Recovery of titanium compounds from molten Ti-beari dynamic oxidation condition

Minerals Engineering 20, 684-693 DOI: 10.1016/j.mineng.2007.01.003

Citation Report

#	Article	IF	CITATIONS
1	Isothermal precipitation and growth process of perovskite phase in oxidized titanium bearing slag. Transactions of Nonferrous Metals Society of China, 2008, 18, 459-462.	1.7	22
2	Study on recovery of metallic Fe and enrichment behaviour of titanium in Ti bearing blast furnace slag. Ironmaking and Steelmaking, 2009, 36, 388-392.	1.1	18
3	Modification of ilmenite surface chemistry for enhancing surfactants adsorption and bubble attachment. Journal of Colloid and Interface Science, 2009, 329, 167-172.	5.0	86
4	Production of TiO2 from CaTiO3 by alkaline roasting method. Rare Metals, 2010, 29, 162-167.	3.6	13
5	Synthesis of rutile from high titania slag by pyrometallurgical route. Transactions of Nonferrous Metals Society of China, 2011, 21, 2317-2322.	1.7	18
6	Solid state reduction of Panzhihua titanomagnetite concentrates with pulverized coal. Minerals Engineering, 2011, 24, 864-869.	1.8	134
7	Preparation of titania-containing photocatalysts from metallurgical slag waste and photodegradation of 2,4-dichlorophenol. Journal of Industrial and Engineering Chemistry, 2011, 17, 461-467.	2.9	9
8	Influence of TiO ₂ and basicity on viscosity of Ti bearing slag. Ironmaking and Steelmaking, 2012, 39, 133-139.	1.1	100
9	Crystallization and Coarsening Kinetics of Rutile Phase in Modified Ti-Bearing Blast Furnace Slag. Industrial & Engineering Chemistry Research, 2012, , 120911122753003.	1.8	2
10	Reduction mechanism of titanomagnetite concentrate by hydrogen. International Journal of Mineral Processing, 2013, 125, 122-128.	2.6	59
11	Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 1012-1020.	2.4	24
12	Desilication from titanium–vanadium slag by alkaline leaching. Transactions of Nonferrous Metals Society of China, 2013, 23, 3076-3082.	1.7	50
13	A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Journal of Hazardous Materials, 2013, 244-245, 588-595.	6.5	146
14	Thermodynamic Analysis of Extraction of Synthetic Rutile from Modified Slag. Industrial & Engineering Chemistry Research, 2013, 52, 4924-4931.	1.8	17
15	Effect of Oxidation on Phase Transformation in Ti-Bearing Blast Furnace Slag. Advanced Materials Research, 2013, 641-642, 363-366.	0.3	2
16	Effect of TiO2 Content on the Structure of CaO–SiO2–TiO2 System by Molecular Dynamics Simulation. ISIJ International, 2013, 53, 1131-1137.	0.6	41
17	Solid State Reduction of Titanomagnetite Concentrate by Graphite. ISIJ International, 2013, 53, 564-569.	0.6	30
18	Structure Analysis of CaO–SiO2–Al2O3–TiO2 Slag by Molecular Dynamics Simulation and FT-IR Spectroscopy. ISIJ International, 2014, 54, 734-742.	0.6	46

CITATION REPORT

#	Article	IF	CITATIONS
19	Crystallization Behavior of Molten Blast Furnace Slag Using Confocal Scanninglaser Microscope. , 2014, , 597-603.		0
20	Processes for Recycling. , 2014, , 1507-1561.		9
21	Study on the Preparation Process of Photocatalysts by the Acidolysis of High Titanium Slag with Hydrochloric Acid. Applied Mechanics and Materials, 0, 662, 3-6.	0.2	3
22	Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 1052-1061.	2.4	17
23	Low-cost Vâ^'Wâ^'Ti SCR catalyst from titanium-bearing blast furnace slag. Journal of Environmental Chemical Engineering, 2014, 2, 1007-1010.	3.3	26
24	A novel method to extract iron, titanium, vanadium, and chromium from high-chromium vanadium-bearing titanomagnetite concentrates. Hydrometallurgy, 2014, 149, 106-109.	1.8	94
25	Crystallization Behavior of Perovskite in the Synthesized High-Titanium-Bearing Blast Furnace Slag Using Confocal Scanning Laser Microscope. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 76-85.	1.0	31
27	Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 562-572.	2.4	33
28	Formation mechanism of the protective layer in a blast furnace hearth. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 1017-1024.	2.4	44
29	Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag. Hydrometallurgy, 2015, 157, 90-96.	1.8	43
30	Melting Separation Behavior and Mechanism of High-chromium Vanadium–bearing Titanomagnetite Metallized Pellet Got from Gas-based Direct Reduction. ISIJ International, 2016, 56, 210-219.	0.6	34
32	Selective Separation of Perovskite (CaTiO ₃) from Titanium Bearing Slag Melt by Super Gravity. ISIJ International, 2016, 56, 1352-1357.	0.6	20
33	Upgrading V2O5-WO3/TiO2 deNOx Catalyst with TiO2-SiO2 Support Prepared from Ti-Bearing Blast Furnace Slag. Catalysts, 2016, 6, 56.	1.6	18
34	Oxidation Kinetics and Oxygen Capacity of Ti-Bearing Blast Furnace Slag under Dynamic Oxidation Conditions. Metals, 2016, 6, 105.	1.0	13
37	Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag. High Temperature Materials and Processes, 2016, 35, 787-797.	0.6	1
38	A novel synergistic extraction method for recovering vanadium (V) from high-acidity chloride leaching liquor. Separation and Purification Technology, 2016, 165, 166-172.	3.9	38
39	Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 595-600.	2.4	28
40	Preparation of TiC by carbothermal reduction in vacuum and acid leaching using blast furnace slag bearing titania. Green Processing and Synthesis, 2016, 5, .	1.3	1

#	Article	IF	CITATIONS
41	Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2459-2467.	1.0	41
42	Effects of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 1029-1040.	2.4	9
43	Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 898-905.	2.4	3
44	Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 868-880.	2.4	38
45	Recovery of Titanium Compounds from Ti-enriched Product of Alkali Melting Ti-bearing Blast Furnace Slag by Dilute Sulfuric Acid Leaching. Procedia Environmental Sciences, 2016, 31, 977-984.	1.3	44
46	Preparation of rutile titanium dioxide pigment from low-grade titanium slag pretreated by the NaOH molten salt method. Dyes and Pigments, 2016, 125, 384-391.	2.0	38
47	Gas-Based Direct Reduction of Hongge Vanadium Titanomagnetite-Oxidized Pellet and Melting Separation of the Reduced Pellet. Steel Research International, 2017, 88, 1600120.	1.0	29
48	A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification–direct reduction coupled process. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 504-511.	2.4	35
49	Investigation of Reduction Mechanism and Kinetics of Vanadium Titanomagnetite Carbon Composite Hot Briquette at 1173-1373 K. Steel Research International, 2017, 88, 1600306.	1.0	8
50	Structure and performance of a V ₂ O ₅ –WO ₃ /TiO ₂ –SiO ₂ catalyst derived from blast furnace slag (BFS) for DeNO _x . RSC Advances, 2017, 7, 18108-18119.	1.7	13
51	Manganese-cerium oxide (MnO _x -CeO ₂) catalysts supported by titanium-bearing blast furnace slag for selective catalytic reduction of nitric oxide with ammonia at low temperature. Journal of the Air and Waste Management Association, 2017, 67, 899-909.	0.9	13
52	Experimental study of phase equilibria in the MgO-SiO2-TiO system. Journal of Alloys and Compounds, 2017, 695, 3476-3483.	2.8	16
53	Carbothermic Reduction Reactions at the Metal–Slag Interface in Ti-Bearing Slag from a Blast Furnace. Jom, 2017, 69, 2397-2403.	0.9	22
54	Effects of super-gravity field on precipitation and growth kinetics of perovskite crystals in CaO–TiO ₂ –SiO ₂ –Al ₂ O ₃ –MgO melt. Ironmaking and Steelmaking, 2017, 44, 692-698.	1.1	3
55	Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char. Jom, 2017, 69, 1759-1766.	0.9	16
56	Direct extraction of perovskite CaTiO3 via efficient dissociation of silicates from synthetic Ti-bearing blast furnace slag. Hydrometallurgy, 2017, 167, 8-15.	1.8	40
57	Energy Saving and Emission Reduction from the Steel Industry: Heat Recovery from High Temperature Slags. Lecture Notes in Energy, 2017, , 249-280.	0.2	1
58	Flotation Behaviors of Perovskite, Titanaugite, and Magnesium Aluminate Spinel Using Octyl Hydroxamic Acid as the Collector. Minerals (Basel, Switzerland), 2017, 7, 134.	0.8	15

#	Article	IF	Citations
59	Kinetic study of titanium-bearing electric arc furnace molten slag treated by molten sodium hydroxide. Minerals and Metallurgical Processing, 2017, 34, 44-52.	0.7	2
60	Effects of Low-temperature Pre-oxidation on the Titanomagnetite Ore Structure and Reduction Behaviors in a Fluidized Bed. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 846-857.	1.0	13
61	A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 131-144.	2.4	55
62	Synthesis and Kinetics of Titanium Silicides from Photovoltaic Industry Waste and Steelmaking Slag for Silicon and Titanium Recovery. ACS Sustainable Chemistry and Engineering, 2018, 6, 7078-7085.	3.2	18
63	Novelty on reduction of raw and pre-oxidised titaniferous magnetite ore with boiler grade coal. Ironmaking and Steelmaking, 2018, 45, 469-477.	1.1	0
64	Preparation of Ti5Si3 by silicothermic reduction of titanium-bearing blast furnace slag. Canadian Metallurgical Quarterly, 2018, 57, 80-88.	0.4	17
65	Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials. Construction and Building Materials, 2018, 190, 896-909.	3.2	89
66	Activation Mechanism of Lead Ions in Perovskite Flotation with Octyl Hydroxamic Acid Collector. Minerals (Basel, Switzerland), 2018, 8, 341.	0.8	7
67	Leaching of Titanium and Silicon from Low-Grade Titanium Slag Using Hydrochloric Acid Leaching. Jom, 2018, 70, 1985-1990.	0.9	1
68	Selective precipitation and <i>in situ</i> separation of rutile crystals from titanium bearing slag melt in a super-gravity field. CrystEngComm, 2018, 20, 3868-3876.	1.3	15
69	Production of ferrotitanium alloy from titania slag based on aluminothermic reduction. Journal of Alloys and Compounds, 2019, 810, 151969.	2.8	18
70	Investigations of MgO on Sintering Performance and Metallurgical Property of High-Chromium Vanadium-Titanium Magnetite. Minerals (Basel, Switzerland), 2019, 9, 324.	0.8	10
71	Effect of surface dissolution by oxalic acid on flotation behavior of minerals. Journal of Materials Research and Technology, 2019, 8, 2336-2349.	2.6	24
72	A novel method of selectively enriching and separating rare earth elements from rare-earth concentrate under super gravity. Minerals Engineering, 2019, 133, 27-34.	1.8	12
73	Solid state reduction of Iranian titanomagnetite concentrate optimization and study. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2021, 130, 409-415.	0.1	0
74	New integrated method to recover the TiO2 component and prepare glass-ceramics from molten titanium-bearing blast furnace slag. Ceramics International, 2019, 45, 24236-24243.	2.3	31
75	Thermodynamic study of direct reduction of high-chromium vanadium–titanium magnetite (HCVTM) based on phase equilibrium calculation model. Journal of Thermal Analysis and Calorimetry, 2019, 136, 885-892.	2.0	10
76	Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode. Journal of Energy Chemistry, 2020, 42, 43-48.	7.1	23

CITATION REPORT

#	Article	IF	CITATIONS
77	Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Viscosity and Melting Properties of the Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 722-731.	1.0	32
78	The influence of basicity and TiO ₂ on the crystallization behavior of high Ti-bearing slags. CrystEngComm, 2020, 22, 361-370.	1.3	21
79	Particle size controllable jet milling technology for efficiently recycling titanium-bearing blast furnace slag: Numerical simulation and industrial test. Journal of Cleaner Production, 2020, 247, 119144.	4.6	12
80	Structure, viscosity, and crystallization of glass melt from molten blast furnace slag. International Journal of Applied Glass Science, 2020, 11, 676-684.	1.0	13
81	Effect of rutile crystal shapes on its settlement. Transactions of Nonferrous Metals Society of China, 2020, 30, 2848-2860.	1.7	6
82	Phase equilibria of the CaO–SiO2–TiO2–Al2O3–MgO system in air at 1250–1400 °C. Ceramics International, 2020, 46, 27702-27710.	2.3	10
83	Pull-In and Snap-Through Analysis of Electrically Actuated Viscoelastic Curved Microbeam. Advances in Materials Science and Engineering, 2020, 2020, 1-16.	1.0	2
84	Blast Furnace Ironmaking Process with Super High TiO2 in the Slag: High-Temperature Structure of the Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2348-2357.	1.0	13
85	Slag-metal Separation and Reduction Behaviors of Vanadium-bearing Titanomagnetite Metallized Pellets. ISIJ International, 2020, 60, 823-831.	0.6	4
86	Effect of TiO2 on reduction behavior of Cr2O3 in CaO–SiO2–Al2O3–MgO–TiO2–Cr2O3 by carbon fro Fe–C melt. Journal of Iron and Steel Research International, 2020, 27, 1145-1152.	0m 1.4	3
87	Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 745-753.	2.4	5
88	Carbonization and nitridation of vanadium–bearing titanomagnetite during carbothermal reduction with coal. Journal of Materials Research and Technology, 2020, 9, 4272-4282.	2.6	15
89	CFD modeling and simulation of gas-phase extraction processes in fluidized bed reactor. Minerals Engineering, 2020, 149, 106238.	1.8	6
90	Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances. Journal of Environmental Management, 2020, 261, 110197.	3.8	20
91	Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 301-309.	2.4	23
92	Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. Minerals, Metals and Materials Series, 2020, , .	0.3	3
93	Combined Effect of SiO ₂ and O ₂ on the Crystallization Behavior of Modified Ti-Bearing Blast Furnace Slag. ACS Omega, 2020, 5, 8619-8628.	1.6	4
94	Efficient separation of vanadium, titanium, and iron from vanadium-bearing titanomagnetite by pressurized pyrolysis of ammonium chloride-acid leaching-solvent extraction process. Separation and Purification Technology, 2021, 255, 117169.	3.9	22

CITATION REPORT

#	Article	IF	CITATIONS
95	A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Management, 2021, 120, 626-634.	3.7	64
96	An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag. Journal of Hazardous Materials, 2021, 401, 123446.	6.5	23
97	Influence of TiO2 on the viscosity of the molten slag and the confirmation of the acid–base property on TiO2. Ironmaking and Steelmaking, 2021, 48, 387-392.	1.1	2
98	Extraction of vanadium and enrichment of titanium from modified Ti-bearing blast furnace slag. Hydrometallurgy, 2021, 201, 105577.	1.8	14
99	Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. Journal of Materials Research and Technology, 2021, 12, 1615-1622.	2.6	27
100	Viscosity of CaO-MgO-Al2O3-SiO2-TiO2-FeO slag with varying TiO2 content: The Effect of Crystallization on Viscosity Abrupt Behavior. Ceramics International, 2021, 47, 17445-17454.	2.3	23
101	Novel CeZrTiAl catalyst for NH3-SCR of NOx based on Ti-bearing BFS. Journal of Environmental Chemical Engineering, 2021, 9, 105233.	3.3	6
102	Corrosion behavior of carbon, Al2O3, and MgO refractories during the preparation of a Ti–Si–Al alloy via the aluminothermic reduction of a Ti-bearing blast-furnace slag. Ceramics International, 2021, 47, 18044-18052.	2.3	12
103	Influence of pelletizing process parameters on the performance of V–Ti magnetite green pellets for composite agglomeration. Ironmaking and Steelmaking, 2022, 49, 16-23.	1.1	1
104	Waste to wealth: Recovery of value-added products from steel slag. Journal of Environmental Chemical Engineering, 2021, 9, 105640.	3.3	29
105	Experimental Study on the Phase Relations of the SiO2-MgO-TiO2 System in Air at 1500°C. Jom, 0, , 1.	0.9	9
106	Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting. , 2016, , 105-114.		4
107	Effects of microwave pre-treatment on the flotation of ilmenite and titanaugite. Minerals Engineering, 2020, 155, 106452.	1.8	23
108	Effect of Mineral Elements Migration on Softening–melting Properties of Ti–bearing High Basicity Sinter. ISIJ International, 2019, 59, 245-252.	0.6	14
109	Crystallization Behavior of Molten Blast Furnace Slag Using Confocal Scanning Laser Microscope. , 2014, , 597-603.		0
111	Review and Thermodynamic Calculation of Gas-based Shaft Furnace Direct Reduction Ironmaking. E3S Web of Conferences, 2020, 218, 01032.	0.2	0
113	A green approach for simultaneously preparing Ti5Si3 and Ti5Si4-TiAl3 alloys using spent SCR catalyst, Ti-bearing blast furnace slag, and Al alloy scrap. Chemical Engineering Journal, 2022, 430, 132916.	6.6	16
114	Granulation and Carbonization Process of Titanium-Bearing Blast Furnace Slag. Minerals, Metals and Materials Series, 2020, , 169-178.	0.3	0

#	Article	IF	CITATIONS
115	Recovery of Fe, V, and Ti in modified Ti-bearing blast furnace slag. Transactions of Nonferrous Metals Society of China, 2022, 32, 333-344.	1.7	5
116	Recent progress of efficient utilization of titanium-bearing blast furnace slag. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 22-31.	2.4	15
117	Preparation of TiC ceramics from hot Ti-bearing blast furnace slag: Carbothermal reduction, supergravity separation and spark plasma sintering. Journal of the European Ceramic Society, 2022, 42, 2055-2061.	2.8	10
118	Preparing Metatitanic Acid from Perovskite-Type Titanium Slag Using a Sulfuric–Chloric Mixture Acid. Jom, 2022, 74, 1070.	0.9	0
119	Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1170-1178.	2.4	7
120	Hismelt Smelting Vanadium Titano-Magnetite: The Effect of Composition and Temperature on the Distribution Ratio of V, Ti, Si and the Feasibility of Smelting Vanadium Titano-Magnetite with Natural Basicity. SSRN Electronic Journal, 0, , .	0.4	1
121	A comprehensive review of properties of concrete containing lithium refinery residue as partial replacement of cement. Construction and Building Materials, 2022, 328, 127053.	3.2	13
122	Hydrogen reduction behaviors and mechanisms of vanadium titanomagnetite ore under fluidized bed conditions. Powder Technology, 2022, 402, 117340.	2.1	7
123	Effect of MgO/Al2O3 and CaO/SiO2 on the Metallurgical Properties of CaO–SiO2–Al2O3–MgO–TiO2 Slag. Journal of Non-Crystalline Solids, 2022, 585, 121545.	1.5	13
124	Extraction of valuable metals from acidic wastewater and blast furnace slag by a collaborative utilization process. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	0.8	2
125	Mechanism of Sodium Carbonate-Assisted Carbothermic Reduction of Titanomagnetite Concentrate. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 2272-2292.	1.0	6
126	Phase equilibria of MgO–Al ₂ O ₃ –TiO ₂ system at 1600°C in air: Emphasis on pseudobrookite and spinel solid solution phases. Journal of the American Ceramic Society, 2022, 105, 6953-6964.	1.9	5
127	An approach towards utilization of water-quenched blast furnace slag for recovery of titanium, magnesium, and aluminum. Journal of Environmental Chemical Engineering, 2022, 10, 108153.	3.3	9
128	Effect of Roasting Characteristics on the Alkali Fusion Behavior and Mechanism of Melting Titanium Slag. Journal of Sustainable Metallurgy, 2022, 8, 1381-1391.	1.1	2
129	Recovery of Residual Carbon from Ti-Extraction Blast Furnace Slag by Flotation with Simultaneous Dechlorination. Energies, 2022, 15, 6777.	1.6	2
130	Beneficiation of fluxed titaniferous slag to a marketable titania product using the modified upgraded slag process. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2022, 131, 239-249.	0.1	0
131	Phase equilibrium studies of titanomagnetite and ilmenite smelting slags. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 2162-2171.	2.4	2
132	Role of Na2O and TiO2 on viscosity and structure of Sodium-Titanium-bearing slag. Journal of Non-Crystalline Solids, 2023, 602, 122080.	1.5	4

0

#	Article	IF	CITATIONS
133	Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti–bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Waste Management, 2023, 157, 36-46.	3.7	7
134	High-temperature X-ray diffraction study of anorthite-tialite materials. Canadian Metallurgical Quarterly, 0, , 1-9.	0.4	0
135	Particle migration behavior between TiO2 and magnetite under high-temperature oxidative roasting: An experimental and molecular dynamics study. Powder Technology, 2023, 416, 118226.	2.1	3
136	Sustainable recovery of titanium from secondary resources: A review. Journal of Environmental Management, 2023, 339, 117818.	3.8	7
137	Isothermal reduction kinetics and microstructure evolution of various vanadium titanomagnetite pellets in direct reduction. Journal of Alloys and Compounds, 2023, 953, 170126.	2.8	19
138	Influence of MgO on the alkali fusion behavior and mechanism of titanium-containing melting slag. Journal of Materials Research and Technology, 2023, 23, 2116-2122.	2.6	1
139	The Photocatalytic Activity of CaTiO3 Derived from the Microwave-Melting Heating Process of Blast Furnace Slag. Nanomaterials, 2023, 13, 1412.	1.9	3
140	An Overview of Precious Metal Recovery from Steel Industry Slag: Recovery Strategy and Utilization. Industrial & Engineering Chemistry Research, 2023, 62, 9006-9031.	1.8	20

143 Selective Crystallization and Separation of Ti in Ti-Bearing Slag. , 2024, , 19-103.