Effect of cryogenic treatment on tensile behavior of cas

Materials Characterization 58, 485-491

DOI: 10.1016/j.matchar.2006.06.019

Citation Report

#	Article	IF	CITATIONS
1	Deep Cryogenic Treatment Improves Wear Resistance of En 31 Steel. Materials and Manufacturing Processes, 2008, 23, 369-376.	2.7	70
2	Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Materials & Design, 2009, 30, 1435-1440.	5.1	85
3	Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel. Materials & Design, 2009, 30, 3636-3642.	5.1	44
4	Effects of cryogenic treatment on wear behavior of D6 tool steel. Materials & Design, 2009, 30, 3259-3264.	5.1	165
5	Fatigue and fracture behaviour of high strength steel S1100Q. Engineering Failure Analysis, 2009, 16, 2348-2356.	1.8	15
6	Cryogenic treatment of case hardened steel. International Heat Treatment and Surface Engineering, 2010, 4, 14-16.	0.2	1
7	Cryoprocessing of cutting tool materialsâ€"a review. International Journal of Advanced Manufacturing Technology, 2010, 48, 175-192.	1.5	101
8	Deep cryogenic treatment of AISI 302 stainless steel: Part I – Hardness and tensile properties. Materials & Design, 2010, 31, 4725-4730.	5.1	47
9	Deep cryogenic treatment of AISI 302 stainless steel: Part II $\hat{a} \in$ Fatigue and corrosion. Materials & Design, 2010, 31, 4731-4737.	5.1	56
10	Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2182-2193.	2.6	200
11	Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 589-603.	2.6	93
12	Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics, 2010, 50, 754-758.	0.9	51
13	The Research on Process of Deep Cryogenic Treatment for W4Mo3Cr4VSi HSS Drill. Advanced Materials Research, 0, 97-101, 457-460.	0.3	2
14	The Research on Process of Deep Cryogenic Treatment for YT15 Carbide Insert. , 2010, , .		2
15	Cryogenic Treatment of Tool Materials: A Review. Materials and Manufacturing Processes, 2010, 25, 1077-1100.	2.7	145
16	Influence of Shallow and Deep Cryogenic Treatment on Tribological Behavior of En 19 Steel. Journal of Iron and Steel Research International, 2011, 18, 53-59.	1.4	75
17	Effect of cryogenic treatment on the hardness and tensile behaviour of AISI 4140 steel. International Journal of Microstructure and Materials Properties, 2011, 6, 366.	0.1	11
18	Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics, 2011, 51, 55-61.	0.9	167

#	ARTICLE	IF	Citations
19	Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology, 2011, 211, 396-401.	3.1	113
20	Wear Behavior of Surface Treated Alloy Steel with Assorted Blends of Fine Particles by Using Plasma Spray Process. Advanced Materials Research, 0, 383-390, 893-897.	0.3	0
21	Internal Friction Study of the Influence of Deep Cryogenic Treatment on the Microstructure of a Bainitic Steel. Solid State Phenomena, 0, 184, 239-244.	0.3	0
23	Optimization of Deep Cryogenic Treatment to Reduce Wear Loss of 4140 Steel. Materials and Manufacturing Processes, 2012, 27, 567-572.	2.7	36
24	Study of effects of deep cryotreatment on mechanical properties of 1.2542 tool steel. Materials & Design, 2012, 42, 279-288.	5.1	21
25	Structure–property correlation of sub-zero treated AISI D2 steel. Materials Science & Description of Structural Materials: Properties, Microstructure and Processing, 2012, 541, 45-60.	2.6	86
26	Effect of deep cryogenic treatment on the properties of 80CrMo12 5 tool steel. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 30-37.	2.4	21
27	Effect of Surface Cooling on Fatigue Life Improvement. Journal of Failure Analysis and Prevention, 2013, 13, 183-187.	0.5	3
28	Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 444-454.	2.6	37
29	Internal friction measurements of phase transformations during the process of deep cryogenic treatment of a tool steel. Cryogenics, 2013, 57, 1-5.	0.9	16
30	Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 575, 51-60.	2.6	56
31	Investigating the effect of electric current flow on the wear behavior of 1.2080 tool steel during the deep cryogenic heat treatment. Materials & Design, 2013, 45, 103-109.	5.1	24
32	Thermophysical Behavior of Cryogenically Treated Silicon Carbide for Nanofluids. Materials and Manufacturing Processes, 2014, 29, 819-825.	2.7	13
33	Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 229-235.	2.6	23
34	Influence of cryogenic treatment on the wear characteristics of 100Cr6 bearing steel. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 46-51.	2.4	11
35	Elastic properties of eta carbide (ÎFe2C) from ab initio calculations: application to cryogenically treated gear steel. Journal of Materials Science, 2014, 49, 2383-2390.	1.7	19
36	Tensile behavior of 3104 aluminum alloy processed by homogenization and cryogenic treatment. Transactions of Nonferrous Metals Society of China, 2014, 24, 2453-2458.	1.7	28
37	Effect of microstructure parameters on tensile toughness of tool steel after deep cryogenic treatment. International Journal of Precision Engineering and Manufacturing, 2014, 15, 497-502.	1.1	17

3

#	Article	IF	Citations
38	Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Materialia, 2014, 65, 383-392.	3.8	65
39	Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 236-243.	2.6	48
40	Investigating the effect of holding duration at a deep cryogenic temperature on the wear behavior of DIN 1.2080 (D3) tool steel. Metallurgical Research and Technology, 2015, 112, 401.	0.4	0
41	Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy. European Journal of Dentistry, 2015, 09, 513-517.	0.8	13
42	A review of cryogenic treatment on cutting tools. International Journal of Advanced Manufacturing Technology, 2015, 78, 1609-1627.	1.5	116
43	Effect of Deep Cryogenic Heat Treatment on the Wear Behavior of Carburized DIN 1.7131 Grade Steel. Acta Metallurgica Sinica (English Letters), 2015, 28, 348-353.	1.5	16
44	Microstructure and Properties of 15Crâ€5Niâ€1Moâ€1W Martensitic Stainless Steel. Steel Research International, 2015, 86, 51-57.	1.0	18
45	To Investigate the Wear Mechanism on Cryogenic Treatment of PTFE-Mica Filled Composite Coatings in Cookware. Transactions of the Indian Institute of Metals, 2015, 68, 611-621.	0.7	5
46	Effect of Heat Treatment on the Microstructure and Hardness of 17Cr-0.17N-0.43C-1.7 Mo Martensitic Stainless Steel. Journal of Materials Engineering and Performance, 2015, 24, 1656-1662.	1.2	12
47	Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. International Journal of Minerals, Metallurgy and Materials, 2015, 22, 68-77.	2.4	29
48	Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel. Journal of Materials Engineering and Performance, 2015, 24, 4431-4439.	1.2	61
49	Wear Properties of Cryogenic Treated Electrodes on Machining Of En-31. Materials Today: Proceedings, 2015, 2, 1406-1413.	0.9	12
50	Mechanical behavior of deep cryogenically treated martensitic shape memory nickel–titanium rotary endodontic instruments. European Journal of Dentistry, 2016, 10, 183-187.	0.8	13
51	Refinement of tempered martensite structure and its effect on wear mechanism in SAE 8620. Tribology - Materials, Surfaces and Interfaces, 2016, 10, 178-184.	0.6	3
52	Influence of cryogenic treatment on room and low temperature tensile behavior of as-cast Mg–10Gd–3Y–0.5Zr magnesium alloy. Journal of Materials Research, 2016, 31, 419-426.	1.2	6
53	Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment. Journal of Materials Engineering and Performance, 2016, 25, 2185-2194.	1.2	42
54	Cryogenic Treatment. , 2016, , 974-994.		2
55	The effect of heat treatment routes on the retained austenite and Tribomechanical properties of carburized AISI 8620 steel. Surface and Coatings Technology, 2016, 308, 236-243.	2.2	53

#	ARTICLE	IF	Citations
56	Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti–6Al–4V joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 503-510.	2.6	48
57	The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel. Materials Science & Science & Properties, Microstructure and Processing, 2016, 662, 356-362.	2.6	72
58	Influence of cryogenic treatment on the metallurgy of ferrous alloys: A review. Materials and Manufacturing Processes, 2017, 32, 1789-1805.	2.7	35
59	Parametric modelling of multiple quality characteristics in turning of CP titanium grade-2 with cryo-treated inserts. International Journal of Materials and Product Technology, 2017, 54, 306.	0.1	12
60	The effects of cryogenic treatment on the toughness and tribological behaviors of eutectoid steel. Journal of Mechanical Science and Technology, 2017, 31, 3233-3239.	0.7	24
61	Improved wear resistance of steels by cryotreatment: the current state of understanding. Materials Science and Technology, 2017, 33, 340-354.	0.8	19
62	2.15 Cryogenic Treatment of Engineering Materials. , 2017, , 421-454.		2
63	Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6). IOP Conference Series: Materials Science and Engineering, 2017, 229, 012014.	0.3	2
64	Effects of cryogenic treatment on the wear properties of brake discs. IOP Conference Series: Materials Science and Engineering, 2017, 171, 012152.	0.3	1
65	Effect of deep cryogenic treatment on mechanical properties and microstructure of Sn3.0Ag0.5Cu solder. Journal of Materials Science: Materials in Electronics, 2018, 29, 4517-4525.	1.1	7
66	Effect of Cryogenic Treatment on the Mechanical Properties of Low Carbon Steel IS 2062. Materials Today: Proceedings, 2018, 5, 25065-25074.	0.9	9
67	Effect of Minimum Temperature on the Mechanical Properties and Reversed Austenite Content of 9%Ni Steel Subjected to Cryogenic Treatment. Rare Metal Materials and Engineering, 2018, 47, 3277-3283.	0.8	4
68	Cooling mechanisms on run out table: A technical review. Materials Today: Proceedings, 2018, 5, 18162-18169.	0.9	1
69	Effect of deep cryogenic treatment on the mechanical properties of AISI D3 tool steel. International Journal of Materials Engineering Innovation, 2019, 10, 98.	0.2	16
70	Tribological properties of the plate valve and rotor material of hydraulic vane motor on different ambient temperature. Wear, 2019, 426-427, 887-895.	1.5	4
71	Effect of Low-temperature on the Tribological Properties of the Different Material of Marine Hydraulic Vane Motor. , $2019, \dots$		0
72	Enhancing the corrosion resistance performance of structural steel via a novel deep cryogenic treatment process. Vacuum, 2019, 159, 468-475.	1.6	32
73	Influence of deep cryogenic treatment on performance of cemented carbide (WC-Co) inserts during dry end milling of maraging steel. Journal of Manufacturing Processes, 2019, 37, 242-250.	2.8	34

#	ARTICLE	IF	CITATIONS
74	Tribological properties of the vane head / stator of hydraulic vane motor in the low ambient temperature. Tribology International, 2020, 149, 105570.	3.0	4
75	The reinforcement role of deep cryogenic treatment on the strength and toughness of alloy structural steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138698.	2.6	29
76	Effects of Microstructure Evolution on Fretting Wear Behaviors of 25CrNi2MoVE Steel under Different Tempering States. Metals, 2020, 10, 351.	1.0	8
77	Review on the Effect of Deep Cryogenic Treatment of Metallic Materials in Automotive Applications. Metals, 2020, 10, 434.	1.0	39
78	Cryotherapy: A New Paradigm of Treatment in Endodontics. Journal of Endodontics, 2020, 46, 936-942.	1.4	17
79	Effect of sub-zero temperatures on wear resistance of AISI P20 tool steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	12
80	Enhancement of the mechanical properties of EN52CrMoV4 spring steel by deep cryogenic treatment. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 422-431.	0.5	12
81	Effect of cryogenic treatment on the performance of mechanical properties of Al 7075-TiB2 metal matrix composites. Materials Today: Proceedings, 2021, 46, 5078-5084.	0.9	O
82	Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140619.	2.6	22
83	Review of cryogenic treatment on metal matric composites. AIP Conference Proceedings, 2021, , .	0.3	1
84	Microstructure, Hardness, and Tensile Properties of Vacuum Carburizing Gear Steel. Metals, 2021, 11, 300.	1.0	8
85	Characterization of the microstructure and hardness of case-carburized gear steel. Micron, 2021, 144, 103028.	1.1	19
86	Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal, 2008, 2, 1-11.	0.3	177
87	Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25) - SiC Metal Matrix Composite. Journal of Engineering Research, 2017, 10, 64.	0.2	2
88	Kryogenes Festwalzen metastabiler Austenite. HTM - Journal of Heat Treatment and Materials, 2010, 65, 313-320.	0.1	3
89	Cold treatment of tool steels. HTM - Journal of Heat Treatment and Materials, 2012, 67, 106-110.	0.1	1
90	Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel. , 0, , .		1
91	Investigation of the effect of different cooling medium on the physical and tribological properties of heat treated EN 31 and EN 8 steel. AIP Conference Proceedings, 2020, , .	0.3	0

#	ARTICLE	IF	CITATIONS
92	Effect of Cryogenic Treatment on Microstructure, Mechanical Properties and Distortion of Carburized Gear Steels. Metals, 2021, 11, 1940.	1.0	5
93	Effect of Cryogenic Treatment on the Microstructure and Wear Resistance of 17Cr2Ni2MoVNb Carburizing Gear Steel. Coatings, 2022, 12, 281.	1.2	9
94	Effect of cryogenic treatment on properties of materials: A review. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236, 1758-1773.	1.4	7
95	Effect of cryogenic treatment and tempering temperature on mechanical and microstructural properties of AISI 431 steel. International Journal of 3d Printing Technologies and Digital Industry, 0, , .	0.3	4
96	Cryogenically martensitic transformation and its effects on tempering behaviors of bearing steel. Materials Characterization, 2022, 190, 112066.	1.9	5
97	Optimization of Retained Austenite and Corrosion Properties on EN-31 Bearing Steel by Cryogenic Treatment Process., 0, , .		O
99	Effect of cryogenic treatment holding time on mechanical and microstructural properties of Sverker 21 steel. Materialpruefung/Materials Testing, 2022, 64, 1809-1817.	0.8	9
100	Rotating Bending Fatigue Properties of Case Carburized Steel with Different Fractions of Retained Austenite. Journal of Materials Engineering and Performance, 0, , .	1.2	0
101	Deep cryogenic treatment of AA7050: tensile response and corrosion susceptibility. Discover Materials, 2023, 3, .	1.0	0
102	Experimental investigation of rotary friction welding on the mechanical properties of NiTinol alloy. Welding International, 2023, 37, 163-173.	0.3	4