The performance of fluorescence and reflectance spectro of cervical neoplasia; point probe versus multispectral a

Gynecologic Oncology 107, S248-S255

DOI: 10.1016/j.ygyno.2007.07.008

Citation Report

#	Article	IF	CITATIONS
1	Laser-Induced Fluorescence and Reflectance Spectroscopy for the Discrimination of Basal Cell Carcinoma from the Surrounding Normal Skin Tissue. Skin Pharmacology and Physiology, 2009, 22, 158-165.	1.1	27
2	Clinical results with acridine orange using a novel confocal laparoscope. , 2009, , .		o
3	Clinical confocal microlaparoscope for real-time in vivo optical biopsies. Journal of Biomedical Optics, 2009, 14, 044030.	1.4	60
4	Colposcopy to evaluate abnormal cervical cytology in 2008. American Journal of Obstetrics and Gynecology, 2009, 200, 472-480.	0.7	54
5	Digital colposcopy: ready for use? An overview of literature. BJOG: an International Journal of Obstetrics and Gynaecology, 2009, 116, 220-229.	1.1	24
6	In situ optical property measurement in layered tissue: theoretical and experimental assessment of an unconstrained approach., 2010,,.		O
7	Condensed Monte Carlo Modeling of Reflectance From Biological Tissue With a Single Illumination–Detection Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 627-634.	1.9	12
8	In vivo imaging of ovarian tissue using a novel confocal microlaparoscope. American Journal of Obstetrics and Gynecology, 2010, 202, 90.e1-90.e9.	0.7	56
9	Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue. Applied Optics, 2010, 49, 5309.	2.1	25
11	Towards a field-compatible optical Spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure. Optics Express, 2011, 19, 17908.	1.7	18
12	Broadband UV-Vis optical property measurement in layered turbid media. Proceedings of SPIE, 2011, , .	0.8	0
13	Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix. , $2011, , .$		2
14	Recent advances in optical imaging for cervical cancer detection. Archives of Gynecology and Obstetrics, 2011, 284, 1197-1208.	0.8	35
15	Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia: Testing a device as an adjunct to colposcopy. International Journal of Cancer, 2011, 128, 1151-1168.	2.3	23
16	Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia without colposcopic tissue information; a step toward automation for low resource settings. Journal of Biomedical Optics, 2012, 17, 047002.	1.4	14
17	Broadband ultraviolet-visible optical property measurement in layered turbid media. Biomedical Optics Express, 2012, 3, 1226.	1.5	28
18	Simultaneous Fingerprint and High-Wavenumber Confocal Raman Spectroscopy Enhances Early Detection of Cervical Precancer In Vivo. Analytical Chemistry, 2012, 84, 5913-5919.	3.2	123
19	Optical Technologies and Molecular Imaging for Cervical Neoplasia: A Program Project Update. Gender Medicine, 2012, 9, S7-S24.	1.4	11

#	Article	IF	CITATIONS
20	Physician Attitudes Toward Dissemination of Optical Spectroscopy Devices for Cervical Cancer Control: An Industrial-Academic Collaborative Study. Gender Medicine, 2012, 9, S67-S77.e6.	1.4	1
21	In vivo fluorescence studies of whole blood after chitosan bio-functionalized gold nanorods administration. Journal of Luminescence, 2013, 143, 271-274.	1.5	2
22	Integrated Device for in Vivo Fine Needle Aspiration Biopsy and Elastic Scattering Spectroscopy in Preoperative Thyroid Nodules. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.4	4
23	Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomedical Optics Express, 2014, 5, 675.	1.5	64
24	Medical hyperspectral imaging: a review. Journal of Biomedical Optics, 2014, 19, 010901.	1.4	1,494
25	The use of optical spectroscopy for in vivo detection of cervical pre-cancer. Lasers in Medical Science, 2014, 29, 831-845.	1.0	11
26	Quantified ultrasound elastography in the assessment of cutaneous carcinoma. British Journal of Radiology, 2015, 88, 20150344.	1.0	29
27	Multi-labs-on-a chip based optical detection for atto-molar cancer markers concentration. , 2015, , .		0
28	Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence. , 2015, , 1515-1555.		0
30	Hyperspectral imaging in medical applications. Data Handling in Science and Technology, 2019, , 523-565.	3.1	55
31	Mobile Fiber-Optic Sensor for Detection of Oral and Cervical Cancer in the Developing World. Methods in Molecular Biology, 2015, 1256, 155-170.	0.4	8
32	Diffuse reflectance spectroscopy for determination of optical properties and chromophore concentrations of mice internal organs in the range of 350 nm to 1860 nm., 2018,,.		17
33	Rapid Determination of Oxygen Saturation and Vascularity for Cancer Detection. PLoS ONE, 2013, 8, e82977.	1,1	14
34	Established and Emerging Optical Technologies for the Real-Time Detection of Cervical Neoplasia: A Review. Journal of Cancer Therapy, 2017, 08, 1241-1278.	0.1	4