silica nanoparticles for the sanitation of contaminated water. Environmental Progress and Sustainable Energy, 2019, 38, S42.	1.3	5
548	Dimethylmercury in Floodwaters of Mercury Contaminated Rice Paddies. Environmental Science & Technology, 2019, 53, 9453-9461.	4.6	18
549	Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands. Environmental Science & Technology, 2019, 53, 10685-10694.	4.6	35
550	Theoretical exploration for recognition mechanism of two similar coumarin-based probes on Hg2+ and Cu2+. Journal of Molecular Structure, 2019, 1198, 126870.	1.8	2
551	Tropical seabirds sample broadscale patterns of marine contaminants. Science of the Total Environment, 2019, 691, 631-643.	3.9	16
552	Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere, 2019, 237, 124448.	4.2	26
553	Long-term dynamics of mercury pollution of the Bratsk reservoir bottom sediments, Baikal region, Russia. IOP Conference Series: Earth and Environmental Science, 2019, 321, 012041.	0.2	14
554	Chemical Degradation of Mercury Alkyls Mediated by Copper Selenide Nanosheets. Chemistry - an Asian Journal, 2019, 14, 4582-4587.	1.7	5
555	Heavy metal pollution in the Derwent estuary: History, science and management. Regional Studies in Marine Science, 2019, 32, 100866.	0.4	19

#	Article	IF	CITATIONS
556	Colloidal Organic Matter and Metal(loid)s in Coastal Waters (Gulf of Trieste, Northern Adriatic Sea). Aquatic Geochemistry, 2019, 25, 179-194.	1.5	22
557	Mercury in sediment cores from the southern Gulf of Mexico: Preindustrial levels and temporal enrichment trends. Marine Pollution Bulletin, 2019, 149, 110498.	2.3	11
559	Mercury cycling and bioaccumulation in a changing coastal system: From water to aquatic organisms. Marine Pollution Bulletin, 2019, 140, 40-50.	2.3	25
560	Seawater intrusion and resuspension of surface sediment control mercury (Hg) distribution and its bioavailability in water column of a monsoonal estuarine system. Science of the Total Environment, 2019, 660, 1441-1448.	3.9	33
561	Environmental Mercury Chemistry – In Silico. Accounts of Chemical Research, 2019, 52, 379-388.	7.6	40
562	Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. Environmental Science & Technology, 2019, 53, 2426-2433.	4.6	52
563	A carbonothioate-based far-red fluorescent probe for the specific detection of mercury ions in living cells and zebrafish. Analyst, The, 2019, 144, 1426-1432.	1.7	44
564	Cascade recognition of Hg ²⁺ and cysteine using a naphthalene based ESIPT sensor and its application in a set/reset memorized device. New Journal of Chemistry, 2019, 43, 436-443.	1.4	21
565	Mercury Adsorption on Minerals and Its Effect on Microbial Methylation. ACS Earth and Space Chemistry, 2019, 3, 1338-1345.	1.2	18
566	Evaluation of claws as an alternative route of mercury elimination from the herring gull (<i>Larus) Tj ETQq1 1 0.7</i>	784314 rg 0.3	BT (Overlock
568	Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios. Global Biogeochemical Cycles, 2019, 33, 777-794.	1.9	54
569	Methylmercury concentrations and potential sources in atmospheric fine particles in Beijing, China. Science of the Total Environment, 2019, 681, 183-190.	3.9	9
570	Colorimetric and Fluorometric Detection of Heavy Metal Ions in Pure Aqueous Medium with Logic Gate Application. Journal of the Electrochemical Society, 2019, 166, B644-B653.	1.3	9
571	Research Progress of Mercury Bioaccumulation in the Aquatic Food Chain, China: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 612-620.	1.3	24
572	Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Science Reviews, 2019, 195, 191-212.	4.0	81
573	Temporal and interspecific variation in feather mercury in four penguin species from Macquarie Island, Australia. Marine Pollution Bulletin, 2019, 142, 282-289.	2.3	3
574	Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1893-1936.	6.6	114
575	Selective red-emission detection for mercuric ions in aqueous solution and cells using a fluorescent probe based on an unnatural peptide receptor. Organic and Biomolecular Chemistry, 2019, 17, 3590-3598.	1.5	15

#	Article	IF	CITATIONS
576	Size-resolved characteristics of water-soluble particulate elements in a coastal area: Source identification, influence of wildfires, and diurnal variability. Atmospheric Environment, 2019, 206, 72-84.	1.9	29
577	BODIPY-Derived Polymeric Chemosensor Appended with Thiosemicarbazone Units for the Simultaneous Detection and Separation of Hg(II) Ions in Pure Aqueous Media. ACS Applied Materials & Interfaces, 2019, 11, 13685-13693.	4.0	81
578	Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2†years after the Deepwater Horizon oil spill: Insights from Hg, C, N and S stable isotopes. Science of the Total Environment, 2019, 666, 828-838.	3.9	18
579	Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks. Journal of Environmental Sciences, 2019, 84, 205-218.	3.2	76
580	Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments. Science of the Total Environment, 2019, 668, 592-601.	3.9	19
581	Scaling mercury biodynamics from individuals to populations: Implications of an herbivorous fish on mercury cycles in streams. Freshwater Biology, 2019, 64, 815-831.	1.2	2
582	Diurnal fluxes of gaseous elemental mercury from the water-air interface in coastal environments of the northern Adriatic Sea. Science of the Total Environment, 2019, 668, 925-935.	3.9	25
583	The abundance, distribution and speciation of mercury in waters and sediments of the Adriatic Sea. Acta Adriatica, 2019, 58, 165-186.	0.2	6
584	Mercury as an indicator of foraging ecology but not the breeding hormone prolactin in seabirds. Ecological Indicators, 2019, 103, 248-259.	2.6	11
585	Biological Antagonism Inspired Detoxification: Removal of Toxic Elements by Porous Polymer Networks. ACS Applied Materials & Interfaces, 2019, 11, 14383-14390.	4.0	18
586	Methylmercury and selenium interactions: Mechanisms and implications for soil remediation. Critical Reviews in Environmental Science and Technology, 2019, 49, 1737-1768.	6.6	30
587	A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental Science & Technology, 2019, 53, 5052-5061.	4.6	31
588	Concentration of mercury species in hair, blood and urine of individuals occupationally exposed to gaseous elemental mercury in Asturias (Spain) and its comparison with individuals from a control group formed by close relatives. Science of the Total Environment, 2019, 672, 314-323.	3.9	15
589	Determination of methylmercury using liquid chromatography – photochemical vapour generation – atomic fluorescence spectroscopy (LC-PVG-AFS): a simple, green analytical method. Journal of Analytical Atomic Spectrometry, 0, , .	1.6	2
590	Trace metals and persistent organic pollutants contamination in batoids (Chondrichthyes: Batoidea): A systematic review. Environmental Pollution, 2019, 248, 684-695.	3.7	44
591	A fluorescein-based chemosensor for "turn-on―detection of Hg ²⁺ and the resultant complex as a fluorescent sensor for S ^{2â^'} in semi-aqueous medium with cell-imaging application: experimental and computational studies. New Journal of Chemistry, 2019, 43, 5297-5307.	1.4	27
592	A Review on the Distribution and Cycling of Mercury in the Pacific Ocean. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 665-671.	1.3	9
593	The Mercury-Tolerant Microbiota of the Zooplankton <i>Daphnia</i> Aids in Host Survival and Maintains Fecundity under Mercury Stress. Environmental Science & Technology, 2019, 53, 14688-14699.	4.6	12

#	Article	IF	CITATIONS
594	Development of a fused imidazo[1,2- <i>a</i>]pyridine based fluorescent probe for Fe ³⁺ and Hg ²⁺ in aqueous media and HeLa cells. RSC Advances, 2019, 9, 29856-29863.	1.7	28
595	A solvent-dependent chemosensor for fluorimetric detection of Hg ²⁺ and colorimetric detection of Cu ²⁺ based on a new diarylethene with a rhodamine B unit. RSC Advances, 2019, 9, 42155-42162.	1.7	15
596	Alkylation of uracil and thymine in the gas phase through interaction with alkylmercury compounds. International Journal of Mass Spectrometry, 2019, 436, 153-165.	0.7	5
597	Mercury speciation and retention in a salt marsh undergoing long-term fertilization. Estuarine, Coastal and Shelf Science, 2019, 218, 188-196.	0.9	4
598	Microbial generation of elemental mercury from dissolved methylmercury in seawater. Limnology and Oceanography, 2019, 64, 679-693.	1.6	13
599	Effect of body length, trophic position and habitat use on mercury concentrations of sharks from contrasted ecosystems in the southwestern Indian Ocean. Environmental Research, 2019, 169, 387-395.	3.7	27
600	Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. Science of the Total Environment, 2019, 654, 801-810.	3.9	30
601	A detecting Al3+ ion luminophor 2-(Anthracen-1-yliminomethyl)-phenol: Theoretical investigation on the fluorescence properties and ESIPT mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 208, 309-314.	2.0	22
602	How to Deal with Mercury in Sediments? A Critical Review About Used Methods for the Speciation of Mercury in Sediments. Chromatographia, 2019, 82, 125-141.	0.7	12
603	Dichlororesorufin-Based Colorimetric and Fluorescent Probe for Ultrasensitive Detection of Mercury Ions in Living Cells and Zebrafish. Industrial & Engineering Chemistry Research, 2019, 58, 11-17.	1.8	34
604	The impact of sea ice on the air-sea exchange of mercury in the Arctic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 144, 28-38.	0.6	43
605	Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 2019, 507, 62-72.	1.8	146
606	The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost. Science of the Total Environment, 2019, 651, 1534-1548.	3.9	70
607	Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. Science of the Total Environment, 2019, 650, 2129-2140.	3.9	41
608	Uptake of methylmercury by marine microalgae and its bioaccumulation in them. Journal of Oceanography, 2020, 76, 63-70.	0.7	9
609	Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury. Microchemical Journal, 2020, 153, 104338.	2.3	16
610	Sensitive determination of methylmercury δ13C compound specific stable isotopic analysis by purge and trap gas chromatography combustion isotope ratio mass spectrometry. Journal of Chromatography A, 2020, 1617, 460821.	1.8	5
611	A global perspective on mercury cycling in the ocean. Science of the Total Environment, 2020, 710, 136166.	3.9	60

#	Article	IF	CITATIONS
612	Mercury concentrations in blubber and skin from stranded bottlenose dolphins (Tursiops truncatus) along the Florida and Louisiana coasts (Gulf of Mexico, USA) in relation to biological variables. Environmental Research, 2020, 180, 108886.	3.7	8
613	Tracking Mercury in Individual <i>Tetrahymena</i> Using a Capillary Single-Cell Inductively Coupled Plasma Mass Spectrometry Online System. Analytical Chemistry, 2020, 92, 622-627.	3.2	30
614	Colorimetric Chemosensor for Hg2+ Based on Nuclear Fast Red and a Cationic Polyelectrolyte in Aqueous Solution. Journal of Fluorescence, 2020, 30, 175-180.	1.3	4
615	Characteristics of mercury speciation in seawater and emission flux of gaseous mercury in the Bohai Sea and Yellow Sea. Environmental Research, 2020, 182, 109092.	3.7	13
616	Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environmental Modelling and Software, 2020, 124, 104599.	1.9	10
617	Environmental archives of atmospheric Hg deposition – A review. Science of the Total Environment, 2020, 709, 134800.	3.9	71
618	Mercury and selenium concentrations, and selenium:mercury molar ratios in small cetaceans taken off St. Vincent, West Indies. Environmental Research, 2020, 181, 108908.	3.7	18
619	Oceanic mercury concentrations on both sides of the Strait of Gibraltar decreased between 1989 and 2012. Anthropocene, 2020, 29, 100230.	1.6	8
620	Review of stable mercury isotopes in ecology and biogeochemistry. Science of the Total Environment, 2020, 716, 135386.	3.9	73
621	Facile Synthesis of Nitrogen-Doped Green-Emission Carbon Dots as Fluorescent Off–On Probes for the Highly Selective Sensing Mercury and Iodine Ions. Journal of Nanoscience and Nanotechnology, 2020, 20, 2045-2054.	0.9	19
622	Following up mercury pollution in the Ebro Delta (NE Spain): Audouin's gull fledglings as model organisms to elucidate anthropogenic impacts on the environment. Environmental Pollution, 2020, 266, 115232.	3.7	9
623	Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. Global and Planetary Change, 2020, 194, 103312.	1.6	59
624	Minor effects of dietary methylmercury on growth and reproduction of the sheepshead minnow Cyprinodon variegatus and toxicity to their offspring. Environmental Pollution, 2020, 266, 115226.	3.7	6
625	Ecological and biological factors associated to mercury accumulation in batoids (Chondrichthyes:) Tj ETQq1 10.	784314 rg 2.3	BT_/Overloc
626	A New Molecular Probe for Colorimetric and Fluorometric Detection and Removal of Hg2+ and its Application as Agarose Film-Based Sensor for On-Site Monitoring. Journal of Fluorescence, 2020, 30, 1531-1542.	1.3	5
627	Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. Ecotoxicology and Environmental Safety, 2020, 202, 110950.	2.9	53
628	Plutonium in Southern Yellow Sea sediments and its implications for the quantification of oceanic-derived mercury and zinc. Environmental Pollution, 2020, 266, 115262.	3.7	10
629	Past and present anthropic environmental stress reflect high susceptibility of natural freshwater ecosystems in Romania. Environmental Pollution, 2020, 267, 115505.	3.7	13

#	Article	IF	CITATIONS
630	A rhodamine-based dual chemosensor for the naked-eye detection of Hg2+ and enhancement of the fluorescence emission for Fe3+. Photochemical and Photobiological Sciences, 2020, 19, 1690-1696.	1.6	13
631	The Twilight Zone as a Major Foraging Habitat and Mercury Source for the Great White Shark. Environmental Science & Technology, 2020, 54, 15872-15882.	4.6	20
632	Tissue-Specific Accumulation and Antioxidant Defenses in Flounder (Paralichthys olivaceus) Juveniles Experimentally Exposed to Methylmercury. Archives of Environmental Contamination and Toxicology, 2020, 79, 406-420.	2.1	3
633	Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. , 2020, , .		7
634	Hg2+ Significantly Enhancing the Peroxidase-Like Activity of H2TCPP/ZnS/CoS Nanoperoxidases by Inducing the Formation of Surface-Cation Defects and Application for the Sensitive and Selective Detection of Hg2+ in the Environment. Inorganic Chemistry, 2020, 59, 18384-18395.	1.9	20
635	Mercury isotopes identify near-surface marine mercury in deep-sea trench biota. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29292-29298.	3.3	42
636	Aqueous Mercury Removal with Carbonaceous and Iron Sulfide Sorbents and Their Applicability as Thin-Layer Caps in Mercury-Contaminated Estuary Sediment. Water (Switzerland), 2020, 12, 1991.	1.2	3
637	Mercury proxy for hydrothermal and submarine volcanic activities in the sediment cores of Central Indian Ridge. Marine Pollution Bulletin, 2020, 159, 111513.	2.3	6
639	Relationship between mercury and selenium concentrations in tissues from stranded odontocetes in the northern Gulf of Mexico. Science of the Total Environment, 2020, 749, 141350.	3.9	13
640	Effect of age on the mercury sensitivity of zebrafish (Danio rerio) sperm. Fish Physiology and Biochemistry, 2021, 47, 687-695.	0.9	3
641	An Arctic Paradox: Response of Fluvial Hg Inputs and Bioavailability to Global Climate Change in an Extreme Coastal Environment. Frontiers in Earth Science, 2020, 8, .	0.8	24
642	Altered metal ion selectivity in signalling with heterocyclic tripodal receptor appended rhodamine-B derivatives. Dyes and Pigments, 2020, 181, 108572.	2.0	6
643	Mercury stable isotopes in flying fish as a monitor of photochemical degradation of methylmercury in the Atlantic and Pacific Oceans. Marine Chemistry, 2020, 223, 103790.	0.9	17
644	Interactions between Environmental Contaminants and Gastrointestinal Parasites: Novel Insights from an Integrative Approach in a Marine Predator. Environmental Science & Technology, 2020, 54, 8938-8948.	4.6	22
645	Occurrence of Mercurous [Hg(I)] Species in Environmental Solid Matrices as Probed by Mild 2-Mercaptoethanol Extraction and HPLC-ICP-MS Analysis. Environmental Science and Technology Letters, 2020, 7, 482-488.	3.9	15
646	Quantum Dot-Based Hybrid Coacervate Nanodroplets for Ultrasensitive Detection of Hg ²⁺ . ACS Applied Nano Materials, 2020, 3, 3604-3612.	2.4	27
647	Fluorescent Detection of Methyl Mercury in Aqueous Solution and Live Cells Using Fluorescent Probe and Micelle Systems. Analytical Chemistry, 2020, 92, 4917-4925.	3.2	58
648	Spatiotemporal Variations in Dissolved Elemental Mercury in the River-Dominated and Monsoon-Influenced East China Sea: Drivers, Budgets, and Implications. Environmental Science & Technology, 2020, 54, 3988-3995.	4.6	10

#	Article	IF	CITATIONS
649	Nitrospina-Like Bacteria Are Potential Mercury Methylators in the Mesopelagic Zone in the East China Sea. Frontiers in Microbiology, 2020, 11, 1369.	1.5	33
650	Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nature Communications, 2020, 11, 3389.	5.8	46
651	Formalin-preserved zooplankton are not reliable for historical reconstructions of methylmercury bioaccumulation. Science of the Total Environment, 2020, 738, 139803.	3.9	3
652	A "seabird-eye―on mercury stable isotopes and cycling in the Southern Ocean. Science of the Total Environment, 2020, 742, 140499.	3.9	24
653	Isotopic tracing of mercury sources in estuarine-inner shelf sediments of the East China Sea. Environmental Pollution, 2020, 262, 114356.	3.7	15
654	A Global Model for Methylmercury Formation and Uptake at the Base of Marine Food Webs. Global Biogeochemical Cycles, 2020, 34, e2019GB006348.	1.9	65
656	Legacy groundwater pollution as a source of mercury enrichment in marine food web, Haifa Bay, Israel. Science of the Total Environment, 2020, 714, 136711.	3.9	17
658	Assessment of coupled hydrologic and biogeochemical Hg cycles in a temperate forestry watershed using SWAT-Hg. Environmental Modelling and Software, 2020, 126, 104644.	1.9	5
659	Fast and sensitive fluorescent detection of inorganic mercury species and methylmercury using a fluorescent probe based on the displacement reaction of arylboronic acid with the mercury species. Chemical Communications, 2020, 56, 2941-2944.	2.2	29
660	Mercury contamination status of rice cropping system in Pakistan and associated health risks. Environmental Pollution, 2020, 263, 114625.	3.7	29
661	Eddy covariance flux measurements of gaseous elemental mercury over a grassland. Atmospheric Measurement Techniques, 2020, 13, 2057-2074.	1.2	9
662	Influence of sexual dimorphism on stable isotopes and trace element concentrations in the greater hooked squid Moroteuthopsis ingens from New Zealand waters. Marine Environmental Research, 2020, 159, 104976.	1.1	9
663	Mercury exposure in relation to foraging ecology and its impact on the oxidative status of an endangered seabird. Science of the Total Environment, 2020, 724, 138131.	3.9	8
664	Testing the Use of Standardized Laboratory Tests to Infer Hg Bioaccumulation in Indigenous Benthic Organisms of Lake Maggiore (NW Italy). Applied Sciences (Switzerland), 2020, 10, 1970.	1.3	4
665	The Role of a Tidal Flat–Saltmarsh System as a Source–Sink of Mercury in a Contaminated Coastal Lagoon Environment (Northern Adriatic Sea). Aquatic Geochemistry, 2020, 26, 245-267.	1.5	4
666	Evaluation of Mercury Contamination in Iranian Wild Cats Through Hair Analysis. Biological Trace Element Research, 2021, 199, 166-172.	1.9	11
667	Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere, 2021, 262, 128360.	4.2	27
668	Contribution of commercial fish species to human mercury exposure: An evaluation near the Mid-Atlantic Ridge. Journal of Food Composition and Analysis, 2021, 95, 103688.	1.9	1

#	Article	IF	CITATIONS
669	Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels. Environmental Research, 2021, 193, 110518.	3.7	14
670	Recyclable macromolecular thermogels for Hg(II) detection and separation via sol-gel transition in complex aqueous environments. Journal of Hazardous Materials, 2021, 410, 124625.	6.5	16
671	Influence of Speciesâ€ S pecific Feeding Ecology on Mercury Concentrations in Seabirds Breeding on the Chatham Islands, New Zealand. Environmental Toxicology and Chemistry, 2021, 40, 454-472.	2.2	14
672	Colorimetric and fluorometric probes for the optical detection of environmental Hg(<scp>ii</scp>) and As(<scp>iii</scp>) ions. Materials Advances, 2021, 2, 64-95.	2.6	39
673	Synthesis of blue fluorescent carbon dots and their application in detecting mercury and iodine based on "off–on―mode. Luminescence, 2021, 36, 721-732.	1.5	18
674	Ultrasensitive mercury ion and biothiol detection based on Dansyl-His-Pro-Gly-Asp-NH2 fluorescent sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119246.	2.0	2
675	Extraction of ultratrace dissolved gaseous mercury and reactive mercury in natural freshwater for stable isotope analysis. Journal of Analytical Atomic Spectrometry, 2021, 36, 1921-1932.	1.6	3
676	Symmetrical Derivative of Anthrone as a Novel Receptor for Mercury Ions: Enhanced Performance of Modified Screen-Printed Electrode. Journal of Carbon Research, 2021, 7, 13.	1.4	1
678	The influence of nutrient loading on methylmercury availability in Long Island estuaries. Environmental Pollution, 2021, 268, 115510.	3.7	11
679	Seasonal variation of total mercury transfer through a tropical mangrove food web, Setiu Wetlands. Marine Pollution Bulletin, 2021, 162, 111878.	2.3	5
680	Photoactive Titanium Dioxide Films with Embedded Gold Nanoparticles for Quantitative Determination of Mercury Traces in Humic Matter-Containing Freshwaters. Nanomaterials, 2021, 11, 512.	1.9	2
681	Mercury in the world's largest hypersaline lagoon Bay Sivash, the Sea of Azov. Environmental Science and Pollution Research, 2021, 28, 28704-28712.	2.7	5
682	<i>In Situ</i> Voltammetric Sensor of Potentially Bioavailable Inorganic Mercury in Marine Aquatic Systems Based on Gel-Integrated Nanostructured Gold-Based Microelectrode Arrays. ACS Sensors, 2021, 6, 925-937.	4.0	18
683	Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ Ions: A comprehensive review. European Polymer Journal, 2021, 145, 110233.	2.6	25
684	Effects of methylmercury on the early life stages of an estuarine forage fish using two different dietary sources. Marine Environmental Research, 2021, 164, 105240.	1.1	1
685	Sulfur Conversion to Multifunctional Poly(<i>O</i> -thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. Journal of the American Chemical Society, 2021, 143, 3944-3950.	6.6	63
686	Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Environmental Science and Pollution Research, 2021, 28, 35690-35708.	2.7	25
687	Mercury distribution and enrichment in coastal sediments from different geographical areas in the North Atlantic Ocean. Marine Pollution Bulletin, 2021, 165, 112153.	2.3	9

#	Article	IF	CITATIONS
688	Variation of Total Mercury Concentrations in Different Tissues of Three Neotropical Caimans: Implications for Minimally Invasive Biomonitoring. Archives of Environmental Contamination and Toxicology, 2021, 81, 15-24.	2.1	2
689	Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy and Environment, 2023, 8, 267-274.	4.7	15
690	Distribution and Transformation of Mercury in Subtropical Wild-Caught Seafood from the Southern Taiwan Strait. Biological Trace Element Research, 2022, 200, 855-867.	1.9	2
691	Do Polystyrene Beads Contribute to Accumulation of Methylmercury in Oysters?. Archives of Environmental Contamination and Toxicology, 2021, 81, 36-45.	2.1	2
692	Sulfur crosslinked poly(m-aminothiophenol)/potato starch on mesoporous silica for efficient Hg(II) removal and reutilization of waste adsorbent as a catalyst. Journal of Molecular Liquids, 2021, 328, 115420.	2.3	29
693	High mercury accumulation in deep-ocean hadal sediments. Scientific Reports, 2021, 11, 10970.	1.6	24
694	Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: Human health concerns and feeding patterns. Ecotoxicology and Environmental Safety, 2021, 215, 112122.	2.9	20
695	Abiotic Reduction of Mercury(II) in the Presence of Sulfidic Mineral Suspensions. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	3
696	Mercury in the hydrothermal fluids and gases in Paleochori Bay, Milos, Greece. Marine Chemistry, 2021, 233, 103984.	0.9	9
697	Mechanistic Investigation of Dimethylmercury Formation Mediated by a Sulfide Mineral Surface. Journal of Physical Chemistry A, 2021, 125, 5397-5405.	1.1	3
698	Factors affecting mercury concentrations in two oceanic cephalopods of commercial interest from the southern Caribbean. Marine Pollution Bulletin, 2021, 168, 112408.	2.3	1
699	A new ratiometric fluorescent chemodosimeter for sensing of Hg2+ in water using irreversible reaction of arylboronic acid with Hg2+. Sensors and Actuators B: Chemical, 2021, 338, 129814.	4.0	39
700	Mercury Anomaly in Oligocene–Miocene Maykop Group Sediments (Caucasus Continental Collision) Tj ETQq0	0 8 rgBT /0	Overlock 10
701	Ratiometric fluorescent detection of Hg(II) by amino-acid based fluorescent chemodosimeter using irreversible reaction of phenylboronic acid with mercury species. Dyes and Pigments, 2021, 191, 109374.	2.0	28
702	Recent progress in pendant rhodamine-based polymeric sensors for the detection of copper, mercury and iron ions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 835-848.	1.2	18
703	Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current. Quaternary Science Reviews, 2021, 265, 107051.	1.4	13
704	Enhanced Susceptibility of Methylmercury Bioaccumulation into Seston of the Laurentian Great Lakes. Environmental Science & Technology, 2021, 55, 12714-12723.	4.6	15

705Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy
utilization efficiency of fluorophores. Coordination Chemistry Reviews, 2021, 440, 213979.9.518

ARTICLE IF CITATIONS Foraging depth depicts resource partitioning and contamination level in a pelagic shark assemblage: 706 3.7 16 Insights from mercury stable isotopes. Environmental Pollution, 2021, 283, 117066. Dual functional MOF as a selective fluorescent naked-eye detector and effective sorbent for mercury 1.4 ion. Journal of Solid State Chemistry, 2021, 300, 122267. Mercury isotope constraints on the sources of metals in the Baiyangping Ag-Cu-Pb-Zn polymetallic 708 2 1.7 deposits, SW China. Mineralium Deposita, 0, , 1. Field determination of inorganic mercury in seawaters by a portable dual-channel and purge-and-trap system with atomic fluorescence spectrometry. International Journal of Environmental Analytical Chemistry, 2023, 103, 7198-7213. 709 1.8 CuS and NiS Nanoparticle-Decorated Porous-Reduced Graphene Oxide Sheets as Efficient Peroxidase Nanozymes for Easy Colorimetric Detection of Hg(II) lons in a Water Medium and Using a Paper Strip. 710 3.2 31 ACS Sústainable Chemistry and Engineering, 2021, 9, 13245-13255. Effect of trophic position on mercury concentrations in bottlenose dolphins (Tursiops truncatus) 3.7 from the northern Gulf of Mexico. Environmental Research, 2022, 204, 112124. Different Mercury Species Partitioning and Distribution in the Water and Sediment of a Eutrophic 712 1.2 8 Estuary in Northern Taiwan. Water (Switzerland), 2021, 13, 2471. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature, 2021, 597, 678-682. 13.7 The Legacy of the Idrija Mine Twenty-Five Years after Closing: Is Mercury in the Water Column of the 714 Gulf of Trieste Still an Environmental Issue?. International Journal of Environmental Research and 5 1.2 Public Health, 2021, 18, 10192. Mercury Accumulation in Marine Sediments – A Comparison of an Upwelling Area and Two Large River 1.2 Mouths. Frontiers in Marine Science, 2021, 8, . A population approach for the estimation of methylmercury ToxicoKinetics in red mullets. Toxicology 716 2 1.3 and Applied Pharmacology, 2021, 428, 115679. BODIPY immobilized MCM-41 based material: A reusable solid optical sensor for selective detection and 1.8 removal of Hg(II) in water. Inorganic Chemistry Communication, 2021, 133, 108861. Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution 718 3.9 23 and accumulation in the soil-rice system. Science of the Total Environment, 2022, 803, 149967. Mercury in the San Francisco Estuary. Reviews of Environmental Contamination and Toxicology, 2008, 194, 29-54. 719 Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art 720 22 science and uncertainties. , 2009, , 459-501. Bioaccumulation/Biomagnifications in Food Chains., 2013, , 35-69. Metals, Organic Compounds, and Nutrients in Long Island Sound: Sources, Magnitudes, Trends, and 722 0.3 11 Impacts. Springer Series on Environmental Management, 2014, , 203-283. Trace elements contamination assessment in marine sediments from different regions of the Caribbean 6.5 Sea. Journal of Hazardous Materials, 2020, 399, 122934.

#	Article	IF	CITATIONS
724	Mercury distribution and speciation in two lagoons with different pollution and eutrophication conditions in Taiwan. Marine Pollution Bulletin, 2020, 156, 111096.	2.3	6
725	Mercury biogeochemical cycling: A synthesis of recent scientific advances. Science of the Total Environment, 2020, 737, 139619.	3.9	48
726	Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate. Environmental Research Letters, 2020, 15, 115013.	2.2	54
727	Recent advances in the study of mercury methylation in aquatic systems. Facets, 2017, 2, 85-119.	1.1	111
728	Sedimentary records of mercury stable isotopes in Lake Michigan. Elementa, 2016, 4, .	1.1	25
729	Biodynamic understanding of mercury accumulation in marine and freshwater fish. Advances in Environmental Research, 2012, 1, 15-35.	0.3	72
730	Wide Range of Mercury Contamination in Chicks of Southern Ocean Seabirds. PLoS ONE, 2013, 8, e54508.	1.1	94
731	Mercury in the Environment. , 2012, , .		19
732	Sources and Transport: A Global Issue. , 2012, , 3-18.		6
733	Analytical Methods for Measuring Mercury in Water, Sediment, and Biota. , 2012, , 27-54.		4
734	Determination of mercury in selected polluted sediments using HPLC-ICP-MS in Westbank area, Western Cape, South Africa. South African Journal of Chemistry, 2016, 69, .	0.3	7
735	Distribution of Mercury in a Gadoid Fish Species, Tusk (Brosme brosme), and Its Implication for Food Safety. Journal of Food Science and Engineering, 2012, 2, .	0.1	3
736	Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern. Endangered Species Research, 2009, 7, 249-256.	1.2	18
737	Sympatric Globicephala species: feeding ecology and contamination status based on stable isotopes and trace elements. Marine Ecology - Progress Series, 2017, 563, 233-247.	0.9	5
738	Biosequestration, Transformation, and Volatilization of Mercury by Lysinibacillus fusiformis Isolated from Industrial Effluent. Journal of Microbiology and Biotechnology, 2012, 22, 684-689.	0.9	23
739	Seasonal Variations of Total Gaseous Mercury at a French Coastal Mediterranean Site. Aerosol and Air Quality Research, 2017, 16, 46-60.	0.9	3
740	Effectiveness of gold nanoparticle-coated silica in the removal of inorganic mercury in aqueous systems: Equilibrium and kinetic studies. Environmental Engineering Research, 2016, 21, 99-107.	1.5	12
741	Effects of organic carbon and UV wavelength on the formation of dissolved gaseous mercury in water under a controlled environment. Environmental Engineering Research, 2019, 24, 54-62.	1.5	5

		CITATION REPORT		
#	Article		IF	CITATIONS
744	Biogeochemical processes accounting for the natural mercury variations in the Southern G diatom ooze sediments. Ocean Science, 2020, 16, 729-741.	Dcean	1.3	10
745	Au nanoparticle-hydrogel nanozyme-based colorimetric detection for on-site monitoring o in river water. Mikrochimica Acta, 2021, 188, 382.	f mercury	2.5	21
746	Human Impacts on Earth's Natural Mercury Cycle. , 2011, , 33-50.			0
747	Oceanic Fate and Transport of Chemicals. , 2012, , 287-333.			0
748	Oceanic ocean/oceanic Fate ocean/oceanic fate and Transport of Chemicals. , 2012, , 732	8-7365.		0
749	Alkyl mercury compounds: an assessment of DFT methods. Highlights in Theoretical Chem 111-118.	iistry, 2014, ,	0.0	0
750	Bioaccumulation/Biomagnifications in Food Chains. , 2012, , 822-845.			1
751	Speciation of Arsenic in Soil, Sediment and Environmental Samples. , 2013, , 371-397.			0
753	Ge-Hg-Rich Sphalerite and Pb, Sb, As, Hg, and Ag Sulfide Assemblages in Mud Volcanoes o Island, Russia: An Insight into Possible Origin. Minerals (Basel, Switzerland), 2021, 11, 118	f Sakhalin 36.	0.8	2
754	Mercury and stable carbon and nitrogen isotopes in the natal Fur of two Antarctic pinnipe Chemosphere, 2022, 288, 132500.	d species.	4.2	5
755	Agronomic Management Practices to Tackle Toxic Metal Entry into Crop Plants. , 2020, , 4	19-450.		0
757	Mercury exposure driven by geographic and trophic factors in Magellanic penguins from T Fuego. Marine Pollution Bulletin, 2022, 174, 113184.	ierra del	2.3	5
758	Coprecipitation of Mercury from Natural lodine-Containing Seawater for Accurate Isotope Measurement. Analytical Chemistry, 2021, 93, 15905-15912.		3.2	8
759	Feather mercury levels in beached Magellanic penguin (Spheniscus magellanicus) in north Argentina during the non-breeding season. Environmental Science and Pollution Research 24793-24801.	ern , 2022, 29,	2.7	3
760	New insights into the biomineralization of mercury selenide nanoparticles through stable analysis in giant petrel tissues. Journal of Hazardous Materials, 2022, 425, 127922.	isotope	6.5	11
761	Multicomponent Synthesis and Investigations Fluorescence Activity of Chromenoneâ $\epsilon^{\rm "Py}$ Compounds. Journal of Fluorescence, 2021, , 1.	razole	1.3	1
762	Inorganic and methylated mercury dynamics in estuarine water of a salt marsh in Massach Environmental Pollution, 2022, 294, 118657.	usetts, USA.	3.7	5
763	Influence of Spartina alterniflora invasion on mercury storage and methylation in the sedir Yangtze River estuarine wetlands. Estuarine, Coastal and Shelf Science, 2022, 265, 10771	nents of 7.	0.9	7

ARTICLE IF CITATIONS # A highly selective barbiturate-based fluorescent probe for detecting Hg2+ in cells and zebrafish as well as in real water samples. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 2.0 10 764 113706. Increase in mercury and methylmercury levels with depth in a fish assemblage. Chemosphere, 2022, 292, 4.2 133445. Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a 766 2 1.8 mega dam. Environmental Geochemistry and Health, 2022, , 1. Mercury concentrations and stable isotope ratios (13C and 115N) in pelagic nekton assemblages of the south-western Indian Ocean. Marine Pollution Bulletin, 2022, 174, 113151. Temporal Changes in Photoreducible Mercury, Photoreduction Rates, and the Role of Dissolved Organic Matter in Freshwater Lakes. Bulletin of Environmental Contamination and Toxicology, 2022, 768 1.3 4 108, 635-640. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. Marine Pollution Bulletin, 2022, 175, 113365. 769 2.3 Influence of different seabird species on trace metals content in Antarctic soils. Anais Da Academia 771 0.3 5 Brasileira De Ciencias, 2022, 94, e20210623. Quantitative metaâ Canalysis reveals no association between mercury contamination and body condition 9 in birds. Biological Reviews, 2022, 97, 1253-1271. Sedimentary mercury as a proxy for redox oscillations during the Cambrian SPICE event in western 773 0.6 4 Newfoundland. Canadian Journal of Earth Sciences, 2022, 59, 504-520. Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in 774 1.6 South China. Scientific Reports, 2022, 12, 5195. A highly parallel DTT/MB-DNA/Au electrochemical biosensor for trace Hg monitoring by using configuration occupation approach and SECM. Ecotoxicology and Environmental Saféty, 2022, 234, 775 3 2.9 113391. Mercury Partitioning and Behavior in Streams and Source Areas Affected by the Novo-Ursk Gold 0.9 Sulfide Tailings (West Siberia, Russia). Mine Water and the Environment, 2022, 41, 437-457. High mercury enrichments in sediments from the Baltic continent across the late Cambrian: Controls 777 1.4 7 and implications. Chemical Geology, 2022, 599, 120846. Pollution in abiotic matrices and remedial measures., 2022, 255-316. Dissolved Gaseous Mercury (DGM) in the Gulf of Trieste, Northern Adriatic Sea. Journal of Marine 784 1.2 1 Science and Engineering, 2022, 10, 587. Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off. Environmental Pollution, 2022, 306, 119361. Mercury and selenium bioaccumulation in wild commercial fish in the coastal East China Sea: 786 2.312 Selenium benefits versus mercury risks. Marine Pollution Bulletin, 2022, 180, 113754. A Novel Peptide Fluorescent Probe Based on Different Fluorescence Responses for Detection of Mercury Species and Hydrogen Sulfide. SSRN Electronic Journal, 0, , .

#	Article	IF	CITATIONS
788	Design and synthesis of fluorescent peptide-based probes with aggregation-induced emission characteristic for detecting CH3Hg+ and Hg2+ in aqueous environment: Tuning fluorescent detection for CH3Hg+ by replacing peptide receptors. Dyes and Pigments, 2022, 204, 110461.	2.0	8
789	Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem. Science of the Total Environment, 2022, 841, 156424.	3.9	25
790	Applications of Mercury Stable Isotopes in Environmental Forensics. Daehan Hwan'gyeong Gonghag Hoeji, 2022, 44, 175-188.	0.4	0
791	Mercury Accumulation in a Stream Ecosystem: Linking Labile Mercury in Sediment Porewaters to Bioaccumulative Mercury in Trophic Webs. Water (Switzerland), 2022, 14, 2003.	1.2	1
792	Probing the outfall-related anomalous Hg levels in the Danshuei Estuarine Coastal, Taiwan. Marine Pollution Bulletin, 2022, 181, 113840.	2.3	3
793	Differentially-Expressed Genes Related to Glutathione Metabolism and Heavy Metal Transport Reveals an Adaptive, Genotype-Specific Mechanism to Hg2+ Exposure in Rice (Oryza Sativa L.). SSRN Electronic Journal, 0, , .	0.4	0
794	Uracil-Appended Fluorescent Sensor for Cu2+ and Hg2+ Ions: Real-Life Utilities Including Recognition of Vitamin B2 (Riboflavin) in Milk Products and Invisible Ink Applications. Journal of Fluorescence, 2022, 32, 1913-1919.	1.3	1
795	Hg in the hydrothermal fluids and gases in Baia di Levante, Vulcano, Italy. Marine Chemistry, 2022, 244, 104147.	0.9	1
796	Gaseous Mercury Exchange from Water–Air Interface in Differently Impacted Freshwater Environments. International Journal of Environmental Research and Public Health, 2022, 19, 8149.	1.2	4
797	Silver nanoparticle incorporated colorimetric/fluorescence sensor for sub-ppb detection of mercury ion via plasmon-enhanced fluorescence strategy. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114140.	2.0	2
798	Geological evolution of offshore pollution and its long-term potential impacts on marine ecosystems. Geoscience Frontiers, 2022, 13, 101427.	4.3	70
799	Current understanding of the ecological risk of mercury from subsea oil and gas infrastructure to marine ecosystems. Journal of Hazardous Materials, 2022, 438, 129348.	6.5	17
800	Mercury concentrations in coastal Elasmobranchs (Hypanus guttatus and Rhizoprionodon porosus) and human exposure in Pernambuco, Northeastern Brazil. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.3	3
801	Mercury Methylation Potentials in Sediments of an Ancient Cypress Wetland Using Species-Specific Isotope Dilution GC-ICP-MS. Molecules, 2022, 27, 4911.	1.7	7
802	The geochemical and environmental characteristics of trace metals in surface sediments of the river estuarine mouths around the Taiwan Island and the Taiwan Strait. Marine Pollution Bulletin, 2022, 182, 113967.	2.3	5
803	Mercury may reduce the protective effect of sea fish consumption on serum triglycerides levels in Chinese adults: Evidence from China National Human Biomonitoring. Environmental Pollution, 2022, 311, 119904.	3.7	0
804	New stilbene-biscarbothioamide based colorimetric chemosensor and turn on fluorescent probe for recognition of Hg2+ cation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114206.	2.0	2
805	Mercury and selenium levels in feathers of Southern Giant Petrels (Macronectes giganteus) from South Shetland Islands, Antarctica. , 2022, 2, 100020.		1

#	Article	IF	CITATIONS
806	Pollution—Lights, plastics, oil, and contaminants. , 2023, , 177-216.		2
807	Enrichment of mercury in the Lower Cambrian sedimentary successions by submarine hydrothermal venting. Journal of Asian Earth Sciences, 2022, 240, 105439.	1.0	1
808	The single and combined effects of mercury and polystyrene plastic beads on antioxidant-related systems in the brackish water flea: toxicological interaction depending on mercury species and plastic bead size. Aquatic Toxicology, 2022, 252, 106325.	1.9	9
809	A review of the potential risks associated with mercury in subsea oil and gas pipelines in Australia. Environmental Chemistry, 2022, 19, 210-227.	0.7	8
810	Dynamics, distribution, and transformations of mercury species from pyrenean high-altitude lakes. Environmental Research, 2023, 216, 114611.	3.7	5
811	A high-efficiency decomposition method for mono and dimethylmercury induced by low-energy electron attachment (<â‰^7ÂeV): A computational insight into the decomposition mechanism of extremely toxic mercury compounds. Chemosphere, 2023, 310, 136845.	4.2	0
812	A novel peptide fluorescent probe based on different fluorescence responses for detection of mercury species and hydrogen sulfide. Microchemical Journal, 2023, 184, 108160.	2.3	3
813	Specifically functionalized MTT-Ag NP/SA film sensor for the ultrasensitive detection of Hg2+ in lettuce samples. Food Chemistry, 2023, 404, 134705.	4.2	1
814	Distribution and phylogeny of mercury methylation, demethylation, and reduction genes in the Seto Inland Sea of Japan. Marine Pollution Bulletin, 2023, 186, 114381.	2.3	2
815	Carryover effects of winter mercury contamination on summer concentrations and reproductive performance in little auks. Environmental Pollution, 2023, 318, 120774.	3.7	4
816	Monitoring Hg2+ and MeHg+ poisoning in living body with an activatable near-infrared II fluorescence probe. Journal of Hazardous Materials, 2023, 445, 130612.	6.5	7
817	Luminescent Pyrene-based Schiff base Receptor for Hazardous Mercury(II) Detection Demonstrated by Cell Imaging and Test Strip. Journal of Fluorescence, 2023, 33, 539-551.	1.3	9
818	Fluorimetric Recognition of Nerve Agent Mimic Diethylchlorophosphate Along with Cu2+/Hg2+ Ions Using Imidazole Possessing Sensor. Journal of Fluorescence, 0, , .	1.3	0
820	Heteroligand nanoarchitectonics of functionalized gold nanoparticle for Hg2+ detection. Journal of Nanoparticle Research, 2022, 24, .	0.8	3
821	Understanding the role of ecological factors affecting mercury concentrations in the blue shark (Prionace glauca). Chemosphere, 2023, 313, 137642.	4.2	4
822	Mechanisms and biological effects of organic amendments on mercury speciation in soil–rice systems: A review. Ecotoxicology and Environmental Safety, 2023, 251, 114516.	2.9	8
823	Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea. Marine Pollution Bulletin, 2023, 187, 114498.	2.3	1
824	Preindustrial levels and temporal enrichment trends of mercury in sediment cores from the Gulf of Thailand. Environmental Geochemistry and Health, 0, , .	1.8	2

ARTICLE IF CITATIONS # "Trojan Horse―Type Internalization Increases the Bioavailability of Mercury Sulfide Nanoparticles and 825 7.3 4 Methylation after Intracellular Dissolution. ACS Nano, 2023, 17, 1925-1934. Can a 16th Century Shipwreck Be Considered a Mercury Source in the 21st Century?â€"A Case Study in 1.2 the Azores Archipelago (Portugal). Journal of Marine Science and Engineering, 2023, 11, 276. Engineering a bromophenol derivative for rapid detection of Hg²⁺/CH₃Hg⁺ in both environmental and biological samples 827 4 through a unique activation process. , 2023, 1, 640-647. Decoding the marine biogeochemical cycling of mercury by stable mercury isotopes. Critical Reviews in Environmental Science and Technology, 2023, 53, 1935-1956. Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg2+ exposure in rice (Oryza sativa L.). Environmental 829 3.7 3 Pollution, 2023, 324, 121340. Mercury stable isotopes in the ocean: Analytical methods, cycling, and application as tracers. Science of the Total Environment, 2023, 874, 162485. 830 Chemostratigraphy and source of mercury in the Tropical Western Pacific over the past 600 kyr. 831 0.6 0 Journal of Sea Research, 2023, 193, 102369. Sulfur-containing adsorbent made by inverse vulcanization of sulfur/oleylamine/potato starch for 3.3 efficient removal of Hg(II) ions. Journal of Environmental Chemical Engineering, 2023, 11, 109806. Tuning of distinguished fluorescent responses to methylmercury and Hg2+ ions: Selective detection 833 of methylmercury over Hg2+ ions by fluorescent sensor using micelle system. Sensors and Actuators 4.0 6 B: Chemical, 2023, 385, 133670. An approach to assess potential environmental mercury release, food web bioaccumulation, and 834 human dietary methylmercury uptake from decommissioning offshore oil and gas infrastructure. 6.5 Journal of Hazardous Materials, 2023, 452, 131298. A dynamic integrated model for mercury bioaccumulation in marine organisms. Ecological 835 2.31 Informatics, 2023, 75, 102056. A chemodosimeter with high selectivity for ratiometric detection of mercury ions in buffer solution. Tetrahedron Letters, 2023, 120, 154435. Geochemistry aspects of modern mercury accumulation in bottom sediments from the south-western 837 2.3 1 Chukchi Sea. Marine Pollution Bulletin, 2023, 189, 114768. Assessment and Management of Mercury Leaching from a Riverbank. Toxics, 2023, 11, 179. 1.6 Evaluation of arsenic, selenium, tin and mercury in water and sediments of Bitter Lakes, Suez Canal, 839 1.0 2 Egypt. Egyptian Journal of Aquatic Research, 2023, 49, 137-143. Effects of natural particles on photo-reduction of divalent mercury in everglades waters. Environmental Pollution, 2023, 323, 121327. 840 Biogeochemistry of Hg, Cd and Pb in Surface Water: Bioaccumulation and Ecotoxicity., 2023, 443-452. 841 0 Heavy Metals and Their Ecological Risk Assessment in Surface Sediments of the Changjiang River 842 Estuary and Contiguous East China Sea. Sustainability, 2023, 15, 4323.

#	Article	IF	CITATIONS
843	Recent progress on detection of bivalent, trivalent, and hexavalent toxic heavy metal ions in water using metallic nanoparticles: A review. Results in Chemistry, 2023, 5, 100874.	0.9	9
844	Mercury content in commercial fishes of the Barents Sea (based on long-term data). Trudy VNIRO, 0, 191, 112-123.	0.2	1
845	Antarctic heavy metal pollution and remediation efforts: state of the art of research and scientific publications. Brazilian Journal of Microbiology, 2023, 54, 2011-2026.	0.8	2
847	Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicology Reports, 2023, 10, 498-508.	1.6	6

848 Metal(loid)s in suspended particulate matter and plankton from coastal waters (Gulf of Trieste,) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 58

854	Dimethylmercury. , 2024, , 785-792.		0
873	Biogeochemistry and Oceanography. , 2023, , 227-278.		0
888	Source and Distribution of Mercury in Environment—A Review. Earth and Environmental Sciences Library, 2024, , 3-43.	0.3	0
889	Treatment Methods for Mercury Removal From Soil and Wastewater. Earth and Environmental Sciences Library, 2024, , 257-281.	0.3	0